VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMACNICH TECHNOLOGIH
USTAV POCITACOVE GRAFIKY A MULTIMEDI|

FACULTY OF INFORMATION TECHNOLOGY
DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

SYSTEM FOR RECORDING VIDEO
FROM IP VIDEOCAMERAS

DIPLOMOVA PRACE
MASTER’S THESIS

AUTOR PRACE Bc. JIRI TRAVENEC
AUTHOR

BRNO 2015

VYSOKE UCENI TECHNICKE V BRNE

BRNO UNIVERSITY OF TECHNOLOGY

NN

FAKULTA INFORMACNICH TECHNOLOGI
USTAV POCITACOVE GRAFIKY A MULTIMEDI|

FACULTY OF INFORMATION TECHNOLOGY
fll DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA

SYSTEM PRO ZAZNAM
STREAMOVANEHO VIDEA Z IP KAMER

SYSTEM FOR RECORDING VIDEO FROM IP VIDEOCAMERAS

DIPLOMOVA PRACE

MASTER’S THESIS

AUTOR PRACE Bc. JIRI TRAVENEC
AUTHOR

VEDOUCI PRACE Mgr. JANA SKOKANOVA
SUPERVISOR

BRNO 2015

Abstrakt

Tato diplomova prace je zamérend na prenos multimédii v redlném case z IP kamer. Jejim
hlavnim cilem je vysvétlit teoretické zaklady pfenosu v redlném case pres pocitacovou sit a
popsat vyvoj nahravaciho systému. Tento nahravaci systém je urcen prevazné k nahravani
prednések ve skolach. Prace obsahuje popis vyvoje serverové nahravaci aplikace a webového
administra¢niho rozhrani. Teoreticka cast vysvétluje témata spojend s prenosem médii
v redlném case, pocitacovymi sitémi a zpracovanim multimédii, jako napriklad real-time
streaming protokoly, kédovani, komprese, sifovd odezva, zahlceni sité a dalsi.

Abstract

This diploma thesis focuses on multimedia streaming from IP cameras. Its main goal is to
explain theoretical background of real-time streaming via computer networks, and describe
development of a recording system. This recording system is meant to be used mainly in
schools for lecture recording purposes. The thesis contains description on how a recording
server application and web-based management system were developed. The theoretical part
explains topics related to multimedia streaming, networking, and multimedia procesing,
such as real-time streaming protocols, encoding, compression, network latency, network
congestion and many others.

Klicdova slova

Streamovani v redlném case, nahravani, real-time streaming protokoly, multimédia, mul-
timedialni komprese, kédovéani, sité, RTP, RTCP, RTSP, SDP, AngularJS, avconv, libav,
liveb55, Java

Keywords

Real-time streaming, recording, real-time streaming protocols, multimedia, multimedia
compression, encoding, networking, RTP, RTCP, RTSP, SDP, AngularJS, avconv, libav,
liveb55, Java

Citace

Jifi Travénec: System for Recording Video from IP Videocameras, diplomova prace, Brno,
FIT VUT v Brné, 2015

System for Recording Video from IP Videocameras

Prohlaseni

Prohlasuji, ze jsem tento semestralni projekt vypracoval samostatné pod vedenim pani Mgr.
Jany Skokanové a ze jsem uvedl vSechny literarni prameny, ze kterych jsem cerpal.

Jifi Travénec
July 31, 2015

Podékovani

Timto bych predevsim rad podékoval vedouci mé diplomové prace Mgr. Jané Skokanové za
vst¥icny a viely pfistup a odborné vedeni mé prace. Rad bych vyjadiil podékovani vsem,
ktefi mé podporovali v mém studijnim usili, zejména rodiné a piratelim. Také bych chtél
podékovat Markusovi za anglickou zachranu v hodiné dvanacté.

By this, I would like to thank primarily to supervisor of my diploma thesis, Mgr. Jana
Skokanova, for helpful and pleasant approach, and expert and professional supervision. I
would like to express my gratitude to all people, who supported me during my studies.
Also, I would like to thank to Markus for an English help in the nick of time.

(© Jifi Travénec, 2015.

Tato prdace vznikla jako skolni dilo na Vysokém uceni technickém v Brne, Fakulté in-
formacnich technologii. Prdce je chrdnéna autorskym zdkonem a jeji uZiti bez udélend
oprdvnéni autorem je nezdakonné, s viyjimkou zdkonem definovanych pripadi.

Contents

8

Introduction

Networks and servers
2.1 Medialayers.o
2.2 Hostlayers e

Real-time streaming protocols

3.1 RTP (Real-time Transport Protocol)
3.2 RTCP (Real-time Transport Control Protocol)
3.3 RTSP (Real-time Transfer Streaming Protocol)
3.4 SDP (Session Description Protocol)

Encoding, compression, and codecs
4.1 Multimedia compression e e e
4.2 Variable vs. Constant Bit-Rate

Analysis and design

5.1 Entity-based model L L
5.2 USE CASES . . v v v v i e e e e e e
5.3 The application design o

Recording application

6.1 Threads L
6.2 Recording scheduler o Lo
6.3 Recordbox L
6.4 Filesystem watcher L Lo oL
6.5 Performance diagnostics L L L Lo L

Web-based management
7.1 JavaScript-based client application 0L
7.2 The user interface L

Conclusion

A List of Figures

19
20
21

24
25
27
29

32
34
35
37
40
40

42
44
45

49

55

Chapter 1

Introduction

In 1893 great engineer Nikola Tesla publicly demonstrates radio and radio connection for
the very first time. [1] This event can be seen as a beginning of a new era, which was
about to change the world. It has been 122 years now, and the broadcasts went through a
lot of revolutions and even more changes. Nowadays, we can transmit multimedia content
all over the world, and moreover even communicate with other people over such distances
using video-calls.

Six billion hours of video is watched every month on YouTube, the largest video on
demand service in the world. [2][3] That means 12 minutes for every user of the site every
day. When, in 2013, YouTube suffered a service outage for five minutes, the world internet
usage decreased by 40 percent. [4]

Another service called Skype brought world-widely available free video-calls, allowing
people from different countries to hear and see each other over the Internet. This was such
a change to people’s life, that even a new verb was created. ,, To Skype somebody*, which
means to have a video-call with a person. [5]

Just two small statements were pitched to show how important multimedia broadcasts
over computer network nowadays are. The streaming, as it is called, is growing area of
science and business, and this thesis tries to add some value to this field.

This thesis’ main goal is to design and implement Internet Protocol (IP) video-camera
recording system to record and store mainly school lectures. I have been studying at two
universities, and both my faculties at Brno University of Technology (BUT) and Univer-
sity of Eastern Finland (UEF) were using streaming and/or recording systems in order to
improve their studies. The University of Eastern Finland used video-conference units to
connect two separated campuses, which were situated in two different towns. The Faculty
of Information Technology BUT used their equipment to acquire lecture recordings and
provide them to students who could not attend the lectures or wanted to revise parts of
the subject. That was priceless help especially when revising algorithms or mathematical
procedures, which are hard to be described by text.

The topic of multimedia streaming over computer networks covers many separated fields
of study. Especially knowledge of computer networks, multimedia processing and real-time
communication is essential. With that in mind, the theoretical part of this thesis brings to
mind how computer network works and acts, and most importantly how it can affect the
real-time communication quality. These issues are briefly discussed in the chapter 2.

The main topic of this thesis is streaming over computer networks. For such a purpose
many network protocols were invented. These protocols, such as the Real-time Transport
Protocol, the Real-time Transfer Streaming Protocol, or the Session Description Protocol,
are essential for the streaming. And therefore, the chapter 3 focuses on the real-time
streaming protocols, and extensively describes and explains its purpose, functionality and
how the whole system of protocols works.

Third important component of the streaming is the payload. The content of the stream
is the most important part for user, because that is what is delivered to him. From techno-
logical point of view, topics about media bit-rate are closely related to the network issues,
and therefore it should be discussed. The chapter 4 explains why even constant bit-rate
of encoded stream is not precisely constant, and how does the encoding and coding work.
It focuses on encoding and decoding process, especially buffers, their tasks, and impact on
the overall system performance.

The next three chapters cover the practical part of this thesis, the design and imple-
mentation of the recording system. As result of the implementation, a recording system
intended to record mainly school lectures from IP cameras will be created. This system
will run as a server application and based on a defined schedule it will record the streams
from cameras.

The chapter 5 starts with introduction to server applications, explaining how the server
applications act and behave, how to design a server application and what such a code has
to fulfil. All the necessary topics related to the analysis, such as database draft, use cases,
and system decomposition are explained in this chapter, leading to a necessary design of
the application.

After the chapter about analysis and design, the first part of the system, the server app-
lication, is explained. The chapter 6 expands the design with practical matters, explaining
what technologies and tools will be used, and describing implementation-related problems
and solutions for them.

The seventh chapter [7] then describes how the management application for the system
was created. There is explained what technologies were selected for the development, and
how does the final application work and interact with user.

All these chapters together with the conclusion [8], which discusses the results, should
very well describe the whole problematic around multimedia streaming and recording the
streams. The field of subject is very wide, so some related topics were not described com-
pletely as it was not necessary for this thesis.

» The best way to predict the future is
to invent it.“

— Alan Kay

Chapter 2

Networks and servers

Every video broadcast is delivered between at least two points. We can assume that one of
these points, a source point, is a camera and the second one, destination, is some consumer
- e.g. a user’s computer. Even if we have only two-point system, there always is medium,
that carries the data between these points. And that is computer network. Network is a
crucial part of the broadcast delivery and understanding the problematic is important part
of understanding whole world of multimedia broadcasts.

As our demands on the broadcast system increase, we might need to add some other
important elements to our system structure: recording devices, servers, balancers, caches,
etc.

International Organization for Standardization defines well-known The Open Systems
Interconnection model (OSI Model), which is a conceptual model that characterizes and
standardizes the internal functions of a computer network by partitioning it into abstraction
layers [6]. Every frame of audio or video we want to deliver or receive is affected by what
happens on all of these layers. To understand how we can deliver a video broadcast, we
must understand what happens with our multimedia data through these layers and how it
can affect the quality of final experience.

Moreover, above this application layer, there is another equally important part of the
delivery system, which is a video processing part. This segment is described further is
chapter 4, as it is not part of the network problematic. However, it is important to take it
into account, because it is an relevant part of the processing and delivering chain.

2.1 Media layers

Computer networks acts as a communication media in a video-delivery systems. The net-
work connects a source device to a destination consumer using cables, switches, routers, and
many protocols are used to provide communication. For multimedia delivery in real-time
quality of service (QoS) and network performance is important aspect. It defines limitations
and possibilities for such a delivery system.

A throughput, latency, packet delay variation, and bit error rate are the most important
parameters of a computer network. [7] Every parameter affects the transmission in different
way and for every issue there is a different compensation mechanism.

Throughput represents amount of successfully delivered data per period [8]. It is limi-
ted by capabilities of devices participating in network transmission such as client network

I MPEG || MPEGI || MPEG2 Motion
Applicat Z - s
ppreation || PEM | 261 |1 aAudio || Video || Video JPEG
yer
RTP RTCP
Transport
layer
UDP
Network P j
layer
Data link :
layer Underlying LAN or WAN -
technology
Physical
layer

Figure 2.1: Protocol stack for multimedia services

cards, switches, routers etc. Usually it is measured in bits per second (bps) or packets per
seconds (pps).

This parameter outlines how voluminous data stream can be delivered through the net-
work. Higher the bit-rate of the stream is, higher throughput we need to provide error free
delivery. An effort to transmit more data per time that the throughput is, leads to network
congestion.

Network congestion occurs when a link or node is carrying so many data that its
quality of service deteriorates. Simply explained, it is a moment when a link carries more
than the destination node can process. That leads to buffer overflow, queue delaying, packet
loss or blocking of new connections. [9] If packets are discarded, a retransmission of packet
may come, which leads to even greater congestion.

This situation is very critical and if we take into account the fact, that media streams are
usually high bit-rate transmissions, it can easily lead to network congestion. Therefore, the
RTP Control protocol (RTCP) was invented to provide feedback on the quality of service.
The RTCP is discussed later in chapter 3.2.

Delivering a single real-time audio/video over any modern network will not probably,
even closely, lead to network congestion. But consider a device delivering a stream to, for
example, one thousand viewers. If we are delivering a stream with bit-rate of 3 Mbps to
1000 viewers, that is a bit-rate of 3 Gpbs. And that is far behind capabilities of standard
modern network routers'. That is one of the reasons, why the multicast group communi-
cation was invented.

! Assuming that standard network switch throughput is at maximum 1 Gpbs.

AGGREGATION SPEED MISMATCH LAN to WAN

1000 Mbps 10 Mbps

&% &% &%

Figure 2.2: Three types of nodes that can cause problems with network congestion.

Multicast is a technique to deliver same data stream over an IP network to many
clients without need to send them more than once. Therefore, it is one-to-many or even
many-to-many group communication mechanism. It is widely used in multimedia streaming
and multipoint video-conferencing. Every node which wants to receive a multicast stream
sends so called join message which is processed by closest multicast node, e.g. switch. When
sender starts sending data to the multicast group, only one copy of data is sent and then
the switch provides duplication of packets and delivery to the joined nodes. That lowers
required throughput at specific points of network.

Multicast

95N

Unicast

===

7"
7309

Figure 2.3: Graphical explanation of reduction of bandwidth usage with multicast.

Latency is one of the important parameters of computer network. It describes how
long it takes to deliver data from source node to the destination node. This parameter is
highly important for bidirectional communication (in our case e.g. video-conference), or
time-critical deliveries (e.g. Network Time Protocol). For unidirectional communication,
such as multimedia stream delivery, it could be ignored or solved by some mechanisms'.
Usual unit used to measure latency is seconds, respectively milliseconds or microseconds.
The time delay between sending and receiving an information is caused by many factors.
Big part of latency is produced by software delays in stream processing, which are exten-
sively described in section 4.1, but even lower levels of OSI layer model produces latency
while processing every packet. These latencies are created by circuit latencies, processor

limits, queueing and other technical and electronic aspects.

'If we assume that latency is stable.

Packet delay variation, or sometimes commonly called jitter, is a parameter that de-
scribes a deviation of packet delivery from basic latency. The cause as well as consequences
are the same as mentioned earlier in the paragraphs describing latency. For example, delay
variation at hardware level can be caused by utilization of a switch; higher utilization leads
to higher buffers usage, which leads to increase packet delivery delay. This issue cannot be
easily ignored even in unidirectional communication, otherwise it would cause interruptions
in fluency of the data delivery. The solution is to introduce a receive buffer which is big
enough to cover the variation. Then the size of buffer (in meaning of time) must be added
on to the total latency of the whole network. Setting up a proper buffer can be a chal-
lenging task; too big buffer can lead to unnecessary total latency, too low buffer to stream
interruptions.

Bit error rate (BER) characterizes amount of bits corrupted during transfer. That is
caused by transmission channel noise, interference, distortion, bit synchronization problems,
attenuation, wireless multipath fading, etc. [10], and so it is a hardware problem which can
never be totally solved and it always has to be taken into account. Every packet sent over
IP network is signed by Cyclic Redundancy Check (CRC) which is used to detect accidental
changes during delivery. If packet is corrupted, it is discarded and therefore not delivered
to the destination. This problem can be handled on fourth level of ISO, by transport layer
mechanisms, by e.g. resending the packet. These procedures are rather discussed in next
subsection.

2.2 Host layers

Layers of OSI model numbered four to seven are called host layers. Every layer has its
own task including providing transmission mechanisms on transport level, maintaining the
communication session, decoding, processing, presenting the delivered data and so on.

Layer four is called transport layer and its main task is to provide mechanisms to trans-
fer data over network reliably. The most common protocols for this task are User Data
Protocol (UDP) and Transmission Control Protocol (TCP). Both of these protocols have
different key aspect of work.

Transmission Control Protocol is a protocol firstly formally defined in the RFC 675 [11]
in 1974. Its task is to reliably deliver data over computer network. That means delivering
every piece of data in right order regardless the time it takes. For this purpose, it carries
many mechanisms. The most important one, when talking about real-time data delivery,
is re-send mechanism.

When data are transmitted using TCP, sending site maintains a timer from when the
packet was sent. If the packet is not delivered, it is automatically retransmitted after timer
has elapsed. This grants the delivery, but one lost packet can lead to suspension of the
whole transfer for perceptible time - hundreds of milliseconds. [12] Even if the packet is
delivered, but corrupted, the retransmission takes two times round-trip time, which can be
unacceptable delay in real-time data transfer.

Last fact that has to be mentioned, is the possibility of network congestion caused my
TCP retransmission mechanism, as mentioned in chapter 2.1. If the packet is dropped on a
router because of buffer overflow or similar reason, retransmission of the packet can make

the situation even worse.

User Data Protocol is a protocol formally defined in year 1980 in the RFC 768. [13]
It uses minimal and connectionless mechanisms which makes the whole transaction very
simple. It sends individual messages, so-called datagrams. We cannot claim this protocol
to be reliable, because it does not provide any mechanism guaranteeing the datagram to
be delivered, as well as two datagrams being delivered in right order.

In comparison with TCP, it lacks the re-send mechanism, so the data is either delivered
on first try or lost. This might seem incorrect, but in real-time delivery, time is key aspect
and packet loss can be handled on higher level, e.g. The RTP protocol.

The UDP datagram does not carry any sequence number, so it is impossible to detect
packet loss or packet re-order.

In 2000 The IETF Signaling Transport working group defined Stream Control Trans-
missin Protocol, which has later, in 2007, been standardized in the the RFC 4960. [14]
This protocol should provide extended mechanisms especially for multimedia and stream
data deliveries like paralel independent delivery streams, multihoming, path selection, etc.
As of 2015, the protocol is not widely supported. Both Microsoft and Apple lack any
support, which makes it rather impractical to deliver media streams. [15]

Chapter 3

Real-time streaming protocols

The main task of the real-time protocols is to transfer certain data streams. These data
streams has to be related to some time-line, which describes its flow in time. The streams
are split into blocks, which are packed into packets and sent over IP network. There has to
be a timestamp attributable to every block of data.

The packets can be delivered over standard IP network using standard transport pro-
tocols such as UDP, as mentioned in the previous chapter, but some additional attributes
must be carried in every packet, to ensure our purpose. One of the very basic information
that has to be described, is what kind of data is transmitted, specification of payload, es-
pecially codec, bitrate, number of channels, resolution etc. Next, when a block of data in
received, it is necessary to identify, where does the block fit to, talking about temporal-
ity. For such a purpose, every packet has to be equipped with a timestamp identifying its
sampling instant.

Also mechanisms to synchronize two or more data streams mutually (e.g. video and
audio stream from the same multimedia broadcast), to report quality of service are needed.
Most importantly, a protocol by which we can apply for stream delivery, which can describe
what data streams can be transmitted. Because such a functionality is rather complex, it has
been split into many separated protocols and RFCs. For data transmission, there is the RTP
(Real-time Transport Protocol), which also carries timestamps, payload description and
other related information to describe every block of data correctly. The RTCP (Real-time
Transport Control Protocol) provides fucntionality to report quality of service, synchronize
two or more streams. For establishing and controlling media session purposes, RTSP (Real-
time Streaming Protocol), and SIP (Session Initiation Protocol), which are both text-based
protocols similar to HTTP (Hypertext Transfer Protocol), were invented.

In case we are transmitting a medium, which carries more than one track (e.g. video
and audio), then every track represents different data stream, and these tracks are sent
separately. When a client is receiving audio-video file with two tracks using the RTP /the
RTCP, two separated sessions will be created with the RTP and the RTCP communication
for each one. That means it will establish four separated connections. This allows the client
to receive only the streams, it really needs for playback.

IP Header UDP Header RTP Header Payload
(20 bytes) (8 bytes) (min. 12 bytes) (variable)

Table 3.1: Structure of the VoIP packet (as in IPv4)

3.1 RTP (Real-time Transport Protocol)

The Real-time Transport Protocol (the RTP) is a network protocol for delivering audio and
video over IP networks. The RTP is used extensively in communication and entertainment
systems that involve streaming media, such as telephony, video teleconference applications,
television services and web-based push-to-talk features. [16]

It was firstly published in 1996 as the RFC 1889 [17] and later replaced by the RFC 3550 [18§]
in 2003. The protocol became de-facto standard for local network based real-time end-
to-end video and audio streaming as it is nowadays supported or used by most of the
multimedia based devices.

Because the RTP is usually carried by the UDP, it has to provide some additional
mechanisms ensuring packet order, packet loss detection, and a way to correctly detect
which packet fits what frame of delivered stream. And therefore, the RTP carries two
main synchronization mechanisms - packet synchronization (sequence number) and stream
synchronization (timestamp, SSRC, CSRC identifiers).

01234567 8 90123456789 012345678901

VvV |P C CC M PT Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers
(list 0 to 15 items; 4 bytes each)

Table 3.2: Structure of the RTP header, according to the RFC 3550

The packet synchronization is done in very similar way as in TCP. Packet header holds
16-bit sequence number which is incremented by one for each the RTP data packet sent,
and it may be used to detect packet loss [18]. The RFC 3550 does not describe any action
in case of packet loss and it is left to the higher level of data processing to resolve such
a situation. A loss of one packet, in for example audio stream, can lead to imperceptible
lag of a fraction of second, which can be made unnoticeable to user with suitable error
concealment algorithms. The start number should be random to make plaintext attacks on
encryption more difficult.

The task of the RTP is to carry a single media stream through IP network. For such
a purpose, we must split the media stream into packets and send them over network. Size
of single IP packet depends on network configuration', so depending on size of the packet
and kind of media, which is transmitted, one packet can carry more than one frame or only
part of the frame.? Because one packet very often does not carry one whole frame, the RTP
provides additional synchronization mechanism to define what data fits what frame. For
such a purpose, every packet carries timestamp.

Timestamp is a 32-bit number, which describes the sampling instant of the first frame in
the RTP data packet®. The sampling instant must be derived from a clock that increments

IMTU, jumbo packets

2What affects the size of a frame is described in section 4.2

3In case there is more than one frame in data packet, the timestamp describes the first one, and therefore
the oldest one. The sampling instant of the other ones can be calculated.

10

monotonically and linearly in time to allow synchronization and jitter calculations. [18] The
clock rate varies depending on payload type, e.g. 8000 Hz, 44100 Hz, 90000 Hz etc. The
initial value should be random, as for the sequence number.

Several consecutive data packets will have equal timestamps if they are (logically) ge-
nerated at once, e.g. belong to one video frame. [18]

As mentioned earlier, every media stream is carried by separated the RTP connection.
The RTP timestamp from different media streams usually advance at different rates as well
as they have different (random) offset. Therefore, although these timestamps are sufficient
to reconstruct the timing of a single stream, directly comparing the RTP timestamps from
different media is not effective for synchronization. For such a purpose, the RTCP contains
synchronization between the RTP timestamp and so-called wallclock. Wallclock represents
real time, usually provided by NTP (Network Time Protocol). This synchronization me-
chanism is described in chapter 3.2.

The RTP packet header also carries synchronization source identifier, which identifies
source of a stream. It is a random 32-bit number which should be globally unique within
an the RTP session [18]. This number is called SSRC Identifier and it is also used in the
RTCP protocol to refer the RTP stream.

3.2 RTCP (Real-time Transport Control Protocol)

The Real-time Transport Control Protocol is a sister of the RTP. Its basic functionality and
packet structure is described together with the RTP in the RFC 3550 [18]. Other RFCs
then extend this protocol and describes other functionalities.

the RTCP provides out-of-band statistics and control information for an the RTP ses-
sion. It partners with the RTP in the delivery and packaging of multimedia data, but does
not transport any media data itself. The primary function of the RTCP is to provide feed-
back on the quality of service (QoS) in media distribution by periodically sending statistics
information to participants in a streaming multimedia session. [19] The bandwidth usage
is generally much lower, and it should not exceed 5%! [19] of total session bandwidth.

The RTCP is usually carried over the UDP. The speed of delivery is not that crucial as
of the RTP, but since the RTCP includes information about RTCP packet loss (last SR),
a packet loss can be compensated. Typically, for the RTP data stream an even-numbered
UDP port will be used, and for the RTCP communication will be establish on the next
higher odd-numbered port. [20]

The main task of the RTCP is to deliver regular reports of quality of service between
sender and receivers. Two basic kinds of reports are distinguished: senders report (SR)
and receivers report (RR). Both these reports carries different information and so they
have slightly different packet structure. The basic idea behind the packet structure is the
same - the RTCP packet carries the RTCP header, which contains SSRC of the packet
sender, then sender info (only in case of SR), followed by zero or more reception report
blocks, one for each of the synchronization source.

Every statistical information in the report is valid at one precise moment described by
timestamp, that is part of the report.

The sender report consists of sender info and reception report blocks. The sender info

!The RTCP packets are sent regularly and its frequency does not depend on the RTP bandwidth.
Number 5% is used only too illustrate the difference.

11

01 234567890123456789012345678901

V=2|P RC PT=SR=200 Length

header

SSRC of sender

SSRC #1 (SSRC of first source)
NTP timestamp, most significant word
- — sender
NTP timestamp, least significant word info
RTP timestamp
sender’s packet count
sender’s octet count
SSRC #1 (SSRC of first source)
fraction lost cumulative number of packets lost
extended highest sequence number received report
block
interarrival jitter 1
last SR (LSR)
delay since last SR (DLSR)
SSRC #2 (SSRC of second source) report
block
2
profile-specific extensions

Table 3.3: Sender Report RTCP packet

contains 64-bit NTP timestamp, the RTP timestamp, sender’s packet count and sender’s
octet count. NTP timestamp indicates the wallclock time, which, in combination with
timestamps returned in reception reports, can be used to measure round-trip propagation.
The RTP timestamp holds 32-bit number, which represents timestamp of the stream at
the same time as NTP timestamp defines. These two timestamps can be used together
to calculate intra- and inter-media synchronization. [18] Sender’s packet count and octet
count represents number of packets and octets (bytes) sent by sender.

Reception report blocks consists of source identifier (identifying source to which the in-
formation in this reception report block pertains), fraction lost (the fraction of the RTP data
packets from such as source lost since previous SR or RR), cumulative number of packet
lost (the total number of the RTP data packets lost since the beginning), interarrival jitter
(an estimate of the statistical variance of the RTP data packet interarrival time, measured
in timestamp units and expressed as an unsigned integer), and other statistical information.

The receiver report consists only of header and reception report blocks. The meaning

of each statistical information stays the same as for sender report. Last SR timestamp
reports and delay since last SR informs when the last sender report was received.

12

01 234567890123456789012345678901

V=2|P RC PT=RR=201 Length
header
SSRC of packet ender
SSRC #1 (SSRC of first source)
fraction lost cumulative number of packets lost
extended highest sequence number received report
block
interarrival jitter 1
last SR (LSR)
delay since last SR (DLSR)
SSRC #2 (SSRC of second source) report
block
2
profile-specific extensions

Table 3.4: Receiver Report RTCP packet

13

3.3 RTSP (Real-time Transfer Streaming Protocol)

The Real-time transfer streaming protocol, defined in the RFC 2326 [21], is a session initia-
lization and controlling protocol. Its design is similar to HT'TP protocol; but in comparison
with stateless HTTP, RTSP has a mechanism to provide state - a session identifier. The
default transport layer for the RTSP is both TCP and UDP. Usually, TCP is preferred,
and as opposed to HTTP, implementations, where whole communication is performed in
one TCP session, can be found.

In the RTSP, every stream is identified by an URL'. Two schemes rtsp, and rtspu are
reserved. The rtsp requires that commands are issued via a reliable protocol (TCP), and
the rtspu refers to an unreliable protocol (UDP). [21] Default port is 554 [21], alternatively
occasionally 8554 is used. [22]

As another difference from HT'TP, not only client is able to initialize the communication,
but even server can send commands to client? For RTSP, every message is acknowledged
in HTTP style, e.g. with 200 OK for success, or 402 Payment Required for some kind of
client problem, or even 500 Internal Server Error in case of server problem [21].

client server
RTSP RTSP
random port port 554

(1) OPTIONS
200 OK (2)

L wok

RTSP/1.0 200 OK
DESCRIBE, SETUP, TEARDOWN, PLAY,
PAUSE, GET_PARAMETER

3) DESCRIBE

200 OK (4)

PR L S

RTSP/1.0 200 OK
Content-Type: application/sdp

m=audio 0 RTP/AVP 14
b=AS:128

b=RR:0

a=rtpmap:14 MPA /90000/2
a=control:rtsp://. .. /trackID=0
m=video 0 RTP/AVP 96
b=RR:0

a=rtpmap:96 H264,/90000
a=control:rtsp://. .. /trackID=1

Figure 3.1: RTSP: OPTIONS and DESCRIBE request together with responses.

(The SDP response carries two streams; complete URL addresses were truncated.)

The RTSP controls the session using commands, e.g. SETUP, PLAY, PAUSE, TEAR-
DOWN etc. The list of commands supported by server can the client acquire by sending
request OPTIONS to a server. This is usually the first message sent in RT'SP communica-

Ye.g. rtsp://media.example.com:554 /twister/audiotrack
20PTIONS, GET_-PARAMETER, ANNOUNCE, REDIRECT. [21]

14

tion and the RFC describes, that it should be used.

The initialization of communication between a client and a server is shown on figure 3.1
including real, but simplified responses. For demonstration purposes, a communication
between VideoLAN VLC player in role of both server and client was captured and illustrated
in figures 3.1 to 3.4 showing the whole RTSP communication also with RTP and RTCP
messages included.

(5) SETUP trackID=(

SETUP rtsp://... /trackID=0 RTSP/1.0
Transport: RTP/AVP; unicast;
client_port=55036-55037

200 OK (6)

RTSP/1.0 200 OK

Transport: RTP/AVP/UDP; unicast;
client_port=>55036-55037; server_port=56423-
56424; ssrc=6A781E79; mode=play
Session: b25d93def7d4d3aa; timeout=60

(7) SETUP trackID=1

SETUP rtsp://... /trackID=1 RTSP/1.0
Transport: RTP/AVP; unicast;
client_port=47286-47287

Session: b25d93def7d4d3aa

200 OK (8)

PR L S

RTSP/1.0 200 OK

Transport: RTP/AVP/UDP; unicast;
client_port=47286-47287; server_port=56424-
56425; ssrc=77E2B192; mode=play
Session: b25d93def7d4d3aa; timeout=60

Figure 3.2: RTSP: Two SETUP requests together with responses.

After receiving the list of commands server supports, DESCRIBE together with URL
is asked. As response, the description of a presentation or media object identified by the
request URL is returned. For this purpose, the Session Description Protocol is typically
used. The server has to describe all media initialization information.

An example of RTSP DESCRIBE response is shown on figure. 3.1 Here, two media
streams (tracks) are described. The first one is audio payload type 14 (MPA with RTP
clock 90000) with bit-rate 128 kbps, identified by trackID=0. The second one, identified
by trackID=1, is a video stream with payload type 96 (dynamic payload, H.264 with clock
90000). More details about the SDP can be found in chapter. 3.4

Upon receiving a list of available media streams, the client can start requesting the
streams. That is done by calling SETUP to server, separately for every stream (track) that
the client wants to receive (figure 3.2 (5&7)). As part of the negotiation, client issues trans-
port method, broadcast method, destination ports. The range of ports in fact represents
couple of RTP and RTCP ports, lower and even for RTP, higher and odd for RTCP. A
client can issue a SETUP request for a stream that is already playing to change transport
parameters.

15

client server

RTCP RTP RTSP RTSP RTP RTCP
55037 55036 random port port 554 56424 56425
(9) PLAY

— v

PLAY rtsp://.../ RTSP/1.0
Session: b25d93def7d4d3aa
Range: npt=0.000-

200 OK (10)

o wok

RTSP/1.0 200 OK

RTP-Info: url=rtsp://.../trackID=0;
seq=61493; rtptime=2220833844,
url=rtsp://. .. /trackID=1; seq=24939; rtp-
time=2220833844

Range: npt=259.444522-

Session: b25d93def7d4d3aa;timeout=60

RFC 2250 MPEG-I

l«—
RFC 2250 MPEG-I

l«—
RFC 2250 MPEG-I

l—
RFC 2250 MPEG-1

l—
RFC 2250 MPEG-I

l«—

RTCP

RFC 2250 MPEG-I

l«—
RFC 2250 MPEG-I

l«—
RFC 2250 MPEG-I

l—

Figure 3.3: RTSP request PLAY with response and start of transmission of RTP and RTCP

packets.
(The RTP connection is established just after RT'SP packet number 10.)

As response (figure 3.2 (6)), the server confirms transport method, broadcast method,
cliend destination ports, and informs client about server source ports and SSRC of RTP
stream. Most importantly, the server issues a new unique session identifier for the client.
Starting from response (6), the communication is turned into stateful communication by
attaching the session identifier to every request, and response.

When all the tracks are ready, a PLAY request can be sent. The session identifier,
attached to the request, clearly identifies the client, and therefore the tracks, which were
set up. A timestamp describing a start point as well as end point for the stream broadcast
can be attached. Just after receiving the request, the server will start delivering the tracks
via RTP on previously agreed ports.

For two streams issued by RTSP, together 5 ports has to be used for both client and

16

RFC 2250 MPEG-I

RFC 2250 MPEG-1
e]

RFC 2250 MPEG-I

1

RFC 2250 MPEG-I

1

() TEARDOWN

TEARDOWN rtsp://.../ RTSP/1.0
Session: b25d93def7d4d3aa
Range: npt=0.000-

200 OK (12)

ok

Figure 3.4: Termination of RTP/RTCP transmission by RT'SP command TEARDOWN.

server. One for RTSP, two for RTCP and RTP for every stream. Even though the com-
munication is always started by client, the RTP broadcast is established in direction from
server to client. This is very unpleasant situation in case when the client is behind fire-
wall or Network Address Translation (NAT). In such a case the RTP connection cannot be
established.

On figure 3.3 an example of PLAY request together with RTP and RTCP traffic is
outlined. Due to simplicity, only on RTP, and RTCP stream are shown.

The last important command to demonstrate simple RTSP session is TEARDOWN
request. After this request, all stream broadcasts related to this session are terminated and
the RTSP communication itself is closed.

3.4 SDP (Session Description Protocol)

The Session Description Protocols is a standardized protocol described mainly in the
RFC 4566 [23], and its main and only task is to, as the name suggests, describe sessions.
It is commonly used to describe multimedia in RTSP session, but it is meant to be generic.

The content is text-base dictionary of keys and values. For every line in the content,
there is a key and a value in format key = value. The key, so-called type, is a case-significant
character. The Session Description Protocol carries multiple information as shows table 3.5.
For every SDP, there is one or more time descriptions, and zero or more media descriptions.

The Session Description Protocol is used when describing the media during DESCRIBE
method of RTSP communication. It is crutial to identify what tracks are available for broad-
cast, and kind of media do these tracks carry. The media description informs about payload
type (m=audio 0 RTP/AVP 14, where 14 means MPEG Audio), media bitrate (b=A5:128),
information about clock rate (a=rtpmap:14 MPA/90000/2, where 90000 represents clock
rate of 90 kHz) prior to the stream receiving (see table 3.5).

The RTP can carry many payload types, but only few have their own payload num-
ber [24]. The number represents encoding name, media type, clock rate and number of

17

channels. For example payload number 14 represents audio encoded with MPA (MPEG
Audio), with clock rate 90000 Hz. Numbers 96 to 127 are dynamic profiles. These profiles
do not have any specific information about the media carried, so if RTP with payload type
96 is received, it is almost impossible to resolve, what is inside the packets. Because of that
SDP is crucial, because it is the only source which can provide information about media
content of the stream.

t Example value Description
v= | protocol version 0

o= | originator and session identifier

s= session name Unnamed
i=* | session information N/A

u="* | URI of description

e=* | email address
p=* | phone number
c= connection information IN IP4 0.0.0.0

b=* | bandwidth information lines

(one or more time descriptions)

t= time the session is active 00

zero or more repeat times

time zone adjustments

k=* | encryption key

session attribute lines

(zero or more media descriptions)
m= | media name and transport address | audio 0 RTP/AVP 14

i=* | media title

c=* | connection information

b="* | bandwidth information lines AS:128

b=* RR:0

k=* | encryption key

a="* | media attribute lines rtpmap:14 MPA /90000/2

a=* control:rtsp://192.168.19.1/test01 /trackID=0

m= | media name and transport address | audio 0 RTP/AVP 32

i=* | media title

c= connection information

b=* | RR:0

k=* | encryption key

a=* | media attribute lines rtpmap:32 MPA /90000

a="* control:rtsp://192.168.19.1 /test01 /trackID=1

Table 3.5: An example of Session Description Protocol structure.
(Types marked with * are optional. If example value is empty, it was not even sent as part of the SDP.)

18

Chapter 4

Encoding, compression, and codecs

A codec is a computer program, whose task is to transform a media signal (e.g. a signal
from video camera) to a binary code. For such a purpose, it defines an encoder, and a
decoder. The task of encoder is to code the media signal to a binary code, while task of
the decoder is reverse.

There is a big variety of codecs [25] and every codec has different main goal as well as
advantages and disadvantages. This chapter discusses the most important aspects of audio
and video codecs related to real time streaming and explains the impact of such properties
on the whole streaming chain.

The source data for codec is an uncompressed stream. This stream has always constant
bit-rate, which is defined by sampling period or resolution. Tables 4.1 and 4.2 outline
bit-rates for different uncompressed video and audio streams. Such a high bit-rates can be
unacceptable for transmission over network, so the data are compressed using a selected
compression algorithm.

Resolution 30 FPS, 8b 60 FPS, 10b 120 FPS, 16b
HD (1920x1080) 1.5 Gbps 3.7 Gbps 12.0 Gbps
4K (8840x2160) 6.0 Gbps 15.0 Gbps 48.0 Gbps
8K (7680%4320) 24.0 Gbps 60.0 Gbps 191.0 Gbps

Table 4.1: Bit-rate of uncompressed video
(with different resolution, frame-rate and colour depth [26])

Signal 16 b 24 b 32b
mono, 8000 Hz 128 kbps 192 kbps 256 kbps
stereo, 44,1 kHz 1411 kbps 2117 kbps 2822 kbps

5.1 channel, 192 kHz 18.4 Mbps 1411 kbps 36.9 Mbps

Table 4.2: Bit-rate of uncompressed audio
(with different sample rate, bit depth and number of channels)

19

4.1 Multimedia compression

A compression is a process, which can be part of the codec encoder, which, using a
special algorithm, encodes the information with fewer bits than the original representation
is. [27]. Compressing can be lossy, which means that the quality of original information
is degraded, or lossless. In case of lossless compression, the reduction of size is done by
identifying statistical redundancies and eliminating them.

Compression of data is not a trivial process and the time needed to compress a block of
data is perceptible. ITU G.114 explains that, in case of audio signal, if the latency ,,mouth-
to-ear“ is kept below 150 ms, most of the users would not be significantly affected. [28]
Moreover, Sven Ubik and collective adds, that for some special purposes even lower latency
can be required. They state that the limit for live music cooperation is 35 ms. [29] In
some special cases, like unmanned aerial vehicle video transmission, very low latency can
be required. That is a reason why a lot of attention is paid to the process and why in the
real-time media broadcast, both compressed and uncompressed data are used.

As an example, let us pick an H.264 codec, which is commonly used codec for real-time
streams. As Schreier and Rothermel [30] state as well as Cast, Inc. [31] explains, the latency
of H.264 codec can vary from fractions of T f.qme to units of Ttrgme. T frame represents
multiples of frame periods and for example the value for 30 FPS video is 33.3 ms, and for
60 FPS, it is 16.6 ms. The total delay of the processing (algorithmic encoder latency
as called in figure 4.1) can go up to 200 ms, for example when frame-based processing
together with two pass encoding is used. That is far from being acceptable for real-time
communication, especially bidirectional.

|]]
Encoder i i1 Decoder
1 1
1 1
Block Frame- Encoder | 1| Encoder Decoder |1 Decoder Block
Caputre | >|Reordering| >|Processing ':" Buffer [7] Network ¥ Buffer ':" Procelssing ! output
cap reorder D proc H D, buff D, Dy H D proc D,
1 1]
: = = ;
ideo 1 1 .
Source H H Display
1 1
. . 1 . . 1 . .
Algorithmic Encoder Latency >:< Transmission Latency >: Algorithmic Decoder Latency
|]]

Figure 4.1: Compression video transmission system delay sources [30]

For real-time streaming purposes, one pass or even special variants of codecs are used
to minimize the compressing algorithm latency. For example for audio codec AAC (Ad-
vanced Audio Coded) a low delay variant, called AAC-LD, was derived [32]. To achieve
higher frame-rates, quality and lower latencies, different hardware accelerated codecs, such
as FPGA/ASIC units [29] or GPU acceleration [26], are being developed.

The most perceptible latency arises in the encoder and decoder buffers. As men-
tioned earlier in the previous section about codecs 4.2, even constant bit-rate streams does
not carry all the frames with exactly the same size. As a consequence of that, the de-
coder buffer has to balance the incoming packets/frames. The amount of buffering required
depends on the bit-rate and the averaging period of the stream. To make sure the de-

20

coder does not run out of data during playback, the decoder buffer must store all the data
corresponding to one complete averaging period. [31]

The encoder buffer is introduced with similar purpose; it buffers frames or part of
the frame during the compression. Depending on compressing methods (e.g. Intra Co-
ding, IP Coding, Frame-CBR Intra Refresh Coding) the size can vary around 0.2 to 0.5
T trame. Different situation is when IPB mode is used. Because B-frames are predicted
from both previous and forward frames, the buffer has to store more frames for the calcu-
lations (2 frames for IBP-mode, 3 frames for IBBP-mode). This method is definitely not
suitable for time critical encoding.

By using these optimization techniques, latencies around 20 ms for 30 FPS video and
10 ms for 60 FPS video can be reached.

Another solution, how to decrease latency of signal processing, is actually not processing
it. The RFC 4175 [33] describes how an uncompressed video can be delivered using
the RTP. The obvious advantage is the omission of the whole compression process, and
that means saving time. Most importantly, raw uncompressed media stream will have
truly constant bit-rate, and therefore the buffers can be nearly omitted as well. This way,
latencies around 3 ms can be achieved using special hardware units. [29]

The down-side of this approach are certainly the bandwidth requirements. As the ta-
bles 4.1 and 4.1 show, the bit-rates of standard uncompressed media are high. Despite this
fact, this approach can be used in local networks and even for international broadcasts. As
Sven Ubik presented in May 2015 at the CESNET conference, they established a connection
between Prague and London using uncompressed 4K video and audio with latency lower
than 35 ms. [34][29]

All above described problems are important mainly in bidirectional communication. In
case of unidirectional communication, most of the problems can be covered by using proper
balancing buffers.

4.2 Variable vs. Constant Bit-Rate

A compression algorithm produces new data stream with different bit-rate based on input
parameters. The streams can vary in the meaning of bit-rate variability. Either the bit-rate
is constant within fixed amount of time, or the bit-rate varies from minimum to maximum
depending on the media content of the stream and compression algorithm. Sending frames
with variable data size over computer network has multiple issues discussed in this section.

Usually, the new stream is coded with variable bit-rate (VBR)!. The advantages of
VBR are that it produces a better quality-to-space ratio compared to a constant bit-rate
file of the same data. The bits available are used more flexibly to encode the sound or video
data more accurately, with fewer bits used in less demanding passages and more bits used
in difficult-to-encode passages.

The disadvantages are that the encoding may take more time, as the process is more
complex, and that some hardware might not be compatible with VBR files. Variable bit-
rate may also pose problems during streaming when the instantaneous bit-rate exceeds the

VBR is available in Opus, Vorbis, MP3, WMA, AAC, MPEG-2 video, MPEG-4 Part 2 video, H.264
video, and many others

21

data rate of the communication path. [35]

The figure 4.2 shows a 1400 frames long cut of a movie. The part from frame 0 to 480
is ordinarily dynamic movie scene, then a dark cut (frames 450 - 480) is noticeable. From
frame 480 a motion scene with a lot of visual changes between frames starts and continuous
until frame 970. In this part, the bit-rate increases rapidly, which is clearly visible on the
plot.

120000
100000
2 80000 ‘
4
< |
£ 60000 L
[}
[}
2 I
£ 40000 ‘
20000 | — ‘ ||
; W] L
0 200 400 600 800 1000 1200 1400

Frame number

Figure 4.2: Variable bit-rate encoded file

(I-frames coloured red, P-frames blue, B-frames green.)

Constant bit-rate (CBR) is the second method how to compress data. As the name
states, the target bit-rate is constant. This is rather misinterpretation, because in the
real world, even this method has some obstacles. [31] Firstly, most coding schemes, such
as Huffman coding or run-length encoding, produce variable-length codes, making perfect
CBR difficult to achieve. [36] Without using such a coding, it is hard to achieve a great
compression ratio.

Secondly, the CBR is calculated always within fixed number of packets or seconds. [31]
Modern compress algorithms use I-frames, P-frames and B-frames. As figure 4.3 shows, the
data size difference between I-frame, and P-frame as well as B-frame is enormous. That
causes that transferring a I-frame over computer network takes more time, than delivering
much smaller B-frame. And therefore the bit-rate is locally inconstant, which means that
receiver buffers must be used as well.

22

Frame size (bytes)

Frame size (bytes)

Frame size (bytes)

60000

50000

40000

30000

20000

10000 r

600

70000

610 620 630
Frame number

Figure 4.3: Difference in size between I-, P-, and B-frames

(I-frames coloured red, P-frames blue, B-frames green.)

650

660

60000

50000

40000

30000

20000

10000

y

1000

200 400 600 800

Frame number

1000

(a) Converted as CBR 1 Mbps with 1000 kB buffer

1200

1400

900

800

700

600
500

400

300
200
100

dho “

200 400 600 800

Frame number

1000

(b) Converted as CBR 1 Mbps with 5 kB buffer

1200

Figure 4.4: The same stream as on figure 4.2 converted using avconv
(Pay attention to the y-axis scale.)

23

1400

Chapter 5

Analysis and design

Server applications are subset of standard applications with some additional principles.
One of the key aspects of server applications is that they usually do not interact with users
directly, using graphical user interface and the like. Usually they are based on client-server
architecture, and for interaction with users and other systems, network communication is
used.

Server applications act as services — they are controlled by start/stop requests and
upon start they persistently run in background and serve requests. These requests typically
represent task and are identified by some unique name, e.g. PHP scripts identified by URI
in case of web-server. These tasks are launched according to the requests.

Typical feature of server applications is that they can serve more or many concurrent
request and provide multi-user environment. They usually do not provide a control panel
itself, so the administration is done using configuration files or separate graphical user
interface. To provide ability to observe and examine the application behaviour, log files are
typically provided. The log files provide extended summary of all actions taken with time
relevant information, all error messages, and other information.

Server application has to be stable and error free program with one important feature:
It has to be able to solve every error state, that can appear, itself. That means without
asking user what action to take, e.g. by error message popup, and most possibly without
shut-downing the whole service.

The application described in this thesis is meant to be a server application, so, with
that in mind, it will be designed and developed. On figure 5.1 the very basic idea of how
the application works is shown.

SERVER APPLICATION SOURCE

USER INTERFACE

T

stream media

record & store

Figure 5.1: The basic idea of the recording system structure

The server application will be able to run as a service as a part of an operating system.

24

For this purpose it will be started using command start and it will provide a way how to
stop it using command stop. This behaviour is common in Unix-based systems as well as
in all Microsoft Windows operating systems. Further more, it can provide shell commands
to check the status of the service, and, if needed, restart it. Some services provide configu-
ration check during start-up, which is a great feature.

The application will run independently and perform tasks. These tasks will be defined
as scheduled items. The items will tell what to record, when to start it, and when to finish
the recording, as well as where to store it, and other relevant attributes needed to perform
the task. The tasks will be stored in suitable storage, e.g. database or similar. More details
about recording tasks can be found in next section [5.1].

For communication as well as input/output operations standard network communi-
cation will be used. The server application will receive multimedia streams from source
cameras using standard protocols such as RTSP [3.3], RTP [3.1], RTCP [3.2]. Concur-
rency has to be provided, the application has to be able to execute more than one task at
the time, which means to record two or more streams.

The management of the recording tasks and the application will be done using a
graphical user interface, which will interact with the application using network protocols.
The interface will provide suitable environment for user to perform administration tasks,
as enumerated in section 5.2.

Moreover, the application will provide logging and will be able to solve every error state,
especially network communication defects and problems.

5.1 Entity-based model

The state of the system and all data are stored in a database. These state and data are
represented by entities. List of entities used in the system is shown in table 5.1. The whole
system is entity-based, which means that every action is connected an entity. For example
a start of recording is connected to entity recording.

RECORDING A server which is able to a record stream. This server represent
SERVER one instance of running server application.

hostname [PK] Unique hostname of the server.

title User-friendly title.

address Network-valid address used for communication.
STREAMER A source of media stream, which can be recorded.

id [PK] Unique id of the streamer.

title User-friendly title.

uri Valid wuri including scheme allowing of the stream

(e.g. rtsp://10.2.0.52/media/video01).

Continued on next page

25

Table 5.1 — Continued from previous page

EVENT One category for recordings, e.g. a school subject, room, or
time event, and so on.
id [PK] Unique id of the recording.
title User-friendly title.
folder Destination folder where recording files will be stored.
startDate Time boundary for recording. No recording will start sooner.
endDate Time boundary for recording. No recording will stop later.
isEnabled Enabled/disabled flag.
RECORDING One item in the schedule. A recording is a task, that the server
application executes.
id [PK] Unique id of the recording.
eventld [FK] Foreign key to EVENT.
streamerld [FK] Foreign key to STREAMER.
serverHostname [FK] Foreign key to SERVER.
title User-friendly title.
folder Destination folder where recording files will be stored.
startDate Moment, when the recording will start.
endDate Moment, when the recording will stop.
isEnabled Enabled/disabled flag.
status Enumeration describing status of the recording (e.g. ok,
warning, error).

RECORDED FILE Represents result of recording, a multimedia file stored in stor-

age.
id [PK] Unique id of the file.
recordingld [FK] Id of the recording the file is related to.
relativeFilename | Filename of the file withing the recording folder.
fileType Enumeration describing type of the file (e.g. video, audio,
log file).
title User-friendly title.
description Additional description of the file.
isPublished Expresses wherever the file is accessible by users.

Table 5.1: List of entities present in the system

26

5.2 Use cases

Defining what the application has to be able to do and what kind of request it has to be
able to respond on, is crucial for the design. These actions or requests are defined by use
cases and represent users’ needs.

Use cases can be written in many ways, e.g. Cockburn style or using UML diagrams and
so on. For our purpose, only simple table with list of actions, actors and descriptions will
be sufficient to give enough data to start the design of the application. The table contains
very basic use cases connected to the administration of the server. The actions are always
related to an entity (see [5.1]). For readability reasons, the actions are aggregated in groups
with the similar relationship to the entity and same actor.

These use cases describe actions how user or administrator can interact with man-
agement (only for the administrator role) or with file browser (the user role). Note that
administrator role can be in fact an extension of role user. The actions such as install server
or configure server are omitted, because they are not related to normal operation of the

system.

Entity: RECORDING SERVER

Actions: ADD, EDIT, DELETE

Actor: Administrator

Description: | In case when the administration run separately from recording server
application, the administrator must have a possibility to connect to a
selected server and manage it. That is done by adding the server into
list of managed recording servers.

Entity: STREAMER (Recording source)

Actions: ADD, EDIT, DELETE

Actor: Administrator

Description: | Administrator can add a new recording source, e.g. an IP camera or
other RTP relevant source, to the system. The ability to edit and delete
such a record had to be provided.

Entity: EVENT

Actions: CREATE, EDIT, DELETE, ENABLE/DISABLE

Actor: Administrator

Description: | Creating new event described by start and end date, folder to store data,
and title. Ability to edit, delete and disable/enable the event. Disabling
the event will cause disabling all its recordings.

27

Entity: RECORDING

Actions: CREATE, EDIT, DELETE, ENABLE/DISABLE

Actor: Administrator

Description: | Creating new scheduled recording request defined by start and end date,
source streamer, destination server. The server will start recording the
source at the start date and will continue until the moment described
as end date. Every recording belongs to an event.

Entity: RECORDING SERVER

Actions: MONITOR STATUS, VIEW LOGS

Actor: Administrator

Description: | Giving the administrator ability to monitor server’s status, see the CPU
load of the recordings, used storage space, and view recording logs.

Entity: RECORDED FILES

Actions: DELETE, DESCRIBE, PUBLISH

Actor: Administrator

Description: | After a recording, administrator must be able to delete, describe and
publish recordings. Action describe means that some additional infor-
mation can be attached to the recording; action publish means that the
recording will be released for user’s (public) use.

Entity: RECORDED FILES

Actions: VIEW

Actor: User

Description: | Giving the user a possibility to view recorded and published files.

Table 5.2: List of basic use cases in the management system

28

5.3 The application design

In the previous three sections, the basic design was described. Three separated parts were
discussed: the logic of the server applications, the entities in the system, and the user use
cases. This analysis leads to detailed scheme of the system:

USER INTERFACE SERVER APPLICATION MULTIPLE SOURCES

Hé Gorsts

stream media

scheduler & recordboxes

broadcast & view
P — | STORAGE

l" =
database & filesystem

Figure 5.2: The advanced idea of the recording system structure

The figure 5.2 is virtually extension of the scheme shown on the figure 5.1. As mentioned
earlier, the application requires file storage and database to store data. So, a new block
representing the storage was added to the scheme. The database is required for every part
of the system, whilst the file storage is more private. The database is used to store entities.
As shared storage for all the components of the system, it is highly utilized.

On the other hand, the file storage is used to store video recordings and other files.
Every server has its own storage, which is not shared between the servers. Only one server
at the time writes to its own file storage, so no concurrency issues can appear. The data
should be stored securely! and accessed only via services, that can provide authorization
and authentication, e.g. well-secured static content web server.

Nothing new was introduced about the user interface. The management, as it can be
called as well, will be an application providing summaries, forms and like to administrate
the system. Analysis of its parts and implementation were left for separate chapter [7].

From what we can say now, the server application will consist of two the most important
parts: scheduler and so-called recordboxes. The scheduler will be the part of the system
responsible for timing the recordings and starting as well stopping the recordings. The
information about timing will be fetched from the database. The scheduler has to handle
all time-related problems to be able to work perfectly. Detailed analysis and implementation
description can be found in section 6.2.

A recordbox, as it is called in this thesis, is second the most important part of the
recording application. Its task is to provide functionality to record the broadcast. It will

'Keep on mind, that most recordings are sensitive data strictly protected by copyrights, laws, and so
on.

29

act as a tape recording device, providing start-stop-like controls for the scheduler. The
recordboxes will wrap all necessary functionality connected with the recording. That espe-
cially means running the external recording application, checking status of the application,
creating recording folders, and so on. The timing related events will be left for the scheduler.

One big difference in this advanced design is, that it counts with multiple sources and
multiple recordings at the same time. Basic concurrency is outlined here by showing, that
there will be more than one recordbox per the server application. But one important topic
was not discussed so far — how many instances of each block are possible, how many
physical servers will it require, how many will it support, and in what environment will the
whole system run.

As explained many times earlier, one instance of the server application will be able to
record more than one stream at the time. Every recording requires (especially) processor
time and file system I/O operations. That means the only limitation is the hardware of
the server. Running too many recordings at the same time on one server can lead to
slowing down of the server, which would lead to loss of the real-time data. And that means
corrupting the recording.

With that in mind, the system is designed to be able to run many instances of the
server application on different servers'. That provides scaling and can provide a way how
to increase availability by duplicating number of nodes recording one stream.

As mentioned in previous paragraphs, every server will have its own file storage to store
data, but only one database for whole system will be present. This is the only element in
the system, that is critical and has to be run as unique instance. We can assume that the
database engines are robust, designed with security in mind, and in many database engines
clustering or at least failover clustering?® is available. Properly set up database engine can
provide great data security, so we can leave the most important part of the system running
in one unique instance.

There is no limitation for the management system instances count. The management
will actively write only to the database and send very basic request, such as status check,
to the server application using Representational State Transfer (REST) communication.
However, it is projected that the management system will be done as web application. In
such a case we can predict, that only one instance of the web server will run giving only
one management node in the system.

To close the topic about servers, it is necessary to say, that the system is split into sep-
arated parts to be able to provide scaling. It is not required to run all these applications
on separate server instances. All software components can be easily, without modifications,
installed on one operating system giving the 100% same operability.

It is important to add, that the system is designed to operate within local area net-
work (LAN) only. That is indicated by yellowish rectangle around the blocks. That is
because the system does not implement any extra security or encryption mechanisms to
secure the communication enough to be held over the Internet.

The only part, that is meant to be used over the Internet, is the distribution part.
This part of the system allows users to download or play the recorded videos as video on
demand. This part of the system is not a goal of this thesis, so it will not be implemented.

! Although it would be possible to run more than one instance of the server application on one server, it
does not really make sense, and therefore it is not supported.
2e.g. MySQL Cluster, MariaDB Galera Cluster, MS SQL Failover Cluster, etc.

30

Additionally, if we assume that the administration will be done as a web application, it
can be used over the Internet. In such a case, it is necessary for the operator to provide some
additional security mechanisms, especially authentication (e.g. HT'TP basic authentication)
and encryption (using e.g. SSL).

31

Chapter 6

Recording application

This chapter describes how the application is designed and how it will work. At the be-
ginning of the design there was one more idea. The main question at the beginning of
implementation was what technologies and programming languages to chose. Every lan-
guage has its own benefits and with that in mind it is necessary to design the system.

On the other hand, some questions were already answered. The task of the recording
application will be kept as simple as possible, focusing only on recording and support
elements. Everything beyond this, especially administration and management, will be done
separately. For storing data both filesystem (to store recording files) and relational database
(to store other data) will be used.

As the server applications should provide concurrency, the recording application has to
be designed which that in mind. For this application, threads will be used to split code and
logic from the main thread, and create independent and concurrent workers.

The only supported operating system for the application will be Linux. Benefits of
Linux as server operating system are well-known. Linus has great support, manageability,
it comes for free and it is worldwide spread. The design of the application is theoretically
operating system independent, but probably perceptible change would have to be intro-
duced to the code to make the application running on e.g. Windows Server.

One of the possible options was to use some well-known scripting languages, such as
Perl, Python or Bash. These languages are very powerful development tools and can provide
all the functionality to create such a server application.

Thanks to my previous work experience, I had good knowledge on building server-side
applications using Perl. One of the great benefits of Perl is that creating applications is
really fast, and can be done with a few lines of code. By that time we were working on
client application in C# and server application in Perl. The comparison of the length of
the logic shown that Perl was much shorter.

One of the major disadvantages of Perl had appeared when the server-side application
got larger and more complex. By that time, it began to be really hard to maintain the code
and implement any larger changes or refactor the code. Perl lacks, as well other scripting
languages, first stage compilation, which helps to check the code for the very basic mistakes.
Instead of that, the code is checked only when it is executed, and that can lead to an error
or an exception while application is running. And that is, of course, unacceptable.

Another approach was to use the scripting languages only to create small scripts hand-
ling the recordboxes. These scripts could be run by a scheduling service, e.g. Cron. This
approach would be much easier speaking of code complexity and development demands,

32

but also hardly extensible with some additional functionality, such as filesystem watcher
[6.4] or system diagnostics [6.5].

With that in mind and after discussions with other programmers, I decided, from the
whole spectrum of programming languages, to pick Java. One of the most important reasons
was my knowledge of C# programming language, and knowing that development in Java
as object-oriented language is in many aspects close development in C#.

Selection of database management system (DBMS) was much more straight forward.
After determining that there is no need to use any of NoSQL or document oriented database
systems, as well as temporal database or so, the focus came on ordinary relational database
systems. In the end, MySQL was picked as one of the most commonly used DBMS. The
biggest advantage is the fact, that it is for free.

Later, during the development, an idea how to increase the independence of each part of
the system appeared. The question was how to equip every instance of the server application
with its local copy of tasks, so it can execute the tasks independently without having the
connection to the mutual main database server.

The possible answer was to use SQLite database engine to provide a data storage within
the server application. In such a case, there would have to be a synchronization mechanism
between the local database and the main mutual database. This principle is commonly
used in mobile devices, such as Android. It is necessary to say, that the synchronization
mechanism is not trivial and its implementation and testing might take a lot of time. And
at the same time, the independence on such a level is not a goal of this work.

Programming language Java SE 7 is used as the main language
(for the server application development. It has been selected
<) due to its class-based object-orientation. The Java Runtime

[

Environment, as well as Development Kit is available for free.
And therefore, development and usage of the application is not
tied with any licence fees.

License: GNU GPL (OpenJDK)

system. It uses Structured Querying Language, it is mul-

MI__]SQL tiplaform, easy to deploy, well-documented, and well-known
server. In community version, it comes for free. The version
5.5 was used as main database storage engine.

License: GNU GPL (MySQL Community Edition)

R MySQL is a commonly used relational database management

Perl is a high-level, interpreted, dynamic language. It was
considered, as well as other interpreted scripting languages, as
suitable programming language of the server application. Al-
though Perl has assumptions to create a great stable server
application, developing and maintaining the application can be
harder than using Java. Eventually, Perl was not used in the
project as well as the other scripting languages.

Continued on next page

33

Table 6.1 — Continued from previous page
License: GNU GPL

As described in previous paragraphs, SQLite would be a great
?SQLl te choice in case when the application would keep a local copy
of all database data, and then provided synchronization with
main database. This principle was not implemented, because
it is probably not necessary in LAN environment. Moreover, if

high-availability or fail-over mechanisms were required, MySQL
cluster version could be deployed in order to achieve duplicity.

License: Public Domain

The whole server application with its dependencies is meant
UbUﬂtUQ to run on Linux-like operating system. For development,
Ubuntu 14.04 LTS (32-bit) was used. Due to chose program-
ming tools, and other related tools, it is expected, that the
application is able to run on any *NIX-like platform.

License: GNU GPL (mainly)

N G:MX The final goal of this thesis is to record and store streams from
IP camera. This thesis does not discuss problematics of forth-
coming video-on-demand delivery. For testing purposes nginx
web server was used. It is great choice for static content deliv-
ery with great performance and low demands.

License: Simplified BSD

Table 6.1: Tools and products used in the server application development

6.1 Threads

As it was described in chapter 5, the server applications should be able to serve more
concurrent task at one time. With that in mind, it is necessary to chose a mechanism how
to effectively achieve this goal. One of the commonly used methods how to divide tasks is
using threads.

In the recording server application, one thread is created for every recording task, as
described in section 6.3. Moreover, the application provides some additional logic such as
filesystem watcher [6.4], and performance diagnostics [6.5] which run in separate threads to
watch resources.

Due to the application design, every thread has it unique and simple task. The main
logic of every single thread is as short main logic as possible, and usually at maximum a
few programming classes long. That makes the behaviour of every thread readable and
maintainable.

The threads self brings advantages to the application design and performance, but it is
essential to design the application carefully with concurrency problems in mind. By using
threads, the risk of concurrent access to a field or deadlock and others increases rapidly.

34

main

thread
Y
pe.rformarwce filesystem scheduler
diagnostics watcher
A
recording recording recording
thread thread thread

Figure 6.1: Scheme explaining threads usage in the recording application

It has been analyzed which parts of the applications are shared between more than one
thread, and these parts were treated with mutual exclusion.

6.2 Recording scheduler

The scheduler is one of the crucial parts of the server application. Its task is to plan events
inside the application, especially start of the recording and its stop time.

The scheduler is created from the main thread in single instance. It runs independently!
from the main thread and periodically checks the necessary information from the database.
In every cycle, it compares list of recordings that should be running (according to the
database records) and recordings that in fact runs. Depending on that, it either creates
new recordbox or stops running one.

The period of the scheduler, which is defined in a server configuration file, defines the
minimum distinguishable interval for start and stop actions.

The recording scheduler has to be designer with all the time-relevant problems in mind.
One of the ideas was to set up a timer that will elapse in precise moment to start (or stop)
the recording. That moment is described by milliseconds of time. But unfortunately there
is a lot of factors, that can lead to inaccurate timing, especially when inappropriate time
representation is used (text representation instead of standardized UNIX timestamp).

The issues to be mentioned are:

e Leap year (nearly every four years February has 29 days);

e Summer time (once in a year there can be twice the same hour on clock; 25 hour
long day);

e Leap second [37] (one-second adjustment occasionally applied, the most recent on
June 30, 2015 at 23:59:60 UTC; called also sixtieth second);

!The scheduler is created in the main thread, but the periodical tasks are called in timer, which means
in separate threads.

35

Time change (in case of administration changes in system);

Time skew (time correction mechanism [38]);

Shutdown or hybernation (missing the proper moment due to system downtime);

e Time-zone issues (when the management is in different time-zone than the recording
server, or not well set up);

e ...and of course real-time changes in the database due to user interaction.

Eventually, it turned out that the best idea is simply periodically check the database
with the most recent timestamp and take proper actions regarding the database results,
rather then implementing some smart scheduling and timing mechanism.

As mentioned above, all the operations are related to the wall time. In such a situation,
it is good practice to ensure correct time settings among all the servers involved in the
system. For this purpose, correctly set up Network Time Protocol daemon (NTPd) is the
solution.

main thread scheduler event timer thread
scheduler l scheduler |
start stop) timer
scheduler scheduler s elapsed
L 4 . / A
setup P stop load active
periodical -~ the timer recordings
timer from DB
| |
stop
) start new
running recordings
recordboxes °
| |
stop inactive
recordings

J

Figure 6.2: Flow chart showing the most significant methods of the scheduler

There was one more attitude to the development of the scheduler - to use something
already created and proved. I concentrated my focus on Cron, the Unix system scheduler.
Using this scheduler together with some start/stop scripts (e.g. written in Perl) could have
been a solution.

36

Afterwards during examination of this idea, specific problems or restrictions of Cron
usage appeared. One of the restriction is time granularity. The minimum interval for the
Cron is one minute. That can be sufficient or not. But definitely cannot be changed.

Other problem, that might appear, could be problems with user rights in Linux. It has
to be handled well in case of the Cron. But the most significant problem is how to feed the
Cron with information about scheduled task, how to synchronize it with external database.

Moreover, the Cron is designed only to start task, not to be able to stop them at some
moment. That means there would have to be an extra mechanism providing that. And
providing synchronization mechanisms and other relevant things to achieve the goal.

At that point, I decided, that writing an own scheduler is easier than trying to use the
Cron for such a purpose.

6.3 Recordbox

The name ,recordbox” is used for a part of the program that encapsulates the external
recording process and creates standardized interface to control it. The recordbox itself is
represented by set of classes. The main class (recordboz) is instanced from the scheduler
and contains start and stop methods to control the behaviour.

The recordbox creates the external recording process and waits during its execution. For
this purpose, a new recording thread (class recordingthread) is created to avoid suspending
the scheduler thread during the recording. It is responsible for controlling and checking the
behaviour of the external program.

If the program ends preliminary, the thread reports the situation to its parent recordbox
and it has to take proper action. Depending on the occasions, it can restart the recording,
which means to create a new recording thread, immediately or with a delay or even report
the problem and stop recording itself (e.g. when the external program cannot be run).

The scheduler keeps list of all the recordboxes created, so it can stop them when nec-
essary. The list of running recorboxes is compared to the list of scheduled recordings from
database and if the recordbox’ recording schedule is not in the list from database anymore,
the recording is stopped. The reason to stop a recording does not necessarily have to be
only due to its duration, but also if it has been disabled and so. This shows that checking
the database periodically is better than timing the stop event by some timer or similar.

Most of the implementation is placed in a base class. This class carries common be-
havioural traits regardless used external program. For every different external program,
there is a derived class overriding the original behaviour. This construction allows ex-
tending the application possibilities and range of used external programs. For example, a
re-streaming application can be used giving the server application entirely new possibilities.

The figure 6.3 show flow chart illustrating basic callings and methods between scheduler,
recordbox and recordthread classes. It also tries to point out where new threads are created.

The described part of the application uses timers in two locations. First timer is an
interval timer, which invokes the timer elapsed method of class scheduler periodically.
Every time, the timer creates new thread. This thread load data from database, listing
active recordings. According to the list, as described earlier, starts or stops recording.

37

scheduler event timer thread

recoding thread

scheduler

timer
elapsed

A,

load active
recordings
from DB

recordbox

start

recording

Y

~

Y

create
recording
thread

recordthread

start
recording
thread

Y

new thread

start new
recordings

v

register
filesystem
watcher

y

start
the thread

4

stop inactive
recordings

’

’
/

J

stop

recording

4

start
recoding
process

register
performance
watcher

4

interupt
the thread

delayed (new thread)

|

wait for
the process
to exit

e e e e e e ————————

start new
recording
thread

no

Y

unregister
performance
watcher

|

unregister
filesystem
watcher

J

Figure 6.3: Flow chart showing recording process control

38

Second timer is used when external recording process end preliminary. The recordbox
then defers the re-start using timer. When the recording is restarted, it is done in completely
new thread.

The code also contains one explicit thread creating and that is the recording thread. The
recording thread sets everything before the recording and disposes used sources after the
recording. The thread especially takes care of recording folder creation, writing permissions
check, registering the filesystem watcher and the performance watcher, and starting the
recording process.

While the recording process is running, the recorded thread is suspended. If the record-
ing process ends itself, it is evaluated as preliminary exit and it is handled by the recordbox.
When the recording is supposed to be stopped by the scheduler, the scheduler invokes stop
method of the recordbox and the recordbox interrupts the thread. The thread reacts on
that signal by termination of the recording application, disposing sources and exiting.

: Libav is a project consisting of libraries, and applications for
Plibav ’

handling multimedia data. It is multiplaform, officially sup-
porting Linux, Mac OS X, Microsoft Winddows, and many oth-
ers. Libav is able to handle many containers, and codecs. Most
of them can read, decoded, encoded, and stored. Libav imple-
ments support for streaming protocols, such as RTP, RTSP,
SDP, RTMP!, and many others. Together with supported for-
mats, and armament of processing filters, processors, muxers,
demuxers, it is a powerful tool.

License: GNU LGPL, and GNU GPL

@ Live555 is a set open-source project, which are focused on real-
V time broadcast. The core part, Live555 Streaming Media is a
(r set of C++ libraries for streaming using RTP/RTCP, RTSP,
and SIP. Liveb55 is used in many projects including Vide-
oLan VLC player, and can be compiled under Linux, Windows,
and any POSIX-complaint systems. The libraries contain only
streaming functionalities, so it can be used for any compres-
sion, or similar modifications to the stream. At the moment,
it natively supports MPEG Transport Stream, MPEG-1 or 2
Program Stream, WebM, MPEG-4 Video Elementary Stream,
H.264 Video Elementary Stream, VOB (audio + video), DV
video, MPEG-1 or 2 audio, WAV, AMR, AC-3, and AAC au-
dio.

License: GNU LGPL

Table 6.2: List of studied recording applications

! Adobe related Real-time Messaging Protocol

39

6.4 Filesystem watcher

The filesystem watcher is a support logic of the application. It runs in separate thread,
and it is initialized from the main thread. Its only task is to observe selected folders and
report every change within these folders to event listeners. This technique is probably the
only perfect way, how to detect what files were created as result of the recording in real-
time. The other solution would be list the directory periodically, but since Linux operating
system provides subsystem to get noticed on filesystem changes, it is the best idea to use
that.

The subsystem is called Inotify and it is part of the Linux kernel since version 2.6.13
(August 2005). Its task is to notify listeners when an inode is changed. That practically
means when a file is opened, closed, modified, moved, deleted, created and so on.

For development purposes, a library called jnotify was used. This library provides
common interface to watch filesystem changes on Windows, Linux, and Mac OS X. Due tu
its interoperability limitations, the part sustainable only for Linux was used. This library
allows the filesystem watcher to announce when a file is created, opened for writing, and
closed after changes.

There is only one instance of filesystem watcher running in the recording server app-
lication. It is created during application start-up, and it runs as separate thread. Other
threads (especially recordboxes) can invoke method addDirectory to start directory ob-
servation. This is done just before the external recording program is executed, and the
watched directory is the output directory for the program. After the recording ends, re-
moveDirectory is called to stop observation. These methods are some thread-safe methods
in the application.

The complete sequence of actions is following:

1. Recordthread creates filesystem events listener and registers folder for watching in
filesystem watcher.

Recordthread starts recording process.
Recording process creates a file.

System kernel invokes inotify subsystem.
Inotify invokes filesystem watcher callbacks.

Filesystem watcher fires recordthread listener.

A

Recordthread listener identifies the file and saves information about file to the
database.

6.5 Performance diagnostics

One of the extra functionalities of the system is performance diagnostics. It is an additional
subsystem implemented in the recording server application, proving that running the system
as one complex is better than running in as set of scripts (as discussed at the beginning of
this chapter and in section 6.2).

At the moment, it has two main tasks. Firstly, it periodically checks the available
amount of space of the recording partition. The motivation to implement this functionality
came during first tests of the recording application. By that time, I left the application
recording one IP camera for a week on provided testing server. After a week of recording,

40

the application consumed all free space on the server, and forced the server to freeze due
to lack of usable disc space. Fixing that problem took a lot of time.

Now, the application observers the filesystem, and shutdowns itself in case of overusing
the free space. At the same time, the values of used space are shown to the administrator
via web management.

Secondly, the diagnostics checks registered recording processes using internal Linux
command ps and stores CPU and memory usage to the database. This can be handy
to track what recording settings lead to what utilization of the server, and how many
recordings can run on the server at one time.

Both these statistics are checked periodically. Periods are defined in configuration file,
and can be different for every task. Results of the checks are stored in the database in
ARCHIVE storage engine. If desirable, the values are plotted as a graph and shown to the
user in the management [7.2].

41

Chapter 7

Web-based management

As it was previously mentioned in chapter 5, server applications usually do not provide
any user interface to manage the application. For such a purpose, separated application
is developed. This application connects to the server and manages it using administration
protocol or changing its configuration files. These applications can implement another
management functionalities, such as log viewers, server application diagnostics, monitoring,
and like.

The applications can be console application, gui-based desktop application, or web-
based application. To pick the right kind of management application, several questions
have to be answered. How will be the management done; what network protocols if any
will be used; what technologies does the management application require; is the graphical
user interface necessary; if yes, how should it be done; and many others.

For our purpose to manage the recording server application, a web-based management
system was chosen. One of the key aspects of selecting the web, was the fact it is multi-
plaform by design. And by saying multiplaform, not only various desktop operating systems
are meant. Web-based applications can run on different devices such as desktop, tablets,
mobile phones and others, making the management available practically everywhere. And
that can be seen as on of the key usability goals of a good management application.

Another reason to use web environment is the fact, that it does not have to be installed
on user’s computer, and, more importantly, it does not have to be maintained on their
computer. Upgrading the management system for whole company means upgrading it only
at one point - the web server.

A downside of using web technologies can be its limitations. Some tools or features
might not available for web, and that can mean the management cannot be done using
web technologies. The recording server application was designed with that in mind. All
the management tasks are stored in MySQL database, which is very common database
storage in web environment. If it was necessary, the design also counted with usage of the
Representational State Transfer (REST) communication to provide straight communication
between the client web application and the server recording application.

For this reason, a small stand-alone prototype of Java REST server was created. It was
base on library called Jersey providing the REST communication functionality. The pur-
pose of the prototype was check up if the recording application can use the REST protocol
to communicate with web management. As result, it was decided that it is well-usable com-
munication mechanism. However, it was not implemented in the final recording application

42

as it was not needed for any purpose. The whole communication is done passively' through
the database.

Creating web-based applications has great benefit in how easily it can be delivered
to the user. On the other hand it is necessary to master many programming languages,
development technologies, tools, frameworks and other. For my development I spent quite
a lot of time testing and choosing what technology to use. The tools used are described in
the next table.

HTML HTMLS5 is new standard of HTML markup language. It has
been released in October 2014, seven years after previous ver-
sion HTML 4. It brings a lot of important improvements, which
allows creating modern web-based applications. HTML5 was
supported by major web browsers even during its development,
which means it can be practically used these days. HTMLS5,
for example, comes with native video player or support for cus-
tom tags, which are important for development of web-based
applications.

NGULARJS AngularJS is a popular JavaScript framework maintained by
wGoogle Google and by its community. It is Model-View-Whatever?
framework focused on developing single-page applications. In
July 2015 it was used by 8.400 websites out of 1 million includ-

ing NBC, Intel, or ABC News. [wikiAngularJs|

License: MIT License

EBootstrap Twitter Bootstrap is a front end framework for creating web-
sites and web applications. It contains HTML and CSS based
design templates for typography, UI elements, forms, dialogs
and many others. For purpose of the management application
a free template based on Boostrap called AdminLTE2 was
used.

License: MIT License (both Boostrap and AdminLTFE2)

Symfony is a PHP web application framework. As difference

@ Symfony from AngularJS, it is back end framework running the appli-
cation code on server side. Symfony is widely used framework
with great community. Originally the management application
was written using Symphony, but later discarding all the work
and switching to AngularJS, which is more convenient for client
application development.

License: MIT License

Continued on next page

'Note that MySQL does not provide any notification mechanism when modification is done.
*Model-View-Whatever (works for you), see https://plus.google.com/+AngularJS/posts/aZNVhj355G2

43

Table 7.1 — Continued from previous page

PHP is well-known interpreted dynamic programming lan-
guage mostly used for web pages development. When the de-
cision not to use Symfony was made, most of the application
logic moved from PHP scripts to JavaScript front-end scripts.
Still, PHP was used in the project for small server-side scripts
handling model data for client application.

License: PHP License

Apache HTTP Server is one of the most commonly used
ApaChe web servers providing great support for scripting languages and
| CGI. The server management application was build and tested

,’(on Apache HTTP Server, although it is not anyhow limited to

this product.

License: Apache License 2.0

Table 7.1: List of technologies, and software used during web development

7.1 JavaScript-based client application

Developing JavaScript-based client application is an individual programming category. For
many years, the web was created by static pages generated by server side scripts, such as
PHP. Of course these web sites could have carried JavaScript snippets providing additional
client side scripting, but the possibilities were rather limited.

With introduction of AJAX, HTML5, and CSS3, possibilities how to create independent
client-side web application become wider, and wider. Nowadays, several web framework
provide abilities to create great Model-View-Controller (MVC!) client applications.

In the development of the management applicating, AngularJS was used. This frame-
work focuses on creating single-page client application. That means, that the client loads
only one HTML page, which contains the application logic. The application is then able to
load other sources if needed, but the main page stays the same only changing its content.

In July 2012 the development team categorized the framework as MVW framework?.
This was result of indecisiveness of wherever the framework is Model-View-Controller, or
Model-View-ModelView. Humorously, it end up with label Model-View-Whatever (works
for you) showing the reality behind development in AngularJS.

The model for AngularJS applications is usually strictly separated. The data are usually
loaded as live data from web-server using AJAX requests, and held as objects in the client
application. For the communication JSON is typically used to carry the data objects.
AngularJS support two-way binding, which means the data are automatically propagated
to the view once they are loaded.

The view is represented by HTML code with special tags representing AngularJS direc-
tives. These directives can describe model or controller for specific part of the page, declare
basic behaviour (such as loops and conditions), but most importantly are used to print out

'MVC, or MVVM, or MVP, or MVW; depending on framework.
https://plus.google.com /4 AngularJS /posts/aZNVhj355G2

44

model values to the web page.

The last part of AngularJS trio is the application logic. It is written using JavaScript.
Here AngularJS provides enormous functionality to create a responsible client-side appli-
cation. In the fact many approaches to link the view, model and application logic can be
used, leaving the decision to the programmer.

CONTROLLER

Y API SERVER SIDE

Figure 7.1: AngularJS Model-View-Whatever architecture

7.2 The user interface

The administration utilizes AdminLTE2 template created by Almsaeed Studio'. This tem-
plate extends standard Bootstrap 3, and it is meant to be used to create various adminis-
tration interfaces.

The template provides a lot of Ul elements, widgets, skins and others. For example
boxes, buttons, alerts, callouts, modal dialogs, tabs, progress-bars, calendar, charts, tables,
form elements and so on. Everything is bundled with the template, and ready to use.

The site is divided into three main areas: side-bar menu, top-bar menu, and main
content area. While top-bar menu is not used in this project, side-bar menu contains link
to quickly access the most important actions of the web management.

The most important area is the content area, which changes with every page. This area
is divided by boxes. Every box encloses one unit, and functionality, e.g. overview, list,
calendar, form. Usually every box has loading overlay, which shows when the model data
of the box are loading, or changing.

Most commonly, the lists of data from database, such as list of servers, events, record-
ings, and so on, are represented by tables. Every row represents one listed item. Typically,

"https://almsaeedstudio.com/, MIT License

45

MongoMGMT =

Dashboard =t wersion
@ Dashboard
Events =
Title #Recs Status Enabled Start date End date
Test plans 3+ m Jan12015 Jan12016 D
NC - Navrh ¢islicovych systémd 1+ = Jan12015 Jan 12016 [a & x|
BN Streamers
PK - Pocitacové komunikace a sité 2+ m Jun12015 Jul12015 D
Security cameras recording 2+ Jan 12015 Jan 12016 n:n
Test 1+ Aug12015 0ct 12015 D
© Create new event
Servers =
Hostname Title Address Status Free space
server.example.org Superserver £.0.10.11 [1o connection | [nin] n:n
test Testovaci server 192.168.0.1 [965 } BB
ubuntu Reaktor DEV 192.168.19.128 = 51% BEa

© Manage another server

Figure 7.2: The final management: The dashboard overview

when possible, for every item buttons for detail view, edit, delete and enable/disable are
provided. The management is equipped with an in-place enable/disable feature allowing
the user to enable, or disable events and scheduled plans by a single click.

One of the widgets used is a calendar plugin from Adam Shaw'. The calendar gives a
view on the recordings as their are scheduled in time, as well as quick access to the events.

Another used widget is so-called timeline. It shows sequence of events in time sorted
from newest to the oldest. This timeline is used to present newest events in the recording,
especially inform about recently recorded files, or logs.

The management also utilizes Flot? graphs to show servers utilization, and free storage
space (see section 6.5).

The forms in the management application are changed from original HTML forms in
both design, and functional way. The design of elements is changed by bootstrap and
AdminLTE2 templates, providing smooth, and clean graphics with the same result on all
devices. Some additional graphical features are used to distinguish element’s function:
input fields are marked with icons, reset and save buttons are divided by colour, and so on.

The important part is the functional, how the forms work. Every form has a defined
model, which binds value from the model to the inputs (if the data are edited), and after
modifications back to the model. The submit button only invokes method save, which
handles the model data. That means checks the validity, and, if they are valid, sends them
using asynchronous request to the web server to store the changes in database.

During the transmission to the database, a loading overlay is shown to the user to
indicate progress. After the data are stored, small box appears on the form telling the user
wherever the action was, or was not successful.

"http://fullcalendar.io/, MIT License
*http://www.flotcharts.org/, MIT License

46

Create new recording schedule

Title

A | New Schedule

Destination folder Dashboard testversion
0 | newsch
Events
Source streamer
A source device of which stream will be recorded. Title Enabled
™ Cam @ FIT VUT (rtsp://147.229.14.50/axis-media/media.amp) v Testplans
Recording server INC - Navrh €islicovych systémil

Aserver which will record the stream and store it.
IPK - PoditaCové komunikace a sité

| Lucifer(127.0.0.1) v
Security cameras recording es
RecordBox
Atool which will be used on the server for recording purpases. Test (23
[+] (default) v

© Create new event
Schedule (Jul 24 2015 — Sep 1 2015)

Man 8-12

Fri10-12 Servers =
Hostname Title

2
server.example.org Superserver m
test Testovaci server m
4 ubuntu Reaktor DEV m
[reset | v | crese | © wanage ancther servr
(a) The schedule edit form (b) The responsive mobile design

Figure 7.3: The final management screenshots

The web management is created as responsive web-page. That is mostly done by Boot-
strap and AdminLTE2 templates, and their features, but, for example, in case of wide
tables, it was necessary to apply another responsive design principles. The webpage was
repeatedly tested on many devices, such as mobile phones, tables, laptops, and desktops.

Although it seems as part of the system, no user browser or video viewer was imple-
mented with intend to distribute the video over the Internet. This problematic is much
complex than this thesis can cover. Also, authentication system was omitted, leaving this
to higher design principles, such as HT'TP basic authentication.

47

MongoMGMT =

FITVUT &
@ Dashboard
Information about event @ Edi
6
FITVUT
Startdate: Jul24 2015
Enddate; Sep 12015
Enabled: [
The schedule List
L Title Start date End date Duration S Files Enabled

Nonstop Fri Jul24 12:00AM Tue Sepl 12:00AM amonth (P 643 [a & x|

® Q Detail (& Edit % Delete © Create new recording schedule

Jul 27 2015

Lucifer recorded a new video from the Nonstop recerding plan.

3 Log (log.txt)

Lucifer recorded a new video from the Nonstop recerding plan.

3 Log (log.txt)

Figure 7.4: The final management: The event overview

48

Chapter 8

Conclusion

This thesis was focused on multimedia streaming. It was split into two separate parts —
the theoretical part and the practical part, both counting three chapters. The selected topic
is very wide and it is connected to many other relevant field of studies.

Explaining the multimedia streaming is matter of point of view. If this thesis was writ-
ten in computer networking related field of studies, most probably it would describe the
protocols and surroundings much more deeply. My goal was to take the streaming as a
tool, explain how does it work and how it can be utilized from practical point of view of
stream delivery to end user.

Nevertheless, even from practical point of view, it is important to understand the me-
chanics behind the transmissions, and how these things affect the quality of delivery. That
was the motivation to write chapter 2, and bring there to mind basic networking principles,
and explain how these principles alter the quality.

Terms such as throughput, network congestion, and multicast were explained to point
out, that delivering multimedia streams over computer network requires high bandwidth,
and these three issues are related to it. It was explained how drastically can the net-
work congestion decrease quality of service, and how multicast can decrease the required
bandwidth for multiple instances of one broadcast.

Also, terms latency, packet delay variation, and bit error rate were described to elucidate
how these networking-related circumstances affect stream delivery delay, which is very
important especially in bidirectional communication, e.g. video-calls.

The section 2.2 then focused on two main transport protocols, explaining the main differ-
ence between Transmission Control Protocol (TCP) and User Datagram Protocol (UDP),
and illustrating why UDP is used to carry media data packets over computer network.

The chapter 3 focused on the real-time streaming protocols. It extensively described the
four most important protocols for real-time streaming, which are the Real-time Transport
Protocol (RTP), the Real-time Transport Control Protocol (RTCP), the Real-time Trans-
fer Streaming Protocol (RTSP), and the Session Description Protocol (SDP). It was shown
how these protocols collaborate in communication, what is the task of every single proto-
col, what do the packets carry, what information can be acquired from the packets, as well
as drawbacks of the design, such as problems with delivering the multimedia stream over
Network Address Translation (NAT) device.

The main goal of chapter 4 was to pitch three important topics about multimedia. At

49

the beginning of the chapter, terms like encoding, decoding, encoder, decoder, and codec
were explained. Also, it was noted how a multimedia stream is coded before it is transmitted
over computer network, and what are the bit-rates for uncompressed streams.

The section 4.1 extensively discussed the problem of frame processing delay in case of
stream compression. As result, explanation on why low latency streams are important, and
how the end-to-end latency can be decreased by using special codecs, hardware devices,
GPU processing, and like, was introduced.

One of the delicate problems about media delivery is the size variation between frames.
MPEG-based encoders use I-frames, B-frames, and P-frames. As the section 4.2 pointed
out, the size difference between an I-frame and the other two is enormous. That means
every compressed stream has locally inconstant bit-rate. The whole section discussed about
this problematic, explaining what terms variable bit-rate and constant bit-rate mean, and
showing a few graphs plotted from real streams.

The next three chapters spoke about the practical part of this thesis — analysis, design,
and implementation of the recording system. Starting with chapter 5, very simplified idea
of how the system should work was shown. It was described what is necessary for a server
application to fulfil in order to work properly. Then the design was extended by explaining
entities in this system, and user use-cases. The chapter is concluded with advanced design,
which explained the system more in detail, and suggested realization draft.

Chapters 6 and 7 then described development of the recording application and web-base
management system respectively. These chapters listed used technologies and software,
and explained how the applications worked, how they were implemented and what are the
principles behind the development. Details on how the used frameworks or programming
languages work, were omitted on purpose. These can be found in programming articles,
and I personally did not find meaningful to re-write such an information.

As it was mentioned, two applications are a result of this thesis. The applications were
developed with intend to create stable and functional server application for recording. This
purpose was achieved. The final application is able to run independently on a server and
record streams described by schedule. A management application was created as well to
provide manageability to the system.

Both application work, and the system as whole is functional. It was tested during
development, as well as deployed at the end of the development on a server to see how well
it works. The system worked as expected.

In the future it would be interesting to see the system in real production environment,
with even the smallest flaws cleared out. The recording system could be extended by adding
new recordbozes or improving the current one. The administration could go through user
experience evaluation and based on that it would be nice to improve the interface and
available tools in the system.

50

Bibliography

[14]

[17]

[18]

23]

[24]

V. Cerf, Y. Dalal, and C. Sunshine. Specification of Internet Transmission Control
Program. RFC 675. Internet Engineering Task Force, December 1974. URL:
http://wwuw.ietf.org/rfc/rfc675.txt.

V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s Retransmission
Timer. RFC 6298 (Proposed Standard). Internet Engineering Task Force, June
2011. URL: http://www.ietf.org/rfc/rfc6298.txt.

J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD). Internet
Engineering Task Force, August 1980. URL:
http://www.ietf.org/rfc/rfc768.txt.

R. Stewart. Stream Control Transmission Protocol. RFC 4960 (Proposed Standard).
Updated by RFCs 6096, 6335, 7053. Internet Engineering Task Force, September
2007. URL: http://www.ietf.org/rfc/rfc4960.txt.

Audio-Video Transport Working Group, H. Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson. RTP: A Transport Protocol for Real-Time Applications. RFC
1889 (Proposed Standard). Obsoleted by RFC 3550. Internet Engineering Task
Force, January 1996. URL: http://www.ietf.org/rfc/rfc1889.txt.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (INTERNET STANDARD).
Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160, 7164. Internet Engineering
Task Force, July 2003. URL: http://www.ietf.org/rfc/rfc3550.txt.

C. Huitema. Real Time Control Protocol (RTCP) attribute in Session Description
Protocol (SDP). RFC 3605 (Proposed Standard). Internet Engineering Task Force,
October 2003. URL: http://wuw.ietf.org/rfc/rfc3605.txt.

H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
RFC 2326 (Proposed Standard). Internet Engineering Task Force, April 1998. URL:
http://www.ietf.org/rfc/rfc2326.txt.

M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description Protocol. RFC
4566 (Proposed Standard). Internet Engineering Task Force, July 2006. URL:
http://wuw.ietf.org/rfc/rfc4566.txt.

H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences with
Minimal Control. RFC 3551 (INTERNET STANDARD). Updated by RFCs 5761,
7007. Internet Engineering Task Force, July 2003. URL:
http://www.ietf.org/rfc/rfc35651.txt.

51

http://www.ietf.org/rfc/rfc675.txt
http://www.ietf.org/rfc/rfc6298.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfc1889.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3605.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc4566.txt
http://www.ietf.org/rfc/rfc3551.txt

M. Liska. Speciélni pfenosy - technologie a jejich uplatnéni [online|. Cesnet, z. s. p.
o. May 2015. URL: http://www.cesnet.cz/wp-content/uploads/2015/04/Liska-
CESNET-prenosy.pdf (visited on 07/08/2015).

International Telecommunication Union. G.114. Telecommunication Standardization
Sector of ITU, March 2003. URL: https://www.itu.int/rec/T-REC-G.114/en
(visited on 07/08/2015).

S. Ubik et al. Minimalizace zpozdéni - pfenosy pro spolupraci v kultufe [online].
Cesnet, z. s. p. 0. May 2015. URL:
http://www.cesnet.cz/wp-content/uploads/2015/04/Ubik-CESNET.pdf (visited
on 07/08/2015).

A. Rothermel R. M. Schreier. A latency analysis on h.264 video transmission
systems [online|, 2008. URL:
http://publik.tuwien.ac.at/files/pub-inf_4978.pdf (visited on 07/08/2015).

L. Gharai and C. Perkins. RTP Payload Format for Uncompressed Video. RFC 4175
(Proposed Standard). Updated by RFC 4421. Internet Engineering Task Force,
September 2005. URL: http://www.ietf.org/rfc/rfc4175.txt.

Cesnet. Hudebniky délilo 1000 km, pfesto spolu zahrali [online]. Cesnet, z. s. p. o.
May 2015. URL: http://www.cesnet.cz/sdruzeni/zpravy/tiskove-
zpravy/hudebniky-delilo-1000-km-presto-spolu-zahrali/ (visited on
07/09/2015).

52

http://www.cesnet.cz/wp-content/uploads/2015/04/Liska-CESNET-prenosy.pdf
http://www.cesnet.cz/wp-content/uploads/2015/04/Liska-CESNET-prenosy.pdf
https://www.itu.int/rec/T-REC-G.114/en
http://www.cesnet.cz/wp-content/uploads/2015/04/Ubik-CESNET.pdf
http://publik.tuwien.ac.at/files/pub-inf_4978.pdf
http://www.ietf.org/rfc/rfc4175.txt
http://www.cesnet.cz/sdruzeni/zpravy/tiskove-zpravy/hudebniky-delilo-1000-km-presto-spolu-zahrali/
http://www.cesnet.cz/sdruzeni/zpravy/tiskove-zpravy/hudebniky-delilo-1000-km-presto-spolu-zahrali/

Other relevant articles

1]

S. Deffree. Tesla gives 1st public demonstration of radio, march 1, 1893 [online].
EDN Network. March 2015. URL:
http://www.edn.com/electronics-blogs/nikola-tesla/4408090/Tesla-gives-
1st-public-demonstration-of-radio--March-1--1893 (visited on 07/30/2015).

C. Smith. By the numbers: 100+ amazing youtube statistics [online]. July 2015.
URL: http://expandedramblings.com/index.php/youtube-statistics/ (visited
on 07/30/2015).

Google Inc. San bruno (youtube) [online]. Google Inc. 2015. URL:
https://www.google.com/about/careers/locations/san-bruno/ (visited on
07/30/2015).

J. Kuznik R. Vsetecka. Google vypadl jen na pét minut, ale provoz internetu klesl o
40 procent [online|. URL: http://technet.idnes.cz/vypadek-googlu-01t-
/sw_internet.aspx?c=A130819_102205_sw_internet_vse (visited on
07/30/2015).

OxfordDictionaries.com contributors. Skype [online]. URL:
http://www.oxforddictionaries.com/definition/english/Skype (visited on
07/30/2015).

Wikipedia contributors. Osi model [online]. URL:
https://en.wikipedia.org/wiki/0SI_model (visited on 06/20/2015).

Wikipedia contributors. Computer network [online]. URL:
https://en.wikipedia.org/wiki/Computer_network (visited on 06/20/2015).

Wikipedia contributors. Throughput [online]. URL:
https://en.wikipedia.org/wiki/Throughput (visited on 06/20/2015).
Wikipedia contributors. Network congestion [online]. URL:

https://en.wikipedia.org/wiki/Network_congestion (visited on 06/20/2015).

Wikipedia contributors. Bit error rate [online]. URL:
https://en.wikipedia.org/wiki/Bit_error_rate (visited on 06/20/2015).

Wikipedia contributors. Stream control transmission protocol [online]. URL:
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
(visited on 06/20/2015).

Wikipedia contributors. Real-time transport protocol [online|. URL:
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol (visited on
06/25/2015).

53

http://www.edn.com/electronics-blogs/nikola-tesla/4408090/Tesla-gives-1st-public-demonstration-of-radio--March-1--1893
http://www.edn.com/electronics-blogs/nikola-tesla/4408090/Tesla-gives-1st-public-demonstration-of-radio--March-1--1893
http://expandedramblings.com/index.php/youtube-statistics/
https://www.google.com/about/careers/locations/san-bruno/
http://technet.idnes.cz/vypadek-googlu-01t-/sw_internet.aspx?c=A130819_102205_sw_internet_vse
http://technet.idnes.cz/vypadek-googlu-01t-/sw_internet.aspx?c=A130819_102205_sw_internet_vse
http://www.oxforddictionaries.com/definition/english/Skype
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Network_congestion
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

Wikipedia contributors. Rtp control protocol [online]. URL:
https://en.wikipedia.org/wiki/RTP_Control_Protocol (visited on
06/30/2015).

Wireshark contributors. Rtsp [online]. Wireshark. April 2008. URL:
https://wiki.wireshark.org/RTSP (visited on 07/09/2015).

Wikipedia contributors. List of codecs [online]. URL:
https://en.wikipedia.org/wiki/List_of_codecs (visited on 07/08/2015).

Wikipedia contributors. Data compression [online]. URL:
https://en.wikipedia.org/wiki/Data_compression (visited on 07/08/2015).

Inc. Cast. White paper: understanding and reducing latency in video compression
systems [online]. Cast, Inc. October 2013. URL:
http://www.cast-inc.com/blog/white-paper-understanding-and-reducing-
latency-in-video-compression-systems (visited on 07/08/2015).

N. Fazlija. Improved mpeg low-delay audio coding on davinci and ti c64 series dsps
[online]. Fraunhofer-Gesellschaft. March 2007. URL:
http://www.ti.com/1lit/ml/sprp526/sprp526.pdf (visited on 07/08/2015).

Wikipedia contributors. Variable bitrate [online|. URL:
https://en.wikipedia.org/wiki/Variable_bitrate (visited on 07/08/2015).

Wikipedia contributors. Constant bitrate [online]. URL:
https://en.wikipedia.org/wiki/Constant_bitrate (visited on 07/08/2015).

Wikipedia contributors. Leap second [online|. URL:
https://en.wikipedia.org/wiki/Leap_second (visited on 07/20/2015).

D. L. Mills et al. Ntpd(8) - linux man page [online]. December 2009. URL:
http://linux.die.net/man/8/ntpd (visited on 07/08/2015).

54

https://en.wikipedia.org/wiki/RTP_Control_Protocol
https://wiki.wireshark.org/RTSP
https://en.wikipedia.org/wiki/List_of_codecs
https://en.wikipedia.org/wiki/Data_compression
http://www.cast-inc.com/blog/white-paper-understanding-and-reducing-latency-in-video-compression-systems
http://www.cast-inc.com/blog/white-paper-understanding-and-reducing-latency-in-video-compression-systems
http://www.ti.com/lit/ml/sprp526/sprp526.pdf
https://en.wikipedia.org/wiki/Variable_bitrate
https://en.wikipedia.org/wiki/Constant_bitrate
https://en.wikipedia.org/wiki/Leap_second
http://linux.die.net/man/8/ntpd

Appendix A

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3

3.4

4.1
4.2
4.3
4.4

5.1
5.2

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Protocol stack for multimedia services
Three types of nodes that can cause problems with network congestion.
Graphical explanation of reduction of bandwidth usage with multicast. . . .

RTSP: OPTIONS and DESCRIBE request together with responses. .
RTSP: Two SETUP requests together with responses.
RTSP request PLAY with response and start of transmission of RTP and
RTCP packets. e

Termination of RTP/RTCP transmission by RTSP command TEARDOWN.

Compression video transmission system delay sources [30]
Variable bit-rate encoded file Lo
Difference in size between I-, P-, and B-frames
The same stream as on figure 4.2 converted using avconv

The basic idea of the recording system structure
The advanced idea of the recording system structure

Scheme explaining threads usage in the recording application
Flow chart showing the most significant methods of the scheduler
Flow chart showing recording process control

AngularJS Model-View-Whatever architecture.
The final management: The dashboard overview
The final management screenshots
The final management: The event overview

55

(=}

14
15

16
17

	Introduction
	Networks and servers
	Media layers
	Host layers

	Real-time streaming protocols
	RTP (Real-time Transport Protocol)
	RTCP (Real-time Transport Control Protocol)
	RTSP (Real-time Transfer Streaming Protocol)
	SDP (Session Description Protocol)

	Encoding, compression, and codecs
	Multimedia compression
	Variable vs. Constant Bit-Rate

	Analysis and design
	Entity-based model
	Use cases
	The application design

	Recording application
	Threads
	Recording scheduler
	Recordbox
	Filesystem watcher
	Performance diagnostics

	Web-based management
	JavaScript-based client application
	The user interface

	Conclusion
	List of Figures

