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Abstrakt 
Jednou z hlavních aplikací infračervené spektroskopie je analýza složení a chemických 
vlastností molekulárních vzorků. Techniky infračervené spektroskopie dalekého pole však 
často mají problém detekovat malá množství molekul. Jedním ze způsobů, jak překonat 
nízký signál malých molekulárních množství, je pokud je vystavíme vlivu silného blízkého 
pole. V této práci teoreticky studujeme zesílenou infračervenou spektroskopii s fotono­
vými a elektronovými sondami. Nejprve představíme rešerši se zaměřením na elektro­
dynamiku a nanofotoniku. Poté ukážeme výsledky numerických a analytických výpočtů 
pro optické účinné průřezy a spektra energiových ztrát elektronů pro nanoantény. Hlavní 
část této práce se zabývá semianalytickým modelováním systému anténa-molekuly, kde 
porovnáváme modelované výsledky molekulárních signatur ve spektrech s numerickými 
simulacemi. V neposlední řadě stanovíme měřítka pro návrh nanoantény s nejvyššíím 
výkonem v zesílené spektroskopii pro uvažovaný systém a detekci signálu. 

Summary 
One of the main applications of infrared spectroscopy is analysis of the composition and 
chemical properties of molecular samples. However, the far-field infrared spectroscopy 
techniques often suffer to detect small amounts of molecules. One of the ways to overcome 
the low signal of minute molecular amounts is by introducing the influence of a strong 
near field. In this thesis, we theoretically study the enhanced infrared spectroscopy with 
photon and electron probes. First, we review the theoretical background, with a focus 
on electrodynamics and nanophotonics. Then we show the results of numerical and ana­
lytical calculations for the optical cross sections and the electron energy loss spectra for 
nano-antennas. The main part of this thesis deals with semi-analytical modeling of the 
antenna-molecules system, where we compare the results of molecular signatures in the 
spectra from the model with the numerical simulations. Last, we establish figures of merit 
for designing nano-antenna with the best performance in enhanced spectroscopy for the 
considered system and signal detection. 
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molekulární vibrace, povrchově zesílená infračervená spektroskopie absorbce, nanoanténa, 
spektroskopie energiových ztrát elektronů 
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Introduction 
Grau, teurer Freund, ist alle Theorie 
und grün des Lebens goldner Baum. 

Johann Wolfgang von Goethe 
Faust 

One of the main applications of infrared spectroscopy is analysis of the composition and 
chemical properties of molecular samples. With the obtained spectra, one can determine 
which chemical groups are present in the studied sample, their concentration, identify the 
chemical bonds, or even the potential chemical reactions [1]. Because of the relatively 
small optical cross section of the molecules, large amounts of the sample are usually needed 
for a conclusive measurement and data analysis. 

In this context, so-called enhanced spectroscopies emerge as promising candidates for 
overcoming this hindrance of low signal. By introducing strong near fields that excite the 
molecular samples, the signals obtained by the measurement can be enhanced by a few 
orders of magnitudes [ ]. Among the enhanced spectroscopy techniques, the most promi­
nent are surface-enhanced fluorescence (SEF) [ ], surface-enhanced infrared absorption 
(SEIRA) [ ], surface-enhanced Raman spectroscopy (SERS) [5], or tip-enhanced Raman 
spectroscopy (TERS) [6]. Much larger enhancement is observed if the molecules are 
placed into the near field of a resonant nanostructure (e.g. nano-antenna), which has its 
resonance tuned to the resonance frequency of the molecule vibration [ ]. Another direc­
tion of the enhanced spectroscopies may be their utilization in spectroscopies based on 
an inelastic interaction between the sample and fast electrons. The signal enhancement 
would allow the study of minute amounts of samples and grant unprecedented spatial 
resolution, with the possibility of studying vibrational sample response, which emerged 
in recent years. 

In this study, we focus mainly on SEIRA spectroscopy with both photons and its ana­
log with electron probes. We introduce their theoretical description of these techniques, 
involving both numerical and analytical modeling. The proper description of the under­
lying physical mechanisms behind resonant SEIRA is one of the most important aspects 
that need to be resolved. The theoretical description could result in designing experiments 
in a way for optimal enhanced spectroscopy performance. 

Some works proposed that the response could be intuitively understood in the means of 
coupled harmonic oscillators [8] or by the model of coupled dipoles [9, 10]. We continue in 
work published in a recent article [11], where the enhancement of the signal was discussed 
in terms of interference. 

In Chapter 1, we review the theoretical foundations, mainly the important concepts of 
electrodynamics and material response. We elaborate on the electromagnetic scattering 
of a simplified system represented by a point-like oscillating dipole, which will be later 
used to represent both the molecular sample and a finite-size nano-antenna [(A) in Fig. 1]. 

In Chapter 2 we first consider the interaction of a point dipole with the field of a 
nearby second dipole, which results in the coupling of the dipoles. The second dipole can 
represent, for example, a molecular sample positioned in the vicinity of the nano-antenna 
[(S) in Fig. 1]. With this formalism, we will model the interaction of an antenna-molecule 
system considered in the enhanced spectroscopies. Then, we consider illumination and 
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(PW) 

Figure 1: Scheme of an enhanced spectroscopy experiment. The system with which we 
will deal in the thesis consists of a nano-antenna (A) and a molecular sample (S). The 
external source of the electric field resulting in excitation of the system could either be a 
plane wave illumination tuned in frequency to the antenna resonance (PW) or the field of 
a swift electron beam (EB). The near-field interaction between the antenna and molecular 
sample (NF) results in the enhancement of the spectroscopic signal of the molecules. 

subsequent inducement of the point dipole by a plane electromagnetic wave [(PW) in 
Fig. 1]. We introduce the concept of optical cross sections and show how they could be 
calculated numerically. Lastly, we consider the inelastic interaction of nanostructures with 
a fast electron beam [(EB) in Fig. 1], which represents a localized probe of the electric 
field. 

In Chapter 3, we review vibrational spectroscopy and put the main focus on enhanced 
spectroscopy with photons and electrons. We follow up with Chapter 4, where we describe 
the near-field interaction of the antenna and molecular sample [(NF) in Fig. 1], resulting 
in the enhanced molecular signal. We describe the mechanism behind resonant SEIRA 
by using an approximation analytical model of multiple scattering processes between 
the nano-antenna and the sample. We consider both the case of probing the system 
with photons and with electrons. Lastly, we establish figures of merit (FOM) based on 
the analytical model. With the FOMs we can evaluate the performance of antennas of 
different shapes or materials in experiments where we study either the power lost during 
the interaction (transmission experiments or EELS) or the radiated power (scattering 
experiments). 
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1. ELECTROMAGNETIC SCATTERING 

1 Electromagnetic scattering 
For aeons past, humanity was constantly interested in the nature of light and the possi­
bilities of utilizing it in its favor. In this chapter, we present a brief overview of electrody­
namics, introduce Green's function as a tool for solving differential equations, which will 
be utilized to solve scattering problems, and also introduce the formalism of electromag-
netically interacting point dipoles. Lastly, we describe models of material response to the 
external electric field and introduce the concept of nano-antenna. The main sources are 
Refs. [12, 13], the reader may find deeper views into this topic in, for example, Refs. [11. 
15]. 

1.1 Electrodynamics 
In this section, we first introduce Maxwell's equations and constitutive relations account­
ing for the influence of the matter. Then we introduce the equations for the electromag­
netic potentials. 

1 . 1 . 1 Maxwell 's equations and constitutive relations 
Maxwell's equations are the cornerstone of electrodynamics. The sources, sinks, and 
temporal and spatial evolution of electromagnetic fields are contained in these equations. 
Even though the theory of electrodynamics, as published by Maxwell, is over 160 years 
old now, is still used for the description of countless electrodynamic phenomena. It can be 
used for the classical description of electromagnetic problems or implemented into newly 
emerging fields such as nanophotonics describing the behavior of electromagnetic fields at 
the nanoscale. The form in which we know Maxwell's equations nowadays was simplified 
from the original Maxwell's manuscript by Oliver Heaviside to the following form using 
the formalism of vector calculus 

V - D ( r , £ ) = p f ( M ) , (1-1) 
V - B ( r , t ) = 0 , (1.2) 

V x E M ) = - ^ M , (1.3) 

8B(r t) 
V x H ( r ) t ) = J f ( r , t ) + ^ ) (1.4) 

where D is the dielectric displacement field, B is the magnetic induction, E is the electric 
field, H is the magnetic field, Jf is the free current density and pi is the free charge 
density. The dielectric displacement can be expressed in terms of the electric field and 
the macroscopic polarization field 

D(r,t) =e 0 E(r , t ) + P(r,t), (1.5) 

where EQ is the vacuum permittivity. The polarization field P represents the density of 
electric dipole moments as P(r,t) = n ep, where n e is the density of the electric dipoles 
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1 . 1 . ELECTRODYNAMICS 

and p is the electric dipole moment. The magnetic induction and the macroscopic mag­
netization field contribute to the magnetic field as 

H(r , t ) = - B ( r , t ) - M ( r , t ) , (1.6) 
Po 

where /x0 is the vacuum permeability. Similarly to the polarization field, we introduced 
the magnetization field as M(r, t) = n m m , with the density of the magnetic dipoles n m 

and the magnetic dipole moment m. With e 0 and /xo we can define the speed of light as 
c 2 = l/(e0fi0). 

We now plug the relations for D and H back into Eqs. (1.1) and (1.4), respectively, to 
obtain 

V - E ( r , t ) = ^ , (1.7) 

V x B(r,t) =/x 0 J(r , t )+/x 0 e 0 ^ ; , (1.8) 

where we defined the total charge density (p) and the total current density (J). The total 
charge and current densities consist of the contribution from the free charge and current 
densities, which can be adjusted externally, and the bound current and charge densities 
Jb and pb, respectively, emerging due to the polarization and magnetization of the matter. 

P = pi + Pb = pt- V - P , (1.9) 

J = J f + J b = Jf + V x M + — . (1.10) 

When considering the response of the matter to the electromagnetic fields, one must be 
cautious about the spatial and temporal non-locality of the response. It turns out to 
be convenient to express the so-called constitutive relations between the fields D and 
H , which are dependent on the material response to the electric field E and magnetic 
induction B , respectively, in the Fourier space as shown in Appendix A 1 . In so-called 
linear and translationally invariant media, the constitutive relations are linear. When 
considering non-linear media, higher-order terms would have to be considered in the 
relations. We express the constitutive as 

T>{k,u) = e0er{k,u)S{k,u), (1.11) 
H(k,u) = p0pr(k,uj)B(k,uj), (1.12) 

where k is the angular wavevector, OJ is the angular frequency, and the linear coefficients 
between the fields are the dielectric function eT and the relative permeability /xr. A n elec­
tromagnetic field in a linear medium can be expressed as a superposition of monochromatic 
fields that are called plane waves. We now consider just one sinusoidal plane wave 

E(v,t) = ±[£ei^-^+c.c.}, (1.13) 

B(r, t) = l [i3e i ( k- r-w < ) + c.c], (1.14) 

For the Fourier transform, we use the notation V(k,co) = FT{D(r,i)},£(k ,w) 
FT{E(r,i)},"H(k,w) = FT{H(r,£)}, and B(k,to) = FT{B(r,£)}. 
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1. ELECTROMAGNETIC SCATTERING 

where the electromagnetic fields have to be real, so we added the complex conjugate (c.c). 
Equivalently, we can write E(r,t) = Re {Sel(k'r~wt^}. 

One of the major results of the electromagnetic theory was the ascertainment that 
the electromagnetic fields carry energy. We now derive the equation for the conservation 
of electromagnetic energy. For clarity, we drop the spatial and temporal dependencies in 
parentheses. We start by applying the dot products E- to Eq. (1.3) and B- to Eq. (1.8). 
After subtracting these two equations and rearranging them, we obtain 

B • (V x E) - E ( V x B) + B • — + e o / x 0 E • — = - / x 0 J • E. (1.15) 

After using the vector identity V • (u x v) = v • (V x u) — u(V x v), expressing the dot 
product of vector and its derivative as u • t | U = ^ | u | 2 , multiplying both sides of the 
equation by 1//J,Q, and rearranging the terms, we reach the following form 

V . ( J - E x B ) = - J . E - | i ( £ o W + J - W ) . (1,6) 

We now integrate this equation over a volume Q and apply the divergence theorem for 
the first term, where we interchange the volume integration of divergence of the vector to 
the integration over the closed boundary of the volume dQ and get 

— E x B ) f dtt = - I J • E d ^ r - ^ / ^( e 0 |E |" + — |B|* ) d6r, (1.17) 

S Dissipation 

where dVL is a infinitesimal surface element and f is a vector perpendicular to it. This 
identity tells us that the energy of the electromagnetic waves is conserved and is inter­
preted by Poynting's theorem. It states that the term on the left side of the equation 
describes the energy flowing inside or outside the volume, and we denoted it as the Poynt-
ing vector S, which has the meaning of the energy flow density. The first term on the 
right side accounts for the dissipation losses by the heating of the material. The second 
term expresses the temporal change in the energy of the electromagnetic field, where we 
denoted the electromagnetic energy density as w. 

In many cases, we are interested in a time average of the energy flow. We again consider 
plane electromagnetic wave, e.g. the fields are time-harmonic E(r, t) = Re {E r (r)e _ l a r f } 
and B(r,t) = Re {B r ( r )e _ l a r f }. The time-averaged Poynting vector then reads2 

(S r(r)) = ^ R e { ^ - E r ( r ) x B r * ( r ) } . (1.18) 

With the help of Eq. (A.8), (S) can be rewritten as 

(Sr(r)> = I, / ^ | E r ( r ) | 2 k = J r(r)k, (1.19) 

where k is a unit vector in the direction of the wave propagation given by the wavevector 
k, and we defined the intensity of the electromagnetic wave as J r(r) = |(S r(r))|. 

2Time average of a product of two time-harmonic variables is usually defined as (/<?) = 
1/T J 0

T ( / e - i w t + c.c.) (ge-icüt + c.c.) dt = l/2Re{fg*}. where T = 2TT/UI is the period of the oscilla­
tion 
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1 . 2 . DYADIC GREEN'S FUNCTION 

1.1 .2 Electromagnetic potentials 
Important quantities, which can be useful in the description and computation of elec­
tromagnetic fields are the vector and scalar potentials. We may relate B to the vector 
potential 

B(r,t) = V x A(r , t ) , (1.20) 

so that Eq. (1.2) is automatically fulfilled. By plugging this expression for magnetic 
induction into Eq. (1.3), and assuming that the spatial and temporal derivatives are 
interchangeable we get 

V x E(r,t) + ^ ( V x A ( r , 0 ) = V x (E(r,t) + = 0. (1.21) 

We can attribute the term in parentheses to a divergence of some scalar field V, as the curl 
of divergence equals zero. We will call this newly defined quantity the scalar electrostatic 
potential. If we express the electric field in terms of the potentials we get 

E(r , i ) = - ^ M - W ( r , i ) . (1.22) 

The minus sign before the electrostatic potential gradient V is convention having roots in 
the charge performing work against the field E. 

When dealing with electromagnetic potentials, the so-called Lorenz gauge comes in 
handy, notably when one wants to derive the wave equations for potentials. The gauge 
condition is in the form 

V - A ( r , t ) + £ o / x o ^ ^ = 0, (1.23) 

and it will be used in the following section for the derivation of Green's function of the 
wave equation. 

1.2 Dyadic Green's function 
Green's function is a powerful tool for solving differential equations and many love it 
for its elegance. To introduce the concept of Green's function and its relation to the 
solutions of electromagnetic fields, we refer the reader to Appendix B. In this section, 
we derive the dyadic Green's function for the wave equation in the vacuum. The wave 
equation is very important because various physical phenomena can be described in terms 
of waves. The definition of the wave, as the solution of the wave equation, is intrinsically 
linked to it. For this part, we will consider time-harmonic fields E(r, t) = Re {E r (r)e _ l a r f } 
and the current density J(r, t) = Re {JT(r)e~luJt}. If we apply the curl V x to Eq. (1.3), 
interchange the spatial and temporal derivatives, and express the V x B with Eq. (1.8), 
we get inhomogeneous wave equation for the electric field in the form 

- V x V x E r (r) + A;2E r(r) = -i/x 0o;J r(r), (1.24) 

where we defined the free-space wavenumber k as k = u/c. The wavenumber is connected 
to the wavelength of the wave A as k = 2n/\. We now describe the electric field in form of 
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1. ELECTROMAGNETIC SCATTERING 

vector and scalar potentials and suppose the time harmonicity A(r, t) = Re{A r (r)e l u J t} 
and V(r,t) = Re {Vv(r)e~luJt}. The relation (1.22) will then take the subsequent form 

E r (r) = iu;A r(r) - W r ( r ) (1.25) 

By inserting this expression for the electric field back into the inhomogeneous wave equa­
tion (1.24) and by applying the Lorenz gauge (1.23), we get the wave equation for the 
vector potential 

V 2 A r ( r ) + A; 2A r(r) -/x0Jr(r) ;i.26) 

which is in the form of the Helmholtz Eq. (B.5), and its solution can be written with the 
help of Green's function (B.3) as 

A r ( r ) =fi0J G(r , r ' )J r (r ' )d 3 r ' . (1.27) 

Again, by applying the Lorenz gauge, we get the equation for the scalar potential 

VJv) 
k2 

V - / G( r , r ' ) J r ( r ' ) dV . :i.28) 

If we now insert the obtained relations for vector and scalar potentials back into Eq. (1.25) 
we get 

E r (r) IUJ/JLQ / fY + ^ V V ^ G ( r , r ' ) - J r ( r / ) d V = i ^ o y ' ^ ( r , r / ) - J r ( r / ) d V , (1.29) 

where I is the unit dyad, and we defined the dyadic Green's dyadic function 
AkR 

4TTR'' 
;i.3o) 

where R — |r — r'| is the magnitude of the vector R = r — r'. After rewriting the dyadic 
Green's function into components, it can be seen that it is a symmetric dyad, in this case, 
G = G T , where means transposition. 

It can be helpful to express the Green's dyadic in the Cartesian coordinates as [13] 

1 + 
ikR 

k2R2 

1 W 3 - 3ikR - k2R2 R 
I + -

R 
k2R2 R2 

AkR 
ATTR 

; i .3i) 

Depending on the distance R, we can split the Green's dyadic in Cartesian coordinates 
into different terms. In the regime where the wavelength of the wave A is much larger than 
the considered distances \ » R, the part dependent on (kR)~3 prevails. We label this 
region in the vicinity of the origin as the near field (NF). The near-field part of Green's 
dyadic then reads 

-AkR 
(1.32) Kjr NF _ < f + 3 H ® H ' 

R2 
k 2 R 2 ATTR' 

If we think about very large distances from the origin, the major contribution is from the 
part of Green's dyadic, which is dependent on (/ci?) - 1. We label this distant region as 
the far field (FF), where A << R. The far-field component of the Green's dyadic can be 
expressed as 

Kjr FF 
R(g)R 

~~R2~ 
-AkR 

AuR' 
(1.33) 
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1.3. DIPOLE RADIATION 

1.3 Dipole radiation 
In Section 1.1, we introduced the macroscopic (averaged) description of polarized or mag­
netized matter with the help of the polarization and magnetization fields. We now move 
to the microscopic description, where we consider a system consisting of point charges ran­
domly distributed in the matter. We can consider E and B emerging between the point 
charges, but from now on we won't assume magnetic fields. Such a system is schemati­
cally shown in Fig. 1.1 (a). The current density created by a system of point-like moving 
charges labeled qn can be written as 

dt 
;i.34) 

where r„ is the position vector of the charge qn. By developing the current density into 
the Taylor series with origin ro, which is usually considered to be in the center of the 
charge distribution, and keeping only the first term of the series, we get 

J(r,t) 
dp(r,t) 

dt <*(r-r0) (1.35) 

With this, we approximated the response of the matter to the response of a point dipole 
located in its center. If we now assume time harmonicity of the current density J(r, t) = 
Re {J r(r)e~ l a r f} and the dipole moment p(r,£) = Re {p r(r)e~ l a r f}, we can write J r(r) = 
—iu;pr(r)<5(r — r 0 ) . After inserting this current in Eq. (1.29), we get 

E r (r) =u fx0G (r,r 0) • p r (r 0 ) . ;i.36) 

We next assume linear dependency between the induced dipole model and the electric 
field driving the dipole mediated by a diagonal polarizability tensor a. with components 
otii where i 

Pr(r) # - E r ( r ) ;i.37) 

The polarizability accounts for the material properties and the geometry of the structure 
and in this thesis we will always assume that the tensor is diagonal. 

(a) 

Figure 1.1: (a) Scheme of n discrete charges forming a medium, (b) Scattering of the 
incoming light from the medium, which is approximated by a point dipole in the center. 
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1. ELECTROMAGNETIC SCATTERING 

By expressing the dipole in terms of the polarizability, we can write 

Er(r) = - t ? ( r , r 0 ) • # • E i n c , r ( r 0 ) , (1.38) 

we can see that the electric field of a dipole located at the position r 0 is fully described 
by the Green's dyadic. We now introduce the field enhancement tensor as 

? = - # ( r , r 0 ) - t f . (1.39) 

The field enhancement describes how large (or small, depending on the distance from the 
dipole) is the electric field in the vicinity of the dipole compared to the incoming field. 

In the following sections, we will use this approach to approximate the field radiated 
from the nanostructure by a point dipole, described by the polarizability tensor a driven 
by the incoming field E i n C ] r . The situation is schematically sketched in Fig. 1.1 (b). The 
incoming field can be a propagating electromagnetic wave, an evanescent electromagnetic 
field (for example of a nanostructure or of a focused electron beam), or even a second 
dipole. We describe the driving of an electric dipole by different external fields and its 
subsequent radiation in Chapter 2. 

1.4 Material response 
To model the material response to the external electric field, we assume that the material 
consists of discrete charges, which under the influence of the field form electric dipoles. 
The dipole can be thought of as a positive charge and a negative charge connected by a 
bond. When the external field is dynamic, this dipole oscillates and it can be modeled 
via a harmonic oscillator model. We assume that the movement of the positive charge 
(i.e. heavy positive ion) can be neglected, and the negative charge (i.e. electron or 
a positive ion) oscillates on the spring representing the bond. We can see the scheme of 
this approximative model in Fig. 1.2 (a). We consider force proportional to the strength 
of the bond Fb o nd, which acts oppositely to the oscillator displacement, the damping 
force F d a m p , proportional to the electron's velocity, and the driving external force F d r i v e , 
represented by the external electric field. We can then write the equation of motion as 

mr = ̂ -kr—m'jr—eE(r,t), (1-40) 
F b o n d F d a m p F d r i v e 

where r is the displacement of the oscillator from equilibrium, m is the oscillator mass, k 
is a constant that depends on the strength of the bond, e is the elementary charge, and 
7 is the damping parameter. The resonant frequency of the oscillator can be described 
by its properties as OOQ = y/k/m. If we assume time harmonic external field E(r, t) = 
Re {ET(r)e~luJt} the displacement in the steady state is 

E r (r) . (1.41) 
m(ul — u2 — i'ju) 

11 



1.4. MATERIAL RESPONSE 

UH 1 1 1 1 1 1 1 1 1 1 1 
0.16 0.17 0.18 0.19 0.20 0.21 140 160 180 200 220 Energy (meV) Energy (meV) 

Figure 1.2: (a) Schematic sketch of a structure consisting of discrete electric dipoles 
induced by an external electric field. The response can be modeled with a harmonic 
oscillator model, where we assume negative charges, bound to stationary nuclei oscillate, 
(b) Dielectric function of a C B P molecule (shown in the inset, which is taken from [16]). 
With the dots, we plot experimentally measured dielectric function taken from Ref. [17]. 
We can recognize three vibrational resonances at approximately 179.5, 183.5, and 187 
meV. With the full line, we plot the fit of the Lorentz model (1.44). We assume one 
oscillator with parameters = 3.05, F1 = 382.683meV2, a>n,i = 179.777meV and 71 = 
1.029 meV. We can see that the real part is always positive, thus yielding weak oscillator 
behavior, (c) Dielectric function in the upper Reststrahlen band of h B N e±. We again 
use the Lorentz model with the parameters = 4.52, F\ = 56 910.331 meV 2, a>o,i = 
168.634meV and 71 = 0.868 meV. The transverse optical phonon is situated at around 
168 meV, and the real part of the dielectric function is negative from this point until 
approximately 202meV (gray area), thus exhibiting strong oscillator behavior. In the 
inset (taken from [18]) we plot the structure of a h B N crystal and the in-plane schematic, 
(d) Dielectric function of gold. Dots represent experimental data for gold by Palik [19], 
extracted from F D T D . With the full line, we plot the fit of the data with the Drude model 
from Eq. (1.45). The parameters are = 3.931, up = 7517meV and 7 = 59meV. 
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1. ELECTROMAGNETIC SCATTERING 

We can assume that the system has an induced electric dipole moment p, because of 
the charge displacement 

Thus with p r(r) we can express the polarization field P r (r) as the dipole moment density 
P r (r) = n ep r(r) and consider Eq. (1.11) to write the dielectric function as 

This model of dielectric function based on the harmonic oscillator is called the Lorentz 
model. It offers the description of several types of resonances in matter, most notably 
the vibrational and electronic. We can generalize the Lorentz model for the case of more 
oscillators, accounting for resonant contributions to the response at different frequencies 
and write 

where we introduced background permittivity = eT(u —> oo), accounting for the non-
resonant contributions to the polarization [20], OJQJ is the resonance frequency and is 
the damping parameter of the j-th oscillator, which has the strength Fj. The oscillator 
strength conceals oscillator mass and the charge density and depending on its magnitude, 
two regimes of the oscillations emerge. When the real part of the dielectric function 
is always positive, the oscillator is denoted as weak. For example, it can be used to 
model response due to vibrations in molecular samples, as we can see in Fig. 1.2 (b). 
Here we plot the experimentally measured dielectric function of 4,4-bis(N-carbazolyl)-l,l-
biphenyl (CBP) molecules [17]. We fit the data of the C-H bond stretching resonance at 
approximately 180 meV with the Lorentz model. For larger oscillator strengths, we get 
a strong oscillator regime, the real part of the dielectric function has a band where it 
is negative and is responsible for polaritonic behavior. If the light with frequency lying 
inside this band impinges on the material, it gets mostly reflected. We can see such 
a band in Fig. 1.2 (c) where we plot the dielectric function of hexagonal boron nitride 
(hBN). This material is part of the family of van der Waals materials, which are formed 
by two-dimensional atomic crystals, stacked on each other as shown in a scheme of the 
hBN layers in the inset of Fig. 1.2 (c). The individual layers are bound by the van der 
Waals interaction [21]. Hence, the materials exhibit strong anisotropy. The response of 
hBN is given by dielectric tensor e = (e±,e±,e\\), where we denote the parallel || and 
perpendicular J_ components with respect to the anisotropy (optical) axis, in this case, 
the z-axis. In Fig. 1.2 (c), we plot e± in the so-called upper Reststrahlen band. 

A special form of the harmonic oscillator model expressed by Eq. (1.44) arises if we 
consider the response of free electrons, i.e. we assume no bonds between electrons and 
the positive ion cores. Therefore there are no restoring forces, the electrons move freely as 
the electron gas [see inset in Fig. 1.2 (d)], which results in UQ = 0. This model is named 
the Drude model and reads 
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1.5. OPTICAL AND INFRARED ANTENNAS 

where we again suppose the background permitivity and we have defined the bulk 
plasma frequency oop = \/nee2/meeo, where n e is the concentration of free electrons and 
me is the electron mass. Plasma frequency is the eigenfrequency of the longitudinal 
oscillations of the electron gas in matter. In the definition, me is the electron mass, and 
ne is the electron density. We plot the experimentally obtained dielectric function of gold 
in Fig. 1.2 (d) and fit it with the Drude model. 

1.5 Optical and infrared antennas 
As the definition states, an optical antenna is a device designed to efficiently convert 
freely propagating optical radiation to localized energy, and vice versa [22]. While radio-
frequency (RF) antennas are widely spread in today's communication, one of the main 
goals of nanophotonics and adjacent fields is to make use of optical analog to the R F 
antennas. Nano-antennas and other resonant nanostructures have the ability to squeeze 
incident light into the nanoscale, which offers a large variety of potential applications, 
such as photodetection [23], photovoltaics [24, 25], lasing [26], utilizing them as probes 
for nanoimaging or a single-photon sources [ 7]. Recently, the use of plasmonic nano-
antennas in heat-assisted magnetic recording (HAMR) was proposed, where the design 
would be used in the next generation of hard disk drives [28, 29]. Another current use 
is in the field of biosensing, for example, pregnancy tests [30] or tests of SARS-CoV-2 
based on plasmonic nanoparticles designed during recent C OVID-19 pandemic [31, 32]. 
The enhanced spectroscopies such as plasmon-enhanced fluorescence, tip-enhanced and 
surface-enhanced Raman spectroscopy, and surface-enhanced infrared absorption spec­
troscopy make use, we will discuss the latter two in more detail in Chapter 3. 

One of the main differences between optical and R F antennas is that the optical an­
tenna dimensions are in a fraction of the optical wavelength (tens to hundreds of nanome­
ters). The optical antennas are typically made of materials that can support different 
types of resonant excitations when exposed to an external electromagnetic field. Optical 
antennas mostly rely on the excitation of the localized surface plasmons, or Mie-type 
dielectric resonances. When considering the infrared region, metallic antennas can still 
support plasmonic resonances, but the dimensions of such infrared antennas need to be 
much larger than those of optical antennas. Another suitable candidate for infrared an­
tennas3 made of phononic materials, which have resonances in IR natively and which can 
support localized surface phonons. Now we describe the general properties of the optical 
and infrared antennas, which we will refer to as nano-antennas, even though, the infrared 
antennas could be of micrometer lengths. 

One of the most important aspects of antennas are their resonant properties [ ]. The 
traditional perfectly conductive metallic R F dipole antennas can be thought of as res­
onators supporting standing electromagnetic waves. We consider the simplest case of a 
half-wavelength antenna made of perfectly reflective metal and an incoming electromag­
netic wave of resonant wavelength illuminating it. The electromagnetic field displaces 
the electrons in the antenna back and forth, while generating standing waves of free 
charges, the amplitude of the waves is maximized at the resonance. As the name states, 

3For plural of the word antenna, there are two possibilities. Throughout this thesis, we use the form 
antennas, as we are dealing with nano-analogs to the electric RF aerials. The form antennae is typically 
associated with the protuberances on the heads of insects [33]. 
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1. ELECTROMAGNETIC SCATTERING 

L L 

Figure 1.3: (a) Radio-frequency antenna (blue) consisting of two metallic wires. The 
incident electric field induces charge oscillations in the wires, schematically marked with 
positive and negative signs. The resonance frequency of the oscillations is linked to the 
antenna length L. (b) Metallic nanorod, acting as a nano-analog to the R F antenna. The 
incident electric field again induces charge oscillations, and the antenna supports localized 
plasmon polariton resonance, (c) Electric field magnitude around cylinder-shaped infrared 
antenna with round edges. The length L of the antenna is 3190 nm, and the diameter D 
is 100 nm. The antenna's material is defined by Palik's experimental data for gold [19]. 
The displayed field is induced after the excitation with a plane wave of energy 160 meV 
(wavelength 7750 nm) and calculated in C O M S O L . We can see that the electric field is 
highly localized near the antenna tips and exponentially decays further on. 

the antenna length is linked to the resonance wavelength as A = 2L [ ]. We can see a 
scheme of dipolar resonance in an R F antenna in Fig. 1.3 (a). This simple formula can 
not be used for the nano-antennas, because the electromagnetic is not perfectly reflected 
from the metal, as in the case of R F antennas, but instead penetrates the material [34]. 
For the simplest case, we can consider rod-shaped nano-antenna shown schematically in 
Fig. 1.3 (b). The resonance wavelength of the nano-antenna A r e s can be written as [35] 

where L is the length of the antenna's long axis, in the direction where oscillations take 
place, n is the refractive index of the surrounding medium, a\ is a parameter accounting for 
the antenna geometry and material, a<i is a parameter accounting for the phase associated 
with reflections at the ends of the antenna and m is the order of mode. In comparison 
to the R F antennas, we also assume that the antenna can support higher order modes 
than just the dipole, for which m — 1. We can see dipolar resonance in nano-antenna in 
Fig. 1.3 (b). From Eq. (1.46), we can deduce that by elongating the antenna, the resonance 

A •res 
2L 
—nai + a2 
in 
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1.5. OPTICAL AND INFRARED ANTENNAS 

red-shifts to the lower energies. This aspect of antenna behavior is very important and 
will be exploited in the next sections to tailor nano-antennas to the desired resonance. 

Another paramount aspect of nano-antenna is the enhancement of the electromagnetic 
fields. Numerical simulations [36, 37] can predict this enhancement and show that it could 
be in orders of tens to hundreds. This near-field is highly confined within the vicinity of 
the antenna sharpnesses, as is again shown by the numerical simulations and by near-field 
experiments [ ]. When supposing rod-shaped nano-antenna, where the dipolar resonance 
is induced, the field is particularly intense near the sharp apexes, as shown in Fig. 1.3 (c), 
creating so-called hot-spots. In this thesis, we will not deal with higher-order modes, which 
can have hot-spots in other parts of the antenna. We can attribute the field enhancement 
to the induced charge density, displaced by the external electric field, which is the largest 
near the sharpnesses. On the other hand, we can look at the field enhancement in the 
context of the field scattered by an object described with Green's dyadic (1.36), and the 
field-enhancement tensor (1.39). 
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2 . POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING 

2 Point-dipole model of 
electromagnetic scattering 

In this chapter, we describe the interaction of previously derived point dipole with external 
sources and show how we can describe the electric field scattered from the dipole. We 
consider interaction with a field of a second dipole, electromagnetic plane wave, and 
field of a beam of swift electrons. We complete the overview with results of numerical 
simulations for an interaction of nano-antennas with plane wave and electron beam and 
compare them to the analytically obtained results. 

2.1 Interaction between two point dipoles 
We now introduce the description of the interaction between two point dipoles. This 
theoretical model be used for describing a general system consisting of two entities with 
dipole moments, for example, it is used for modeling scattering-type scanning near-field 
optical microscopy (s-SNOM) experiments, with a tip probing a sample, each represented 
by one dipole [39, 40]. We will use the coupled dipoles formalism in the derivations of 
formulas for enhanced spectroscopies in Chapter 4, where we will study the system of 
a nano-antenna and object, representing a molecular sample. We now summarize the 
formalism of the equations for coupled dipoles. 

The first dipole will represent the antenna and we will denote all variables accompa­
nying its description with (-)A, second dipole (-)0 will represent the object. Each of the 
dipoles, is situated at r A ( ° ) and has a dipole moment p ^ 0 ' 1 ( r A ( ° ) ) , which we will simply 
denote as p A ( ° ) . The dipole produces the electric field given by Eq. (1.38) 

k2 

E A ( 0 ) ( r 
dip.r V . 

e0 

^ ( r , r A ( 0 ) ) - p A ( ° ) . (2.1) 

Each dipole is driven by a total field, consisting of an incoming external field E r i n c ( r A ( 0 ) ) , 
and by the incoming field of the second dipole ( r A ( ° ) ) . The total field inducing each 
dipole then reads 

E: tot 
inc,r ( r A ( ° ) ) = E i n c , r ( r A ( ° ) ) + E°£> ( r A ( ° ) ) . (2.2) 

The induced dipole moment of each dipole can be written as1 

p A(0) = # A ( 0 ) . / E A ( 0 ) + ^ A O ( O A ) . pO(A)̂ J ^ 

The dipole moment can be expressed with its polarizability ^ A ( ° ) via Eq. (1.37) as 
pO(A) _ •^'A(o) . E * ° * ' A ( ° ) _ xhe situation of the two dipoles induced by the respective 
incoming external field and the fields acting between them is schematically shown in 
Fig. 2.1 (a). The system of equations (2.3) yields the following solution 

xWe will use the notation E ; ° * ' A ( 0 ) = E*°* r(rA(°)) for the total field inducing each dipole, E A (

C

0 ) = 
Emcr^*- 0 ' 1) for the incoming external field and E ° ;

A ^ A C ^ = (r A (°)) for the field of the second 
dipole. We denote the Green's dyadic which propagates the field from a dipole situated at r ° ( A ) to the 
position of the second dipole r A (° ) as ^ A O ( O A ) = ^ ( r A ( ° ) , r ° ( A ) ) . 
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2 . 1 . INTERACTION BETWEEN TWO POINT DIPOLES 

(a) (b) 4 
(c) 

(1)E, C a* 

(e) 
(1) E ° c > | -

C a* 

(3)E' 

(2) E A *f* 

(d) (1)E| C a* 
A. 

(3)E OA 

(f) 
(1 c 

E ° 4 * 
mc ' / ' 

a* 

(4) E AOA f 
Figure 2.1: (a) Scheme of coupled dipole interaction. Each dipole has its dipole moment 
pO(A) driven by an external incoming field E A

1 [ ° ' > and by the field of the second dipole 
E ^ p ^ 0 - 1 (b)-(f) Individual terms in Eq. (2.9) b) Field directly scattered by the antenna 
E A after illumination by E ^ C . (c) Field directly scattered by the object E ° after being 
illuminated by E ° C . (d) Incoming field E ° C induces the object dipole which acts with its 
field on the antenna, enhanced with the field enhancement / . The antenna then radiates 
field E ^ ° . (e) Same as in (d), but now the antenna field induces the object dipole, which 
then scatters the field E ? A . (f) Last term considered in Eq. (2.9): the antenna dipole is 
driven by the external field, the antenna induces a dipole in the object with its field, and 
the object then acts back, resulting in the field radiated by the antenna E A ° A . 

P A ( 0 ) = ^ A ( O ) I f 
k4^ ̂ O A ( A O ) . ^ O ( A ) . ^ A O ( O A ) . ^ A ( 0 ) \ 1 

E A ( O ) + ^ O ( A ) . ^ O A ( A O ) . E 0 ( A ) y 
€Q J ' 

(2.4) 

where I is a unit dyad. This general formula can be used for the description of a weak 
and strong interaction between the two point dipoles. In this thesis we will consider only 
the weak interaction, e.g. one of the dipoles is very weakly polarizable compared to the 
other, or both dipoles are sufficiently apart from each other. With the weak interaction 
in consideration, the total field inducing each of the two dipoles Ej°*'A<-°') = p A ( ° ) / ^ o t A ( - ° ^ 
can be developed into the Taylor series, under the assumption that norm of the operator 
( f c 7 £ 2 ) t ? O A ( A ° ) • y ° < A » • t ? A ° ( ° A ) • ^ A ( ° ) is less than unity [41]. We can then write 

E tot,A(0) E A ( O ) O(A) 
inc 

_|_ ^ ! ^ O A ( A O ) . ^ O ( A ) . E ' 

+ ^ ! ^ A O ( O A ) . ^ O ( A ) . ^ O A ( A O ) . ^ A ( O ) . jjAJO) (2.5) 
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2 . POINT-DIPOLE MODEL OF ELECTROMAGNETIC SCATTERING 

The field scattered from each dipole E^l 0- 1 (r) evaluated at some observation point r can be 
again written with Eq. (1.38), We denote the Green's dyadic G (r, r A (°)) which propagates 
the scattered field as G and obtain 

E ^ ° H r ) = f ^ 0 ) - ^ A ( 0 ) - E L ° : ' A ( 0 ) . (2.6) 

After rewriting E | ^ ' A ( O ) w i t h Eq. (2.5) we get 

(2.7) 
E*°> = - ^ ä 0 ) • ̂ A ( 0 ) • (Ef n

(

c

0 ) + "-^(OA} . ^ O ( A ) . E 0 ( A ) 
EQ V En 

+ ^ ! ^ A O ( A O ) . ^ O ( A ) . ^ ^ O A A O ) . ^ A ( O ) . ß A ( 0 ) + \ 
En En ' 

We recognize the field enhancement tensor from Eq. (1.39) as 

where the field produced by an antenna is evaluated at the position of the object. 
The total scattered field of the antenna-object system is the sum of the scattered 

fields (2.7). From the reciprocity theorem and the symmetry of Green's dyadic in free 
space we can write G A O = G O A [ ], which allows us to evaluate Green's dyadic when 
the source and observation points are interchanged. After rearranging, where we use 
the fact, that polarizability tensors are considered to be diagonal, thus commutative, 
and expressing the field enhancement, we can write the total scattered field in the form 
resembling the Born series 

- ^ ! t ? A . . E A + * ! g o . . E 0 + ^ A . ¥ • # ° • E° Kl = - Gf c a • W A • Efn c + - G - a • ¥ u • E - n c + 
EQ EQ EQ 

V V V 
E A E° E A O 

_ i _ ^ Wo tr>0 V F A , k2 t ^ A V V F A , 
+ — ^ s c a " a " I • ^ i n c + — ^ sea • / ' a J ' hnc +• 

v v ' v v ' 
E O A E A O A 

(2.9) 

where we denoted the individual terms of series with superscripts, to emphasize the num­
ber of scattering events. A similar expansion of the scattered field was already done in 
Ref. [ ]. The individual terms are described and schematically depicted in Fig. 2.1 (b-f). 

2.2 Interaction with photons 
When probing bulk materials with electromagnetic waves (or when emphasizing the par­
ticle nature of light, photons), we can detect the scattered waves in the forward direction, 
and measure the transmitted portion of the waves or in the backward direction, utiliz­
ing reflection schemes. We can then determine the material absorption, caused by the 
dissipation, from the energy conservation, where the sum of reflected, transmitted, and 
absorbed light should provide us with the total energy of the incoming light. From en­
ergy conservation, extinction is commonly defined as the decrease of the transmitted light 
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with respect to the initial intensity. When considering small structures, the scattering 
into several directions is now possible, instead of just forward transmission and backward 
reflection, nevertheless, we can still observe the light transmitted through in the primary 
direction and obtain transmission. A way to describe the interaction of small structures 
with incoming light is by means of optical cross sections. Cross sections represent an 
effective area in which the electromagnetic wave interacts with the studied object. In 
this context, it will be the probability that a part of the incoming power will be ab­
sorbed, scattered, or transmitted, and we obtain them by dividing the respective power 
(absorbed, scattered, transmitted) by the incoming power. In the next section, we derive 
the relations for the optical cross sections using point-dipole formalism. After that, we 
show numerically calculated results and compare them with the analytical ones. 

2.2.1 Optical cross sections 
One of the most important formulas in the description of scattering from a target is the op­
tical theorem. It contains the conservation of energy and can be used in the description of 
several phenomena, for example from the description of waves (electromagnetic, acoustic). 
The optical theorem relates the extinguished power of an incoming plane wave impinging 
on an object to the scattering amplitude in the forward direction of the incoming field, 
and its general form is [44] 

4-7T 
dext = — I m { A s c a } , (2.10) 

where aext is the extinction cross section, k is free space wavenumber and Asca is the 
scattering amplitude in the forward direction k = k/k. For the scattering of the electro­
magnetic wave, we can express Asca_ as [12] 

^ s c a = ~~~ To j (2.11) 
E-

where E i n c is the incoming field in the direction k and F(k) is the far-field scattering 
amplitude in the direction of the incoming field. The polarization of the incident field 
can be written by means of the field amplitude Einc and the polarization vector e as 
E i n c = E[nce. We now write the scattered field (1.36) in the direction k and express it 
with the far-field Green's dyadic (1.33) as 

*• r ¥ _ R 0 R j . ^ . E l „ . = ! ^ . E-% (2.12) E s c a I k R2 4nR R 4ner 

F ( k ) 

where we expressed the scattered field in the direction of the incoming light k, which we 
chose as the ^-direction, and then the second term in brackets vanished, as the polarization 
vector e is perpendicular to the propagation direction. We also defined the far-field 
scattering amplitude F(k). If we express Asca from Eq. (2.11) with F(k) from Eq. (2.12) 
and plug it into the optical theorem in Eq. (2.10) we get the formulation of the extinction 
cross section 

crext = - I m { e * - ^ - e } . (2.13) 
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~- E s c a (k) 

°ext — °sca °abs 

Figure 2.2: Schematic representation of light scattering on a structure. The incoming 
light propagates in a direction given by k. After the interaction with an object, light 
can be absorbed or scattered. By integrating over a spherical boundary enclosing the 
sample, we get the scattering cross section. By placing a detector in the direction k, we 
get the transmitted light, which is diminished by the extinction, summing the scattered 
and absorbed portions of the incoming light. 

The extinction cross section has the unit of area. We schematically depict the extinction 
measurement in Fig. 2.2. It is measured by placing a detector after the object in the 
direction of the incoming wave and tells us, how was the incoming power attenuated by 
the interaction of incoming light with an object it impinges on. There are two possible 
channels through which the power can be lost. It can be scattered in different directions 
than that of the passing incoming light or it can get absorbed in the object. 

Now we express the scattering cross section, which tells us about the total power 
scattered from the object. It is usually defined by considering outwards power flow through 
an imaginary border enclosing an object which radiates, which is then integrated over 
the imaginary border and normalized to the incoming power. As we expressed by the 
Eq. (1.17), the energy flow of the electromagnetic field can be expressed via the Poynting 
vector (S). By integrating the time-averaged Poynting vector of the scattered field (S s c a) 
over the imagined boundary dQ enclosing the volume Q and dividing by the magnitude of 
the time-averaged Poynting vector of the incoming field (S i n c) we get the scattering cross 
section 

^sca = 7^T( /> (S s c a)-fdfi, (2.14) 
(Sine) an 

where dQ is an infinitesimal element of the boundary and f is a unit vector normal to this 
element. After expressing the Poynting vector from Eq. (1.19) we get 

asca = - ^ - 2 0 | E s c a | 2 d f i . (2.15) 
E i n c J Jan 

By inserting the far-field formulation of E s c a for oscillating dipole as in Ref. [12] we get 
the scattering cross section in the form 

'-a 

We again schematically show a scattering experiment, where the scattered intensity J s, 
is measured in Fig. 2.2. 

21 



2 . 2 . INTERACTION WITH PHOTONS 

From the optical theorem, we know that the extinction cross section contains the total 
extinguished power. The power that is taken from the incoming wave can also be lost due 
to the dissipation in the structure and is labeled as the absorption cross section, which is 
expressed as 

0"abs = 0"ext ~ 0"sca- (2-17) 

For small or weakly polarizable absorbing structures with small a , the scattering cross 
section becomes negligible and the absorption cross section becomes the major contributor 
to the extinction <7abs ~ o~ext [45]. 

2.2.2 Numerical calculations of optical cross sections 
Numerical simulations of the response of nanostructures to the impinging electromagnetic 
waves are one of the major contributors to explaining the response. They provide infor­
mation about the field magnitudes, phases, and other quantities usually unattainable in 
standard far-field experiments, although some near-field techniques can measure them [38, 
46], and they can be afterward directly compared with numerical simulations. In this the­
sis, we use two commercial numerical solvers, finite-difference time-domain (FDTD) Ansys 
Lumerical software for the computations of the response of nanostructures to plane-wave 
illumination, and finite-element-method based C O M S O L M U L T I P H Y S I C S for the com­
putations of plane-wave and electron-beam excitation. 

In this section, we will show numerically calculated optical cross sections and compare 
them with the analytical results, using formalism for the extinction and scattering cross 
sections introduced in the previous section. We will be specifically interested in the 
computation of the far-field response of infrared (IR) antennas, for which we will use 
F D T D Lumerical (the methodology is described in Appendix C . l ) . In comparison to 
the optical antennas, the metallic infrared antennas are much larger, as was discussed 
in Sec. 1.5. Because of the size of the IR antennas, the scattering emerges as a non-
negligible contribution to the total extinction and, in some cases, even dominates it. We 
now show the calculations of the response of nano-antennas of the same shape and similar 
dimensions to ones previously used and thoroughly discussed in Ref. [ ], as they will be 
used in the next chapter for the modeling of the enhanced spectroscopies. The antennas 
are hemispherically ended cylinders with varying diameters D. By changing the diameter, 
the resonance for an antenna of a certain length shifts towards shorter wavelengths, as we 
can see in Fig. 2.3 (a). The antenna dimensions are also in Tab. D.2. 

For the later application in enhanced spectroscopy, which we discuss in Chap. 4, the 
resonance of the antennas has to be tuned to approximately 7.9 pm, which roughly corre­
sponds to the S i - C H 3 vibration in polydimethylsiloxane (PDMS) molecule. The antenna 
had to be elongated, to shift the resonance towards a longer wavelength [the resonance 
wavelength scales linearly with the antenna length, as we can see from Eq.(1.46)]. The 
lengths and sizes of the antennas are plotted together with a schematic depiction of the 
shape in Fig. 2.3 (b) with green dots. 

We can see the numerically calculated cross sections for gold nano-antenna of 100 nm 
diameter in Fig. 2.4 (a). The extinction and scattering cross sections were obtained from 
the F D T D monitors, their sum provides the extinction cross section. In Fig. 2.4 (b) 
with circles and full lines, we plot the maxima of the three numerically calculated cross 
sections maxima for the different sizes of nano-antennas from Fig. 2.3 (b). As was already 
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(a) (b) 

5 6 7 8 9 10 11 20 40 60 80 100 120 
Wavelength (|am) D (nm) 

Figure 2.3: (a) Simulated extinction cross sections for gold antennas of length 1.82 um 
and varying diameter. When broadening the nano-antenna, the resonance energy shifts 
toward shorter wavelengths (blueshift). (b) Lengths and diameters (green dots) of gold 
nano-antennas, whose resonances are tuned to approximately A r e s = 7.9 pm. With the 
black dots, we plot the dependence of the magnitude of the rc-component of the antenna 
polarizability (evaluated at the A r e s ) . To maintain the same resonance frequency while 
increasing the diameter D (blueshift of the resonance) of the nano-antennas, they had to 
be elongated as well (redshift of the resonance). Optical response of the gold antennas in 
(a) and (b) is modeled with the dielectric function from Ref. [19], plotted in Fig. 1.2 (d). 

discussed in Ref. [17], we can distinguish three antenna regimes as the ratio between 
the magnitude of absorption and scattering cross sections chang function of the 
antenna size. We can see that for the smallest antennas, the majority of the contribution 
to extinction is from the antenna absorption, yielding aext w <7abs-As we increase the 
antenna size, the scattering and absorption increase, too, until the diameter of 60 nm. 
For this antenna, the absorption cross section has a maximal value and matches the 
scattering in its magnitude. From this point on, the absorption decreases. On the other 
hand, the scattering keeps increasing, and with the larger antennas, we enter the last 
regime, where the major contribution to the extinction is from scattering. Absorption 
appears to be asymptotically approaching zero, so for larger antennas, the contribution 
to the extinction would be given mainly by the scattering aext ~ <rsca. 

This behavior has been previously discussed in terms of the theory of resonators, 
where depending on the ratio between the internal (dissipation) and external (radiation) 
losses, we can distinguish three coupling regimes [48]. When the external-to-internal ratio 
(e.g. the ratio between the scattering and absorption) is below one, when the antenna is 
dominantly absorbing, the regime is called under-coupled. When the external-to-internal 
ratio is equal to one, the resonator is denoted as critically-coupled, for larger antennas, 
where the external losses prevail, the regime is called over-coupled. These three regimes 
play an important role in the enhanced spectroscopies, and they will be discussed in the 
next chapter. 

Now we compare the numerically calculated cross sections with the analytical relations 
from Sec. 2.2. We can substitute the calculated antenna polarizability in equations for 
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Figure 2.4: (a) Comparison of the optical cross sections calculated numerically by F D T D 
(full lines) and semi-analytically obtained using Eqs. (2.18-2.20) (dashed line) for a gold 
nano-antenna which is cylindrically shaped with hemispherical apexes. The antenna diam­
eter is D = 100 nm and length is L = 3190 nm. The numerical and analytical calculations 
match fairly well when evaluating the scattering, the extinction and absorption shows a 
discrepancy, (b) Cross section values at resonance wavelength A r e s plotted as a function 
of the antenna diameter D for different antenna sizes from Fig. 2.3 (b). With the vertical 
dashed line, the points for the antenna from (a) are highlighted. With the blue back­
ground (nano-antenna diameters under about 50 nm), we mark the under-coupled regime, 
with the green background (diameter 60 nm) the critically coupled regime, and with the 
red background (diameters over about 70 nm) the over-coupled regime. 

the extinction (2.13) and scattering (2.16) and calculate the cross sections. We obtain the 
absorption cross section from the energy conservation (2.17). 

We will use computed polarizabilities obtained using multipole expansion for nanopho-
tonics (MENP) package as described in Appendix C . l . We consider incoming electromag­
netic plane wave with x-polarization, so that E i n c = Eincx, where x is a unit vector in the 
x-direction. The antenna's long axis is oriented along the x-axis, so the response would 
come only from the x-component of the polarizability a A

x . In the next we simply denote 
a* = aA. In Fig. 2.3 (b), we plot the obtained magnitude of the scalar polarizabilities 
a A | for different dimensions of nano-antennas, whose resonances are tuned to approxi­

mately A r e s = 7.9 pm. Both antenna length and polarizability are seemingly saturating 
and have decreasing slopes for larger antennas. This behavior can be interpreted by an 
interplay between the dependences of polarizability on the antenna length and the diam­
eter. When considering the scalar polarizabilities, Eqs. (2.13),(2.16) and (2.17) can be 
simplified 

oxl 

A 
° a b s 

Im{a A } , 

a 
A | 2 

(2.18) 

(2.19) 

(2.20) 
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We plot these expressions, into which we plugged the computed polarizability of the 
antenna of 50nm with dashed lines in Fig. 2.4 (a). We can see that the scattering obtained 
from the model matches almost perfectly with the numerically calculated result, but in 
extinction and absorption, there is a slight discrepancy. We again take the maxima of the 
calculated cross sections and plot them into Fig. 2.4 (b), with triangles and dashed lines. 
We can see that the scattering cross sections match well, the relative error is smaller than 
2.5% for all antennas except for the smallest one with diameter 10 nm, where the error is 
about 5%. This could be because of too coarse mesh of the simulation. 

The extinction shows a discrepancy between the numerically and analytically obtained 
spectra, and the error is about 2.5%. The absorption cross sections show a discrepancy, 
which is similar in size to the extinction (as the absorption is obtained from the energy 
conservation), although as it diminishes, the error grows. The discrepancy shall be a focus 
of future study, although we assume it arises as a consequence of the dipole approximation. 

Up to this point, we have only dealt with nano-antennas of a cylindrical rod shape 
with hemispherical apexes. After inducing a dipolar resonance within the nano-antenna, 
the electric field is greatly enhanced at the antenna apexes. We now describe the case of 
two neighboring nano-antennas separated by a nanometric gap. When the resonance is 
induced in the nano-antennas, they can interact via their near-fields in the gap dividing 
them and can be coupled [ ]. 

The lower-energy mode emerging due to the dipolar coupling is associated with the 
dipoles within the nano-antennas that oscillate in phase and is called a bright mode 
(sometimes denoted as bonding). The net dipole moment of such mode is non-zero, 
thus the interaction with the plane electromagnetic wave is efficient [50]. This mode is 
relatively redshifted to the dipolar resonance of just one antenna forming the dimer. The 
charges at the ends forming the gap are attracted, thus deforming the symmetry which 
was in the isolated nano-antenna. When we compare the field enhancement near the 
antenna apex for isolated nanorods, much stronger field enhancement is obtained in the 
gap [37]. We illustrate the dimer nano-antenna by simulation results in Fig. 2.5 (a), 
where we illuminated the nano-antenna with a plane wave which is polarized along the 
long antenna axis. We can see that the near field is enhanced at the far tips of the dimer 
nano-antenna, similarly to the isolated nano-antenna [Fig. 1.3 (c)], but we also see the 
stronger field localized in the gap. The field enhancement strongly depends on the size 
of the gap and grows when we shrink it [51]. As the computations were performed for an 
antenna with flat ends forming the gap, we can see that the field is largest near the outer 
rim of the cylinder, because of the sharp edge. 

The second coupled-antenna mode, which has higher energy, is formed by two anti-
parallel dipoles. Therefore, it has zero net dipole moment and it cannot be excited by 
the plane wave and also does not radiate. For this reason, it is sometimes called dark 
(or anti-bonding) mode. Albeit when studying nano-antennas with, for example, fast 
electrons (which we discuss in Sec. 2.3) or sharp illuminated tips producing near-fields, 
we can excite even these dark modes and higher-order modes. 

We show numerically calculated optical cross sections for bright-mode in gold dimer 
antenna in Fig. 2.5 (b) with the full line. The antenna diameter is 20 nm and its length 
is 2795 nm. We tuned the antenna resonance by adjusting the length of the rods to 
approximately 7.9 um. As the dipoles are coupled, we cannot simply model the response 
as the sum of the individual polarizabilities of the isolated nanorods [37]. Nevertheless, 
we explore the possibility of approximative analytical calculation of the cross sections via 
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Figure 2.5: (a) Electric field of a bright mode within plasmonic dimer nano-antenna 
consisting of two cylindrical nanorods, with one flat end (in the gap) and one hemispherical 
end. The gap between the nano-rods is 70 nm, the diameter of rods is 100 nm, and each 
rod has a length of 2795 nm. The dimer is illuminated by a plane wave with orientation 
aligned with the dimer's long axis. We can see that the largest near-field enhancement 
is localized in the gap. (b) Calculated optical cross section of dimer antenna of diameter 
40 nm. We compare the results of F D T D simulations (full lines) with the results of a 
point dipole approximation (dashed lines). With the vertical dotted line, we mark the 
resonance wavelength A r e s = 7.9 pm. (c) Cross sections maxima at the resonance. With 
the dotted line, we denote the values from (b). 

Eqs. (2.18-2.20), with which we assume that we can model the behavior of two coupled 
dipoles by an effective polarizability of a single dipole centered in the center of the gap. 
We show the results of such approximative dipole expansion in Fig. 2.5 (b) with the 
dashed lines. We can see that the scattering cross section is described fairly well, but the 
extinction has an error of about 10% and absorption 20%. To obtain correct values of 
the cross section from the dipole expansion, the expansion would have to be done for one 
antenna forming the dimer and then the dipole moment of the coupled antennas would 
need to be modeled via coupled dipole model described in Sec. 2.1. 

We again change the nano-antenna diameter (while changing its length to keep the 
same resonance frequency) and show the calculated cross sections in Fig. 2.5 (c). The 
dimensions of the antennas are in Tab. D.2. We obtain similar behavior as for the isolated 
nano-antennas in Fig. 2.4 (b) For smaller diameters (20 nm and 40 nm), the dimer is in the 
under-coupled regime, where the extinction is given mainly by the absorption cross section. 
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(b) 
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Figure 2.6: (a) Absorption (blue) and scattering (red) cross section of hBN antenna of 
diameter D = 40 nm and length L = 120 nm. The antenna is cylindrical with hemispher­
ical apexes. The antenna is tuned to the vibrational resonance of the C-H bond in a C B P 
molecule at approximately 6.91pm [Fig. 1.2 (c)]. (b) Absorption and scattering cross 
sections of gold nano-antenna of the same shape as h B N antenna in (a), with D = 40nm 
and length L = 2270 nm. Compared to the h B N antenna, we can see that the cross 
sections of the gold antenna are much broader, and about two orders of magnitude larger 
for absorption and five orders for scattering. Cross section were numerically calculated in 
F D T D . 

For larger antennas, with diameters larger than 60 nm, we have the over-coupled regime, 
where the scattering prevails and the absorption cross section is diminishing. Somewhere 
between diameters 40 nm and 60 nm, we would expect the critically coupled nano-antenna, 
which has maximal absorption and has the same magnitude as the scattering. We again 
compare the numerically simulated cross sections with the analytical model of one dipole 
approximating the response, for which we plot the results with triangles and dashed lines 
in Fig. 2.5 (c). We can see the scattering cross sections are predicted fairly well for all 
antenna diameters, the relative error is always under 5%. The error in the extinction 
and absorption cross sections grows from about 5% for the smallest antennas up to 15% 
for the largest antennas. We can also compare the values of optical cross sections with 
Fig. 2.4 (a), and see that the dimer antennas which are larger have larger cross sections. 

We now focus back on isolated rod-shaped nano-antennas, whose resonances are of 
a different nature than localized plasmons in gold. It was already shown, that nano-
antennas made of hexagonal boron nitride (hBN) can support localized phonon polariton 
resonances [52, 53]. The gold nano-antennas previously considered in this section were 
tuned approximately 7.9 pm, e.g. the resonance frequency of Si-CH3 vibration in PDMS. 
The upper reststrahlen band of hBN, where localized surface phonon polaritons can be 
supported within the nano-antenna, lies between 6.12 pm and 7.35 pm, thus the antenna 
resonance can not be tuned to the PDMS resonance. Because of this, we choose C B P 
molecule with vibrational resonance around 6.91pm [shown in Fig. 1.2 (b)], which was 
previously considered in Refs. [54, 55, 56], as the resonance is within the reststrahlen band 
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of hBN. We plot the numerically calculated scattering and absorption cross sections in 
Fig. 2.6 (a). The hBN antenna has length 120nm and diameter 40nm. We can see that 
the absorption cross section is approximately 3 orders larger than the scattering, thus the 
antenna is in the under-coupled regime. 

We can immediately recognize, that the cross sections are several orders smaller than 
previously considered golden nano-antennas [Fig. 2.4 (b)]. For a fair comparison, we 
computed scattering and absorption cross sections of golden nano-antennas of different 
dimensions, whose resonances are tuned to that of C B P at 6.9 pm [Fig. 1.2 (b)]. We 
plot the result of the antenna of diameter 40 nm in Fig. 2.6 (b). We can recognize that 
the antenna is in the under-coupled regime (absorption is larger than scattering), but for 
larger diameters of gold antennas, we were again able to achieve the critically-coupled 
and over-coupled regimes. 

2.3 Interaction with electrons 
In contrast to photons, where the incoming excitation can be spatially much larger com­
pared to the dimensions of the studied nanostructures, the use of localized probes of­
fers better spatial resolution and the possibility for spatially resolved probing and spec­
troscopy. Such localized probes could be tips used in scanning probe microscopy or focused 
beams of electrons. In this section, we will develop the basics of the theory of investigat­
ing excitations in nanostructures with a beam of swift electrons with electron energy-loss 
spectroscopy (EELS). For further reading, we refer to the enchiridion of the description 
of the field of an electron beam interaction with the sample, which is Ref. [57]. 

2.3.1 E E L S and the loss probability 
EELS can be performed in a scanning transmission electron microscope (STEM) while 
studying the energy lost by the electrons transmitted through a sample. We now de­
scribe the experimental setup and depict it schematically in Fig. 2.7 (a). Electrons are 
extracted from the gun and accelerated with a high voltage (typically ranging from 60 kV 
to 300kV), thus moving at relativistic speeds. The electron beam then passes through 
focusing optics and a monochromator, so the beam spot size and energy spread are greatly 
reduced. The beam then passes through or in the vicinity of the studied sample. Most of 
the electrons interact elastically or do not interact at all, thus they preserve their initial 
energy. Some of the electrons can interact inelastically and lose a part of their initial 
energy in the process. The electrons that do not lose any energy give rise to a so-called 
zero-loss peak (ZLP), which usually prevails over all the other contributions in magnitude 
and produces (an unwanted) background and, thus typically needs to be subtracted from 
the spectra. The full-width at half maximum (FWHM) of the zero-loss peak gives us infor­
mation about the energy resolution. When analyzing the inelastically scattered electrons, 
we usually distinguish two spectral ranges. The low-loss region ranges from the lowest 
energies accessible by the energy resolution, which is for state-of-art microscopes having 
around 10 meV [ ] and extends to tens of eV. The core-loss region of EELS encompasses 
energy losses of tens to hundreds of eV, which are associated with transitions of electrons 
from core-level states to valence states, giving information about elemental and chemical 
composition. In this thesis, we focus only on the low-loss region of the E E L spectra. This 
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region contains losses due to vibrational excitations, excitations of valence electrons, or 
interband electronic transitions, as well as quasiparticle excitations. Such excitations can 
be bulk and surface plasmons, phonons, or optical waveguide modes. Many of these ex­
citations are normally undetectable by standard optical spectroscopic techniques because 
of energy-momentum mismatch with freely propagating photons. As we will show later 
in this section, the field of the electron beam is evanescent and thus can provide enough 
momentum and in turn induce such excitations. When the sample is nanostructured, 
localized plasmons or phonons can be excited. Again, contrary to the standard photon 
investigation, due to the high localization of the electron beam and the symmetry of its 
field, we can probe even the dark modes, which are not radiative [59]. When the excitation 
is radiative, cathodoluminescence (CL) can be measured on a detector, we will discuss 
cathodoluminescence theoretically in the section. Some of the processes triggered by the 
field of swift electrons are depicted in Fig. 2.7 (b). 

After the interaction, the beam passes through a magnetic prism, acting as an electron 
spectrometer, where it is distributed by energies with the act of Lorentz force. After that, 
the spectrally distributed electrons land on the detector, where after integration of all the 
electrons we obtain the loss spectrum. The samples can be studied spatially, as S T E M 
offers a scanning regime, where we scan over the sample. From each scanned point we 
obtain the E E L spectrum, while looking at one particular energy loss and imaging the 
whole scanned region, one can obtain a so-called EELS map, gaining spatial information 
about the loss event. 

We now move to the theoretical description of the interaction between the fast electron 
and the sample. The moving electron can be represented as a point charge traversing along 
trajectory T-Q. We can express the moving charge by means of the current density which 
can be rewritten via the charge density pe(r, t) = — ed~(r — r B ) as 

J e (r , t) = p e v = - e v 5 ( r - r B ) . (2.21) 

We assume that the electron moves in the straight line positive ^-direction, through the 
point R B = (X-B, UB), the geometry is depicted in the inset of Fig. 2.7 (c). By transforming 
the current density into cu-space, changing the derivation over t with derivation over z 
and using the filtration ability of the 5-function we get 

J e (r , u) = -ev<5(R - R B ) e i a J z / v . (2.22) 

With the help of the current density, we can express the components of the electromagnetic 
field produced by the moving electron. We now express the perpendicular and parallel 
components of the electric field of a swift electron E(r , u) = (ER,EZ) traversing in the 
z-direction. The field components perpendicular to the electron trajectory are 

E R(R,uS) = - ^ L - e ^ K , (^-M) H Z J B ^ 

where 7L = A/1/(1 — v2/c2) is the Lorentz factor, v is the electron velocity, and Kx is 
the first-order modified Bessel function of the second kind. We can see that the field is 
polychromatic. In contrast to the spatially broad monochromatic electromagnetic plane 
wave, the electron beam represents a localized field source covering a broad range of 
energies. We plot the parallel components of the electric field of the moving electron for 
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Figure 2.7: a) Schematic representation of the EELS experiment, b) Some processes 
emerging after the interaction of the matter with a beam of swift electrons. On planar 
surfaces, propagating surface plasmon polaritons (SPP) can be excited, when the beam 
interacts with a tailored structure, localized (particle) surface plasmons (LSP). Energy can 
be lost in favor of electron transitions. For radiative processes we can detect the emitted 
photons as cathodoluminiscence (CL). Secondary electrons (SE) leaving the sample can 
be detected, as well as Auger electrons (AE). Adapted from [ ] c) Electric field of a 
swift electron in parallel and perpendicular direction for two electron velocities 0.328c 
and 0.777c, corresponding to accelerating voltages 30 kV and 300 kV respectively, which 
is the range typically used in S T E M . In the inset, the geometry is depicted. 

two velocities at Fig 2.7 (c) with red curves. The field decays with the distance, and 
we can see that the decay is greater for the larger velocity. At larger distances, both 
curves approach an exponential asymptote [57], and the field is thus evanescent. This is 
in contrast to the field of freely propagating plane waves. For the component of the field 
parallel to the electron movement, we get 

EJz,u) 
2eui w R - R •B (2.24) 

where K0 is the zeroth-order modified Bessel function of the second kind. We plot the 
z-component of the electric field with blue curves in Fig. 2.7 (c), again for two different 
velocities. Similarly to the perpendicular components, the field is evanescent and decays 
with distance from the electron. 

Straightforward interpretation of experimental E E L spectra is often impossible due to 
the finite spectral resolution, and possible distortions due to microscope and spectrometer 
aberrations. Furthermore, the highly localized nature of the E E L signal and its spatial 
variations require theoretical models to provide further insights and explanations. We can 
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derive a formula for calculating the loss probability r E E L S , that electron loses a quantum 
of energy hu while interacting with the sample. We start by expressing the dissipated 
power from the Eq. (1.17), and we integrate it over time to obtain the change in energy 
AE due to dissipation in the sample as 

/

oo /*oo 

d 3 r / J* -E i n d (r , t )dt , (2.25) 
•oo J — oo 

where J* is complex conjugate of the driving current density of the electron beam and 
E m d is the field induced in the sample. Now we express the energy loss in the frequency 
space, to assign each frequency a probability of the event. By using the Rayleigh-Parseval 
theorem (A.5) we get 

j roc /"OO - - /»oo 

AE = - - J d 3 r J R e j j : • E i n d (r ,o;) |da; = J huTEELS(u)du, (2.26) 

where we defined the loss probability T E E L S as 

T E E L S M = j°° R e j j : • E i n d ( r ,o ; )}d 3 r . (2.27) 

If we now plug in the current density from Eq. (2.22) we get 

T E E L S M = ^ J - / " R e { v - E i n d ( R b , z , ^ ) e - i ^ } d z , (2.28) 

which is the loss probability formula obtained from the solution concerning the work 
performed on the electron by the induced field as first formulated in [60]. The loss 
probability can be directly compared with experimentally measured normalized spectra 
from S T E M experiments. We can see that to obtain the loss probability, we only need 
to find the induced electric field. For bulk, surface, and some simple geometries, we can 
express the induced field and calculate the loss probability analytically. For more complex 
geometries, implementation of this formalism into some numerical solver is necessary. We 
describe the calculations of EELS in C O M S O L M U L T I P H Y S I C S in Appendix section C.2.2 
and show results of the numerical calculations in Sec. 2.3.3. 

2.3.2 Loss probability in the interaction with the point dipole 
When considering the excitation of a dipole in an arbitrarily shaped nanostructure, we will 
use the formalism of a point dipole. We now derive the loss probability, that an electron 
loses energy by inducing a dipole moment of the point dipole with its field. We start by 
plugging for the current density of the electron beam from Eq. (2.22) into Eq. (2.27) for 
the loss probability. The induced field of a point dipole located at r p can be written with 
Eq. (1.36) and we get 

T E E L S M = ^ R e { 5 ( R _ R B ) e - W v o ; 2 / x o ^ ( r , r p ) • # • E e l ( r p )}d 3 r . (2.29) 

We now multiply the loss probability with — i 2 and interchange the real and imaginary 
parts of the integrand and use the delta function. The loss probability is then 

T E E L S M = --j- / I m j e - ^ k A o G ( R B , z , r p ) • # • E e l ( r p ) )dz . (2.30) 
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We again exploit the symmetry of the Green's dyadic G (KB,Z,TP) = G (r p, R B , Z ) and 
we can recognize (—e)iu;/zo G (r p, R B , z)e~luJ(z^vdz as the complex conjugate of the 
field produced by the electron at the position of the dipole Eel'*(rp) and write 

T E E L S M = ^ I m { E e l ' * ( r p ) • # • E 6 l ( r p ) } - ( 2 - 3 1 ) 

We can see that this formulation of the loss probability resembles the relation for the ex­
tinction cross section in Eq. (2.13), which is however normalized to the incoming intensity 
and scaled with k and different prefactor. Extinction is also normalized to the incoming 
light intensity J , while in loss probability, the frequency dependence embedded in the 
electric field of the fast electrons still plays a role. We can also write the loss probability 
using the dipole moment and arrive at the expression 

T E E L S M = ^ I m { E e l ' * ( r p ) • P } " ( 2 - 3 2 ) 

2.3.3 Numerical calculations of E E L S 
In Sec. 2.2.2, we presented the results of simulations of nano-antennas illuminated with 
electromagnetic plane waves. We compared the numerically calculated optical cross sec­
tions with the semi-analytical results of the dipole model, in which we used numerically 
calculated polarizability. In this section, we show results obtained from numerical calcula­
tions of electron-energy loss spectroscopy performed in C O M S O L , studying nano-antennas 
interacting with a focused beam of fast electrons. The EELS simulations are described 
in Appendix C.2.2. Firstly, we show that we can obtain the polarizability even from the 
EELS simulations in C O M S O L , and then we employ the polarizability within the EELS 
dipole model. We follow the procedure described in [ ], which is similar to the dipole 
expansion performed in F D T D using the M E N P package. Albeit the methods should 
match, we want to compare the antenna polarizability obtained from C O M S O L and how 
we can perform the dipole expansion with EELS and replicate the loss-probability spec­
tra. We also want to evaluate the field enhancement of the antennas near-field. With the 
obtained polarizabilities and field enhancements, we will compare the performance of en­
hanced spectroscopies with photons and electrons in Chapter 4. We show the considered 
system in Fig. 2.8 (a). 

As we have shown in Sec. 2.3.2, the field of the electron beam can induce a dipole 
moment in the structure. We can express the dipole moment from Eq. (1.42), where we 
assume that the induced charge is distributed as a charge density p i nd,r( r)- In this manner, 
we can obtain the dipole moment by multiplying charge density at each point with the 
displacement vector r and integrating over considered volume Q of the structure as 

Pear = / Pmd,r(r)rd 3r = - / J i n d i r (r)d 3 r, (2.33) 
Jn u Jn 

where we expressed the charge density with the induced current density J i nd,r- We also 
denoted "r" in the subscript to emphasize, that we deal with a cartesian electric dipole 
moment. In this expression, we assume the long-wavelength (quasistatic) approximation, 
where we neglect the cu-dependence of the induced currents, and assume that the wave­
length of the electromagnetic field inducing the dipole moment is much larger than the 
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structure. Thus, all the charges in the structure experience the same driving field and are 
driven homogenously. For structures comparable in dimensions or even larger than the 
wavelength, retardation effects take part, and quasistatic approximation can not be used. 

For comparison, we also use the implementation of exact multipole moment expan­
sion into C O M S O L , as is described in [61]. The electric spherical dipole moment can be 
expressed as [62] 

Psph = - ( f Jind,r(r)Jo(£r)d 3r + f 3(r • Jind,r(r) r - r J i n d v (kr] 
(Tr 

(2.34) 

where r is the position vector with magnitude |r| = r, jo(kr) and J2(kr) are the zeroth 
and the second order spherical Bessel functions, respectively2. We plot them spherical 
Bessel functions for three different values of r in Fig. 2.8 (b). We can see that depending 
on the r, and an energy region considered, the functions oscillate more rapidly. For the 
long-wavelength regime where kr << 1, we can break the approximate expression down 
into p s p h ~ Pear + i ^ T c a r , where we recognize the cartesian electric dipole moment from 
Eq. (2.33), while the second term is the cartesian electric toroidal moment [62]. We can 
see that for the considered geometry of the h B N antenna and energies around 180 meV, 
jo(kr) ~ 1, while jo(kr) ~ 0 [Fig. 2.8 (b)], thus yielding p s p h ~ p c a r- For gold antennas 
with dimensions in order of micrometres, we can see that the Bessel functions start to 
oscillate more rapidly, therefore the need for the calculation of the p s p h is necessary. 

The induced current density can be directly obtained from C O M S O L , where it is com­
puted as 

'ind,r » = iue0(eT - l)E i n d, r(r), (2.35) 

where eT is dielectric function of the medium and E i n d r (r) the induced electric field. 
We can evaluate the polarizability from Eq. (1.42) using the dipole moment p. 

For this, we also need to evaluate the field of the electron beam which drives the dipole. 
We can obtain the field analytically from Eqs. (2.23-2.24) or directly from C O M S O L as 
we described in Appendix C.2.2. We will be using the latter, albeit they match fairly 
well [C.3 (c)]. We assume that for this geometry of the beam-antenna-object system 
[Fig. 2.8 (a)] the polarization of the antenna is mainly in the x-direction, and we can 
then again consider just the xx-component of the polarizability tensor which we denote 
as a A = aA. It is then calculated as 

XX 

a = W ) ' ( 2 - 3 6 ) 

where Ef is the x-component of the electric field of the electron beam evaluated in the 
antenna center x A , where the induced point dipole is located. We plot the cartesian 
and spherical polarizability obtained from Eqs. (2.33-2.34) for an hBN nano-antenna in 
Fig. 2.8 (c). We can see that the cartesian and spherical polarizabilities are indeed the 
same for the considered geometry and energy region. We also compare the polarizabilities 
obtained from C O M S O L simulation, where the dipole within the nanostructure is induced 

2The zeroth order spherical Bessel function is commonly known as the sine function and yields ex­
pression jo(x) = S1D(X). Spherical Bessel function of the second order is J2(x) = (-%- — l) _ 3c£s(V) 
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Figure 2.8: (a) Scheme of the considered geometry. A n electron beam induces a dipole 
moment in the nanostructure. We evaluate field enhancement of the nanostructure at 
a point r. We assume that all polarization is dominantly in the x-direction. (b) The 
zeroth and the second-order spherical Bessel functions are plotted for three values of r. 
(c) Polarizability of a cylindrical hBN of antenna with hemispherical apexes (see inset) 
of radius 20 nm and length 120 nm. With blue lines, we plot the quasistatic (cartesian) 
polarizability obtained from the dipole moment computed in C O M S O L after performing 
integration of currents induced by the field of the electrons (Eq. (2.33)). With red lines, we 
plot the exact (spherical) polarizability of Eq. (2.34). We can see that for the considered 
geometry and energies, the a c a r is almost the same as a s p h- With green lines, we plot a s p h 
obtained plane-wave illumination of the same h B N nano-antenna for comparison, (d) 
Field enhancement evaluated 30 nm from the antenna apex. With the black line, we plot 
the field enhancement of Eq. (2.37) and with green line, we plot the field enhancement 
calculated by plane-wave illumination. 
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by the field of an electron beam, with polarizability obtained from a simulation, where we 
consider the nano-antenna illuminated by a plane wave. The methodology is described 
in Appendix C.2.1. We recognize that we obtain nearly the same values, confirming that 
the dipole expansion performed in EELS works fairly well. 

In the following chapters, we discuss enhanced spectroscopic techniques, where an 
enhancement of a signal is caused by the field enhancement. For this reason, we also 
evaluate the field enhancement produced by a nano-antenna excited by an electron beam. 
At our x-position of interest x r , where we want to obtain the field enhancement, we observe 
a superposition of the field of the electron beam and the induced field of the antenna, as 
schematically depicted in Fig. 2.8 (a). We can express the field enhancement from the 
field enhancement tensor. As we again suppose that xx-component prevails over all the 
others, we assume the scalar field enhancement denoted as f — fxx. The incoming field 
inducing the dipole moment would be the field of an electron beam at the position of 
the center of the nano-antenna. From the simulations in C O M S O L we are able to obtain 
the total field Elot(xT) = _EA(x r) + E^{xr). The field enhancement can then be expressed 
from Eqs. (1.38-1.39) as 

The field enhancement does not depend on the external source of the field, but only on 
the antenna polarizability and Green's function [see Eq.1.39], so it should be the same for 
the case of an antenna dipole excited by a plane electromagnetic wave or by the field of 
a focused electron beam, which is confirmed in Fig. 2.8 (d). 

Now, we show the results of simulations of electron energy-loss spectroscopy in C O M -
SOL. We again assume h B N nano-antenna, of the same shape and dimensions as in the 
simulations of plane-wave illumination [Fig. 2.6 (a)]. We consider the electron beam to 
be positioned at x — 400 nm from the antenna center (340 nm from the antenna apex) 
with velocity of 0.446c (Tab. D . l ) . We plot the loss probability spectrum, obtained by 
calculating Eq. (C.7). We plot the calculated E E L spectrum in Fig. 2.9 (a). We can com­
pare the E E L spectrum with optical cross sections of the same antenna [Fig 2.6 (a)], after 
which we can see that we again obtain resonance peak at the resonance energy 179.7eV 
(wavelength 6.9 pm), which gives us information about the energy loss of the electron due 
to inducing a resonance within the nano-antenna. 

As we have shown in Sec. 2.3.2, we can also compute the loss probability due to an 
induced dipole. We again assume that the antenna is polarized in the x-direction (we again 
replace the polarizability tensor by the xx-component and write axx = aA). Eq. (2.31) 
for the dipole model then becomes 

For the evaluation, we can use the cartesian or spherical polarizabilities obtained from 
C O M S O L [Fig. 2.8 (c)]. We plot the spectra calculated with different polarizabilities in 
Fig. 2.9 (a) and compare them with the E E L spectrum calculated via Eq. (C.7). In 
Fig. C.3 (e), we can see that the relative error is under 2% for the cartesian polarizability 
and about 1.5%. for the spherical. 

We now show how the loss probability maximum (acquired at resonance as highlighted 
in Fig. 2.9 (a) with the vertical dotted line) depends on the impact parameter (the distance 

(2.37) 

r E E L s M = ^ I m { ^ * ( x A ) a A ^ ( x A ) } ^ ( x A ) | 2 I m { a A } . (2.38) 
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Figure 2.9: (a) Simulated E E L spectra of an h B N nano-antenna (diameter D = 40 nm 
and length L = 120nm). The electron beam is positioned 340nm from the antenna 
apex. With the black line, we plot the spectrum calculated from Eq. (C.7), obtained by 
integrating the field induced by the nano-antenna along the electron trajectory. With red 
and blue lines we plot loss probability obtained from Eq. (2.38), into which we plugged 
computed dipole moments a^ar (red dashed line) and a ^ h (blue dashed line) respectively. 
With the dotted line, we denote the energy of the dipole resonance, (b) Loss probabilities 
at the energy of the dipole resonance were evaluated for different impact parameters b of 
the electron beam. We can recognize that near the antenna, the dipole model stops being 
valid. With the vertical dotted line we mark the values from (a). 

of the electron beam and the nanostructure). In Fig. 2.9 (c), we plot the numerical 
results, starting with impact parameter 5nm from the antenna apex (e.g. 65 nm from the 
center) until 605 nm. We can see that according to Eq. (2.23) the electric field of fast 
electrons decreases with distance. As the field induced within the nanostructure, from 
which we calculate the loss probability, depends on the external field, we can see that 
the loss probability decreases rapidly for larger impact parameters. For the largest EELS 
signal, it is thus beneficial to have the beam as close to the nanostructure as possible. 
In Fig. 2.9 (c), we again compare the loss probability obtained from Eq. (C.7) with the 
one calculated using the model of the loss probability for an induced dipole in Eq. (2.38). 
We can see that the loss probabilities of the induced dipole are smaller compared to the 
numerical simulations. In Fig. C.3 (f), we recognize that the relative error is about 20% 
when the beam is posistioned 5nm from the antenna tip and then decreases. The error 
could be caused by the limits of the dipole approximation, as we are assuming that the 
dipole is induced at the center of the nano-antenna. If the beam is too close, because of 
the strong and rapidly changing field, the dipole becomes distorted. Also, higher-order 
modes could get excited and cause signal distortion due to partial spectral overlap with 
the dipolar mode. 

With these results, we conclude this chapter. We showed that we can obtain polariz-
abilities of nanostructures and near-field distributions in their vicinity, from simulations of 
both plane-wave illumination and electron beam excitation. We will use these quantities 
in Chapter 4 for model of the enhanced spectroscopies. 
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3 Vibrational spectroscopy 
Infrared (IR) spectroscopy is a powerful tool for studying molecular samples active in 

the IR region. Molecules support vibrational resonances, which are in the IR region, and 
by finding out the energy of such resonance, we can distinguish vibrations and describe 
our sample. From them, one can obtain information about constituents present in the 
sample, their configuration, and the chemical bonds between them [1]. The obtained 
spectral information can be used in the study of organic and inorganic molecules [63], 
analysis of polymers [64]1, and for applications in medicine, for example for diagnosing 
of cancer [65, 66, 67]. Applications in very different fields are also plausible, revealing 
counterfeit paintings [68], examining the age and the degradation of heritage items, such 
as paintings and statues [69] or even gaining and studying forensic evidence in crimininal 
investigations [70]. 

In the following chapter, a brief overview of IR spectroscopy and adjacent techniques 
used for the study of organic molecules is described. We then focus on surface-enhanced 
infrared spectroscopy (SEIRA) and the possibility of studying vibrational samples with 
focused electron beams. 

3.1 Infrared and visible spectroscopy techniques 
From quantum mechanics, we get very important results regarding the energy of a quan­
tum system. The energy, of, for example, electrons, bound in atom shells is discretized 
and can have only certain values En, where n is a positive integer. In the equilibrium, 
all of the electrons are in the ground state, but when energy is added to the system, 
for example, in the form of an absorbed photon of energy E = hu, the electrons can be 
excited to higher-energy states En+i, on which they can stay or from which they can relax 
back while emitting the energy. Only certain transitions are allowed, the absorbed energy 
must overlap with the difference between two states, and many selection rules govern the 
possibility of transition. 

The transition from one energy state to another can be induced in many ways. We 
mentioned the excitation of electrons to a higher energy state and the subsequent radiative 
decay of the excited electrons, luminescence. In the previous chapter, we introduced 
cathodoluminescence, which is a luminescent process induced by an electron beam. When 
a photon induces the transition, we talk about photoluminescence. Based on the decay 
time (time between absorption of photon and emission of the new one), we can divide 
photoluminescence into two regimes. The first one is fluorescence, where the photon is 
emitted almost immediately (typically about 10~6 s and shorter) after the absorption, the 
second is phosphorescence, where the lifetime can be in the units of seconds or longer [71]. 
Fluorescence microscopy is often used to study organic molecules, either the ones that 
show autofluorescence or by using markers (fluorophores) that connect to certain parts 
of particular molecules [ ]. From the measurement, we can obtain the lifetime of the 
excited states [73], and it can also provide information about the concentration, mobility, 
or configuration of the molecules. The mechanism of fluorescence is shown in the energy 
diagram in Fig. 3.1. Impinging photon is absorbed by the sample and its energy Tiu) 
is given to the electron and raises it from the ground state .So to a higher electronic 
band S\. It can then relax by non-radiative processes, going to a lower vibrational state 
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Figure 3.1: Jablonski diagram representing transitions of electrons between discrete energy 
states. When a photon induces the transition between two electronic states, we talk about 
fluorescence. If we consider scattering, when the polarization state of our sample can be 
changed, and new, short-lived virtual states can emerge for electrons, we talk about 
Rayleigh (elastic) and Raman (inelastic) scattering. Transition between two vibrational 
states is called the infrared absorption, because of the energy of the transition. 

and giving energy Hco^ to molecular vibration or phonons in solid matter. After the 
relaxation, the electron goes back to the ground state, and a visible photon of lower 
energy TIUJ' = hu — TIOJ^ is emitted. Because the fluorescence is based on electronic 
transitions, the emitted photon energies typically correspond to the visible spectral range. 
When considering absorption processes, photon impinging on studied sample needs to 
have exactly the energy of the difference between two energy levels to be absorbed and 
we gain the information about the studied sample from the absorbed photons. That is 
not the case for scattering spectroscopy, where we can study the change in energy of 
photons re-emitted after absorption. Raman spectroscopy is one of the most common 
scattering techniques for examining vibrational sample response. Fig 3.1 schematically 
shows three cases of scattering, where an electron can be raised to a virtual energy state 
after absorbing a photon. Such virtual energy states have short lifetimes [75]. After the 
decay of the electron back to the real electronic state, a photon is emitted. The first case 
of the scattering is Rayleigh (elastic) scattering, where the radiated photon has the same 
energy as the photon which induced the transition. Inelastic processes in this scenario 
are called Raman scattering. Electron, after being raised to the virtual state, can relax 
back into a higher-energy vibrational state, than where it was before, thus the emitted 
photon has a smaller energy. Such energy discrepancy is labeled as the Stokes shift. If 
the electron is already excited from the higher vibrational state, after being raised to the 
virtual state and the relaxation, it can relax to the ground state. The radiated photon 
then has a larger energy, and the energy shift is labeled as the anti-Stokes shift. Because 
of the condition of already excited electrons, of which the majority are in the ground state 
at room temperature, the anti-Stokes shift peak in spectra is typically less intense than 
the Stokes one. We can see a typical Raman spectrum in Fig. 3.2 (a). The quantity on 
the x-axis of Raman spectra is typically labeled as the Raman shift, meaning the change 
in photon energy compared to the source photons. 
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Figure 3.2: Comparison of (a) theoretical Raman spectroscopy spectrum (sensitive to 
changes of the sample polarizability) and (b) transmittance spectrum for obtaining in­
frared (IR) absorption (sensitive to the change of the dipole moment in sample) for CO2 
molecule. In Raman spectroscopy, we illuminate the sample with a monochromatic pho­
ton source (e.g. laser) and measure the shift of the frequency of emitted photons due to 
inelastic scattering. We can see that the Raman peak corresponds to the excitation of 
symmetric stretching mode, where the total dipole moment is zero, but the polarizability 
is changing. In IR absorption, we illuminate the sample with a polychromatic IR source 
and study absorption on different frequencies, we can see that the two dips correspond to 
the excitation of vibrations depicted on the schemes, for which the dipole moment of the 
molecule is changing. Inspired by Ref. [74]. 

When investigating samples with infrared light, we can directly induce vibrational 
transitions. With the photons of the energy corresponding to the transition energy miss­
ing from the measured spectra, we can tell which transitions took place. This infrared 
absorption process is again depicted in Fig. 3.1. Infrared absorption measurement is most 
commonly performed as a transmission experiment, for example, in Fourier transform 
infrared spectroscopy (FTIR). A typical transmittance spectrum is shown in Fig. 3.2 (b), 
where we can also see the complementarity of IR absorption and Raman spectroscopy. 
Different vibrations can have different symmetry, resulting in change of either the polar­
izability of the sample or its dipole moment. Raman scattering is sensitive to the change 
of the polarizability during vibrations, and infrared absorption is sensitive to the changes 
in the dipole moment [ ], which makes both techniques useful for different vibrational 
resonances. 
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3.2 Surface-enhanced spectroscopies 
One of the main advantages of Raman spectroscopy and IR absorption spectroscopy is that 
both techniques are label-free and non-destructive, which makes them ideal for studying 
even sensitive molecular samples. One particular problem arises when one deals with small 
amounts of analyte. Both spectroscopies suffer from the subsequent loss of the signal, 
which can be lost in the noise during the measurement. This hindrance can be overcome 
by placing our sample into a strong near field (e.g. near a resonant nano-antenna), which 
can be because of their evanescent nature strongly enhanced, as we discussed in Sec. 1.5. 
resulting in the detected IR vibrational signal being magnified significantly. 

In a 1974 article, Fleischmann et al reported an unusually large Raman signal of 
organic molecules adsorbed on a rough metallic layer [76]. This new spectroscopic method 
was labeled as surface-enhanced Raman Spectroscopy (SERS), as it was carried out on 
a rough planar surface. Many contributed to the explanation of this phenomenon and 
successfully attributed it to the electromagnetic effect of the near field produced by the 
substrate roughness and also to the chemical effect [77], which arises due to the chemical 
interactions between the sample and a metallic surface. The signal enhancement factor of 
SERS, defined as the ratio between the enhanced signal and the sole sample signal, was 
estimated to be maximally about 10 orders of magnitude [78]. 

Just six years after the first observation of SERS, a similar enhancement of the signal 
was discovered for infrared absorption, and surface-enhanced infrared absorption (SEIRA) 
was founded [ ]. Similarly to SERS, the enhancement in SEIRA strongly depends on 
the surface morphology and the material used. These enhancements were reported as 
about 1-3 orders of magnitude. This phenomenon was later re-labeled as non-resonant 
SEIRA 1 . For the case of randomly sized and placed islands on the surface, the distribution 
of the resonances contributing to the IR extinction/transmission merges into a smooth 
background. Such background provides a signal enhancement for a large region of the 
IR spectrum. On the other, only some of the particles have resonance and ensuing max­
imal field enhancement at the particular energy of the vibration. The independence of 
the signal enhancement on the energy can be helpful in some applications, particularly 
when looking at broader spectral ranges, with molecules with many resonances. The 
contributing effects were again identified as the electromagnetic and chemical effects [80]. 

In 2008, Neubreuch et al. showed, that much greater signal enhancement is obtained 
when one uses arrays of nanostructures of the same size and shape, which all support 
resonance on the same energy, as the molecular vibration [ ]. Such nanostructures can 
be, for example, nano-antennas described in Sec. 1.5, and they labeled this enhancement 
process as the resonant SEIRA. This effect can be viewed as a mere consequence of the 
spectral dependence of the near-field magnitude of the nanostructure, which has been 

xFew words shall be said about the nomenclature of the surface-enhanced techniques. As they were first 
observed on rough metallic surfaces, the enhancement origin was assumed to come from the rough surface, 
thus the label as surface-enhanced. A similar enhancing phenomenon was reported in the presence of a 
sharp metallic tip, for example, for tip-enhanced Raman spectroscopy (TERS). Both of these mechanisms 
take the main advantage of the same physical process, which is the magnification of the signal caused 
by the presence of the near field produced by nanostructures. We will talk about the origin of the 
signal enhancement in the next section. The label to be suggested could be generally the field-enhanced 
spectroscopies, but in the rest of this thesis, the classic nomenclature of "surface-enhanced" will be used 
for the enhanced infrared absorption. 

40 



3. VIBRATIONAL SPECTROSCOPY 

(a) (b) x 1 05 

1000 1250 1500 1750 0 500 1000 1500 
Wavenumber (cm1) x (nm) 

Figure 3.3: (a) Relative transmittance spectra of nano-antenna arrays covered by a molec­
ular layer. Different colors correspond to different nano-antenna lengths, as can be seen 
from the shift of the resonance peak. Peak (dip) features can be observed in the broad 
plasmonic peaks, giving us an enhanced signal of the molecular layer. Depending on the 
tuning of the antenna resonance (extremes of the broad plasmonic peaks) to the energies 
of the molecular vibrations, different strengths of the enhancement were observed. The 
light was polarized in accordance with the long antenna axis in all cases except for the 
pink curve. In that case, polarization is perpendicular, thus the dipolar resonance is not 
excited and there is no enhancement of the signal. This curve then factually represents 
the response of the bare molecular layer. Adapted from [ ]. (b) Experimentally measured 
vibrational signal strengths (magnitudes of the molecular features) for nano-antennas of 
length approximately 1500 nm (red-dots) for different positions x of the molecular sam­
ple (narrow deposited patches) at the nano-antennas. With the blue line, simulated 
vibrational strengths are plotted. With the green line, numerically calculated near-field 
intensity enhancement dependence on the x-position is plotted. Adapted from [81]. 

shown, that it is the largest near its resonance [37], and we discuss the role of the field 
enhancement in SEIRA in the next chapter. 

In Fig. 3.3 (a), we can see how the resonance tuning influences the signal enhance­
ment. Transmittance spectra of nano-antenna arrays with four different lengths, which 
were illuminated by light polarized in the respect of the long antenna axis, so the dipolar 
resonance was excited, are plotted. The enhanced molecular signature grows stronger as 
it is closer to the antenna resonance. Because of the spectral dependence of the field 
enhancement, we can also see that even the off-resonance molecular signatures are en­
hanced slightly. For comparison, the same array of nano-antennas of length 1.46 [xm was 
illuminated by light polarized perpendicularly to the antenna axis, so the longitudinal 
dipole was not excited and no enhanced signal arose. Such a vanishing signal would be 
obtained from the standard transmittance experiment without the nano-antennas. 

Scaling of the signal enhancement also depends on the location of the molecular sample 
and the near-field distribution. In Fig. 3.3 (b) the magnitude of the enhanced vibrational 
signal is plotted for different positions of the molecular sample in regards to the nano-
antenna. This was achieved by considering tailored molecular patches placed at different 
antenna positions. With the green curve on the second axis, the field enhancement squared 
(near-field intensity divided by the incoming light intensity f2 = I/IQ) is plotted. We can 
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see that the strength of the signal depends on the field enhancement squared and we 
obtain the largest signal for samples positioned near the tip of the nano-antenna, where 
at the dipolar resonance, the field is the largest [Fig. 1.3 (c)]. 

3.3 Infrared spectroscopy with focused electron beams 
While infrared absorption spectroscopy can give reasonable spectral information about 
the sample, and with the field enhancement, we are able to study minute amounts of 
analytes, spatial information often gives us another valuable degree of freedom. With 
standard light-based spectroscopies, discussed in previous sections, the spatial resolution 
is diffraction-limited, therefore yielding micrometer spatial resolution in infrared [82]. The 
desired signal of the studied sample can also be lost in the background signal, obtained 
after illumination of a large area [(Fig. 3.4 (a))]. Albeit by introducing a sharp metal­
lic tip [Fig. 3.4 (b)], in scanning near-field optical microscopy, the diffraction limit can 
be suppressed and spatial resolution can be in order tens of nanometers [83]. Electron 
energy-loss spectroscopy (EELS) performed in scanning transmission electron microscope 
(STEM) with a localized electron probe, described in Sec. 2.3, however, yields much better 
spatial resolution compared to the light-based techniques [(Fig. 3.4 (c))]. Spectroscopic 
information of individual atoms can be obtained [84, 85]. 

Until recent years, the S T E M - E E L S was confined only to near-infrared and higher 
energies regions, where it was not possible to study for example molecular vibrations, 
IR plasmons and phonons, which are typically situated in regions below 500 meV. The 
restrictions arose mainly due to insufficient technological equipment. With the recent 
development in T E M instrumentation, particularly in the monochromators, cold field 
emission electron guns, and spectrometers, the feasibility of performing infrared measure­
ment appeared [58]. The F W H M of the zero-loss peak was narrowed down to a few tens of 
meVs [Fig. 3.4 (d)]. On the other hand, one major problem that emerged while studying 
organic vibrational samples is beam-induced damage. The sample can be degraded either 
by direct irradiation of the field of the electron beam, by the bombardment, heating, 
charging, and other processes [86, 87]. 

Several recent studies showed that by exploiting the feasibilities of state-of-the-art 
transmission electron microscopes, EELS of sensitive vibrational samples is possible [89, 
90, 91]. Probing low-energy excitations in for example hexagonal boron nitride [Fig. 1.2 (c)] 
is nowadays accessible in EELS [18]. Liquids and liquid interfaces, play a central role in 
many research fields. Recently, a novel approach to studying liquids in S T E M - E E L S by 
encapsulating water between two thin sheets was shown. Stretching of the O-H phonon 
of water at approximately 400meV was detected [(Fig. 3.4 (e))], changes of the structure 
of water near solid surface, solidification fronts and different isotopes were studied [88]. 

Similarly to light-based vibrational measurements, when examining small amounts of 
analytes by EELS, the signal can be hindered behind the background noise and lost. As 
was proposed by Konečná et al [55], and was also discussed in Ref. [! 2], surface-enhanced 
molecular EELS can be the way to overcome this [(Fig. 3.4 (f))]. Similarly to SERS and 
SEIRA, the molecular signal is enhanced by the presence of a strong near field generated 
e.g. by a nano-antenna. 

We now recapitulate some results from Ref. [ 5]. In Fig. 3.4 (g), we can see spectra 
for a silver plasmonic nanorod and in Fig. 3.4 (h) spectra for a hexagonal boron nitride 
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Figure 3.4: (a) Standard photon-based IR measurement. The sample layer (blue) is 
placed on the substrate (gray). The light gets either absorbed or scattered by the sample 
and we can then measure the transmitted or reflected intensity, (b) Scanning near-field 
optical microscopy, utilizing a metallic probe, The sharp tip can localize the incoming 
electromagnetic field in its vicinity, (c) Electron energy-loss spectroscopy utilizes a fo­
cused beam of fast electrons. The electron can interact inelastically with the sample and 
lose some energy, which can then be quantified, (d) Comparison between experimen­
tal zero-loss peaks obtained with an unmonochromated electron beam (black) and with 
a monochromated one (red), (e) With the monochromated beam, much better energy 
resolution can be achieved, enabling the detection of vibrational signals, (f) Scheme of 
field-enhanced electron energy-loss spectroscopy. The electron beam induces a resonance 
within the nano-antenna, which then interacts with its strong near-field with the studied 
sample, (g) Numerically calculated E E L spectra of a silver nanorod covered by a layer of 
P M M A . Different zero-loss peak F W H M s are considered, (h) Numerically calculated E E L 
spectra of a hBN nanorod. (d-e) Adapted from Ref. [88]. (g-h) Adapted from Ref. [ ]. 
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phononic nanorod obtained from numerical simulations. The silver nanorod was covered 
by poly (methyl methacrylate) ( P M M A ) . In the paper, they approximated the response 
of the P M M A by a carbonyl (C=0 bond) stretching at about 215 eV. With the gray 
dashed line, bare silver nanorod spectra are plotted. When the nanorod is covered by a 
layer characterized by the background permittivity of the P M M A , we can see that the 
resonance is red-shifted. With a black line the simulated spectrum, where we can see 
that the molecular feature is present, caused by the interaction between the antenna field 
and the molecules. We can recognize that the molecular features are similar to the ones 
obtained by photon-based SEIRA [Fig. 3.3 (a)]. The signal of the sole molecular shell is 
plotted with the black dashed line and multiplied by a factor of 10 for better visibility. 
The simulated spectra were then convolved with a Gaussian curve, approximating the 
broadening of the spectra in the experiment and mimicking instrumental resolution. As 
we can see in the figure (spectra were scaled and vertically shifted for better visibility), 
the degree of monochromation matters greatly, as for broader Z L P the molecular features 
start to disappear. 

The hexagonal boron nitride antenna was functionalized with a CBP. The dashing 
and color legend is kept the same as in Fig. 3.3 (g). We can see that the the peak, which 
informs us about energy lost due to the excitation of localized phonon polariton resonance, 
is much narrower than the plasmon in silver. Compared to the molecular feature in the 
plasmonic peak of the silver nanorod, which is in the form of a weak perturbation, splitting 
occurs, and two hybridized modes emerge in the case of the h B N antenna coupled to the 
molecular layer. Nevertheless, the consequent convolution with a Gaussian curve showed, 
that for the molecular feature to be observable, the F W H M of the zero-loss peak would 
need to be below 1 meV, which is not yet achieved even in the state-of-the-art systems. 

With EELS, ultra-remote sensing was proposed. The electron beam is considered to 
be positioned at one end of the nano-antenna, while the molecular sample is covering 
the other end. With this, after the beam interacts with the nano-antenna, in which it 
can excite a resonance. The near-field then interacts with the molecular sample on the 
other end, which acts back on the antenna, changing its response and providing enhanced 
spectral information about the sample. Ultra-remote sensing could be beneficial regarding 
the sample degradation caused by the direct interaction with the electron beam, as the 
only damage would come from the strong near-field generated in the vicinity of the tip of 
the nano-antenna. 

Several other aspects, such as coupling of the molecular resonance with the higher-
order modes within the nano-antennas, which can be directly probed by the electron 
beam, the decay of the signal regarding the distance of the beam, and evaluation of the 
strong coupling, were also studied in Ref. [55]. 

In Ref. [92], semi-infinite foil and some other shapes of nano-structures (oblate spheroid, 
sphere, prolate spheroid, and cylinder) were theoretically studied in the context of surface-
enhanced EELS. By modeling the response of the antenna-molecule system, the propor­
tionality of the enhanced signal on the square of the electric field acting on the molecules, 
similarly as in SEIRA. Signal enhancements in order of hundreds or even thousands were 
predicted using the formalism, showing the possibility of studying vibrational samples in 
S T E M - E E L S with unprecedented sensitivity. 
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4 Enhanced spectroscopy with 
photons and electrons 

In contrast to the previous interpretations of SEIRA, where the molecular scattering 
was neglected, for example, in [47] it was shown, that the molecular signature appears even 
in the scattering cross-section. This goes against the previous interpretation of SEIRA 
as uniquely an absorption process, where the molecular scattering is neglected, due to 
the small amounts of the analyte and, therefore small scattering cross sections. SEIRA 
was already discussed in terms of coupled dipoles in Refs. [9, 10]. From the coupled 
dipole formalism, we are able to obtain molecular signatures in SEIRA as a consequence 
of an interference process. In this study, we continue in modeling SEIRA via model from 
Ref. [11] where SEIRA was explained by means of elastic light scattering between the 
antenna and the object, yielding the interference. We also explore the similarities of the 
molecular signatures appearing in SEIRA spectra and the ones in the surface-enhanced 
EELS and continue in work begun in Ref. [55]. We also establish several figures of merit, 
with which we can design optimal nano-antenna for enhanced spectroscopy experiments 
regarding the type of the collected signal, and emphasize, that for both electrons and 
light, we obtain similar equations and results. 

4.1 Enhanced molecular absorption 
Firstly, we focus on plane-wave illumination, and for the simulations of SEIRA, we choose 
golden round-rod antennas with hemispherical apexes aforementioned in Sec. 2.2.2. For 
the molecular sample, we choose polydimethylsiloxane (PDMS) molecules. As we con­
sider a study of a small amount of the molecules, we approximate the sample by a 20 nm 
diameter sphere located in the vicinity of the antenna apex. We define the sphere with the 
Lorentz model of Eq. (1.44) with one oscillator, mimicking S i -CH 3 vibration at approxi­
mately 0.157eV. We assume that the sphere is isotropic and its response is characterized 
by a quasistatic polarizability a° from Eq. (C.I). We plot the dielectric function of PDMS 
and polarizability of the PDMS nanosphere in Fig. 4.1 (a). 

To simulate the SEIRA experiment, we performed F D T D calculations of a system 
consisting of a nano-antenna and two nanospheres, as described in Appendix C . l . The 
nanosphere's centers are located 30 nm from each apex of the nano-antenna. We consider 
the same gold cylindrical nano-antennas, with hemispherical caps at the ends that were 
described in Sec. 2.2.2, where we calculated optical cross sections of the bare antenna. 
To obtain the signatures of the molecular sample in the antenna cross sections, we per­
formed simulations with an object characterized by the Lorentz dielectric function from 
the Eq. (1.44) and labeled it as "resonant particle" (RES) simulation. By subtracting sim­
ulations of the antennas without resonant nanoparticles from the simulations of antennas 
coupled with resonant nanoparticles, we obtain the molecular signatures ACT. Molecular 
signatures yield the baselined feature in the spectra caused by the presence of the object. 
To obtain molecular signatures, we can take two approaches: (1) we subtract simula­
tion with the object characterized with er — 1, which we label as "no particle" (NP). 
We plot the difference in Fig. 4.1 (b) with the dashed line. Because of the background 
molecular permittivity, the simulation with the resonant object is redshifted against the 

45 



4.1. ENHANCED MOLECULAR ABSORPTION 

NP simulation. We see that this redshift distorts the lineshape, and instead of just the 
dip, we obtain a complex lineshape resembling a Fano shape. For the other case (2), we 
consider simulation with an object defined by the background permittivity of the PDMS 
£R = £00 and we label this simulation as "background" (BG). Because of the background 
permittivity, the antenna cross sections are red-shifted. We then subtract B G from the 
RES simulation, after which we obtain a lineshape in the simple form of a dip. From 
now on, we will use baselined spectra obtained by subtracting B G simulation for easier 
interpretation to avoid the redshift distortion of the lineshape. 

We consider plane wave illumination of the antenna-object system, with x-polarized 
electric field E m c = Emcx. The antenna's long axis is oriented with respect to the x-axis 
[inset sketch in Fig. 4.1 (c)]. The response then depends on the xx-component of the 
polarizability, which we will denote simply as aA = aA

x. We plot aA for the model-
case gold nano-antenna from Fig. 2.4 in Fig. 4.1 (c). The polarizability is generally a 
complex quantity, and we can write aA = | a A | e i a r g ( a K As we can see in Fig. 4.1 (c), at 
the resonance frequency of the molecule uves, the polarizability of the antenna is purely 
imaginary, so we can write arg(aA(a; res)) = TT/2. We will later use this equality for 
simplification of terms in the SEIRA analytical model. 

We also consider that the field enhancements near the antenna apexes are the largest in 
the x direction. We then assume | fxx | would be the dominant contribution among all the 
others and simply denote / = fxx. We obtained the field enhancements for nano-antennas 
from the F D T D simulations as we describe in Appendix C . l . From Eq. (1.39), we can see 
that the field enhancement depends on the polarizability. We plot the field enhancement 
/ at 30 nm from the antenna apex (where the center of the nanosphere is located) with 
crimson lines in Fig. 4.1 (c). There is a clear similarity between the spectral dependence 
of the polarizability and the field enhancement. The field enhancement is a complex 
quantity and reads / = | / | e i a r g ^ . We can again see in Fig. 4.1 (c), that at the molecular 
resonance, field enhancement is purely imaginary, which yields arg(/(k; r e s)) = TT/2. 

As we discussed in Chapter 3, and as the name states, surface-enhanced infrared 
absorption was assumed to be an absorption process. When considering small absorbing 
molecular samples, the scattering is negligible because of the weak polarizability and small 
dimensions of the samples. The whole contribution to the molecular extinction is then 
from the absorption. In the extinction spectra of the SEIRA system, a magnified signature 
was identified and attributed to the field-enhanced object absorption cross section as it 

1 12 
scaled with / [4, 81] which was demonstrated in Fig. 3.3. The magnitude of the dip was 
also assumed to be negative of object absorption cross section (the scattering cross section 
of a small object is negligible; absorption cross section is then the unique contributor to 

1 12 
the extinction) multiplied by the square of the field enhancement amplitude / : 

^ b f h = | / | V a

0

b s = | / | 2 ^ I m { a 0 } . (4.1) 

In the F D T D calculations of the antenna-object system, we placed an absorption monitor 
around the object [inset in Fig. 4.1 (d)]. With this monitor, we obtained the absorption 
cross section, which is enhanced by the antenna near-field. We plot the enhanced object 
absorption in Fig. 4.1 (d) and compare it with enhanced absorption obtained from the 
Eq (4.1). We used quasistatic object polarizability and field enhancement at the point of 
the object center, plotted in Fig. 4.1 (a) and (c), respectively. We can see that the ana­
lytical formula predicts the enhanced absorption fairly well, even by using the quasistatic 
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Figure 4.1: (a) Quasistatic polarizability of a nanosphere (black line), obtained from 
Eq. (C.l) . The nanosphere has a diameter D = 20nm and is characterized by PDMS 
dielectric function (pink lines). We can see the resonance of Si-CH3 at about 0.157meV, 
for which we used Lorentz model from Eq. (1.44) with parameters = 1.55, Fi = 
364.838meV2, u0jl = 155.957meV and 71 = 2.480meV. With the dotted line, we plot 
the background polarizability a ° of the same sphere from Eq. (C.l) , characterized just 
by £00 = 1.55. (b) Baselined extinction cross section, bearing information about the 
molecular signature in two cases: (1) after subtraction of the simulation of a bare golden 
antenna with no object (NP) and (2) after subtraction of simulation with a sphere char­
acterized by the background polarizability a ° (BG) from the simulation of the golden 
antenna with the resonant particle (RES), (c) Polarizability of the nano-antenna (black 
lines) and field enhancement at the point of the object, 30 nm from the apex (crimson 
lines), (d) Absorption cross section obtained from F D T D simulation of the antenna and 
the object, when placing the monitor just around the object (full pink line) compared 
to the field-enhanced object absorption of Eq. (4.1). We compare the lineshape to the 
negative of the baselined extinction cross section to demonstrate that the field-enhanced 
object absorption does not describe the lineshape. 
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approximation and point field enhancement. We can see that for this particular antenna, 
the field enhancement at the position of the object center at the resonance is about 40 
times greater than the field of the incoming wave. The enhancement of the molecular 
signal for the case of this particular antenna is / ~ 1600, as we can see from the field 
enhancement magnitude at resonance plotted in Fig. 4.1 (c). 

Nevertheless, when comparing the signature obtained after subtracting B G simulation 
from RES simulation with field-enhanced molecular absorption, it does predict the mag­
nitude of the molecular signal at the resonance, but not the lineshape, as we can see in 
Fig. 4.1 (d). 

4.2 Detecting the antenna scattering in SEIRA 

We now recapitulate part of the results from Ref. [ ] and build on them. 

4.2.1 Molecular signatures 
First, we show molecular signatures obtained from F D T D simulations. We plot baselined 
molecular signatures (obtained after subtraction of the B G simulation) for the system of 
gold nano-antenna from Fig. 2.4 with two PDMS spheres in Fig. 4.2 (a). 

We will now study the dependency of molecular signatures on antenna size. We 
numerically calculated magnitudes of extinction, scattering, and absorption molecular 
signatures for cylindrical gold antennas of varying diameter and length (which we previ­
ously described in Sec. 2.2.2). A l l antennas are resonantly tuned approximately to the 
frequency of the PDMS oscillator at 7.9 pm. We can see the results in Fig. 4.2 (b), for 
which we obtained the same results as in [47]. The extinction signature was obtained by 
summing the scattering and absorption signatures. Depending on the antenna coupling 
regime (blue, green, and red regions in Fig. 2.4) we can distinguish three different types of 
signatures. For under coupled regime (small antennas) both the absorption and scatter­
ing are negative. That is until the point of the critical coupling, where the total antenna 
scattering and absorption cross sections are equal. While looking at the molecular sig­
nature for the critically coupled regime, the whole contribution to extinction is given by 
scattering, as the absorption is approximately zero. For larger antennas (over-coupled 
regime) absorption signature flips sign and is positive from now on. This behavior results 
in a decrease of the extinction signature magnitude compared to scattering, which means 
that by looking at the scattering signature, we would obtain a larger signal. We will deal 
with the process behind the flip of the absorption signature sign later in this section. Now 
we move to describing the cross section signatures with an analytical model. 

Firstly, we suppose that the antenna has much larger components of the polarizability 
tensor "tofA than the object "tof°. This condition can be fulfilled for example for gold 
IR antennas [x-component of polarizability in Fig. 4.1) (c)], and for small sphere repre­
senting the molecules as we can see for example in Fig. 4.1) (a). The ratio between the 
magnitudes of the antenna polarizability and the polarizability of the small molecular 
sample is aA/a° ~ 107. With this in mind, we make an approximation in the scattered 
field of Eq. (2.9) and we neglect all terms multiplied with and the terms with 
multiplications repeated more times. We can also neglect the field scattered directly by 
the object after being illuminated by the incoming field E°. When we consider large field 
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enhancement / ^> I , the terms E A O and E O A are negligible compared to the E A O A and 
can be neglected, too [43]. The approximate expression for the scattered field then reads 

Ftot _ k2 t ^ A *->A piA , k2 t ^ A ^ <->o ^ F A ( A 0 \ 
^sca ~ — ^ sea ' a ' * V C + ~ sea ' J ' a ' J ' * V C • I 4 - 2 ) 

£fj ^0 
v v ' v v ' 

EA EAOA 

Similarly, as in Section 2.2, where we derived the optical cross section for structures de­
fined by their polarizability, we can derive the optical cross section for the antenna-object 
system. For obtaining the cross section SEIRA system, we have to plug the approximate 
expression for the scattered field of the antenna-object system of Eq. (4.2), into the op­
tical theorem of Eqs. (2.10-2.12) for extinction and into Eq. (2.15) for scattering, as was 
done in Ref. [11]. From this derivation, the spectral signatures were interpreted in terms 
of interference, the E A O A carries the information about the molecule, and it is labeled 
as the field-enhanced molecular scattering. In case of extinction, where we look at the 
scattered light in the direction of the incoming field E ^ , the field enhanced molecular 
scattering E A O A interferes with the incident field E ^ . For the case of scattering E A O A 

interferes with the field scattered directly by the antenna E A . The interference in both 
the extinction and scattering then yield the molecular features observed in the SEIRA 
spectra. For the derivation used in this thesis, we take a slightly different path, with 
which we obtain the same results. We use the fact, that E A and E A O A are propagated by 
the Green's dyadic of the antenna. We write the approximate of the total scattered field 
in the form E*°* pa — G A

a • t5^ sy s t e m . where we introduced the polarizability of the 
Antenna-Object system as 

^ s y s t e m = + ^ . . ^ ( 4 3 ) 

We again consider x-polarization of the incident field and prevailing xx-terms in both 
polarizability and field enhancement tensors. The scalar polarizability of the antenna-
object system then reads 

_ system _ A 
aJ —a + fa°. (4.4) 

With the polarizability of the antenna-object system, we now express the optical cross 
sections. Firstly we plug the system polarizability into the extinction cross section in 
Eq. (2.13) and we get 

k 
cTe x t ~ — Im{a A + fa°} = a A

x t + Aa e x t . (4.5) 

We divided the equation into two terms and in the first term, we recognized the bare 
antenna extinction cross section <rA

t as in Eq. (2.18). The second term is the signature 
in the antenna extinction caused by the presence of the object A<7 e xt which reads 

Aaext = - I m { / 2 a o } . (4.6) 

We can see that the molecular signature in extinction scales with the object polarizability 
a° and with the square of the field enhancement f2, which is in concordance with the 
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Figure 4.2: (a) Scattering, extinction, and absorption cross section signatures (subtracted 
molecular features in the SEIRA spectra, see inset) for a system consisting of a nano-
antenna and two spherical objects representing molecular samples at its apexes (see inset 
scheme) The nano-antenna is a round-rod shaped with hemispherical apexes of 100 nm di­
ameter and 3.19 pm length, previously discussed as a model case nano-antenna in Fig. 2.4. 
With full line we plot obtained from F D T D simulations. With the dashed line, we plot the 
cross sections obtained analytically from Eqs. (4.6),(4.8) and (4.11). For evaluating the 
analytical model we used antenna polarizability, object polarizability and field enhance­
ment near the antenna apexes as described in Appendix C . l . With the vertical dotted 
line, we mark the molecular resonance wavelength (approximately at 7.9 pm), at which 
we will take the values of the magnitudes into (b). We can see that with the analytical ex­
pressions, we are able to fully describe the lineshapes of all three optical cross sections, (b) 
Cross section signatures magnitudes at resonance for different antennas from Fig. 2.3 (b). 
We can see that we can attribute the behavior of the different signatures to the antenna 
coupling regimes from Fig. 2.4 (b). For the critically coupled antenna (diameter 60 nm) 
the absorption signature vanishes and the extinction is uniquely given by the scattering 
contribution. With the vertical dotted line, we mark the values for 100 nm diameter an­
tenna from (a). The cross sections obtained analytically from Eqs. (4.9),(4.10) and (4.15). 

reports from literature [81, 93]. Thus for the largest extinction signature, when looking at 
the same molecular sample (cv is the same in all cases), we want to find an antenna with 
the largest field enhancement at the position of the sample. Previously it was reported 
that the largest field enhancement would take place in the critical coupling regime for gap 
antenna (two nanorods coupled together), where the field is evaluated in gap [91]. Thus 
gap antennas, which already have great field enhancement in the gap, look like promising 
candidates We plot the computed extinction in Fig. 4.2 (a). We can see that compared to 
the antenna-enhanced molecular absorption of Eq. (4.1) we are now able to fully describe 
the extinction signature lineshape. 

After deriving the extinction cross section of the SEIRA system, we can also look at 
the scattering cross section signature. As we mentioned previously, SEIRA was thought 
of as a unique absorption process, with a negligible enhanced molecular scattering, but in 
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Ref. By plugging the polarizability of the antenna-object system (4.4) into the scattering 
cross section (2.16) we obtain 

^ (I a A 12 + 2Re { f (a A ) * a° } + \ f a 0 | 2 ) « cr A

a + Aas (4.7) 

We divide this expression into three terms, in the first we again recognize the scattering 
of the bare antenna <rA

a from Eq. (2.19). Previously it was assumed that the third 
term, which is the object scattering influenced by the antenna near-field was is the only 
contribution to the scattering in SEIRA. With the model used here, the interference of 
the field scattered by the antenna and the E A O A is considered and introduces the second 
term in parentheses. From Fig. 4.1) (a) and (c) we can read values of aA, a° and / of a 
model-case nano-antenna considered. From the values, we see that the last term in the 
parentheses of Eq. (4.7) can be neglected, as it is approximately four orders of magnitude 
smaller than the second term. The second term 

A a s c a = ^ R e { / 2 ( a A ) * a ° } , (4.8) 

is then responsible for the molecular signature in scattering cross section. We recognize 
that the scattering signature depends on the field enhancement, similarly to the extinction 
cross section of Eq. (4.6), and in addition, it also depends on the antenna polarizability. 
This results in the scattering signature being inherently connected to the size and the 
material of the nano-antenna and also in the need to design nano-antenna with large 
polarizability which also produces strong near-fields in its vicinity. We plot the scattering 
signature for our model case antenna in Fig. 4.2 (a) and we see that with this model 
we are again able to fully describe the lineshape and magnitude of molecular scattering 
signal. 

We now express the cross-section signatures at molecular resonance frequency uTes, 
and for the next, we denote a(u;res) = crr. As we mentioned in the previous section and 
can see in Fig. 4.1) (c), both the field enhancement and antenna polarizability are purely 
imaginary at the energy of the molecular resonance uves, from which we can than deduce 
that arg(/) and arg(aA) are equal to n/2 at the ures. As the antenna polarizability is 
purely imaginary, we also note that at the resonance, we have Im{a!A(k; r e s)} = |a A(u; re S) | . 
In the following, we will deal with the cross sections at the resonance frequency and we 
will then write the antenna polarizabilities at the resonance as | aA |. For the expression 
at resonance, we assume that all the variables on the right-hand side are evaluated at the 
resonance too, and we don't write the index (-)r for simplicity. 

We can now write the extinction signature of Eq. (4.6) at resonance frequency as 

Aalxt = -y\f\2Im{a°}. (4.9) 

We recognize that at the resonance the extinction signature is equal to the negative of 
the enhanced object absorption of Eq. (4.1), which we already saw in Fig. 4.1 (d). 

When we express scattering signature from Eq. (4.8), we obtain 

A < c a = - ^ | | / | 2 | « A | l n i { a 0 } . (4.10) 
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We plot the extinction and scattering signature values at molecular resonance in Fig. 4.2 (b) 
where we compare them with the numerically calculated ones. We see that despite the 
non-trivial course of the signatures, we can describe them with the model. We also note 
that the extinction signature is largest for the antenna of 80 nm diameter, for scattering 
for the antenna of 100 nm diameter, which is our considered model-case antenna. 

To this point, the expressions in this section were recapitulated from Ref. [ ], and 
we added the numerical and analytical results for different antenna sizes. Unlike in the 
reference, we also focus on the absorption and absorption signatures and express them 
from the energy conservation, where 

Oabs = Oext - CT s c a = (T^ b s + A<7 a bs, (4-H) 

where we again divided the cross section into two contributions. In the first, we recognize 
the absorption cross section of the bare antenna a£bs = a^xt — <r â. The second term 
Acrabs = Auext — A a s c a is the molecular signature in the absorption cross section. We 
plot the absorption signature in Fig. 4.2 (b) and we again compare it with the numerical 
result, for which we can again describe the lineshape, with a slightly larger error, due to 
the error propagation. 

Now we take a step back and again look at the total antenna cross sections of 
Eqs. (2.18-2.20), expressed at the energy of the molecular resonance. We again replace 
the imaginary part of antenna polarizability Im{o;A} with their magnitude at resonance 
\aA\. The antenna extinction at the resonance then reads 

A,r _ _ ^ _ | „ A 
rext — „ aA|. (4.12) 

The scattering cross section is 

_A,r _ „ A | 2 
-.2 

We can also express the antenna absorption from the energy conservation and get 

= (4-14) 

For small antennas, which are dominantly absorbing and their scattering cross section 
is negligible due to the scaling with the square of the polarizability, the extinction is 
For large antennas where scattering dominates the extinction, we have cr^£ ~ a^. The 
total cross sections at the energy of the PDMS resonance at approximately 7.9 pm were 
previously plotted in Fig. where we saw, that the model matches the results obtained 
from numerical simulations fairly well. 

We now express the absorption signature at the molecular resonance from the energy 
conservation, using Eqs. (4.9) and (4.10) 

A < b s = Aalxt - A a s

r

c a = - ^ | / | 2 I m { a ° } 1 - |aAl 
U A , c r i t 

(4.15) 

Here, we recognized that we can express scattering from Eq. (4.10) via the extinction sig­
nature of Eq. (4.9) which we factor out. We then obtain antenna polarizability magnitude 
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a A | multiplied by a factor k3/(3ire0). When considering the case of the critically coupled 
antenna (a a b s ~ cr s c a), the absorption signature is zero. As the extinction signature is 
always non-zero at the resonance [Eq. (4.9)], it means that the terms in parentheses must 
be zero, therefore the antenna polarizability must be equal to the inverse of the prefactor. 
We label the inverse of the prefactor as the polarizability of the critically coupled antenna 
which reads 

| Q A , c * i = (4.16) 

We used this concept as we can see that for critically coupled antennas with polarizability 
a A | = |o ; A ' c n t | , the absorption signature is zero. 

Now we have expressions for all three spectral signatures at the resonance A<jgXt, A<jgCa 

and A < 7 a b s and we plot them in Fig. 4.2 (b)1 with triangles connected by a dashed line. 
We again used the field enhancement and antenna polarizability obtained from F D T D 
and analytically calculated object polarizability from Eq. (C.l) as in the previous section. 
We see very good match with the numerical results, the relative error in scattering is 
<2.5%, in extinction <5%. In Absorption the relative error is 40% for the critically 
coupled antenna of diameter 60, as the values are near zero, the error diminishes to 
about 5% for the smallest and largest antennas and the flip in the absorption signature. 
We also recognize that the extinction signature is largest for the antenna with diameter 
80 nm. From the model, we can then assume that the field enhancement produced by this 
particular antenna is therefore largest at point 30 nm from the antenna apex. As we are 
changing the size of the nano-antennas (radii and lengths as in Fig.), many factors, such 
as the local curvature or charge reservoir can contribute to the spatial decay of the field 
enhancement. We discuss this behavior for different antennas in Sec. more thoroughly. 

Now we focus on the explanation of the flip in absorption signature sign. The total 
absorption signature consists of the enhanced object absorption (T^nh and of the change 
in the absorption cross section caused by the presence of the field of the object Aav

ahs. 
These changes arise due to multiple illumination of the antenna by the near-field of the 
object. We can evaluate the change in antenna absorption from F D T D simulations, we 
can put the absorption monitor just around the antenna. Fig. 4.3 (a) In Fig. 4.3 (b) 
we plot the total absorption signature and the contributions of field-enhanced molecular 
absorption and change in the antenna absorption for different sizes of antennas of Fig.. 
We see that there is an interplay between the positive field enhanced and negative antenna 
absorption which results in the flip. 

1While obtaining SEIRA baselined spectra of molecular signatures, we subtract B G simulation, with 
an object characterized by the background permittivity The response of the object can be 
described by the quasistatic polarizability from Eq. (C.l) a^ k g = 47reo«3(£g) — ^)/(£2D + 2), where we 
assumed that surrounding medium is vacuum with e r m = 1. In the analytical model, we then plug the 
polarizability a ° from which subtract the background polarizability ag, . The argument of the object 
polarizability after the subtraction of the background would then be TT/2 as we see that it would be purely 
imaginary in Fig. 4.1 (a). 
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Figure 4.3: a) Absorption cross sections, were obtained from different monitors, as shown 
in the inset. The pink line corresponds to the field-enhanced molecular absorption ob­
tained from F D T D (full line), previously plotted in Fig. 4.1 (d) and again compared with 
analytical results of Eq. (4.1) (dashed line). With the blue line, we plot the total absorp­
tion signature, as in Fig. 4.2 (a). With the cyan line, we plot the change in the antenna 
absorption caused by the presence of the object (the difference between the total ab­
sorption signature and the field-enhanced molecular absorption). We mark the resonance 
wavelength of the molecule with the dashed line, (b) Magnitudes of absorption signatures 
and field-enhanced molecular absorption for different antennas. We can see that depend­
ing on the value of the field enhanced molecular and the change in the antenna absorption 
we get different regimes of the total absorption, resulting in the flip of the sign. As is the 
enhanced object absorption at resonance equal to the negative extinction signature, it is 
the largest for the antenna of 80 nm diameter which has the largest field enhancement at 
the position of the center of the object 

Now we evaluate the antenna absorption signature from the analytical model, where we 
plug for enhanced object absorption at the resonance and use the fact that the imaginary 
part is the magnitude 

ACT; abs 
0,enh,i 
abs - r l / | 2 W « ° } 2 -

a: 

a A.crit 
(4.17) 

AcH; 

In Fig. 4.3 The field-enhanced molecular absorption in Eq. (4.1) is always positive. 
We can see that for critically coupled antennas with polarizability cr A.crit I the 

antenna absorption signature is equal to the extinction signature, which is the negative 
of the field-enhanced object absorption. This results after summing the absorption con­
tributions in the vanishing absorption signature for the critically coupled antenna. The 
validity of this formula needs to be verified, but we again discuss it next chapter. 

For large antennas, similarly to the antenna absorption cross section, we can see that 
the Aa^g is diminishing. The absorption signature could then be approximated just by 
the field-enhanced object absorption. From the energy conservation, we see that for this 
limiting case ACT, r,lim 

cxt ACT, r,lim + cr. 
0,enh 
abs and use the fact that the extinction signature 
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at resonance is negative of the enhanced object absorption o" a^ n . We can see that the 
scattering signature can then be as large as double the extinction signature, as was already 
reported in Ref. [11] 

AaltiT « 2Ac41f\ (4.18) 

Therefore, when considering large antennas and performing a scattering experiment, the 
vibrational signal would be twice as large as one seen in extinction. 

4.2.2 Molecular contrasts 
Various metrics can be chosen to describe the magnitude of the enhanced SEIRA signal. 
For example, contrast normalized to the volume of the molecular layer was proposed in 
Ref. [ ]. We choose a different metric and define the relative molecular contrast 5a 
as the ratio between molecular signature in the cross section ACT and the total antenna 
cross section o~A. We plot the molecular contrasts for our model case system (cylindrical 
gold nano-antenna with hemispherical apexes and two nanospheres with the center located 
30nm from each apex) obtained from F D T D calculations with the full lines in Fig. 4.4 (a). 
Similarly to the signatures, we obtain peak or dip features around the molecular resonance. 
We can see that for this particular antenna, the absorption contrast is larger than the 
extinction and scattering in this the antenna cross section in the denominator 
is diminishing. In Fig. 4.4 (b), we plot the molecular contrasts for various antenna sizes 
from Fig. 2.3 (b) with dots connected by full lines. For evaluation, we used antenna cross 
sections from Fig. 2.4 (b) and molecular signatures from Fig. 4.2 (b). We can see that, 
similarly to the absorption signature, the absorption contrast flips sign and is zero for 
the critically coupled antenna. For large antennas, where the antenna absorption cross 
section in the denominator diminishes, the contrast greatly grows. We also note that the 
largest extinction and scattering contrasts are maximal for the antenna of 50 nm diameter. 
Furthermore, the scattering contrast appears to be approximately twice as large as the 
extinction contrast. 

We will now express the molecular contrasts analytically, for comparison of the ana­
lytical SEIRA model with numerical simulations and for obtaining information about the 
dependence of the contrasts on antenna parameters (polarizability and the field enhance­
ment at a certain location). We write the molecular contrasts for extinction, scattering, 
and absorption, by using antenna cross sections from Eqs. (2.18-2.20) and molecular sig­
natures from Eqs. (4.6), (4.8) and (4.11) as 

A c w lm{fa°} 
Saext = —r— = — r .-, , (4.19) 

aA 

ext Im{o;A} 

Acr s c a Re\f2(aAYa°} , s £cr s c a = = - 2 1 L , (4.20) 
° sca | aA | 

r Ac r a b s Acr e x t - Acr s c a 

OOabs = A = A _ A • (4.21) 
° a b s ^ext ^sca 

We plug in the antenna polarizability, field enhancement caused by the antenna at the 
position where the object center would be, and the object polarizability, as in the previous 
section. We plot the analytically obtained contrasts in Fig 4.4 (a) with the dashed line. We 
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can see that for extinction and scattering, we obtain good agreement between the model 
and numerical results, but for absorption, there is a discrepancy. It is caused by the error 
propagation in the antenna absorption cross section and the absorption signature, which 
are both obtained from extinction and scattering. 

We again evaluate the cross section contrasts at the frequency of the molecular reso­
nance frequency uTes similarly as total antenna cross sections and molecular signatures in 
the previous section. Extinction contrast at resonance is 

K x t = ^ f = - ^ I m { a ° } . (4.22) 

We can see that the extinction contrast scales with the field enhancement squared, but 
compared to the extinction signature is also divided by the magnitude of the antenna 
polarizability. For the largest extinction contrast, the optimal antenna would be one 
with strong near-field enhancement in its vicinity and with small polarizability, e. g. a 
weakly polarizable and/or small antenna. We plot the calculated extinction contrasts at 
resonance in Fig. 4.4 (b). We can see, that the model predicts the contrasts obtained 
from F D T D fairly well, the relative error is for all antennas below 2%, except the smallest 
one (relative error about 7%). We see that the largest contrast emerges for an antenna 
of diameter 50 nm. From the model, we assume that for this particular antenna, the 
ratio between field enhancement at a distance 30 nm from the apex and the antenna 
polarizability would be maximal. 

Scattering contrast at resonance is 

I - f l 2 

K c a = - 5 s = - 2 ^ I m { a ° } , (4.23) 
sea 

which is twice as large as the extinction contrast. This could be of great importance for 
scattering experiments. We again compare the results of the analytical model with the 
F D T D results in Fig. 4.4 (b). Similarly to the extinction, the relative errors between the 
model and F D T D are about 2% for all antennas except the smallest one, with a relative 
error of about 10%. 

Absorption contrast at molecular resonance can then be written from the energy con­
servation as 

r r ^°"abs A°"ext ~ ^°"sca (A OA\ 
<Kbs = A~7~ = A , r _ A,r " ( 4 2 4 ) 

°abs °ext °"sca 
Similarly to the absorption signature, the contrast flips sign and is zero for the case of 
the critically coupled antenna (diameter 60nm). For larger antennas, as the antenna 
absorption in the denominator approaches zero, the absorption contrast grows. We again 
compare the analytical results with F D T D results in Fig. 4.4 (b). The relative errors for 
absorption contrast are larger than for the extinction and scattering contrasts, similarly 
to the absorption signature. It can be seen as a result of the error propagation and the 
fact, that for the antennas near the critical coupling, the scattering signature is near zero, 
which enhances the error between the model and F D T D . 

We now focus on the contrasts of the antenna signatures, which we obtain after sub­
tracting the molecular contribution to the respective signature. With these contrasts, 
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Figure 4.4: (a) Extinction, scattering and absorption cross-section contrasts, which are 
taken as molecular signatures divided by the total antenna cross sections for model-case 
system (50 nm diameter round-rod antenna with two objects placed near its apexes) from 
Figs. 4.2 and 2.4, respectively. With full lines, we plot contrasts obtained from F D T D 
simulations, with dashed lines contrasts obtained from the analytical model, (b) Cross 
section contrasts magnitudes for different sizes of nano-antennas. With dots connected 
by full lines, we plot the results from F D T D , and with triangles connected by dashed 
lines the analytical results. We recognize that scattering contrast is approximately twice 
as large as extinction contrast, which is the result of the analytical model. In absorption 
contrast, we see the characteristic flip of the sign and notice that it gets larger for larger 
antennas, as the antenna absorption cross section in the denominator diminishes. With 
the vertical dotted line, we mark the cross sections at resonance for the antenna in (a). 

we gain insight into the changes in the antenna cross sections separated from the con­
tribution of the enhanced molecular absorption. We already obtained a change in the 
antenna absorption in Eq. (4.17), with which we discussed its magnitude compared to 
the field-enhanced molecular absorption of Eq. (4.1). The relative magnitudes of these 
two contributions result in the flip of the sign of the summed absorption signature. The 
antenna absorption contrast is 

5a: A,r 
abs 

ACT. A,r 
abs I/I 

O. abs 

(4.25) 

We used the assumption that the scattering cross section of the object is vanishingly 
small (the third term in Eq. (4.7) which was neglected) and the scattering signature is 
fully given by the change in the antenna scattering caused by the presence of the molecule 

ACT. A,r 
Ac^a- (4.26) 

In SEIRA spectra, one would expect that the enhanced molecular absorption would be 
in the form of a peak seen in the extinction spectra, as the power is lost in the excitation, 
but instead, we obtain a dip of the same magnitude in extinction. This means that there 
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Figure 4.5: (a) Antenna signatures. With the red curve, we plot the change in the 
scattering cross section, which is fully given by the molecular signature in the scattering, 
thus the same as in Fig. 4.2 (b). With the cyan line, we plot the change in antenna 
absorption, which is the same as in Fig. 4.3 (b). With the purple curve, we plot the 
total change in the antenna extinction caused by the interaction with the object, which 
is negative of the enhanced object absorption multiplied by the factor of two. We can 
compare the evolution of the antenna signatures for different antennas with the total 
antenna cross sections of Fig. 2.4 (b). (b) Antenna cross section contrasts, obtained 
by dividing respective signatures from (a) with the total antenna cross sections from 
Fig. 2.4 (b). We can see that the antenna contrasts are the same for all three cross 
sections. 

is a discrepancy of a factor of two and it needs to be compensated by the change in the 
antenna extinction (scattering and absorption) 

a r A 0,enh,r I f 1̂  

5<& = = - 2 f M a 0 | . (4-27) 

We plot the changes in antenna cross sections for different antennas in Fig 4.5 (a). 
We can see that they resemble the total antenna cross sections in some features. The 
absorption has an extreme near the critical coupling regime and is the same as the scat­
tering. For larger antennas, the absorption diminishes and the major contribution to the 
extinction is from the scattering. Because of the dependence of signatures on the field 
enhancement, the extinction and scattering are not increasing, but instead, they have an 
extreme and, for larger antennas, they diminish too. 

When comparing Eqs. (4.25), (4.26) and (4.27), we recognize that all of the antenna 
contrasts are the same 

= ^et't = ^ = - 2 ^ K | - (4-28) 
F A | 

We plot the contrasts in Fig. 4.5 (b). The scattering contrast is from Fig. 4.4 (b). We 
recognize that both the analytical model and numerical calculations predict that the 
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contrasts are in fact the same. For this particular choice of antenna shapes and distance 
from the antenna apexes, where we place the object center, we obtain the largest contrast 
for an antenna with diameter 50 nm. 

4.3 Field-enhanced electron energy-loss spectroscopy 
As we stated and reviewed in Sec. 3.3, even the vibrational electron energy loss spec­
troscopy suffers from a loss of signal when probing small amounts of samples. As was 
proposed in Ref. [ 5], and further discussed in Ref. [ ] an analog to surface-enhanced 
infrared absorption could be performed in EELS. By plugging the dipole moments of the 
antenna-object system [Eq. (2.4)] into Eq. (2.32) we reach the same expressions as in 
Ref. [ ], with which we can model the field-enhanced electron energy loss spectroscopy 
(FEELS) lineshapes based on the coupled dipole model. We now derive the approximative 
model, considering a weakly polarizable object, and the E E L signatures and contrasts. 

Firstly we assume that the feature in the spectrum caused by the object would only 
be a weak perturbation added to the loss probability of inducing a resonance within a 
nanoantenna. The total loss probability that the electron will interact with the antenna-
object system can then be written as 

TEELSM = TEWO;) + A r E E L s M , (4-29) 

where is r ^ E L S is the loss probability of the bare antenna from Eq. (2.38) and A r is 
the object signature in the spectrum. We again assume that the antenna is polarized 
dominantly in the x-direction. By assuming that we can expand the electric field inducing 
the dipole moment via the series from Eq. (2.5), we divide the signature in the E E L 
spectrum into individual terms 

A r E E L S ( u ; ) = ^ I m { ^ ' ° ' * a 0 ^ ' 0 } + ^Im{E^a°fE^} 

p O p O A 
1 E E L S 1 E E L S gg^ 

+ ^ H E * , A ' * F A ° E * ' 0 } + ^ I M { ^ V / 2 « ° ^ A } +••• • 
£ v ' ^ v < 

p A O p A O A 
1 E E L S E E L S 

The first term r ^ E L S is the loss probability of the sole object. r E E L S is the first term 
which accounts for a multiple scattering between the antenna and the object. The object 
is induced with the near-field produced by the antenna induced by the electron beam, then 
the object then acts back on the electron beam causing the energy loss. r E E L S denotes 
the loss caused after the beam interacts with the antenna induced by the near-field of 
the object. The last written term r ^ A ^ accounts for the double scattering event between 
the antenna and the object. The electron beam induces the dipole in the antenna, which 
then, via its near-field, induces the object, which acts back on the antenna. The antenna 
then interacts with the beam, which loses energy. The following terms can be derived 
in a similar manner, but we will not deal with them as we are again considering weakly 
scattering objects, which results in these terms being negligible. 

For the numerical calculations and evaluation of the F E E L S , we consider a round-rod-
shaped h B N antenna, which supports localized phonon polaritons, previously considered 
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Figure 4.6: (a) Electron-energy loss spectrum molecular signature of a C B P sphere (10 nm 
radius) with center placed 30 nm from the apex of a cylindrical-shaped h B N antenna with 
round apexes (radius 20 nm and length 120 nm) obtained after subtraction of the spectrum 
of the bare antenna with no particle (NP) from the spectrum of the antenna and resonant 
object (RES). We also plot individual terms of Eq. (4.30): r ^ E L S (purple line), r ^ A

L S and 
I^BELS are the same (pink lines), and r ^ ^ g (black line), (b) E E L molecular signature 
obtained by subtracting the simulation with an object characterized by the background 
polarizability a ° of the same sphere from Eq. (C. l ) , characterized just by = 2.8, which 
we label as the " B G " simulation, compared to the "RES" simulation in (a). We again 
plot the individual terms from Eq. (4.30) into which we plug the polarizability a° — a ° 
with the same color legend as in (a). C B P was modeled via the Lorentz oscillator model 
of Eq. (1.44). We assumed one oscillator with parameters = 2.8, F\ = 382.683 meV 2, 
wb,i = 179.777meV and 71 = 1.029 meV. 

in Sees. 2.2.2 and 2.3.3. We perform all numerical computations in C O M S O L [described 
in Appendix C.2.2], where we consider just one object at the antenna apex for simplicity, 
as we do not exploit the simulation symmetries. Our considered object is again a nano-
sphere of radius 10 nm characterized by one oscillator of the C B P dielectric function 
[Fig. 1.2 (b)] positioned 30 nm from the antenna apex. 

We again perform more simulations to obtain F E E L spectra. The first simulation is 
with both the antenna and object characterized by their respective dielectric functions 
interacting with the field of the electron beam, we label this simulation as "resonant" 
(RES). The second simulation labeled as "no particle" (NP) considers just the bare an­
tenna. When we subtract NP simulation from RES, we obtain a molecular signature in 
the E E L spectra. Similarly to the optical-cross sections (Fig. 4.1), because of the redshift 
of the spectra caused by the background permittivity of the object, we obtain an asym­
metric Fano-like shape. We plot the loss probability signature in Fig. 4.6 (a) with the full 
black line. 

We plot the individual terms of Eq. (4.30) in Fig. 4.6. We approximate the object po­
larizability by the quasistatic polarizability of Eq. (C.l) . The loss probability of inducing 
a resonance within the object r ^ E L S is negligible (about 10~ 7 eV _ 1 ) . The r E E L S and r E

A
L S 

terms are the same with magnitude in the order of 1 0 _ 6 e V _ 1 . The Tgg^g term almost 
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describes the lineshape near the resonance, albeit it is a bit distorted further away from 
the resonance. 

Similarly to Sec. 4.1, we subtract a simulation with an object defined by the back­
ground permittivity = 2.8, which we again label as "background" (BG) simulation, 
from the RES simulation, to counteract the redshift caused by the dielectric background. 
We obtain a different lineshape, which is not as asymmetric as the one obtained by sub­
tracting NP simulation, and we can now recognize the characteristic dip in the spectra 
(compare with Fig. 4.1). We again plot the individual terms of Eq. (C.l) into which we 
plugged the polarizability of the object from which we subtracted the background polar-
izability a ° given by Eq. (C.l) into which we plugged = 2.8. We can see that the 
-["EELS term is again negligible, and the r ^ g L S and r ^ A

L S terms contribute mainly off reso­
nance. The r ^ ^ g term predicts the lineshape fairly well, particularly near the resonance 
energy. Therefore we approximate the signature in the E E L only by the contribution by 
the double scattering event between an antenna and the molecule r^ELs a s 

A r E E L s M « ^ I m { i ^ ' A ' 7 2 a 0 i ^ A } . (4.31) 

The larger the antenna polarizability compared to the object polarizability, the more 
precise this approximation is. In such case, we obtain larger field enhancement, resulting 
in all terms except T ^ ^ g negligible. From now on, we will always assume that the 
signatures are obtained by subtracting the B G simulation. 

One of the motivations of this study was to compare the obtained signal in enhanced 
spectroscopy with photons (e.g. extinction cross section) and with electrons (electron 
energy-loss spectroscopy). Hence, we now compare the E E L probability signature with 
the extinction signature. The comparison of E E L spectra and extinction spectra of en­
hanced spectroscopies was already done in Ref. [ ], where symmetries and detuning were 
discussed. 

We plot the E E L signature in Fig. 4.7 with the blue line and the extinction signature 
with the red line and we can recognize that the lineshapes are very similar. We can 
compare the approximative analytical formulas Eq. (4.31) and Eq. (4.6) where we assume 
that the molecular signature in the spectra is based on the double scattering event between 
the antenna and the object and depend on I m { / 2 a ° } . We plot the analytical models in 
Fig. 4.7 (a) with dashed lines and recognize that we are able to describe both the extinction 
(similarly to Sec. 4.2) and EELS signatures close to the resonance energy (dotted line), but 
further away there appear small deviations, which could be attributed to the neglection 
of the other terms in the analytical mode. 

We can again focus on the loss probability signature at the frequency of the molecular 
resonance for different sizes of the antennas. We sustain the same resonance energy of the 
antenna (tuned to approximately the molecular resonance of CBP) . For larger antennas, 
we obtain larger signatures, as the field enhancement produced by the antenna grows 
significantly. We see that the trend is very similar in EELS and extinction, although they 
differ a bit. This discrepancy could be caused by different mesh sizes of the domains 
(in the EELS, the mesh was finer around the beam and needed to be finer around the 
molecules) or by the detuning of extinction and EELS previously discussed in Ref. [ ]. 
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Figure 4.7: (a) Comparison between the molecular signatures in electron energy loss 
probability (blue) and extinction cross section (red) for a system of hBN antenna and 
C B P sphere considered in Fig. 4.6 (b). With the full lines, we plot the results from 
C O M S O L simulations, and with dashed lines analytical expressions of Eq. (4.6) and 
Eq. (4.31) for extinction and EELS, respectively. With the vertical dashed line, we mark 
the resonance energy of the C B P molecule at approximately 178.8 meV. (b) Molecular 
signature magnitudes at the energy of the molecular resonance for different sizes of hBN 
antennas. A l l antennas were resonantly tuned to approximately the energy of the C B P 
molecule resonance. The antenna dimensions are in Table. D.3 With circles connected by 
full lines we plot the results from C O M S O L simulations and with triangles connected by 
dashed lines the analytical results for loss probability contrast of Eq. (4.32) (blue) and 
extinction contrast of Eq. (4.9) (red). With the vertical dashed line, we mark the values 
from (a). 

For the comparison with the analytical model, we again assume that the field enhance­
ment at the resonance frequency of the molecule uTes is purely imaginary (arg(/(w r e s)) = 
n/2) and write 

L A L EELS TlTl 
< l . A | 2 | y l 2 

Im{cv°}, (4.32) 

where all the variables on the right-hand side are evaluated at the resonance energy but 
we did not write the superscript for simplicity. We plot the results of the EELS signature 
at resonance in Fig. 4.7 (b) and also plot the extinction signatures at resonance evaluated 
from Eq. (4.9) for the h B N antenna and C B P sphere system. The relative error is largest 
for the smallest antenna of radius 10 nm, where it is 7% for EELS and 12% for extinction, 
for the other antennas, it is always under 2% for EELS and under 5% for extinction. 

We now focus on the study of the molecular contrasts in spectra. From the analytical 
model, we assume the mechanisms behind the extinction and EELS to be similar, hence 
we suppose that contrasts should be the same for both photons and electrons. We define 
the molecular contrast in the E E L spectra similarly to the extinction cross section contrast 
[Eq. (4.19)] as a ratio between the molecular signature and the total antenna loss as 

5TEELS(CJ) = (4.33) 
1 EELS 
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Energy (meV) Diameter (nm) 

Figure 4.8: (a) Molecular contrasts in electron energy-loss probability (blue) and extinc­
tion (red). With the full line, we plot the numerically calculated values from C O M S O L 
and with the dashed line, the analytically calculated contrasts from Eq. (4.33) for EELS 
and for extinction, we take it from Eq. (4.19). Near the resonance, all the contrasts give us 
approximately the same values, thus confirming a similar nature of enhancement in both 
F E E L S and SEIRA. With the dashed line, we plot the energy of the molecular resonance 
of CBP. (b) Molecular contrast at resonance for different sizes of h B N nano-antennas. 
With blue and red dots connected by the full line, we plot the values of EELS and extinc­
tion contrasts, respectively. With the triangles with dashed lines denote the results using 
Eq. (4.34) for EELS and of Eq. (4.22) for extinction. 

We plot the numerically calculated contrast in E E L spectra (obtained from data from 
Fig. 2.9 for r ^ E L S and Fig. 4.7 for A F E E L S ) for the previously considered system of hBN 
antenna with 20 nm radius and C B P sphere in Fig. 4.8. We can see that the contrast is 
about 1% between the signature and the total antenna loss probability. We again compare 
the contrast with extinction contrast (obtained from Fig. 2.6 and Fig. 4.7) and find that 
the contrast is the same for E E L spectra and extinction spectra. The contrast is much 
larger than for the system of the large gold antenna and PDMS molecule (Fig. 4.4). This 
originates from the small cross section of the hBN antenna relative to the C B P sphere. 
The only difference between EELS and extinction contrast is their respective scaling with 
energy, resulting from the distinct natures of the processes. 

We compare the contrasts with the analytical models. For extinction contrast, we plug 
the signature from Eq. (4.31) and the loss probability of the bare antenna from Eq. (2.38) 
into Eq. (4.33) and for extinction, we take it from Eq. (4.19). For the E E L contrast, we can 
see that we are able to describe the contrast lineshape and magnitude near the resonance, 
but there is a difference further away from the resonance. The extinction contrast is 
described well, similar to the gold antennas with the PDMS molecule of Fig. 4.4 (a). At 
the resonance, both extinction and EELS with both the model and numerical computation 
yield the same contrast. The results further confirm the viability of the analytical model 
approximation for the weakly polarizable object of Eq. (4.31). 
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We again evaluate the contrasts at the energy of the molecular resonance of C B P at 
approximately 178.8 meV. We can see that it is the largest for the antenna of radius 20 nm 
for both EELS and extinction. For larger antennas, the contrasts are approximately the 
same, confirming the similarity between F E E L S and extinction in SEIRA. For the antenna 
of radius 10 nm, the contrasts differ, which is most likely due to the very small dimensions 
of the antenna with coarse mesh. We can analytically express the E E L contrast at the 
resonance with the help of Eq. (4.32) and Eq. (2.38), where in the latter, we evaluate it 
at the resonance energy of the molecule. We obtain 

I f l 2 

^ E E L S = - f ^ I m { a ° } = 5a^, (4.34) 
| « A | 

where we also noted that the molecular contrast at the resonance in EELS is exactly the 
same as the molecular contrast observed in extinction [Eq. (4.22)]. With this, we can then 
assume that we only need to know antenna polarizability and the near-field distribution 
around the antenna to model both molecular signatures and molecular contrast of the 
enhanced spectroscopies with both photons and electrons. We compare the analytically 
obtained contrast from EELS with the extinction contrast in Fig. 4.8 (b). Contrasts at the 
resonance approximately match (the relative error is under 4%.) except for the smallest 
antennas, where the discrepancy for the antenna of radius 10 nm is under 7% for EELS 
and under 12% for extinction. 

With the analytical formulas for both optical cross section and EELS signatures 
and contrasts, we now move to design figures of merit for evaluation of the enhanced-
spectroscopy performance using the analytical models. 

4.4 Figures of merit 
In the previous sections, we established analytical expressions for the absorption, scatter­
ing, and extinction signatures and contrasts in the SEIRA cross sections using the coupled 
point-dipoles formalism. We also showed that similar expressions arise for loss probabil­
ity obtained in electron-energy loss spectroscopy. With the knowledge of the analytical 
formulas we now focus on the optimization of the antenna for best SEIRA performance 
depending on the type of collected signal. 

There are several aspects of enhanced spectroscopy experiments towards which figures 
of merit (FOM) can be stated. We can perform the experiment with photon probes or 
with electron probes. With both types of probes, we can also look at the power lost during 
the interaction (extinguished power in extinction and electron energy loss in EELS) or 
the power radiated/scattered. 

The detector and sample chosen in the experiment play crucial roles too. When 
having a poor detector, we are looking for an antenna that gives us the largest molecular 
signature. When having a good detector but a weakly responding sample, we are targeting 
the largest contrast. 

In all the expressions in Sees. 4.2 and 4.3, the influence of the antenna shape, size, and 
material in the enhanced spectroscopy is mediated through the antenna polarizability 
and the field enhancement. We establish figures of merit in the form of dependence 
of the field enhancement squared on the antenna polarizability. We showed how the 
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Figure 4.9: Figure of merit for extinction cross section and EELS signatures and contrasts 
I 12 

in enhanced spectroscopies, (a) Dependence of the square of the field enhancement / 
(evaluated at the resonance energy 0.157eV and 30 nm from the antenna apex) on the 
imaginary part of the antenna polarizability Im{a A } for various gold antennas from 
Fig. 2.3 (b), for which the dimensions are in Tab. D.2. The diameters of the antennas 
are increasing from left to right; for some of them, shapes and sizes are schematically 

I 12 

depicted in the insets. With the blue horizontal lines, we mark values of constant | / | . 
With red diagonal lines, we mark the constant values of the ratio | / | 2 / Im{o; A }. With 
the green vertical dashed line, we mark the theoretical value of the polarizability of the 
critically coupled antenna a A ' c n t from Eq. (4.16). 
molecular signatures and contrasts depend on the antenna's polarizability and the near-
field enhancement produced by the antenna. With the analytical expressions, we are now 
able to state figures of merit for the design of nano-antennas. 

Firstly we focus on extinction, which is the quantity measured in a typical transmis­
sion experiment. The signatures in both SEIRA extinction and F E E L S depend on one 
parameter of the antenna, which is the near-field enhancement [Eqs. (4.9) and (4.32)]. 
We plot the values of the field enhancement squared for various gold cylindrical nano-
antennas from Fig. 2.3 (b) in Fig. 4.9 as a function of an imaginary part of the respective 
antenna polarizability with golden dots. We evaluate all the variables at the energy of 
the molecular resonance at approximately 0.157eV. At the resonance, Im{o;A} should be 
equal to |o;A(a;res) |, but we consider the fact that the antennas are not precisely tuned to 
the molecular resonance and not assume the equality. From now on, we will refer to the 
respective antennas with the value of their diameter (Tab. D.2). With the blue horizontal 
lines, we mark the values of constant field enhancement. From Eq. (4.6), we see that the 
largest signature would be for the antenna with the largest | / 2 | , which happens for the 
antenna with diameter 80 nm, marked with the blue circle. It is also the antenna with 
the largest extinction signature [Fig. 4.2]. 
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L L 

x (nm) Field enhancement 
Figure 4.10: (a) Near-field enhancement as a function of distance from the antenna apex x 
for different antenna diameters D [antennas with diameters and lengths from Fig. 2.3 (b)]. 
The field enhancement is evaluated at the energy of the molecular resonance at 0.157eV 
(7.9 pm). We can see that the largest field enhancements for the antennas are near the 
apexes (because of the size of the mesh cells, the apex is slightly shifted from x = Onm). 
(b) Field enhancement at two different positions for different antennas. With the orange 
curve, we evaluate it approximately at the antenna apex. With the pink curve, we evaluate 
it at 30 nm from the apex, where the object center in SEIRA simulations is positioned. 
The field decays at different rates for different antennas, thus yielding a maximum for 
antenna of diameter 50 nm when evaluating the field enhancement near the apex, but for 
antenna for diameter 80 nm, when evaluating 30 nm from the apex. With the dots, we 
mark the maxima of the respective curves. Data were interpolated for better visibility, as 
the mesh-cell size is not homogeneous and the points at which the field is evaluated are 
not equidistant in F D T D . 

The contrast (molecular signature in the cross section divided by the total antenna 
cross section) in SEIRA extinction and F E E L S at the energy of the molecular resonance 
depends on the ratio | / | /Im{o;A} [see Eqs. (4.22) and (4.8), where we assumed that for 
precisely tuned antennas the polarizability at resonance is purely imaginary]. With the 
red lines, we mark values of constant ratio between the field enhancement squared and 
antenna polarizability. We can see that the largest value of the ratio is for the antenna 
of diameter 50 nm, marked with the red circle. We can again compare this result with 
Fig. 4.4, where the antenna with the largest extinction contrast is the one with diameter 
50 nm. We also plot the value of the polarizability for the critically coupled antenna from 
Eq. (4.16) by the green dashed line. We can see that this value nearly coincides with 
the polarizability antenna of diameter 60 nm, which is critically coupled. The validity of 
this formula needs to be verified for other nano-antennas with different shapes and from 
different materials. For now, it gives us an approximate division line between two regimes 
of the antennas. On the left-hand side with respect to the green dashed line, we have 
antennas that have a larger extinction signature than the scattering signature, while on 
the right-hand side, the scattering signature is larger [Fig. 4.2 (b)]. 
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Figure 4.11: (a) Spatial decay of the ratio between the square of the field enhancement and 
the antenna polarizability, which is proportional to the molecular contrasts. We obtained 
this data by squaring the spatial decay of the near-field enhancement from Fig. 4.10 and 
multiplying it with the value of Im{o;A} for respective nano-antennas. This ratio is in the 
formula for extinction and scattering contrast. We can see that the value of | / | /Im{o;A} 
is largest for the smallest antennas, as they have smaller polarizability than the larger 

I 12 

antennas, and also rises near their apexes, as there is largest | / | . (b) The same as in 
(a), but for three selected distances from the antenna apex x. We can see that for the 
distance considered in the SEIRA simulations (x = 30 nm) we obtain the largest contrast 
for antenna of diameter 50 nm, but when approaching closer to the apex, the trend changes 
and the contrast is largest for the smallest antenna of diameter 20 nm. With the dots, we 
mark the maxima of the respective curves. 

For the simulations of SEIRA and F E E L S , we considered the object center to be 
positioned 30 nm from the antenna apex. Because of the different diameters of the hemi­
spherical apex and sizes of the antennas, even the field decay rate varies between different 
antennas. We can look at this as a consequence of the form of the field enhancement 
tensor, where we are changing the polarizability and the distance from the center, where 
the point dipole is located. Thus the results of the largest signature and contrast are 
influenced by the considered distance. 

We plot the field enhancement for the different sizes of the gold antennas in Fig. 4.10 (a). 
We set the apex of the antenna as point x = Onm. Because of the coarse mesh in the 
simulations near the apexes of the antenna, the apex was in reality shifted, thus the max­
ima are not precisely at x — Onm. We can see that the largest field enhancement near 
the apex of the nano-antenna is for the diameter 50 nm, which is close to the antenna 
which is critically coupled (antenna of diameter 60 nm). This is in concordance with the 
previous reports [9 ]. When looking at the value of the near-field enhancement for the 
antenna of diameter 50 nm, we can assume [Eq. (4.6)] that the molecular signature would 

I 12 
be magnified by the factor / pa 105. The near-field decays with the distance from 
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Figure 4.12: Figure of merit for scattering cross section signatures and contrasts in en-
i 12 

hanced spectroscopies, (a) Dependence of the square of the field enhancement | / | (evalu­
ated at the resonance energy 7.9 pm and 30 nm from the antenna apex) on the magnitude 
the antenna polarizability |o;A | for various gold antennas from Fig. 2.3 (b), for which the 
dimensions are in Tab. D.2. With the blue diagonal lines, we mark values of constant 
product | / | |cnA|. With the red diagonal lines, we mark the constant values of the ratio 
| / | / | a A | . With the green vertical dashed line, we mark the theoretical value of the po­
larizability of the critically coupled antenna a A , c n t . 

the antenna apex. When looking at the field enhancement at the point 30 nm from the 
antenna apex, we can see that it is truly the largest for the antenna of diameter 80 nm, 
which has the largest extinction signature. 

When looking at molecular contrast, we have shown that its magnitude is proportional 
to | / | /1ctA | . We take the dependence of | / | for different antennas from Fig. 4.10 and 
multiply it by | / | / | a A | and plot the result in Fig. 4.11. From this, we obtain spatial 
dependence of the molecular contrast for various gold nano-antennas. We can see that for 
the smallest antenna with the smallest polarizability (polarizabilities with sizes are plotted 
in Fig. 2.3), we obtain much better contrast near the antenna tip, as proposed previously. 
When looking at the decay rate of the contrast for different distances, we recognize that 
for the distance chosen previously (30 nm), the largest contrast is for antenna of diameter 
50 nm, as the field decays faster for the one with diameter 20 nm. When going closer to 
the apex, we can see that the smaller antennas start to have a larger contrast. 

When looking at the performance of the antennas in enhanced spectroscopy exper­
iments, where we detect scattered light, we can establish similar FOMs as we did for 
extinction and EELS. We again plot the values of the field enhancement squared at posi­
tion 30 nm from the antenna apex, but now we plot their dependence on the magnitude 
of the antenna polarizability, which enters the scattering cross section in Eq. (2.19). The 
scattering signature at the resonance frequency in Eq. (4.10) scales with \aA\ and | / | , 
thus for the largest scattering signature, a large antenna with large field enhancement 
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Figure 4.13: (a) Spatial decay of the product | / | \aA\ on which the scattering signature 
at resonance from Eq. (4.13) depends, plotted for various sizes of antennas, labeled with 
their diameters D. Values of x mark the distance from the antenna apex, (b) Product 
|/| \aA\ for two different positions from the antenna apex, with yellow we plot the values 
near the antenna apex and with the pink the values 30 nm from the apex. With the dots, 
we mark the maxima of the respective curves. 

would be optimal. With the diagonal blue lines, we plot values of the constant product 
of | / | |cnA|, and we mark the dot corresponding to the antenna with the largest value of 
this product with the blue circle. It is the second largest antenna with diameter 100 nm, 
which has the largest scattering signature, as we saw in Fig. 4.2 (b). There we have also 
observed, that the largest scattering signature is for a different antenna than the largest 
extinction signature (antenna of diameter 80 nm). Nevertheless, the antennas are similar 
in size, thus one antenna could be used for extinction experiments, where we obtain the 
largest extinction signature and almost the largest scattering signature, or vice-versa. 

With the red diagonal lines, we plot the constant values of the ratio | / | / | a A | , which 
scales the scattering contrast at the resonance energy [see Eq. (4.23)]. The lines are similar 
to the ones in Fig. 4.9, where we observed the same behavior and largest contrast for 
antenna of diameter, which is the same for scattering and it is confirmed in Fig. 4.4 (b). 
We also again mark the critically coupled antenna with the green circle, and with the 
vertical green line, we plot the theoretical value of the polarizability magnitude. From 
Figs. 4.9 and 4.12, we can assume that for obtaining the largest contrast (in this considered 
system of gold antennas of cylindrical shaped tuned to the resonance 0.157eV), we can 
choose the same antenna, which is versatile in this point of view. 

We can again look at the dependence of the decay rate of the scattering signature 
as a function of the distance from the antenna apex. In Fig. 4.13 (a), we took the field 
enhancement of Fig. 4.10 (a), squared it, and multiplied it with the antenna polarizabilities 
for the respective antennas. We can see that the scattering signature is largest when the 
object is placed at the apex of the antenna of 35 nm, which we also show in Fig. 4.13 (b). 
When looking further away from the apex, at a distance 30 nm, where we place the object 
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in the SEIRA simulations, we obtain the largest value for antenna of diameter 100 nm as 
previously. 

For the decay rate of the scattering contrast, we can look back to Fig. 4.11, where 
even though we multiply | / | by Im{o;A}, we can assume that the relative scaling between 
antennas is same for | aA |, as the antennas are tuned or even slightly off-tuned to the energy 
of the molecular resonance. Thus, the figure would be valid for scattering contrasts and 
we obtain the same spatial scaling as for extinction, described previously. 

With the figures of merit for gold round rod antennas tuned to the molecular resonance 
of PDMS at 0.157eV, we can easily design the best antenna for our chosen experiment 
regarding its size and subsequent polarizability and field enhancement. With the spatial 
dependence of field enhancement for different antennas and knowledge of the antenna 
polarizability, we can also choose the best antenna for performance regarding extinction 
and EELS or scattering signatures and contrasts, when assuming we place our studied 
sample in different distances. On the other hand, such spatial information about the 
molecular signatures or contrasts can be used for obtaining information about the field 
enhancement at the point, when we know where the molecule is placed, or to find out the 
sample position relative to the nano-antenna apex when we know the field enhancement 
from simulations. 

We now show the figures of merit for different shapes of gold nano-antennas and com­
pare their predicted enhanced-spectroscopy performance. Until now, we were considering 
cylindrically-shaped antennas with hemispherical apexes. We consider antennas of el­
liptical cross section, with a constant height 100 nm, for which we change the diameter 
(semi-minor axis) until we obtain the shape of a disc. Here we study the effects of the 
local curvature at the end of the nano-antennas on the performance in the enhanced spec­
troscopies, as the x-dimensions are comparable. A l l nano-antennas are again tuned to 
the resonance energy 0.157eV, thus we also had to elongate them. The dimensions of 
elliptical antennas are in Tab. D.2. 

In Fig. 4.14 (a), we plot the dependence of the field enhancement squared (evaluated at 
position 30 nm from the antenna apex) on the imaginary part of the antenna polarizability. 
We also plot the results obtained for the gold rods from Fig. 4.9 for comparison with the 
elliptical-shaped antennas. We can see that the first elliptical-shaped antenna has similar 
field enhancement and polarizability as the round-rod antenna of similar dimensions. 
When making the ellipsis broader, we observe a rapid decrease in the field enhancement. 
The polarizability is changing for the first few elliptical antennas, but is approaching 
similar value for the larger ones. This effect can be viewed as a consequence of the length 
of the antenna in the x-direction, which is almost the same for the antennas (Tab. D.2). 
With the same polarizability in the x-direction, we can attribute the decrease of the field 
enhancement to the local curvature, where for the disk, the field is not as localized as for 
the sharp end of a thinner elliptical nano-antenna. 

Overall, the elliptical nano-antennas have similar values of field enhancement as the 
round rods, but the ones approaching the shape of a disc are worse than even the smallest 
round rod. The contrast is worse for all the elliptical antennas, as the polarizability 
(and thus the extinction cross section) is larger than for the round rods, but the field 
enhancement is smaller. 

We can also study the performance of the dimer antennas with a gap previously 
mentioned in Sec. 2.2.2. We evaluate the field enhancement in the center of the gap and 
plot the dependence on the Im{a A }. For the smallest antenna, the field enhancement in 
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Figure 4.14: (a) Dependence of | / | on Im{o;A} for various gold nano-antennas. With the 
yellow dots, we plot the values for gold rod-like nano-antennas and with the green dots, 
we plot values for elliptical nano-antennas, which are broadened up until their diameter is 
the same in length resulting in a disc shape. The field enhancement is evaluated at their 
resonance energy at approximately 0.157eV and 30 nm from the antenna apex. With the 
cyan color, we plot the dimer antennas, where the field enhancement is evaluated in the 
center of the gap. The shape and dimension of the antennas are schematically depicted 
by the insets with matching colors. With the blue and red lines, we plot the values of 
constant / 
the dependence on 

I 2 " „A 

and the ratio | / | /Im{o;A} respectively, (b) Same as in (a), but we plot 
' The red and blue lines are constant values of or / a and 

/\ctA\ respectively. We can see that for some of the larger elliptical shape antennas, 
Im{o;A} a: 

the gap is comparable with the field enhancement at the ends of gold round rods, but 
for larger diameters, the field enhancement in the gap is one order of magnitude larger. 
With the guiding blue horizontal and red diagonal lines, we can see that for the dimer 
antennas, the model predicts larger signatures and contrasts compared to the round rod 
antennas or elliptical antennas in extinction and EELS. 

In Fig. 4.14 (b) we plot the dependence of the field enhancement on | aA |. We compare 
the performance of the gold round rods with the elliptical antennas, for which we can see 
that we again obtain similar values of contrasts and signatures, but for the larger, disc-like 
nano-antennas, the field enhancement decreases rapidly, resulting in a decrease in both 
signature and contrast. We can notice that the values of |o;A | differ a bit from the values 
of Im{o;A} as the ellipsis cross sections were very broad in energy and the resonance was 
not exactly tuned to the molecular one. 

We also plot the dependences of | / | on |o;A | for dimer antennas. The two smaller 
dimer antennas predict similar values of the scattering signature, but the contrast is larger. 
For the three biggest dimer antennas, the values of both scattering signature and contrast 
are larger than for all of the other shapes considered. 

Overall, dimer antennas seem to be the best candidates for both extinction (and EELS) 
and scattering experiments of enhanced spectroscopy. Particularly the larger dimer an-
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Figure 4.15: (a) Dependence of | / | on Im{o;A} for gold nano-antennas (yellow) and hBN 
antennas (magenta). We are changing the diameters of the antennas, but they match 
for hBN and gold in order, to be comparable. The field enhancement is evaluated at the 
resonance energy 0.18 eV and 30 nm from the antenna apex, therefore the gold antennas 
are different ones than those considered in previous FOMs. We again plot the isolines 
with red and blue, as in Fig. (b) Same as in (a), but we plot the dependence on \aA\. 

tennas predict the largest values in both signatures and contrasts. Albeit the large ellipsis 
shapes and disc nano-antennas showed poor performance, they may be, for example, uti­
lized for the case of a very weakly interacting sample, with which the whole antenna 
would be covered and the field, which is very non-localized compared to the sharp tip of 
the nanorod would enhance the signal from a larger volume of the sample. 

We now focus on antennas tuned to the molecular resonance of C B P at approximately 
I 12 

0.18eV. In Fig. 4.15 (a), we plot the values of the | / | for different series of gold round 
rods (dimensions are in Tab. D.3). We choose different golden nano-antennas, for the 
comparison of h B N nano-antennas to be fair, as they will be tuned to the same resonance 
frequency and also will have the same diameter and thus the same shape of their apex. 
With the same diameter we can exclude the effect of the local curvature on the field 
enhancement. The major difference between these two antennas is the nature of their 
resonance (plasmonic in gold and phononic in hBN) and their different length (in order 
of micrometers for gold antennas and hundreds of nanometers for hBN antennas). The 
dimensions of hBN antennas, which were previously dealt with in Sec. 4.3 are in Tab. D.3. 
We plot the values of the field enhancement for hBN nano-antennas previously considered 
in Fig. 4.7. We can immediately see, that their polarizabilities are a couple of orders of 
magnitudes smaller than the gold round rods (which results in smaller cross sections, as 
we showed in Fig. 2.6), but the field enhancements squared are comparable. We have the 
same color legend of isolines of constant values of | / | and | / | / Im{a A } as in previous 
figures. With this figure of merit, we can assume that the signatures appearing in spectra 
would be comparable in magnitude, albeit smaller for h B N antennas, but the contrast 
would be much larger in the hBN antennas. The hBN antenna with the largest contrast 
is the second smallest one, which is in concordance with Fig. 4.8. We can also recognize 
that even for the gold antennas, the one with radius 20 nm has the largest contrast. 
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In Fig. 4.15 (b), we plot the values of field enhancement squared as they depend on 
the magnitude of the polarizability at resonance. In the scattering experiment, the larger 
signature would be for gold antennas, as it scales with | a A | , but the contrast would be 
again the best for h B N antennas as it scales with l / | o ; A | . 

With the figures of merit, we now have a comparison of antenna performances in 
enhanced spectroscopies. These FOMs are general for the case of a weakly scattering 
object enhanced by the near-field of nano-antenna tuned to certain resonance energy. 
Thus when comparing different antennas at the same resonance frequency, the procedure 
for recognizing the antenna with best performance would be the same. 
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5. CONCLUSIONS AND OUTLOOK 

5 Conclusions and outlook 
This diploma thesis focused on the theoretical description of enhanced spectroscopy, 

which utilized strong-near fields produced by resonant nanostructures in signal enhance­
ment when studying minute amounts of analytes. One of its aims was the comparison 
of performance in different experiments (scattering and extinction or electron energy-loss 
spectroscopy) with nano-antennas made of various sizes and materials (relatively small 
hBN antennas and relatively large gold antennas) and different shapes (round-rods, el­
lipses, and dimer antennas). 

The first chapter reviewed the electrodynamics and introduced relations needed for the 
next derivations. With the help of the relations, we were able to perform an approximation 
of a discrete charge distribution in the form of a point dipole interacting with an external 
field source. Then we focused on a material response and introduced Lorentz and Drude 
oscillator models for different materials, which were then used throughout the thesis. 
Lastly, we introduced the concept of nano-antenna and reviewed some of its aspects and 
properties. 

In the second chapter, we discussed the interaction of a point dipole with external 
sources of electric field. Firstly we focused on the interaction with a second nearby dipole, 
after which the two dipoles formed a coupled system. This coupled-dipoles formalism is 
used for modeling the response of a system consisting of a nano-antenna and a molecular 
sample, used for enhanced spectroscopy experiments. Under the assumption of a weakly 
interacting sample that is either small or weakly polarizable (which coincides with the 
studied molecular sample in enhanced spectroscopy), we expanded the electric field ra­
diated from the coupled dipoles into an infinite series consisting of multiple scattering 
events between the nano-antenna and the molecular sample. Then we moved back to the 
description of just one dipole, which is induced by a plane electromagnetic wave. We 
defined the optical cross sections and then showed the results of numerical calculations of 
various nano-antennas. We showed how the cross sections depend on the antenna polariz-
ability, into which is projected its material and shape, Next, we briefly reviewed electron 
energy-loss spectroscopy, showed how we can analytically express the field of a relativistic 
electron, and introduced the analytical expression for the loss probability. We then ex­
pressed the probability that an electron would lose energy towards inducing a dipole. We 
also pointed out the fact that the relations are similar for E E L S and extinction. Then we 
again showed results of numerical computations, where we compared the polarizabilities 
obtained by either the dipole expansion in EELS with the dipole expansion by a plane 
wave illumination. Lastly, we presented numerically calculated E E L spectra and discussed 
the validity of the dipole expansion with the distance of the electron beam. 

In the third chapter, we reviewed infrared vibrational spectroscopy methods, with the 
main focus on enhanced absorption spectroscopy studying small amounts of analytes. 
We discussed previous results obtained in the field of resonant surface-enhanced infrared 
absorption (SEIRA) where the plane wave illumination is considered and then focused 
on the recently emerged possibility of studying vibrational samples within a transmission 
electron microscope in electron energy-loss spectroscopy. Similarly to the light-base spec­
troscopies, even the EELS suffers from a subsequent loss of a signal when studying small 
samples, thus field-enhanced EELS was proposed. 

In chapter four, we introduced the analytical model for explaining SEIRA signatures 
for a weakly interacting sample, previously derived in Ref. [11]. This model assumes that 
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the signatures are based on interference between the incident illumination (in extinction) 
and the field scattered directly by the antenna (in scattering) with one of the terms of 
the infinite series of scattering events. This one term encompasses the double scattering 
event between the antenna and sample. We showed a comparison of the numerical results 
of signatures in optical cross sections and compared them with the analytical model and 
achieved a very good match. Then we focused on relative contrasts in the cross sections 
and the explanation of the flip in absorption cross section signatures sign. We showed 
that there are two contributions to the total absorption signature and its total value is 
given by the interplay between the field-enhanced object absorption and the change in 
the antenna absorption given by the interaction with the object. Then, we applied the 
approximative formalism to the field-enhanced electron energy loss spectroscopy and we 
compared the results with the results obtained from numerical calculations, where we also 
compared molecular signatures in EELS and extinction. We showed that the scaling is 
similar and when considering the loss probability and extinction cross section contrasts, 
we obtained the same values. The last part was dedicated to establishing figures of merit 
(FOMs) based on the theoretical model, where we studied the performance of various 
nano-antennas with respect to their polarizabilities and near-field distribution. With 
these FOMs, we were able to resolve the enhancement of the signal in different scenarios 
of experiments (scattering or extinction and EELS) for various nano-antennas. 

In this last section, we focus on a future outlook, where we discuss some aspects that 
were not considered and studied in this thesis. 

Firstly, we considered a system of nano-antenna and weakly polarizable object, but the 
case of a strongly polarizable object, resulting in the strong coupling of the system, could 
also be studied. With the model, we considered a simple case where all the polarizations 
were in one direction and we considered the molecular sample to be a small sphere. Other 
steps could be considering a molecular layer and modeling its polarizability analytically 
via the core-shell model. 

An interesting system to study, considering the results of FOMs, would be hBN dimer 
antennas, which would provide relatively large contrast, similar to the h B N nanorods, 
but also large field enhancement as the gold dimers. For the dimers, the proper modeling 
of the polarizability (by two coupled dipoles and not just one effective dipole) could be 
done, and the effects of different shapes of the antennas forming the dimer and the gap 
shape could also be an interesting topic of study. 

For the electron-based spectroscopies, cathodoluminescence could a promising candi­
date for studying samples. It should be possible to model cathodoluminescence similarly 
to the scattering cross section. Infrared cathodoluminescence is not very common, but 
the results of the theoretical model are not bound just to the infrared region but different 
(e.g. excitonic) samples could be studied. In EELS, the feasibility of exciting higher-order 
modes within the nano-antenna could also be interesting. In EELS, we did not provide 
results for gold antennas, where the effects of a dipole approximation would not be neg­
ligible, as the field would not be homogenous within the nano-antenna as for a relatively 
small h B N antenna. Some effective position of the distorted dipole would then need to 
be established. 
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A. FOURIER TRANSFORM 

A Fourier transform 
A . l General Fourier transform 
The Fourier transform is an integral transform used for the decomposition of a function 
into the basis of sinusoidal functions. In many fields, e.g. in crystallography, mathematics, 
or electrotechnics, different conventions are used. We adapt formalism from Ref. [96]. The 
Fourier transform of a function that is dependent on three space coordinates r = (x, y, z) 
and time t, can be written as 

F T { / ( r , t ) } = F{k,uj) = [[[[ f{r,t)e-i(~kr-^d3rdt, (A.l) 

and the inverse Fourier transform of a function dependent on Fourier coordinates k = 
(kx, ky, kz) and u is 

FT" 1 {^ (k ,o ; ) }= f(r,t) = J^iJJU m ^ e ^ V k d u , (A.2) 

Relations can be also written for the Fourier transform for derivatives 

J f l / ( r , t ) 
F T | ^ p | = - i o ; F T { / ( r , t ) } , (A.3) 

F T J ^ ^ | = i ^ F T { / ( r , t ) } . (A.4) 

When considering two real functions of time, we can obtain so-called Rayleigh-Parseval 
theorem which reads [97] 

/ fi(t)f2(t)dt = j F1(u)F;(u)du = j Re{F!(w)F2*(a;)}da;. (A.5) 

A.2 Fourier transform of electromagnetic fields 
By employing the Fourier transform, we can transform Maxwell equations [Eqs. (1.2-1.3) 
and (1.7-1.8)] to the Fourier space. In the absence of sources, the equations read 

e0eTk-£{k,u) = 0, (A.6) 
k-B(k,w) = 0, (A.7) 

k x £(k,u) = uB{k,u), (A.8) 
k x B(k,u) = —eo£r(J,o(J,ruj£(k,uj). (A.9) 
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B. GREEN'S FUNCTION 

B Green's function 
B . l Green's function of general differential equation 
Let us consider an ordinary linear differential equation with a differential operator O(r) 
acting on a function /(r) . We suppose that the differential equation is inhomogeneous 
with a source term Q(r). 

0(r)/(r) = -Q( r ) . (B.l) 

We introduce the Green's function of this differential equation as a response to the impact 
of a point source. 

0(r)G(r,r ' ) = - 5 ( r - r ' ) , (B.2) 

where S(r — r') is the Dirac's delta function1. With the help of Green's function, we can 
immediately assume the solution of this differential equation in the form 

/(r) = J G(v,v')Q(v')dV. (B.3) 

If we plug this solution back into our differential equation, we show that it is indeed 
fulfilled. 

0(r) j G(r, r ' )Q(r ' )dV = - J 5{v - r')Q(r')dV = -Q( r ) . (B.4) 

B.2 Green's function of the Helmholtz equation 
The Helmholtz equation is widespread in many fields. In its homogeneous form, it can 
be viewed as a solution of eigenvalues k for the Laplace operator V 2 . We consider an 
inhomogeneous case with the source term on the right side Q{r) 

(y2 + k2)f(v) = -Q(v). (B.5) 

According to Eq. (B.2), the solution of this equation for a point source located in r = r' 
is 

( V 2 + A; 2)G(r,r') = - e J ( r - r ' ) . (B.6) 

If we assume unbound and homogeneous space, the Green's function can only depend on 
the distance R — |r — r'|. We then rewrite G(r, r') = g(R). By transforming the previous 
equation to the spherical coordinates and realizing that the function depends only on R. 
we get (for R ^ 0) 

1Dirac's delta function is a distribution defined as <5(r — r') CXD, if r = r'. 
0, otherwise. 
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B.2. GREEN'S FUNCTION OF THE HELMHOLTZ EQUATION 

The general solution of this equation is in the form 

pi fc i? „—ife iJ 

g ^ = c - R - + D~Jr- ( R 8 ) 

We choose only the solution that depends on elkR, as we suppose that k > 0 and we 
want a diverging wave. After integration of the Green's function over a sphere with an 
infinitesimal volume and applying the divergence theorem, we get a value of parameter 
C = 1/4.7T. 

The Green's function of the Helmholtz equation then reads 

p i f c i ? 

G(r,r<) = — . (B.9) 
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C. NUMERICAL SIMULATIONS 

C Numerical simulations 
C . l Finite-difference time-domain method 
For part of the calculations of the interaction of nanostructures with plane electromag­
netic wave in this thesis, commercial software based on the finite-difference time-domain 
(FDTD) method, Ansys Lumerical F D T D (Ansys, Inc) was used. As the name states, the 
finite-difference method is used to solve partial differential equations by substituting the 
derivatives with finite differences. F D T D Lumerical is based on the time domain solution 
of Maxwell's equations, employing temporal and spatial discretization of the problem [98]. 
The considered system is divided into discrete rectangular cells, often called Yee cells, 
named after one of the authors of the F D T D algorithm [99]. For more information about 
the F D T D computational scheme and all the possibilities of simulations, we refer the 
reader to the Lumerical Learning Center [100]. 

For simulating the electromagnetic illumination we positioned our nanostructure inside 
the total-field scattered-field (TFSF) source, which illuminates its insides with a plane 
wave. This source divides the simulation domain into two regions: (1) Total field region, 
which is located inside the surface of the source, where is both the incident field and the 
field scattered from the structure, and (2) Scattered field region, where only the scattered 
field is included. For obtaining absorption cross section, we placed a monitor inside the 
T F S F source, so it would record inward flowing power from the source and outward flowing 
power, which is reduced by the absorbed power. From this monitor, we are able to obtain 
absorption cross section crabs- We placed a second monitor outside the T F S F source, 
where the outward flowing power is given just by the scattered field. This monitor grants 
us the scattering cross section <jsca. We show the simulation layout in Fig. C . l (a). We 
assumed x-polarization of the incident field, which is propagating in the ^-direction and 
a broadband IR source (wavelength from 5 pm to 11.2 pm). We exploited the symmetries 
of the simulation and by imposing boundary conditions (symmetric in the y-direction 
and anti-symmetric in the x-direction), we reduced the simulation volume by a factor of 
4. We did not consider any substrate, the surrounding medium was assumed to be air 
e — 1. For evaluating quantities needed for evaluating the SEIRA model, we followed 
the approach from Ref. [ ] and did four types of simulations, which we will now detail. 
First, we performed a simulation of a nano-antenna without any surrounding objects. We 
placed the power-absorbed (PA) monitor inside the T F S F source. The monitor records 
the distribution of the electromagnetic field and the refractive index in each mesh cell. We 
show the simulation layout in Fig. C . l (b). With these quantities, we were able to obtain 
the dipole moment of the nano-antenna, following the approach from Ref. [101]. Within 
this approach, evaluation of the exact multipole moments was implemented into Matlab 
code. We assumed just the dipole contribution, the dipole moment can be expressed 
using Eq. (2.34). The integration is performed over the volume of the antenna V. The 
induced current density was calculated from Eq. (2.35), for which the electric field and 
relative permittivity were obtained from the PA monitor. The integration could have been 
performed, as the induced currents are zero everywhere outside the antenna, thus the only 
contribution to the dipole moment comes within the volume of the antenna. With the 
dipole moment, we can substitute the response of the antenna with the response of a point 
dipole. We label this simulation as NP (from "no particle"). 
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C . J . FINITE-DIFFERENCE TIME-DOMAIN METHOD 

Figure C . l : (a) Simulation layout used for calculating absorption and scattering cross 
sections. The nanostructure is illuminated by a plane wave, which is polarized along the 
x-axis and propagates in the z-axis. The source of the plane wave is the total-field scatter-
field (TFSF) source (yellow). The absorption monitor (blue) is placed inside the source 
to record dissipated power. The scattering monitor (red) is placed outside the source 
to record radiated power, (b) Simulation layout used for monitoring the distribution of 
electromagnetic field and refractive index. The nanostructure is again illuminated by the 
T F S F source. Inside the source, we place a power-absorbed monitor, which records the 
distribution of the refractive index and electromagnetic fields. 

A second simulation was done to obtain the polarizability of the antenna. We per­
formed a simulation of an empty domain with just the source and obtained the incident 
field at the center of the antenna, where the point dipole is situated. The polarizability 
was then obtained from Eq. (1.37). 

Third and fourth simulations were performed to calculate the response of the antenna 
and object. As we are using the mirror symmetry, we assume two spherical objects 
situated at the apexes of the antenna. The center of the objects is situated 30 nm from 
the tip of the antenna. In the third simulation, we considered objects to be absorbing, 
characterized by the Lorentz model dielectric function (1.44). From this simulation, we 
obtained cross-sections of the antenna-object system accounting for the response of the 
antenna resonance and connected molecular signature in the spectrum. We label this 
simulation as RES (from "resonant object"). 

Extracting the molecular feature from the spectra is not as straightforward as it may 
seem. As we show in Sec. 4.1, because of the redshift introduced by the background per­
mittivity of the molecular sample, after subtracting NP simulation from RES simulation, 
we obtain distorted lineshape [Fig. 4.1 (b)]. In Ref. [1], a smoothing algorithm was used 
to obtain the plasmonic peak, which can then be subtracted from the RES simulation to 
obtain baselined molecular features. 

We performed a fourth simulation, where we again considered the spherical objects 
but instead of characterizing them with a resonant dielectric function, we characterized 
the objects just by the background permittivity of the object e ° from the Lorentz model. 
Because of this background, the antenna resonance is red-shifted and we can subtract it 
from the absorbing NP simulation to obtain SEIRA spectra. In Fig. 4.1 (b), we show that 
the lineshape is less distorted than after subtraction of NP simulation and the molecular 
feature in the form of a dip is very pronounced. We label this simulation as B G (from 
"background"). 
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C. NUMERICAL SIMULATIONS 

The polarizability of a small nanosphere, approximating the molecules could be ob­
tained similarly as the antenna polarizability. As we are considering a sphere with a 
radius of 10 nm and we are studying the response in the infrared region, we approximate 
the polarizability by the formula for quasistatic polarizability of a small sphere in the 
form 

a = 47T£ 0£ma 3 £ r £ r ' m , (C.l) 

where a is the sphere radius, eTjra is the dielectric function of the surrounding medium 
and er is the dielectric function of the sphere material. For a sphere, it is isotropic, so the 
polarizability tensor is diagonal with identical components. 

C.2 Finite element method 

C.2 .1 Plane-wave illumination simulations 
Finite-element method (FEM) based software C O M S O L M U L T I P H Y S I C S [102] is another 
possibility for studying the interaction of electromagnetic fields with more complex ge­
ometries. F E M is a widely used method for solving differential equations numerically. It 
takes advantage of dividing the system into small finite-sized elements (mesh). Several 
comparative studies based on simulation time, accuracy, convergence, and computational 
demandingness were carried out, showing the pros and cons of F E M and F D T D [103, 
101]. One main disadvantage of F D T D is its rectangular mesh, which coarsely describes 
curved geometries. In comparison, in C O M S O L , there is a possibility for different mesh-cell 
shapes. 

Similarly to F D T D , plane-wave illumination of a structure can be implemented in 
C O M S O L . By recording power flow across boundaries, the scattered power can be com­
puted. Absorption can be obtained by integrating the dissipated power within the struc­
ture. In this section, we describe the simulations of a plane-wave illumination implemented 
in C O M S O L . 

We use the R A D I O F R E Q U E N C Y T O O L B O X implemented in C O M S O L . We assume a 
box-shaped simulation domain. It has to be large enough (at least half a wavelength) 
for electromagnetic fields. The medium is assumed to be the vacuum, e — 1; we do 
not account for the presence of the substrate, although it is mandatory to support the 
nanostructures in the transmission experiment. 

The whole simulation domain is enclosed by swept layers ( we typically use five of 
them), on which are imposed P E R F E C T L Y - M A T C H E D L A Y E R (PML) boundary condi­
tions. PMLs, sometimes called sponge layers, are used to mimic an open simulation 
domain, where there are no reflections from the borders. In the frequency domain, PMLs 
transform coordinates into complex-valued ones. This transformation makes waves flowing 
such domains absorbed and fully attenuated at the last layer, thus forbidding reflections. 

The whole simulation is divided into discrete mesh elements, which are shaped as 
tetrahedrons, using F R E E T E T R A H E D R A L . The size of the mesh elements should be, for a 
typical electromagnetic simulation, about one-tenth of the wavelength considered. Finer 
mesh refinement needs to be defined around regions, where large or rapidly-changing 
electromagnetic fields are expected. In our considered simulations, the refinement is 
typically needed in the vicinity of the nano-antenna and the electron beam. As the real 
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C.2. FINITE ELEMENT METHOD 

Figure C . 2 : (a) Simulation layout in C O M S O L . A n object is placed inside the simulation 
domain filled with the vacuum. The source of the electromagnetic field is a plane wave, and 
the whole simulation is enclosed within boundaries onto which P E R F E C T L Y - M A T C H E D 

L A Y E R boundary conditions are imposed, (b) Mesh of the simulation. The object has 
finer mesh, as we expect greater and fast-changing fields nearby it. The PMLs are swept 
with five layers. 

phenomena do not depend on any artificial mesh, we need to perform convergence tests 
with respect to the size of the simulation domain and refinement of the mesh elements, 
until the computed values converge. The simulation layout is depicted in Fig. C . 2 . 

In C O M S O L following equation in E L E C T R O M A G N E T I C W A V E S interface is solved to 
obtain distribution of the complex, frequency-dependent electric field E 

— V x (V x E) - fcgerE = 0, ( C . 2 ) 

where /xr is relative permeability, er the dielectric function, ko is the free-space wavenumber 
and UJ angular frequency. 

We define the incoming electromagnetic wave as a B A C K G R O U N D F I E L D in the form 
of a wave, polarized in x-direction and propagating in ^-direction as 

E = E0e-[kz, ( C . 3 ) 

and we chose the amplitude | E 0 | = 1. 
The scattering cross section is defined by Eq. (2.14) 

C ŝca = 7 ^ CD (Ssca) • M f i , ( C . 4 ) 
\Omc/ Jan 

where for the time-averaged Poynting vector ( S s c a ) we plug the power flow computed in 
C O M S O L , and ( S i n c ) = EQ/2^EQ/HO is the time-averaged Poynting vector of the incoming 
field. The integration is performed over the boundary between vacuum and PMLs . 

The absorption cross section is defined with the help of the dissipated power of 
Eq. (1.17) 

^abs = 7 ^ / <3hd3r, (C.5) 
Wine / Jn 

where Qh is the total power dissipation density computed in C O M S O L . The integration is 
performed over the volume of the considered structure. 
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C. NUMERICAL SIMULATIONS 

C.2.2 E E L S simulations 
For a straightforward implementation of the interaction between a structure and a field 
of a focused beam of swift electrons, C O M S O L is typically used, nevertheless it can be 
calculated using F D T D too [105]. We follow the C O M S O L simulation procedure, which 
uses the classical dielectric formalism for simulating the S T E M - E E L S experiment with a 
focused electron beam as reported in previous studies [18, 55, 106, 107]. 

The electron beam is defined with the node E D G E C U R R E N T , which describes a line 
electric current. We express the current produced by an electron as 

/ = J 0 e ^ , (C.6) 

where Jo is the current amplitude, z is the electron trajectory and v electron velocity. 
With the definition of the electron trajectory as a ID straight line, we assume a non-recoil 
approximation, where the electron's trajectory is not deviated by the interaction with the 
nanostructure. This assumption is very precise for high-energy electrons interacting with 
optical near fields. We also assume a perfectly focused beam, as the edge current flows 
through ID P O L Y G O N . 

Within the solution of Eq. (C.2), we can calculate the electric field of the bare elec­
tron beam. For such calculation, we position the beam at Xb=400nm from the origin 
rProbe = (0,0,0). In the origin, we situate D O M A I N P O I N T P R O B E , which will enable us 
to monitor the electric field at the point. To achieve reasonable results, we also put a 
so-called refined domain, for the mesh to be more fine. We can then directly compare 
the analytically obtained electric field [Eqs. (2.23) and (2.24)] with this numerically cal­
culated field, multiplied by the elementary charge e, which we show in Fig. C.3 (c). The 
numerically calculated field bears a small imaginary part, which is most likely due to 
numerical error. We can see that the relative error is about 3% in Fig. C.3 (d). 

With the computed electric field, we can compute the loss probability by the E D G E 
P R O B E monitor with the formula 

TEELSM = -j-\ Re[E?d(xh,yh,z,u)e-["z/v}dz, (C.7) 
" ^min 

where (xb, yb) is the beam position in the x?/-plane. We integrate over the electron trajec­
tory z =(zmin,zmax), which extends over the whole simulation domain. For obtaining loss 
probability in e V - 1 , we need to normalize the loss probability r E E L S by the factor e2/I0h. 

For the simulations, we used an accelerating voltage of 120 keV (the corresponding 
electron speed is 58.7% of the speed of light, more typical values are specified in Tab. D . l ) . 
For the definition of the electromagnetic response of the material, we use the dielectric 
function er. We can define it analytically via the Lorentz [Eq. (1.44)] or the Drude model 
[Eq. (1.45)] or import tabulated data. Relative permeability /xr is considered to be 1. 

A l l simulations had to be performed twice. First, with the structure defined with its 
dielectric function, we computed the total field, summing the field of the electron beam 
and also the induced field. The second simulation that needed to be carried out is with 
er = 1 everywhere. Both simulations had to have the same mesh and other specifications. 
By subtracting the second simulation from the first one we obtain the loss probability. 

Lastly, we show relative errors between spectra obtained either from Eq. (C.7) with the 
one calculated using the model of the loss probability for an induced dipole in Eq. (2.38) 
as we discuss in Sec. 2.3.3. 
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Figure C.3: (a) Geometrical arrangement of EELS simulation in C O M S O L . (b) Simulation 
is discretized into mesh elements, the size of the elements needs to be reduced in the region 
of large and rapidly changing fields, in this case around the nanostructure and in the 
vicinity of the electron beam, (c) Comparison of the components of the electric field of a 
beam of fast electron evaluated 500 nm from the beam. We compare it with the analytical 
model from Eqs. (2.23) and (2.24) d) Relative error of the electric field components from 
(c). (e) Relative errors between the loss probabilities are obtained by either integration of 
the induced field or by the dipole model, (f) Relative errors between the loss probability 
maxima for different impact parameters b are obtained by either integration of the induced 
field or by the dipole model. 



D. TABLES 

D Tables 
Table D . l : Electron energies and their relativistic velocities (in fraction of the speed of 
light). 

(a) 

Electron energy / keV Electron velocity / c 
60 0.446 
100 0.548 
120 0.587 
300 0.777 

(b) (c) 

c c 
L L L 

Figure D . l : Schematical depictions of nano-antennas considered in tables, with the labels 
of their dimensions, (a) Cylindrically shaped nano-antenna with hemispherical apexes, 
referred to as round-rod. (b) Flat nano-antenna of height 100 nm with elliptical cross 
section, (c) Dimer antenna consisting of two rods, the size of the gap is 70 nm 

Table D.2: Dimensions of different shapes of gold antennas tuned to resonance energy at 
approximately 0.157eV. The dimensions legends are schematically depicted in Fig. D . l . 

Round-rod Ellipse Dimer 
D / nm L / nm D / nm L j nm D / nm L / nm 

20 1820 100 3300 20 1760 
30 2330 200 3400 40 2420 
40 2640 300 3500 60 2680 
50 2820 600 3600 80 2790 
60 2970 1200 3600 100 2815 
70 3050 2000 3600 
80 3120 3000 3600 
100 3190 3600 3600 
120 3250 

Table D.3: Dimensions of round-rod gold and hBN nano-antennas tuned to resonance 
energy at approximately 0.18eV. The dimensions legend is in Fig. D . l (a) 

Gold hBN 
Radius Length Radius Length 

20 1580 20 60 
40 2270 40 120 
60 2560 60 180 
80 2680 80 239 
100 2740 100 295 
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List of abbreviations 
A E Auger electron 

B G background 

C B P 4,4-bis(N-carbazolyl)-l,l-biphenyl 

CL cathodoluminescence 

EELS electron energy-loss spectroscopy 

F D T D finite-difference time-domain method 

F E E L S field-enhanced electron energy-loss spectroscopy 

F E M finite element method 

F F far field 

F O M figure of merit 

FTIR Fourier-transformed infrared spectroscopy 

F W H M full width at half maximum 

H A M R heat-assisted magnetic recording 

hBN hexagonal boron nitride 

IR infrared 

LSP localized surface plasmon 

M E N P multipole expansion for nanophotonics 

N F near field 

NP no particle 

P D M S polydimethylsiloxane 

P M M A poly(methyl methacrylate) 

RES resonance 

R F radio frequency 

SARS-CoV-2 strain of coronavirus, which causes COVID-19 illness 

SE secondary electron 

SEF surface-enhanced fluorescence 

SEIRA surface-enhanced infrared absorption 



SERS surface-enhanced Raman spectroscopy 

SNOM scanning near-field optical microscopy 

SPP surface plasmon polariton 

s-SNOM scattering-type scanning near-field optical microscopy 

S T E M scanning transmission electron microscope 

T E M transmission electron microscope 

TFSF total-field scattered-field 

ZLP zero-loss peak 
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