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Abstrakt a Klíčová slova

Tato disertační práce se zabývá studiem moderních technik a vědeckých aplikací, a to pře-
vážně v oblasti optického rozlišení jednoho nebo dvou bodových zdrojů a okrajově me-
chanismem samoobnovení u optických polí. Začátek práce je věnován stručnému úvodu
rozšířeném o aktuální vývoj dané problematiky. V následující kapitole je prezentován pře-
hled hlavních teoretických principů a představení nejdůležitějších komponent využitých
během experimentů. Hlavní část práce se poté zaměřuje na dvou-bodové rozlišení s pou-
žitím aktuálních metod využívající kvantových protokolů se záměrem překonat klasická
rozlišovací kritéria, mj. použití nových metod superrozlišení a na modernější popis me-
chanismu samorekonstrukce u Gaussovských svazků. Vlastní přínos v podobě dosažených
experimentálních výsledků je důkladněji rozpracován v kapitolách 4 až 8.

V kapitolách 4 až 7 je prezentován výzkum v oblasti optického superrozlišení z po-
hledu teorie informace a teorie parametrického odhadu. Aplikací kvantových ekvivalentů
Fisherovy míry informace a Cramér-Raovi dolní meze rozptylu bylo dokázáno, že v případě
rozlišení dvou nekoherentních bodových zdrojů je možné nalézt optimální měření překo-
návající klasické rozlišovací kritéria teoreticky bez omezení.

V kapitole 8 je představeno studium samorekonstrukčních vlastností u Gaussovských
svazků za pomoci komplexního vlnového popisu a Babinetova principu. Byla zde zavedena
nová míra kvanti�kace podobnosti mezi omezeným a neomezeným svazkem a nová de�nice
minimální rekonstrukční vzdálenosti. Tyto teoretické předpoklady byly posléze úspěšně
experimentálně ověřeny.

Klíčová slova

Klasické dvou-bodové rozlišení, Rayleighovo kritérium, Rayleighova kletba, superrozlišení,
Fisherova informace, kvantová Fisherova informace, Cramér-Raova dolní mez rozptylu,
kvantová Cramér-Raova dolní mez rozptylu, nedifrakční svazky, samoobnovení optických
svazků a prostorový modulátor světla.
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Abstact and Key words

This dissertation thesis presents study of modern techniques and scienti�c applications
mainly in the area of optical resolution of one or two point sources and partially of the self-
healing mechanism of optical �elds. The beginning of the work is devoted to the brief intro-
duction extended with actual research progress in selected topics. The following chapter
provides an overview of the main theoretical principles and an introduction to the most
important components used during the experiments. The main part of this work is focused
on two-point resolution using actual methods utilizing quantum protocols with the inten-
tion to overcome the classical resolution criteria, i.e., uses of new superresolution methods
and a more modern description of the mechanism of self-reconstruction of Gaussian beams.
My contribution in the form of achieved experimental results is thoroughly elaborated in
Chapters 4 - 8.

In Chapters 4 - 7, the research in the �eld of optical superresolution from the point of
view of information and parametric estimation theory is introduced. It has been shown that
for the case of resolution of two incoherent point sources, applying the quantum equival-
ents of the Fisher information and Cramér-Rao lower bound leads to the possibility to �nd
optimal measurement schemes which surpass the classical resolution criteria, theoretically
without any limitation.

In Chapter 8, the study of self-reconstruction properties of Gaussian beams using com-
prehensive wave optics description and Babinet principle is introduced. The novel quantit-
ative metric of similarity between obstructed and unobstructed beam and a new de�nition
of minimal reconstruction distance were formed. These theoretical assumptions were sub-
sequently experimentally veri�ed.

Key words

Classical two-point resolution, Rayleigh’s criterion, Rayleigh’s curse, superresolution, Fisher
information, quantum Fisher information, Cramér-Rao lower bound, quantum Cramér-Rao
lower bound, non-di�racting beams, beam self-healing, spatial light modulator.
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DLP Digital light projector
EMCCD Electron-multiplying CCD camera
FWHM Full width half maximum
He-Ne Helium-Neon
HG Hermite-Gaussian mode
LCD Liquid crystal displays
LCOS Liquid crystal on silicon
MSe Mean square estimator
MSE Mean square error
MEMS Micro-electro-mechanical system
MVU Minimum variance unbiased
PDF Probability density function
POVM Positive-operator valued measurement
PSF Point-spread function
QCRLB Quantum Cramér-Rao lower bound
QFIM Quantum Fisher information matrix
S-H Shack-Hartmann wavefront sensor
SLD Symmetric logarithmic derivative
SLM Spatial light modulator
RLD Right logarithmic derivative
TFT Thin-�lm transistors
TN-LC Twisted nematic liquid crystals

v



Contents

Abstrakt a Klíčová slova i

Abstact and Key words ii

Acknowledgements iii

Declaration iv

List of Abbreviations v

Contents vii

1 Goal of the Thesis 1

2 Contemporary state of research 4

3 Methods and Tools 15
3.1 Rayleigh’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Circular aperture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Rectangular aperture . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Parameter estimation in signal processing . . . . . . . . . . . . . . . . . . 19
Classical estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Mean square error and minimum variance unbiased estimator . . . 20
3.2.2 Fisher information and Cramér-Rao lower bound . . . . . . . . . . 20
Quantum estimation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Quantum Fisher information and quantum Cramér-Rao lower bound 23
3.2.4 Quantum Fisher information for pure state model . . . . . . . . . . 24

3.3 Spatial light modulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Liquid crystal cells . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.2 Amplitude-only spatial light modulators . . . . . . . . . . . . . . . 27
3.3.3 Phase-only spatial light modulators . . . . . . . . . . . . . . . . . . 28
3.3.4 Digital micromirror displays . . . . . . . . . . . . . . . . . . . . . . 30

4 Achieving the ultimate optical resolution 33
4.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Optimal Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vi



CONTENTS

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Tempering Rayleigh’s curse with PSF shaping 42
5.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 PSF shaping using signum phase mask . . . . . . . . . . . . . . . . . . . . 44
5.3 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Reading out Fisher information from the zeros of the PSF 52
6.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 Experimental con�gurations for resolving spectral doublets . . . . . . . . . 54
6.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Intensity-based axial localization at the quantum limit 60
7.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Direct detection and saturation of quantum limit . . . . . . . . . . . . . . . 62
7.3 Experimental Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8 Unraveling beam self-healing 69
8.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.2 Self-healing quanti�cation of Gaussian beams . . . . . . . . . . . . . . . . 72
8.3 Experimental realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

9 Conclusions 79

Stručné shrnutí v češtině 82

Publications of the author and a list of citations 85

Bibliography 92

vii



Chapter 1

Goal of the Thesis

The aim of this dissertation thesis is to comprehensively present my experimental research,
which was realized during my Ph.D. studies. The topic of the thesis is devoted to the study
of methods and experimental applications in the scope of two-point resolution and self-
reconstruction mechanism of optical �elds. The main focus is dedicated to the application
of current quantum protocols overcoming the classical two-point resolution criteria and on
description and quanti�cation of self-healing mechanism of Gaussian beams. These proof-
of-principle experiments verify the suggested novel theoretical principles, and validate their
implementation and feasibility in real conditions.

The objective of this chapter is to overview the subject of this thesis and introduce �ve
proof-of-principle experiments, based on �ve publications [1–5], shortly discussed below.
Chapter 2 brie�y describes contemporary state of research mainly dedicated to the two main
above mentioned topics. Chapter 3 includes theoretical formalism as well as experimental
tools essential to the submitted research. Attention is paid to Rayleigh’s criterion, Fisher
Information, Quantum Fisher information and spatial light modulators (SLM). Following
Chapters 4 - 8 introduce achieved experimental results. At the beginning of each Chapter,
there is a short abstract describing the basic idea and motivation. It is followed by section
of the theory important for understanding the experiment, actual experiment, achieved
results and short summary. Finally, the main results are reviewed in Chapter 9. The list of
my publications, citation index and bibliography section are given at the end of the thesis.
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CHAPTER 1. GOAL OF THE THESIS

As we mentioned above, the main chapters result from the following scienti�c articles:

Chapter 4 introduces one of the �rst experimental realization of recently proposed meas-
uring method, called spatial-mode demultiplexing (SPADE). Tsang et al. (2016) [6] proposed
this scheme promising to violate the classical Rayleigh’s resolution criterion for two inco-
herent point sources. Surprisingly, by applying quantum protocols, namely quantum Fisher
information, they found that this quantity remains constant for any separation between two
sources. During our research, an optimal experimental technique based on the ideas of the
SPADE method was developed, that con�rmed a signi�cant overcoming of classical res-
olution criteria. The experiment itself was based on digital holography components and
signal decomposition into Hermite-Gaussian mode basis. This Chapter is based on a pub-
lication [1] M. Paúr, B. Stoklasa, Z. Hradil, L. L. Sánchez-Soto and J. Řeháček. ‘Achieving
the ultimate optical resolution’. In: Optica 3.10 (2016), pp. 1144–1147.

Research in Chapter 5 builds on previous results by focusing on two-point resolution
from the perspective of direct charge-coupled device (CCD) detection. For this typical labor-
atory scenario, the Fisher information decays quadratically to zero with vanishing separa-
tion between point sources, e�ect denominated as Rayleigh’s curse. Contrary to this belief,
an optimal optical transformation was found providing a linear decrease of Fisher informa-
tion. From the acquired experimental data, it was found that any "well-behaved" symmetric
point spread function (PSF) can be easily converted to a special form of information-rich
zero intensity region using a simple non-absorbing signum �lter. This chapter is based on
publication [2] M. Paúr, B. Stoklasa, J. Grover, A. Krzic, L. L. Sánchez-Soto, Z. Hradil and
J. Řeháček. ‘Tempering Rayleigh’s curse with PSF shaping’. In: Optica 5.10 (2018), pp. 1177–
1180.

Chapter 6 presents further studies on the impact of "zero" intensity areas of point spread
function on two-point resolution in direct detection regime. It was con�rmed theoretically
and also experimentally, that these zeros contain the majority of the necessary information
and notably contribute to the Fisher information linear scaling for small separations. This
was con�rmed by two spectroscopic experiments, using Sinc PSF consisting of large num-
ber of natural zeros, where the separations of naturally and arti�cially generated spectral
doublets were measured. This Chapter is based on publication [3] M. Paúr, B. Stoklasa, D.
Koutný, J. Řeháček, Z. Hradil et al. ‘Reading out Fisher information from the zeros of the point
spread function’. In: Optics Letters 44.12 (2019), pp. 3114–3117.
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CHAPTER 1. GOAL OF THE THESIS

Chapter 7 is focused on overcoming of classical limits of the longitudinal (axial) localiza-
tion of one optical point source. This research revealed that in the case of a Gaussian point
source, the saturation of the quantum limit requires only single intensity scan provided
by the CCD camera suitably positioned at one of two optimal transverse detection planes.
The theoretical principles were experimentally con�rmed using a simple microscopy setup,
with achieved accuracy in the order of tens of nanometers. This Chapter results from the
publication [4] J. Řeháček, M. Paúr, B. Stoklasa, D. Koutný, Z. Hradil and L. L. Sánchez-Soto.
‘Intensity-Based Axial Localization at the Quantum Limit’. In: Physical Review Letters 123.19
(2019), p. 193601.

In Chapter 8, the self-healing mechanism of optical �elds is studied. This optical prop-
erty has been attributed only to non-di�ractive beams, such as Bessel beams for a long
time, and characterizes the beam ability to fully recover beam intensity pro�le after in-
teraction with solid obstruction in a certain plane behind it. Recently, the comprehensive
description of this e�ect was published by Aiello et al. (2014), using wave optics descrip-
tion and the Babinet principle. Here the presented research using this wave description
advances the self-reconstruction potential for almost any kind of optical beams. Moreover,
the novel metric quantifying the similarity between an obstructed and unobstructed beam
and a new de�nition of minimal reconstruction distance were de�ned. The rightness of
these de�nitions was experimentally con�rmed on Gaussian beam measuring the whole
complex amplitude using CCD camera and Shack-Hartmann sensor. This Chapter is based
on the publication [5] A. Aiello, G. S. Agarwal, M. Paúr, B. Stoklasa, Z. Hradil et al. ‘Unrav-
eling beam self-healing’. In: Optics Express 25.16 (2017), pp. 19147–19157.
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Chapter 2

Contemporary state of research

Optical resolution

The optical resolution has always been a pivotal concept in human life and the important
area of physical sciences. The most familiar consideration about optical resolution comes
from the experiences with optical imaging associated with human visual system. Historic-
ally, the human eye was one and the only optical imaging device that measured and visu-
alized the world around us for a long period of time. Through centuries, a large number
of optical instruments have been developed and modi�ed to improve their resolving power
[7].

In simple terms, the resolution limits the level of details on an object, which can be
reliably observed, or distinctiveness of the number of objects in the scene. The regions in the
real-world scene usually contain more or less uniform textures divided by discontinuities
and also individual bright point-like structures. However, we are not able to see sharp edges
or points, instead we always see blurred versions of them.

Analogously, for any image-forming optical system the "fuzzy" response to a single
point-like source is known as the point spread function or impulse response. This is the
notorious product of a di�raction property of light. Because of this smearing, we cannot
be exactly sure what we are looking at. Our inability to resolve details beyond some scale
means that di�erent situations will give rise to the same wrong result. Similarly, if we have
prior information that the scene consists of one or two equally bright closely separated
point-like sources, we can use this to try to decide between these two possibilities. This
fundamental problem, known as two-point resolution, has been studied by many research-
ers to quantify the degree of resolution attainable with a given optical device.

For simplicity, we can consider a single point source and a di�raction-limited optical
imaging system described by a circular aperture. The resulting impulse response of this
system is described by the Bessel function of a �rst kind which is known as Airy disk
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CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

[8]. This image intensity pattern consists of a central main lobe with several side-lobes.
Naturally, this conception of single-point resolution has its justi�cation in cases when we
need to determine the position (centroid) of the point source [9–11]. This brings it in almost
every scienti�c experiment, where some parameter wants to be determined. This simple
setup can be considered as a baseline scenario for the following text.

Classical two-point resolution criteria

To extend the previous discussion to a two-point resolution, one can simply add another
source point. Two-point resolution is then de�ned as the optical system’s ability to resolve
these two points sources of equal intensity, i.e., �nd the minimum distinguishable separ-
ation between them. There exist several classical resolution criteria, which are related to
the di�raction-limited systems, where the performance of the system is limited only by
di�raction as a result of �nite size of the system aperture and the wavelength of the light.
For example, the broader summary is discussed in den Dekker and van den Bos [12] and
Ramsay et al. [13]. The following criteria correspond to the incoherent point-sources.

The well known Rayleigh criterion [14, 15] states that two point sources are just re-
solved when the central maximum of the image intensity pattern of the �rst point falls
into the �rst zero minimum of the second one. This results in a distinctive intensity dip
between two peaks of the PSFs. Thereto, this can be generalized for PSFs without any zeros
in their side-lobes. The resolution limit is then expressed as the distance for which the ratio
among the central dip and the sidelong maxima in resulting intensity distribution is equal
to 0.81. Except two-point resolution, the same resolution criteria can be applied, e.g. to the
separation of spectral lines in a spectrometer [16].

The Sparrow’s criterion [17, 18] follows the aforementioned Rayleigh criterion. Spar-
row limit de�nes the resolution as a situation when the central intensity dip vanishes. This
means that both side maxima and the central valley merge together, and the consequen-
tial intensity pattern composes from the single central peak. Comparing these limits, the
Sparrow resolution limit is approximately two-thirds of the Rayleigh limit.

Contrariwise, the Schuster limit [19] propose that the two points are just resolved if
the main lobes of their PSFs do not overlap. This responds to the twice of the Rayleigh
criterion.

Houston criterion [20] was postulated to resolve two points concerning the distance
between lateral maxima of the composite intensity pattern. If the interval is greater or
equal the full width at half maximum (FWHM) of either point source, then they can be
distinguished.

A very similar criterion to Houston criterion was suggested by Buxton [21]. However,

5



CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

he considered the amplitude di�raction patterns instead of the intensity and limited the
resolution by uni�cation of the closest in�ection points.

The last analogous criterion is Dawes criterion. This was empirically determined by
Dawes [22], observing closely spaced double stars of equal intensities by telescope. It is
very close to the full width at half maximum of the point-spread function and means a 5%

drop of central dip. This limit lies between the Sparrow and Rayleigh criterion.
The classical resolution limits take the PSFs as exactly known mathematical models

without any noise. The corresponding resolution shrinks into a measure of the width of
the main lobes and theoretically can be unlimited. Naturally, such an optical system without
any errors, noise or aberrations is ideal and has never been realized in practice.

Resolution based on parameter-estimation theory

In the case of real optical systems with all systematic and non-systematic errors, the unlim-
ited resolution is unreachable. This situation inspired researchers to look at the resolution
problem from di�erent points of view such as inverse �lter theory [23–25], information the-
ory [26, 27], decision theory and parameter-estimation theory [28, 29]. Most of the modern
methods introduce the concept of superresolution, which basically means, that these meth-
ods violate the classical resolution criteria (di�raction limit) and provide more accurate
results and discriminate smaller separations.

The parameter-estimation theory is currently one of the most discussed statistical con-
ception. From the viewpoint of this approach, the attainable precision, respectively resol-
ution of two incoherent point sources, can be determined. The main idea is that the en-
samble of intensity measurements comprise the information about the values of unknown
parameters that we want to estimate. In our case, the parameters of interest are individual
locations (centroids), separation or amplitudes of the sources.

Moreover, when the probability density function for each detection is known, it can
be used to construct some of the standard statistical estimators. The proper choice of this
unbiased estimator in�uences the uncertainty of the inferred values and depends on the
measured quantities and on the particular measurement con�gurations. As a representat-
ive example, the maximum likelihood estimator can be used. For each unbiased estimator,
its variance is bounded below by the theoretical Cramér-Rao lower bound (CRLB). This
quantity is reciprocally connected with the well-known Fisher information [30, 31], which
describes the total amount of information per photon detection about unknown parameters
in our measured data-set, i.e., expectation values of our parameters. In this way, we should
be able to enumerate better performance of observation schemes and optimize signal es-
timation strategies [32].

6



CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

It can be easily shown, that for two incoherent point sources and direct image-plane
photo counting schemes, the resulting Fisher information deteriorates rapidly to zero as the
separation between points approaches sub-Rayleigh region. In other words, the estimation
error goes to in�nity for vanishing separation and shows that the separation estimation for
overlapping patterns needs di�erent approach.

Parameter-estimation theory fromviewpoint of quantummetrology

Contrary to this belief, prof. Tsang and coworkers showed in their ground-breaking paper
[6], that this problem can be treated from the perspective of quantum information theory,
mainly by methods adopted from quantum metrology which were shown to be relevant
to the imaging and sensing [33–35]. Authors derived fundamental quantum limits for the
precision of separation of two incoherent optical point sources using quantum Fisher in-
formation and associated quantum Crámer-Rao lower bound (QCRLB), which was �rstly
proposed by Helstrom [33]. Thus, the quantum Fisher information speci�es the maximal
amount of the Fisher information that cannot be beaten by any measurement, i.e., quantum
Fisher infromation is optimized over all possible quantum measurements, and also quan-
ti�es the maximum accessible amount of information. Intriguingly, they discovered that
the QCRLB maintains entirely constant value for any separation value. Hence, this res-
ult is in direct contrast to the quadratic outcome obtained for CRLB, dubbed as Rayleigh’s
curse. Generally, for any non-vanishing quantum Fisher information, there should exist an
optimal measurement that can saturate the QCRLB and extracts the maximum available
information per one photon.

Furthermore, authors suggested a linear experimental proposal based on the method
called spatial-mode demultiplexing (SPADE). They showed that this technique is able to
saturate the QCRLB asymptotically [36, 37] and extract the full information for the sep-
aration parameter, violating the classical Rayleigh criterion. In recent years, prof. Tsang
enhanced this technique in moments-estimation problem of arbitrary sub-di�raction ob-
jects promising applications in both astronomy and �uorescence microscopy. Foremost, the
fundamental introduction based on statistical optics was presented in [38]. The more ad-
equate replenishment of semiclassical formalism inclusive of di�raction, photon shot-noise
and coherent optical processing with the evaluation of upper bound on quantum Fisher in-
formation was discussed in [39]. Another alternative scheme called superlocalization by
image inversion interferometry (SLIVER) was suggested by the same research group [40,
41].

In further theoretical works [42], the generalized application of QCRLB was propounded.
In [43], the calculation of one-dimensional separation of thermal sources of arbitrary strength

7



CHAPTER 2. CONTEMPORARY STATE OF RESEARCH

using the Gaussian-state model was accomplished with a proposal of modi�ed SPADE and
SILVER methods. Lupo and Pirandola [44], studied the application of arbitrary quantum
states as a source pair and introduced the optimal entangled states for sub-Rayleigh ima-
ging. In [45], the authors developed a general mechanism to acquire an optimal set of
optical modes with respect to the used PSF.

These distinctive studies opened a new avenue to enhance the localization precision
and separation estimation for linear optical systems examining one or two close incoherent
sources. Nevertheless, the application potential in other associated optical areas is possible.
Shortly after the publication of these results, the �rst experimental realizations appeared.

One of the �rst experimental realization inspired by SPADE method was performed by
Paúr et al. [1]. Here, the authors developed and demonstrated an optimal measurement
technique using digital holography setup and Gaussian-state model, con�rming the strong
violation of the Rayleigh criterion. This result is a part of this thesis and is comprehensively
analyzed in Chapter 4.

At the same time, other resembling experiments were realized by other groups. Tham
et al. [46] performed another two-point superresolution method called super-resolved po-
sition localization by inversion of coherence along an edge (SPLICE), with the application
of parity sensitive interferometers. Furthermore, Tsang et al. [47] implemented a self-
interference technique based on image inversion interferometry and Yang et al. [48] applied
a heterodyne detection scheme to microscopy-related tasks.

More insight can be obtained from the perspective of space-time duality of light. As
this already provides valuable tools in classical time-frequency measurements [49, 50], the
adaptation of these techniques into metrology analysis in the time-frequency domain is
adequate. In a letter, Donohue et al. [51] demonstrated the experimental realization of sep-
aration estimation on the incoherent mixture of shaped ultrafast optical pulses. This meas-
urement was performed in both temporal and spectral regime, using the mode-selective
method facilitated by wave-guided nonlinear interactions and single-photon detection. They
validated sub-pulse-width separations with precision well below the standard CRLB.

The most general quantum extension of classical CRLB is the Holevo bound [52, 53].
This bound circumscribes the best lower bound among all existing lower bounds for the
variance of unbiased estimators of any family of state. The saturation of the Holevo bound
was investigated for systems in the pure states [54] or in the subject of multi-parameter
estimation [53, 55]. Further, Yamagata et al. [56] addressed the attainability in the context
of the local scenario, where the bound can be saturated only if the estimator satis�es certain
regularity conditions. Unfortunately, the optimal estimators generally depend on the true
parameter which limits their practical interest or requires adaptive measurement strategies.
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Direct detection and enhancement of standard Fisher information

Despite of the results of the quantum Fisher information, the demonstrated proof-of-concept
experiments require sophisticated accessories, increasing the complexity of typical experi-
mental setups. This hints at the revision of the scenario of direct imaging, and the potential
enhancement of classical Fisher information. Paúr et al. [2] analyzed this problem and
surprisingly revealed, that application of a simple phase mask, i.e., signum �lter, makes
the decay of the Fisher information linear, instead of quadratic. Utilization of such non-
absorbing spatial �lter is equivalent to the well-known Hilbert transform and generation
of information-rich zero intensity region in the center of �nal PSF, which encompasses the
majority of Fisher information.

This idea of isolated zero regions was experimentally extended by the same scienti�c
group in two spectroscopic setups for resolving natural or arti�cially created spectral doublets
[45]. They validated the signi�cant contribution from these zero intensity regions and also
linear scaling of resulting Fisher information for rectangular apertures and Sinc PSF.

These results imply, that the superiority of the above-mentioned quantum schemes with
separation-independent Fisher information over classical techniques is smaller than previ-
ously assumed. This works are a part of this thesis and are extensively resolved in Chapters
5 and 6.

Axial superresolution

Another �eld potentially bene�ting from superresolution methods is optical microscopy.
Here again, for any optical microscope the essential metric is spatial resolution. The max-
imum resolution is commonly de�ned in terms of the Abbe-Rayleigh criterion [57]. Let us
stress, this classical criterion is based on the same heuristic arguments as the above men-
tioned two-point resolution criteria and may fail in the state of art of the digital imaging
techniques.

In recent years, several methods have been proposed for superresolution microscopy
[58, 59] with the capability to improve resolution by more than one magnitude with respect
to the di�raction limit. The important class of these techniques includes the �uorescence
microscopy [29, 60–62], with widely used approach of gradually activated �uorescent mo-
lecules ensuring the localization precision around tens of nanometers. Another frequently
used method is stimulated emission depletion (STED) microscopy [63, 64] and reversible
saturable optically linear �uorescence transitions (RESOLFTs) [65].

Many other methods are concentrated on the realization of axial super-localization,
which is crucial mainly for three-dimensional optical systems. For example, methods rely-
ing on precise localization of single point sources, such as interferometric microscope [66,
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67], PSF engineering [68–70], and multi-plane detection schemes [71–73] belong here.
A related challenge is to determine an imperceptible axial separation of two radiating

incoherent point sources. This objective was successfully veri�ed by Zhou et al. [74] in-
spired by the spatial mode demultiplexing method. They theoretically and experimentally
demonstrated the application of the lossless Laguerre-Gaussian radial mode sorter reaching
the QCRLB for arbitrarily small axial separations. Unlike previously mentioned superres-
olution schemes, this design does not require sophisticated stabilization nor consecutive
�uorophores activation. Moreover, the performed experimental setup can be simply adap-
ted to the axial localization of a single point source.

Simultaneously with the aforementioned research, Řeháček et al. [4] addressed this
question from a di�erent perspective. They focused on a single-point axial localization
based on the direct imaging method. They found optimal measurement, that strikingly
achieved the quantum limits with a single intensity scan while the CCD camera was placed
in one of two optimal transverse detection planes. The theory was veri�ed with a simple
microscopic layout, bringing the axial resolution up to dozens of nanometers, and revealing
the redundancy in adopting more complicated detection schemes. This work, as a part of
this thesis, will be discussed in more detail in Chapter 7.

Multi-parameter quantum estimation

Up to now, we have focused on the estimation of one parameter, typically separation. The
key feature of these techniques lies in phase-sensitive measurements implementing mode
projections or linear transformation of the measured signal. This requires highly symmetric
PSFs and con�gurations with equally bright point sources. The more realistic scenario of
unequally bright sources and asymmetric peaks involves the simultaneous estimation of
separation, centroid, and intensities. This multi-parameter estimation brings about a trade-
o� in how precisely di�erent parameters can be estimated. When the estimation procedure
is tuned for a speci�c parameter, the precision can deteriorate for the remaining ones.

Řeháček et al. [75] showed that unbalanced intensity in the estimation process tends
to make the Fisher information smaller and vanishing for zero separation. Strictly speak-
ing, the previous concepts are not robust with respect to the lack of information about the
other parameters. Nevertheless, the available information in the optimal scheme still over-
whelms conventional direct imaging schemes. On top of this, the authors also formulated
the quantum Fisher information matrix (QFIM) [76, 77], as a central quantity for multi-
parameter strategy, which clearly shows the interplay between various estimation paramet-
ers. For example, for equally bright sources, the QFIM for the spacing parameter is reduced
into the form of constant Fisher information which coincides with previous outcomes. This
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particular physical situation is singular and embodies anomalous features. This matrix cir-
cumscribes the generalized complex analysis of the ultimate precision bounds suggesting
the possible application in observational astronomy, where the binary stars have typically
small angular separations with large di�erences in their brightness.

Other multi-parameter estimation task was considered in related context by Ang et
al. in [78]. The authors addressed the problem of two-dimensional resolution, i.e., entire
transverse-plane localization, adopting the preceding weak-source model. They obtained
the full four-parameter quantum Fisher information matrix describing the ultimate preci-
sion for estimaton of the transverse Cartesian components of the centroid and separation of
two incoherent point sources. They also outlined and analyzed two measurement schemes
— the extended versions of SLIVER and SPADE methods via Monte Carlo simulations, veri-
fying mean square error (MSE) no larger than twice the predicted quantum limits.

Two-point resolution with presence of coherence

Additional straightforward extension of two-point resolution is the consideration of the
e�ect of partial coherence. Within the early advancement of the optical coherence theory,
it was established that both the magnitude and the phase of the degree of partial coherence
substitute prominent parts in designating image intensity distribution and its statistical
attributes [79–82]. It was shown, that for direct measurement schemes, a larger degree
of coherence implies the better resolution. Contrariwise, in classical estimation theory
the coherence e�ectively lowers the estimation precision. This contradiction is intensi�ed
when the resultant optical �eld is generated by correlated point sources [83, 84].

From the quantum point of view, it is important to �nd out, whether the quantum pre-
cision bounds are also lowered in the presence of this optical property. This task was
deeply investigated by Larson and Saleh [85]. In this article, the authors reformulated
this problem as a multi-parameter estimation of the separation and the degree of coher-
ence. They showed, that quantum precision bound of the separation drops to zero even at a
very small (nonzero) degree of coherence, which would mean the vulnerability of violation
of Rayleigh’s curse for incoherent sources for any small positive or negative correlation
between them. Moreover, the theoretical results re�ected that even when the degree of co-
herence is known and negative, the curse remains, while for positive correlations the curse
could be broken.

Almost immediately, these results triggered discussions about the correctness of the
announced results. Tsang and Nair [86] questioned Larson’s and Saleh’s calculations and
showed that their statements have fundamental de�ciencies. They pointed out that Fisher
information of spatial-mode demultiplexing measurement can surpass Rayleigh’s curse for
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any value of the degree of coherence below 1, and even predicted higher sensitivity as long
as the degree of coherence stays negative. The other handled problem is the used quantum
model and corresponding normalization of the photon density operator in the computation
of the quantum Fisher information.

Naturally, Larson and Saleh quickly replied to this comment [87] and tried to vindic-
ate their �ndings with their reference to an inconsistency in the Tsang and Nair model
itself. Indeed, after the proper reformulation, authors obtained the analogous violation of
Rayleigh’s curse as in the Tsang and Nair model with a di�erence in the rate of predicted
sensitivity and in a case of fully coherent case. This di�erent behavior was in�icted by the
inappropriate normalization in Tsang-Nair model.

In the latter proposals, the non-uniformity of used quantum models and their normal-
ization factors conducted the misleading conclusions and did not reach the adequate con-
sensus. Despite of these arguments, very recent research of Hradil et al. [88] tried to explain
the reasons for these misunderstandings by basic physical arguments and de�nite calcula-
tions for a fundamental model of a coherent superposition. It was found that, when the
coherence e�ects are taken into consideration, the resulting Fisher information itself is
no longer a meaningful measure of precision because the channels exhibiting interference
are not equivalent in terms of the signal strength. When the quantum Fisher information is
properly normalized by the number of detecting particles, there is no advantage of coherent
sources over the incoherent ones. Moreover, for the partially coherence case, the correctly
weighed quantum Fisher information is always limited by the incoherent superposition.

Non-di�racting beams

Di�raction, as a universal optical phenomena, is inherently connected to the wave nature
of light. It in�uences all classical wave �elds and arises when a wave impinges on a solid
obstruction or passes through an aperture. Within this, the wave amplitude or phase can
be modi�ed and the remaining parts of the wavefront extending beyond exhibit the di�rac-
tion pattern. Concurrently, any beam-like �eld should also undergo di�ractive spreading
through its free space propagation. A nice example is a propagation of the Gaussian beam,
where the beam diameter spreads, as a subject of the di�raction, undergoes a divergence.
The characteristic parameter which describes the spread of the Gaussian beam as well as
the distance, where the cross-section increase by a factor of 2, is the well-known Rayleigh
range.

Amazingly, there exist exact free-space solutions of the scalar-wave equation that are
di�raction-free. These solutions are non-singular with in�nite energy and can have sharply
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de�ned intensity patterns in each transverse plane, independent of propagation distance.
One of the non-di�racting �eld, which has an axial symmetry, is proportional to zero-
order Bessel function of the �rst kind, typically called "Bessel" or "Bessel-type" beam. The
utilized Bessel function mathematically leads to the cross-sectional pro�le of concentric
rings, where over an in�nite area can be an in�nite number of these rings and carry in-
�nite power. Naturally, any realization of such beams in a laboratory needs to be limited
by a �nite aperture, which leads to an approximation (a quasi-Bessel beam) with altered
mathematical properties.

The �rst mathematical construction of Bessel beams was presented by Durin [89] in
the late eighties of the last century. The initial experimental implementation was realized
soon after by Durin et al. [90]. Authors utilized the fact that the Fourier spectrum of the
Bessel beam is a conical superposition of plane waves that manifests itself as a ring of
in�nitesimal thickness. So they simply placed a solid annular slit in the back focal plane of
a thin spherical lens to form the beam. However, this method is heavily ine�cient, as the
majority of the incident �eld is obstructed by the annulus [91, 92]. This concept was rather
controversial and scientists linked the results to the line images [93, 94] or Poisson’s spot
[95].

The Bessel beam may also be created by using an axicon [96] or conical lens, which
provides the conical superposition of the wave in free space [97]. The use of an axicon
allows a higher e�ciency in generation than with the annular slit as it processes the whole
or majority of the incident �eld. Also, this approach helps to remove the rapid on-axis
intensity oscillations associated with slit but the beams still exist only in the focal region of
the conical lens, exceeding only a few centimeters. There exist other cost-e�ective methods
of generation of Bessel beams, including spatial light modulators [98–101] or Fabry-Perot
cavity [97, 102].

Self-healing property

Besides the capability of propagating without changing the intensity pro�le, there exists
other interesting property of Bessel beams, namely the self-healing ability [103]. This self-
reconstruction mechanism allows beams to fully reconstruct their intensity pro�le after
encountering an obstacle during propagation. These two remarkable traits attracted prom-
inent interest in the last four decades and have been more extensively investigated in [104,
105].

Especially the self-healing e�ect was found to be very helpful in various applications,
such as optical particle manipulation by optical tweezers [106–108] using the technique
of optical gradient force trap, microscopy [109, 110] and light-sheet microscopy [111, 112]
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with simultaneous improvement of image quality and contrast, quantum communication
[113] based on self-healing capacity of entangled photon pairs, material processing [114]
using in laser-based processing, and more others. Additionally, the class of superposition
Bessel beams was applied for the generation of helicon beams [115, 116], conveyor beams
[117, 118], or general self-accelerating beams [119, 120]. Thanks to their outstanding self-
healing capabilities, Bessel beams found their indispensable role in free-space satellite com-
munication, mainly in long-range communication through turbulent media [121, 122].

Even though the self-reconstructing beams had been the spotlight of many research
studies, the deeper understanding of self-healing behavior was missing. It was studied
mainly numerically [123, 124], but several analytical investigations based on Gaussian op-
tics [125, 126] had been presented in the last decade. These analytical notions su�ered
from unavailability to express the minimum reconstruction distance, where this crucial
parameter was previously determined based on geometric arguments only.

This drawback was successfully removed by Aiello et al. [127] by submitting full wave-
optics characterization of self-reconstruction process. Their approach allows easy computa-
tion of minimum reconstruction distance based on robust physical arguments. In addition,
using well-known Babinet principle [128], authors exposed that the self-healing mechanism
can be compared with elementary propagation of plane wave via the aperture.

Furthermore, Aiello et al. [5] showed that the above-mentioned wave-optics description
extends the concept of self-reconstruction to almost any kind of beam. They introduced
a novel de�nition of minimum reconstruction distance and metric which quanti�es the
similarity between the perturbed and the unperturbed beams. These theoretical predictions
were experimentally veri�ed with the Gaussian beam by measuring the whole complex
amplitude of the �eld. This work is a part of this thesis and is discussed in Chapter 8.

The research complementing previous approaches was presented by Arrizon et al. [129].
The authors reformulated the analysis of the self-healing of a partially obstructed optical
beam by decomposition of the obstructed �eld into two mutually orthogonal components,
one of the exact copy of attenuated original beam and second as a distorted version of the
�eld. They established a more comprehensive quantitative measure of the beam damage
and degree of self-healing which provides the overall description and characterization of
this phenomenon.

Very recently, Vetter et al. [130] proposed a new approach for generating a long-distance
Bessel beams based on a newly-manufactured ring-shape (annular) lens. This light evolu-
tion method brings about di�raction-free propagation over several meters and presents
strong self-healing capacity against opaque and non-opaque scatterers. Beyond these signi-
�cant improvements, authors successfully manifested the realization of the longest optical
conveyor and helicon beam in history.
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Chapter 3

Methods and Tools

This chapter encompasses a brief overview of main theoretical tools and important ex-
perimental devices related to this thesis. Cardinal results are concerned with the classical
two-point resolution problem from the viewpoint of statistical estimation and quantum the-
ory. Each experiment requires speci�c measuring scheme and numerical data processing,
explained in detail in individual chapters. Nevertheless, the background framework is uni-
versal across all discussed problems, namely Rayleigh’s criterion, classical and quantum
Fisher information and application of spatial light modulators.

3.1 Rayleigh’s criterion

Rayleigh’s criterion is one of the most often used quality factors for two-point resolution,
i.e., the ability of an optical system to resolve two closely spaced point sources. It has
been generally applied to microscopy or astronomical applications, where it has a simple
implementation and de�nition. The well known notation of this criterion reads that two
incoherent point sources are "barely resolved" by a di�raction-limited optical system with
a circular aperture when the center of the Airy intensity pattern generated by one point
source falls precisely on the �rst zero of the Airy disk generated by the second source [83].

3.1.1 Circular aperture

The Airy disk represents the intensity distribution of the Fraunhofer di�raction pattern
generated by a uniformly irradiated circular aperture of radius w. The circular symmetry
suggests that the Fourier transform describing the Fraunhofer di�raction can be rewritten
to the form of Fourier-Bessel or Hankel transform [131, 132]. The resulting image plane
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amplitude distribution is de�ned as

U(r) = eikfei
kr2

2f
πw2

iλf

(
2
J1(kwr/f)

kwr/f

)
, (3.1)

where k is a wave number, r is a radius coordinate in the observation plane, f is an e�ective
focal length of optical system and J1 is the Bessel function of the �rst kind. The associated
Airy pattern is then given as

I(r) = |U(r)|2 =

(
πw2

λf

)2(
2
J1(kwr/f)

kwr/f

)2

. (3.2)

Figure 3.1: Rayleigh’s criterion for incoherent imaging of two point sources using a cir-
cular aperture. Cross-section plots (left) and density plots (right) of the image intensity
distributions are depicted for two di�erent object separations. The left graphs show the
combined intensity pattern of two sources (blue) and individual single-point intensities
(green, orange) for "resolved" sources (top) and "unresolved" sources below the resolution
limit (bottom). The vertical gray dotted lines indicate the centroids of each point spread
function. Right density plots show 2D equivalents of these two cases.
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The width of the central lobe of this Airy disk is given by

dA =
0.61λ

NA
=

1.22λf

w
, (3.3)

where the NA is a numerical aperture of the optical system. Simultaneously, this math-
ematically de�nes the Rayleigh’s criterion minimum resolvable distance between point
sources. Figure 3.1 shows the cross-sections and density plots of intensity distributions
of two equally bright incoherent point sources separated by the Rayleigh distance and the
"unresolvable" distance below this value. In the case of Rayleigh resolution distance, the
central zone falls about 27 % below the peak intensity. For comparison, the other con-
ventional resolution criteria are de�ned as follows - Sparrow limit 0.47λ/NA, Abbe limit
0.5λ/NA and axial Abbe limit 2λ/NA2 [133].

In the case of coherent illumination, the corresponding image intensity distribution
relies on the phase distribution associated with both point sources as

I(r) ≈
∣∣∣∣(2

J1(kw(r − s
2
)/f)

kw(r − s
2
)/f

)
+ eiφ

(
2
J1(kw(r + s

2
)/f)

kw(r + s
2
)/f

)∣∣∣∣2 , (3.4)

where φ is the relative phase di�erence between the two point sources and s is the dis-
placement of each point relative to the optical axis. Figure 3.2 shows the cross-sections and
appropriate density plots of intensity distributions for in-phase (φ = 0 rad), quadrature
(φ = π/2 rad) and anti-phase (φ = π rad) values. When the points are in quadrature, the
intensity distribution characterized by a slight dip is identical to that resulting in incoherent
case. For the in-phase variant, the points merge into one peak making the resolution of two
points more di�cult than for incoherent illumination. On the other hand, for anti-phase
situation the central peak vanishes, making the resolution easier [83].

Figure 3.2: Cross-section of image intensities for two coherent point sources separated by
Rayleigh distance with the phase di�erences for values φ = 0, π and π/2 (left). 2D Density
plots for φ = 0 and π (right).
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3.1.2 Rectangular aperture

Another typical shape of optical apertures is a rectangle, mostly used in spectroscopic
devices. The transmittance function of this aperture is given by

tA(x, y) = rect( x

2wx
)rect( y

2wy
), (3.5)

where the constants wx and wy are the half-widths along x and y axes. In the Fraunhofer
di�raction regime again, the resulting image complex amplitude can be found as

U(x, y) = eikfei
k(x2+y2)

2f
4wxwy
iλf

sinc(
kwxx

f
)sinc(

kwyy

f
), (3.6)

with intensity distribution

I(r) =

(
4wxwy
λf

)2

sinc2(
2πwxx

λf
)sinc2(

2πwyy

λf
). (3.7)

In this case, the transverse width of the central lobe of di�raction pattern is de�ned as

dr =
λf

wx
. (3.8)

Figure 3.3 shows a 1D cross-section plot and 2D density plot for two incoherent point
sources using a rectangular aperture. Points are separated according to the de�nition of
Rayleigh criterion for circular aperture (maximum of one point lies in a minimum of the
second point). In this situation, the central dip falls about 18.9% of peak intensity [134].

Figure 3.3: Rayleigh’s criterion for incoherent imaging of two point sources using rectan-
gular aperture. Graphs show two point sources separated by Rayleigh limiting distance.
This leads to central intensity drop of about 18.9 %.
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3.2 Parameter estimation in signal processing

Estimation theory as an important section of mathematical statistics and information the-
ory deals with the problem of extracting true values of parameters of interest θ1, θ2, ...θm

by inspecting measured data sets with a random component. Any method focused on the
determination of these quantities usually leads to indirect measurements and involves an
optimization procedure to identify the most accurate estimator. In this sub-chapter, we
present a summary of methods comprising the classical Cramér-Rao bound with associ-
ated Fisher information and their quantum counterparts. For more details about classical
estimation methods refer to [30, 135–137] and to [33, 52, 76, 138] for their quantum altern-
atives.

Classical estimation theory

Mathematically, we can consider that each measuredN -point data set is in the formxm[n] =

{x[0], x[1], ..., x[N − 1]}, which depends on the unknown parameter through the under-
lying physics in a way that its values in�uence the expected measurements results. To
determine the true value of θ, it is convenient to deduce an estimator as

θ̂(x) = g(x[0], x[1], ..., x[N − 1]), (3.9)

where g is some function. The estimator may be thought as a rule that attributes the value
of θ for each realization of xm. Generally, the estimator may depend on other parameters.
If these are unknown as well, we end up with the situation of a multi-parameter estima-
tion problem, which complicates the estimation process more and causes some trade-o�
between estimation accuracy of estimated parameters.

To design an e�cient estimator, it is reasonable to mathematically model the data by
θ-parameterized (conditional) probability density function (PDF) p(x; θ), respecting its in-
herent random nature. This conditional probability denotes the probability of measuring
the value x when the parameter takes the value θ. The right selection of PDF, consistent
with the given physical constraints, leads to better estimation performance.

Owing to the existence of noise, any such estimator θ̂(x) always embodies some stat-
istical uncertainty ∆θ̂(x). This uncertainty restricts the searching to the class of estimators
performing the lowest variability. There might be di�erent estimators based on di�erent
statistics for the broad class of unbiased estimators, but we look for one that is uniformly
the best with minimum variance for the whole set of parameters and the full range of its val-
ues. The notion "unbiased" means that the estimator achieves the true value of the sought

19



CHAPTER 3. METHODS AND TOOLS

parameter on average. Mathematically, an unbiased estimator is de�ned as

E(θ̂) =

ˆ
θ̂(x)p(x; θ)dx = θ a < θ < b, (3.10)

where (a, b) denotes the range of possible values of θ, typically restricted by physical limits.
Contrariwise, the biased estimators are characterized by a systematic error (bias). This bias
can cause the deterioration of the estimation process.

3.2.1 Mean square error andminimumvariance unbiased estimator

To quantify the estimator e�ciency, it is necessary to select some robust metric. Naturally,
simplest one is the mean square error (MSE) de�ned as

MSE(θ̂) = E
[
(θ̂ − θ)2

]
. (3.11)

This measures the average mean squared deviation of the estimator from its true value.
To clarify the importance of this metric, we can rewrite the de�nition (3.11) into the more
suitable form as

MSE(θ̂) = E

[(
θ̂ − E[θ̂] + E[θ̂]− θ

)2
]

= E

[(
θ̂ − E[θ̂]

)2
]

+
(
E[θ̂]− θ

)2

= Var(θ̂) + b2(θ̂),

(3.12)

where Var(θ̂) = E[θ̂2] − E[θ̂]2 means variance of estimator and b is a bias. This directly
shows that the MSE is the sum of the estimator variance and a bias factor. Therefore, this
metric cannot be solely considered as su�cient criterion because the dependence on the
bias can leads to the unsuitable estimators. On the other hand, the MSE can still be used for
�nding the optimal estimator. An intuitive choice is to constrain the bias to zero b(θ̂) = 0

and look for one which can minimize the variance. Such an estimator is termed as the
minimum variance unbiased (MVU) estimator with mean square error equal only to its
variance.

3.2.2 Fisher information and Cramér-Rao lower bound

Generally, there is no guarantee that the MVU estimator does always exist and provides
minimum variance for all values of the searched parameter θ. If the minimum variance
unbiased estimator exists, we may not be able to �nd it. However, there exist several ways
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to �nd the optimal MVU estimator, of which the determination of the Cramér-Rao lower
bound (CRLB) is the most used one. Simply, the CRLB determines that the variance for any
unbiased estimator is greater than or equal to a given value. Then the unbiased estimator,
whose variance for each value of the unknown parameter attains the CRLB, has to be the
MVU estimator.

Since all our knowledge is incorporated in the measured data and corresponding PDF, it
is intuitive that the estimation accuracy depends directly on the PDF. In general, the more
the PDF is a�ected by the θ, the better estimates we get. For the computation of CRLB, it is
important to assume that the p(x; θ) satis�es the regularity condition

E

[
∂ ln p(x; θ)

∂θ

]
= 0, (3.13)

where the partial derivative, with respect to the θ of the natural logarithm of the likelihood
function, is called score. Then, the variance of any unbiased estimator θ̂ must satisfy

Var(θ̂) ≥ 1

E

[(
∂ ln p(x;θ)

∂θ

)2
] , (3.14)

where the denominator is known as the Fisher information Fstd(θ), i.e., the variance of the
score. The Fisher information is a typical method how to determine the total amount of
information that measured random data carries about the unknown parameter θ.

The CRLB given by (3.14) may also be written as

Var(θ̂) ≥ 1

−E
[
∂2 ln p(x;θ)

∂θ2

] , (3.15)

which is true only if the ln p(x; θ) is twice di�erentiable with respect to θ. Accordingly,
optimal MVU estimators θ̂ = g(x) are those saturating the Cramér-Rao inequality and may
be found only if they ful�ll

∂ ln p(x; θ)

∂θ
= Fstd(θ)(g(x)− θ). (3.16)

Lastly, it is important to note that the above results of CRLB and related FI stand only for one
independent measured sample p(x[n]; θ). So for N samples, we get Var ≤ 1/(NFstd(θ)).
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Quantum estimation theory

A similar approach is applied in quantum-mechanical systems as well. There are also many
quantities that are not directly measurable which can be caused either fundamentally or
due to experimental limitations. Typical examples are purity or entanglement, which are
de�ned as nonlinear functions of the quantum density matrix and cannot be to the regular
quantum observables. The solution can be found using quantum estimation theory and its
analytical tools which seeks the optimal strategy for estimating parameters of the density
operator of quantum systems.

These tools provide options for discovering suitable positive-operator valued measure-
ment (POVM). One can �nd optimal POVM minimizing a suitable cost function averaged
over all feasible parameter values or look for the POVM maximizing the Fisher informa-
tion and consequently minimizing the variance of the estimator for speci�c �xed value.
Moreover, the results can be applied to �nd the optimal estimators assuring the attainabil-
ity of the ultimate bounds on precision. Here, we are interested in the determination of the
optimal quantum estimator in terms of symmetric logarithmic derivative as well as the ulti-
mate bounds in terms of quantum Fisher information with an explicit solution for systems
determined by pure states.

An ordinary quantum statistical model is represented by the density operator %, which
ensures the calculation of probability for any outcome of a well-de�ned measurement on
the quantum system. The density matrices are build from state vectors and can be generally
expressed in their eigenbasis form

% =
∑
n

pn |ψn〉 〈ψn| , (3.17)

which relates to the mixed state with probability pn that the system is in the pure state |ψn〉.
Also, according to the Born rule, the classical probability function p(x; θ) can be expressed
by the density operator as

p(x; θ) = Tr[%θΠx], (3.18)

where Πx are elements of POVM satisfying
´

Πxdx = I, %θ is density operator parametrized
by the estimated parameter and Tr is a matrix trace operation.

Recalling the classical Cramér-Rao inequality from Eqs. (3.14) and (3.15), the Fisher
information corresponds to the formula

Fstd(θ) =

ˆ ∞
−∞

(
∂ ln p(x; θ)

∂θ

)2

p(x; θ)dx =

ˆ ∞
−∞

(
∂p(x; θ)

∂θ

)2
1

p(x; θ)
dx, (3.19)
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which denotes the necessity to di�erentiate the PDF of the data. This means that we must
likewise di�erentiate the density operator. Generally, there exist two principal ways - sym-
metric logarithmic derivative (SLD) or right logarithmic derivative (RLD). In fact, the RLD
operator may not always exist for systems described by the pure states or need to satisfy
strict mathematical conditions with less informative solutions than the symmetric logar-
ithmic derivative operator. On the other hand, the bounds given by the RLD operator are
inferior (lower) than the bounds given by SLD operator and are more suitable for multi-
parameter estimation scenarios. In general, the application of an SLD operator is more
informative and suitable for one-parameter schemes and therefore for this thesis.

The symmetric logarithmic derivative Lθ is the self-adjoint Hermitian operator satisfy-
ing the equation

∂%θ
∂θ

=
Lθ%θ + %θLθ

2
. (3.20)

Hence, the derivative of probability density function can be written as

∂θp(x; θ) = Tr [∂θ%θΠx] = Re (Tr [%θLθΠx]) . (3.21)

Consequently, the classical Fisher information can be reformulated into

Fstd(θ) =

ˆ ∞
−∞

Re (Tr [%θLθΠx])
2

Tr [%θΠx]
dx. (3.22)

3.2.3 QuantumFisher information andquantumCramér-Rao lower
bound

The classical bounds following a given POVM Πx from Eq. (3.22) should be achieved by
proper data processing. The typical example is the maximum-likelihood estimator which
provides an asymptotical saturation of these bounds for most measurements. In the case
of reaching the ultimate bounds, we need to maximize the Fisher information over all pos-
sible POVM. By assuming the Eq. (3.21) and application of the Cauchy-Schwartz inequality∣∣Tr
[
X†Y

]∣∣2 ≤ Tr
[
X†X

]
Tr
[
Y †Y

]
, the maximized Fisher information reduces to the for-

mula

Fstd(θ) ≤
∣∣∣∣∣
ˆ ∞
−∞

Tr [%θLθΠx]√
Tr [%θΠx]

∣∣∣∣∣
2

dx ≤
ˆ ∞
−∞

Tr [Lθ%θLθΠx] = Tr
[
%θL

2
θ

]
. (3.23)
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These inequalities determine that the classical Fisher information of any quantum meas-
urement is always constrained by the quantum Fisher information quantity

Fstd(θ) ≤ F(θ) ≡ Tr
[
%θL

2
θ

]
= Tr [∂θ%θLθ] . (3.24)

This also de�nes the quantum Cramér- lower bound for variance of any unbiased estimator

Var(θ̂) ≤ 1

NF(θ)
, (3.25)

where N again stands for the number of observations of independent identical systems.
The general solution for SLD operator may be expressed in continuous form

Lθ = 2

ˆ ∞
0

exp{−%θt}∂θ%θ exp{−%θt}, (3.26)

or in a more convenient representation of diagonal density operator (Eq. (3.17))

Lθ = 2
∑
m

∑
n

〈ψn| ∂%θ∂θ |ψm〉
%m + %n

|ψn〉 〈ψm| (3.27)

where the sums include only terms with eigenvalues %n + %m 6= 0. The generic solution
of quantum Fisher information by substituting the Eq. (3.27) into Eq. (3.24) can be �nally
expressed as

F(θ) = 2
∑
m

∑
n

∣∣〈ψn| ∂%θ∂θ |ψm〉∣∣2
%m + %n

. (3.28)

The QCRLB a�ords ultimate bounds that rely only on the structure of the quantum
statistical model and not on the measurement itself. Thus the optimal POVM saturating
this ultimate bounds is called e�cient and the intrinsic form of optimal quantum estimator
holds

θ̂O = θI +
Lθ
F(θ)

, (3.29)

using the fact that Tr [%θLθ] = 0.

3.2.4 Quantum Fisher information for pure state model

When the state of quantum system for all values of the parameter θ is pure, the density
operator abbreviates to the form

%θ = |ψ(θ)〉 〈ψ(θ)| . (3.30)
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Equivalently, the quantum Fisher information can be computed directly

F(θ) = Tr
[
%θ (∂%θ)

2] = 4 〈ψ(θ)|
(
∂%θ
∂θ

)2

|ψ(θ)〉 , (3.31)

where the eigenvalue % and eigenvectors |ψ(θ)〉 depend on the parameter of interest. For
this instance, the derivation of the density matrix stands as

∂%θ
∂θ

= |∂θψ(θ)〉 〈ψ(θ)|+ |ψ(θ)〉 〈∂θψ(θ)| . (3.32)

After straightforward but lengthy calculations the quantum Fisher information tends to the
simple result to

F(θ) = 4
[
〈∂ψ(θ)|∂ψ(θ)〉 − |〈ψ(θ)|∂ψ(θ)〉|2

]
. (3.33)

3.3 Spatial light modulators

Spatial light modulation as a key technology has wide-spread applications ranging from
microdisplays projection, three-dimensional (3D) printing, and augmented reality to litho-
graphy and metrology with implementation in quantum and adaptive optical systems. Over
the past decades, the miscellaneous spatial light modulator (SLM) technologies, e.g., magneto-
optic, multiple quantum well, acoustic-optic Bragg cells, deformable mirrors, digital mi-
cromirror devices (DMD) and liquid crystal (LC) were developed. Nowadays, the most ver-
satile devices are based on liquid crystal cells and micromirror displays.

As their name suggests, the main purpose of spatial light modulators is in their ability
to modulate the incoming light wave by transmittance through liquid crystals or re�ection
on the array of micromirrors. These devices control the light in two dimensions consisting
of addressable and light modulation parts. The optical attributes of the modulation part
are modi�ed by the information entered into the address part and then imprinted on the
incident light. The spatial distribution of light such as the amplitude, phase, polarization,
and propagation direction can be modi�ed based on the properly addressed information.

3.3.1 Liquid crystal cells

Liquid crystals are considered as a phase of the matter with properties falling between
the crystalline solid and the liquid state. As a result, they embody dielectric and optical
anisotropy, i.e., the polarization dependence of the refractive index for most propagation
directions and show typical �ow behavior with no stable position or permanent spatial
orientation of single molecules. These molecules can be characterized as uniaxial ellipsoids
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with one long axis. The light propagation along directions that are not parallel to this optical
axis is induced by two indices of refraction no and neo valid for two orthogonal polarization
states referred to ordinary and extraordinary. This e�ect is known as birefringence [139].

For usage in liquid crystal displays (LCD) or SLMs, the LC are arranged in spatially
separated cells (pixels). The optical properties of these elements can be manipulated by
the application of an external electric �eld which changes the orientation of the molecules
and causes the above-mentioned voltage-dependent birefringence. Regularly, this electric
�eld is adjusted between covering glass plates around the LC material using transparent
conductive layers coated on the inside of the plates. Thus, the LC pixels precisely change
the polarization state or phase retardation of the light �eld by providing a well-de�ned
voltage. Additionally, the electro-mechanical grid encompasses the LC cells and ensures
the space for wires needed to addressing each cell with an independent voltage. Because
of this overall two-dimensional array, the design acts as a two-dimensional grating and
produces the corresponding di�raction pattern [140].

There exist several phases of liquid crystals di�erentiated by various molecule arrange-
ment. The most commonly applicable types are nematic and smectic liquid crystals. For
nematic liquid crystals, the molecules exhibit a characteristic linear alignment with a ran-
dom distribution throughout the entire material volume. Smectic liquid crystals addition-
ally form parallel layers with the same axes orientation.

Furthermore, it is possible to enforce the alignment of nematic molecules at the cells
boundaries. This can be achieved by soft polishing of adjustment layers on a transparent
cover material with scratches in the desired alignment direction. The small strokes associ-
ated with the polishing process form a preferred angle for the molecules, that are in contact
with the cover plates, with their main axis parallel to the scratches. If the layers on both
sides are polished in the orthogonal directions, the molecules in LC cells have tendency to
maintain in their collective orientation. As a result, the molecules form a helix structure,
which means that the molecules gradually rotate alongside the optical path to match the
boundary conditions. This design is known as twisted nematic liquid crystals (TN-LC). In
the presence of a su�ciently large applied voltage, the molecules that are not in close prox-
imity to the boundary layers freely rotate and align their marginal axes with the applied
�eld, i.e., pointing in a perpendicular direction to the cover glass plates [141].

Another universal design is called liquid crystal on silicon (LCOS), which basically
means a structure, where a liquid crystal layer is attached to an electrically addressing
silicon substrate formed by CMOS technology. The liquid crystals are concurrently aligned
by the analogous alignment technology provided on the silicon and cover glass substrates,
without being twisted as in the TN-LC design.
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The aforementioned liquid crystals designs are used to construct specialized amplitude-
only or phase-only spatial light modulators. This speci�c notation denotes that these types
a�ect primarily the amplitude or phase part of impinging light or with much more e�ciency
than the second one.

3.3.2 Amplitude-only spatial light modulators

In the case of transmissive amplitude-only modulators, the TN-LC design is used with
attached cross-oriented polarizers on both sides of the display. The orientation of these
polarizers should be parallel to the boundary molecules to maintain the maximal display
transparency. The generated helix structure of twisted nematic crystals then guarantees
the change of the polarization state of the incident light. When the polarization of the
incident light matches the entrance orientation of molecules, the polarization follows the
twist of the molecules. Accordingly, the outgoing light leaves the LCs with a polarization
that is perpendicular to the entrance one. In this setting, the light will pass through the exit
analyzer without any change when no voltage is applied and is fully blocked with maximal
adjusted voltage. The partial amplitude transmission is then limited by the dynamic range
of analog/digital converter speci�c for the used SLM device. The schematic representation
of such amplitude-only SLM is depicted in Figure 3.4 [142].

Figure 3.4: Scheme of application of amplitude-only SLM using twisted nematic liquid crys-
tals. The SLM chip is overlaid by the crossed polarizers. By application of diverse electrical
voltage, the rotation of internal molecules produces the change of incident polarization
state which implicates the amplitude modulation.

Unfortunately, nowadays these types of SLMs are almost impossible to buy. One of the
potential device model LC2012 [143] is produced by the Holoeye Photonics company. This
modulator is more likely for educational purposes and familiarization with SLM technology.
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A representative example can be the CRL OPTO XGA3 from CRL Opto company (now
known as Forth Dimension Displays), which was used in the experiment in Chapter 4. This
transmissive amplitude-only modulator using an active TFT screen with twisted nematic
liquid crystals with the attached analyzer at the output plane. The screen consists of 1024×
768 pixels with pixel size of 18 × 18 µm, �ll factor around 40% and addressing depth of
8-bits, i.e., adjustable 256 gray levels.

Thanks to the low �ll factor and used manufacturing process, the overall transmission is
around 14% (for 600 nm) of the total incident light. This value is even more reduced when
the display di�raction e�ects are taken into account. The di�raction pattern of a non-
addressed modulator consists of N copies of zero di�raction order separated by a distance
equal to the combination of parameters of a display. If we simply addressed the modulator
by some function, i.e., send computer-generated hologram (CGH) as an image, the modu-
lator transfer the result directly into the 0th di�raction order, which may be undesirable.
The solution can be in the mixing of extra lens phase or plane wave with the demanded
function in the hologram generation process. The additional lens phase provides the de-
focus of the 0th order intensity and plane wave creates new 1st working di�raction order,
which spatially shifts the resulting distribution out of the 0th order. Nevertheless, these ma-
nipulations lower the total transmission e�ciency of the modulator down to 2.5% of total
incident light and make this modulator to be less practical in state-of-the-art application.

3.3.3 Phase-only spatial light modulators

The re�ective phase-only spatial light modulators are mostly based on the LCOS techno-
logy with a re�ective coating on the silicon substrate. This re�ective mirror, with the con-
currently oriented molecules on cell boundaries, allows to operate these modulators in a
double-path regime and provides phase modulation of incoming light. The phase modu-
lation is achieved by the application of the electric �eld on the LC molecules, where the
di�erently rotated molecules induce the di�erent refractive indices without changing the
input polarization state. This associates di�erent optical path lengths in liquid crystal cells
and causes the desired phase retardation. However, another important aspects need to
be considered to guarantee the phase-only modulation. At this point, it is necessary to
provide a linear polarization state of incident light and its proper aligning with the en-
trance molecule’s long axes. If both of these conditions are not met, the light polarization
state changes and leads to the undesired cross modulation between the phase and amp-
litude of incident light. For illustration, the scheme of the LCOS chip structure is depicted
in Figure 3.5.

Nowadays, this category of spatial light modulators is one of the most widespread.
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Figure 3.5: Illustration of phase-only SLM chip structure. The ground silicon substrate and
matrix circuit are manufactured by CMOS technology with top-dashed re�ective coating
and electrically interconnected liquid crystals cells. The cell molecules, with parallel bound-
aries orientation rotate around their long axes inducing the phase retardation of linearly
polarized incoming light.

There exist several companies developing and manufacturing a wide range of SLM mod-
els for di�erent spectral regions and applications. Main di�erences are in cell thickness,
phase stability, display size, re�ection coatings, pixel size as well as used LC material. Typ-
ical examples are Meadowlark [144], Pluto-2 from Holoeye Photonics [145], and X13138
form Hamamatsu Photonics [146]. For the experiment in Chapter 5. we used the model
X10468-01 from Hamamatsu Photonics. This phase-only modulator with the LCOS screen
with parallel-aligned liquid crystals and a dielectric mirror installed on the rear side of the
LC layer. Such a dielectric mirror increases the light-utilization e�ciency up to 90%. The
screen consists of 800× 600 pixels with pixel size of 20× 20 µm, 98% �ll factor and 8-bits
input signal levels.

Out of the box, the phase or amplitude modulation is in�uenced by highly nonlinear
response of the liquid crystals depending on the applied voltage level. To reach the linear
phase response, it is essential to implement the correction look-up-table, which mediates
the voltage conversion between addressed digital signals and SLM control transducer. Be-
sides, the maximal phase modulation is wavelength-dependent. Our model X10468-01 has
the default look-up-tables for 2π at 633 nm and 2.8π modulation at 532 nm.

Despite the pixel structure of the LCOS display and its characteristic high order di�rac-
tion phenomena, this type exhibits excellent di�raction e�ciency close to the theoretical
limits. The di�raction e�ciency is de�ned as the ratio between the 1st and the 0th di�raction
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order intensities when no modulation is performed. This high e�ciency can be managed
by mixing multilevel blaze grating with the desired phase mask during computer hologram
generation. Moreover, this phase grating serves like the plane wave in the amplitude mod-
ulator and associated grating period brings the overall di�raction e�ciency up to 90%.

Most microdisplay components are not enough optically �at and introduce certain ab-
erration terms to the incident wavefront. The most a�ected are the LC cells and cover-
ing glass plates. Typically, the contributed deformation is mainly spherical and in general
not more than 2λ for central wavelength. Moreover, this error can be for the class of ap-
plication minor problem with no e�ect on the result modulation. On the other hand, this
supplementary phase can be e�ectively compensated thanks to the phase compensation
mask. This compensation phase function can be superimposed in the same manner as the
above-mentioned plane wave or blaze grating to all addressed functions.

One of the straightforward method how to mathematically generate this compensation
mask is the Gerchberg-Saxton algorithm [147]. This iterative algorithm is based on retriev-
ing the phase distribution between a couple of light transversal planes related by optical
propagation function expressed by Fourier transform with the essential prior knowledge of
both plane intensities. Of course, there exist many algorithm modi�cations. For our mod-
ulators, we chose one of the fastest and easy-to-use method based on the application of a
single optical vortex [148]. With this type of compensation mask, one is able to �atten the
modulated wavefront up to λ/10 in the central display region.

3.3.4 Digital micromirror displays

The digital light projection (DLP) display is an innovative technology originally developed
by Texas Instruments in 1987. This electro-optical solution, known as the digital micromir-
ror device, is based on the micro-electro-mechanical systems (MEMS) that can be used for
high speed and e�cient modulation of the amplitude of light. These microchips are arrays
of independently controlled highly re�ective aluminum micromirrors built on top of associ-
ated CMOS memory cells, which can be sequentially synchronized with chromatic illumin-
ation unit to create compact projector modules. Nowdays, the DLP technology �nds a place
in a wide variety of advanced light control applications, from micro projection modules em-
bedded in smartphones to high powered projectors as well as 3D printers and augmented
reality displays [149, 150].

Besides, the DMD and illumination engine, the overall system is managed by the DMD
controller chip, which is the hearth of each module. During the active operation, the DMD
controller adjusts each micromirror memory cell between two operational states "ON" or
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"OFF". These two conditions are controlled by clocking pulse, which causes each micromir-
ror to be electrostatically de�ected about a central hinge to the associated tilted states.
These angles depend on the used pixel architecture, where the standard VSP pixel archi-
tecture has±12◦ tilt with diamond pixel orientation or newer TRP pixel architecture±17◦

tilt with orthogonal pixel orientation. A comparison between these two architectures is de-
picted in Figure 3.6. This newer architecture adopting a higher resolution by smaller pixel
pitch down to 5.4 µm and enhances modulation processing features by an increased tilt
angle. In a common projection system, the "+" landed state corresponds to an “ON” pixel,
and the "−" state corresponds to an “OFF” pixel. In advanced applications, the "±" states
o�er two general output ports with the desired pattern and its inverse, which is normally
blocked in the projector modules by aperture stop [151].

Figure 3.6: Comparison between VSP and TRP DMD pixel architectures and their typical
array ordering. The VSP architecture (left) is organized into a diamond (45◦ rotated square
micromirrors) orientation. The initial state (parked position) is 0◦ and "ON"/"OFF" states are
electrostatically tilted±12◦ around the central hinge. The newer TRP architecture (right) is
organized into an orthogonal pixel array. The initial state is again �at and for "ON"/"OFF"
states the mirrors are �rstly electrostatically tilted about 17◦ in one diagonal and then ad-
ditionally tilted to the di�erence of 90◦.

The addressing part of the DMD chips works through computer-generated patterns,
similarly as for the spatial light modulators. These patterns are normally uploaded as im-
ages into internal memory or streaming thought video interface. For a grayscale (binary)
projection, the controller synchronized the ON/OFF cycles (set permanent ± positions) of
each mirror mostly in 8, 12, or 16-bits (1-bit) depths. Accordingly, the RGB color images are
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produced by additional synchronization with multiple light sources, typically LED modules.
The Texas Instruments a�ords an extensive selection of fully con�gured standalone

solutions called DLP LightCrafter evaluation modules (DLP EVM) or independent DMD
chips. These EVM modules and DMD chips di�er mainly in pixel and DMD size, illumin-
ation and projecting systems, and applied DMD controllers with associated switching rate
speed and addressable bit depth. For experiments performed in Chapters 4, 5, and 8 the
DLP3000 LightCrafter evaluation module was used. This evaluation module includes 0.3-
inch micromirror VSP diagonal array of 608 × 684 aluminum mirrors with e�ective pixel
pitch of 10.8 µm (diagonally 7.6 µm) and �ll factor of 92%. The main advantage is in the
used DLPC300 digital controller, which allows one-to-one mapping of input image data to
micromirror array for 1-bit (8-bits) patterns with switching rates up to 4000 Hz (120 Hz).

For implementation in laboratory and illumination by di�erent light sources, it is ne-
cessary to make the DMD chip fully accessible by dismounting the illumination engine and
projection objective. Nevertheless, this modi�cation also removes the aperture stop block-
ing the inverse output pattern and contributes together with the coherent illumination to
overall di�raction e�ects. When a DMD is illuminated with a coherent source, the chip
itself acts as a re�ective di�raction grating with the tilted grooves and re�ected light res-
ults into a 2D pattern of di�raction orders. The orders locations are then determined by
the light incident angle, micromirrors pitch, wavelength as well as micromirrors tilt angle.
Generally, if the incident illumination angle is �xed, variations in additional tilt do not cause
the movement of di�raction orders but cause the energy distribution shifts between them.
Consequently, there exist two limiting conditions called blaze and anti-blaze. A blaze con-
dition occurs when the incident angle and the micromirror tilt are arranged so that center
of di�raction envelope lines up with the speci�c di�raction order. When this arises, a ma-
jority of the energy is directed into this blazed order. On the other hand, for the anti-blaze
condition, the envelope center falls between di�raction orders and leads to an equal en-
ergy distribution between multiple orders. Considering the character of our experiments
and the fact that the blaze condition of the used model required higher incident angles,
which induces the deformation of re�ected patterns, we always worked in the anti-blaze
condition.
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Chapter 4

Achieving the ultimate optical
resolution

This chapter is based on following publication:
[1] M. Paúr, B. Stoklasa, Z. Hradil, L. L. Sánchez-Soto and J. Řeháček. ‘Achieving the

ultimate optical resolution’. In: Optica 3.10 (2016), pp. 1144–1147.

In this chapter, we experimentally examine a new method for resolving two close inco-
herent optical point sources. The minimum separation between two sources, that may be
resolved into distinct objects, has been generally speci�ed by the well-known Rayleigh’s
criterion for over a century [14, 152]. Quite recently, a groundbreaking proposal [6] has
revisited this problem from the viewpoint of quantum optics, quantum metrology and stat-
istical image processing with the comprehension of estimation theory [6, 41, 43].

The main idea is based on the computation of the quantum Fisher information, which
determines how well the separation between two incoherent points can be estimated op-
timized over all possible measurements. When only the conventional intensity scan in the
image plane is taken, the associated Cramér-Rao lower bound diverges as the separation
between sources tends to zero, an e�ect that has been dubbed as Rayleigh’s course. Surpris-
ingly enough, the quantum Cramér-Rao lower bound maintains a constant value for any
separation of the sources.

Here, we present the optimal strategies that can lift this curse and introduce one of
the suitable measurements for Gaussian and slit apertures accomplished by digital holo-
graphic technique. Our results con�rm immunity to the Rayleigh’s curse and estimation of
two point separation from the far �eld almost as precisely as conventional methods do for
locating isolated sources.
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CHAPTER 4. ACHIEVING THE ULTIMATE OPTICAL RESOLUTION

4.1 Theoretical background

Let us �rst set the stage for our simpli�ed model. We follow Lord Rayleigh’s lead [14] and
assume quasimonochromatic paraxial waves with one speci�ed polarization and one spa-
tial dimension x, denoting the image-plane coordinate. Moreover, we consider a spatially
invariant unit-magni�cation imaging system characterized by its PSF, which represents its
normalized intensity response to a point light source, i.e., I(x) = |〈x|Ψ〉|2 = |Ψ(x)|2.

Then we presume, that two incoherent point sources are imaged by this optical system.
For simplicity, we consider them to have equal intensities and to be located at two unknown
positions X1 = s/2 and X2 = −s/2 in the image plane. The objective is to give the best
estimate of the separation s = X1 −X2. The relevant coherence matrix, which embodies
the image-plane modes, can be noted down as

%s =
1

2
(|Ψ1〉 〈Ψ1|+ |Ψ2〉 〈Ψ2|), (4.1)

where |Ψ1,2〉 = exp
(
±iP̂s/2

)
|Ψ〉 and P̂ is the momentum operator, that generates dis-

placement in the x variable. In the x-representation, the coherence matrix appears as nor-
malized probability distribution of detected photons in the image plane, namely %s(x) =
1
2
(|Ψ(x+ s/2)|2 + |Ψ(x− s/2)|2). The scheme of the coherence matrix for the Gaussian

point sources is displayed in Figure 4.1

θ1X1 X2



2σ

ψ1(x) ψ2(x)

Figure 4.1: Two Gaussian wave functions in the image plane, each expanding from a point
source, on positions X1 and X2. θ1 is their centroid, s is the separation between PSFs and
σ is its width.

For points close enough together, (s � 1), which is the most interesting case, a linear
expansion gives

|Ψ1,2〉 = N (1± iP̂s/2) |Ψ〉 , (4.2)
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where N = (1 + 〈Ψ| P̂2 |Ψ〉 s2/4)−1/2 is a normalization constant. The hearth of all di�-
culties of this problem is, that these two states are not orthogonal, i.e., 〈Ψ1|Ψ2〉 6= 0, which
physically means that these two modes cannot be separated by independent measurements.

To circumvent this problem, we come up with the de�nition of symmetric (+) and anti-
symmetric (-) states

|Ψ+〉 = C+(|Ψ1〉+ |Ψ2〉) ' |Ψ〉 ,

|Ψ−〉 = C−(|Ψ1〉 − |Ψ2〉) '
P̂ |Ψ〉√
〈Ψ| P̂2 |Ψ〉

,
(4.3)

where C+ and C− are normalization constants. When 〈Ψ| P̂ |Ψ〉 = 0 these modes are or-
thogonal which typically happens when the PSF is inversion symmetric.

Direct imaging, denoted as the classical measurement method, is one particular meas-
urement method permitted by quantum mechanics. Following Eq. (3.19), the relevant Fisher
information for this standard image-plane intensity detection (or photon counting, in the
quantum regime) reads as

Fstd(s) = N

ˆ ∞
−∞

1

%s(x)

[
∂%s(x)

∂s

]2

dx, (4.4)

where N denotes the total amount of detected photons in the image plane [76, 135], which
can be approximately taken as Poissonian with a mean N%s(x). Here, the Fisher informa-
tion is a mathematical measure of the sensitivity of an observable quantity (PSF) to changes
in its underlying parameters (emitters) position. It is important to point, that the number
of detected photons N is necessary for further computation because it scales the result-
ing CRLB (qCRLB) quantity. Performing again a �rst-order expansion in s, Fstd can be
expressed in terms of the I(x):

Fstd(s) ' Ns2

ˆ ∞
−∞

[I ′′(x)]2

I(x)
dx. (4.5)

Consequently, the Fisher information goes to zero quadratically as s → 0 and CRLB goes
to in�nity, respectively, which clearly shows a progressively worse estimation of the separ-
ation for closer sources. This divergent behavior has been termed the Rayleigh’s curse [6].
In the other words, there is much more information available about the separation of the
sources in the phase of the �eld than in the intensity alone.

With the above formalism, the quantum estimation theory can be directly applied to
this classical problem. The pivotal quantity is the quantum Fisher information [33, 153]. It
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is de�ned asF = Tr [%sL
2
s ], where the symmetric logarithmic derivative Ls is a self-adjoint

operator [76]. A direct calculation for one photon �nds that

F = 2

[
1

p−
〈Ψ−|

(
∂%s
∂s

)2

|Ψ−〉+
1

p+

〈Ψ+|
(
∂%s
∂s

)2

|Ψ+〉
]
' 〈Ψ| P̂2 |Ψ〉 , (4.6)

where p+ and p− are eigenvalues of coherence matrix constituted by modes in Eq. 4.3.
Interestingly, the quantum Fisher information turns out to be independent of s and the
associated qCRLB, de�ned by Eq. (3.25), remains constant too. Moreover, considerable
improvement can be obtained if an optimal measurement, saturating the Eq. (4.6), is imple-
mented. The example of the Fisher information quantity for two Gaussian point sources is
depicted in Figure 4.2.
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Figure 4.2: Example of normalized Fisher information for two Gaussian incoherent point
sources with σ = 0.5 mm. For standard intensity detection (blue line), the quadratic de-
cay when s → 0 is apparent. Contrariwise, the quantum Fisher information (orange line)
embodies the constant behavior, i.e., independence on separation s.

4.2 Optimal Strategies

From our previous discussion, it is clear that the projectors
∏

j = |Ψj〉 〈Ψj| (j = +,−)

comprise the optimal measurements of the parameter s� 1 [44]. From Eq. (4.6), it can be
seen that the antisymmetric mode p− gives the leading contribution, and thus, most useful
information can be extracted from the

∏
− channel. As a consequence, the wave function
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of the optimal measurement becomes

Ψopt(x) = 〈x|Ψ−〉 =
Ψ′(x)√
F
, (4.7)

where

F = 〈Ψ| P̂2 |Ψ〉 =

ˆ ∞
−∞

[Ψ′(x)]
2
dx. (4.8)

Let us consider two relevant examples of PSFs, the Gaussian and the sinc,

ΨG(x) =
1

(2πσ2)
1
4

exp

(
− x2

4σ2

)
,

ΨS(x) =
1√
w

sin πx/w

πx/w
,

(4.9)

where σ and w are e�ective widths that depend on the wavelength. From the Eq. (4.8) it is
easy to obtain the quantum Fisher information for these two cases: 1/(4σ2) and π/(3w2).
The optimal measurements are then

ΨG
opt(x) =

−1

(2π)
1
4σ

3
2

x exp

(
− x2

4σ2

)
,

ΨS
opt(x) =

√
3

[
w

1
2

πx
cos
(πx
w

)
− w

3
2

π2x2
sin
(πx
w

)]
.

(4.10)

4.3 Experimental realization

To project two incoherent points on optimal functions from Eq. (4.10), one needs to separate
the image-plane �eld in terms of the desired spatial modes. This has been provided in the
laboratory with the setup sketched in Figure 4.3. The incoherent point-like sources were
generated by a digital light projector (DLP) Lightcrafter evaluation module (Texas Instru-
ments), which uses a digital micromirror chip (DMD) with square micromirrors of 7.6 µm
size each. This allows for precise control of the points separation by individually addressed
two particular micromirrors regions. The DMD chip was illuminated by intensity-stabilized
He-Ne laser with installed beam expander to provide a su�ciently uniform beam. The spa-
tial incoherence was ensured by switching between the two object points, so that only one
was "ON" at a time, keeping the switching time well below the detector time exposition.

The two point sources were imaged by a low numerical-aperture lens and shaped by an
aperture placed behind the lens. A circular diaphragm produced Airy rings, but these are
well approximated by a Gaussian PSF. The sinc PSF was obtained by inserting a square slit.
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We experimentally measured the values σ = 0.05 mm and w = 0.15 mm. The Rayleigh
criteria for these values are 2.635σ and w, respectively. The two-point separations s were
varied in steps of 0.01 mm, which corresponds to steps 0.2σ for the Gaussian and 0.067w

for the sinc PSF.

He - Ne laser

Figure 4.3: Schematic diagram of the experimental setup. Two incoherent point sources are
created with a high frequency switch mode of DMD illuminated with an intensity-stabilized
He-Ne laser. The sources are imaged by a low-aperture lens. In the image plane, projection
onto di�erent modes is performed with a digital hologram created with an amplitude spatial
light modulator (SLM). Information about the desired projection is carried by the �rst-order
di�raction spectrum, which is mapped by a lens onto an EMCCD camera.

The projection onto any basis was performed with an amplitude-only spatial light mod-
ulator (CRL OPTO). We prepared a hologram at the image plane of the lens as a product of
the interference between a tilted reference plane wave and the desired projection function
Ψopt. When this was illuminated by two point sources, the intensity in the propagation
direction of the reference wave was∣∣∣∣ˆ ∞

−∞
Ψ∗opt(x)Ψ(x+ s/2)dx

∣∣∣∣2 +

∣∣∣∣ˆ ∞
−∞

Ψ∗opt(x)Ψ(x− s/2)dx

∣∣∣∣2 . (4.11)

Di�erent projections can be obtained with di�erent reference waves. For the Gaussian PSF,
we prepared projection on both the zero- and �rst-order Hermite-Gaussian (HG) modes,
which matches ΨG and ΨG

opt. Interestingly, for small separations, the mode HG10 attaining
more than 90% of quantum Fisher information quantity itself. This means, that the addi-
tional HG modes projections are not needed and the whole measurement is considerably
simpli�ed. For clarity, the normalized Fisher information for the �rst �ve HG modes is il-
lustrated in Figure 4.4. For the sinc PSF, the points were also projected on the PSF itself and
its �rst derivative. Moreover, the measurement of the zero-order mode is used to assess the
total number of photons in each measurement run.

The desired projection is carried by the �rst di�raction order. To get the information,
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Figure 4.4: Comparison of normalized Fisher information quantities for projections into
the �rst �ve Hermite-Gaussian modes. For small separations, the HG01 mode attains the
quantum Fisher information bound which is su�cient for estimation of separation para-
meter s. However, for larger separations, the information over�ows into higher modes
which evoke the necessity of their detection.

the signal is Fourier transformed by a short focal lens and detected by a cooled electron-
multiplying CCD camera (EMCCD) (Raptor Photonics) working in the linear mode with
on-chip gain g to suppress the e�ects of read-out noise and dark noise. As depicted in Fig-
ure 4.3, the outcome of measurement consists of two photon counts detected from the Four-
ier spectrum points representing spatial frequencies connected with the reference waves.
These data carry information about the separation of the two incoherent point sources.

The noise from a �nal number of detection events is further increased by the excess
noise due to the random nature of the EMCCD gain, the background noise caused by the
scattered photons reaching the detector, and by a slight misalignment of the SLM holo-
gram with respect to the two-point image. While the excess camera noise tends to increase
the measurement errors uniformly across the measured range of separations, the constant
background noise a�ects mostly the smallest separations.

4.4 Results and discussion

The numbers of photons n0 and n− detected in the PSF |Ψ〉 and antisymmetric (optimal)
modes |Ψ−〉, respectively, was determined by using the EMCCD pixel capacity and camera
gain g. The relative frequency of measuring the antisymmetric projection was calculated as
f− = n−/(n0 +n−), the denominator n0 +n− reports the total number of detected photons.
The estimator of the separation is then obtained by solving the relation f− = 〈Ψ−| %s |Ψ−〉
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for s. Moreover, we didn’t make any assumption about the smallness of s, which helps to
produce unbiased estimates of larger separations.
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Figure 4.5: The mean-square error of estimated separation for Gaussian (left) and sinc
(right) PSFs. Separations are expressed in units of PSF widths σ and w and the MSE in units
of the qCRLB. The main graph compares the performance of our experimental method (blue
symbols) with the theoretical lower bound for the CCD measurement (thin red curve) and
the ultimate quantum limit (thick red line). The vertical dotted lines delimit the 10% of the
Rayleigh limit for each PSF. The insets show the statistics of the experimental estimates
with its error bars.

To determine estimator characteristics, 500 measurements for each separation were car-
ried out. The results are summarized in Figure 4.5. The optimal method overcomes the dir-
ect position measurement for small and moderate separations. For the Gaussian PSF (left
panel) and the smallest separation 0.2σ, the experimental mean square estimator (MSE)
is 2.35x qCRLB i.e. more than 20 times smaller than the error of the standard intensity
measurement (51.2x qCRLB). For the sinc, the experimental MSE is 2.23x qCRLB for the
smallest separation, which is 4.5 times lower than the error of the position measurement
(10.1x qCRLB).

Two di�erent e�ects increase the error slightly above the theoretical limit. For small and
moderate separations, the background and excess noise discussed above become important.
For large separations, this type of two-mode measurement is no longer optimal. However
in this regime, the direct intensity detection becomes nearly optimal, so any setup attaining
the theoretical limit would bring only minimal improvement.

In conclusion, we have developed and demonstrated a simple technique that surpasses
traditional imaging techniques in its ability to resolve two closely separated point sources.
The method does not require any "exotic" illumination and is applicable to classical incoher-
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ent sources. Our results verify that the di�raction resolution limits are not a fundamental
constraint but, instead, the consequence of traditional imaging techniques discarding the
phase information.
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Chapter 5

Tempering Rayleigh’s curse with PSF
shaping

This chapter is based on following publication:
[2] M. Paúr, B. Stoklasa, J. Grover, A. Krzic, L. L. Sánchez-Soto, Z. Hradil and J. Řeháček.

‘Tempering Rayleigh’s curse with PSF shaping’. In: Optica 5.10 (2018), pp. 1177–1180.

In this chapter, we further develop the methods and results from the previous chapter.
Again, we are focusing on the resolution of two close incoherent point sources using spa-
tially invariant imaging systems. We revisit the scenario of direct detection, for it is the
cut-and-dried method used in the laboratory. As mentioned before, the information one
can gain about the separation between two point sources decays quadratically to zero with
decreasing separation, e�ect denominated as the Rayleigh’s curse.

Contrary to this belief, we identify a class of PSFs with a linear decrease of Fisher in-
formation for small separations. Moreover, we show that any "well-behaved" symmetric
PSF can be easily converted into such a form with a simple nonabsorbing signum �lter.

Here, we experimentally demonstrate the application of a simple signum phase mask,
i.e., signum �lter with the conjunction of a direct detection scheme, which con�rms the
linear Fisher information drop-o�. This scaling law opens new space for signi�cant super-
resolution capabilities and re�ects that the advantage of the previously mentioned quantum
schemes with separation-independent Fisher information over classical techniques is smal-
ler than previously thought.
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CHAPTER 5. TEMPERING RAYLEIGH’S CURSE WITH PSF SHAPING

5.1 Theoretical background

Firstly, we set our theoretical model, analogous to that of the previous Chapter. We work
with a spatially invariant imaging system and two equally bright incoherent point sources
separated by a distance s. We assume quasimonochromatic paraxial waves with one spe-
ci�ed polarization and one spatial dimension, with x denoting the image-plane coordinate
in the direction of separation. This simpli�ed 1D geometry is su�cient to make the pro-
cedure clear and it works for some applications such as spectroscopy. The more realistic
2D case can be processed along the same lines, although at the price of dealing with a
two-parameter estimation.

When we denote I(x) as the spatial distribution of the image plane intensity generated
by a point source, called the PSF [83], the resulting image can be written as

%s(x) =
1

2
[I(x+ s/2) + I(x− s/2)] , (5.1)

where %s(x) is the same probability density function for detecting light as in Chapter 4. We
model light emission (detection) as a Poissonian random process (shot noise) [154]. The
precision in estimating s is again governed by the Fisher information aforementioned in
Eq. (4.4). Without loss of generality, we set N = 1 and evaluated the precision per single
detected photon. Consequently, the parameter N is then reintroduced in the �nal results.
The CRLB ensures that the variance of any unbiased estimator ŝ of the quantity s is bounded
by the reciprocal of the Fisher information viz. Eq. (3.14).

Since we are primarily interested in a case of small separations, we expand %s(x) getting
%s(x) = I(x) + I ′′(x)/8s2 + O(s4), where a prime denotes derivative with respect to the
variable s. It is useful to remark that the odd powers in the above expansion do not con-
tribute, because these powers cancel each other from two PSF components. The associated
Fisher information becomes

Fstd(s) =

ˆ ∞
−∞

s2 [I ′′(x)]2

16I(x)
+O(s2)dx. (5.2)

Commuting the order of integration and summation immediately yields a quadratic beha-
vior for all PSFs: F(s) ∝ s2 +O(s4). However, such an operation is not always admissible
[155], which leaves room for tempering Rayleigh’s curse with PSF shaping techniques.
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5.2 PSF shaping using signum phase mask

To illustrate this point, let us assume, for the time being, that our PSF is well approximated
by a parabolic pro�le near the origin, i.e., I(x) ' ax2, which infers to

%s(x) ' a(x2 +
s2

4
), x, s� 1. (5.3)

When this holds true, the integrand in Eq. (4.4) diminishes to a Lorentzian function:

Fstd(s) '
ˆ

α2s2

4x2 + s2
dx. (5.4)

Because of the strong peak at x = 0 and when s � 1 the tails of the Lorentzian do not
contribute eminently and can be neglected. As a result, we get

Fstd ' λs, (5.5)

with λ = πα/2 and the information is indeed linear rather than quadratic at small separa-
tion.

Now, we want to show that any PSF can be converted to the form of Eq. (5.4) by applying
a simple non-absorbing spatial �lter at the output of the system. In what follows, Ψ(x)

indicates the amplitude of the PSF and Ψ(f) its Fourier transform. We process the image
by a coherent processor, such as a standard 4f system [83] schematized in Figure 5.1.

Figure 5.1: Scheme of an optical coherent 4f processor, with a signum phase mask in its
Fourier plane.
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In the Fourier plane, each incoherent point source gives rise to Ψ(x± s/2) 7→ Ψ(f)

exp(±iπfs). In that plane we apply a signum mask: sgn(f)ψ(f) exp(±iπfs), where the
sgn function holds for a real number and t 6= 0 sgn(t) = |t|/t and sgn(0) = 0 for t = 0.
As the signum is a pure phase �lter, no photons are absorbed. The signal components
are then convolved with the inverse Fourier transform of the signum function, which is
F−1{sgn(f)} = −i/(πx). In this way, the processor performs

Ψsgn
± (x, s) = − i

π

ˆ
Ψ(x′ ± s/2)

x− x′ dx′, (5.6)

which is the Hilbert transform of the signal. The optical implementation of this type of
transformation has a long history [156–158]. It has been used in several �elds, but most
particularly in image processing of edge enhancement because it emphasizes the derivatives
of the image.

Applying the change of variable ξ = x′ − x, expanding Ψ to second order under the
assumption of small separation and using the spatial symmetry of Ψ, we can approximate
the detection probability density function near the origin by above-mentioned parabolic
shape

%sgns (x, s) =
1

2

[
|Ψsgn
− (x, s)|2 + |Ψsgn

+ (x, s)|2
]
' α(x2 + s2/4), (5.7)

with α =
[´

Ψ′(ξ)/ξdξ
]2
/π2. It is appropriate to mention that the parabolic behavior of

Eq. (5.7) is general, but the value of the coe�cient α depends on the explicit form of the
PSF. Thus, we have a linear Fisher information such as in Eq. (5.5). In physical terms, this
happens because the Fourier-space processing integrates the phase information. Besides,
the combined system consisting of the imaging and PSF reshaping steps remains spatially
invariant and so the information about separation is not degraded by misaligning of the
signal and detection devices, as it happens, for example, when the centroid of the two-
component signal is not perfectly controlled.

For completeness, we can verify our proposal with the relevant example of a system
characterized by a Gaussian PSF: Ψ(x) = (2πσ2)−1/4 exp

(
−1

4
x2/σ2

)
, where σ is an e�ect-

ive width of Gaussian function. Henceforth, we take this parameter as our basic unit length,
so the corresponding magnitudes (s,∆s2, etc.) appear dimensionless. Apart from its com-
putational e�ciency, the Gaussian PSF approximates fairly well the Airy distribution when
illumination is done by a Gaussian distribution that apodizes the circular aperture.

Then the standard Fisher information associated with the classical direct imaging scheme
can be obtained from (4.4) resulting in:
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Fstd(s) '
(s/σ)2

8σ2
, (5.8)

which con�rms once again the quadratic scaling of Rayleigh’s curse. Now let’s compare this
result with information accessible by signum-�lter-enhanced detection. We �rst perform
the Hilbert transform of the Gaussian PSF:

|Ψsgn
± (x, s)|2 =

2
√

2D(x±s/2
2σ

)2

π3/2σ
, (5.9)

whereD(z) denotes Dawson’s integral [159]. Similar results have been reported for the dis-
persion relations of a Gaussian pro�le [160]. In particular, D(−z) = −D(z) and D(z) '
z(1 − 2

3
z2) for z → 0, so the dominant behavior is indeed linear. Therefore, the expan-

sion in (5.7) holds with α = (2π3)−1/2σ−3 and as a consequence, the corresponding Fisher
information is

Fsgn(s) ' s

2
√

2πσ3
. (5.10)

The detection probabilities and Fisher information densities typical for signum-enhanced
detection with a Gaussian PSF are shown in Figure 5.2 for two di�erent values of σ.
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Figure 5.2: Detection probabilities (blue line) and Fisher information densities (red) corres-
ponding to a Gaussian PSF modi�ed by the signum �lter for separations 0.2σ (solid lines)
and 0.4σ (dashed lines).

Note that nonzero separation is evidenced by nonzero readings at the center of the
image. Interestingly, most of the information about the separation comes from detections
near the origin, and this region extenuates with decreasing s.
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The superresolution potential of this technique is illustrated in Figure 5.3. The linear
scaling can provide big advantages in terms of the resources required to measure very small
separations. For example, to measure a 10× smaller separation with a given precision, 100×
more detection events with the conventional setup are required, while just 10× would do
with the present technique. For a �xed photon �ux this translates into shorter detection
times. At the same time, the new technique is simple to apply in existing imaging devices,
such as telescopes, microscopes, or spectrometers.
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ℱstd
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Figure 5.3: Fisher information about separation for imaging with a Gaussian PSF with (red
solid line) and without (blue solid line) the signum �lter. The asymptotic behavior of the
superresolution given by the right-hand side of Eq. (5.10) is also shown (red dashed line.)

5.3 Experimental realization

The method was implemented with the setup sketched in Figure 5.4. Firstly, it was neces-
sary to prepare mutually incoherent equally bright point sources with the controlled separ-
ation. The linearly polarized He-Ne laser beam (Thorlabs) was transformed by a system of
microscope objectives and optical �ber into a uniform collimated beam. This transforma-
tion was carried out with respect to the size of the DMD chip. After this transformation, the
intensity-stabilization back-loop system was applied because of a transferred laser pointing
e�ect. This system was performed by motorized half-wave plate sandwiched by 2 linear po-
larizers, 90:10 beamsplitter, and fast power meter. This loop holds the intensity �uctuations
well below 1% of total incident power.

Spatially coherent Gaussian beam prepared in this way was used to illuminate a DMD
chip (Texas instruments) with a micro-mirror pitch of 10 µm. Two sinusoidal grating pat-
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Figure 5.4: Experimental setup of the applied signum-enhanced protocol. The setup con-
tains several substantial parts as uniform beam preparation, intensity stabilization, inco-
herent points preparation by DMD chip, 4f processor with the application of the signum
�lter by SLM, and CCD detection part. The abbreviated marks means: LP - linear polarizer,
HWP - half-wave plate, BS - beamsplitter, PM - power meter, DF - density �lter and AS -
aperture stop.

terns with very close spatial frequencies were created, allowing very precise control of the
angular separation in a chosen di�raction order. Resulting angular separations, with a min-
imal reached angle of 4.6 µrad corresponding to a linear separation of 0.042σ, were realized.
To ensure incoherence between point sources, one pattern was ON at a time, while keeping
the switching time well bellow the detector time resolution. Imaging with an objective of
focal length f = 300 mm gave rise to two spatially separated Gaussian spots of σ = 33.2

µm. To cut o� unwanted di�raction orders a standard aperture stop was used. This part
completes the direct imaging stage.

In the signum-enhanced imaging part, a phase-only spatial light modulator (Hama-
matsu) with square pixels of 20 µm× 20 µm was operated in the Fourier plane of a standard
4f optical system. The SLM implemented the signum mask hologram, calculated as an in-
terference pattern between a phase unit-step and a blaze grating mask, allowing for over
0.9 optical transfer e�ciency. Finally, the output signal was measured by a CCD camera
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(Basler) with 7.4 µm × 7.4 µm pixels positioned at the output of the 4f processor. Because
of the higher readout noise of the camera, we activated the vertical four-pixel binning re-
gime. This regime e�ectively sums the charge in a speci�c number of pixels before the
readout process and adds readout noise only once. The resulting e�ective pixel size was
7.4 µm× 29.6 µm. The corresponding signals used in the reconstruction process, resulting
from summing three pixels, were in the range of 120− 253 photoelectrons in comparison
to a sum of 3 × 7 photoelectrons readout noise. The camera exposure time was set to 100
ms to keep dark noise contribution negligible.

Figure 5.5: Example of the detected signal with a four-pixel binning regime. The resulting
separation is estimated from the total number of detections registered in the central pixel
column.

5.4 Results and discussion

To proof our model and setup several separations, ranging from about 0.042σ (1.4 µm) to
0.18σ (6 µm) were measured. For each separation setting, 200 intensity scans were re-
corded. One typical 2D intensity scan is depicted in Figure 5.5. Since the two incoherent
points are separated horizontally, no information about separation is lost by collecting pixel
counts column-wise. The resulting projections are samples from the theoretical intensity
distribution ρsqns (x, s). Regarding small separations and conclusions from Figure 5.2, only
the central parts of the projections contribute signi�cant information. In particular, all pixel
columns, except the central one, can be ignored in the raw data in Figure 5.5. Therefore,
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Figure 5.6: Experimental variances of the separation estimator (blue dots) compared with
the direct detection (blue dashed lines) and the signum-enhanced limit (solid blue line). The
latter is corrected for the �nite pixel size of 7.6 µm. For completeness, the reciprocal of the
variances, called precisions, are shown in red.

each 2D intensity scan is reduced to a single datum - the total number of detections in the
central pixel column.

We expressed the response of the real measurement by a second-order polynomial on
the separation p(s) = a + bs2 and estimated the coe�cients from the best �t of the mean
experimental detections. For each separation, we calculated the estimator mean 〈̂s〉 and
variance 〈∆ŝ2〉.

Experimental results are summarized in Figures. 5.6 and 5.7. Figure 5.6 compares the
experimentally determined variances with the theoretical limits of the direct and signum-
enhanced imaging for a Gaussian PSF and 434 000 detections per measurement. Reciprocal
quantities (precisions) are also shown. Signum-enhanced imaging clearly breaks the quad-
ratic Rayleigh curse in the whole range of measured separations, with variance improve-
ments up to 10× compared to the direct imaging. Note also the apparent linear behavior of
experimental precision (red symbols) as compared to the quadratic lower bound predicted
for the direct imaging (red dashed line).

Figure 5.7 shows more estimator statistics. Experimental estimates are nearly unbiased
and not much worse than the theoretical limit calculated for the �nite pixel size used in the
experiment. The PSF engineering brings reliable separation estimates in the region, where
direct imaging fails, as for example for separations s ' 0.07σ in Figure 5.7.
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Figure 5.7: Estimation of the separation from signum-enhanced imaging. Estimator means
(blue dots) and standard deviations (error bars) are shown. The same statistics are provided
for the best unbiased estimators from direct (blue dashed lines) and signum-enhanced (red
dashed lines) imaging as given by CRLB. The latter takes into account the �nite size pixel
used in the experiment.

In summary, we have demonstrated a robust experimental violation of Rayleigh’s curse.
Experimental imperfections prevent one from achieving the ultimate limit shown in Figure
5.3. For larger separations, systematic errors and setup instability make important contri-
butions to the total (small) error. For very small separations, the measured signal is very
weak and background noise becomes the limiting factor. Further improvements are possible
by optimizing the noise statistics and resolution of the camera. Finally one could wonder
whether a di�erent �lter could yield better scaling of the Fisher information using direct
imaging. The dispersion relations suggest that this behavior is largely determined by the
zeros of the PSF [161]. To explore all these issues, the deeper survey is needed, but the
simplicity of the signum mask makes it very attractive for superresolution applications.
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Chapter 6

Reading out Fisher information from
the zeros of the PSF

This chapter is based on following publication:
[3] M. Paúr, B. Stoklasa, D. Koutný, J. Řeháček, Z. Hradil et al. ‘Reading out Fisher inform-

ation from the zeros of the point spread function’. In: Optics Letters 44.12 (2019), pp. 3114–
3117.

In the previous chapter we showed, that any well-behaved symmetric PSF can be easily
converted into PSF with a single isolated information-rich zero region using a simple non-
absorbing signum �lter. Using this new PSF, the Fisher information one can gain about
the separation between two incoherent point-like sources does not scale quadratically with
the decreasing separation but only linearly. Moreover, the dominant contribution of the
separation information comes from the area in the vicinity of this zero region.

In this chapter, we are extending this idea of isolated zeros. We demonstrate, that any
optical system, whose PSFs exhibit those natural zeros, makes the Fisher information fall
linearly for small separations. We focus on sinc PSF, which has a large number of natural
zeros. We experimentally con�rm the idea of linear scaling and demonstrate this beha-
vior using two simple spectroscopic setups with naturally and arti�cially created spectral
doublets.
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CHAPTER 6. READING OUT FISHER INFORMATION FROM THE ZEROS OF THE PSF

6.1 Theoretical background

To establishing our model, we can follow the same theoretical model as in section 5.1 in the
previous Chapter. For lucidity, we would like to remind the resulting Fisher information
density, which is de�ned as Fstd(s) = N

´∞
−∞ F (x|s) dx

F(x|s) =
s2 [I ′′(x)]2

16I(x)
+O(s2), (6.1)

where the leading term is quadratic in s. When I(x) is a Gaussian function with no zeros,
which is often used as a pretty good approximation to the Airy distribution, integrating
over x persists the same scaling of the Fisher information. However, this is not always the
case.

Let us assume that the PSF has second-order zeros at a positions xk (k = 1, 2...). This
is a natural assumption due to the analyticity of the associated complex amplitudes around
such points. In this case, the Fisher information exists only as the Cauchy principal [162].
Consequently, the power expansion of the integral around s = 0 does not make any sense,
since it cannot be integrated term by term. Instead, one should �nd the dominant term of
the integrand near the kth zero by locally approximating I(x) with 1

2
I ′′(xk)(x−xk)2. This

�nally gives

F(x|s) =
1

8

I ′′(xk)s
2

(x− xk + is/2)(x− xk − is/2)
, (6.2)

which is true for s� 1. By analytic continuation to the complex plane, each zero xk gives
rise to two simple poles symmetrically placed with respect to the real axis z±k = xk ± is/2.
The integral in (4.4) can be evaluated by the method of residues [163]. We can deform the
real axis inserting small semicircles that enclose the poles z+

k . The leading terms are then
the contributions from z+

k , and since 2πiRes(F, z+
k ) = 1

4
πI ′′(xk)s, the Fisher information

appears as a sum of the contributions of all the poles and we get

Fsinc(s) =

[
π

4

∑
k

I ′′(xk)

]
s. (6.3)

This con�rms a linear scaling of the information accessible with an imaging system,
which directly stems from the existence of second-order zero regions of the PSF. As an
example, we examine the normalized PSF

I(x) =
1

w

sin2(πx/w)

(πx/w)2
, (6.4)
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CHAPTER 6. READING OUT FISHER INFORMATION FROM THE ZEROS OF THE PSF

which appears when dealing with the di�raction by a slit. Here, w is an e�ective width
that depends on the used wavelength. This PSF has an in�nite number of zeros located at
xk = kw (k = ±1,±2, ...), so that the associated Fisher information is

Fsinc(s) =

(
π

2w3

∑
k 6=0

1

k2

)
s =

π3

6w3
s, (6.5)

of which more than 60% (6/π2) resides in the �rst (k = ±1) di�raction minima.
It is worth stressing that, in practice, deviations from the Poissonian statistics might

occur. For example, on decreasing separation, an unavoidable small amount of a Gaussian
additive noise component starts to dominate the Poissonian one,inducing a transition from
a linear to a standard quadratic scaling at very small separations. The coarse graining
due to detector pixelization leads to a similar e�ect. In the following, we assume that the
parameters of the detection scheme are such that those e�ects can be ignored in the range
of separations of interest.

To exemplify the theory suggested above, two spectroscopic setups were realized. Both
setups tried to resolve two close spectral lines with wavelength separation well bellow the
standard di�raction-limited resolution. Furthermore, each con�guration tested the results
in a di�erent context.

6.2 Experimental con�gurations for resolving spectral

doublets

In the �rst experiment, a spectral doublet generator with controllable separation between
two lines was used. By varying the separation and repeatedly measuring it, the scaling of
measurement error with the true separation was determined.

The experimental setup is sketched in Figure 6.1. The spectroscopic setup consisted of a
swept-wavelength tunable laser (Superlum) with a central wavelength of λ = 840 nm, laser
collimation optics, di�raction grating, focusing optics with rectangular aperture slit, and a
detection CMOS camera. We set the laser to operate in two-wavelength modulation mode
with modulation frequency f = 1000 Hz - two orders of magnitude above the detection
camera exposure time, which allowed us to e�ectively generate equally bright doublets.
The collimated laser beam was analyzed with a transmission di�raction grating with a
groove density of 600 lines/mm working in the �rst di�raction order. The slit aperture of
the focusing lens was set to catch N = 1080 grating lines, which translates into a standard
spectral resolution limit of λ/N = 0.77 nm. Whereas the minimum wavelength separation
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Figure 6.1: Experimental setup for measuring the spectral separation of arti�cial lines gen-
erated by a swept-wavelength tunable laser. BS - beamsplitter

achievable with the used laser was ∆λ = 0.05 nm, which is about 15 times below the
standard limit. Spectrograms generated at the focus of a cylindrical lens of focal length of
f = 250 mm were recorded by a CMOS camera (Basler) with 1.67 µm × 1.67 µm pixels,
with pixel capacity of 2000 electrons, and readout noise about 3 electrons. Due to the
cylindrical symmetry, a data-set of separation estimates can be obtained from single-shot
measurements by processing rows of the CMOS camera reading individually, which helps
to avoid laser stability issues and other systematic errors.

The second experiment was aimed to resolving the longitudinal mode spacing of a laser
cavity. Here, the gain curve of a linearly polarized He-Ne laser (Thorlabs) was character-
ized by the central wavelength λ = 632.8 nm, and the width that covers the cavity, the
gain curve can start �uctuating above these modes. When the doublet centroid coincides
with the maximum of the gain curve, two equally intense spectral lines would be emitted.
A single spectral line is emitted, when centroid moves to the edge of gain curve. Switching
between the single-line and two-line situation was done via an attached cooling fan. Output
light was dispersed by a re�ective holographic di�raction grating with a groove density of
2400 lines/mm, working in the �rst order with an angle of incidence of 49◦. A rectangular
slit aperture of the focusing lens was set to catch N = 12960 grating lines corresponding
to a spectral resolution of λ/N = 48.7 pm. The nominal cavity mode spacing of 1090 MHz
equals to the wavelength di�erence of 1.45 pm, producing a separation 33 times below
the standard resolution limit. The resulting spectrogram was recorded by the same CMOS
camera as in the previous experiment, at the focus of a cylindrical lens of f = 1000 mm.
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Figure 6.2: Experimental setup for resolving the longitudinal cavity modes of He-Ne laser.
BS - beamsplitter

Moreover, the true doublet mode spacing and centroid were independently measured by a
piezoelectrically controllable scanning cavity Fabry-Perot interferometer (Toptica) connec-
ted to an oscilloscope (Singlent), providing a free spectral range and resolution of 4 GHz
and 10 MHz, respectively. The whole setup is schematized in Figure 6.2.

6.3 Results and discussion

With the �rst setup depicted in Figure 6.1, the spectral doublets were generated with a sinc
PSF with w = 114 µm and true separations of s = {0.076, 0.15, 0.23, 0.31}w. An image
was captured for each separation, and the total intensity was set such that each row con-
tained N = 50000 detections on average. The data processed to yield an estimate ŝ of
true separation s were the set of intensities (detections) registered at individual pixels in a
given row. The relevant statistic was evaluated from 100 rows corresponding to repeated
measurements onN copies of the signal state. The comparison of the experimental error to
the theoretical bounds required scaling of the Fisher information with the number of total
detections in the whole intensity pattern Fsinc(s)→ NFsinc(s). The estimator ŝ is obtained
by a generalized least-squares technique implemented as a nonlinearly constrained optim-
ization subject to ŝ ≥ 0 [164]. Background and �nite size of camera pixels are incorporated
into the model. To illustrate the importance of zero intensity points, we processed the data
both in global and local mode, as outlined in Figure 6.3. In the former case, a broad patch
(extending from about −2.4w to +2.4w) of the PSF was processed to estimate the total in-

56



CHAPTER 6. READING OUT FISHER INFORMATION FROM THE ZEROS OF THE PSF

Figure 6.3: Sinc PSF, as given in Eq. (6.4), depicting the sensor areas that de�ne global (light
gray) and local (dark gray) measurements of spectral separation. The broken line represents
a Gaussian PSF with the same normalization and the same peak value. The horizontal axis
is drawn in units of w.

formation accessible in the data. In the latter case, only a small neighborhood of a single
PSF zero was considered.

The results are summarized in Figure 6.4. We plotted precision H(s) [165] so that we
avoid potential divergences as s → 0. We can clearly appreciate the linear fallo� and a
signi�cantly better resolution for very small separations obtained with the sinc PSF com-
pared to what theory predicts for a strictly positive Gaussian PSF with roughly the same
width, which drops at a much faster quadratic pace. The latter was calculated by nu-
merically integrating the Fisher information equation with normalized Gaussian pro�le
IGauss(x) ∝ exp [−x2/(2σ)], where the Gaussian width σ was chosen to have equal peak
intensity as the normalized sinc pro�le. Additionally, we compared the experimental res-
ults with their theoretical upper limits given by the Fisher information calculated for local
and global measurements and Gaussian PSF. This clearly con�rms that the local estimates
are nearly optimal in the measured range of separations.

The moderate under-performance of global estimates seen in Figure 6.4 mainly stems
from two factors. First, the realized PSF shows a slight asymmetry. The image half-plane
with better (deeper) zero regions was selected for local measurements. The other half-
plane only entered the global measurements. Second, for the largest measured separations,
the theoretical resolution limits of a global estimation become a fraction of µm, which is
already comparable to the level of the setup stability. Considering similar performances
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Figure 6.4: Experimentally determined precisions for the separation of two incoherent ob-
jects with a sinc PSF. The separation estimation was done globally (red solid symbols) from
322 pixels (∼ 4.7w) centered on the centroid of the intensity pattern encompassing four
PSF zeros (k = ±1,±2) or locally (blue open symbols) from 22 pixels (∼ 0.3w) cropped
around a single k = +1 intensity minimum. The symbols are capped by the theoretical
upper limits given by the Fisher Information. The red solid (blue broken) line shows the
corresponding the theoretical limit such a global (local) measurement applied to a normal-
ized Gaussian PSF of the same peak and total intensity. Variances are included in the inset
for a clearer picture of what happens at very small separations. Precisions, variances, and
separations are drawn in units of w−2, w2, w, respectively, and variances and precisions are
normalized per photon detection in the full uncropped 1D image.

of the global and local estimates despite the huge di�erence in the number of detections,
the experiment remains consistent with our main theoretical results, namely the bulk of
information about small separations gets concentrated around the zeros of the PSF. Other
parts of the image can be ignored, reducing the complexity of any post-processing manip-
ulation, or not detected at all and used for other purposes, saving precious resources.

With the second setup represented in Figure 6.2, only two separations were measured,
corresponding to single and double-line operation, making it di�cult to characterize the
measurement and establish the correct detection model. We estimated the true PSF of the
setup from single-line data by averaging detections over an ensemble of 100 rows, and
expressed the theoretical model in terms of the resulting PSF estimate Î(xi) : ρ(xi|s) =

Î(xi − s/2) + Î(xi + s/2)/2.
The robustness of the model follows from the absence of any unknown parameters - the

double-line data being explained from the averaged single-line data and the latter serving as
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Figure 6.5: Histograms of experimentally determined frequency di�erences for single-line
(open bars) and double-line (solid bars) He-Ne laser operation. The true separation of 1090
MHz of the spectral doublet is marked by the vertical broken line.

a null detection. We also made a cross-check by estimating the (nominally zero) single-line
separations with the same model.

The results are condensed in Figure 6.5, where we show histograms of the separation
estimates for each data set. The He-Ne doublet was clearly resolved with the best estimate
of 1113±44 MHz for two lines and 50±57 MHz for a single line. Some positive bias seen in
the single-line estimates was due to the strict enforcement of the physical constraint ŝ ≥ 0,
which become active at very small true separations.

In summary, we had provided a general argument, that links the zero regions of the PSF
with the Fisher information and predicts a linear scaling. This can provide a signi�cant
advantage in terms of the resources required to measure very small separations, as we had
demonstrated with two simple experiments. Moreover, this seems to call for appropriate
engineering of the zeros of arbitrary PSFs (via suitable masks), to control the accessible
information. In this sense, our results constitute a new concept of superresolution that
requires very simple instrumentation.
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Chapter 7

Intensity-based axial localization at
the quantum limit

This chapter is based on following publication:
[4] J. Řeháček, M. Paúr, B. Stoklasa, D. Koutný, Z. Hradil and L. L. Sánchez-Soto. ‘Intensity-

Based Axial Localization at the Quantum Limit’. In: Physical Review Letters 123.19 (2019),
p. 193601.

In this chapter, we study overcoming classical precision bounds of single-point axial
localization. In classical microscopy, the maximum spatial resolution is usually determined
by the Abbe-Rayleigh criterion [14, 57]. However, this criterion is based on rudimentary
notions, which are an inappropriate performance measure for current quantitative imaging
[154].

Indeed, several modern techniques falling into the category of superresolution micro-
scopy [58, 60, 65] are capable of achieving an increased resolution by more than one order
of magnitude in comparison with the scale set by the Abbe-Rayleigh criterion.

For 3D imaging, the knowledge of the emitter axial position is also important. Finding
the optimal depth precision attainable by any such microscope engineering approach has
been only recently investigated [74, 166, 167]. The basic idea is to use the quantum Fisher
information and QCRLB to �nd a measurement-independent limit, much in the same tem-
per as was done in previous chapters.

Here, we present the fundamental precision bounds of single-point axial localization
derived for Gaussian beams. These ultimate limits can be strikingly reached with a single
intensity scan, provided by the camera placed at one of two optimal transverse detection
planes. This prompts for axial localization, there is no need for more complicated detection
schemes. The theory was veri�ed with an experimental demonstration of axial resolution
three orders of magnitude below the depth of focus, using a simple microscopy setup.
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CHAPTER 7. INTENSITY-BASED AXIAL LOCALIZATION AT THE QUANTUM LIMIT

7.1 Theoretical background

Once again, we focus on direct imaging, which is the simplest method available in the
laboratory. Of course, as we mentioned in Chapter 4 and proved in Chapters 5 and 6,
discarding the phase information is not the proper way how to get beyond the standard
resolution limits. Surprisingly, in this optical scenario, it can be shown, that the direct
detection scheme can saturate the quantum limits with a single intensity scan, as long as
the camera is placed in an optimal transverse detection plane.

To simplify our theoretical model, we take the waist of a focused beam as the object.
The challenge is to estimate the distance from this object to a detection plane. To generalize
the theory, we shall use the Dirac notation to describe the �eld and extent it to any type of
possible light source.

If the beam in the object plane is represented by the pure state |Ψ(0)〉, the axial displace-
ment can be described by a unitary operation |Ψ(z)〉 = eiGz |Ψ(0)〉, where the Hermitian
operatorG being the corresponding generator. To clarify the action ofG in a more accurate
way, it is convenient to use the transverse-position representation Ψ(x, y; z) = 〈x, y|Ψ(z)〉.
Given our unitary parametrization, it holds

∂zΨ(x, y; z) = iGΨ(x, y; z), (7.1)

which is consistent with the paraxial wave equation 2ik∂zΨ(x, y; z) = ∇2
TΨ(x, y; z) if

G→ 1
2k
∇2
T . For more tractable analysis and experiment, we assume a normalized Gaussian

beam in the form

Ψ(r; z) =

√
2√

πw(z)
e
− r2

w2(z) exp

(
−i
[
kz +

kr2

2R(z)
− φ(z)

])
. (7.2)

Although the �nal results are independent of this choice. Notice, that using the cylindrical
symmetry, the beam depends on the radial coordinate r exclusively. The �eld distribution
in Eq. (7.2) is determined by the beam waistw0 and the Rayleigh range zR throughw2(z) =

w2
0 [1 + (z/zR)2], R(z) = z [1 + (zR/z)2], φ(z) = arctan(z/zR), and zR = πw2

0/λ, where
detection plane is placed in z position. To enumerate the information about z available in
the measured signal we use the quantum Fisher information, which, for our case of pure
states, is given by F(z) = 4Var(G), where Var is the variance computed in the initial state.
With the standard form of G in the transverse representation, a direct calculation shows
that for the Gaussian beam one gets

F(z) =
1

z2
R

, (7.3)
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which reveals to be a constant. Moreover, the QCRLB [167] assures, that the resulting vari-
ances of any unbiased estimator ẑ is bounded by reciprocal of quantum Fisher information.

7.2 Direct detection and saturation of quantum limit

The basic model of detected light is generally described by the probability density function,
which in our case is interpreted by normalized beam intensity %(r|z) = |Ψ(r; z)|2. Since
the detection is a random process, the shot noise is a limiting factor, obeying the Poisson
statistic. Ignoring most of the non-classical e�ects, which are neglectable for applied micro-
scopy, and oversight the �nite spatial extent and nonzero pixel size, the resulting standard
Fisher information about z in polar coordinates and for single detection can be written as

Fstd(z) =

[
∂zw

2(z)

w2(z)

]2

=
4

R2(z)
=

4

z2 [1 + (zR/z)2]2
. (7.4)

Regarding this result, the optimal detector positions are at the Rayleigh range zopt = ±zR,
which are the planes of the maximal wavefront curvature. Also, at these optimal planes, the
Fisher information saturates the quantum limit, i.e., Fstd(zR) = 1/z2

R and con�rms, that all
information about axial waist localization is coded in the intensity distribution and can be
extracted with conventional direct measurement without more complicated techniques.

Potential applications of this consequence pro�t from using a relay optical system to
reimage the object and obtain a more suitable detector position. Figure 7.1 sketches one
of the simplest possible schemes using a thin lens placed at distance z from the waist of
the object beam. Here the plane (prime) symbols characterize parameters in object (image)
plane.

Figure 7.1: Scheme of the axial localization setup using a simple relay optical system.
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In consideration of the unitary transformation of an ideal imaging system, the quantum
Fisher information does not change from the object to image space, i.e.,F ′ = F . Recapping
the standard relations for Gaussian beam lens transformation [168]

w′20 = m2w2
0, z′R = m2zR, z′0 = m2(z − f) + f, (7.5)

wherem = f/ [(z − f)2 + z2
R]

1/2 is the magni�cation of the system, we can �nd new beam
width at the detection plane z′ as

w′2(z′) = w′20

[
1 +

(
z′ − z′0
z′R

)2
]
. (7.6)

And the associated Fisher information is express in term

F ′std(z) =

[
∂zw

′2(z)

w′2(z)

]2

=

=
4(f − z′)2 [zz′ − f(z + z′)]2

{(z2 + z2
R)z′2 − 2fz′(z2 + z2

R + zz′) + f 2 [(z + z′)2 + z2
R]}2 . (7.7)

The characteristic distribution of F ′std around the beam waist w′0 is displayed in Figure 7.2
with the presence of two asymmetric maxima (saturatingF ′) and one minimumF ′std,min =

0. While the beam is symmetric about the waist in the image area, the response of the beam
width to small changes of the true distance z is di�erent inside and outside the waist, which
makes the Fisher information asymmetrical with respect to the image waist. These maxima
are located at

z′opt = z′0 + αz′R, z′opt = z′0 −
1

α
z′R, (7.8)

where α = (f − z − zR)/(f − z + zR). Nevertheless, in the geometrical limit f − z � zR,
we get α ' 1 and optimal planes are in the Rayleigh range of the beam, so the asymmetry
disappears.

We should also take notice of the single minimum at z′min = fz/(z − f), where the
information about axial displacement tends to zero. This behavior is closely adherent to
the information about transversal beam localization. In this situation, a small lateral shift
∆r of a Gaussian object of width w0 leads to the corresponding lateral shift of ∆r′ =

[(f − z′)/f ]∆r of the detected Gaussian pro�le. A straightforward calculation can show
that the resultingF ′std∆r about ∆r is maximized by placing the detector into the plane of the
geometrical image z′min, where the quantum limit is achievedF∆r = 1/w2

0 . In this sense, the
optimal axial localization (requiring considerable image blur) and transverse localization
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Figure 7.2: Image space Fisher information distribution of axial (blue solid) and transversal
(red broken line) positions of the object beam waist. Curves are normalized respective to
the quantum Fisher information for di�erent placements of the detector. For chart, the
parameters z = 5, f = 1, and zR = 1 were used and the x-axis is relative to beam waist in
units of z′R.

(bene�ting from sharpness) complement each other, as can be checked in Figure 7.2. The
equilibrium between these two components can be reached through PSF engineering, which
provides a good three-dimensional resolution. Therefore, these methods always broaden
the PSF, even more than our zR defocusing method.

7.3 Experimental Realization

To validate the above-mentioned theory, we invoked a classical microscopy setup, as schem-
atized in Figure 7.3. The setup was constructed from an objective (Olympus) corrected for
in�nity and a tube lens (Thorlabs), all together providing a 20×magni�cation of the output
end of a single-mode �ber representing a Gaussian point-like source. The �ber was coupled
with a 632.8 nm He-Ne laser (Lasos). The Used �ber had mode �eld diameter around 4 µm
and the corresponding Rayleigh range was then 18.9 µm. Used CMOS camera (Basler) with
5.5 µm pixel size was moved 7.6 µm out of the image beam waist to become aligned with
one of the optimal detection planes given by Eq. (7.8). The axial distances z of �ber were
realized by the translation stage (Thorlabs) with a piezo actuator controlled by the close-
loop tensometer with a resolution of 1 nm.
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Figure 7.3: An experimental setup used to measure the axial displacement z of an optical
�ber. The output face of the �ber served as the point-like Gaussian source, which was
linearly transformed by a microscope composed of an objective and a tube lens. The cam-
era was positioned in one of the optimal detection planes to obtain the maximum of the
available information.

To construct the most robust estimator, it is convenient to compare radial Fisher in-
formation density with the normalized Gaussian beam intensity pro�le in the image plane.
These magnitudes are shown in Figure 7.4 for the optimal detection plane z′opt. The inform-
ation falls to zero at rb = w′opt/

√
2 and the amount of information (2/e ' 74%) resides

outside this bound in the remaining segment of the Gaussian intensity distribution. The
residual intensity outside this boundary can be labeled as Idet(z), for the axial object dis-
tance z. Then, for small displacement δz from nominal position z, we have

Idet(z + δz)Idet(z)(1− δz/zR). (7.9)

This linear de�nition can be easily transposed to acquire an estimate δ̂z of δz from Idet.
Of course, we tried to use the maximum likelihood estimator based on the full pro�le.

However, this estimator was a bit noisy due to the systematic errors [169]. Nonetheless it
is important to remark, that we were interested in the proof-of-concept experiment, and
our estimator from intensity Idet is simple and su�cient despite small deviations from the
theoretical best performance.

We would like to notice, that we presumed the knowledge of the nominal axial distance.
When this is not true, there can be the potential loss of precision in the z estimate due to
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an inaccurate detector positioning. Naturally, this shouldn’t be am overwhelming problem
because one can perform a calibration process as we did in our experiment. Our calibration
was done by placing the �ber forehead in the focal length of the microscope objective, which
was our initial position δz = 0. Afterward, the transformed beam waist w′0 was found, and
the resulting parameters, i.e., z′R were calculated. When this is not applicable, one can
adopt an adaptive approach, where a small part of total detections (photons) is allocated
on a nonoptimal detection, and the optimal detector position is corrected in according to
the �rst estimation of z. This process can be iteratively repeated until the optimal plane is
reached.

Figure 7.4: Normalized radial Fisher information density (solid blue line) and normalized
beam intensity pro�le (dashed red line) in the optimal detection plane, where the beam has
a width w′opt. Parameters of the curves correspond with parameters in Figure 7.2.

7.4 Results and discussion

Attained experimental results are summarized in Figure 7.5. We measured the full range of
axial displacements δz ∈ [10 nm, 1650 nm] with increasing displacement between adjacent
values. Measurement errors were consistent across the whole interval, averaging 24.8 nm.
This is about 800× well below the depth of focus zR and slightly above the quantum limit
of 14.9 nm matching the total number of 1.6× 106 registered photons for each δz setting.

Now, let us investigate what happened when the source is uncooperative. In this scen-
ario, the source generates a spherical (parabolic) wavefront, which after a radiating distance
z enters an imaging system that truncates the unbounded wave with a pupil function. If
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we consider the Gaussian pupil transmissivity of width wl , the wave transmitted by this
pupil holds on

U(x, y; z) =

√
2

πw2
l

exp

[
− r

2

w2
l

+ i
kr2

2

(
1

z
− 1

f

)]
. (7.10)

The aperture state is not exactly axial propagation from the point source because pupil acts
as a �lter and the state should be renormalized. The process is not unitary anymore and the
quantum Fisher information cannot be calculated in terms of the generator G. In contrast
with Gaussian source, the resulting quantum Fisher information now reads

F(z) =
k2w4

l

4z4
, (7.11)

which intensely depends on the true distance z.
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Figure 7.5: Experimental estimation of axial displacement δz from the nominal object plane
with respect to optimally placed CMOS camera. The inset shows the statistic of the estim-
ator δ̂z as de�ned in Eq. (7.9). In the main plot, the true distance was subtracted from the
estimates to get a more convenient scale on the vertical axis. The blue stripes depict the
quantum bound for the 1.6× 106 detections and zR = 18.9 µm.

So far, we were interested in Gaussian beams and apodized lens. Now, it is intriguing to
remark that n = 2× 106 detections, used in our experiment, detected with one meter aper-
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ture wl = 1 m in visible light k = 107 m−1 would theoretically provide axial localization of
a point source in low Earth orbit z = 200 km with about 5 m accuracy.

In conclusion, we have theoretically and experimentally demonstrated the axial super-
resolution technique provided by a direct detection scheme. The quantum limits for Gaus-
sian beams or apertures can be easily saturated with a single intensity scan, provided by
the camera placed in one of two optimal transversal detection planes. For this reason, the
axial localization problem does not need to adopt more complicated detection schemes.
Our method makes 3D superresolution imaging promising and can be potentially useful
for enhancing the resolution of optical microscopes.
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Chapter 8

Unraveling beam self-healing

This chapter is based on following publication:
[5] A. Aiello, G. S. Agarwal, M. Paúr, B. Stoklasa, Z. Hradil et al. ‘Unraveling beam

self-healing’. In: Optics Express 25.16 (2017), pp. 19147–19157.

In this chapter, we are concerned with the self-reconstruction mechanism of Gaussian
beams. This extraordinary property, frequently called self-healing, leads to an overall re-
construction of the optical beam intensity pro�le after impinging on an opaque obstacle.

Self-healing has been considered as a peculiar attribute of non-di�racting beams [90],
especially Bessel beams [103, 170, 171], Airy [172], caustic beams[123] and other special
forms for a long time. Recently, a complete description of the self-healing mechanism
for Bessel beams has been de�ned in terms of wave optics [127]. This makes the self-
reconstruction process possible to reassign in terms of plane waves with radial wave vectors
lying on the ring.

Here, we continue with wave-optics methodology, which leads us to the conclusion that
self-healing property may potentially occur for almost any kind of beam, focusing primar-
ily on common Gaussian beams. We introduce an appropriate degree that quanti�es the
similarity between the �eld of the unperturbed beam, a beam that would propagate as the
obstacle is not present and the �eld of the perturbed one, the beam that propagates behind
the obstruction. Moreover, we suggest a novel de�nition for the minimum reconstruction
distance beyond geometric optics, applicable for any optical beam that concedes an angular
spectrum representation. This is achieved via investigation of the entire spatial distribution
of the beam, i.e., its intensity and phase segments.

We experimentally verify these novel metrics on a Gaussian beam, whose intensity and
phase were measured by means of CCD camera and Shack-Hartmann wavefront sensor,
showing an accurate agreement with the theoretical predictions.
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CHAPTER 8. UNRAVELING BEAM SELF-HEALING

8.1 Theoretical background

Firstly, we brie�y introduce our theoretical model pursuing the wave optics methods, mainly
angular spectrum representation. We anticipate a scalar �eld Ψ(x, y, 0) propagating along
the z-axis. Here, an obstacle can be considered any physical object that decreases the in-
tensity of a light beam in a space-dependent manner without changing the phase and po-
larization state directly. This kind of obstruction can be characterized by an amplitude
transmission function tO(x, y). The resulting amplitude of the obstructed �eld ΨO(x, y, 0)

in the initial plane z = 0 can be described as

ΨO(x, y, 0) = tO(x, y)Ψ(x, y, 0). (8.1)

Accordingly to the angular spectrum propagation [84], the amplitude of the �eld transmit-
ted at a distance z from the initial plane can be expressed as the plane-wave superposition

ΨO(x, y, z) =
1

(2π)2

∞¨

−∞

exp(iρ · κ) exp(ikzz)

 ∞¨

−∞

t̂O(κ− κ′)Ψ̂(κ′)

 d2κ, (8.2)

where bold symbols denote real (ρ = xx̂+yŷ) and Fourier space (κ = kxx̂+kyŷ) coordinate
vectors. Wide hat symbols characterize corresponding spatial Fourier transform (angular
spectrum) functions evaluated in the plane z = 0.

With respect to the Babinet principle [173], we can always de�ne the transmission func-
tion tA of an aperture complementary to the obstructed one, which holds the equation
tO(x, y) + tA(x, y) = 1. Then the Eq. (8.1) can be rewritten to the form

ΨO(x, y, 0) = [1− tA(x, y)] Ψ(x, y, 0) ≡ Ψ(x, y, 0)−ΨA(x, y, 0). (8.3)

Performing the squared absolute value of the above equation and integrating over the whole
space, we get the average beam intensity at plane z

I[Ψ0] = I[Ψ] + I[ΨA]− 2Re

∞¨

−∞

Ψ∗(x, y, 0)ΨA(x, y, 0) dxdy. (8.4)

Generally, the self-healing capability of the beam conveys to recovering its amplitude or
intensity pro�le after hitting an obstacle. Evidently, the ideal reconstruction is physically
inaccessible. This is apparent from previous equation, where the consequent intensity of
the transmitted �eld is reduced unless I[ΨA] = 0. Then, the ΨO can be approximated by
the form
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Ψ0(x, y, z) ≈ λ0Ψ(x, y, z), ∀z ≥ z0, (8.5)

where z0 denotes the so-called minimum reconstruction distance and the scaling factor
λ0 = (I[ΨO]/I[Ψ])1/2 represents the average intensity reduction caused by an obstacle.
This means that the Eq. (8.5) can be satis�ed only by those beams, whose angular spectrum
is una�ected by the interaction with the obstruction.

Figure 8.1: Obstruction of area O represented in red. This region is bounded by the blue
circle of radius a (exradius) and inscribes the green circle of radius b (inradius). Both circles
are centered along the z-axis of the beam

Let’s take a closer look at a minimum reconstruction distance z0, after which a self-
reconstructing beam is supposed to reproduce its pro�le. Let us consider an arbitrary
obstacle on the xy-plane with area O. This situation is sketched in Figure 8.1. For the
simple enclosed region O, it can always be found the incircle (the largest circle inscribed
O) with radius b and the excircle (the smallest circumscribed circle) with radius a, both
centered on the axis [174]. Then fundamental considerations lead us to [104, 175]

z0 ∝
a

tanφ
, (8.6)

where the proportionality factor depends on the shape of the obstruction.
Naturally, we can rewrite the z0 as a function of κ = (k2

x + k2
y)

1/2 in the Fourier space
namely
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z0 ∼ aZ(κ) := a

√
(k2 − κ2)

κ
. (8.7)

For an arbitrary beam, the transverse wave vector κ has a density distribution function
given by |Ψ̂(κ)|2. So, the minimum reconstruction distance can be formulated as the ex-
pected value of the function Z(κ)

z0

a
= 〈Z(κ)〉 =

˜ √(k2−κ2)

κ
|Ψ̂(κ)|2d2κ˜

|Ψ̂(κ)|2d2κ
, (8.8)

where both integrals ale limited to the disk k2
x + k2

y ≤ k2. This formula assigns a decisive
value of z0 to any density |Ψ̂(κ)|2, which means that self-healing may occur for any beam.

8.2 Self-healing quanti�cation of Gaussian beams

To test our suggested ideas, we choose the Gaussian beam as the simplest example. The
Gaussian beam is an essential transversally unbounded (TEM00) di�racting mode, which
describes the typical output of most laser devices. Furthermore, the Gaussian beam is the
fundamental solution of the paraxial wave equation, and it can be written as

Ψ(x, y, z) = exp(ikz)
1

z − zR
exp

[
i
k(x2 + y2)

2(z − izR)

]
, (8.9)

where zR is the Rayleigh range and w0 beam waist. To simplify the enumeration, the soft-
edge Gaussian obstacle of full width 2a and location at plane z = 0 can be assumed. This
obstruction can be described by transmission function

tO(x, y) = 1− exp

(
−(x− x0)2 + (y − y0)2

2a2

)
, (8.10)

where x0 and y0 represent the displacement of the obstacle with respect to the beam axis.
Concerning the above transmission function, we can de�ne resulting complementary

�eld ΨA namely as

ΨA(x, y, z) =
aR
zR

1

z − iaR
exp

[
i
k

2

(
x2 + y2

z − iaR

)]
, (8.11)

where we have de�ned the modi�ed Rayleigh range aR as

aR =
zR

1 + zR
ka2

≤ zR. (8.12)
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x/w0x/w0 x/w0

z/zRz/zRz/zR

|ψ(x, 0, z)|2 |ψA(x, 0, z)|2 |ψO(x, 0, z)|2

Figure 8.2: Intensity distribution (evaluated for y = 0) of the incident �eld Ψ(x, 0, z), the
complementary �eld ΨA(x, 0, z) and obstructed one ΨO(x, 0, z). The plots correspond to
the Gaussian beam with w0 = 0.26 mm and a soft-edge obstacle with full width a/w0 =
0.28. At z/zR = 2 the obstructed �eld embodies a very good degree of self-reconstruction.

The self-healing mechanism of the Gaussian beam is unambiguously depicted in Figure 8.2.
Upon closer examination of this �gure, we can clearly identify how the self-reconstruction
process works. The requirement aR ≤ zR from Eq. (8.12) means that the complement-
ary �eld ΨA(x, y, z) during the propagation along the z-axis spreads much more rapidly
than the unperturbed �eld Ψ(x, y, z). For distance z = 2zR, the intensity pro�le of the
obstructed beam almost matches the pro�le of unperturbed one.

The reconstruction distance z0 can be analytically found from Eq. (8.8). After evaluating
the integrals, we get �nal result

z0

a
=

π

2θ2
0

I0(1/θ2
0) + I1(1/θ2

0)

sinh(1/θ2
0)

, (8.13)

where θ0 = 2/(kw0) is the divergence of the beam and Ix(z) is the modi�ed Bessel function
of the �rst kind of order x. In the paraxial regime θ0 � 1, z0 can be approximated as

z0

a
≈
√

2π

tan θ0

, (8.14)

which is equivalent to our geometrical prediction in Eq. (8.6). It is good to note that z0 is
larger for smaller θ0, which is caused by the connection of beam divergence and Rayleigh
range zR.

Nevertheless, it is useful to remind, that the concept of self-healing and minimum re-
construction distance su�er from impossible simultaneous satisfaction of (8.1) and (8.5) in
the whole xy-plane. In other words, if the (8.5) is satis�ed at speci�c distance z, in plane
z = 0 this cannot be true by de�nition Ψ0(x, y, 0) = tO(x, y, 0)Ψ(x, y, 0) 6= Ψ(x, y, 0).
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Then, as an indispensable condition, we need to restrict the area where these equations
should be satis�ed. This arises because of an imperfect self-healing, where the beam shape
becomes more like what it would have been without the obstacle because the in�uence of
obstacle promptly vanishes.

Now, we need to de�ne a metric that somehow quanti�es the similarity between the
obstructed and the unobstructed �eld. In quantum information theory [176], there are
many possibilities of how to measure the closeness of two normalized states. Probably one
of the most popular is �delity, as may the application of a modi�ed version in the context
of self-healing [126] indicate. However, the standard �delity fails to a�ord a quantitative
description of self-healing because of integration upon the whole xy-plane, which erases
the z-dependence.

Here, we apply a metric in the notion of relative distance, which can be de�ned as

Dr(Ψ,ΨO) =
‖ Ψ−ΨO ‖
‖ Ψ + ΨO ‖

=
〈ΨA|ΨA〉1/2

[〈ΨA|ΨA〉+ 4 〈Ψ|Ψ〉 − 4Re 〈Ψ|ΨA〉]1/2
. (8.15)

A direct application of the parallelogram law [177] [‖ f − g ‖2 + ‖ f + g ‖2= 2(‖ f ‖2

+ ‖ g ‖2]) immediately con�rms that 0 ≤ D2
r ≤ 1. Moreover, considering Eq. (8.5) and

assuming 0 ≤ λ0 ≤ 1, the relative distance can be simpli�ed to the form

Dr(Ψ,ΨO) ≈ 1− λ0

1 + λ0

. (8.16)

In the sense of previous results, it is convenient to de�ne a z-dependent degree of self-
healing as follows

DSH(z) =
√

1− D2
r(Ψ,ΨO). (8.17)

We would like to emphasize that this concept of distance measure has been successfully
applied in numerous �elds of quantum optics [177–180]. In general, this type of metric
quanti�es how two physical states behave in the same way.

For a Gaussian beam with cylindrical symmetry, the degree of self-healing can be com-
puted analytically and expressed in the asymptotic form

DSH(z) = ζ

√
[

1− β2

β2 + ζ2
, (8.18)

where we have used the dimensionless variables ζ = z/zR, α = a/w0 and β = α2/(1+α2).
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8.3 Experimental realization

The previous theoretical predictions were checked in the laboratory. The main prompt
was in a generation of the Gaussian beam with a central obstruction. Our setup was based
on the He-Ne laser (Thorlabs), where the outgoing Gaussian beam illuminated DMD chip
(Texas instruments) with square micromirrors of 7.6 µm size each. The obstruction was
generated as an o�-state region on this chip. Then, the re�ected beam propagated back
through the beamsplitter and the resulting complex amplitude was subsequently measured
by CCD camera and Shack-Hartmann (S-H) wavefront sensor. A sketch of the setup is
presented in Figure 8.3.

Figure 8.3: The experimental setup used to check the self-healing property of a naturally
generated Gaussian beam using He-Ne laser. The obstruction was established by DMD,
and the resulting complex amplitude was measured by a CCD camera and Shack-Hartmann
wavefront sensor.

Firstly, we observed the self-reconstructed intensity pro�les of a Gaussian beam of waist
w0 = 0.24 mm, divergence θ0 = 0.84 mrad, and Rayleigh range zR = 285 mm. The
beam was propagated to the distance z = zR, where the beam width extended to the size
wzR = 0.34 mm. In this plane, the DMD was inserted into a beam path to produce a
centered obstruction of either circular or square shape of half-widths a = 0.09 mm. Then,
the intensity scans were captured in several positions in the interval 0 − 2 m by a CCD
camera (Basler) with 5.5 µm pixel size. Some of these intensities for both square and circular
obstructions are depicted in Figure 8.4.
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Figure 8.4: Intensity scans recorded by the CCD camera at increasing distances ζ =
0, 0.3, 0.5, 1, 3.5, 5, 6.5. The beam has a waist w0 = 0.24 mm, divergence θ0 = 0.84 mrad,
and Rayleigh range zR = 285 mm. The upper row corresponds to the squarely obstructed
beam, middle row to circularly obstructed beam, both with α = 0.206, whereas the lower
row is the unobstructed beam. The �rst scans (ζ = 0), reimagined to detection plane by
the 1:1 achromatic doublet lens pair, are cropped and enlarged for better recognition of the
patterns.

8.4 Results and discussion

To experimentally evaluate the degree of self-healing DSH(ζ), we must be able to measure
the whole complex amplitude for both the obstructed and the unobstructed �elds, as is
obvious from Eq. (8.15). To improve the measurement, a calibrated beam expander was
used, which changed beam parameters into values w0 = 0.6 mm and zR = 1787 mm.
This new beam was measured by the same CCD camera and a Shack-Hartmann wavefront
sensor, consisting of a microlens array with 150 µm pitch. Both sensors were individually
placed in the same detection planes from DMD and measure the intensity and wavefront
pro�les of an unobstructed beam. To increase wavefront measurement resolution, another
beam expander coupled directly to the wavefront sensor was used.

The �eld complex amplitudes were then reconstructed from these measurements that
were interpolated to the same resolution. To measure an obstructed beam, the DMD at
distance of 560 mm from the waist with half-width wz = 0.635 was placed. For this meas-
urement, we used the circular obstruction with α = 0.14, and detection planes in the range
ζ ∈ 0.05− 0.61. Some of the resulting amplitudes are shown in Figure 8.5, where the real
and imaginary parts are plotted.
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Figure 8.5: Real and imaginary parts of the energy-normalized �eld amplitudes at the po-
sitions ζ = 0.05, 0.28, and 0.56 (from left to right). The obstructed �eld is represented in
orange, while the unobstructed is in blue. The obstruction is characterized by α = 0.14.

Once the complex amplitudes were experimentally determined, we could evaluate the
degree of self-healing. For this purpose, we took the integration region as a disk of radius
b = a = 0.09 mm, which corresponded to the full size of the obstacle. The experimental
results are presented in Figure 8.6. For each detection plane, the measurements had been
repeated over 100 times, with statistics characterized by error bars.

Figure 8.6: Experimentally determined degree of self-healing DSH(ζ) obtained from meas-
urements shown in Figure 8.5. The integration region is a disk of radius b = a = 0.09 mm.
The error bars represent standard deviations.
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In conclusion, we presented a general theory of the so-called self-healing property ap-
pearing when optical beams start to be partially obstructed. We showed that this capability
is not only restricted to di�ractionless beams as, e.g., Bessel beams, but can be applied
theoretically to any optical beam. From a careful analysis of the involved physical mech-
anisms, we formulated the minimum propagation distance from the obstacle after which
an optical beam recovers its initial intensity pro�le. Moreover, we quanti�ed the degree of
self-healing as a measure of closeness between obstructed and unobstructed beams. This
metric proposes a suitable measure that was experimentally tested on Gaussian beams.

In the �rst part, we measured intensity self-healing using squarely and circularly ob-
structed beams, which con�rmed a good agreement with the theoretical prediction. In the
second part, we measured and veri�ed the degree of self-healing, for which the whole com-
plex amplitude was needed, which was measured by a standard CCD camera and Shack-
Hartmann wavefront sensor. The results again con�rm the proposed theory.
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Chapter 9

Conclusions

This Thesis, based on �ve original publications [1–5], summarizes my previous experi-
mental research realized during my Ph.D. studies. The introduced Chapters mainly deal
with the optical two-point resolution phenomena and self-healing property of optical �elds.
The discussed issues are aimed at optimizing the external degrees of freedom of optical
systems by novel methods within the wide subject of optical metrology. Both experimental
and theoretical results are presented with the application of quantum protocols surpassing
the traditional two-point resolution criteria, i.e., utilization of new superresolution meth-
ods and innovative analysis with characterization of self-healing mechanism of Gaussian
beams.

At the beginning of the dissertation, the main goals are outlined together with a brief
survey of current state of research. Nonetheless, it is appropriate to note, that the results
themselves contribute to relatively new scienti�c topics and may serve as pivotal stepping
stones for future more specialized applications.

In Chapter 4, one of the �rst experimental realization of new superresolution method
called spatial-mode demultiplexing was demonstrated. Aside from the well-known clas-
sical resolution criteria, designating the minimal resolvable distance between two incoher-
ent point sources, this method revisited this problem from the perspective of statistical es-
timation theory, Fisher information theory and their quantum analogies. Strikingly, when
quantum protocols were applied, the quantum Fisher information for separation parameter
maintained constant value for any separation. This is in contrast to an ordinary detection
schemes, where the classical Fisher information quadratically falls to zero as the separa-
tion diminishes, e�ect known as Rayleigh’s course. The core of developed experimental
technique is based on input signal decomposition into Hermite-Gaussian basis. Here, the
examined scenario of estimation of one parameter facilitated the decomposition only into
the �rst two HG modes. This was mainly due to the concentration of Fisher’s informa-
tion in the HG1 mode, which attained the ultimate quantum bound for small separation.
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The decomposition itself was realized by the holographic projection by an amplitude-only
spatial light modulator. As the result, we were able to estimate the smallest separation of
two incoherent Gaussian point sources about 10% of Rayleigh’s limit with error more than
20× below the error for standard intensity detection schemes. This innovative measuring
protocol has a far-reaching potential to be widely used in optical applications, especially
astronomy, microscopy and spectroscopy.

Subsequently, Chapter 5 was dedicated to the progressive research focused on two point
resolution from the viewpoint of direct intensity detection. For this most widely used de-
tection technique, novel optimal measurement scheme was introduced, using simple phase
non-absorbing signum �lter. This approach allows to transform any well-behaved sym-
metric point spread function into the particular form with zero intensity information-rich
region, which makes Fisher information drop-o� linear instead of quadratic for small separ-
ations. The realized experiment successfully demonstrated the application of such signum
phase mask using phase-only spatial light modulator, and validated the linear scaling of
Fisher information. Once again, we were able to estimate the distances deep in sub-Rayleigh
region with the estimation variance improvement up to 10× compared to direct imaging.
Nevertheless, the experimental imperfections, such as systematic errors and setup instabil-
ity, prevented from full attainment of theoretical limits. These conclusions also re�ected,
that the advantage of quantum schemes might be smaller than previously thought.

Chapter 6 referred to advanced exploitation of isolated zero information-rich regions,
research primarily oriented towards superresolution in spectroscopy applications. We ex-
perimentally demonstrated the connection of linear decline of Fisher information for Sinc
PSF, containing large number of natural zero regions, using two simple experiments. In
these experiments, the spacing of natural longitudinal modes of a He-Ne laser cavity and
separation of arti�cially generated spectral doublets were successfully measured well below
the standard resolution limit.

Chapter 7 was intended on surpassing classical criteria of the longitudinal (axial) loc-
alization of one Gaussian point source using direct intensity detection. It was shown both
theoretically and experimentally, that if the measuring camera was placed in one of two
optimal transverse detection planes, it was possible to reach a quantum limit only by single
intensity scan. The experimental veri�cation was performed by simple microscopic setup
with �ber-end as Gaussian point source, with the distance estimation ranging within tens
of nanometers.

Finally in Chapter 8, the self-reconstruction mechanism of Gaussian beams was studied.
For overall description of this property, the wave optics formalism with Babinet principle
was used. There has been also introduced a suitable novel metric, that quanti�es similarity
between obstructed and unobstructed beams and new de�nition of minimal reconstruction
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distance for beams that propagates behind the obstacle. These were acknowledged by ex-
perimental realization, in which the total complex amplitude of obscured and unobscured
Gaussian beam was measured by the CCD camera and the Shack-Hartmann wavefront
sensor.
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Stručné shrnutí v češtině

Tato dizertační práce shrnuje můj dosavadní experimentální výzkum, který byl realizován v
průběhu mého doktorského studia. Představené hlavní výsledky základního výzkumu, vy-
cházející z pěti původních vědeckých publikací [1–5], jsou primárně orientovány do oblasti
dvou-bodového optického rozlišení a mechanismu samorekonstrukce optických polí. Dis-
kutovaná problematika si rovněž klade za cíl optimalizaci vnějších stupňů volnosti světla
optických systémů a to s rozsáhlejším uplatněním v optické metrologii. Představené teore-
tické, ale i experimentální výsledky využívají kvantových protokolů překonávající tradiční
dvou-bodové rozlišovací kritéria, t.j. použití moderních metod superrozlišení a inovativní
analýzu a kvanti�kaci mechanismu samoobnovení s aplikací na Gaussovské svazky.

Na začátku předložené disertační práce jsou nastíněny její hlavní cíle společně se struč-
ným přehledem aktuálního výzkumu. Nicméně je třeba poznamenat, že dosažené výsledky
samy o sobě tvoří relativně nová vědecká témata a zůstávají základními odrazovými můstky
pro budoucí specializovanější aplikace.

V kapitole 4 byla demonstrována jedna z prvních experimentálních realizací nové me-
tody superrozlišení, nazývané rozklad do sady prostorových modů (SPADE, z angl. Spatial-
mode demultiplexing). Tato metoda vedle známých klasických rozlišovacích kritériích, ur-
čujících minimální rozlišitelnou vzdálenost mezi dvěma nekoherentními bodovými zdroji,
pohlíží na tento problém z hlediska teorie statistického odhadu, Fisherovy informační teorie
a jejich kvantových analogií. Překvapivě bylo zjištěno, že při aplikaci kvantových protokolů
nabývá hodnota kvantové Fisherovy informace pro parametr separace téměr konstantních
hodnot, a to pro jakoukoliv zdálenost mezi bodovými zdroji. To je ve značném protikladu s
běžně používanými detečním schématy, kde hodnota klasické Fisherovy informace kvadra-
ticky klesá k nule, jestliže se vzdálenost bodových zdrojů blíží k nule, efekt známý jako Ra-
yleighova kletba. Jádro této moderní experimentální techniky je založeno na dekompozici
vstupního signálu do báze Hermit-Gaussovských módů. Zde zkoumaný scénář, estimace
pouze parametru separace, usnadňuje dekompozici pouze do prvních dvou HG módů. Toto
bylo možné díky vysoké koncentraci Fisherovy informace v módu HG1, který dosahoval
pro malé separace mezního kvantového limitu. Samotná dekompozice byla poté realizována
pomocí hologra�cké projekce skrze amplitudový prostorový modulátor světla. Výsledkem
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byla schopnost estimovat nejmenší separaci dvou nekoherentních bodových zdrojů dosa-
hující 10% Rayleighova limitu a s variancí 20× nižší než by bylo možné dosáhnout při
použití klasické intenzitní detekce. Tato měřící technika celkově vykazuje slibný aplikační
potenciál a to převážně v oblastech jako je astronomie, mikroskopie nebo spektroskopie.

Následující kapitola 5 byla věnována navazujícímu výzkumu zaměřeného na dvou-bodové
rozlišení z pohledu přímé intenzitní detekce. Pro tento nejrozšířenější postup detekce bylo
vyvinuto nové optimální měřící schéma využívající jednoduchého fázového neabsorbují-
cího signum �ltru. Tato technika umožňuje transformovat téměř jakoukoliv "dobře se cho-
vající" symetrickou bodovou rozptylovou funkci do speciální formy, obsahující informačně
bohatou oblast nulové intenzity, způsobující pro malé separace bodových zdrojů lineární
pokles Fisherovy informace namísto kvadratického. Provedený experiment úspěšně de-
monstroval použití takové fázové signum masky za pomoci fázového modulátoru světla
a potvrdil lineární škálování Fisherovy informace. Opětovně byl estimován parametr vzdá-
lenosti dvou bodových zdrojů hluboko v sub-Rayleighově oblasti a to až s 10× lepším roz-
ptylem odhadu ve srovnání s přímou intenzitní detekcí. Navzdory dobrým výsledkům však
nedokonalosti experimentu, jako systematické chyby a nestabilita měření, zabránily úpl-
nému dosažení ultimátního limitu. Nicméně celkové závěry rovněž odrážely fakt, že celková
výhoda kvantových protokolů může být menší něž se původně očekávalo.

Kapitola 6 se týkala pokročilého využití výše zmíněných informačně bohatých oblastí
nulové intenzity, primárně orientovaného na superrrozlišení ve spektroskopických apli-
kacích. Experimentálně bylo ukázáno spojení lineárního poklesu Fisherovy informace pro
bodovou rozptylovou funkci popsanou funkcí Sinc, přirozeně obsahující velké množství ob-
lastí nulové intenzity, pomocí dvou experimentů. V těchto experimentech byl úspěšně změ-
řen jednak rozestup přirozených podélných módů kavity He-Ne laseru a jednak vzdálenost
uměle vytvořených spektrálních dubletů hluboce pod standardním rozlišovacím limitem.

Předposlední kapitola 7 byla zaměřena na překonání klasického limitu v oblasti podélné
(axiální) lokalizace jednoho Gaussovského bodového zdroje opět za pomoci klasické inten-
zitní detekce. Teoreticky i experimentálně bylo ukázáno, že pokud je kamera umístěna v
jedné ze dvou optimálních detekčních rovin, je možné dosáhnout kvantového limitu pouze
jediným intenzitním snímkem. Experimentální ověření bylo provedeno s využitím mikro-
skopické sestavy, kde byl Gaussovský bodový zdroj generován koncem optického vlákna,
přičemž minimální odhad axiální vzdálenosti dosahoval hodnot v řádu desítek nanometrů.

V poslední kapitole 8 byl studován mechanismus samorekonstrukce u Gaussovských
svazků. Pro celkový popis byl použit formalismus vlnové optiky s Babinetovým principem.
Byla také zavedena vhodná metrika, která kvanti�kuje podobnost mezi omezeným a ne-
omezeným svazkem a nová de�nice minimální rekonstrukční vzdálenosti pro Gaussovské
svazky šířící se za překážkou. Všechny předpoklady a de�nice byly experimentálně potvr-
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zeny a to měřením celkové komplexní amplitudy omezeného a neomezeného Gaussovského
svazku pomocí CCD kamery a Shack-Hatmannova senzoru vlnoplochy.
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