
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGII
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

SYSTEM FOR RECORDING VIDEO
FROM IP VIDEOCAMERAS

DIPLOMOVÁ PRÁCE
M A S T E R ' S THESIS

AUTOR PRÁCE Bc. JIŘÍ TRAVĚNEC
AUTHOR

BRNO 2015

VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF T E C H N O L O G Y

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

FACULTY OF INFORMATION T E C H N O L O G Y
DEPARTMENT OF C O M P U T E R G R A P H I C S AND MULTIMEDIA

SYSTÉM PRO ZÁZNAM
STREAMOVANÉHO VIDEA Z IP KAMER
S Y S T E M FOR R E C O R D I N G VIDEO F R O M IP V I D E O C A M E R A S

DIPLOMOVÁ PRAČE
M A S T E R ' S THESIS

AUTOR PRÁCE Bc. JIŘÍ TRAVĚNEC
AUTHOR

VEDOUCÍ PRÁCE Mgr. JANA SKOKANOVA
S U P E R V I S O R

BRNO 2015

Abstrakt
Tato diplomová práce je zaměřená na přenos multimédií v reálném čase z IP kamer. Jejím
hlavním cílem je vysvětlit teoretické základy přenosu v reálném čase přes počítačovou síť a
popsat vývoj nahrávacího systému. Tento nahrávací systém je určen převážně k nahrávání
přednášek ve školách. Práce obsahuje popis vývoje serverové nahrávací aplikace a webového
administračního rozhraní. Teoretická část vysvětluje témata spojená s přenosem médií
v reálném čase, počítačovými sítěmi a zpracováním multimédií, jako například real-time
streaming protokoly, kódování, komprese, síťová odezva, zahlcení sítě a další.

Abstract
This diploma thesis focuses on multimedia streaming from IP cameras. Its main goal is to
explain theoretical background of real-time streaming via computer networks, and describe
development of a recording system. This recording system is meant to be used mainly in
schools for lecture recording purposes. The thesis contains description on how a recording
server application and web-based management system were developed. The theoretical part
explains topics related to multimedia streaming, networking, and multimedia procesing,
such as real-time streaming protocols, encoding, compression, network latency, network
congestion and many others.

Klíčová slova
Streamování v reálném čase, nahrávání, real-time streaming protokoly, multimédia, mul
timediální komprese, kódování, sítě, RT P , R T C P , RTSP, SDP, AngularJS, avconv, libav,
live555, Java

Keywords
Real-time streaming, recording, real-time streaming protocols, multimedia, multimedia
compression, encoding, networking, RT P , R T C P , RTSP, SDP, AngularJS, avconv, libav,
live555, Java

Citace
Jiří Travěnec: System for Recording Video from IP Videocameras, diplomová práce, Brno,
FIT V U T v Brně, 2015

System for Recording Video from IP Videocameras

Prohlášení
Prohlašuji, že jsem tento semestrální projekt vypracoval samostatně pod vedením paní Mgr.
Jany Skokanové a že jsem uvedl všechny literární prameny, ze kterých jsem čerpal.

Jiří Travěnec
July 31, 2015

Poděkování
Tímto bych především rád poděkoval vedoucí mé diplomové práce Mgr. Janě Skokanové za
vstřícný a vřelý přístup a odborné vedení mé práce. Rád bych vyjádřil poděkování všem,
kteří mě podporovali v mém studijním úsilí, zejména rodině a přátelům. Také bych chtěl
poděkovat Markusovi za anglickou záchranu v hodině dvanácté.

By this, I would like to thank primarily to supervisor of my diploma thesis, Mgr. Jana
Skokanova, for helpful and pleasant approach, and expert and professional supervision. I
would like to express my gratitude to all people, who supported me during my studies.
Also, I would like to thank to Markus for an English help in the nick of time.

© Jiří Travěnec, 2015.
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brné, Fakulté in
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

Contents

1 Introduction 2

2 Networks and servers 4
2.1 Media layers 4
2.2 Host layers 7

3 Real-time streaming protocols 9
3.1 R T P (Real-time Transport Protocol) 10
3.2 R T C P (Real-time Transport Control Protocol) 11
3.3 RTSP (Real-time Transfer Streaming Protocol) 14
3.4 SDP (Session Description Protocol) 17

4 Encoding, compression, and codecs 19
4.1 Multimedia compression 20
4.2 Variable vs. Constant Bit-Rate 21

5 Analysis and design 24
5.1 Entity-based model 25
5.2 Use cases 27
5.3 The application design 29

6 Recording application 32
6.1 Threads 34
6.2 Recording scheduler 35
6.3 Recordbox 37
6.4 Filesystem watcher 40
6.5 Performance diagnostics 40

7 Web-based management 42
7.1 JavaScript-based client application 44

7.2 The user interface 45

8 Conclusion 49

A List of Figures 55

1

Chapter 1

Introduction

In 1893 great engineer Nikola Tesla publicly demonstrates radio and radio connection for
the very first time. [1] This event can be seen as a beginning of a new era, which was
about to change the world. It has been 122 years now, and the broadcasts went through a
lot of revolutions and even more changes. Nowadays, we can transmit multimedia content
all over the world, and moreover even communicate with other people over such distances
using video-calls.

Six billion hours of video is watched every month on You Tube, the largest video on
demand service in the world. [2] [3] That means 12 minutes for every user of the site every
day. When, in 2013, YouTube suffered a service outage for five minutes, the world internet
usage decreased by 40 percent. [4]

Another service called Skype brought world-widely available free video-calls, allowing
people from different countries to hear and see each other over the Internet. This was such
a change to people's life, that even a new verb was created. „To Skype somebody", which
means to have a video-call with a person. [5]

Just two small statements were pitched to show how important multimedia broadcasts
over computer network nowadays are. The streaming, as it is called, is growing area of
science and business, and this thesis tries to add some value to this field.

This thesis' main goal is to design and implement Internet Protocol (IP) video-camera
recording system to record and store mainly school lectures. I have been studying at two
universities, and both my faculties at Brno University of Technology (BUT) and Univer
sity of Eastern Finland (UEF) were using streaming and/or recording systems in order to
improve their studies. The University of Eastern Finland used video-conference units to
connect two separated campuses, which were situated in two different towns. The Faculty
of Information Technology B U T used their equipment to acquire lecture recordings and
provide them to students who could not attend the lectures or wanted to revise parts of
the subject. That was priceless help especially when revising algorithms or mathematical
procedures, which are hard to be described by text.

The topic of multimedia streaming over computer networks covers many separated fields
of study. Especially knowledge of computer networks, multimedia processing and real-time
communication is essential. Wi th that in mind, the theoretical part of this thesis brings to
mind how computer network works and acts, and most importantly how it can affect the
real-time communication quality. These issues are briefly discussed in the chapter 2.

2

The main topic of this thesis is streaming over computer networks. For such a purpose
many network protocols were invented. These protocols, such as the Real-time Transport
Protocol, the Real-time Transfer Streaming Protocol, or the Session Description Protocol,
are essential for the streaming. And therefore, the chapter 3 focuses on the real-time
streaming protocols, and extensively describes and explains its purpose, functionality and
how the whole system of protocols works.

Third important component of the streaming is the payload. The content of the stream
is the most important part for user, because that is what is delivered to him. From techno
logical point of view, topics about media bit-rate are closely related to the network issues,
and therefore it should be discussed. The chapter 4 explains why even constant bit-rate
of encoded stream is not precisely constant, and how does the encoding and coding work.
It focuses on encoding and decoding process, especially buffers, their tasks, and impact on
the overall system performance.

The next three chapters cover the practical part of this thesis, the design and imple
mentation of the recording system. As result of the implementation, a recording system
intended to record mainly school lectures from IP cameras will be created. This system
will run as a server application and based on a defined schedule it will record the streams
from cameras.

The chapter 5 starts with introduction to server applications, explaining how the server
applications act and behave, how to design a server application and what such a code has
to fulfil. A l l the necessary topics related to the analysis, such as database draft, use cases,
and system decomposition are explained in this chapter, leading to a necessary design of
the application.

After the chapter about analysis and design, the first part of the system, the server app
lication, is explained. The chapter 6 expands the design with practical matters, explaining
what technologies and tools will be used, and describing implementation-related problems
and solutions for them.

The seventh chapter [7] then describes how the management application for the system
was created. There is explained what technologies were selected for the development, and
how does the final application work and interact with user.

A l l these chapters together with the conclusion [8], which discusses the results, should
very well describe the whole problematic around multimedia streaming and recording the
streams. The field of subject is very wide, so some related topics were not described com
pletely as it was not necessary for this thesis.

„The best way to predict the future is
to invent it."

— Alan Kay

3

Chapter 2

Networks and servers

Every video broadcast is delivered between at least two points. We can assume that one of
these points, a source point, is a camera and the second one, destination, is some consumer
- e.g. a user's computer. Even if we have only two-point system, there always is medium,
that carries the data between these points. And that is computer network. Network is a
crucial part of the broadcast delivery and understanding the problematic is important part
of understanding whole world of multimedia broadcasts.

As our demands on the broadcast system increase, we might need to add some other
important elements to our system structure: recording devices, servers, balancers, caches,
etc.

International Organization for Standardization defines well-known The Open Systems
Interconnection model (OSI Model), which is a conceptual model that characterizes and
standardizes the internal functions of a computer network by partitioning it into abstraction
layers [6]. Every frame of audio or video we want to deliver or receive is affected by what
happens on all of these layers. To understand how we can deliver a video broadcast, we
must understand what happens with our multimedia data through these layers and how it
can affect the quality of final experience.

Moreover, above this application layer, there is another equally important part of the
delivery system, which is a video processing part. This segment is described further is
chapter 4, as it is not part of the network problematic. However, it is important to take it
into account, because it is an relevant part of the processing and delivering chain.

2.1 Media layers

Computer networks acts as a communication media in a video-delivery systems. The net
work connects a source device to a destination consumer using cables, switches, routers, and
many protocols are used to provide communication. For multimedia delivery in real-time
quality of service (QoS) and network performance is important aspect. It defines limitations
and possibilities for such a delivery system.

A throughput, latency, packet delay variation, and bit error rate are the most important
parameters of a computer network. [7] Every parameter affects the transmission in different
way and for every issue there is a different compensation mechanism.

Throughput represents amount of successfully delivered data per period [8]. It is limi
ted by capabilities of devices participating in network transmission such as client network

4

Application
layer

Transport
layer

Network
layer

PCM H.261 MPEG
Audio

MPEGI
Video

MP EG 2
Video

Motion 1
JPEG 1

i
R T P R T C P

UDP

IP

Data link Data link
layer Underlying LAN or WAN

teclmology
Underlying LAN or WAN

teclmology
Physical

layer

Underlying LAN or WAN
teclmology

Physical
layer

Figure 2.1: Protocol stack for multimedia services

cards, switches, routers etc. Usually it is measured in bits per second (bps) or packets per
seconds (pps).

This parameter outlines how voluminous data stream can be delivered through the net
work. Higher the bit-rate of the stream is, higher throughput we need to provide error free
delivery. A n effort to transmit more data per time that the throughput is, leads to network
congestion.

Network congestion occurs when a link or node is carrying so many data that its
quality of service deteriorates. Simply explained, it is a moment when a link carries more
than the destination node can process. That leads to buffer overflow, queue delaying, packet
loss or blocking of new connections. [9] If packets are discarded, a retransmission of packet
may come, which leads to even greater congestion.

This situation is very critical and if we take into account the fact, that media streams are
usually high bit-rate transmissions, it can easily lead to network congestion. Therefore, the
R T P Control protocol (RTCP) was invented to provide feedback on the quality of service.
The R T C P is discussed later in chapter 3.2.

Delivering a single real-time audio/video over any modern network will not probably,
even closely, lead to network congestion. But consider a device delivering a stream to, for
example, one thousand viewers. If we are delivering a stream with bit-rate of 3 Mbps to
1000 viewers, that is a bit-rate of 3Gpbs. And that is far behind capabilities of standard
modern network routers1. That is one of the reasons, why the multicast group communi
cation was invented.

1Assuming that standard network switch throughput is at maximum 1 Gpbs.

5

Multicast is a technique to deliver same data stream over an IP network to many
clients without need to send them more than once. Therefore, it is one-to-many or even
many-to-many group communication mechanism. It is widely used in multimedia streaming
and multipoint video-conferencing. Every node which wants to receive a multicast stream
sends so called join message which is processed by closest multicast node, e.g. switch. When
sender starts sending data to the multicast group, only one copy of data is sent and then
the switch provides duplication of packets and delivery to the joined nodes. That lowers
required throughput at specific points of network.

Unicast S Multicast

Figure 2.3: Graphical explanation of reduction of bandwidth usage with multicast.

Latency is one of the important parameters of computer network. It describes how
long it takes to deliver data from source node to the destination node. This parameter is
highly important for bidirectional communication (in our case e.g. video-conference), or
time-critical deliveries (e.g. Network Time Protocol). For unidirectional communication,
such as multimedia stream delivery, it could be ignored or solved by some mechanisms1.
Usual unit used to measure latency is seconds, respectively milliseconds or microseconds.
The time delay between sending and receiving an information is caused by many factors.
Big part of latency is produced by software delays in stream processing, which are exten
sively described in section 4.1, but even lower levels of OSI layer model produces latency
while processing every packet. These latencies are created by circuit latencies, processor
limits, queueing and other technical and electronic aspects.

1 If we assume that latency is stable.

6

Packet delay variation, or sometimes commonly called jitter, is a parameter that de
scribes a deviation of packet delivery from basic latency. The cause as well as consequences
are the same as mentioned earlier in the paragraphs describing latency. For example, delay
variation at hardware level can be caused by utilization of a switch; higher utilization leads
to higher buffers usage, which leads to increase packet delivery delay. This issue cannot be
easily ignored even in unidirectional communication, otherwise it would cause interruptions
in fluency of the data delivery. The solution is to introduce a receive buffer which is big
enough to cover the variation. Then the size of buffer (in meaning of time) must be added
on to the total latency of the whole network. Setting up a proper buffer can be a chal
lenging task; too big buffer can lead to unnecessary total latency, too low buffer to stream
interruptions.

Bit error rate (BER) characterizes amount of bits corrupted during transfer. That is
caused by transmission channel noise, interference, distortion, bit synchronization problems,
attenuation, wireless multipath fading, etc. [10], and so it is a hardware problem which can
never be totally solved and it always has to be taken into account. Every packet sent over
IP network is signed by Cyclic Redundancy Check (CRC) which is used to detect accidental
changes during delivery. If packet is corrupted, it is discarded and therefore not delivered
to the destination. This problem can be handled on fourth level of ISO, by transport layer
mechanisms, by e.g. resending the packet. These procedures are rather discussed in next
subsection.

2.2 Host layers

Layers of OSI model numbered four to seven are called host layers. Every layer has its
own task including providing transmission mechanisms on transport level, maintaining the
communication session, decoding, processing, presenting the delivered data and so on.

Layer four is called transport layer and its main task is to provide mechanisms to trans
fer data over network reliably. The most common protocols for this task are User Data
Protocol (UDP) and Transmission Control Protocol (TCP) . Both of these protocols have
different key aspect of work.

Transmission Control Protocol is a protocol firstly formally defined in the R F C 675 [11]
in 1974. Its task is to reliably deliver data over computer network. That means delivering
every piece of data in right order regardless the time it takes. For this purpose, it carries
many mechanisms. The most important one, when talking about real-time data delivery,
is re-send mechanism.

When data are transmitted using T C P , sending site maintains a timer from when the
packet was sent. If the packet is not delivered, it is automatically retransmitted after timer
has elapsed. This grants the delivery, but one lost packet can lead to suspension of the
whole transfer for perceptible time - hundreds of milliseconds. [12] Even if the packet is
delivered, but corrupted, the retransmission takes two times round-trip time, which can be
unacceptable delay in real-time data transfer.

Last fact that has to be mentioned, is the possibility of network congestion caused my
T C P retransmission mechanism, as mentioned in chapter 2.1. If the packet is dropped on a
router because of buffer overflow or similar reason, retransmission of the packet can make

7

the situation even worse.

User Data Protocol is a protocol formally denned in year 1980 in the R F C 768. [13]
It uses minimal and connectionless mechanisms which makes the whole transaction very
simple. It sends individual messages, so-called datagrams. We cannot claim this protocol
to be reliable, because it does not provide any mechanism guaranteeing the datagram to
be delivered, as well as two datagrams being delivered in right order.

In comparison with T C P , it lacks the re-send mechanism, so the data is either delivered
on first try or lost. This might seem incorrect, but in real-time delivery, time is key aspect
and packet loss can be handled on higher level, e.g. The R T P protocol.

The U D P datagram does not carry any sequence number, so it is impossible to detect
packet loss or packet re-order.

In 2000 The I E T F Signaling Transport working group defined Stream Control Trans-
missin Protocol, which has later, in 2007, been standardized in the the R F C 4960. [14]
This protocol should provide extended mechanisms especially for multimedia and stream
data deliveries like paralel independent delivery streams, multihoming, path selection, etc.
As of 2015, the protocol is not widely supported. Both Microsoft and Apple lack any
support, which makes it rather impractical to deliver media streams. [15]

8

Chapter 3

Real-time streaming protocols

The main task of the real-time protocols is to transfer certain data streams. These data
streams has to be related to some time-line, which describes its flow in time. The streams
are split into blocks, which are packed into packets and sent over IP network. There has to
be a timestamp attributable to every block of data.

The packets can be delivered over standard IP network using standard transport pro
tocols such as U D P , as mentioned in the previous chapter, but some additional attributes
must be carried in every packet, to ensure our purpose. One of the very basic information
that has to be described, is what kind of data is transmitted, specification of payload, es
pecially codec, bitrate, number of channels, resolution etc. Next, when a block of data in
received, it is necessary to identify, where does the block fit to, talking about temporal
ity. For such a purpose, every packet has to be equipped with a timestamp identifying its
sampling instant.

Also mechanisms to synchronize two or more data streams mutually (e.g. video and
audio stream from the same multimedia broadcast), to report quality of service are needed.
Most importantly, a protocol by which we can apply for stream delivery, which can describe
what data streams can be transmitted. Because such a functionality is rather complex, it has
been split into many separated protocols and RFCs . For data transmission, there is the R T P
(Real-time Transport Protocol), which also carries timestamps, payload description and
other related information to describe every block of data correctly. The R T C P (Real-time
Transport Control Protocol) provides fucntionality to report quality of service, synchronize
two or more streams. For establishing and controlling media session purposes, RTSP (Real
time Streaming Protocol), and SIP (Session Initiation Protocol), which are both text-based
protocols similar to H T T P (Hypertext Transfer Protocol), were invented.

In case we are transmitting a medium, which carries more than one track (e.g. video
and audio), then every track represents different data stream, and these tracks are sent
separately. When a client is receiving audio-video file with two tracks using the RTP/ the
R T C P , two separated sessions will be created with the R T P and the R T C P communication
for each one. That means it will establish four separated connections. This allows the client
to receive only the streams, it really needs for playback.

IP Header U D P Header R T P Header Payload
(20 bytes) (8 bytes) (min. 12 bytes) (variable)

Table 3.1: Structure of the VoIP packet (as in IPv4)

9

3.1 RTP (Real-time Transport Protocol)

The Real-time Transport Protocol (the RTP) is a network protocol for delivering audio and
video over IP networks. The R T P is used extensively in communication and entertainment
systems that involve streaming media, such as telephony, video teleconference applications,
television services and web-based push-to-talk features. [16]

It was firstly published in 1996 as the R F C 1889 [17] and later replaced by the R F C 3550 [18]
in 2003. The protocol became de-facto standard for local network based real-time end-
to-end video and audio streaming as it is nowadays supported or used by most of the
multimedia based devices.

Because the R T P is usually carried by the U D P , it has to provide some additional
mechanisms ensuring packet order, packet loss detection, and a way to correctly detect
which packet fits what frame of delivered stream. And therefore, the R T P carries two
main synchronization mechanisms - packet synchronization (sequence number) and stream
synchronization (timestamp, SSRC, C S R C identifiers).

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

V P C C C M P T Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers
(list 0 to 15 items; 4 bytes each)

Table 3.2: Structure of the R T P header, according to the R F C 3550

The packet synchronization is done in very similar way as in T C P . Packet header holds
16-bit sequence number which is incremented by one for each the R T P data packet sent,
and it may be used to detect packet loss [18]. The R F C 3550 does not describe any action
in case of packet loss and it is left to the higher level of data processing to resolve such
a situation. A loss of one packet, in for example audio stream, can lead to imperceptible
lag of a fraction of second, which can be made unnoticeable to user with suitable error
concealment algorithms. The start number should be random to make plaintext attacks on
encryption more difficult.

The task of the R T P is to carry a single media stream through IP network. For such
a purpose, we must split the media stream into packets and send them over network. Size
of single IP packet depends on network configuration1, so depending on size of the packet
and kind of media, which is transmitted, one packet can carry more than one frame or only
part of the frame.2 Because one packet very often does not carry one whole frame, the R T P
provides additional synchronization mechanism to define what data fits what frame. For
such a purpose, every packet carries timestamp.

Timestamp is a 32-bit number, which describes the sampling instant of the first frame in
the R T P data packet3. The sampling instant must be derived from a clock that increments

^ T U , jumbo packets
2What affects the size of a frame is described in section 4.2
3 In case there is more than one frame in data packet, the timestamp describes the first one, and therefore

the oldest one. The sampling instant of the other ones can be calculated.

10

monotonically and linearly in time to allow synchronization and jitter calculations. [18] The
clock rate varies depending on payload type, e.g. 8000 Hz, 44100 Hz, 90000 Hz etc. The
initial value should be random, as for the sequence number.

Several consecutive data packets will have equal timestamps if they are (logically) ge
nerated at once, e.g. belong to one video frame. [18]

As mentioned earlier, every media stream is carried by separated the R T P connection.
The R T P timestamp from different media streams usually advance at different rates as well
as they have different (random) offset. Therefore, although these timestamps are sufficient
to reconstruct the timing of a single stream, directly comparing the R T P timestamps from
different media is not effective for synchronization. For such a purpose, the R T C P contains
synchronization between the R T P timestamp and so-called wallclock. Wallclock represents
real time, usually provided by N T P (Network Time Protocol). This synchronization me
chanism is described in chapter 3.2.

The R T P packet header also carries synchronization source identifier, which identifies
source of a stream. It is a random 32-bit number which should be globally unique within
an the R T P session [18]. This number is called SSRC Identifier and it is also used in the
R T C P protocol to refer the R T P stream.

3.2 RTCP (Real-time Transport Control Protocol)

The Real-time Transport Control Protocol is a sister of the R T P . Its basic functionality and
packet structure is described together with the R T P in the R F C 3550 [18]. Other RFCs
then extend this protocol and describes other functionalities.

the R T C P provides out-of-band statistics and control information for an the R T P ses
sion. It partners with the R T P in the delivery and packaging of multimedia data, but does
not transport any media data itself. The primary function of the R T C P is to provide feed
back on the quality of service (QoS) in media distribution by periodically sending statistics
information to participants in a streaming multimedia session. [19] The bandwidth usage
is generally much lower, and it should not exceed 5%x [19] of total session bandwidth.

The R T C P is usually carried over the U D P . The speed of delivery is not that crucial as
of the R T P , but since the R T C P includes information about R T C P packet loss (last SR),
a packet loss can be compensated. Typically, for the R T P data stream an even-numbered
U D P port will be used, and for the R T C P communication will be establish on the next
higher odd-numbered port. [20]

The main task of the R T C P is to deliver regular reports of quality of service between
sender and receivers. Two basic kinds of reports are distinguished: senders report (SR)
and receivers report (RR). Both these reports carries different information and so they
have slightly different packet structure. The basic idea behind the packet structure is the
same - the R T C P packet carries the R T C P header, which contains SSRC of the packet
sender, then sender info (only in case of SR), followed by zero or more reception report
blocks, one for each of the synchronization source.

Every statistical information in the report is valid at one precise moment described by
timestamp, that is part of the report.

The sender report consists of sender info and reception report blocks. The sender info

l rThe RTCP packets are sent regularly and its frequency does not depend on the RTP bandwidth.
Number 5% is used only too illustrate the difference.

11

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

V=2 P RC PT=SR=200 Length

SSRC of sender

SSRC #1 (SSRC of first source)

N T P timestamp, most significant word

N T P timestamp, least significant word

RTP timestamp

sender's packet count

sender's octet count

SSRC #1 (SSRC of first source)

fraction lost cumulative number of packets lost

extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

SSRC #2 (SSRC of second source)

profile-specific extensions

Table 3.3: Sender Report R T C P packet

contains 64-bit N T P timestamp, the R T P timestamp, sender's packet count and sender's
octet count. N T P timestamp indicates the wallclock time, which, in combination with
timestamps returned in reception reports, can be used to measure round-trip propagation.
The R T P timestamp holds 32-bit number, which represents timestamp of the stream at
the same time as N T P timestamp defines. These two timestamps can be used together
to calculate intra- and inter-media synchronization. [18] Sender's packet count and octet
count represents number of packets and octets (bytes) sent by sender.

Reception report blocks consists of source identifier (identifying source to which the in
formation in this reception report block pertains), fraction lost (the fraction of the R T P data
packets from such as source lost since previous SR or RR) , cumulative number of packet
lost (the total number of the R T P data packets lost since the beginning), interarrival jitter
(an estimate of the statistical variance of the R T P data packet interarrival time, measured
in timestamp units and expressed as an unsigned integer), and other statistical information.

The receiver report consists only of header and reception report blocks. The meaning
of each statistical information stays the same as for sender report. Last SR timestamp
reports and delay since last SR informs when the last sender report was received.

12

O l 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 9 0 1 2 3 4 5 6 7 8 9 0 1

V=2 P RC PT=RR=201 Length

SSRC of packet end er

SSRC #1 (SSRC of first source)

fraction lost cumulative number of packets lost

extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

SSRC #2 (SSRC of second source)

profile-specific extensions

Table 3.4: Receiver Report R T C P packet

13

3.3 RTSP (Real-time Transfer Streaming Protocol)

The Real-time transfer streaming protocol, defined in the R F C 2326 [21], is a session initia
lization and controlling protocol. Its design is similar to H T T P protocol; but in comparison
with stateless H T T P , RTSP has a mechanism to provide state - a session identifier. The
default transport layer for the RTSP is both T C P and U D P . Usually, T C P is preferred,
and as opposed to H T T P , implementations, where whole communication is performed in
one T C P session, can be found.

In the RTSP, every stream is identified by an U R L 1 . Two schemes rtsp, and rtspu are
reserved. The rtsp requires that commands are issued via a reliable protocol (TCP) , and
the rtspu refers to an unreliable protocol (UDP). [21] Default port is 554 [21], alternatively
occasionally 8554 is used. [22]

As another difference from H T T P , not only client is able to initialize the communication,
but even server can send commands to client 2 For RTSP, every message is acknowledged
in H T T P style, e.g. with 200 O K for success, or 402 Payment Required for some kind of
client problem, or even 500 Internal Server Error in case of server problem [21].

client
RTSP

random port

(i)

(3)

server
RTSP
port 554

OPTIONS

200 OK

R T S P / 1 . 0 200 O K
D E S C R I B E , S E T U P , T E A R D O W N , P L A Y ,
P A U S E , G E T _ P A R A M E T E R

DESCRIBE

200 OK

R T S P / 1 . 0 200 O K
Content -Type: app l i ca t ion / sdp

m = a u d i o 0 R T P / A V P 14
b=AS:128
b = R R : 0
a=rtpmap:14 M P A / 9 0 0 0 0 / 2
a=cont ro l : r t sp : / / . . . / t r a c k I D = 0
m = v i d e o 0 R T P / A V P 96
b = R R : 0
a=rtpmap:96 H264/90000
a=cont ro l : r t sp : / / . . . / t r a c k I D = l

(2)

(4)

Figure 3.1: RTSP: OPTIONS and D E S C R I B E request together with responses.
(The SDP response carries two streams; complete URL addresses were truncated.)

The RTSP controls the session using commands, e.g. SETUP, PLAY, PAUSE, TEAR-
DOWN etc. The list of commands supported by server can the client acquire by sending
request OPTIONS to a server. This is usually the first message sent in RTSP communica-

e.g. rtsp://media, example, com:554/twister/audiotrack
2OPTIONS, GET.PARAMETER, ANNOUNCE, REDIRECT. [21]

14

tion and the R F C describes, that it should be used.
The initialization of communication between a client and a server is shown on figure 3.1

including real, but simplified responses. For demonstration purposes, a communication
between VideoLAN V L C player in role of both server and client was captured and illustrated
in figures 3.1 to 3.4 showing the whole RTSP communication also with R T P and R T C P
messages included.

(r.)

(7)

SETUP trackID=0

S E T U P r t s p : / / . . . / t r a c k I D = 0 R T S P / 1 . 0
Transport : R T P / A V P ; unicast;
c l i en t -po r t=55036-55037

200 OK

< R T S P / 1 . 0 200 O K
Transport : R T P / A V P / U D P ; unicast;
client-port=55036-55037; server_port=56423-
56424 ; s s r c = 6 A 7 8 1 E 7 9 ; mode=play
Session: D 2 5 d 9 3 d e f 7 d 4 d 3 a a ; t imeout=60

SETUP trackID=l

> S E T U P r t s p : / / . . . / t r a c k I D = l R T S P / 1 . 0
Transport : R T P / A V P ; unicast;
c l i en t_por t=47286-47287
Session: b 2 5 d 9 3 d e f 7 d 4 d 3 a a

200 OK

< R T S P / 1 . 0 200 O K
Transport : R T P / A V P / U D P ; unicast;
client_port=47286-47287; server_port=56424-
56425 ; s s r c = 7 7 E 2 B 1 9 2 ; mode=play
Session: b 2 5 d 9 3 d e f 7 d 4 d 3 a a ; t imeout=60

(0)

Figure 3.2: RTSP: Two S E T U P requests together with responses.

After receiving the list of commands server supports, DESCRIBE together with U R L
is asked. As response, the description of a presentation or media object identified by the
request U R L is returned. For this purpose, the Session Description Protocol is typically
used. The server has to describe all media initialization information.

A n example of RTSP DESCRIBE response is shown on figure. 3.1 Here, two media
streams (tracks) are described. The first one is audio payload type 14 (MPA with R T P
clock 90000) with bit-rate 128 kbps, identified by trackID=0. The second one, identified
by trackID=l, is a video stream with payload type 96 (dynamic payload, H.264 with clock
90000). More details about the SDP can be found in chapter. 3.4

Upon receiving a list of available media streams, the client can start requesting the
streams. That is done by calling S E T U P to server, separately for every stream (track) that
the client wants to receive (figure 3.2 (5&7)). As part of the negotiation, client issues trans
port method, broadcast method, destination ports. The range of ports in fact represents
couple of R T P and R T C P ports, lower and even for R TP , higher and odd for R T C P . A
client can issue a SETUP request for a stream that is already playing to change transport
parameters.

15

client server
RTCP RTP RTSP RTSP RTP RTCP

55037 55036 random port port 554 56424 56425

(9) PLAY

P L A Y r t s p : / / . . . / R T S P / 1 . 0
Session: b 2 5 d 9 3 d e f 7 d 4 d 3 a a
Range: npt=0.000-

>

200 OK (10)
<

(10)

R T S P / 1 . 0 200 O K
R T P - I n f o : u r l = r t s p : / / . . . / t r a c k I D = 0 :
seq=61493; r tptime=2220833844,
u r l = r t s p : / / . . . / t r a c k I D = l ; seq=24939; r tp-
time=2220833844
Range: npt=259.444522-
Session: b25d93def7d4d3aa;timeout=60

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

RTCP

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

RFC 2250 MPEG-I
<

Figure 3.3: RTSP request P L A Y with response and start of transmission of R T P and R T C P
packets.

(The RTP connection is established just after RTSP packet number 10.)

As response (figure 3.2 (6)), the server confirms transport method, broadcast method,
cliend destination ports, and informs client about server source ports and SSRC of R T P
stream. Most importantly, the server issues a new unique session identifier for the client.
Starting from response (6), the communication is turned into stateful communication by
attaching the session identifier to every request, and response.

When all the tracks are ready, a P L A Y request can be sent. The session identifier,
attached to the request, clearly identifies the client, and therefore the tracks, which were
set up. A timestamp describing a start point as well as end point for the stream broadcast
can be attached. Just after receiving the request, the server will start delivering the tracks
via R T P on previously agreed ports.

For two streams issued by RTSP, together 5 ports has to be used for both client and

1G

RFC 2250 MPEG-I

<
RFC 2250 MPEG-I

<
RFC 2250 MPEG-I

<
RFC 2250 MPEG-I

<-

(11) TEARDOWN
>

T E A R D O W N r t s p : / / . . . / R T S P / 1 . 0
Session: b 2 5 d 9 3 d e f 7 d 4 d 3 a a
Range: npt=0.000-

200 OK (12)
<-

Figure 3.4: Termination of R T P / R T C P transmission by RTSP command T E A R D O W N .

server. One for RTSP, two for R T C P and R T P for every stream. Even though the com
munication is always started by client, the R T P broadcast is established in direction from
server to client. This is very unpleasant situation in case when the client is behind fire
wall or Network Address Translation (NAT). In such a case the R T P connection cannot be
established.

On figure 3.3 an example of PLAY request together with R T P and R T C P traffic is
outlined. Due to simplicity, only on RTP , and R T C P stream are shown.

The last important command to demonstrate simple RTSP session is TEARDOWN
request. After this request, all stream broadcasts related to this session are terminated and
the RTSP communication itself is closed.

3.4 SDP (Session Description Protocol)

The Session Description Protocols is a standardized protocol described mainly in the
R F C 4566 [23], and its main and only task is to, as the name suggests, describe sessions.
It is commonly used to describe multimedia in RTSP session, but it is meant to be generic.

The content is text-base dictionary of keys and values. For every line in the content,
there is a key and a value in format key = value. The key, so-called type, is a case-significant
character. The Session Description Protocol carries multiple information as shows table 3.5.
For every SDP, there is one or more time descriptions, and zero or more media descriptions.

The Session Description Protocol is used when describing the media during D E S C R I B E
method of RTSP communication. It is crutial to identify what tracks are available for broad
cast, and kind of media do these tracks carry. The media description informs about pay load
type (m=audio 0 RTP/AVP 14, where 14 means M P E G Audio), media bitrate (b=AS:128),
information about clock rate (a=rtpmap:14 MP A/90000/2, where 90000 represents clock
rate of 90 kHz) prior to the stream receiving (see table 3.5).

The R T P can carry many pay load types, but only few have their own pay load num
ber [24]. The number represents encoding name, media type, clock rate and number of

17

channels. For example pay load number 14 represents audio encoded with M P A (M P E G
Audio), with clock rate 90000 Hz. Numbers 96 to 127 are dynamic profiles. These profiles
do not have any specific information about the media carried, so if R T P with payload type
96 is received, it is almost impossible to resolve, what is inside the packets. Because of that
SDP is crucial, because it is the only source which can provide information about media
content of the stream.

t Example value Description

v= protocol version 0

0 = originator and session identifier

s= session name Unnamed
i=* session information N / A

u=* URI of description

e=* email address

p=* phone number

c= connection information IN IP4 0.0.0.0

b=* bandwidth information lines

(one or more time descriptions)

t= time the session is active 0 0
r=* zero or more repeat times

z=* time zone adjustments

k=* encryption key

a=* session attribute lines

(zero or more media descriptions)

m= media name and transport address audio 0 R T P / A V P 14

i=* media title

c=* connection information

b=* bandwidth information lines AS:128

b=* RR:0
k=* encryption key

a=* media attribute lines rtpmap:14 MPA/90000/2

a=* control:rtsp://192.168.19.1/test01/trackID=0

m= media name and transport address audio 0 R T P / A V P 32

i=* media title

c=* connection information

b=* RR:0
k=* encryption key

a=* media attribute lines rtpmap:32 MPA/90000

a=* control:rtsp://192.168.19.1/test01/trackID=l

Table 3.5: A n example of Session Description Protocol structure.
(Types marked with * are optional. If example value is empty, it was not even sent as part of the SDP.)

18

Chapter 4

Encoding, compression, and codecs

A codec is a computer program, whose task is to transform a media signal (e.g. a signal
from video camera) to a binary code. For such a purpose, it defines an encoder, and a
decoder. The task of encoder is to code the media signal to a binary code, while task of
the decoder is reverse.

There is a big variety of codecs [25] and every codec has different main goal as well as
advantages and disadvantages. This chapter discusses the most important aspects of audio
and video codecs related to real time streaming and explains the impact of such properties
on the whole streaming chain.

The source data for codec is an uncompressed stream. This stream has always constant
bit-rate, which is defined by sampling period or resolution. Tables 4.1 and 4.2 outline
bit-rates for different uncompressed video and audio streams. Such a high bit-rates can be
unacceptable for transmission over network, so the data are compressed using a selected
compression algorithm.

Resolution 30 FPS, 8b 60 FPS, 10b 120 FPS , 16b

H D (1920x1080) 1.5 Gbps 3.7 Gbps 12.0 Gbps
4K (3840x2160) 6.0 Gbps 15.0 Gbps 48.0 Gbps
8K (7680x 4320) 24.0 Gbps 60.0 Gbps 191.0 Gbps

Table 4.1: Bit-rate of uncompressed video
(with different resolution, frame-rate and colour depth [26])

Signal 16 b 24 b 32 b

mono, 8000 Hz 128 kbps 192 kbps 256 kbps
stereo, 44,1 kHz 1411 kbps 2117 kbps 2822 kbps
5.1 channel, 192 kHz 18.4 Mbps 1411 kbps 36.9 Mbps

Table 4.2: Bit-rate of uncompressed audio
(with different sample rate, bit depth and number of channels)

19

4.1 Multimedia compression

A compression is a process, which can be part of the codec encoder, which, using a
special algorithm, encodes the information with fewer bits than the original representation
is. [27]. Compressing can be lossy, which means that the quality of original information
is degraded, or lossless. In case of lossless compression, the reduction of size is done by
identifying statistical redundancies and eliminating them.

Compression of data is not a trivial process and the time needed to compress a block of
data is perceptible. I T U G.114 explains that, in case of audio signal, if the latency „mouth-
to-ear" is kept below 150 ms, most of the users would not be significantly affected. [28]
Moreover, Sven Ubik and collective adds, that for some special purposes even lower latency
can be required. They state that the limit for live music cooperation is 35 ms. [29] In
some special cases, like unmanned aerial vehicle video transmission, very low latency can
be required. That is a reason why a lot of attention is paid to the process and why in the
real-time media broadcast, both compressed and uncompressed data are used.

As an example, let us pick an H.264 codec, which is commonly used codec for real-time
streams. As Schreier and Rothermel [30] state as well as Cast, Inc. [31] explains, the latency
of H.264 codec can vary from fractions of Tframe to units of Tframe- Tframe represents
multiples of frame periods and for example the value for 30 FPS video is 33.3 ms, and for
60 FPS , it is 16.6 ms. The total delay of the processing (algorithmic encoder latency
as called in figure 4.1) can go up to 200 ms, for example when frame-based processing
together with two pass encoding is used. That is far from being acceptable for real-time
communication, especially bidirectional.

Encoder

Block
Caputre

D

Frame
Reordering

Encoder
Processing

/)

Video
Source

Algorithmic Encoder Latency

Encoder
Buffer Network

A, ,

Decoder
Buffer
Dd

Transmission Latency

Decoder

Decoder
Processing

Dd

proc

Block
Output

Display

Algorithmic Decoder Latency

Figure 4.1: Compression video transmission system delay sources [30]

For real-time streaming purposes, one pass or even special variants of codecs are used
to minimize the compressing algorithm latency. For example for audio codec A A C (Ad
vanced Audio Coded) a low delay variant, called A A C - L D , was derived [32]. To achieve
higher frame-rates, quality and lower latencies, different hardware accelerated codecs, such
as F P G A / A S I C units [29] or G P U acceleration [26], are being developed.

The most perceptible latency arises in the encoder and decoder buffers. As men
tioned earlier in the previous section about codecs 4.2, even constant bit-rate streams does
not carry all the frames with exactly the same size. As a consequence of that, the de
coder buffer has to balance the incoming packets/frames. The amount of buffering required
depends on the bit-rate and the averaging period of the stream. To make sure the de-

20

coder does not run out of data during playback, the decoder buffer must store all the data
corresponding to one complete averaging period. [31]

The encoder buffer is introduced with similar purpose; it buffers frames or part of
the frame during the compression. Depending on compressing methods (e.g. Intra Co
ding, IP Coding, Frame- CBR Intra Refresh Coding) the size can vary around 0.2 to 0.5
Tframe- Different situation is when IPB mode is used. Because B-frames are predicted
from both previous and forward frames, the buffer has to store more frames for the calcu
lations (2 frames for IBP-mode, 3 frames for IBBP-mode). This method is definitely not
suitable for time critical encoding.

By using these optimization techniques, latencies around 20 ms for 30 F P S video and
10 ms for 60 FPS video can be reached.

Another solution, how to decrease latency of signal processing, is actually not processing
it. The R F C 4175 [33] describes how an uncompressed video can be delivered using
the R T P . The obvious advantage is the omission of the whole compression process, and
that means saving time. Most importantly, raw uncompressed media stream will have
truly constant bit-rate, and therefore the buffers can be nearly omitted as well. This way,
latencies around 3 ms can be achieved using special hardware units. [29]

The down-side of this approach are certainly the bandwidth requirements. As the ta
bles 4.1 and 4.1 show, the bit-rates of standard uncompressed media are high. Despite this
fact, this approach can be used in local networks and even for international broadcasts. As
Sven Ubik presented in May 2015 at the C E S N E T conference, they established a connection
between Prague and London using uncompressed 4K video and audio with latency lower
than 35 ms. [34] [29]

A l l above described problems are important mainly in bidirectional communication. In
case of unidirectional communication, most of the problems can be covered by using proper
balancing buffers.

4.2 Variable vs. Constant Bit-Rate

A compression algorithm produces new data stream with different bit-rate based on input
parameters. The streams can vary in the meaning of bit-rate variability. Either the bit-rate
is constant within fixed amount of time, or the bit-rate varies from minimum to maximum
depending on the media content of the stream and compression algorithm. Sending frames
with variable data size over computer network has multiple issues discussed in this section.

Usually, the new stream is coded with variable bit-rate (V B R) 1 . The advantages of
V B R are that it produces a better quality-to-space ratio compared to a constant bit-rate
file of the same data. The bits available are used more flexibly to encode the sound or video
data more accurately, with fewer bits used in less demanding passages and more bits used
in difficult-to-encode passages.

The disadvantages are that the encoding may take more time, as the process is more
complex, and that some hardware might not be compatible with V B R files. Variable bit-
rate may also pose problems during streaming when the instantaneous bit-rate exceeds the

^ B R is available in Opus, Vorbis, MP3, W M A , A A C , MPEG-2 video, MPEG-4 Part 2 video, H.264
video, and many others

21

data rate of the communication path. [35]
The figure 4.2 shows a 1400 frames long cut of a movie. The part from frame 0 to 480

is ordinarily dynamic movie scene, then a dark cut (frames 450 - 480) is noticeable. From
frame 480 a motion scene with a lot of visual changes between frames starts and continuous
until frame 970. In this part, the bit-rate increases rapidly, which is clearly visible on the
plot.

120000

100000

| 80000

n 60000 w

E
,2 40000

II
III lllll

i I 11 I hill .III III lllll II ill
lllll

III iii • i lllll: [ill iikttuiiy 0 200 400 600 800 1000 1200 1400
Frame number

Figure 4.2: Variable bit-rate encoded file
(I-frames coloured red, P-frames blue, B-frames green.)

Constant bit-rate (CBR) is the second method how to compress data. As the name
states, the target bit-rate is constant. This is rather misinterpretation, because in the
real world, even this method has some obstacles. [31] Firstly, most coding schemes, such
as Huffman coding or run-length encoding, produce variable-length codes, making perfect
C B R difficult to achieve. [36] Without using such a coding, it is hard to achieve a great
compression ratio.

Secondly, the C B R is calculated always within fixed number of packets or seconds. [31]
Modern compress algorithms use I-frames, P-frames and B-frames. As figure 4.3 shows, the
data size difference between I-frame, and P-frame as well as B-frame is enormous. That
causes that transferring a I-frame over computer network takes more time, than delivering
much smaller B-frame. And therefore the bit-rate is locally inconstant, which means that
receiver buffers must be used as well.

22

60000

50000

1 40000

N 30000 w
0)

E

2 20000

10000

- 1 1 1 1 1 1.1 1 llllll 1 1 1 111 11 1 II ill... II 1 llllll
600 610 620 630

Frame number
640 650

Figure 4.3: Difference in size between 1-, P-, and B-frames
(I-frames coloured red, P-frames blue, B-frames green.)

660

600 800
Frame number

(a) Converted as CBR 1 Mbps with 1000 kB buffer

600 800
Frame number

(b) Converted as CBR 1 Mbps with 5 kB buffer

Figure 4.4: The same stream as on figure 4.2 converted using avconv
(Pay attention to the y-axis scale.)

1400

1400

23

Chapter 5

Analysis and design

Server applications are subset of standard applications with some additional principles.
One of the key aspects of server applications is that they usually do not interact with users
directly, using graphical user interface and the like. Usually they are based on client-server
architecture, and for interaction with users and other systems, network communication is
used.

Server applications act as services — they are controlled by start/stop requests and
upon start they persistently run in background and serve requests. These requests typically
represent task and are identified by some unique name, e.g. P H P scripts identified by URI
in case of web-server. These tasks are launched according to the requests.

Typical feature of server applications is that they can serve more or many concurrent
request and provide multi-user environment. They usually do not provide a control panel
itself, so the administration is done using configuration files or separate graphical user
interface. To provide ability to observe and examine the application behaviour, log files are
typically provided. The log files provide extended summary of all actions taken with time
relevant information, all error messages, and other information.

Server application has to be stable and error free program with one important feature:
It has to be able to solve every error state, that can appear, itself. That means without
asking user what action to take, e.g. by error message popup, and most possibly without
shut-downing the whole service.

The application described in this thesis is meant to be a server application, so, with
that in mind, it will be designed and developed. On figure 5.1 the very basic idea of how
the application works is shown.

schedule & manage record & store

Figure 5.1: The basic idea of the recording system structure

The server application will be able to run as a service as a part of an operating system.

24

For this purpose it will be started using command start and it will provide a way how to
stop it using command stop. This behaviour is common in Unix-based systems as well as
in all Microsoft Windows operating systems. Further more, it can provide shell commands
to check the status of the service, and, if needed, restart it. Some services provide configu
ration check during start-up, which is a great feature.

The application will run independently and perform tasks. These tasks will be defined
as scheduled items. The items will tell what to record, when to start it, and when to finish
the recording, as well as where to store it, and other relevant attributes needed to perform
the task. The tasks will be stored in suitable storage, e.g. database or similar. More details
about recording tasks can be found in next section [5.1].

For communication as well as input/output operations standard network communi
cation will be used. The server application will receive multimedia streams from source
cameras using standard protocols such as RTSP [3.3], R T P [3.1], R T C P [3.2]. Concur
rency has to be provided, the application has to be able to execute more than one task at
the time, which means to record two or more streams.

The management of the recording tasks and the application will be done using a
graphical user interface, which will interact with the application using network protocols.
The interface will provide suitable environment for user to perform administration tasks,
as enumerated in section 5.2.

Moreover, the application will provide logging and will be able to solve every error state,
especially network communication defects and problems.

5.1 Entity-based model

The state of the system and all data are stored in a database. These state and data are
represented by entities. List of entities used in the system is shown in table 5.1. The whole
system is entity-based, which means that every action is connected an entity. For example
a start of recording is connected to entity recording.

R E C O R D I N G A server which is able to a record stream. This server represent
S E R V E R one instance of running server application.

hostname [PK] Unique hostname of the server.

title User-friendly title.

address Net work-valid address used for communication.

S T R E A M E R A source of media stream, which can be recorded.

id [PK] Unique id of the streamer.

title User-friendly title.

uri Valid uri including scheme allowing of the stream
(e.g. rtsp://10.2.0.52/media/videoOl).

Continued on next page

25

Table 5.1 - Continued from previous page
E V E N T One category for recordings, e.g. a school subject, room, or

time event, and so on.

id [PK] Unique id of the recording.

title User-friendly title.

folder Destination folder where recording files will be stored.

startDate Time boundary for recording. No recording will start sooner.

endDate Time boundary for recording. No recording will stop later.

isEnabled Enabled/disabled flag.

R E C O R D I N G One item in the schedule. A recording is a task, that the server
application executes.

id [PK] Unique id of the recording.

eventld [FK] Foreign key to E V E N T .

streamerld [FK] Foreign key to S T R E A M E R .

serverHostname [FK] Foreign key to S E R V E R .

title User-friendly title.

folder Destination folder where recording files will be stored.

startDate Moment, when the recording will start.

endDate Moment, when the recording will stop.

isEnabled Enabled/disabled flag.

status Enumeration describing status of the recording (e.g. ok,
warning, error).

R E C O R D E D F I L E Represents result of recording, a multimedia file stored in stor
age.

id [PK] Unique id of the file.

recordingld [FK] Id of the recording the file is related to.

relativ eFilename Filename of the file withing the recording folder.

fileType Enumeration describing type of the file (e.g. video, audio,
log file).

title User-friendly title.

description Additional description of the file.

isPublished Expresses wherever the file is accessible by users.

Table 5.1: List of entities present in the system

26

5.2 Use cases

Defining what the application has to be able to do and what kind of request it has to be
able to respond on, is crucial for the design. These actions or requests are defined by use
cases and represent users' needs.

Use cases can be written in many ways, e.g. Cockburn style or using U M L diagrams and
so on. For our purpose, only simple table with list of actions, actors and descriptions will
be sufficient to give enough data to start the design of the application. The table contains
very basic use cases connected to the administration of the server. The actions are always
related to an entity (see [5.1]). For readability reasons, the actions are aggregated in groups
with the similar relationship to the entity and same actor.

These use cases describe actions how user or administrator can interact with man
agement (only for the administrator role) or with file browser (the user role). Note that
administrator role can be in fact an extension of role user. The actions such as install server
or configure server are omitted, because they are not related to normal operation of the
system.

Entity: R E C O R D I N G S E R V E R

Actions: A D D , EDIT, D E L E T E

Actor: Administrator

Description: In case when the administration run separately from recording server
application, the administrator must have a possibility to connect to a
selected server and manage it. That is done by adding the server into
list of managed recording servers.

Entity: S T R E A M E R (Recording source)

Actions: A D D , EDIT, D E L E T E

Actor: Administrator

Description: Administrator can add a new recording source, e.g. an IP camera or
other R T P relevant source, to the system. The ability to edit and delete
such a record had to be provided.

Entity: E V E N T

Actions: C R E A T E , EDIT, D E L E T E , E N A B L E / D I S A B L E

Actor: Administrator

Description: Creating new event described by start and end date, folder to store data,
and title. Abili ty to edit, delete and disable/enable the event. Disabling
the event will cause disabling all its recordings.

27

Entity: R E C O R D I N G

Actions: C R E A T E , EDIT, D E L E T E , E N A B L E / D I S A B L E

Actor: Administrator

Description: Creating new scheduled recording request defined by start and end date,
source streamer, destination server. The server will start recording the
source at the start date and will continue until the moment described
as end date. Every recording belongs to an event.

Entity: R E C O R D I N G S E R V E R

Actions: M O N I T O R STATUS, V I E W L O G S

Actor: Administrator

Description: Giving the administrator ability to monitor server's status, see the C P U
load of the recordings, used storage space, and view recording logs.

Entity: R E C O R D E D FILES

Actions: D E L E T E , D E S C R I B E , P U B L I S H

Actor: Administrator

Description: After a recording, administrator must be able to delete, describe and
publish recordings. Action describe means that some additional infor
mation can be attached to the recording; action publish means that the
recording will be released for user's (public) use.

Entity: R E C O R D E D FILES

Actions: V I E W

Actor: User

Description: Giving the user a possibility to view recorded and published files.

Table 5.2: List of basic use cases in the management system

28

5.3 The application design

In the previous three sections, the basic design was described. Three separated parts were
discussed: the logic of the server applications, the entities in the system, and the user use
cases. This analysis leads to detailed scheme of the system:

DISTRIBUTION

broadcast & view

USER INTERFACE SERVER APPLICATION MULTIPLE SOURCES

1
•

stream media

1
•

stream media
•

stream media schedule & manage scheduler & recordboxes stream media

Figure 5.2: The advanced idea of the recording system structure

The figure 5.2 is virtually extension of the scheme shown on the figure 5.1. As mentioned
earlier, the application requires file storage and database to store data. So, a new block
representing the storage was added to the scheme. The database is required for every part
of the system, whilst the file storage is more private. The database is used to store entities.
As shared storage for all the components of the system, it is highly utilized.

On the other hand, the file storage is used to store video recordings and other files.
Every server has its own storage, which is not shared between the servers. Only one server
at the time writes to its own file storage, so no concurrency issues can appear. The data
should be stored securely1 and accessed only via services, that can provide authorization
and authentication, e.g. well-secured static content web server.

Nothing new was introduced about the user interface. The management, as it can be
called as well, will be an application providing summaries, forms and like to administrate
the system. Analysis of its parts and implementation were left for separate chapter [7].

From what we can say now, the server application will consist of two the most important
parts: scheduler and so-called recordboxes. The scheduler will be the part of the system
responsible for timing the recordings and starting as well stopping the recordings. The
information about timing will be fetched from the database. The scheduler has to handle
all time-related problems to be able to work perfectly. Detailed analysis and implementation
description can be found in section 6.2.

A recordbox, as it is called in this thesis, is second the most important part of the
recording application. Its task is to provide functionality to record the broadcast. It will

1Keep on mind, that most recordings are sensitive data strictly protected by copyrights, laws, and so
on.

29

act as a tape recording device, providing start-stop-like controls for the scheduler. The
recordboxes will wrap all necessary functionality connected with the recording. That espe
cially means running the external recording application, checking status of the application,
creating recording folders, and so on. The timing related events will be left for the scheduler.

One big difference in this advanced design is, that it counts with multiple sources and
multiple recordings at the same time. Basic concurrency is outlined here by showing, that
there will be more than one recordbox per the server application. But one important topic
was not discussed so far — how many instances of each block are possible, how many
physical servers will it require, how many will it support, and in what environment will the
whole system run.

As explained many times earlier, one instance of the server application will be able to
record more than one stream at the time. Every recording requires (especially) processor
time and file system I /O operations. That means the only limitation is the hardware of
the server. Running too many recordings at the same time on one server can lead to
slowing down of the server, which would lead to loss of the real-time data. And that means
corrupting the recording.

Wi th that in mind, the system is designed to be able to run many instances of the
server application on different servers1. That provides scaling and can provide a way how
to increase availability by duplicating number of nodes recording one stream.

As mentioned in previous paragraphs, every server will have its own file storage to store
data, but only one database for whole system will be present. This is the only element in
the system, that is critical and has to be run as unique instance. We can assume that the
database engines are robust, designed with security in mind, and in many database engines
clustering or at least failover clustering2 is available. Properly set up database engine can
provide great data security, so we can leave the most important part of the system running
in one unique instance.

There is no limitation for the management system instances count. The management
will actively write only to the database and send very basic request, such as status check,
to the server application using Representational State Transfer (REST) communication.
However, it is projected that the management system will be done as web application. In
such a case we can predict, that only one instance of the web server will run giving only
one management node in the system.

To close the topic about servers, it is necessary to say, that the system is split into sep
arated parts to be able to provide scaling. It is not required to run all these applications
on separate server instances. A l l software components can be easily, without modifications,
installed on one operating system giving the 100% same operability.

It is important to add, that the system is designed to operate within local area net
work (LAN) only. That is indicated by yellowish rectangle around the blocks. That is
because the system does not implement any extra security or encryption mechanisms to
secure the communication enough to be held over the Internet.

The only part, that is meant to be used over the Internet, is the distribution part.
This part of the system allows users to download or play the recorded videos as video on
demand. This part of the system is not a goal of this thesis, so it will not be implemented.

1 Although it would be possible to run more than one instance of the server application on one server, it
does not really make sense, and therefore it is not supported.

2e.g. MySQL Cluster, MariaDB Galera Cluster, MS SQL Failover Cluster, etc.

30

Additionally, if we assume that the administration will be done as a web application, it
can be used over the Internet. In such a case, it is necessary for the operator to provide some
additional security mechanisms, especially authentication (e.g. H T T P basic authentication)
and encryption (using e.g. SSL).

31

Chapter 6

Recording application

This chapter describes how the application is designed and how it will work. At the be
ginning of the design there was one more idea. The main question at the beginning of
implementation was what technologies and programming languages to chose. Every lan
guage has its own benefits and with that in mind it is necessary to design the system.

On the other hand, some questions were already answered. The task of the recording
application will be kept as simple as possible, focusing only on recording and support
elements. Everything beyond this, especially administration and management, will be done
separately. For storing data both filesystem (to store recording files) and relational database
(to store other data) will be used.

As the server applications should provide concurrency, the recording application has to
be designed which that in mind. For this application, threads will be used to split code and
logic from the main thread, and create independent and concurrent workers.

The only supported operating system for the application will be Linux. Benefits of
Linux as server operating system are well-known. Linus has great support, manageability,
it comes for free and it is worldwide spread. The design of the application is theoretically
operating system independent, but probably perceptible change would have to be intro
duced to the code to make the application running on e.g. Windows Server.

One of the possible options was to use some well-known scripting languages, such as
Perl, Python or Bash. These languages are very powerful development tools and can provide
all the functionality to create such a server application.

Thanks to my previous work experience, I had good knowledge on building server-side
applications using Perl. One of the great benefits of Perl is that creating applications is
really fast, and can be done with a few lines of code. By that time we were working on
client application in C # and server application in Perl. The comparison of the length of
the logic shown that Perl was much shorter.

One of the major disadvantages of Perl had appeared when the server-side application
got larger and more complex. By that time, it began to be really hard to maintain the code
and implement any larger changes or refactor the code. Perl lacks, as well other scripting
languages, first stage compilation, which helps to check the code for the very basic mistakes.
Instead of that, the code is checked only when it is executed, and that can lead to an error
or an exception while application is running. And that is, of course, unacceptable.

Another approach was to use the scripting languages only to create small scripts hand
ling the recordboxes. These scripts could be run by a scheduling service, e.g. Cron. This
approach would be much easier speaking of code complexity and development demands,

32

but also hardly extensible with some additional functionality, such as filesystem watcher
[6.4] or system diagnostics [6.5].

Wi th that in mind and after discussions with other programmers, I decided, from the
whole spectrum of programming languages, to pick Java. One of the most important reasons
was my knowledge of C # programming language, and knowing that development in Java
as object-oriented language is in many aspects close development in C# .

Selection of database management system (DBMS) was much more straight forward.
After determining that there is no need to use any of NoSQL or document oriented database
systems, as well as temporal database or so, the focus came on ordinary relational database
systems. In the end, M y S Q L was picked as one of the most commonly used D B M S . The
biggest advantage is the fact, that it is for free.

Later, during the development, an idea how to increase the independence of each part of
the system appeared. The question was how to equip every instance of the server application
with its local copy of tasks, so it can execute the tasks independently without having the
connection to the mutual main database server.

The possible answer was to use SQLite database engine to provide a data storage within
the server application. In such a case, there would have to be a synchronization mechanism
between the local database and the main mutual database. This principle is commonly
used in mobile devices, such as Android. It is necessary to say, that the synchronization
mechanism is not trivial and its implementation and testing might take a lot of time. And
at the same time, the independence on such a level is not a goal of this work.

Programming language Java SE 7 is used as the main language
for the server application development. It has been selected
due to its class-based object-orientation. The Java Runtime
Environment, as well as Development K i t is available for free.
And therefore, development and usage of the application is not
tied with any licence fees.

License: G N U G P L (OpenJDK)

M y S Q L is a commonly used relational database management
system. It uses Structured Querying Language, it is mul-
tiplaform, easy to deploy, well-documented, and well-known
server. In community version, it comes for free. The version
5.5 was used as main database storage engine.

License: G N U G P L (MySQL Community Edition)

Perl is a high-level, interpreted, dynamic language. It was
considered, as well as other interpreted scripting languages, as
suitable programming language of the server application. A l
though Perl has assumptions to create a great stable server
application, developing and maintaining the application can be
harder than using Java. Eventually, Perl was not used in the
project as well as the other scripting languages.

Continued on next page

L

M y S Q L

Perl

33

Table 6.1 - Continued from previous page
License: G N U G P L

As described in previous paragraphs, SQLite would be a great
choice in case when the application would keep a local copy
of all database data, and then provided synchronization with
main database. This principle was not implemented, because
it is probably not necessary in L A N environment. Moreover, if
high-availability or fail-over mechanisms were required, M y S Q L
cluster version could be deployed in order to achieve duplicity.
License: Public Domain

The whole server application with its dependencies is meant
to run on Linux-like operating system. For development,
Ubuntu 14.04 LTS (32-bit) was used. Due to chose program
ming tools, and other related tools, it is expected, that the
application is able to run on any *NIX-like platform.

License: G N U G P L (mainly)

The final goal of this thesis is to record and store streams from
IP camera. This thesis does not discuss problematics of forth
coming video-on-demand delivery. For testing purposes nginx
web server was used. It is great choice for static content deliv
ery with great performance and low demands.

License: Simplified BSD

Table 6.1: Tools and products used in the server application development

6.1 Threads

As it was described in chapter 5, the server applications should be able to serve more
concurrent task at one time. Wi th that in mind, it is necessary to chose a mechanism how
to effectively achieve this goal. One of the commonly used methods how to divide tasks is
using threads.

In the recording server application, one thread is created for every recording task, as
described in section 6.3. Moreover, the application provides some additional logic such as
filesystem watcher [6.4], and performance diagnostics [6.5] which run in separate threads to
watch resources.

Due to the application design, every thread has it unique and simple task. The main
logic of every single thread is as short main logic as possible, and usually at maximum a
few programming classes long. That makes the behaviour of every thread readable and
maintainable.

The threads self brings advantages to the application design and performance, but it is
essential to design the application carefully with concurrency problems in mind. By using
threads, the risk of concurrent access to a field or deadlock and others increases rapidly.

J-S Q L ite

ubuntu®

NGil/IX

34

main
thread

performance
diagnostics

recording
thread

filesystem
watcher scheduler

recording
thread

recording
thread

Figure 6.1: Scheme explaining threads usage in the recording application

It has been analyzed which parts of the applications are shared between more than one
thread, and these parts were treated with mutual exclusion.

6.2 Recording scheduler

The scheduler is one of the crucial parts of the server application. Its task is to plan events
inside the application, especially start of the recording and its stop time.

The scheduler is created from the main thread in single instance. It runs independently1

from the main thread and periodically checks the necessary information from the database.
In every cycle, it compares list of recordings that should be running (according to the
database records) and recordings that in fact runs. Depending on that, it either creates
new recordbox or stops running one.

The period of the scheduler, which is defined in a server configuration file, defines the
minimum distinguishable interval for start and stop actions.

The recording scheduler has to be designer with all the time-relevant problems in mind.
One of the ideas was to set up a timer that will elapse in precise moment to start (or stop)
the recording. That moment is described by milliseconds of time. But unfortunately there
is a lot of factors, that can lead to inaccurate timing, especially when inappropriate time
representation is used (text representation instead of standardized U N I X timestamp).

The issues to be mentioned are:

• Leap year (nearly every four years February has 29 days);

• Summer time (once in a year there can be twice the same hour on clock; 25 hour
long day);

• Leap second [37] (one-second adjustment occasionally applied, the most recent on
June 30, 2015 at 23:59:60 U T C ; called also sixtieth second);

l rThe scheduler is created in the main thread, but the periodical tasks are called in timer, which means
in separate threads.

35

• Time change (in case of administration changes in system);

• Time skew (time correction mechanism [38]);

• Shutdown or hybernation (missing the proper moment due to system downtime);

• Time-zone issues (when the management is in different time-zone than the recording
server, or not well set up);

• . . . and of course real-time changes in the database due to user interaction.

Eventually, it turned out that the best idea is simply periodically check the database
with the most recent timestamp and take proper actions regarding the database results,
rather then implementing some smart scheduling and timing mechanism.

As mentioned above, all the operations are related to the wall time. In such a situation,
it is good practice to ensure correct time settings among all the servers involved in the
system. For this purpose, correctly set up Network Time Protocol daemon (NTPd) is the
solution.

main thread
scheduler

scheduler event timer thread

scheduler 1

start
scheduler

setup
periodical

timer

stop
scheduler

stop
the timer

timer
elapsed

load active
recordings
from 3B

stop
running

record boxes

start new
recordings

stop inactive
recordings

Figure 6.2: Flow chart showing the most significant methods of the scheduler

There was one more attitude to the development of the scheduler - to use something
already created and proved. I concentrated my focus on Cron, the Unix system scheduler.
Using this scheduler together with some start/stop scripts (e.g. written in Perl) could have
been a solution.

36

Afterwards during examination of this idea, specific problems or restrictions of Cron
usage appeared. One of the restriction is time granularity. The minimum interval for the
Cron is one minute. That can be sufficient or not. But definitely cannot be changed.

Other problem, that might appear, could be problems with user rights in Linux. It has
to be handled well in case of the Cron. But the most significant problem is how to feed the
Cron with information about scheduled task, how to synchronize it with external database.

Moreover, the Cron is designed only to start task, not to be able to stop them at some
moment. That means there would have to be an extra mechanism providing that. And
providing synchronization mechanisms and other relevant things to achieve the goal.

At that point, I decided, that writing an own scheduler is easier than trying to use the
Cron for such a purpose.

6.3 Recordbox

The name „recordbox" is used for a part of the program that encapsulates the external
recording process and creates standardized interface to control it. The recordbox itself is
represented by set of classes. The main class (recordbox) is instanced from the scheduler
and contains start and stop methods to control the behaviour.

The recordbox creates the external recording process and waits during its execution. For
this purpose, a new recording thread (class recordingthread) is created to avoid suspending
the scheduler thread during the recording. It is responsible for controlling and checking the
behaviour of the external program.

If the program ends preliminary, the thread reports the situation to its parent recordbox
and it has to take proper action. Depending on the occasions, it can restart the recording,
which means to create a new recording thread, immediately or with a delay or even report
the problem and stop recording itself (e.g. when the external program cannot be run).

The scheduler keeps list of all the recordboxes created, so it can stop them when nec
essary. The list of running recorboxes is compared to the list of scheduled recordings from
database and if the recordbox' recording schedule is not in the list from database anymore,
the recording is stopped. The reason to stop a recording does not necessarily have to be
only due to its duration, but also if it has been disabled and so. This shows that checking
the database periodically is better than timing the stop event by some timer or similar.

Most of the implementation is placed in a base class. This class carries common be
havioural traits regardless used external program. For every different external program,
there is a derived class overriding the original behaviour. This construction allows ex
tending the application possibilities and range of used external programs. For example, a
re-streaming application can be used giving the server application entirely new possibilities.

The figure 6.3 show flow chart illustrating basic callings and methods between scheduler,
recordbox and recordthread classes. It also tries to point out where new threads are created.

The described part of the application uses timers in two locations. First timer is an
interval timer, which invokes the timer elapsed method of class scheduler periodically.
Every time, the timer creates new thread. This thread load data from database, listing
active recordings. According to the list, as described earlier, starts or stops recording.

37

scheduler event timer thread

scheduler recordbox

recoding thread

recordthread

timer
elapsed

A s t a r t

A. recording

start
recording

thread

load active
recordings
f-om 18

start new
recordings

stop inactive
recordings

0j

I
•8!

create
recording

thread

start
the thread

stop
recording

interupt
the tireac

start new
recording

:hread

interruption

yes

register
filesystem
watcher

start
recoding
process

register
performance

watcher

wait 'or
the process

to exit

^register
performance

watcher

unregister
filesystem
watcher

Figure 6.3: Flow chart showing recording process control

38

Second timer is used when external recording process end preliminary. The recordbox
then defers the re-start using timer. When the recording is restarted, it is done in completely
new thread.

The code also contains one explicit thread creating and that is the recording thread. The
recording thread sets everything before the recording and disposes used sources after the
recording. The thread especially takes care of recording folder creation, writing permissions
check, registering the filesystem watcher and the performance watcher, and starting the
recording process.

While the recording process is running, the recorded thread is suspended. If the record
ing process ends itself, it is evaluated as preliminary exit and it is handled by the recordbox.
When the recording is supposed to be stopped by the scheduler, the scheduler invokes stop
method of the recordbox and the recordbox interrupts the thread. The thread reacts on
that signal by termination of the recording application, disposing sources and exiting.

l i b a v

r

L i b a v is a project consisting of libraries, and applications for
handling multimedia data. It is multiplaform, officially sup
porting Linux, Mac OS X , Microsoft Winddows, and many oth
ers. Libav is able to handle many containers, and codecs. Most
of them can read, decoded, encoded, and stored. Libav imple
ments support for streaming protocols, such as R TP , RTSP,
SDP, R T M P 1 , and many others. Together with supported for
mats, and armament of processing filters, processors, muxers,
demuxers, it is a powerful tool.
License: G N U L G P L , and G N U G P L

Live555 is a set open-source project, which are focused on real
time broadcast. The core part, Live555 Streaming Media is a
set of C++ libraries for streaming using R T P / R T C P , RTSP,
and SIP. Live555 is used in many projects including Vide-
oLan V L C player, and can be compiled under Linux, Windows,
and any POSIX-complaint systems. The libraries contain only
streaming functionalities, so it can be used for any compres
sion, or similar modifications to the stream. At the moment,
it natively supports M P E G Transport Stream, MPEG -1 or 2
Program Stream, WebM, M P E G - 4 Video Elementary Stream,
H.264 Video Elementary Stream, V O B (audio + video), D V
video, MPEG -1 or 2 audio, WAV, A M R , AC-3 , and A A C au
dio.

License: G N U L G P L

Table 6.2: List of studied recording applications

1Adobe related Real-time Messaging Protocol

39

6.4 Filesystem watcher

The filesystem watcher is a support logic of the application. It runs in separate thread,
and it is initialized from the main thread. Its only task is to observe selected folders and
report every change within these folders to event listeners. This technique is probably the
only perfect way, how to detect what files were created as result of the recording in real
time. The other solution would be list the directory periodically, but since Linux operating
system provides subsystem to get noticed on filesystem changes, it is the best idea to use
that.

The subsystem is called Inotify and it is part of the Linux kernel since version 2.6.13
(August 2005). Its task is to notify listeners when an inode is changed. That practically
means when a file is opened, closed, modified, moved, deleted, created and so on.

For development purposes, a library called jnotify was used. This library provides
common interface to watch filesystem changes on Windows, Linux, and Mac OS X . Due tu
its interoperability limitations, the part sustainable only for Linux was used. This library
allows the filesystem watcher to announce when a file is created, opened for writing, and
closed after changes.

There is only one instance of filesystem watcher running in the recording server app
lication. It is created during application start-up, and it runs as separate thread. Other
threads (especially recordboxes) can invoke method addDirectory to start directory ob
servation. This is done just before the external recording program is executed, and the
watched directory is the output directory for the program. After the recording ends, re-
moveDirectory is called to stop observation. These methods are some thread-safe methods
in the application.

The complete sequence of actions is following:

1. Recordthread creates filesystem events listener and registers folder for watching in
filesystem watcher.

2. Recordthread starts recording process.
3. Recording process creates a file.
4. System kernel invokes inotify subsystem.

5. Inotify invokes filesystem watcher callbacks.
6. Filesystem watcher fires recordthread listener.
7. Recordthread listener identifies the file and saves information about file to the

database.

6.5 Performance diagnostics

One of the extra functionalities of the system is performance diagnostics. It is an additional
subsystem implemented in the recording server application, proving that running the system
as one complex is better than running in as set of scripts (as discussed at the beginning of
this chapter and in section 6.2).

At the moment, it has two main tasks. Firstly, it periodically checks the available
amount of space of the recording partition. The motivation to implement this functionality
came during first tests of the recording application. By that time, I left the application
recording one IP camera for a week on provided testing server. After a week of recording,

40

the application consumed all free space on the server, and forced the server to freeze due
to lack of usable disc space. Fixing that problem took a lot of time.

Now, the application observers the filesystem, and shutdowns itself in case of overusing
the free space. At the same time, the values of used space are shown to the administrator
via web management.

Secondly, the diagnostics checks registered recording processes using internal Linux
command ps and stores C P U and memory usage to the database. This can be handy
to track what recording settings lead to what utilization of the server, and how many
recordings can run on the server at one time.

Both these statistics are checked periodically. Periods are defined in configuration file,
and can be different for every task. Results of the checks are stored in the database in
A R C H I V E storage engine. If desirable, the values are plotted as a graph and shown to the
user in the management [7.2].

41

Chapter 7

Web-based management

As it was previously mentioned in chapter 5, server applications usually do not provide
any user interface to manage the application. For such a purpose, separated application
is developed. This application connects to the server and manages it using administration
protocol or changing its configuration files. These applications can implement another
management functionalities, such as log viewers, server application diagnostics, monitoring,
and like.

The applications can be console application, gui-based desktop application, or web-
based application. To pick the right kind of management application, several questions
have to be answered. How will be the management done; what network protocols if any
will be used; what technologies does the management application require; is the graphical
user interface necessary; if yes, how should it be done; and many others.

For our purpose to manage the recording server application, a web-based management
system was chosen. One of the key aspects of selecting the web, was the fact it is multi-
plaform by design. And by saying multiplaform, not only various desktop operating systems
are meant. Web-based applications can run on different devices such as desktop, tablets,
mobile phones and others, making the management available practically everywhere. And
that can be seen as on of the key usability goals of a good management application.

Another reason to use web environment is the fact, that it does not have to be installed
on user's computer, and, more importantly, it does not have to be maintained on their
computer. Upgrading the management system for whole company means upgrading it only
at one point - the web server.

A downside of using web technologies can be its limitations. Some tools or features
might not available for web, and that can mean the management cannot be done using
web technologies. The recording server application was designed with that in mind. A l l
the management tasks are stored in M y S Q L database, which is very common database
storage in web environment. If it was necessary, the design also counted with usage of the
Representational State Transfer (REST) communication to provide straight communication
between the client web application and the server recording application.

For this reason, a small stand-alone prototype of Java R E S T server was created. It was
base on library called Jersey providing the R E S T communication functionality. The pur
pose of the prototype was check up if the recording application can use the R E S T protocol
to communicate with web management. As result, it was decided that it is well-usable com
munication mechanism. However, it was not implemented in the final recording application

42

as it was not needed for any purpose. The whole communication is done passively through
the database.

Creating web-based applications has great benefit in how easily it can be delivered
to the user. On the other hand it is necessary to master many programming languages,
development technologies, tools, frameworks and other. For my development I spent quite
a lot of time testing and choosing what technology to use. The tools used are described in
the next table.

H T M L

5
H T M L 5 is new standard of H T M L markup language. It has
been released in October 2014, seven years after previous ver
sion H T M L 4. It brings a lot of important improvements, which
allows creating modern web-based applications. H T M L 5 was
supported by major web browsers even during its development,
which means it can be practically used these days. H T M L 5 ,
for example, comes with native video player or support for cus
tom tags, which are important for development of web-based
applications.

©NGULARJS
by Google

AngularJS is a popular JavaScript framework maintained by
Google and by its community. It is Model-View-Whatever 2

framework focused on developing single-page applications. In
July 2015 it was used by 8.400 websites out of 1 million includ
ing N B C , Intel, or A B C News. [wikiAngularJs]
License: M I T License

0 Bootstrap Twitter Bootstrap is a front end framework for creating web
sites and web applications. It contains H T M L and CSS based
design templates for typography, UI elements, forms, dialogs
and many others. For purpose of the management application
a free template based on Boostrap called AdminLTE2 was
used.

License: M I T License (both Boostrap and AdminLTE2)

Symfony
Symfony is a P H P web application framework. As difference
from AngularJS, it is back end framework running the appli
cation code on server side. Symfony is widely used framework
with great community. Originally the management application
was written using Symphony, but later discarding all the work
and switching to AngularJS, which is more convenient for client
application development.
License: M I T License

Continued on next page
1Note that MySQL does not provide any notification mechanism when modification is done.
2Model-View-Whatever (works for you), see https://plus.google.com/-l-AngularJS/posts/aZNVhj355G2

43

https://plus.google.com/-l-AngularJS/posts/aZNVhj355G2

Table 7.1 - Continued from previous page
P H P is well-known interpreted dynamic programming lan
guage mostly used for web pages development. When the de
cision not to use Symfony was made, most of the application
logic moved from P H P scripts to JavaScript front-end scripts.
Still, P H P was used in the project for small server-side scripts
handling model data for client application.

License: P H P License

Apache H T T P Server is one of the most commonly used
web servers providing great support for scripting languages and
CGI. The server management application was build and tested
on Apache H T T P Server, although it is not anyhow limited to
this product.

License: Apache License 2.0

Table 7.1: List of technologies, and software used during web development

Apache

7.1 JavaScript-based client application

Developing JavaScript-based client application is an individual programming category. For
many years, the web was created by static pages generated by server side scripts, such as
P H P . Of course these web sites could have carried JavaScript snippets providing additional
client side scripting, but the possibilities were rather limited.

Wi th introduction of A J A X , H T M L 5 , and CSS3, possibilities how to create independent
client-side web application become wider, and wider. Nowadays, several web framework
provide abilities to create great Model-View-Controller (M V C 1) client applications.

In the development of the management applicating, AngularJS was used. This frame
work focuses on creating single-page client application. That means, that the client loads
only one H T M L page, which contains the application logic. The application is then able to
load other sources if needed, but the main page stays the same only changing its content.

In July 2012 the development team categorized the framework as M V W framework2.
This was result of indecisiveness of wherever the framework is Model-View-Controller, or
Model-View-ModelView. Humorously, it end up with label Model-View-Whatever (works
for you) showing the reality behind development in AngularJS.

The model for AngularJS applications is usually strictly separated. The data are usually
loaded as live data from web-server using A J A X requests, and held as objects in the client
application. For the communication J S O N is typically used to carry the data objects.
AngularJS support two-way binding, which means the data are automatically propagated
to the view once they are loaded.

The view is represented by H T M L code with special tags representing AngularJS direc
tives. These directives can describe model or controller for specific part of the page, declare
basic behaviour (such as loops and conditions), but most importantly are used to print out

^ V C , or M V V M , or M V P , or M V W ; depending on framework.
2https://plus.google.com/+AngularJS/posts/aZNVhj355G2

44

https://plus.google.com/+AngularJS/posts/aZNVhj355G2

model values to the web page.
The last part of AngularJS trio is the application logic. It is written using JavaScript.

Here AngularJS provides enormous functionality to create a responsible client-side appli
cation. In the fact many approaches to link the view, model and application logic can be
used, leaving the decision to the programmer.

VIEW ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ H MODEL

Figure 7.1: AngularJS Model-View-Whatever architecture

7.2 The user interface

The administration utilizes AdminLTE2 template created by Almsaeed Studio 1. This tem
plate extends standard Bootstrap 3, and it is meant to be used to create various adminis
tration interfaces.

The template provides a lot of UI elements, widgets, skins and others. For example
boxes, buttons, alerts, callouts, modal dialogs, tabs, progress-bars, calendar, charts, tables,
form elements and so on. Everything is bundled with the template, and ready to use.

The site is divided into three main areas: side-bar menu, top-bar menu, and main
content area. While top-bar menu is not used in this project, side-bar menu contains link
to quickly access the most important actions of the web management.

The most important area is the content area, which changes with every page. This area
is divided by boxes. Every box encloses one unit, and functionality, e.g. overview, list,
calendar, form. Usually every box has loading overlay, which shows when the model data
of the box are loading, or changing.

Most commonly, the lists of data from database, such as list of servers, events, record
ings, and so on, are represented by tables. Every row represents one listed item. Typically,

1https://almsaeedstudio.com/, MIT License

45

https://almsaeedstudio.com/

MongoMGMT

0ft Dashboard

H Events

[£] Recordings

O Servers

H streamer?

Dashboard t « w ň n

Events ISSI

Title »Rees Status Enabled Start date End date

Test pLans 3 + D S 3 Jan 12015 Jan 12016 E E B
INC - Návrh čísl icových systémů D O Q Jan 12015 Jan 12016 E E H
IPK- Počítačové komunikace a sítě 2 + Jun 12D 15 Jul 12015 E E B
Security-cameras recording 2 + • a Jan 12015 Jan 12016

Test 1 |+] e s s Aug 12015 Oct 12015

0 Create new event

Servers

Hostname Title Address Status Free space

5erver.example.org Superserver a.e.irj.li

test Testovací server 192.168.0.1 O S
ubuntll Reaktor DEV 192.168.19.128

O Manage another server

Figure 7.2: The final management: The dashboard overview

when possible, for every item buttons for detail view, edit, delete and enable/disable are
provided. The management is equipped with an in-place enable/disable feature allowing
the user to enable, or disable events and scheduled plans by a single click.

One of the widgets used is a calendar plugin from Adam Shaw 1. The calendar gives a
view on the recordings as their are scheduled in time, as well as quick access to the events.

Another used widget is so-called timeline. It shows sequence of events in time sorted
from newest to the oldest. This timeline is used to present newest events in the recording,
especially inform about recently recorded files, or logs.

The management also utilizes F lo t 2 graphs to show servers utilization, and free storage
space (see section 6.5).

The forms in the management application are changed from original H T M L forms in
both design, and functional way. The design of elements is changed by bootstrap and
AdminLTE2 templates, providing smooth, and clean graphics with the same result on all
devices. Some additional graphical features are used to distinguish element's function:
input fields are marked with icons, reset and save buttons are divided by colour, and so on.

The important part is the functional, how the forms work. Every form has a defined
model, which binds value from the model to the inputs (if the data are edited), and after
modifications back to the model. The submit button only invokes method save, which
handles the model data. That means checks the validity, and, if they are valid, sends them
using asynchronous request to the web server to store the changes in database.

During the transmission to the database, a loading overlay is shown to the user to
indicate progress. After the data are stored, small box appears on the form telling the user
wherever the action was, or was not successful.

1http://fullcalendar.io/, MIT License
2http://www.flotcharts.org/, MIT License

46

http://5erver.example.org
http://fullcalendar.io/
http://www.flotcharts.org/

MongoMGMT

Destination folder

Q newsch

Source streamer

A šoi.rce devki 3" ".vhinh sireí m '.-.ill J Í recorded.

Camtffi FIT VUT (rtsp://147.229.14.5D/a;<is-|-riediá mŕdiá .arp: *

Recording server

A server which will record the stream and store It.

Q -ncifer (127.0.0.1}

Re cord Box

A tool which will be used on the server for recording purposes.

Q (default;

Schedule (JuS 24 2015 - Sep 12015)

Mori £-12
: - i 10-12

Reset I Preview Create

Dashboard test version

Everts

Title

Test plans

INC - Návrh Číslicových systémů

IPK- Počítačové komunikace a sítě

Security cameras recording

Test

Servers

Hostname

server.example.org

test

ubuntu

O Create new event

Title

Stipe rserver

Testovací server

Reaktor DEV

O Manage another server

(a) The schedule edit form (b) The responsive mobile design

Figure 7.3: The final management screenshots

The web management is created as responsive web-page. That is mostly done by Boot
strap and AdminLTE2 templates, and their features, but, for example, in case of wide
tables, it was necessary to apply another responsive design principles. The webpage was
repeatedly tested on many devices, such as mobile phones, tables, laptops, and desktops.

Although it seems as part of the system, no user browser or video viewer was imple
mented with intend to distribute the video over the Internet. This problematic is much
complex than this thesis can cover. Also, authentication system was omitted, leaving this
to higher design principles, such as H T T P basic authentication.

47

http://server.example.org

MongoMGMT

_fe Dashboard

§_ Events

l_] Recordings

0 Servers

•I Streamers

FITVUT E.enrdetail

Information about event Of Edit

ID:

Title: FITVUT

Description:

Start date: J i l l 24 2015

End date: Sep 12015

Enabled:

The schedule

L Title Start date End date Duration S Files Enabled

• Q Nonstop Fri Jul 24 12:00 AM Tue 5 e p l 12:00AM a month 6 4 3

List Calendar

Q . Detail B" Edít X Delete
O Create new recording schedule

O Lucifer recorded a new v i d e o f r o m the Nonstop recording p l a n . © E H B A M

O

B Log ftog.Mj

Lucifer recorded a n e w v i d e o f r o r n the Nonstop recording p l a n . © 4:46 AM

B Log ffog.tt!)

Figure 7.4: The final management: The event overview

48

Chapter 8

Conclusion

This thesis was focused on multimedia streaming. It was split into two separate parts -
the theoretical part and the practical part, both counting three chapters. The selected topic
is very wide and it is connected to many other relevant field of studies.

Explaining the multimedia streaming is matter of point of view. If this thesis was writ
ten in computer networking related field of studies, most probably it would describe the
protocols and surroundings much more deeply. M y goal was to take the streaming as a
tool, explain how does it work and how it can be utilized from practical point of view of
stream delivery to end user.

Nevertheless, even from practical point of view, it is important to understand the me
chanics behind the transmissions, and how these things affect the quality of delivery. That
was the motivation to write chapter 2, and bring there to mind basic networking principles,
and explain how these principles alter the quality.

Terms such as throughput, network congestion, and multicast were explained to point
out, that delivering multimedia streams over computer network requires high bandwidth,
and these three issues are related to it. It was explained how drastically can the net
work congestion decrease quality of service, and how multicast can decrease the required
bandwidth for multiple instances of one broadcast.

Also, terms latency, packet delay variation, and bit error rate were described to elucidate
how these networking-related circumstances affect stream delivery delay, which is very
important especially in bidirectional communication, e.g. video-calls.

The section 2.2 then focused on two main transport protocols, explaining the main differ
ence between Transmission Control Protocol (TCP) and User Datagram Protocol (UDP),
and illustrating why U D P is used to carry media data packets over computer network.

The chapter 3 focused on the real-time streaming protocols. It extensively described the
four most important protocols for real-time streaming, which are the Real-time Transport
Protocol (RTP), the Real-time Transport Control Protocol (RTCP) , the Real-time Trans
fer Streaming Protocol (RTSP), and the Session Description Protocol (SDP). It was shown
how these protocols collaborate in communication, what is the task of every single proto
col, what do the packets carry, what information can be acquired from the packets, as well
as drawbacks of the design, such as problems with delivering the multimedia stream over
Network Address Translation (NAT) device.

The main goal of chapter 4 was to pitch three important topics about multimedia. At

49

the beginning of the chapter, terms like encoding, decoding, encoder, decoder, and codec
were explained. Also, it was noted how a multimedia stream is coded before it is transmitted
over computer network, and what are the bit-rates for uncompressed streams.

The section 4.1 extensively discussed the problem of frame processing delay in case of
stream compression. As result, explanation on why low latency streams are important, and
how the end-to-end latency can be decreased by using special codecs, hardware devices,
G P U processing, and like, was introduced.

One of the delicate problems about media delivery is the size variation between frames.
MPEG-based encoders use I-frames, B-frames, and P-frames. As the section 4.2 pointed
out, the size difference between an I-frame and the other two is enormous. That means
every compressed stream has locally inconstant bit-rate. The whole section discussed about
this problematic, explaining what terms variable bit-rate and constant bit-rate mean, and
showing a few graphs plotted from real streams.

The next three chapters spoke about the practical part of this thesis — analysis, design,
and implementation of the recording system. Starting with chapter 5, very simplified idea
of how the system should work was shown. It was described what is necessary for a server
application to fulfil in order to work properly. Then the design was extended by explaining
entities in this system, and user use-cases. The chapter is concluded with advanced design,
which explained the system more in detail, and suggested realization draft.

Chapters 6 and 7 then described development of the recording application and web-base
management system respectively. These chapters listed used technologies and software,
and explained how the applications worked, how they were implemented and what are the
principles behind the development. Details on how the used frameworks or programming
languages work, were omitted on purpose. These can be found in programming articles,
and I personally did not find meaningful to re-write such an information.

As it was mentioned, two applications are a result of this thesis. The applications were
developed with intend to create stable and functional server application for recording. This
purpose was achieved. The final application is able to run independently on a server and
record streams described by schedule. A management application was created as well to
provide manageability to the system.

Both application work, and the system as whole is functional. It was tested during
development, as well as deployed at the end of the development on a server to see how well
it works. The system worked as expected.

In the future it would be interesting to see the system in real production environment,
with even the smallest flaws cleared out. The recording system could be extended by adding
new recordboxes or improving the current one. The administration could go through user
experience evaluation and based on that it would be nice to improve the interface and
available tools in the system.

50

Bibliography

[11] V . Cerf, Y . Dalai, and C. Sunshine. Specification of Internet Transmission Control
Program. R F C 675. Internet Engineering Task Force, December 1974. URL:
http://www.ietf.org/rfc/rfc675.txt.

[12] V . Paxson, M . Allman, J . Chu, and M . Sargent. Computing TCP ' s Retransmission
Timer. R F C 6298 (Proposed Standard). Internet Engineering Task Force, June
2011. URL: http://www.ietf.org/rfc/rfc6298.txt.

[13] J . Postel. User Datagram Protocol. R F C 768 (I N T E R N E T S T A N D A R D) . Internet
Engineering Task Force, August 1980. URL:
http://www.ietf.org/rfc/rfc768.txt.

[14] R. Stewart. Stream Control Transmission Protocol. R F C 4960 (Proposed Standard).
Updated by RFCs 6096, 6335, 7053. Internet Engineering Task Force, September
2007. URL: http://www.ietf.org/rfc/rfc4960.txt.

[17] Audio-Video Transport Working Group, H . Schulzrinne, S. Casner, R. Frederick,
and V. Jacobson. R T P : A Transport Protocol for Real-Time Applications. R F C
1889 (Proposed Standard). Obsoleted by R F C 3550. Internet Engineering Task
Force, January 1996. URL: http://www.ietf.org/rfc/rfcl889.txt.

[18] H . Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. R T P : A Transport
Protocol for Real-Time Applications. R F C 3550 (I N T E R N E T S T A N D A R D) .
Updated by RFCs 5506, 5761, 6051, 6222, 7022, 7160, 7164. Internet Engineering
Task Force, July 2003. URL: http://www.ietf.org/rfc/rfc3550.txt.

[20] C. Huitema. Real Time Control Protocol (RTCP) attribute in Session Description
Protocol (SDP). R F C 3605 (Proposed Standard). Internet Engineering Task Force,
October 2003. URL: http://www.ietf.org/rfc/rfc3605.txt.

[21] H . Schulzrinne, A . Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).
R F C 2326 (Proposed Standard). Internet Engineering Task Force, Apr i l 1998. URL:
http://www.ietf.org/rfc/rfc2326.txt.

[23] M . Handley, V . Jacobson, and C. Perkins. SDP: Session Description Protocol. R F C
4566 (Proposed Standard). Internet Engineering Task Force, July 2006. URL:
http://www.ietf.org/rfc/rfc4566.txt.

[24] H . Schulzrinne and S. Casner. R T P Profile for Audio and Video Conferences with
Minimal Control. R F C 3551 (I N T E R N E T S T A N D A R D) . Updated by RFCs 5761,
7007. Internet Engineering Task Force, July 2003. URL:
http://www.ietf.org/rfc/rfc3551.txt.

51

http://www.ietf.org/rfc/rfc675.txt
http://www.ietf.org/rfc/rfc6298.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc4960.txt
http://www.ietf.org/rfc/rfcl889.txt
http://www.ietf.org/rfc/rfc3550.txt
http://www.ietf.org/rfc/rfc3605.txt
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc4566.txt
http://www.ietf.org/rfc/rfc3551.txt

[26] M . Liška. Speciální přenosy - technologie a jejich uplatnění [online]. Cesnet, z. s. p.
o. May 2015. URL: http://www.cesnet.cz/wp-content/uploads/2015/04/Liska-
CESNET-prenosy.pdf (visited on 07/08/2015).

[28] International Telecommunication Union. G.114. Telecommunication Standardization
Sector of ITU, March 2003. URL: https://www.itu.int/rec/T-REC-G.114/en
(visited on 07/08/2015).

[29] S. Ubik et al. Minimalizace zpoždění - přenosy pro spolupráci v kultuře [online].
Cesnet, z. s. p. o. May 2015. URL:
http://www.cesnet.cz/wp-content/uploads/2015/04/Ubik-CESNET.pdf (visited
on 07/08/2015).

[30] A . Rothermel R. M . Schreier. A latency analysis on h.264 video transmission
systems [online], 2008. URL:
http://publik.tuwien.ac.at/files/pub-inf_4978.pdf (visited on 07/08/2015).

[33] L . Gharai and C. Perkins. R T P Payload Format for Uncompressed Video. R F C 4175
(Proposed Standard). Updated by R F C 4421. Internet Engineering Task Force,
September 2005. URL: http://www.ietf.org/rfc/rfc4175.txt.

[34] Cesnet. Hudebníky dělilo 1000 km, přesto spolu zahráli [online]. Cesnet, z. s. p. o.
May 2015. URL: http://www.cesnet.cz/sdruzeni/zpravy/tiskove-
zpravy/hudebniky-delilo-lOOO-km-presto-spolu-zahrali/ (visited on
07/09/2015).

52

http://www.cesnet.cz/wp-content/uploads/2015/04/Liska-
https://www.itu.int/rec/T-REC-G.114/en
http://www.cesnet.cz/wp-content/uploads/2015/04/Ubik-CESNET.pdf
http://publik.tuwien.ac.at/files/pub-inf_4978.pdf
http://www.ietf.org/rfc/rfc4175.txt
http://www.cesnet.cz/sdruzeni/zpravy/tiskove-

Other relevant articles

[1] S. Deffree. Tesla gives 1st public demonstration of radio, march 1, 1893 [online].
E D N Network. March 2015. U R L :
http://www.edn.com/electronics-blogs/nikola-tesla/4408090/Tesla-gives-

lst-public-demonstration-of-radio—March-1—1893 (visited on 07/30/2015).

[2] C. Smith. By the numbers: 100+ amazing youtube statistics [online]. July 2015.
U R L : http://expandedramblings.com/index.php/youtube-statistics/ (visited
on 07/30/2015).

[3] Google Inc. San bruno (youtube) [online]. Google Inc. 2015. U R L :
https://www.google.com/about/careers/locations/san-bruno/ (visited on
07/30/2015).

[4] J . Kuznik R. Vsetecka. Google vypadl jen na pet minut, ale provoz internetu klesl o
40 procent [online]. U R L : http://technet.idnes.cz/vypadek-googlu-01t-

/sw_internet.aspx?c=A130819_102205_sw_internet_vse (visited on
07/30/2015).

[5] OxfordDictionaries.com contributors. Skype [online]. U R L :
http://www.oxforddictionaries.com/definition/english/Skype (visited on
07/30/2015).

[6] Wikipedia contributors. Osi model [online]. U R L :
https://en.wikipedia.org/wiki/OSI_model (visited on 06/20/2015).

[7] Wikipedia contributors. Computer network [online]. U R L :
https://en.wikipedia.org/wiki/Computer_network (visited on 06/20/2015).

[8] Wikipedia contributors. Throughput [online]. U R L :
https://en.wikipedia.org/wiki/Throughput (visited on 06/20/2015).

[9] Wikipedia contributors. Network congestion [online]. U R L :
https://en.wikipedia.org/wiki/Network_congestion (visited on 06/20/2015).

[10] Wikipedia contributors. Bit error rate [online]. U R L :
https://en.wikipedia.org/wiki/Bit_error_rate (visited on 06/20/2015).

[15] Wikipedia contributors. Stream control transmission protocol [online]. U R L :
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol

(visited on 06/20/2015).

[16] Wikipedia contributors. Real-time transport protocol [online], U R L :
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol (visited on
06/25/2015).

53

http://www.edn.com/electronics-blogs/nikola-tesla/4408090/Tesla-gives-
http://expandedramblings.com/index.php/youtube-statistics/
https://www.google.com/about/careers/locations/san-bruno/
http://technet.idnes.cz/vypadek-googlu-01t-
http://OxfordDictionaries.com
http://www.oxforddictionaries.com/definition/english/Skype
https://en.wikipedia.org/wiki/OSI_model
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Throughput
https://en.wikipedia.org/wiki/Network_congestion
https://en.wikipedia.org/wiki/Bit_error_rate
https://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://en.wikipedia.org/wiki/Real-time_Transport_Protocol

Wikipedia contributors. Rtp control protocol [online]. U R L :
https://en.wikipedia.org/wiki/RTP_Control_Protocol (visited on
06/30/2015).

Wireshark contributors. Rtsp [online]. Wireshark. Apr i l 2008. U R L :
https://wiki.wireshark.org/RTSP (visited on 07/09/2015).

Wikipedia contributors. List of codecs [online], U R L :

https://en.wikipedia.org/wiki/List_of_codecs (visited on 07/08/2015).

Wikipedia contributors. Data compression [online], U R L :
https://en.wikipedia.org/wiki/Data_compression (visited on 07/08/2015).
Inc. Cast. White paper: understanding and reducing latency in video compression
systems [online]. Cast, Inc. October 2013. U R L :
http://www.cast-inc.com/blog/white-paper-understanding-and-reducing-

latency-in-video-compression-systems (visited on 07/08/2015).

N . Fazlija. Improved mpeg low-delay audio coding on davinci and t i c64 series dsps
[online]. Fraunhofer-Gesellschaft. March 2007. U R L :

http://www.ti.com/lit/ml/sprp526/sprp526.pdf (visited on 07/08/2015).

Wikipedia contributors. Variable bitrate [online], U R L :

https://en.wikipedia.org/wiki/Variable_bitrate (visited on 07/08/2015).

Wikipedia contributors. Constant bitrate [online], U R L :

https://en.wikipedia.org/wiki/Constant_bitrate (visited on 07/08/2015).

Wikipedia contributors. Leap second [online], U R L :
https://en.wikipedia.org/wiki/Leap_second (visited on 07/20/2015).
D. L . Mills et al. Ntpd(8) - linux man page [online]. December 2009. U R L :
http://linux.die.net/man/8Zntpd (visited on 07/08/2015).

54

https://en.wikipedia.org/wiki/RTP_Control_Protocol
https://wiki.wireshark.org/RTSP
https://en.wikipedia.org/wiki/List_of_codecs
https://en.wikipedia.org/wiki/Data_compression
http://www.cast-inc.com/blog/white-paper-understanding-and-reducing-
http://www.ti.com/lit/ml/sprp526/sprp526.pdf
https://en.wikipedia.org/wiki/Variable_bitrate
https://en.wikipedia.org/wiki/Constant_bitrate
https://en.wikipedia.org/wiki/Leap_second
http://linux.die.net/man/8Zntpd

Appendix A

List of Figures

2.1 Protocol stack for multimedia services 5
2.2 Three types of nodes that can cause problems with network congestion. . . 6
2.3 Graphical explanation of reduction of bandwidth usage with multicast. . . . 6

3.1 RTSP: OPTIONS and D E S C R I B E request together with responses 14
3.2 RTSP: Two S E T U P requests together with responses 15
3.3 RTSP request P L A Y with response and start of transmission of R T P and

R T C P packets 16
3.4 Termination of R T P / R T C P transmission by RTSP command T E A R D O W N . 17

4.1 Compression video transmission system delay sources [30] 20
4.2 Variable bit-rate encoded file 22
4.3 Difference in size between 1-, P-, and B-frames 23
4.4 The same stream as on figure 4.2 converted using avconv 23

5.1 The basic idea of the recording system structure 24
5.2 The advanced idea of the recording system structure 29

6.1 Scheme explaining threads usage in the recording application 35
6.2 Flow chart showing the most significant methods of the scheduler 36
6.3 Flow chart showing recording process control 38

7.1 AngularJS Model-View-Whatever architecture 45
7.2 The final management: The dashboard overview 46
7.3 The final management screenshots 47
7.4 The final management: The event overview 48

55

