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Abstract

The presented mathematical model of sets with incomplete information is based on L-valued
sets in universes endowed with symmetric and transitive L-valued relations ≈ where L is
a complete and atomic Boolean algebra. Values x ≈ x express incomplete information
about the presence of elements in universes. In addition, incomplete information about the
equality of elements and membership relations of sets is modeled. The work introduces
a logic for structures with incomplete information and preliminary results on ordered sets
and concept lattices with incomplete information.
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Introduction

This thesis deals with modeling of sets with incomplete information. We distinguish two
different use of sets: universes and ordinary sets. Assume we have a universe U with
missing information. We might be missing the information whether two elements of U are
equal or whether an element is in U . More precisely, the relation of equality of elements
and the membership relation are not completely known. For example, we do not know if
for an element u it holds u ∈U or u /∈U and for elements u1 and u2 whether u1 = u2 or
u1 6= u2. For the second use of sets, assume we have a set V with missing information
where the membership relation of V can be only partially known. In general, we are
missing the information whether the partially known set V is in the universe U .

We present a model of the above described sets with missing information. A universe U
with missing information is modeled by an ordinary set X with an L-valued binary relation
≈ : X×X→ L where L is a complete and atomic Boolean algebra. We call X a conditional
universe. Elements of L are called conditions and model missing pieces of information.
The structure of L models dependencies between conditions.

A set V with missing information is modeled by an L-valued set A : X → L called a con-
ditional set in X . Complete homomorphisms h : L→ 2 (the two element Boolean algebra)
model possible completion of missing parts of information. They are called total realities
and represent possible worlds. Each complete homomorphism h : L→ 2 transforms X to
an ordinary set Xh, the L-relation≈ to the ordinary equality on Xh and the L-set A to an or-
dinary set Ah. Only some sets Ah are in universes Xh. Sets Xh and Ah (called realizations)
match all possible forms of U and V , respectively.

We require that the L-relation ≈ is symmetric and transitive. Generally, it is not reflexive.
The condition x ≈ x expresses what we know about the presence of x in X . The condi-
tion expressing presence of A in X is derived from the information about the membership
relation of A and presence of elements in X .

The presented work is a continuation of [19] where foundations of conditional universes
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and sets were given. However, definitions of conditional universes in the paper and in
this work differ. Namely, L-relations ≈ used in the paper are reflexive. The motivation
for the generalization comes from the theory of Boolean-valued and Heyting-valued sets
[14, 6] developed in the connection with Boolean-valued and Heyting-valued models [27,
2, 26, 1]. Since conditional sets are fuzzy sets, we use results from the fuzzy set theory
[34, 10, 21, 12, 3]. However, many results are formulated for fuzzy sets in X with reflexive
≈ and can not be used. For fuzzy sets in X with non-reflexive ≈ see [16, 17, 33]. Yet,
literature covers only conditional sets completely present in X . The way how we treat
conditional sets partially present in X is an original result of this work.

The main motivation of this work is to study concept lattices with missing information.
A concept lattice [7] is a hierarchy of formal concepts found in a formal context (a bi-
nary relation between a universe of objects and a universe of attributes). Formal contexts
and concept lattices with missing information are modeled by conditional contexts and
conditional concept lattices, respectively. They were introduced in [20] and can be used
in practice. The presented definition of conditional contexts, in addition, model missing
information about the presence of objects and attributes in contexts. Consequently, we
cover also the empty context as a realization of a conditional context and the reduction of
conditional contexts can be performed.

The work is divided into two chapters. The first chapter provides basic definitions and
results on conditions, conditional universes and sets. A generalization of extensionality
of conditional sets is proposed here. The second chapter focuses on models of structures
with missing information called conditional structures. A logic of conditional structures
is the topic of the first part of the second chapter. A section with an application on concept
lattices is presented in the second chapter. An illustrative example can be found in the end
of the second chapter. Some ideas for further research are described in conclusions.



Chapter 1

Incomplete information

This chapter presents a model of sets with missing information.

1.1 Conditions

Conditions represents missing pieces of information and dependencies between them. A
Boolean algebra of conditions L is defined to be a complete and atomic Boolean algebra
L. Elements of L are called conditions.

Recall that a structure of Boolean algebra [9, 11, 30] consists of elements 1 and 0, and
operations ∧ (join), ∨ (meet) and ′ (complement). (L,∧,∨) is a distributive lattice. We use
the induced order relation ≤ given by c ≤ d iff c∧ d = c iff c∨ d = d. The element 0 is
the least element and 1 is the greatest element and for each c ∈ L,

c∧ c′ = 0, c∨ c′ = 1.

A lattice L is called complete if for every set M ⊆ L, the infimum
∧

M and supremum∨
M exist. A non-zero element a ∈ L is called an atom if from c ≤ a it follows c = 0

or c = a. L is called atomic if for each non-zero c ∈ L there is an atom a ∈ L below c.
Complete atomic Boolean algebras are exactly Boolean algebras isomorphic to powersets
[30, Theorem 25.1.].

We also use derived operations→ (residuum) and↔ (biresiduum) defined by c→d = c′∨d
and c↔ d = (c→ d)∧ (d→ c). The residuum and join satisfy the so-called adjointness
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CHAPTER 1. INCOMPLETE INFORMATION 4

property c1∧c2≤ c3 iff c1≤ c2→ c3 for each c1,c2,c3 ∈ L. Therefore, L has also the struc-
ture of residuated lattice [31].

A surjective complete homomorphism h : L→ K where K is another Boolean algebra of
conditions is called a reality. Realities model filling of missing information. Recall that
a homomorphism h : L→ K between complete lattices is called complete if h(

∨
M) =∨

h(M) and h(
∧

M) =
∧

h(M) for each M ⊆ L. The set of all realities h : L→ K is denoted
CHom(L,K). If for a condition c ∈ L it holds h(c) = 1 then we say that c is satisfied in h.
If h is obvious from the context then we simply say that c is satisfied. Clearly, 1 is satisfied
in every reality and 0 is not satisfied in any reality.

A reality h : L→ 2 (the standard two-element Boolean algebra) is called a total reality.
Each condition is either satisfied or not satisfied in a total reality. Total realities represent
possible worlds.

It is easy to see that c is satisfied in h and d is satisfied in h iff c∧d is satisfied in h. In short,
c and d are satisfied iff c∧ d is satisfied. Similar statements hold for meet, complement,
residuum and biresiduum. Moreover, it holds for each M ⊆ L that every c ∈M is satisfied
iff
∧

M is satisfied.

Atomicity of L implies that c = 1 iff c is satisfied in every total reality h. Moreover, we
have c ≤ d iff for every total reality h it holds that c is satisfied in h implies d is satisfied
in h. We can easily see that c = d if and only if for every total reality h it holds that c is
satisfied in h iff d is satisfied in h.

We can construct a Boolean algebra of conditions from a set of propositional formulas.
The details follow. Suppose we identify missing pieces of information with a finite set of
propositional variables P and represent dependencies between missing pieces by a set T
(theory) of propositional formulas over P. Now, we define an equivalence relation ∼ on
the set of all propositional formulas F (P) over P given by ϕ ∼ ψ iff the formula ϕ ⇔ ψ

(the symbol⇔ denotes the equivalence connective) is provable from T . Let L =F (P)/∼
be the quotient set of F (P) by∼. We consider the structure of Boolean algebra on L given
by [ϕ]∼ ∧ [ψ]∼ = [ϕ ∧ψ]∼ ([ϕ]∼ denotes the class of ϕ w.r.t. ∼ and the second occur-
rence of ∧ the conjunction connective) similarly for meet and complement, 0 = [ϕ ∧¬ϕ]∼
and 1 = [ϕ ∨¬ϕ]∼ (¬ and ∨ denote negation and disjunction connectives, respectively).
The constructed Boolean algebra L is the Lindenbaum algebra [24] of T . From finiteness
of P follows that L is complete and atomic, i.e. L is a Boolean algebra of conditions.

Models of T are in a one-to-one correspondence with total realities L→ 2 (where an eval-
uation e : P→ 2 is called a model of T if for each formula ϕ ∈ T it holds that the truth
value of ϕ under e is 1). Now, we describe the correspondence. If e is a model of T
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then he : L→ 2 given by he([ϕ]∼) = ||ϕ||e is a total reality and if h is a total reality then
the evaluation eh : P→ 2 given by eh(p) = h([p]∼) is a model of T .

If T = /0 then the above constructed Lindenbaum algebra of T is a freely generated Boolean
algebra over the set of generators P. Note that there is no freely generated complete
Boolean algebra over infinite set of generators [13]. Therefore, the above construction for
infinite set P does not need to produce a Boolean algebra of conditions.

A Boolean algebra of conditions can be also constructed from a given set of evaluations
E ⊆ 2P where P is possibly infinite set of propositional variables. E represents depen-
dencies between missing pieces identified with elements of P. Let L = 2E and ι : P→ L
given by (ι(p))(e) = e(p) for p ∈ P. Then we associate with a total reality h an evaluation
eh : P→ 2 given by eh(p) = h(ι(p)). Now, the set of all eh (h∈CHom(L,2)) equals E [19,
Theorem 1].

1.2 Conditional universes

Suppose we have a set U about which we do not have complete information. It can be
unknown whether some elements belong to the set and whether some elements are equal.
We model this situation by a conditional universe X so that standard realizations of X
corresponds to all possible forms of U .

Elements of the conditional universe represent possible elements of the set U . For sim-
plicity, we talk directly about elements of X as about elements of U . By the uncertainty
of the set U , we have to formulate statements hypothetically with respect to a possible
reality. Therefore, we say that an element x does not exist in a reality h (it is not present in
the universe) or elements x1 and x2 are equal in a reality h.

For example, consider a set U that definitely contains elements u1, u2, u3 and possibly
an element u4. U does not contain any other element. Moreover, we do not know whether
u2 is equal to u3. We model this situation by a universe X = {x1,x2,x3,x4} (which con-
tains exactly 4 elements, while the set U may contains only two) with certain L-relation.
X is designed so that standard realizations of X capture exactly four possible forms of
the unknown set U .

The first section explains why we model incomplete information on presence of elements
by non-reflexive relations.
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1.2.1 Non-existing elements

We open with a quote from Plato [23, 185a]:

SOCRATES Now in regard to sound and color, you have, in the first place,
this thought about both of them, that they both exist?

THEAETETUS Certainly.

SOCRATES And that each is different from the other and the same as itself?

THEAETETUS Of course.

This is the first occurence of the law of identity stated that each (existing) thing is the same
with itself and different from another. For the following discussion the first part is more
important. More explicitly, it expresses that if x exists then x = x. If we define an element
x and derive, when reasoning about it, that it is not equal to itself (x 6= x) then we conclude
that x does not exist. For example take a division by zero: if we assume that x = 0/0 is
a number then we easily conclude that x 6= x and therefore x does not exist. Indeed, 0/0
should be the unique number x such that 0 · x = 0, but x can be (among other numbers)
equal to zero or one. From the fact that 0 6= 1 we conclude that x 6= x. Generally, we can
reach any contradiction to conclude non-existence of x. However, the contradiction x 6= x
is the simplest one contradiction with a reference to the element x.

In what follows, we materialize non-existing elements and add them to a universe. Ex-
istence is then a property of elements. Note that we follow this approach although in
philosophy [22][25] there is a long debate whether existence is a property of individuals
or a property of concepts.

There is evident need to distinguish non-existing elements from existing. This can be
done by considering the set of existing elements. From our point of view, it seems to
be more natural to embed existence of an element to a binary transitive and symmetric
relation on the universe. More precisely, we assume that an element exists if and only if
it is related to itself. Similar approach is studied by Scott in [28] and in free logic with
negative semantics [25]. Note that in some programming languages (e.g. JavaScript) there
is a special object called NaN (not a number) which is not equal to itself. NaN is returned for
example when 0/0 is evaluated. Therefore, in JavaScript document.write(0/0==0/0)
displays false.

We end this part with a quote from Romeo and Juliet [29, Act 1, Scene 1] illustrating that
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in fiction not equality with itself implies non-existence:

ROMEO Tut, I have lost myself; I am not here; This is not Romeo, he’s some
other where.

1.2.2 Definition of conditional universes

Let L be a Boolean algebra of conditions. An L-conditional universe is defined to be a set
X together with a mapping ≈: X×X → L satisfying

x≈ y = y≈ x, (symmetry)
(x≈ y)∧ (y≈ z)≤ x≈ z. (transitivity)

The mapping ≈ is called the conditional equality of X . The L-conditional universe is also
shortly denoted by (X ,≈). If L = 2 then≈ is an ordinary symmetric and transitive relation
on X .

For x,y ∈ X , the value x≈ y is interpreted as the condition under which x is equal to y and
the value x≈ x is interpreted as the condition under which x is present in X .

For a reality h, h(x≈ y) = 1 means that the condition under which x is equal to y is satisfied
in h or shortly that it is satisfied in h that x is equal to y. Similarly, h(x≈ x) = 1 is shortly
read as it is satisfied in h that x is present.

By 1X we denote the set {x ∈ X | x≈ x = 1} of completely present elements of X .

The theory of sets endowed with symmetric and transitive L-valued relations≈ where val-
ues x≈ x are interpreted as degrees of existence is well-developed [14, 33, 16, 17].

Due to the symmetry and the transitivity of≈we have x≈ y=(x≈ y)∧(x≈ y)= (x≈ y)∧
(y ≈ x) ≤ x ≈ x. Similarly can be proved that x ≈ y ≤ y ≈ y. Thus, for each x,y ∈ X it
holds

x≈ y≤ (x≈ x)∧ (y≈ y). (1.1)

The preceding inequality is to be read as follows: if it is satisfied that x is equal to y then
it is also satisfied that x and y are present.

Let x ∈ X . Clearly,
∨

y∈X x ≈ y ≥ x ≈ x. By (1.1), x ≈ y ≤ x ≈ x for each y ∈ X which
yields

∨
y∈X x≈ y≤ x≈ x. Therefore, for each x ∈ X it holds
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x≈ x =
∨
y∈X

y≈ x. (1.2)

The conditional equality ≈ is called reflexive iff x≈ x = 1 for all x ∈ X . Elements x,y ∈ X
satisfying x ≈ y = x ≈ x = y ≈ y are called extensionally equal and denoted by x ∼ y.
Extensionall equality of x and y is read as follows: if it is satisfied that x or y is present
then it is satisfied that the other is present and they are both equal. The conditional equality
≈ is called separated iff for each x,y∈X it holds that from x∼ y it follows x= y. Reflexive
and separated conditional equalities are well known in the fuzzy set theory as L-equalities
[3]. Conditional universes with reflexive and separated conditional equalities were studied
in [19].

If L = 2 and ≈ is reflexive and separated then ≈ is just the ordinary equality on X and X
is an ordinary universe.

1.2.3 Realizations of conditional universes

A reality h : L→ K transforms an L-conditional universe X to a K-conditional universe Y .
The transformation of X to Y is described by a partial mapping from X to Y .

Recall that a partial mapping f : X 9Y from a set X to a set Y is a binary relation between
X and Y such that for each x ∈ X and y1,y2 ∈ Y it holds that if (x,y1) and (x,y2) are in f
then y1 = y2. If for x ∈ X there is an y ∈ Y such that (x,y) ∈ f then we write f (x) = y and
say that f (x) is defined. By dom f we denote the set of all elements x ∈ X such that f (x)
is defined. We use the following convention in definitions of partial mappings. Assume
we define a partial mapping f : X 9 Y by an expression. Then we suppose that f (x) is
defined for all x∈X for which the expression makes sense. For example, a partial mapping
f : R9 R from the set of real numbers to the set of real numbers given by f (x) = 1/x is
defined for all non-zero numbers. A partial mapping f : X 9 Y is called surjective if for
each y∈Y there is x∈ dom f such that f (x) = y. In the theory of partial mappings the term
“total” is used to state that a partial mapping is an ordinary mapping. However, we use
the term “total” with the different meaning. Therefore, we never use the term “total” with
the first mentioned meaning.

Let X be an L-conditional universe, h: L→K a reality and Y a K-conditional universe with
a conditional equality ≈Y . An h-realization of X is a surjective partial mapping f : X 9 Y
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which satisfies the following two conditions. First,

f (x1)≈Y f (x2) = h(x1 ≈ x2) (1.3)

holds for each x1,x2 ∈ dom f . Second,

h(x≈ x)≤
∨

x̄∈dom f

h(x̄≈ x) (1.4)

holds for each x ∈ X . By (1.4), if h is total and h(x ≈ x) = 1 then there is x̄ ∈ X such that
f (x̄) is defined and h(x̄ ≈ x) = 1. By the first requirement, a realization preserve equality
and presence of elements and by the second the realization is defined for sufficiently many
elements.

Note that f (x) does not have to be defined, even if the condition under which an ele-
ment x ∈ X is present is satisfied in h. If f (x) is defined whenever h(x ≈ x) > 0 then
the h-realization f of X is called faithful. If the conditional equality ≈Y is separated then
f is called merging. If h(x ≈ x) = 0 then the requirement (1.4) never enforces f (x) to be
defined. If h(x ≈ x) = 0 implies that f (x) is not defined for each x ∈ X then f is called
omitting.

Sometimes, we also call the K-conditional universe Y itself an h-realization of X . In this
case, we suppose we are given a surjective partial mapping f : X 9 Y satisfying (1.3) and
(1.4).

Suppose that h is a total reality. Then any faithful, merging and omitting h-realization
f : X 9 Y of X is called standard and in this case Y is an ordinary universe (≈Y is
the ordinary equality on Y ). Let f : X 9 Y and g : X 9 Z be two merging and omit-
ting h-realizations of X . Consider a binary relation r between Y and Z consisting of pairs
( f (x1),g(x2)) for x1 ∈ dom f and x2 ∈ domg such that h(x1 ≈ x2) = 1. For x1 ∈ dom f we
have h(x1 ≈ x1) = 1 ( f is omitting). By (1.4), there is x2 ∈ domg such that h(x1 ≈ x2) = 1.
If ( f (x1),g(x2)),( f (x1),g(x3)) ∈ r then by the transitivity of ≈, h(x2 ≈ x3) = 1 and by g
is merging, g(x2) = g(x3). We showed that r is a function Y → Z. As the definition of r is
symmetric, injectivity and surjectivity can be shown similarly. Therefore, r is a bijection
between Y and Z. We showed that there is a bijection between any two total, merging
and omitting h-realizations Y and Z of X . Any total, merging and omitting h-realization
Y of X can represent the unknown set modeled by X in the total reality h. Note that stan-
dard realizations are special cases of such realizations. We show a more general result on
isomorphism of any two h-realizations of X for any reality h in Section 1.3.5.

For x ∈ X , the value f (x) is called the h-realization of x. When an h-realization f : X 9 Y
is given, we denote for simplicity f by hX , Y by Xh, dom f by Xh, ≈Y by ≈|h and f (x)
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by xh. The reason why ≈Y is denoted by ≈|h and not by ≈h will be explained in Section
1.3.1. Now, the equality (1.3) can be rewritten as

xh
1 ≈|h xh

2 = h(x1 ≈ x2) (1.5)

for all xh
1,x

h
2 ∈ Xh (or x1,x2 ∈ Xh). If the left-hand side is equal to 1, we say that x1 is equal

to x2 in the h-realization f . The right-hand side being equal to 1 means, as we know, that
the condition x1 ≈ x2 is satisfied in the reality h. Thus, the equality is read as x1 is equal
to x2 (in the h-realization f ) if and only if it is satisfied (in the reality h) that x1 is equal to
x2.

We say that x1 is equal to x2 in a reality h if x1 and x2 are equal in any h-realization of X .
By (1.5), Let f and g be two h-realizations of X . Then the following holds. If x1 and x2
are equal in f and g(x1) and g(x2) are defined then x1 and x2 are also equal in g.

Moreover,

xh ≈|h xh = h(x≈ x). (1.6)

Similarly as above, if the left-hand side is equal to 1, we say that x is present in the h-realization
f . The equality is to be read as x is present (in the h-realization f ) if and only if it is satis-
fied (in the reality h) that x is present. We say that x is present in a reality h if x is present
in any h-realization of X .

As shown above, there is a bijection between two standard h-realizations of X . There-
fore, we not distinguish between standard h-realizations of X and refer to any of them as
the standard h-realization of X . For simplicity, we denote the standard h-realization of X
by Xh.

Four examples of realizations of a three-element 2-conditional universe are described in
Fig. 1.1. In what follows, we give general examples of h-realizations of X . Let (Y,≈Y ) be
the K-conditional universe given by Y = X and x1 ≈Y x2 = h(x1 ≈ x2) for each x1,x2 ∈ X .
Then the mapping X → Y , x 7→ x is an h-realization of X .

The next example is an h-realization of X obtained by means of factorization. Let X1 =
{x ∈ X | h(x ≈ x) > 0}. Denote, for a moment, by h≈ the (ordinary) equivalence on X1
given by xh≈y if h(x≈ y) = h(x≈ x) = h(y≈ y)> 0. Denote by X1/h≈ the quotient space
of X by h≈.

Theorem 1. Let Y =X1/h≈, f : X 9Y be defined by f (x)= [x]h≈ for x∈X1 and≈Y : Y ×Y → K
be defined by

[x]h≈ ≈Y [y]h≈ = h(x≈ y). (1.7)
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X X2
<latexit sha1_base64="AZ0OEpHlKokhuEClgb+KDGmBqP4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KkkR1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE79eu665dxfVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AEGajTg=</latexit><latexit sha1_base64="AZ0OEpHlKokhuEClgb+KDGmBqP4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KkkR1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE79eu665dxfVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AEGajTg=</latexit><latexit sha1_base64="AZ0OEpHlKokhuEClgb+KDGmBqP4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KkkR1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE79eu665dxfVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AEGajTg=</latexit>

X

XX

X1
<latexit sha1_base64="jKSSPHL0aiGF0JedpKpSmMafbtM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0lEUG8FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdt3ter1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQU5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+8fl137y5qjdMijTIcwTGcgQeX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AEAXjTc=</latexit><latexit sha1_base64="jKSSPHL0aiGF0JedpKpSmMafbtM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0lEUG8FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdt3ter1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQU5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+8fl137y5qjdMijTIcwTGcgQeX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AEAXjTc=</latexit><latexit sha1_base64="jKSSPHL0aiGF0JedpKpSmMafbtM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbFU0lEUG8FLx4rGltoQ9lsJ+3SzSbsboQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivdt3ter1pz6+4MZJl4BalBgWav+tXtJyyLURomqNYdz01NkFNlOBM4qXQzjSllIzrAjqWSxqiDfHbqhJxYpU+iRNmShszU3xM5jbUex6HtjKkZ6kVvKv7ndTITXQU5l2lmULL5oigTxCRk+jfpc4XMiLEllClubyVsSBVlxqZTsSF4iy8vE/+8fl137y5qjdMijTIcwTGcgQeX0IBbaIIPDAbwDK/w5gjnxXl3PuatJaeYOYQ/cD5/AEAXjTc=</latexit>

X3
<latexit sha1_base64="7ecqCmEu4awxnAoxjiRa5IUgTIw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokK6q3gxWNFYwttKJvtpl262YTdiVBCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/uPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4M/GbT1wbkagHHKU8iGlfiUgwila6b3XPu5WqW3OnIIvEK0gVCjS6la9OL2FZzBUySY1pe26KQU41Cib5uNzJDE8pG9I+b1uqaMxNkE9PHZNjq/RIlGhbCslU/T2R09iYURzazpjiwMx7E/E/r51hdBXkQqUZcsVmi6JMEkzI5G/SE5ozlCNLKNPC3krYgGrK0KZTtiF48y8vEv+sdl1z7y6q9ZMijRIcwhGcggeXUIdbaIAPDPrwDK/w5kjnxXl3PmatS04xcwB/4Hz+AEMdjTk=</latexit><latexit sha1_base64="7ecqCmEu4awxnAoxjiRa5IUgTIw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokK6q3gxWNFYwttKJvtpl262YTdiVBCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/uPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4M/GbT1wbkagHHKU8iGlfiUgwila6b3XPu5WqW3OnIIvEK0gVCjS6la9OL2FZzBUySY1pe26KQU41Cib5uNzJDE8pG9I+b1uqaMxNkE9PHZNjq/RIlGhbCslU/T2R09iYURzazpjiwMx7E/E/r51hdBXkQqUZcsVmi6JMEkzI5G/SE5ozlCNLKNPC3krYgGrK0KZTtiF48y8vEv+sdl1z7y6q9ZMijRIcwhGcggeXUIdbaIAPDPrwDK/w5kjnxXl3PmatS04xcwB/4Hz+AEMdjTk=</latexit><latexit sha1_base64="7ecqCmEu4awxnAoxjiRa5IUgTIw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokK6q3gxWNFYwttKJvtpl262YTdiVBCf4IXDype/Ufe/Ddu2xy09cHA470ZZuaFqRQGXffbWVpeWV1bL22UN7e2d3Yre/uPJsk04z5LZKJbITVcCsV9FCh5K9WcxqHkzXB4M/GbT1wbkagHHKU8iGlfiUgwila6b3XPu5WqW3OnIIvEK0gVCjS6la9OL2FZzBUySY1pe26KQU41Cib5uNzJDE8pG9I+b1uqaMxNkE9PHZNjq/RIlGhbCslU/T2R09iYURzazpjiwMx7E/E/r51hdBXkQqUZcsVmi6JMEkzI5G/SE5ozlCNLKNPC3krYgGrK0KZTtiF48y8vEv+sdl1z7y6q9ZMijRIcwhGcggeXUIdbaIAPDPrwDK/w5kjnxXl3PmatS04xcwB/4Hz+AEMdjTk=</latexit>

X4
<latexit sha1_base64="4AT6182nY55V+1cJw3+Z/TILpa4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokU1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE/+idl1z7+rVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AESgjTo=</latexit><latexit sha1_base64="4AT6182nY55V+1cJw3+Z/TILpa4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokU1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE/+idl1z7+rVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AESgjTo=</latexit><latexit sha1_base64="4AT6182nY55V+1cJw3+Z/TILpa4=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaJ4KokU1FvBi8eKxhbaUDbbTbt0swm7E6GE/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLUykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZJpxn2WyES3Q2q4FIr7KFDydqo5jUPJW+HoZuq3nrg2IlEPOE55ENOBEpFgFK103+7Ve5WqW3NnIMvEK0gVCjR7la9uP2FZzBUySY3peG6KQU41Cib5pNzNDE8pG9EB71iqaMxNkM9OnZBTq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBXkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTtiF4iy8vE/+idl1z7+rVxlmRRgmO4QTOwYNLaMAtNMEHBgN4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AESgjTo=</latexit>

Figure 1.1: Four realizations of a conditional universe X consisting of three elements. Elements
of X are represented by circles below X. The underlying Boolean algebra of condition is the two-
element Boolean algebra 2. The considered reality h is the identity on 2. Elements of h-realizations
Xi of X are represented by circles below Xi. Solid arrows indicate conditional equalities of X
and Xi. Namely, there is a solid arrow from an element x to an element y iff the condition under
which x equals y is 1. Dashed arrows indicate realizations fi : X 9 Xi. Namely, there is a dashed
arrow from an element x to an element y iff y is the h-realization of x. If there is no arrow leading
from an element x of X then the h-realization of x is not defined. The top-left realization of X is
merging, faithful but not omitting, the top-right realization is faithful, omitting but not merging,
the bottom-left realization is omitting, merging but not faithful and the bottom-right realization is
faithful, merging and omitting (it is a standard h-realization of X).
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Then≈Y is defined correctly, the pair (Y,≈Y ) is a separated K-conditional universe, f is a
faithful, merging and omitting h-realization of X. Moreover, if h is total then f is standard.

Proof. Let x̄h≈x and ȳh≈y. By definition, h(x̄ ≈ x̄) = h(x ≈ x̄) and h(ȳ ≈ ȳ) = h(ȳ ≈ y).
By (1.1) and the transitivity of ≈,

h(x̄≈ ȳ) = h(x̄≈ x̄)∧h(x̄≈ ȳ)∧h(ȳ≈ ȳ)
= h(x≈ x̄)∧h(x̄≈ ȳ)∧h(ȳ≈ y)

= h
(
(x≈ x̄)∧ (x̄≈ ȳ)∧ (ȳ≈ y)

)
≤ h(x≈ y)

and, symmetrically, h(x≈ y)≤ h(x̄≈ ȳ). This proves correctness of (1.7).

Denote the class [x]h≈ of x ∈ X by xh. We have for each x,y,z ∈ X

xh ≈Y yh = h(x≈ y) = h(y≈ x) = yh ≈Y xh,

(xh ≈Y yh)∧ (yh ≈Y zh) = h(x≈ y)∧h(y≈ z)

= h((x≈ y)∧ (y≈ z))≤ h(x≈ z) = xh ≈Y zh.

Thus, ≈Y is symmetric and transitive. By definition, xh ≈Y xh > 0 and yh ≈Y yh > 0 for
each xh,yh ∈ Xh. Moreover, if xh ≈Y yh = xh ≈Y xh = yh ≈Y yh then h(x≈ y) = h(x≈ x) =
h(y≈ y)> 0. So, xh≈y and, consequently, ≈Y is separated.

If x /∈ dom f then h(x ≈ x) = 0. So, (1.4) is trivially satisfied. (1.3) follows directly from
(1.7). The surjectivity of f follows from the surjectivity of quotient projections. Therefore,
f is an h-realization of X .

Since f (x) is defined iff h(x≈ x)> 0, f is faithful and omitting and since≈Y is separated,
f is merging. The fact that f is standard for h total follows from the definition.

Note that if h is total then the above construction is presented e.g. in [14] and subsequent
papers.

For two partial mappings f : X 9Y and g: Y 9 Z, the composition of g with f is the partial
mapping g◦ f : X 9 Z defined by (g◦ f )(x) = g( f (x)).

Lemma 1. Let h1 : L→ K1 and h2 : K1→ K2 be realities, f1 : X 9 Y an h1-realization of
X, f2 : Y 9 Z an h2-realization of Y . Then f2 ◦ f1 is an h2 ◦h1-realization of X.

Proof. The surjectivity of f2 ◦ f1 follows from the surjectivity of f1 and f2. (1.3) can be
checked by a direct verification. We prove (1.4). From the fact that f1 is an h1-realization
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of X it follows

h2(h1(x≈ x))≤
∨

x̄∈dom f1

h2(h1(x̄≈ x)) (1.8)

for each x ∈ X .

For x̄ ∈ dom f1 we have h2(h1(x̄≈ x̄)) = h2( f1(x̄)≈Y f1(x̄))≤
∨

ȳ∈dom f2 h2( f1(x̄)≈Y ȳ) =∨
ȳ∈dom f2

∨
f1( ¯̄x)=ȳ h2( f1(x̄)≈Y f1( ¯̄x)) =

∨
¯̄x∈dom( f2◦ f1) h2(h1(x̄≈ ¯̄x)).

Now, by the transitivity of ≈ and (1.1),∨
x̄∈dom f1

h2(h1(x̄≈ x)) =
∨

x̄∈dom f1

h2(h1((x̄≈ x)∧ (x̄≈ x̄)))

≤
∨

x̄∈dom f1

∨
¯̄x∈dom( f2◦ f1)

h2(h1((x̄≈ x)∧ (x̄≈ ¯̄x)))≤
∨

¯̄x∈dom( f2◦ f1)

h2(h1(x≈ ¯̄x)).

The preceding with (1.8) prove (1.4).

Let f1 : X 9Y be an h1-realization of X and f2 : Y 9 Z be an h2-realization of Y . Then we
associate with the reality h2 ◦h1 the h2 ◦h1-realization f2 ◦ f1 : X 9 Z of X . Remind that Y
can be denoted by Xh1 and Z by (Xh1)h2 or Xh2◦h1 . We denote (Xh1)h2 simply by Xh1h2 and
obviously have Xh1h2 = Xh2◦h1 . By the definition of the composition of partial mappings,
f2( f1(x)) is defined if any only if ( f2 ◦ f1)(x) is defined and g( f (x)) = (g◦ f )(x) for each
x ∈ dom(g ◦ f ). Which can be reformulated as the follows. xh1h2 is defined if and only if
xh2◦h1 is defined and xh1h2 = xh2◦h1 for each x ∈ Xh2◦h1 .

Since the conditional equality of any standard realization of a conditional universe is an
ordinary equality, the composition of any realization and standard realization is a merging
and omitting realization, but it does not have to be faithful.

Lemma 2. The composition of two faithful realizations is faithful.

Proof. Let f1 : X 9Y be a faithful h1-realization of X and f2 :Y 9Z a faithful h2-realization
of Y .

Suppose h2(h1(x ≈ x)) > 0. Since h2 is isotone, h1(x ≈ x) > 0. By the faithfulness of
f1, the h1-realization f1(x) of x is defined and we have h2( f1(x)≈Y f1(x))> 0 and again,
since f2 is faithful, the h2-realization f2( f1(x)) is defined. The proof is concluded by the
fact that f2( f1(x)) equals ( f2 ◦ f1)(x).
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Lemma 3. Let X be a set together with a system of surjective partial mappings fh : X 9Xh
(h ∈ CHom(L,2)). Then there is a unique mapping ≈: X × X → L such that for each
h ∈ CHom(L,2) and x1,x2 ∈ X it is satisfied:

1. if fh(x1) and fh(x2) are defined and fh(x1) = fh(x2) then h(x1 ≈ x2) = 1;

2. otherwise, h(x1 ≈ x2) = 0.

The set X together with ≈ is an L-conditional universe and for each total reality h the
partial mapping fh is a standard h-realization of X.

Proof. By basic properties of complete atomic Boolean algebras, for any x1,x2 ∈ X , the
value x1 ≈ x2 satisfying the requirements of the theorem exists and is unique. This proves
the existence and uniqueness of≈. It remains to be shown that≈ is a conditional equality.
This is easy, as symmetry and transitivity are obvious.

There are two canonical ways how to construct conditional universes from a family of sets.
They can be used in a situation when we have the form of an unknown set in every possible
world. Let I be a non-empty set and Xi (i ∈ I) a family of sets.

We first construct a suitable Boolean algebra of conditions. We set L = 2I . Since L is a
power set, L is complete and atomic Boolean algebra, i.e. a Boolean algebra of conditions.
For each i ∈ I there is a total reality hi : L→ 2 given by hi(c) = 1 if i ∈ c and hi(c) = 0
otherwise. Since {i} is an atom of L, the construction of total realities hi is valid and each
total reality is equal to hi for some i ∈ I.

In the first construction, we assume that all Xi (i∈ I) are non-empty. Let X be the product of
Xi and fi : X→ Xi be the family of projections of X . Then by the surjectivity of projections
and Lemma 3 there is the unique conditional equality ≈ on X such that fi are standard
realizations of (X ,≈). It holds that ≈ is reflexive and x1 ≈ x2 = {i ∈ I | fi(x1) = fi(x2)}
for all x1,x2 ∈ X .

The second construction follows. Sets Xi (i ∈ I) can be possibly empty. Let X =
⋃̇

i∈IXi
(the disjoint union) and fi : X 9 Xi be partial mappings given by fi(x) = x if x ∈ Xi. By
definition, fi are surjective and again, by Lemma 3, there is the unique conditional equal-
ity ≈ such that fi are standard realizations of (X ,≈). For each x1,x2 ∈ X it holds that
x1 ≈ x2 = {i} if x1 = x2 and x1,x2 ∈ Xi, and x1 ≈ x2 = 0 otherwise.

Realizations merge elements in the first construction, while omit elements in the second.
In finite case, the size of the result of the first construction is the product of sizes of Xi,
while the size of the result of the second construction is the sum of sizes of Xi.
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Any ordinary subset Y ⊆ X with the induced conditional equality ≈Y (i.e. the conditional
equality given by y1 ≈Y y2 = y1 ≈ y2) is a conditional universe called a subuniverse of
X . We usually treat ordinary subsets of conditional universes as conditional subuniverses
without mentioning it explicitly.

The product of L-conditional universes (X ,≈X) and (Y,≈Y ) is defined as the set X ×Y
together with the mapping ≈X×Y : (X×Y )× (X×Y )→ L given by

(x1,y1)≈X×Y (x2,y2) = (x1 ≈X x2)∧ (y1 ≈Y y2). (1.9)

The following result can be proved by a direct verification.

Lemma 4. X×Y with≈X×Y is an L-conditional universe. For any reality h, h-realizations
f and g of X and Y , respectively, the pair (Xh ×Y h,≈h

X×Y ) where ≈h
X×Y is given by

(xh
1,y

h
1)≈h

X×Y (xh
2,y

h
2) = h((x1,y1)≈X×Y (x2,y2)) is a K-conditional universe. The partial

mapping ( f ×g) : X ×Y 9 Xh×Y h defined by ( f ×g)(x,y) = (xh,yh) is an h-realization
of (X×Y,≈X×Y ).

Unless stated differently, for h-realizations f and g of X and Y , respectively, we always
use as an h-realization of X×Y the h-realization f ×g from the above lemma.

1.3 Sets with missing information

As we already know, a universe U with missing information is modeled by a conditional
universe X . In this section, we introduce models of sets with missing information partially
present in U .

Take for an example an unknown universe U which certainly contains an element u1 and
possibly an element u2. It does not contain any other elements. We are sure that u1 is not
equal to u2. Moreover, consider a set V which possibly contains u2 and does not contain
any other element. Now, in a possible world where U does not contain u2 but V contains
u2 holds that the set V is not in U . In all other three possible worlds it holds that V is in
U .

We model missing pieces of information in the example by a Boolean algebra of conditions
freely generated by two elements c1 and c2. The unknown universe U is represented by a
conditional universe X = {x1,x2}. The conditional equality≈ on X is given by x1≈ x1 = 1,
x2 ≈ x2 = c1 and x1 ≈ x2 = x2 ≈ x1 = 0. The partially known set V is represented by a
mapping A : X → L given by A(x1) = 0 and A(x2) = c2. The condition c1 represents the
condition under which u2 is in U and c2 the condition under which u2 in in V .
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We have four total realities h1,h2,h3,h4 : L → 2 given by h1(c1) = h1(c2) = h2(c1) =
h3(c2) = 1 and h2(c2) = h3(c1) = h4(c1) = h4(c2) = 0. Standard realizations of X are
Xh1 = Xh2 = {x1,x2} and Xh3 = Xh4 = {x1}. Standard h-realizations of A are Ah1 =
Ah3 = {x2} and Ah2 = Ah4 = /0. We have Ah1 ⊆ Xh1 , Ah2 ⊆ Xh2 , Ah4 ⊆ Xh4 , but Ah3 =
{x2}* {x1} = Xh3 . Therefore, we say that A is present in h1, h2 and h4, but A is not
present in h3.

1.3.1 Conditional sets and relations

Let X be an L-conditional universe. A mapping A : X → L is called a conditional set in
X . When L needs to be emphasized, we call conditional sets as L-conditional sets. But
this is usually not necessary as L is given by ≈. We will use this convention also for other
conditional mathematical objects defined later. We use the term “conditional” and called
them “L-conditional” if needed. We denote by LX the set of all conditional sets in X .

For x ∈ X , the value A(x) is interpreted as the condition under which x is an element of A;
a membership condition.

If for all x ∈ X distinct from x1,x2, . . . ,xn we have A(x) = 0, A is also denoted {A(x1)/x1,
A(x2)/x1, . . . ,

A(xn)/xn}. We usually write x instead of 1/x. We denote by /0 the conditional
set in X given by /0(x) = 0 for all x ∈ X . By 1A we denote the set {x ∈ X | A(x) = 1} in X
of elements known to be in A.

We adopt definitions of subsethood, intersection and union from the theory of L-sets. For
two conditional sets A,B in X we say that A is a subset of B, writing A⊆ B, if A(x)≤ B(x)
for all x∈X . The intersection A∩B and union A∪B of A and B are defined by (A∩B)(x) =
A(x)∧B(x) and (A∪B)(x) = A(x)∨B(x), respectively. The intersection and union of a
family A j ( j ∈ J) of conditional sets in X are given by⋂

j∈J

A j(x) =
∧
j∈J

A j(x),
⋃
j∈J

A j(x) =
∨
j∈J

A j(x) (1.10)

for all x ∈ X .

For a condition c ∈ L and conditional set A in X we define the conditional set c→ A in X
by (c→ A)(x) = c→ A(x) for x ∈ X . The conditional set c→ A is called the shift of A by
c.

A conditional set A in X is called completely present if

A(x)≤ x≈ x (1.11)
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for all x ∈ X . The inequality (1.11) is read as follows: “if it is satisfied that x is an element
of A then it is also satisfied that x is present”.

Note that the above requirement is called strictness in literature, e.g. [16]. Only strict
L-sets are covered by the literature. We consider also non-strict conditional sets and derive
conditions under which conditional sets are present from presence of their elements. The
condition under which A is present is given by

EA =
∧
x∈X

A(x)→ (x≈ x). (1.12)

The condition EA under which A is present is satisfied in a reality h if and only if h(A(x))≤
h(x≈ x) holds for all x ∈ X . Clearly, A is completely present iff EA = 1.

We denote by XE the greatest (with respect to ⊆) completely present conditional set in
X and call it the conditional set of present elements. We have XE(x) = x ≈ x for each
x ∈ X . The conditional set XE is interpreted as the conditional set of elements present
in the conditional universe (X ,≈). The condition under which x is in XE is equal to the
condition under which x is present.

Let h : L→ K be a reality, f an h-realization of X and A a conditional set in X satisfying
the following requirement: for each x ∈ X it holds that if the h-realization xh of x is not
defined then h(A(x)) = 0. Then the h-realization of A is a K-conditional set Ah in Xh

defined by

Ah(xh) =
∨

yh=xh

h(A(y)) (1.13)

(“yh = xh” means we are taking supremum over all y ∈ X satisfying yh = xh). When the
h-realization f needs to be emphasized, we denote Ah also by f (A). If there is x ∈ X such
that h(A(x)) 6= 0 and the h-realization xh of x is not defined then the h-realization of A is
not defined.

If Ah is completely present then we say that A is present in the h-realization f . If it holds
Ah(xh) = 1, we say that x belongs to A in the h-realization f .

We say that A is present in a reality h if A is present in any h-realization of X . We say that
x belongs to A if x belongs to A in any h-realization of X .

Suppose f is a standard h-realization of X . Then Ah is defined if and only if it is satisfied
in h that A is present. If Ah is defined then it is an ordinary subset of Xh. We view Ah as
the form that the unknown set represented by A takes in the reality h. For xh ∈ Xh, we have
xh ∈ Ah iff there exists x ∈ X satisfying xh = xh and h(A(x)) = 1.
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Lemma 5. Let h1 : L→ K1 and h2 : K1→ K2 be realities, f1 : X 9 Y1 an h1-realization of
X and f2 : Y1 9 Y2 an h2-realization of Y1. Then for each conditional set A in X such that
Ah1h2 is defined it holds that Ah2◦h1 is defined and Ah1h2 = Ah2◦h1 .

Proof. Let x ∈ X . Suppose Ah1h2 is defined and xh2◦h1 is not defined. We distinguish
two cases. First, if xh1 is not defined then since Ah1 is defined, h1(A(x)) = 0 and so
h2(h1(A(x))) = 0. Second, if xh1 is defined but xh1h2 is not then as Ah1h2 is defined
h2(Ah1(xh1)) = 0 and by (1.13) we have h2(h1(A(x))) = 0. In both cases h2(h1(x)) = 0.
Therefore, Ah2◦h1 is defined.

For each xh1h2 ∈ Xh1h2 by Lemma 1 we have Ah1h2(xh1h2) =
∨

yh1h2=xh1h2 h2(Ah1(yh1)) =∨
yh1h2=xh1h2

∨
zh1=yh1 h2(h1(A(z))) =

∨
yh1h2=xh1h2 h2(h1(A(y))) = Ah2◦h1(xh1h2).

Generally, the fact that Ah2◦h1 is defined does not imply that Ah2h1 is defined.

A conditional set R in X ×Y is called a binary conditional relation between X and Y . If
X = Y , we also talk about a binary conditional relation on X . Membership conditions
R(x,y) are interpreted as conditions under which elements of X and Y are related. The
conditional equality ≈ is an example of a binary conditional relation on X . One can also
define ternary and, in general, n-ary conditional relations. On the other hand, conditional
sets can be regarded as unary conditional relations and single values from L as nullary
conditional relations.

For x ∈ X we define a conditional set Rx in Y by Rx(y) = R(x,y). Similarly, for y ∈ Y we
set Ry(x) = R(x,y), obtaining a conditional set Ry in X .

By definition, R is completely present iff

R(x,y)≤ (x≈ x)∧ (y≈ y) (1.14)

for all x ∈ X and y ∈ Y . By (1.1), the conditional equality ≈ is completely present.

Let f and g are h-realizations of X and Y , respectively. Then the h-realization Rh of a
binary conditional relation R between X and Y is defined if and only if for each x ∈ X and
y ∈ Y it holds that xh or yh is not defined implies h(R(x,y)) = 0. If the h-realization Rh of
R is defined then it is a binary conditional relation between Xh and Y h and satisfies

Rh(xh,yh) =
∨

x̄h=xh

∨
ȳh=yh

h(R(x̄, ȳ)) =
∨

x̄h=xh

(Rx̄)
h(yh) =

∨
ȳh=yh

(Rȳ)
h(xh). (1.15)
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From the technical point of view, conditional sets and relations are L-fuzzy sets and rela-
tions in the sense of [10]. Throughout the thesis, we use known results on L-fuzzy sets and
relations for L being a complete residuated lattice [3].

The h-realization ch of a condition c is defined by ch = h(c).

Restricted realizations. Generally, an h-realization Ah of A does not have to be defined
even if h(EA) = 1. For example, let L = 2, X = {x1,x2}, x1 ≈ x1 = x1 ≈ x2 = x2 ≈ x1 =
x2 ≈ x2 = 1, A be the conditional set in X given by A(x1) = A(x2) = 1, h be the identity
on L, Y = {x1}, f be the h-realization X 9 Y of X given by f (x1) = x1 and f (x2) be not
defined. Then EA = 1, but the h-realization Ah of A is not defined.

For a conditional set A in X , a reality h and an h-realization f : X 9 Y we define a condi-
tional set A| f in X by A| f (x) = A(x) if xh is defined, otherwise A| f (x) = 0. The conditional
set A| f is also denoted simply by A|h and called the restriction of A to f . For a nullary
conditional relation c ∈ L we set c| f = c. The h-realization (A|h)h of A|h is always defined
and it holds

(A|h)h(xh) =
∨

x̄h=xh

h(A(x̄)) (1.16)

for each x ∈ Xh. The realization (A|h)h is also denoted by A|h and called the restricted
h-realization of A.

If the h-realization Ah of A is defined then clearly A = A|h and thus Ah = A|h.

Lemma 6. Let h1 : L→ K1 and h2 : K1→ K2 be realities, Y an h1-realization of X and Z
an h2-realization of Y . Then for each conditional set A in X it holds

A|h1|h2 = A|(h2◦h1).

Proof. The proof is analogous to the proof of Lemma 5.

For each xh1h2 ∈Xh1h2 by Lemma 1 and (1.16) we have A|h1|h2(xh1h2)=
∨

yh1h2=xh1h2 h2(A|h1(yh1))=∨
yh1h2=xh1h2

∨
zh1=yh1 h2(h1(A(z))) =

∨
yh1h2=xh1h2 h2(h1(A(y))) = A|(h2◦h1)(xh1h2).

If f is a standard h-realization of X then easily

A|h = (A∩XE)
h. (1.17)

Let h be a total reality, f and g two merging and omitting h-realization of X . Then there
may be no bijection between restricted realizations f (A| f ) and g(A|g). For example, let
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L = 2, X = {x1,x2}, x1 ≈ x1 = x1 ≈ x2 = x2 ≈ x1 = x2 ≈ x2 = 1, A = {x1}, h be the identity
on 2, Y = {x1}, f : X→Y be the h-realization of X given by f (x1) = f (x2) = x1, Z = {x2},
g : X 9 Z be the h-realization of X given by g(x1) be not defined and g(x2) = x2. Then
f (A| f ) = {x1}, but g(A|g) = /0.

It can be directly checked that for a family A j ( j ∈ J) of conditional sets in X , reality h and
h-realization f of X it holds ⋃

j∈J

A j

|h = ⋃
j∈J

A|hj . (1.18)

Let X and Y be L-conditional universes, h : L→ K a reality, f and g be h-realizations of
X and Y , respectively. Then the restricted h-realization of a binary conditional relation R
between X and Y is a binary conditional relation between Xh and Y h and satisfies

R|h(xh,yh) =
∨

x̄h=xh

∨
ȳh=yh

h(R(x̄, ȳ))

=
∨

x̄h=xh

(Rx̄)
|h(yh) =

∨
ȳh=yh

(Rȳ)
|h(xh). (1.19)

It can be easily checked that for R =≈, the K-conditional equality ≈|h from Sec. 1.2.3
satisfies (1.19).

Respectability. Let X be an L-conditional universe, A a conditional set in X , h : L→ K
a reality and f an h-realization of X . Generally, it does not hold that h(A(x)) = Ah(xh) for
all x ∈ Xh. By (1.13), only h(A(x))≤ Ah(xh) holds. For example, let L = 2, X = {x1,x2},
x1 ≈ x1 = x1 ≈ x2 = x2 ≈ x1 = x2 ≈ x2 = 1, A = {x1}, h be the identity on L, Y = {x1},
f : X → Y be the h-realization of X given by f (x1) = f (x2) = x1. Then h(A(x2)) = 0, but
Ah(xh

2) = 1.

We say that an h-realization f of X respects a conditional set A in X if for each x1,x2 ∈ Xh
from xh

1 = xh
2 it follows that h(A(x1)) = h(A(x2)).

The following theorem captures the relationship between respectability and restricted re-
alizations of conditional sets.

Theorem 2. Let h be a reality, f an h-realization of X and A a conditional set in X. Then
the following two statements are equivalent.
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1. f respects A.

2. A|h(xh) = h(A(x)) for each x ∈ Xh.

Proof. We first prove the implication from 1. to 2. By (1.16) we have A|h(xh)=
∨

x̄h=xh h(A(x̄))=∨
x̄h=xh h(A(x)) = h(A(x)) for each x ∈ Xh.

Now, we prove the converse implication. Let x1,x2 ∈ Xh such that xh
1 = xh

2. Then by second
statement we have h(A(x1)) = A|h(xh

1) = A|h(xh
2) = h(A(x2)).

Compatibility. We study relationships between compatibility of conditional sets with
some special conditional relations and respectability of realizations.

We call a conditional set A in X compatible with a binary conditional relation R on X
if

A(x)∧R(x,y)≤ A(y) (1.20)

for all x,y ∈ X .

Let RX be a binary conditional relation on X , RY be a binary conditional relation on Y and
RX×RY be the binary conditional relation on X×Y defined by RX×RY ((x1,y1),(x2,y2))=
RX(x1,x2)∧RY (y1,y2) for each x1,x2 ∈ X and y1,y2 ∈Y . If a binary conditional relation R
between X and Y (a conditional set in X×Y ) is compatible with RX ×RY then we say that
R is compatible with RX and RY . By definition we have that R is compatible with RX and
RY iff

R(x1,y1)∧RX(x1,x2)∧RY (y1,y2)≤ R(x2,y2) (1.21)

for each x1,x2 ∈ X and y1,y2 ∈ Y . Note that compatibility of R with RX and RY does not
generally imply that R(x1,y)∧RX(x1,x2) ≤ R(x2,y) and R(x,y1)∧RY (y1,y2) ≤ R(x,y2)
for each x,x1,x2 ∈ X and y,y1,y2 ∈ Y . If the right hand side of the previous implication is
satisfied then we say that R is compatible with RX and RY from both sides. If RX and RY
are reflexive then the implication holds. If R and RX are binary conditional relations on X
then we say just that R is compatible with RX (from both sides) instead of R is compatible
with RX and RX (from both sides). It can be easily checked that R is compatible with RX
and RY from both sides if and only if a conditional set Rx in Y is compatible with RY and
a conditional set Ry in X is compatible with RX for each x ∈ X and y ∈ Y .

Let E≈ be the binary conditional relation E≈ on X defined by
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E≈(x1,x2) = ((x1 ≈ x1)→ (x1 ≈ x2))∧ ((x2 ≈ x2)→ (x1 ≈ x2)) (1.22)

for x1,x2 ∈ X . The conditional relation E≈ is called the conditional extensional equality
on X . The L-relation E≈ is studied in [14]. Let h be a reality and f an h-realization of
X . Then for x1,x2 ∈ dom f we have h(E≈(x1,x2)) = 1 if and only if it hods if x1 or x2 is
present in f then so is the other and x1 and x2 are equal in f .

It can be directly checked that E≈(x,y) = 1 if and only if x and y are extensionally
equal. Clearly, E≈ is reflexive and symmetric. To prove transitivity we express E≈(x1,x2)
as

E≈(x1,x2) = R≈(x1,x2)∧R≈(x2,x1) (1.23)

where

R≈(x1,x2) = (x1 ≈ x1)→ (x1 ≈ x2) (1.24)

and prove the transitivity of R≈. Notice that the L-relation R≈ also appears in [15]. The
inequality R≈(x1,x2)∧R≈(x2,x3)≤ R≈(x1,x3) = (x1 ≈ x1)→ (x1 ≈ x3) is by adjointness
equivalent to (x1 ≈ x1)∧R≈(x1,x2)∧R≈(x2,x3)≤ x1 ≈ x3. The last inequality holds since
(x1 ≈ x1)∧R≈(x1,x2)∧R≈(x2,x3) = (x1 ≈ x1)∧ ((x1 ≈ x1)→ (x1 ≈ x2))∧R≈(x2,x3)≤
(x1 ≈ x2)∧R≈(x2,x3)≤ x2 ≈ x2∧ ((x2 ≈ x2)→ (x2 ≈ x3))≤ x2 ≈ x3. Therefore, E≈ is a
reflexive conditional equality. If X is an ordinay universe then E≈ is the ordinary equality
on X .

For x1,x2 ∈Xh we have h(R≈(x1,x2))= h((x1≈ x1)→ (x1≈ x2))= (xh
1≈|h xh

1)→ (xh
1 ≈|h xh

2)=
R≈|h(x

h
1,x

h
2) proving

h(R≈(x1,x2)) = R≈|h(x
h
1,x

h
2) (1.25)

and by (1.23) also

h(E≈(x1,x2)) = E≈|h(x
h
1,x

h
2). (1.26)

Lemma 7. Every completely present conditional set in X compatible with ≈ is also com-
patible with E≈.

Proof. Let A be a completely present conditional set in X compatible with ≈. Then for
x1,x2 ∈ X we have A(x1)∧E≈(x1,x2) ≤ A(x1)∧ (x1 ≈ x1)∧ ((x1 ≈ x1)→ (x1 ≈ x2)) ≤
A(x1)∧ (x1 ≈ x2)≤ A(x2). We showed that A is compatible with E≈.
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Lemma 8. For each conditional set A in X compatible with E≈ it holds that any realization
of X respects A.

Proof. Let f be an h-realization of X , x1,x2 ∈ Xh such that xh
1 = xh

2. By (1.26) and re-
flexivity of E≈|h , we have h(E≈(x1,x2)) = E≈|h(x

h
1,x

h
2) = E≈|h(x

h
1,x

h
1) = 1. Therefore,

h(A(x1)) = h(A(x1)∧E≈(x1,x2))≤ h(A(x2)). The converse inequality can be shown sim-
ilarly.

Lemma 9. Suppose that any merging total realization of X which is a function respects a
conditional set A in X. Then A is compatible with E≈.

Proof. Let h be a total reality, f : X → Y a merging h-realization of X such that f is a
function, x1,x2 ∈ X . We show that h(A(x1)∧ E≈(x1,x2)) ≤ h(A(x2)). The fact that f
is a function implies that h-realizations xh

1,x
h
2,≈h and Ah of x1,x2,≈ and A, respectively,

are defined. Suppose h(A(x1)) = 1 and h(E≈(x1,x2)) = 1. By (1.26), h(E≈(x1,x2)) =
E≈h(xh

1,x
h
2) = 1 and thus xh

1 is extensionally equal to xh
2. As f is merging, Xh is separated

which implies xh
1 = xh

2. Now, the assumption yields 1 = h(A(x1)) = h(A(x2)).

We showed that h(A(x1)∧E≈(x1,x2)) ≤ h(A(x2)) holds for each total reality h. As L is
complete and atomic, A is compatible with E≈.

Theorem 3. Let A be a conditional set in X. Then the following statements are equivalent.

1. A is compatible with E≈.

2. Any total merging realization of X which is a function respects A.

3. Any realization of X respects A.

Proof. The implication from the second to the first statement follows directly from Lemma
9. The implication from 1. to 3. is due to Lemma 8. The implication from 3. to 2. is
trivial.

Lemma 10. If A is completely present and compatible with ≈ then any realization of X
respects A.

Proof. By Lemma 7, A is compatible with E≈. Therefore, the claim follows from Lemma
8.

The requirement on compatibility of A with E≈ is usually not satisfied. We make the
requirement weaker.
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Lemma 11. If A is a conditional set in X compatible with ≈ then any total and omitting
realization of X respects A.

Proof. Let h be a total reality and f an omitting h-realization of X . If x1,x2 ∈ Xh and
xh

1 = xh
2 then as the h-realization f of X is omitting, 1 = xh

1 ≈h xh
1 = xh

1 ≈h xh
2 = h(x1 ≈ x2)

and compatibility of A with ≈ yields h(A(x1)) = h(A(x1))∧ h(x1 ≈ x2) ≤ h(A(x2)). The
converse inequality can be shown similarly.

Lemma 12. If each standard realization of X respects A then A is compatible with ≈.

Proof. It suffices to show that h(A(x1)∧ (x1 ≈ x2)) ≤ h(A(x2)) for each x1,x2 ∈ X and
total reality h. The only interesting case is when h(A(x1)) = 1 and h(x1 ≈ x2) = 1. Then
by (1.1), h(x1 ≈ x1) = 1 and h(x2 ≈ x2) = 1. Let f be a standard h-realization of X . Then
xh

1 and xh
2 are defined and xh

1 = xh
2. Now by the assumption, 1 = h(A(x1)) = A|h(xh

1) =

A|h(xh
2) = h(A(x2)), proving that also h(A(x2)) = 1.

Theorem 4. Let A be a conditional set in X. Then the following statements are equivalent.

1. A is compatible with ≈.

2. Any standard realization of X respects A.

3. Any total and omitting realization of X respects A.

Proof. The implication from 2. to 1. statement follows directly from Lemma 12. The
implication from 1. to 3. is due to Lemma 11. The implication from 3. to 2. is trivial.

We conclude this part with two useful consequences of compatibility with ≈.

Lemma 13. If A is compatible with ≈ then for any reality h and h-realization f of X it
holds that the restricted h-realization A|h of A is compatible with ≈|h.

Proof. Let xh
1,x

h
2 ∈Xh. Then by (1.5) and (1.16) we have A|h(xh

1)∧(xh
1≈|h xh

2)=
∨

x̄h
1=xh

1
h(A(x̄1))∧

(xh
1≈|h xh

2)=
∨

x̄h
1=xh

1
h(A(x̄1))∧(x̄h

1≈|h xh
2)=

∨
x̄h

1=xh
1
h(A(x̄1)∧(x̄1≈ x2))≤

∨
x̄h

1=xh
1
h(A(x2))=

h(A(x2))≤ A|h(xh
2).

Lemma 14. Let A be a conditional set in X compatible with ≈, h a total reality, f and g
two merging and omitting h-realizations of X. Then there is a bijection between restricted
h-realizations f (A| f ) and g(A|g).
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Proof. Let h be a total reality, f : X 9 Y and g : X 9 Z two merging and omitting h-
realizations of X . We consider the bijection r between Y and Z defined in Sec. 1.2.3.
We show that the restriction of r to f (A| f ) denoted by rA is a bijection between f (A| f )
and g(A|g). Suppose that f (x) ∈ f (A| f ) where x ∈ dom f . Then there is x ∈ domg such
that r( f (x)) = g(x) and by the definition of r, h(x ≈ x) = 1. Now, by the compatibility
of A with ≈, h(A(x)) = 1 and h(A(x))∧ h(x ≈ x) ≤ h(A(x)) and thus h(A(x)) = 1. By
(1.16), g(A|g)(g(x)) = 1. We showed that rA is a mapping, similarly can be shown that rA
is surjective. (The injectivity of rA follows from the injectivity of r.) Therefore, rA is a
bijection between f (A| f ) and g(A|g).

Relational products. We introduce the relational product operators ◦ and /, well-known
in the fuzzy set theory [18]. For two conditional sets A1,A2 in X we set

A1 ◦A2 =
∨
x∈X

A1(x)∧A2(x), A1 /A2 =
∧
x∈X

A1(x)→ A2(x). (1.27)

Relational products simplify many proofs in the thesis.

We denote the relational product ◦ with the same symbol as the composition of partial
mappings. From context it is always clear what is the intended meaning of ◦.
For conditional sets A in X and B in Y and binary conditional relations R in X×Y and S in
Y ×Z we set

(A◦R)(y) = A◦Ry, (R◦B)(x) = Rx ◦B, (R◦S)(x,z) = Rx ◦Sz,

(A /R)(y) = A /Ry, (R /B)(x) = Rx /B, (R /S)(x,z) = Rx /Sz,

obtaining conditional sets A ◦R and A /R in Y , conditional sets R ◦B and R /B in X and
binary conditional relations R◦S and R /S between X and Z. For any conditional relations
R, S, T of any arity for which the products make sense it holds

R◦ (S◦T ) = (R◦S)◦T, R / (S /T ) = (R◦S) /T (1.28)

and for any two collections Ai (i∈ I) and B j ( j ∈ J) of conditional sets in the same universe
it holds ∨

i∈I

∨
j∈J

Ai ◦B j =

(⋃
i∈I

Ai

)
◦
(⋃

j∈J

B j

)
,

∧
i∈I

∨
j∈J

Ai /B j =

(⋃
i∈I

Ai

)
/

(⋃
j∈J

B j

)
. (1.29)

The first equality in (1.28) allows us to omit parentheses and write simply R◦S◦T .
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Lemma 15. The following holds for any binary conditional relation R on X.

1. If R is reflexive then R◦R⊇ R.

2. If R is transitive then R◦R⊆ R.

3. If R is reflexive and transitive then R◦R = R.

Proof. 1. For x,z ∈ X we have R ◦R(x,z) =
∨

y∈X R(x,y)∧R(y,z) ≥ R(x,x)∧R(x,z) =
R(x,z).

2. For x,z ∈ X we have R◦R(x,z) =
∨

y∈X R(x,y)∧R(y,z)≤∨y∈X R(x,z) = R(x,z).

3. It follows directly from the first and second part.

Lemma 16. Let R be a reflexive binary conditional relation on X. Then for each condi-
tional set A in X the following statements are equivalent.

1. A is compatible with R.

2. A◦R = A.

3. R /A = A.

Proof. Suppose A◦R = A. Then for y ∈ X we have A◦R(y) =
∨

x∈X A(x)∧R(x,y) = A(y).
From which it follows A(x)∧R(x,y)≤ A(y) for each x,y ∈ X . Therefore, A is compatible
with R. Note that this implication holds even if R is not reflexive.

Suppose A is compatible with R. Then for x ∈ X by reflexivity of R we have A ◦R(x) =∨
y∈X A(y)∧ R(y,x) ≥ A(x)∧ R(x,x) = A(x) and by compatibility of A with R we have

A◦R(x) =
∨

y∈X A(y)∧R(y,x)≤∨y∈X A(x) = A(x). We showed that A◦R⊇ A and A◦R⊆
A, thus the second statement holds. The equivalence of the first and second statement was
proved.

Finally, we have A◦R(x) =
∨

y∈X A(y)∧R(y,x)≤ A(x) for each x ∈ X if and only if A(y)∧
R(y,x) ≤ A(x) for each x,y ∈ X iff A(y) ≤ R(y,x)→ A(x) for each x,y ∈ X iff A(y) ≤∧

x∈X R(y,x)→ A(x) = R / A(y) for each y ∈ X . Now, as we know from the second part
of the proof, reflexivity of R implies A ◦R(x) ≥ A(x) for x ∈ X . By reflexivity of R we
also have R /A(y) =

∧
x∈X R(y,x)→ A(x)≤ R(y,y)→ A(y) = A(y) for y ∈ X . Together we

obtain A◦R(x) = A(x) for each x ∈ X if and only if R /A(y) = A(y) for each y ∈ X . Which
proves the equivalence of the second and third statement.
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From the previous lemma and the definition of compatibility of a binary conditional rela-
tion (from both sides) it follows:

Lemma 17. If R is a binary conditional relation between X and Y , RX is a reflexive binary
conditional relation on X and RY is a reflexive binary conditional relation on Y then the
following statements are true.

1. R is compatible with RX and RY if and only if RX ◦R◦RY = R.

2. R is compatible with RX and RY from both sides if and only if RX ◦R = R = R◦RY .

Since≈ is not generally reflexive, we can not use Lemmas 16 and 17 on≈. Therefore, we
introduce the following reflexive binary relation. Let T≈ be a binary conditional relation
on X given by

T≈(x1,x2) =

{
1 if x1 = x2,
x1 ≈ x2 otherwise. (1.30)

We can easily check that T≈ is reflexive, transitive, symmetric and x1 ≈ x2 ≤ T≈(x1,x2)
for each x1,x2 ∈ X . T≈ is also compatible with≈. Indeed, for each x1,x2,x′1,x

′
2 ∈ X by the

transitivity of T≈, we have (x′1 ≈ x1)∧T≈(x1,x2)∧ (x2 ≈ x′2) ≤ T≈(x′1,x1)∧T≈(x1,x2)∧
T≈(x2,x′2)≤ T≈(x′1,x

′
2).

For a reality h, h-realization f of X and x1,x2 ∈ dom f generally it does not hold that
h(T≈(x1,x2)) = T≈|h(x

h
1,x

h
2). For example, let L = 2, X = {x1,x2}, x1 ≈ x1 = x1 ≈ x2 =

x2 ≈ x1 = x2 ≈ x2 = 0, h be the identity on 2, Y = {x1} and f : X → Y be the h-realization
of X given by f (x1) = f (x2) = x1. Then h(T≈(x1,x2)) = h(x1 ≈ x2) = h(0) = 0, but
T≈|h(x

h
1,x

h
2) = T≈|h(x1,x1) = 1.

Lemma 18. For a reality h and h-realization f of X it holds T≈|h = T≈|h .

Proof. For xh ∈ Xh we have T≈|h(xh,xh) =
∨

yh=xh,zh=xh h(T≈(y,z)) ≥ h(T≈(x,x)) = 1 =

T≈|h(x
h,xh).

Let xh
1,x

h
2 ∈ Xh such that xh

1 6= xh
2. First observe that if for x̄1, x̄2 ∈ Xh holds x̄h

1 = xh
1 and x̄h

2 =

xh
2 then x̄1 6= x̄2. Now T≈|h(xh

1,x
h
2)=

∨
x̄h

1=xh
1

∨
x̄h

2=xh
2
h(T≈(x̄1, x̄2))=

∨
x̄h

1=xh
1

∨
x̄h

2=xh
2
h(x̄1 ≈ x̄2)=∨

x̄h
1=xh

1

∨
x̄h

2=xh
2
x̄h

1 ≈|h x̄h
2 =

∨
x̄h

1=xh
1

∨
x̄h

2=xh
2
xh

1 ≈|h xh
2 = xh

1 ≈|h xh
2 = T≈|h(x

h
1,x

h
2).

We can easily check that A◦T≈ = A∪ (A◦ ≈).
Lemma 19. Let A be a conditional set in X. Then A is compatible with ≈ if and only if
A◦T≈ = A.
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Proof. Assume A is compatible with ≈. By T≈ is reflexive, we have A ⊆ A ◦T≈. Con-
versely, for x∈X we have A◦T≈(x)=

∨
y∈X A(y)∧T≈(y,x)=A(x)∨∨y∈X A(y)∧(y≈ x)≤

A(x)∨A(x) = A(x).

Suppose A◦T≈=A. For x1,x2 ∈X we have A(x1)∧(x1≈ x2)≤A(x1)∧T≈(x1,x2)≤A(x2)
showing that A is compatible with ≈.

Lemma 20. If R is a binary conditional relation between X and Y such that R◦T≈Y = R
then for every conditional set A in X it holds that A /R is compatible with ≈Y .

Proof. Observe that for c1,c2,c3 ∈ L we have (c1→ c2)∧c3 = (c′1∨c2)∧c3 = (c′1∧c3)∨
(c2∧ c3)≤ c′1∨ (c2∧ c3) = c1→ (c2∧ c3).

By the observation and the compatibility of Rx with≈Y , for each x∈X we have for y1,y2 ∈
Y , A/R(y1)∧(y1≈Y y2) =

∧
x∈X(A(x)→ R(x,y1))∧(y1≈Y y2)≤

∧
x∈X A(x)→ (R(x,y1)∧

(y1 ≈Y y2))≤
∧

x∈X A(x)→ R(x,y2) = A /R(y2).

Lemma 21. Let h be a reality and f a faithful h-realization of X. Then for a conditional
set A in X such that the h-realization Ah of A is defined it holds that the h-realization
(A◦T≈)h of A◦T≈ is also defined.

Proof. We need to show that h(A◦T≈(x)) = 0 for every x∈X \Xh. Let x∈X \Xh. We have
h(A ◦T≈(x)) = h(

∨
x̄∈X A(x̄)∧T≈(x̄,x)) = 0 iff h(A(x̄)∧T≈(x̄,x)) = 0 for all x̄ ∈ X . We

distinguish two cases. First, if x= x̄ then h(A(x̄)∧T≈(x̄,x))= h(A(x)) and as Ah is defined,
h(A(x)) = 0. Second, suppose x 6= x̄. Then h(A(x̄)∧T≈(x̄,x)) = h(A(x̄))∧ h(x̄ ≈ x). By
Xh is faithful, we have h(x≈ x) = 0 and thus h(x̄≈ x) = 0. Therefore, h(A(x̄))∧h(x̄≈ x)
is also equal to 0.

Partial respectability. Generally, it does not hold that a realization of X respects a con-
ditional set in X compatible with ≈. For example, let L = 2, X = {x1,x2}, x1 ≈ x1 =
x1 ≈ x2 = x2 ≈ x1 = x2 ≈ x2 = 0, h be the identity on 2, Y = {x1}, f : X → Y be the h-
realization of X given by f (x1) = f (x2) = x1 and A = {x1}. Then xh

1 = xh
2 but h(A(x1)) =

1 6= 0 = h(A(x2)).

For a reality h we say that an h-realization f of X partially respects a conditional set A
if for each x1,x2 ∈ dom f such that h(x1 ≈ x1) < 1, h(x2 ≈ x2) < 1 and xh

1 = xh
2 it holds

h(A(x1)) = h(A(x2)). By definition, if f respect A then also f partially respect A.
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For a binary conditional relation R between X and Y , reality h and h-realizations f and g
of X and Y , respectively, we say that f and g partially respect R if f ×g partially respects
R.

Lemma 22. Let A be a conditional set in X compatible with ≈. If an h-realization f of X
partially respects A then f respects A.

Proof. It remains to show that for x1,x2 ∈ dom f such that h(x1 ≈ x1) = h(x2 ≈ x2) = 1
and xh

1 = xh
2 it holds h(A(x1)) = h(A(x2)). Which is indeed true as we have h(x1 ≈ x2) =

xh
1 ≈|h xh

2 = xh
1≈|h xh

1 = h(x1≈ x1)= 1 and the compatibility of A with≈ implies h(A(x1))=
h(A(x1)∧ (x1 ≈ x2))≤ h(A(x2)). The converse inequality can be proven analogously.

Theorem 5. Let A be a conditional set in X compatible with ≈, h a reality and f an
h-realization of X which partially respects A. Then for each x ∈ Xh we have

A|h(xh) = h(A(x)).

Proof. The claim directly follows from Lemma 22 and Theorem 2.

Characterization of respectability. In this part, we introduce a conditional relation such
that the compatibility with the conditional relation is equivalent to respectability. For an
h-realization f : X 9Y of X we define a binary conditional relation T f on X given by

T f (x1,x2) =


1 if x1 = x2,
ah if f (x1) and f (x2) are defined, x1 6= x2 and f (x1) = f (x2),
0 otherwise,

(1.31)

where ah =
∧

h−1(1) =
∧{c ∈ L | h(c) = 1}. The conditional relation T f is also denoted

by ThX , TXh or Th. For x1,x2 ∈ Xh we have h(Th(x1,x2)) = 1 if and only if xh
1 = xh

2.

It is easy to see that Th is a reflexive conditional equality on X . Clearly, the restricted
h-realization (Th)

|h of Th is an identity on Xh and if for a conditional set A in X is the h-
realization Ah of A defined then also the h-realization (A◦Th)

h of A◦Th is defined.

Theorem 6. The following statements are equivalent for a conditional set A in X and an
h-realization f of X.

1. A is compatible with Th.

2. Xh respects A.



CHAPTER 1. INCOMPLETE INFORMATION 30

Proof. Suppose that A is compatible with Th. Let x1,x2 ∈ Xh such that xh
1 = xh

2. If
x1 = x2 then clearly h(A(x1)) = h(A(x2)). Assume x1 6= x2. Then by the definition of
T≈, h(Th(x1,x2)) = h(

∧
h−1(1)) = 1 and compatibility of A with Th yields h(A(x1)) =

h(A(x1)∧Th(x1,x2))≤ h(A(x2)). The converse inequality can be proven analogously. We
proved that the h-realization f of X respects A.

Suppose that f respects A. Clearly, A(x1)∧Th(x1,x2)≤ A(x2) holds for all x1,x2 ∈ X such
that x1 = x2 or xh

1 is not defined or xh
2 is not defined or xh

1 6= xh
2. Thus, suppose x1 6= x2, xh

1 and
xh

2 are defined and xh
1 = xh

2. For each total reality h′, we show that h′(A(x1)∧Th(x1,x2))≤
h′(A(x2)). The only important case here is when h′(A(x1)) = 1 and h′(Th(x1,x2)) = 1.
By the definition of Th we have 1 = h′(Th(x1,x2)) = h′(

∧
h−1(1)). By the properties of

complete and atomic Boolean algebras there is a total reality h′′ such that h′ = h′′ ◦ h.
Since f respects A, it holds h′′(h(A(x1))) = h′′(h(A(x2))) and thus h′(A(x2)) = 1. By
completeness and atomicity of L, A is compatible with Th.

Conditional representation. It this subsection, we deal with representation of ordinary
sets by conditional sets. The main result in this part can be used to find a conditional set A
in a conditional universe X in a situation when we have a form of an unknown set in every
reality. Existence of X is proved by preceding results.

Lemma 23. For each reality h, h-realization f : X → Y of X and conditional set Ah in
Y there exists the greatest conditional set A in X satisfying Ah = Ah. If f is a standard
h-realization of X then A is compatible with ≈. If h is total and h̄ is a total reality such
that h̄ 6= h then h̄(A(x)) = 1 for each x ∈ X.

Proof. Set A(x) =
∨

h−1(Ah(xh)) if x ∈ Xh, otherwise A(x) =
∨

h−1(0). By the com-
pleteness of h, h(A(x)) = Ah(xh) if x ∈ Xh, otherwise h(A(x)) = 0. Therefore, the h-
realization Ah of A is defined and evidently, if x̄h = xh then A(x̄) = A(x). Now, Ah(xh) =
h(
∨

x̄h=xh A(x̄)) =
∨

x̄h=xh Ah(xh) = Ah(xh). Maximality of A follows from the fact that if
Āh =Ah then, by definition, h(

∨
x̄h=xh Ā(x̄))=Ah(xh), yielding h(Ā(x))≤Ah(xh)= h(A(x))

for each x ∈ Xh and h(A(x)) = h(Ā(x)) = 0 for each x /∈ Xh and so Ā(x)≤ A(x).

Let h be total and h̄ 6= h be also total reality. Then for each x ∈ X , A(x) is either 1 or the
coatom in L such that h(A(x)) = 0. Thus h̄(A(x)) = 1.

Suppose f is standard. Since ≈h is the ordinary equality on Y , Ah is compatible with ≈h.
We show that for each total reality h̄, x,y ∈ X it holds h̄(A(x1))∧ h̄(x1 ≈ x2) ≤ h̄(A(x2)).
The only interesting case here is when h̄(A(x1)) = h̄(x1 ≈ x2) = 1. By the previous part
of the proof, if h̄ 6= h then h̄(A(x2)) = 1. So suppose h = h̄ and by (1.1), h(x1 ≈ x1) =
h(x2 ≈ x2) = 1 and by Xh is standard, h-realizations xh

1 and xh
2 of x1 and x2, respectively,
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are defined. Now, by the compatibility of Ah with ≈h we have h(A(x1))∧ h(x1 ≈ x2) =
Ah(xh

1)∧(xh
1 ≈h xh

2)≤ Ah(xh
2) = h(A(x2)). Since L is complete and atomic, A is compatible

with ≈.

Theorem 7 (conditional representation of sets). Suppose we have for each total reality h
a standard h-realization fh of X and a subset Ah of Xh. Then there is a unique completely
present conditional set A in X compatible with ≈ such that for each total reality h it holds
Ah = Ah.

Proof. Let for each total reality h, Bh be the greatest conditional set in X such that (Bh)
h =

Ah (Lemma 23). For any total reality h̄ 6= h we have h(Bh̄(x))= 1. Set A=
⋂

h̄∈CHom(L,2)Bh̄.
Now, Ah(xh) =

∨
yh=xh

∧
h̄∈CHom(L,2) h(Bh̄(y)) = (Bh)

h(xh) = Ah(xh).

The compatibility of A with ≈ follows from the compatibility of Bh with ≈. Since each
standard realization of A is defined, A is completely present.

Inverse conditional relations. Let R be a conditional relation between X and Y . Then
the inverse conditional relation R−1 of R is a conditional relation between Y and X defined
by R−1(y,x) = R(x,y).

Lemma 24. For a reality h and h-realizations f and g of X and Y , respectively, it holds
(R−1)|h = (R|h)−1.

Proof. For xh ∈ Xh and yh ∈ Y h we have R−1|h(yh,xh) =
∨

ȳh=yh
∨

x̄h=xh h(R−1(ȳ, x̄)) =∨
x̄h=xh

∨
ȳh=yh h(R(x̄, ȳ)) = R|h(xh,yh) = R|h−1(yh,xh).

Height of conditional sets. We conclude this subsection with a study of height of con-
ditional sets. The height of a conditional set A is the value

∨
x∈X A(x) (cf. [35]).

Lemma 25. Let A be a conditional set in X. Then the following holds.

1. If the height of A is 1 then so is the height of any realization of A.

2. If each standard realization f of X it holds that the h-realization Ah of A is nonempty
then the height of A is 1.

Proof. 1. Let h be a reality, f an h-realization of X and Ah the h-realization of A. Since the
h-realization Ah of A is defined, h(A(x)) = 0 if xh is not defined. Now, the claim follows
by
∨

x∈X Ah(xh) =
∨

x∈X
∨

yh=xh h(A(y)) = h
(∨

x∈X A(x)
)
= h(1) = 1.
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2. It suffices to show that for any total reality h,
∨

x∈X h(A(x)) = 1. This is indeed true
because if Ah is nonempty, there exists xh ∈ Ah, i.e. Ah(xh) = 1, which implies that there
is an element x ∈ X such that xh = xh and so h(A(x)) = 1.

1.3.2 Realizations of relations products

In this subsection, we discuss in which situations it holds (R◦S)|h =R|h◦S|h and (R/S)|h =
R|h /S|h for conditional relations R and S.

Let X be an L-conditional universe, h a reality, f an h-realization of X , R and S unary
conditional relations on X . Then we say that the product R◦S is safe with respect to f if
h(R◦S) = h((R∩Xh)◦S) = h(R◦ (S∩Xh)) and the product R /S is safe with respect to f
if h(R /S) = h((R∩Xh) /S). We also say that a product is safe w.r.t. h.

Let X ,Y and Z be L-conditional universes, fX , fY and fZ h-realizations of X ,Y and Z,
respectively, R a binary conditional relation between X and Y and S a binary conditional
relation between Y and Z. Then we say that the product R◦S is safe w.r.t. fX , fY and fZ if
Rx ◦Sz is safe w.r.t. fY for all x ∈ Xh and z ∈ Zh. Similarly, we say that the product R /S is
safe w.r.t. fX , fY and fZ if Rx /Sz is safe w.r.t. fY for all x ∈ Xh and z ∈ Zh. Again, we also
say that a product is safe w.r.t. h.

If needed, we identify a unary conditional relation R on Y with a binary conditional re-
lation between a one point set X = {x}, with a reflexive conditional equality ≈X , and Y .
Similarly, we identify an unary conditional relation S on Y with a binary conditional rela-
tion between Y and Z = {z} also with a reflexive conditional equality ≈Z . Clearly, for any
h-realization f of X it holds that Xh is an one-element set {xh} with xh ≈h

X xh = 1 and thus
Xh = X and similarly for Z.

We give two sufficient conditions for products to be safe:

Lemma 26. Let R,S be unary conditional relations on X, h a reality and f an h-realization
of X. Then it holds:

1. If the h-realization Rh of R is defined or the h-realization Sh of S is defined then R◦S is
safe w.r.t. h.

2. If the h-realization Rh of R is defined then R /S is safe w.r.t. h.

Proof. The result follows easily from the fact that if Rh is defined then by definition
h(R(x)) = 0 for x ∈ X \Xh and similarly for S.
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Lemma 27. Let R and S be unary conditional relations on X compatible with≈. Then the
following holds for every reality h and h-realization f of X.

1. If R or S is completely present then R◦S is safe w.r.t. f .

2. If R is completely present then R /S is safe w.r.t. f .

Proof. 1. By (1.4) we have h(R ◦ S) = h(
∨

x∈X R(x)∧ S(x)) = h(
∨

x∈X R(x)∧ (x ≈ x)∧
S(x))≤ h(

∨
x∈X

∨
y∈Xh

R(x)∧(x≈ y)∧S(x))≤ h(
∨

x∈X
∨

y∈Xh
R(y)∧S(y) = h((R∩Xh)◦S).

The converse inequality is obvious.

2. First observe that R(y)→ S(y) ≤ (y ≈ x)→ (R(x)→ S(x)) holds for each x,y ∈ X .
Indeed, the inequality is equivalent to (y≈ x)∧R(x)∧ (R(y)→ S(y))≤ S(x) which is true
since we have, by compatibility of R and S with ≈, that (y≈ x)∧R(x)∧ (R(y)→ S(y)) =
(y≈ x)∧R(y)∧ (R(y)→ S(y))≤ (y≈ x)∧S(y)≤ S(x).

Now, also by (1.4) we have h(R /S) = h(
∧

x∈X R(x)→ S(x)) = h(
∧

x∈X(R(x)∧ (x≈ x))→
S(x)) = h(

∧
x∈X(x ≈ x)→ (R(x)→ S(x))) ≥ h(

∧
x∈X(

∨
y∈Xh

y ≈ x)→ (R(x)→ S(x))) =
h(
∧

x∈X
∧

y∈Xh
(y≈ x)→ (R(x)→ S(x)))≥ h(

∧
x∈X

∧
y∈Xh

R(y)→ S(y)) = h(
∧

y∈Xh
R(y)→

S(y)) = h((R∩Xh) /S). The converse inequality is easy.

Let h be a reality and f an h-realization of X . Then a conditional set A in X is safe w.r.t. f
if for every conditional set S in X compatible with ≈ the products A◦S and A /S are safe
w.r.t. f . By Lemmas 26 and 27, we have that if A is completely present and compatible
with ≈ or the h-realization Ah of A is defined then A is safe w.r.t. f .

The following technical lemma will be used in the next theorem.

Lemma 28. Let R and S be unary conditional relations on X, h a reality and f an h-
realization of X. Then the following holds.

1. If R◦S is safe w.r.t. h and R◦Th ◦S = R◦S then (R◦Th)◦ (Th ◦S) is also safe w.r.t. h.

2. If R /S is safe w.r.t. h and Th /S = S then (R◦Th) /S is also safe w.r.t. h.

Proof. 1. We have h((R◦Th)◦(Th◦S))= h(R◦Th◦S)= h(R◦S)= h(
∨

x∈Xh
R(x)∧S(x))≤

h(
∨

x∈Xh
(R◦Th)(x)∧ (Th ◦S)(x)). The converse inequality is trivially satisfied.

2. By the second associative law (1.28), we have h((R◦Th) /S) = h(R / (Th /S)) = h(R /

S)= h(
∧

x∈Xh
R(x)→ S(x))≥ h(

∧
x∈Xh

R◦Th(x)→ S(x)). The converse inequality is trivial.
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Theorem 8. Let R and S be (unary or binary) conditional relations such that all compo-
sitions below make sense. Then the following holds.

1. If R◦Th ◦S = R◦S and R◦S is safe w.r.t. h then

(R◦S)|h = R|h ◦S|h. (1.32)

2. If Th /S = S and R /S is safe w.r.t. h and, in the case R is binary, Th / (R /S) = R /S then

(R /S)|h = R|h /S|h. (1.33)

Proof. The proof is an analogy of the proof of [19, Lemma 3].

1. First suppose that R and S are conditional sets (i.e. unary conditional relations) in the
same universe X . By the definition of ◦, (R ◦ S)|h = h(R ◦ S) = h(

∨
x∈X R(x)∧ S(x)) =∨

x∈Xh
h(R(x))∧h(S(x))≤∨xh∈Xh R|h(xh)∧S|h(xh) = R|h ◦S|h where≤ holds as h(R(x))≤

R|h(xh) and h(S(x)) ≤ S|h(xh). Moreover, if R and S are compatible with Th, we can by
Theorem 2 put = in the place of ≤. To prove the converse inequality, we observe that
the conditional sets R ◦ Th and Th ◦ S are compatible with Th and satisfy (R ◦ Th) ⊇ R
and (Th ◦ S) ⊇ S. Therefore, by 1. of Lemma 28, R|h ◦ S|h ≤ (R ◦ Th)

|h ◦ (Th ◦ S)|h =
(R◦Th ◦S)|h = (R◦S)|h.

Now we will prove (1.32) for binary R and S. Let R be a binary conditional relation
between X and Y and S a binary conditional relation between Y and Z. Thus, by (1.19),
the first part of the proof and the first distributivity law (1.29),

(R◦S)|h(xh,zh) =
∨

x̄h=xh

∨
z̄h=zh

h((R◦S)(x̄, z̄)) =
∨

x̄h=xh

∨
z̄h=zh

h(Rx̄ ◦Sz̄)

=
∨

x̄h=xh

∨
z̄h=zh

(Rx̄)
|h ◦ (Sz̄)

|h =

( ⋃
x̄h=xh

(Rx̄)
|h
)
◦
( ⋃

z̄h=zh

(Sz̄)
|h
)

= (R|h)xh ◦ (S|h)zh = (R|h ◦S|h)(xh,zh).

2. The proof goes similarly as the proof of the first part. First, suppose that R and S are
unary. We have (R /S)|h = h(R /S) = h(

∧
x∈X R(x)→ S(x)) =

∧
x∈Xh

h(R(x))→ h(S(x))≥∧
xh∈Xh R|h(xh)→ S|h(xh) = R|h /S|h. Here, the inequality follows from h(R(x))≤ R|h(xh),

h(S(x)) = S|h(xh) and antitony of → in the first argument. Moreover, if R is compatible
with Th, = can be used instead. Now, since / is antitone in the first argument, R◦Th ⊇ R
and R◦Th is compatible with Th, we obtain by 2. of Lemma 28, R|h /S|h≥ (R◦Th)

|h /S|h =
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((R ◦Th) / S)|h = (R / (Th / S))|h = (R / S)|h. This finishes the proof of (1.33) for unary R
and S.

To prove the assertion for binary R and S, we first make the following observation. If
T is a binary conditional relation between X and Z satisfying Th / T = T then for any
z ∈ Z the conditional set Tz is compatible with Th. Thus, (1.19) and Theorem 2 give
T |h(xh,zh) =

∨
z̄h=zh(Tz̄)

|h(xh) =
∨

z̄h=zh h(Tz̄(x)) =
∨

z̄h=zh h(T (x, z̄)). We apply this result
to T = R /S and use the second distributivity law (1.29):

(R /S)|h(xh,zh) =
∧

x̄h=xh

(R /S)|h(x̄h,zh) =
∧

x̄h=xh

∨
z̄h=zh

h(Rx̄ /Sz̄)

=
∧

x̄h=xh

∨
z̄h=zh

(Rx̄ /Sz̄)
|h =

∧
x̄h=xh

∨
z̄h=zh

(Rx̄)
|h / (Sz̄)

|h

=

( ⋃
x̄h=xh

(Rx̄)
|h
)

/

( ⋃
z̄h=zh

(Sz̄)
|h
)

= (R|h)xh / (S|h)zh = (R|h /S|h)(xh,zh).

1.3.3 Completely present conditional sets compatible with ≈

Completely present L-sets compatible with ≈ were also studied in [14] and subsequent
papers. We first summarize basic known facts and then present new results.

Let X be an L-conditional universe. The conditional set XE is clearly completely present
and compatible with ≈. Therefore, we associate with each conditional universe X a com-
pletely present conditional set XE compatible with ≈.

On the other hand, let A be a completely present conditional set in X compatible with ≈.
Then we have a binary conditional relation ≈A on X given by

x1 ≈A x2 = A(x1)∧ (x1 ≈ x2) = (x1 ≈ x2)∧A(x2) (1.34)

for x1,x2 ∈ X . Clearly, ≈A is symmetric and transitive. Therefore, we associate with A a
conditional universe (XA,≈A) where XA = X .

As we will see below, completely present conditional sets compatible with ≈ are exactly
fixpoints of the following operator. For a conditional set A in X we define a conditional set
C≈A in X by

C≈A(x) = (A◦ ≈)(x) = (≈ ◦A)(x) =
∨

x′∈X

A(x′)∧ (x′ ≈ x). (1.35)
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The following lemma gives basic properties of C≈.

Lemma 29. For each conditional sets A and B in X it holds

A /B≤ C≈A /C≈B, (1.36)
C≈(C≈A) = C≈A. (1.37)

Proof. The proof is taken from [3, Lemma 7.57]. The inequality (1.36) is true iff for each
x ∈ X we have C≈A(x)∧ (A /B)≤ C≈B(x) which is true since

C≈A(x)∧ (A /B) =

∨
y∈X

A(y)∧ (x≈ y)

∧
∧

z∈X

A(z)→ B(z)


=
∨
y∈X

A(y)∧ (x≈ y)∧
∧
z∈X

A(z)→ B(z)

≤
∨
y∈X

A(y)∧ (x≈ y)∧ (A(y)→ B(y))≤
∨
y∈X

B(y)∧ (x≈ y)

= C≈B(x).

To prove (1.37) we check both inequalities. For x ∈ X we have

C≈(C≈A)(x) =
∨
y∈X

C≈(A)(y)∧ (x≈ y) =
∨
y∈X

∨
z∈X

A(z)∧ (z≈ y)

∧ (x≈ y)

=
∨
y∈X

∨
z∈X

A(z)∧ (z≈ y)∧ (x≈ y)≤
∨
y∈X

∨
z∈X

A(z)∧ (z≈ x)

=
∨
z∈X

A(z)∧ (z≈ x) = C≈A(x)

and

C≈(C≈A)(x) =
∨
y∈X

∨
z∈X

A(z)∧ (z≈ y)

∧ (x≈ y)

≥
∨
y∈X

A(y)∧ (y≈ y)∧ (x≈ y) =
∨
y∈X

A(y)∧ (x≈ y)

= C≈A(x).
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Generally, C≈ is not a fuzzy closure operator [3] with respect to ⊆, since in general A *
C≈A. In the end of Subsection 1.4.1, we define a conditional version of a closure operator
which covers also C≈.

In what follows, we introduce new results. Recall that a fixpoint of a mapping f :X → X
is an x ∈ X such that f (x) = x. The following lemma gives a characterization of fixpoints
of C≈.

Theorem 9. A conditional set is a fixpoint of C≈ if and only if it is completely present and
compatible with ≈.

Proof. Let A be a conditional set in X such that A=A◦≈. For x̄∈X we have (A◦≈)(x′) =∨
x∈X A(x)∧ (x ≈ x′) ≤ A(x′) which yields A(x)∧ (x ≈ x′) ≤ A(x′) (for each x,x′ ∈ X)

proving that A is compatible with ≈. By (1.2), for x ∈ X we have A(x) = (A◦ ≈)(x) =∨
x′∈X A(x′)∧ (x′ ≈ x)≤∨x′∈X x≈ x′ = x≈ x showing that A is completely present.

Conversely, assume that a conditional set A in X is completely present and compatible
with ≈. Let x ∈ X . Then for each x′ ∈ X we have A(x′)∧ (x′ ≈ x) ≤ A(x) which yields
C≈A(x) =

∨
x′∈X A(x′)∧ (x′ ≈ x)≤ A(x). Since A(x)≤ x≈ x, we have A(x) = A(x)∧ (x≈

x)≤∨x′∈X A(x′)∧ (x′ ≈ x) = C≈A(x).

Lemma 30. For each conditional set A in X compatible with ≈ it holds C≈A = A∩EX .

Proof. Clearly, for x ∈ X we have A(x)∧ (x≈ x)≤∨y∈X A(y)∧ (y≈ x) = (A◦ ≈)(x). The
converse inequality holds since the compatibility of A with≈ and (1.1) implies A(y)∧(y≈
x)≤ A(x)∧ (x≈ x) for all x,y ∈ X .

1.3.4 Power conditional relations

Let X be an L-conditional universe. According to the theory of fuzzy power structures [8],
any binary L-relation R on X can be extended to a binary L-relation R+ on LX , called a
power relation. The definition is the following. For conditional sets A,B in X we set

R→(A,B) =
∧
x∈X

(
A(x)→

∨
y∈X

R(x,y)∧B(y)

)
= A / (R◦B), (1.38)

R←(A,B) =
∧
y∈X

(
B(y)→

∨
x∈X

R−1(y,x)∧A(x)

)
= B / (R−1 ◦A) (1.39)
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and define

R+(A,B) = R→(A,B)∧R←(A,B). (1.40)

Theorem 10. If R is compatible with ≈ then for any reality h, h-realization f of X which
partially respects R and safe conditional sets A and B w.r.t. f it holds R|h→(A|h,B|h) =
h(R→(A,B)), R|h←(A|h,B|h) = h(R←(A,B)) and R|h+(A|h,B|h) = h(R+(A,B)).

Proof. By Lemma 22, the h-realization f of X respects R. By Lemma 6, it holds Th ◦R◦
Th = R. Now, by safeness of A and B and Theorem 8, we have R|h→(Ah,Bh) = A|h / (R|h ◦
B|h) = A|h / (R◦B)|h = (A/ (R◦B))|h = h(A/ (R◦B)) = h(R→(A,B)). The second equality
is proved similarly and the third one follows by (1.40).

1.3.5 Conditional mappings

A conditional relation F between L-conditional universes X and Y is called a conditional
mapping from X to Y , in short F : X →Y , if for each total reality h, standard h-realizations
f and g of X and Y , respectively, the restricted h-realization F |h of F is an ordinary map-
ping.

For a total reality h and standard h-realizations f and g of X and Y , respectively, the
ordinary binary relation F |h can be viewed as a 2-conditional relation, ordinary relation,
or an ordinary mapping, as needed. The three following expressions mean all the same:
F |h(xh,yh) = 1, (xh,yh) ∈ F |h, F |h(xh) = yh.

Generally, a restricted realization of a conditional mapping is not a conditional mapping.
For example, let L = 2, X = {x1,x2}, x1 ≈X x1 = x1 ≈X x2 = x2 ≈X x1 = x2 ≈X x2 = 1,
Y = {y}, y ≈Y y = 1, F = {(x1,y)}, h be the identity on 2, X ′ = {x2}, f : X → X ′ be the
h-realization of X given by f (x1) is not defined, f (x2) = x2, Y ′ = Y and g : Y → Y ′ be the
h-realization of Y given by g(y) = y. Then F : X→Y is a conditional mapping, but F |h = /0
is not a conditional mapping.

The following two lemmas study situations in which a restricted realization of a condi-
tional mapping is a conditional mapping.

Lemma 31. Let h be a reality, f and g faithful h-realizations of X and Y . Then the
restricted realization of any conditional mapping from X to Y is a conditional mapping.

Proof. Let h be a reality L→ K, F be a conditional mapping from X to Y . Then for
each total reality h̄ : K→ 2, f̄ and ḡ standard h̄-realizations of Xh and Y h, respectively, we
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have by Lemma 6, F |h|h̄ = F |(h̄◦h). Since f and g are faithful, f̄ ◦ f and ḡ◦g are standard
realizations of X and Y , respectively (Lemma 2). Since F is a conditional mapping, F |(h̄◦h)

is an ordinary mapping. We showed that each standard restricted realization of F |h is an
ordinary mapping, i.e. F |h is a conditional mapping.

Lemma 32. Any restricted realization of a conditional mapping X → Y compatible with
≈X and ≈Y is a conditional mapping.

Proof. The result is proved similarly as the preceding lemma using Lemma 14.

A conditional mapping F is called a conditional bijection if F−1 is also a conditional
mapping. By Lemma 24, a conditional relation F : X → Y is a conditional bijection if and
only if for each standard realizations f and g of X and Y , respectively, it holds that the
restricted realization of F is an ordinary bijection.

We call two L-conditional universes X1 and X2 conditionally isomorphic if there is a con-
ditional bijection between X1 and X2. The conditional equality≈ of a conditional universe
X is a binary conditional relation between X and X . For each total reality h and standard
h-realization f of X it holds that the h-realization ≈h of ≈ is an ordinary equality on Xh

and thus a bijection. Therefore, ≈ is a conditional bijection between X and X .

Theorem 11. Let h be a reality, f : X 9 Y and g : X 9 Z be two h-realizations of an
L-conditional universe X. Then Y and Z are conditionally isomorphic.

Proof. Let ( f ×g) : X×X 9Y ×Z be an h-realization of X×X defined by ( f ×g)(x, x̄) =
( f (x),g(x̄)) (see Lemma 4). Then since≈ is a compatible conditional bijection between X
and X , the restricted h-realization ( f ×g)(≈ | f×g) of ≈ is (Lemma 32) also a conditional
bijection between Y and Z. Therefore, Y and Z are conditionally isomorphic.

For any conditional relation F between conditional universes X and Y and a conditional
set A in X we denote F(A) = A ◦T≈ ◦F . For single elements x ∈ X we usually write
F(x) instead of F({x}). By Lemma 21 and 1. of Theorem 8, for each reality h, faithful
h-realization f of X such that the h-realization Ah of A is defined and A ◦T≈ ◦Th ◦F =
A◦T≈ ◦F , and any h-realization g of Y it holds

F(A)|h = F |h(Ah). (1.41)

Particularly, the equality (1.41) holds if f is a standard h-realization of X .

Note that if it is satisfied in a total reality h that A is present then it does not need to be
satisfied in h that F(A) is present. This seems unnatural since if h-realizations f and g of
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X and Y , respectively, are standard and Ah is defined then F |h(Ah) is also defined. We call
F presence preserving if for each conditional set A in X it holds

A≈+
X A≤ F(A)≈+

Y F(A). (1.42)

Lemma 33. Let F be a conditional relation between X and Y . Then F is presence pre-
serving if and only if F(x,y)∧ (x≈X x)≤ y≈Y y holds for each x ∈ X and y ∈ Y .

Proof. Suppose that F is presence preserving. Then since {x}⊆{x}◦T≈, it holds F(x,y)≤
F(x)(y), further E{x} ≤ EF(x) yields F(x)(y)∧ (x ≈X x) ≤ y ≈Y y. Therefore, F(x,y)∧
(x≈X x)≤ F(x)(y)∧ (x≈X x)≤ y≈Y y.

If the right hand side of the equivalence is true then for each conditional set A in X , x,x′ ∈
X , y ∈ Y it holds EA∧ A(x)∧ T≈X (x,x

′)∧ F(x′,y) ≤ (x ≈X x)∧ T≈X (x,x
′)∧ F(x′,y) =

(x≈X x′)∧F(x′,y)≤ y≈Y y. Now EA∧F(A)(y) = EA∧ (A◦T≈ ◦F)(y)≤ y≈Y y which
is equivalent to (1.42).

1.4 More on conditional universes

1.4.1 Conditional universes of conditional sets

Let X be an L-conditional universe, h a reality and f an h-realization of X . We denote ≈→
by S≈. For conditional sets A and B in X , the condition S≈(A,B) is called the condition
under which A is a subset of B. If S≈h(Ah,Bh) = 1, we say that A is a subset of B in the
h-realization f . We say that A is a subset of B in h if A is a subset of B in any h-realization
of X . We have ≈←(A,B) = S≈(B,A) and, consequently,

A≈+ B = S≈(A,B)∧S≈(B,A). (1.43)

The value A ≈+ B is called the condition under which A is equal to B. If Ah ≈h+ Bh = 1,
we say that A equals B in the h-realization f . We say that A is equal to B in h if A is
equal to B in any h-realization of X . If h is total and f standard, S≈h is the ordinary subset
relation and ≈h+ is the ordinary set equality relation on Xh.

Lemma 34. If A and B are compatible with ≈ then

S≈(A,B) = EA∧ (A /B), (1.44)

A≈+ B = EA∧EB∧ (A /B)∧ (B /A). (1.45)
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Proof. We first prove (1.44). By Lemma 30, S≈(A,B) = A / (≈ ◦B) = A / (B∩ EX) =∧
x∈X A(x)→ (B(x)∧ (x ≈ x)) =

∧
x∈X(A(x)→ B(x))∧ (A(x)→ (x ≈ x)) = (A /B)∧EA.

(1.45) new follows from (1.44) and (1.43).

From the preceding Lemma it follows that for completely present conditional sets A and B
in X compatible with ≈ it holds

S≈(A,B) = A /B, (1.46)

A≈+ B = (A /B)∧ (B /A). (1.47)

Theorem 12. The condition under which a conditional set A in X is present is equal to
the condition under which A is equal to itself. In symbols: EA = A≈+ A.

Proof. It suffices to show that S≈(A,A) = EA. On one hand we have

S≈(A,A) =
∧

x1∈X

A(x1)→
∨

x2∈X

(x1 ≈ x2)∧A(x2)≥
∧

x1∈X

A(x1)→ ((x1 ≈ x1)∧A(x1))

=
∧

x1∈X

(A(x1)→ (x1 ≈ x1))∧ (A(x1)→ A(x1)) =
∧

x1∈X

A(x1)→ (x1 ≈ x1) = EA

and on the other hand by (1.2) we have

S≈(A,A) =
∧

x1∈X

A(x1)→
∨

x2∈X

(x1 ≈ x2)∧A(x2)≤
∧

x1∈X

A(x1)→
∨

x2∈X

x1 ≈ x2

=
∧

x1∈X

A(x1)→ (x1 ≈ x1) = EA.

We prefer to express the condition under which A is present by A≈+ A instead of EA since
it corresponds with expressing the presence of an element x ∈ X by x≈ x.

We have A ≈+ A ≤ EA =
∧

x∈X A(x) → (x ≈ x) and therefore for each x ∈ X it holds
A≈+ A≤ A(x)→ (x≈ x) which is, by adjointness, equivalent to

A(x)∧ (A≈+ A)≤ x≈ x. (1.48)

The inequality (1.48) is read as follows: “If it is satisfied that x is an element of A and A is
present then it is also satisfied that x is present.”
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We show the transitivity of S≈, i.e. that S≈(A,B)∧ S≈(B,C) ≤ S≈(A,C) holds for all
conditional sets A,B and C in X . For x ∈ X we have A(x)∧S≈(A,B) = A(x)∧ (A /C≈B)≤
C≈B(x) proving

A(x)∧S≈(A,B)≤ C≈B(x) (1.49)

and A(x)∧ (A≈+ A) = A(x)∧S≈(A,A)≤ C≈A(x) proving

A(x)∧ (A≈+ A)≤ C≈A(x). (1.50)

For each x ∈ X it holds

C≈A(x)∧S≈(A,B) =

∨
y∈X

A(y)∧ (y≈ x)

∧S≈(A,B)

=
∨
y∈X

A(y)∧ (y≈ x)∧S≈(A,B) =
∨
y∈X

A(y)∧ (y≈ x)∧
∧
z∈X

A(z)→ C≈B(z)

≤
∨
y∈X

A(y)∧ (y≈ x)∧ (A(y)→ C≈B(y))≤
∨
y∈X

(x≈ y)∧C≈B(y)

=
∨
y∈X

(x≈ y)∧
∨
z∈X

B(z)∧ (z≈ y) =
∨

y,z∈X

B(z)∧ (x≈ y)∧ (y≈ z)

≤
∨

y,z∈X

B(z)∧ (x≈ z) =
∨
z∈X

B(z)∧ (x≈ z) = C≈B(x)

proving

C≈A(x)∧S≈(A,B)≤ C≈B(x). (1.51)

Now, it is easy to show that

S≈(A,B)∧S≈(B,C)≤ S≈(A,C). (1.52)

Indeed, S≈(A,B)∧S≈(B,C)≤ S≈(A,C) =
∧

x∈X A(x)→ C≈C(x) holds iff for each x ∈ X
we have S≈(A,B)∧ S≈(B,C) ≤ A(x)→ C≈C(x) which is, by adjointness, equivalent to
A(x)∧ S≈(A,B)∧ S≈(B,C) ≤ C≈C(x). The last is true since by (1.49) and (1.51) we
have

A(x)∧S≈(A,B)∧S≈(B,C)≤ C≈B(x)∧S≈(B,C)≤ C≈C(x).
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Theorem 13. (LX ,≈+) is an L-conditional universe.

Proof. The symmetry of ≈+ is obvious. The transitivity of ≈+ follows from (1.52). The
proof is analogous to the proof of [3, Theorem 4.41].

We usually consider the set LX of all conditional sets in X as a conditional universe with the
conditional equality≈+. The following technical lemma is used in the next theorem.

Lemma 35. Let A be a completely present conditional set in X compatible with ≈, h a
reality and f an h-realization of X. Then it holds h(A|h◦ ≈ (x)) = h(A(x)) for all x ∈ X.

Proof. By (1.4), we have h(A(x))= h(A(x)∧(x≈ x))≤ h(A(x)∧∨y∈Xh
y≈ x)= h(

∨
y∈Xh

A(y)∧
(y≈ x)) = h(

∨
y∈X A|h(y)∧ (y≈ x)) = h(A|h◦ ≈ (x)).

Theorem 14. Let h : L→ K be a reality and f : X 9 Y an h-realization of X. Then the
partial mapping g : LX 9KY given by g(A) = Ah is an h-realization of (LX ,≈+) where KY

is considered with the conditional equality ≈|h+. Moreover, if f is standard then g is also
standard.

Proof. The surjectivity of g follows from Lemma 23. By Theorem 10, g satisfies g(A1)≈|h+
g(A2) = Ah

1 ≈|h+ Ah
2 = h(A1 ≈+ A2). We prove (1.4). Let Ā be a conditional set in X

given by Ā = A◦ ≈ |h. By Lemma 35, the fact A◦ ≈ |h ⊆ A◦ ≈ yields h(A ≈+ Ā) =
h(S≈(A, Ā)∧ S≈(Ā,A)) = h((A / ((A◦ ≈ |h)◦ ≈))∧ ((A◦ ≈ |h) / (A◦ ≈))) = h(A / (A◦ ≈
)) = h(S≈(A,A)) = h(A ≈+ A). Now, h(A ≈+ A) = h(A ≈+ Ā) ≤ ∨Bh h(A ≈ B), where
‘Bh’ means that we take supremum over all B ∈ LX such that Bh is defined.

Suppose f is standard. Then ≈h+ is an ordinary equality of sets. If h(A ≈+ A) = 1 then
by Theorem 12, Ah is defined. We showed that g is also standard.

The h-realization g of LX from the preceding theorem is called the h-realization induced
by f .

Generally, g is not faithful even if f is faithful. For example, let L be the four element
Boolean algebra {1,c,c′,0}, X = {x1,x2}, x1 ≈ x1 = 1, x1 ≈ x2 = x2 ≈ x2 = x2 ≈ x1 = 0,
h be the identity on L, Y = {x1}, f : X 9 Y be the h-realization of X given by f (x1) = x1,
f (x2) be not defined and A = {c/x2}. Then f is a faithful h-realization of X , h(A≈+ A) =
c′, but the h-realization g(A) = Ah of A is not defined and thus g is not faithful.

By (1.43) and the transitivity of S≈, we have S≈(A,B1) ∧ (B1 ≈+ B2) ≤ S≈(A,B1) ∧
S≈(B1,B2)≤ S≈(A,B2) for all conditional sets A,B1,B2 in X and similarly it can be shown
that (A2 ≈+ A1)∧S≈(A1,B)≤ S(A2,B) for all conditional sets A1,A2,B in X . We proved
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that S≈ is compatible with ≈+ from both sides. By Lemma 11, any standard h-realization
of LX respects S≈.

Theorem 15. Let h be a reality, f an h-realization of X, A and B conditional sets in X
such that h-realizations Ah and Bh of A and B, respectively, are defined. Then it holds
S≈|h(A

h,Bh) = h(S≈(A,B)) and Ah ≈|h+ Bh = h(A≈+ B).

Proof. By Lemma 10, f respects ≈. Now, the claim directly follows from Theorem 10.

Lemma 36. Let R be a binary conditional relation on X compatible with ≈, h a reality
and f any h-realization of X which partially respects R. Then the h-realization g of LX

induced by f respects R→,R← and R+.

Proof. Let A1,A2,B1,B2 be conditional sets in X such that h-realizations Ah
1,A

h
2,B

h
1,B

h
2 are

defined and Ah
1 = Ah

2 and Bh
1 = Bh

2. We show only that g respects R→. Proofs for R← and
R+ are similar. By Theorem 10, we have h(R→(A1,B1)) = R|h→(Ah

1,B
h
1) = R|h→(Ah

2,B
h
2) =

h(R→(A2,B2)).

Theorem 16. Let h be a reality and f an h-realization of X. Then the h-realization g of
LX induced by f respects S≈ and ≈+.

Proof. By Lemma 10, f respects ≈. Now, the claim follows from Lemma 36.

Now, we study properties of S≈ and ≈+.

Lemma 37. We have

(A2 /A1)∧S≈(A1,B)≤ S≈(A2,B), (1.53)
(B1 /B2)∧S≈(A,B1)≤ S≈(A,B2), (1.54)

(A /B)∧ (B≈+ B)≤ A≈+ A (1.55)

for all conditional sets A,A1,A2,B,B1 and B2 in X.

Proof. We have (A2 / A1)∧S≈(A1,B) = (A2 / A1)∧ (A1 / C≈B) ≤ A2 / C≈B = S≈(A2,B)
proving (1.53).

The inequality (1.54) is true since by (1.36) we have (B1 /B2)∧S≈(A,B1) = (B1 /B2)∧
(A /C≈B1)≤ (C≈B1 /C≈B2)∧ (A /C≈B1)≤ (A /C≈B2) = S≈(A,B2).
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Finally, to prove (1.55) we need to show that (A/B)∧(B≈+ B)≤ A≈+ A =
∧

x∈X A(x)→
(x≈ x). The inequality holds iff for each x ∈ X it holds A(x)∧ (A /B)∧ (B≈+ B)≤ x≈ x,
which is true since by (1.48) we have

A(x)∧ (A /B)∧ (B≈+ B)≤ B(x)∧ (B≈+ B)≤ x≈ x.

Lemma 38. Let R be a completely present binary relation on X. Then for any two
conditional sets A and B in X it holds R→(A,B) ≤ A ≈+ A, R←(A,B) ≤ B ≈+ B and
R+(A,B)≤ (A≈+ A)∧ (B≈+ B).

Proof. We prove the first inequality. Since R is completely present, R◦B is also completely
present. By (1.55), we have R→(A,B) = A/(R◦B) = (A/(R◦B))∧((R◦B)≈+ (R◦B))≤
A≈+ A. The second inequality is similar and the third one follows from (1.40).

A direct consequence of the preceding lemma is that for conditional sets A1 and A2 in X it
holds

S≈(A1,A2)≤ A1 ≈+ A1. (1.56)

The inequality can be read as follows: “If it is satisfied in a reality h that A1 is a subset of
A2 then it is also satisfied in h that A1 is present”.

Lemma 39. If A is a conditional set in X such that A ≈+ A ≤ ∨x∈X A(x) then the height
of A is 1.

Proof. We have
∨

x∈X A(x) =
(∨

x∈X A(x)
)
∨(A≈+ A) =

(∨
x∈X A(x)

)
∨∧y∈X A(y)→ (y≈

y) =
∧

y∈X
(∨

x∈X A(x)
)
∨A(y)′∨ (y≈ y)≥∧y∈X A(y)∨A(y)′ = 1.

For a conditional set M in LX (a conditional system of conditional sets) we define the union⋃
M of M as usual by (⋃

M
)
(x) =

∨
A∈LX

M(A)∧A(x) (1.57)

and if M is completely present then the intersection
⋂

M of M is given by(⋂
M
)
(x) = (x≈ x)∧

∧
A∈LX

M(A)→ A(x), (1.58)
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for x ∈ X . Note that
⋂

/0 = XE and thus the condition under which x is in
⋂

/0 is equal to
the condition under which x is present. The intersection of the empty set is the reason
why we consider only completely present conditional sets in the definition of the intersec-
tion.

Theorem 17. Let h be a reality and f an h-realization of X. Denote by M the set of
all completely present conditional sets in X compatible with ≈ and by Mh the set of all
completely present conditional sets in Xh compatible with ≈|h. We consider M and Mh
with conditional equalities ≈h and ≈|h+, respectively. Then the mapping r : M → Mh
defined by r(A) = A|h is an h-realization of M.

Proof. We first show that the restricted realization A|h of a completely present conditional
set A compatible with ≈ is a completely present conditional set compatible with ≈|h. By
Lemma 27, A◦ ≈ is safe w.r.t. f . Now, we have A|h = (C≈A)|h = (A◦ ≈)|h = A|h◦ ≈|h=
C≈|hA|h (1. of Theorem 8). By Lemma 9, A|h is completely present and compatible with
≈|h.

Next, we show the surjectivity of r. Let Ah ∈ Mh. Then there is the greatest conditional
set B in X such that Bh = Ah (Lemma 23). We set A = C≈B and show A|h = Ah. As Bh

is defined, B◦ ≈ is safe w.r.t. f . Now, we have A|h = (C≈B)|h = (B◦ ≈)|h = Bh◦ ≈|h=
C≈|hAh = Ah.

The equality (1.3) holds by Theorem 10. The fact that r is a function easily follows from
(1.4).

Lemma 40. Let M be a conditional set in the conditional universe of all completely
present conditional sets in LX compatible with≈. Then for each reality h and h-realization
f of X it holds (

⋂
M)|h =

⋂
M|h.
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Proof. By Theorem 17, for x ∈ Xh we have

h(
⋂

M(x)) = h((x≈ x)∧
∧

A∈LX

M(A)→ A(x))

= (xh ≈|h xh)∧
∧

C≈A=A

h(M(A))→ h(A(x))

= (xh ≈|h xh)∧
∧

C≈A=A

∧
Ā|h=A|h,C≈Ā=Ā

h(M(Ā))→ Ā|h(xh)

= (xh ≈|h xh)∧
∧

C≈A=A

 ∨
Ā|h=A|h,C≈Ā=Ā

h(M(Ā))

→ A|h(xh)

= (xh ≈|h xh)∧
∧

C≈A=A

M|h(A|h)→ A|h(xh)

= (xh ≈|h xh)∧
∧

C≈|hAh=Ah

M|h(Ah)→ Ah(xh)

=
⋂

M|h(xh).

Clearly,
⋂

M is completely present. It can be directly checked that it is also compatible
with ≈. By Lemma 11 and the first part of the proof, for xh ∈ Xh we have (

⋂
M)|h(xh) =

h(
⋂

M(x)) =
⋂

M|h(xh).

A conditional mapping C : LX → LX is called a conditional closure operator on the con-
ditional universe X if for each total reality h and standard h-realization f of X it holds
that the restricted h-realization C|h : 2Xh → 2Xh

of C is an ordinary closure operator on Xh.
Recall that an ordinary mapping C : 2X → 2X is called a closure operator on a set X if the
following statements hold for each sets A and B in X :

A⊆ B implies CA⊆CB, (monotony)
A⊆CA, (extensivity)

C(CA) =CA. (idempotency)

Theorem 18. Let C : LX → LX be an ordinary mapping which is a presence preserv-
ing conditional mapping satisfying C|hAh = (CA)h for each total reality h, standard h-
realization f of X and conditional set A in X such that the h-realization Ah of A is defined.
Then C : LX → LX is a conditional closure operator on X if and only if the following
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statements hold for each conditional sets A and B in X:

(B≈+ B)∧S≈(A,B)≤ S≈(CA,CB), (monotony)

A≈+ A≤ S≈(A,CA), (extensivity)

A≈+ A≤C(CA)≈+ CA. (idempotency)

Proof. Suppose first that the right hand side of the equivalence holds. Let h be a total
reality and f a standard h-realization of X . We show that the restricted h-realization C|h of
C is a closure operator on Xh. Monotony: For sets Ah and Bh in Xh there are conditional
sets A and B in X such that Ah = Ah and Bh = Bh. Since the h-realization Bh of B is de-
fined, h(B≈+ B) = 1 and by C is presence preserving, the h-realizations (CA)h and (CB)h

of CA and CB, respectively, are defined. Now, we have S≈h(Ah,Bh) = h(S≈(A,B)) =
h((B≈+B)∧S≈(A,B)) ≤ h(S≈(CA,CB)) = S≈h((CA)h,(CB)h) = S≈h(C|hAh,C|hBh). We
showed that if Ah ⊆ Bh then C|hAh ⊆C|hBh.

Extensivity: By the h-realization Ah of A is defined, h(A ≈+ A) = 1. We have 1 =
h(S≈(A,CA)) = S≈h(Ah,(CA)h) = S≈h(Ah,C|hAh) proving that Ah ⊆C|hAh.

Idempotency: We have 1= h(C(CA)≈+ CA)= (C(CA))h≈h+ (CA)h =C|h(CA)h≈h+C|hAh =
C|h(C|hAh) ≈h+ C|hAh proving that C|hC|hAh = C|hAh. We proved that C is a conditional
closure operator.

Conversely, suppose that the left hand side of the equivalence holds. Let A and B be con-
ditional sets in X . We prove monotony of C by showing that h((B ≈+ B)∧S≈(A,B)) ≤
h(S≈(CA,CB)) holds for each total reality h. Let h be a total reality and f a standard h-
realization of X . The interesting case here is when h((B ≈+ B)∧ S≈(A,B)) = 1. The
h-realization Bh of B is defined, by (1.56), also the h-realization Ah of A is defined.
Since C is presence preserving, the h-realizations (CA)h and (CB)h of CA and CB, re-
spectively, are defined. Since C is a conditional closure operator, it holds C|hAh ⊆C|hBh

and thus S≈h(C|hAh,C|hBh) = 1. Now, we have h(S≈(CA,CB)) = S≈h((CA)h,(CB)h) =
S≈h(C|hAh,C|hBh) = 1. We showed monotony of C. Extensivity and idempotency of C
can be shown similarly.

The extensivity requirement from the preceding theorem is read as follows: “if it is satis-
fied that A is present then it is also satisfied that A is a subset of CA”. Other requirements
can be read similarly.

We show that the mapping C≈ : LX → LX defined by (1.35) is a conditional closure opera-
tor. It can be directly checked that C≈ is a conditional mapping. Clearly, C≈ is presence
preserving. It can be also easily verified that C|h≈(Ah) = (C≈A)h holds for each total reality
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h, standard h-realization f of X and conditional set A in X such that the h-realization Ah

of A is defined.

By (1.36), we have S≈(A,B) = A / C≈B ≤ C≈A / C≈(C≈B) = S≈(C≈A,C≈B) proving
monotonicity. By (1.37), we have A ≈+ A = S≈(A,A) = A / C≈A = A / C≈(C≈A) =
S≈(A,C≈A) for each conditional set A in X . Thus, C≈ is extensive. Directly by (1.37), C≈
is idempotent.

By Theorem 18, C≈ is a conditional closure operator on X .

1.4.2 Reflexive conditional equalities

In this section, we show that a conditional universe can be represented by a conditional
universe with reflexive conditional equality and a conditional set of present elements. On
the other hand, we show that a conditional universe with a reflexive conditional equality
can be naturally embedded in a conditional universe with a conditional equality which is
not reflexive.

Recall that E≈ is the reflexive conditional equality on X defined by (1.22). From x ≈ y≤
E≈(x,y) and (1.1) we get x≈ y≤ (x≈ x)∧E≈(x,y). The converse inequality also holds as
(x ≈ x)∧E≈(x,y) ≤ (x ≈ x)∧ ((x ≈ x)→ (x ≈ y)) ≤ x ≈ y. Similarly, can be shown that
x≈ y = (y≈ y)∧E≈(x,y). Therefore,

x≈ y = (x≈ x)∧E≈(x,y) = (y≈ y)∧E≈(x,y). (1.59)

for all x,y ∈ X . Recall that XE is the conditional set in X given by XE(x) = x≈ x. The con-
ditional universe (X ,≈) can be equivalently represented as (X ,E≈,XE). This construction
is also described in [14].

It the rest of this section, we suppose that X is an L-conditional universe such that the
conditional equality ≈ of X is reflexive, i.e. x ≈ x = 1 for all x ∈ X . By the reflexivity of
≈, we have E≈ = R≈ =≈. By faithfulness of standard realizations, standard realizations
of X are ordinary mappings. Moreover, we suppose that all realizations of X in this section
are mappings.

A conditional point [19] in X is a conditional set A in X such that A(x1)∧A(x2)≤ x1 ≈ x2
for all x1,x2 ∈ X . When X is an ordinary universe, A is a conditional point if and only if it
is empty or a singleton.

The following lemma is a reformulation of [19, Lemma 6].
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Lemma 41. Let A be a conditional set in X.

1. If A is a conditional point then each realization of A is also a conditional point.

2. If for each standard h-realization f of X it holds that the h-realization Ah of A has at
most one element then A is a conditional point.

Conditional points represent single elements that do or do not exist. If for a reality h and
any h-realization f of X it holds Ah = /0 we say that A does not exists in h.

Lemma 42. Let A be a conditional set in X, h a reality and f an h-realization of X. Then
h(hgtA) = hgtAh.

Proof. We have hgtAh =
∨

xh∈Xh Ah(xh)=
∨

x∈X
∨

yh=xh h(A(y))= h
(∨

x∈X A(x)
)
= h(hgtA).

By the preceding lemma A does not exist in a reality h if and only if h(hgtA) = 0.

Denote by C X the set of all conditional points in X . We define a binary conditional relation
≈C on C X by

A1 ≈C A2 = hgtA1∧ (A1 ≈+ A2)∧hgtA2 (1.60)

for A1,A2 ∈ C X .

Clearly, ≈C is symmetric and transitive. So, ≈C is a conditional equality and we have
the conditional universe (C X ,≈C ) of conditional points. Since /0 is always a conditional
point and /0≈C /0 = 0, ≈C is not reflexive.

The value A ≈C A = hgtA is interpreted as the condition under which A exists. Note that
in [16, 17] the height of a conditional point compatible with ≈ is interpreted as the extent
of existence. We have that A does not exist in a reality h if and only if h(A ≈C A) =
h(hgt(A)) = 0.

An embedding of an L-conditional universe X to an L-conditional universe Y is an injective
mapping f : X → Y such that f (x1)≈Y f (x2) = x1 ≈X x2 for every x1,x2 ∈ X . For a set X
we denote by idX the identity on X .

Theorem 19. Let fC : X→C X be a mapping given by x 7→ {x}. Then fC is an embedding
of X to C X, f−1

C is an idL-realization of C X. Furthermore, X and C X are conditionally
isomorphic.

Proof. Since singletons {x} for x ∈ X are conditional points, the mapping fC is defined
correctly and it is obviously injective. Observe that S≈({x1},{x2}) = {x1} / ({x2}◦ ≈) =
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{x2}◦ ≈ (x1) = x1≈ x2 and also S≈({x2},{x1}) = x1 ≈ x2. Thus, {x1} ≈+ {x2}= x1 ≈ x2.
By definition, we have that fC (x1) ≈C fC (x2) = hgt{x1}∧ ({x1} ≈+ {x2})∧ hgt{x2} =
1∧ (x1 ≈ x2)∧1 = x1 ≈ x2. We showed that fC is an embedding of X to C X .

We prove that f−1
C is an idL-realization of C X . Clearly, f−1

C is surjective and from the first
part of the proof it follows that {x1} ≈C {x2} = f−1

C ({x1}) ≈ f−1
C ({x2}). It reminds to

show that h(A≈C A)≤∨x∈X h({x} ≈+ A) holds for each conditional point A in X .

We first prove that h(A(x))≤ h({x}≈+ A)= h(S≈({x},A)∧S≈(A,{x})). Clearly, h(A(x))≤
h(S≈({x},A)) = h({x} / (A◦ ≈)) = h(A◦ ≈ (x)). Now, h(A(x)) ≤ h(S≈(A,{x})) = h(A /

({x}◦ ≈)) holds iff h(A(x))≤ h(A(x̄)→ ({x}◦ ≈ (x̄))) holds for all x̄ ∈ X . The last is true
since it is, by adjointness, equivalent with h(A(x)∧A(x̄))≤ h(x≈ x̄) which is true as A is
a conditional point.

Since h(A(x))≤ h({x} ≈+ A)≤ ∨x̄∈X h({x̄} ≈+ A) for each x ∈ X , we have that h(A≈C

A) = h(
∨

x∈X A(x))≤∨x∈X h({x} ≈+ A). We showed that f−1
C is an idL-realization of C X .

The identity on C X is an idL-realization of C X . By Theorem 11, X and C X are condi-
tionally isomorphic .

1.5 Extensionality of conditional sets

Let X be an L-conditional universe. Conditional sets A and B in X are called extensionally
equal, in symbols A ∼ B, if they are extensionally equal as elements in the conditional
universe of all conditional sets (LX ,≈+), i.e. if they satisfy A≈+ B = A≈+ A = B≈+ B.
By Theorem 15 and Theorem 12, conditional sets A and B in X are extensionally equal if
and only if it holds that if A or B is present in a total reality h then so is the other and they
are equal in h.

We give a necessary and sufficient condition for two conditional sets to be extensionally
equal.

Lemma 43. Let A and B be conditional sets in X. Then it holds that B ≈+ B ≤ S≈(A,B)
and A≈+ A≤ S≈(B,A) if and only if A and B are extensionally equal.

Proof. By Lemma 38, we have B≈+ B≤ S≈(A,B)≤ A≈+ A and A≈+ A≤ S≈(B,A)≤
B ≈+ B. Therefore, A ≈+ A = B ≈+ B = S≈(A,B) = S≈(B,A) = A ≈+ B. Conversely,
suppose A ≈+ B = A ≈+ A = B ≈+ B. Then we have B ≈+ B = A ≈+ B ≤ S≈(A,B) and
A≈+ A = B≈+ A≤ S≈(B,A).



CHAPTER 1. INCOMPLETE INFORMATION 52

The left-hand side of the equivalence from the preceding lemma is interpreted as follows:
“if B is present then A is a subset of B and, conversely, if A is present then B is a subset of
A”.

We slightly modify the preceding lemma.

Lemma 44. Let A and B be conditional sets in X such that A ⊆ B. Then it holds that
A≈+ A≤ S≈(B,A) if and only if A and B are extensionally equal.

Proof. We consider Lemma 43 and prove that B ≈+ B ≤ S≈(A,B). By (1.53), the last
inequality is true since B≈+ B = S≈(B,B)≤ S≈(A,B).

In the following, we search for a conditional universe consisting of conditional sets com-
patible with ≈ which is separated and for each conditional set there is an extensionally
equal conditional set in the conditional universe. The idea is to choose from each class of
extensionally equal conditional sets the greatest element with respect to ⊆. For a condi-
tional set A in X we define a conditional set C∼A =

⋃{B ∈ LX | A∼ B}.
Before we show that C∼A is extensionally equal to A we make the following observa-
tion.

By (1.49), for each x ∈ X we have

C∼A(x)∧ (A≈+ A) =

(∨
B∼A

B(x)

)
∧ (A≈+ A) =

∨
B∼A

B(x)∧ (A≈+ A)

=
∨

B∼A

B(x)∧ (B≈+ A)≤
∨

B∼A

B(x)∧S≈(B,A)≤
∨

B∼A

C≈A(x)

= C≈A(x)

proving

C∼A(x)∧ (A≈+ A)≤ C≈A(x). (1.61)

Now, it is easy to prove the following.

Lemma 45. Each conditional set A in X is extensionally equal to C∼A.

Proof. Clearly A⊆ C∼A. By Lemma 44, it remains to show A≈+ A≤ S≈(C∼A,A).

The inequality A≈+ A≤ S≈(C∼A,A) =
∧

x∈X C∼A(x)→ C≈A(x) holds iff for each x ∈ X
it holds A≈+ A≤ C∼A(x)→ C≈A(x) which is, by adjointness, equivalent to (1.61).
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Fixpoints of C∼ are called extensional conditional sets. We denote by E X the set of all
extensional conditional sets in X .

Theorem 20. The set of all extensional conditional sets E X in a conditional universe X
with the restriction of ≈+ to E X is a separated conditional universe.

Proof. It remains to show that the universe of extensional conditional sets is separated.
Assume that A and B are extensional conditional sets such that A≈+ B = A≈+ A = B≈+

B. Then they are extensionally equal and thus A = C∼A = C∼B = B.

We prove that extensional conditional sets are compatible with ≈. First, we introduce
the following operator. For a conditional set A in X we define the conditional set CtA =
(A≈+A)→ C≈A in X .

Lemma 46. CtA is compatible with ≈ for every conditional set A in X.

Proof. Since C≈A is compatible with ≈, for every x,y ∈ X we have CtA(x)∧ (x ≈ y) =
((A≈+ A)→C≈A(x))∧(x≈ y)≤ (A≈+ A)→ (C≈A(x)∧(x≈ y))≤ (A≈+ A)→C≈A(y)=
CtA(y).

Now, we are going to show that operators C∼ and Ct are identical.

Lemma 47. For each conditional set A in X it holds A⊆ Ct(A).

Proof. We need to show that for each x ∈ X it holds A(x)≤ (A≈+ A)→ C≈(A)(x) which
is, by adjointess, equivalent to A(x)∧ (A≈+ A)≤ C≈(A)(x). The last inequality is (1.50).

Lemma 48. Each conditional set A in X is extensionally equal to Ct(A).

Proof. By Lemma 44, it reminds to show A≈+ A≤ S≈(CtA,A). The inequality A≈+ A≤
S≈(CtA,A) =

∧
x∈X(((A≈+ A)→ C≈A(x))→ C≈A(x) holds iff for each x ∈ X we have

A≈+ A≤ (((A≈+ A)→ C≈A(x))→ C≈A(x)

which is, by adjointness, equivalent to

(A≈+ A)∧ (A≈+ A→ C≈A(x))≤ C≈A(x).

The last is obviously true.
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Lemma 49. Operators Ct and C∼ are equal.

Proof. We show that for each conditional set A it holds CtA = C∼A. Since A and CtA
are extensionally equal, CtA ⊆ C∼A. Conversely, C∼A ⊆ CtA iff for each x ∈ X it holds
C∼A(x) ≤ (A ≈+ A)→ C≈A(x) which is, by adjointness, equivalent to C∼A(x)∧ (A ≈+

A)≤ C≈A(x). The last inequality is (1.61).

The following summarizes properties of extensional conditional sets.

1. The universe of all extensional conditional sets is separated.

2. Extensional conditional sets are compatible with ≈.

3. For each conditional set there is an extensionally equal extensional conditional set.

In the following part, we prove that each shift of a completely present conditional set
compatible with ≈ is extensional. First, we study shifts of conditional sets. For each
condition c and conditional set A in X it holds

(c→ A)≈+ (c→ A) = (c∨ (X ≈+ X))∧ (A≈+ A). (1.62)

Indeed, we have

(c→ A)≈+ (c→ A) =
∧
x∈X

(c→ A(x))→ (x≈ x)

=
∧
x∈X

(c∨ (x≈ x))∧ (A(x)→ (x≈ x))

=

∧
x∈X

c∨ (x≈ x)

∧ ∧
x∈X

A(x)→ (x≈ x)

=

c∨
∧
x∈X

x≈ x

∧ (A≈+ A) = (c∨ (X ≈+ X))∧ (A≈+ A).

In the preceding calculation, we used that (a→ b)→ c = (a∨ c)∧ (b→ c) holds for each
conditions a,b,c ∈ L.

For conditional sets A and B in X it holds

E((B≈ B)→ A) = (B≈ B)∧ (A≈ A). (1.63)

The equality holds since by (1.62) we have E((B≈ B)→ A) = ((B≈ B)∨(X ≈ X))∧(A≈
A) = (B≈ B)∧ (A≈ A).
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If A is completely present and compatible with ≈ then for x ∈ X it holds

C≈(c→ A)(x) = (c→ A)(x)∧ (x≈ x). (1.64)

The preceding equality holds since by (1.2) we have

C≈(c→ A)(x) =
∨
y∈X

(c→ A(y))∧ (y≈ x) =
∨
y∈X

(c′∧ (y≈ x))∨ (A(y)∧ (y≈ x))

=

c′∧
∨
y∈X

y≈ x

∨ ∨
y∈X

A(y)∧ (y≈ x) = (c′∧ (x≈ x))∨C≈A(x)

= (c′∧ (x≈ x))∨A(x) = (c→ A(x))∧ ((x≈ x)∨A(x)) = (c→ A)(x)∧ (x≈ x).

Theorem 21. Extensional conditional sets in X are exactly shifts of completely present
conditional sets in X compatible with ≈.

Proof. By the definition of extensionality of conditional sets, each extensional conditional
set in X is a shift of a completely present conditional set in X compatible with≈. Let A be a
completely present conditional set in X compatible with ≈ and c be a condition. We show
that Ct(c→ A)(x) = (c→ A)(x) holds for each x ∈ X in order to prove the extensionality
of c→ A. By (1.63) and (1.64), it holds that

Ct(c→ A)(x) = ((c→ A)≈+ (c→ A))→ C≈(c→ A)(x)

= (c∨ (X ≈+ X))→ ((c→ A)(x)∧ (x≈ x))

= (c→ (c→ A(x)))∧ (c→ (x≈ x))∧ ((X ≈+ X)→ (c→ A(x)))

∧ ((X ≈+ X)→ (x≈ x))

= (c→ A(x))∧ (c→ (x≈ x))∧ ((X ≈+ X)→ (c→ A(x)))
= (c→ A)(x).

In the preceding calculation, we used that (X ≈+ X)→ (x ≈ x) = 1 and c→ A(x)≤ c→
(x≈ x) holds.

There is another characterization of extensional conditional sets which uses the conditional
relation R≈ on X . Recall that R≈ is defined by R≈(x,y) = (x ≈ x)→ (x ≈ y) for x,y ∈
X .

Lemma 50. For each conditional set A in X it holds A◦R≈ = CtA.
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Proof. For each x ∈ X we have

A◦R≈(x) =
∨
y∈X

A(y)∧ ((y≈ y)→ (y≈ x))

=
∨
y∈X

(A(y)∧ (y≈ y)′)∨ (A(y)∧ (y≈ x))

=

∧
y∈X

A(y)→ (y≈ y)

′∨ ∨
y∈X

A(y)∧ (y≈ x)

= EA→ C≈A(x) = CtA(x).

From the preceding Lemma easily follows:

Theorem 22. A conditional set A in X is extensional if and only if it satisfies

A(x)∧ (x≈ y)≤ A(y), (1.65)
A(x)∧ (x≈ x)′ ≤ A(y) (1.66)

for each x,y ∈ X.

Proof. By Lemma 50, extensionality of A is equivalent to A◦R≈ = A and, by Lemma 16,
equivalent to compatibility of A with R≈. For x,y ∈ X we have A(x)∧R≈(x,y) = A(x)∧
((x≈ x)→ (x≈ y)) = (A(x)∧(x≈ x)′)∨(A(x)∧(x≈ y))≤ A(y) iff A(x)∧(x≈ x)′≤ A(y)
and A(x)∧ (x≈ y)≤ A(y). Which proves the claim.

If A is compatible with R≈ then it is also compatible with E≈. Indeed, for each x,y ∈ X
we have A(x)∧E≈(x,y) = A(x)∧R≈(x,y)∧R≈(y,x)≤ A(x)∧R≈(x,y)≤ A(y). Therefore,
extensional conditional sets are compatible with E≈.

Lemma 51. If a conditional set A in X is extensional and x1,x2 ∈ X are extensionally
equal then A(x1) = A(x2).

Proof. Since L is complete and atomic, it suffices to show that h(A(x1)) = h(A(x2)) for
each total reality h. Let f be a standard h-realization of X . If A, x1 and x2 are present in f
then by the assumption xh

1 = xh
2. Lemma 8 gives h(A(x1)) = Ah(xh

1) = Ah(xh
2) = h(A(x2)).

If A is present in f and both x1,x2 are not present in f then (1.12) yields h(A(x1)) =
h(A(x2)) = 0. Finally, if A is not present in f then by extensionality of A we have 1 =
h(A(x1)) = h(A(x2)).



Chapter 2

Structures with incomplete
information

A set U with a binary operation rU is a a simple example of an ordinary mathemati-
cal structure. Assume that there is a missing information in the example. Since binary
operations are relations, we can represent the structure with missing information by a con-
ditional universe M and a ternary conditional relation rM. If the amount of the missing
information in U is not large then we can still study the structure of U . For example, we
can say that U is a group, i.e. it is a group in every possible world.

2.1 Conditional structures

In this section, we present a logic similar to the fuzzy logic discussed in [3, Section 3.2].
Interpretation of quantifiers is adopted from [6, Section 5]. A similar logic is also proposed
in [14, Section 4]. As usual, we first present the syntax and then the semantics of our
logic.

2.1.1 Sorted languages

Suppose we have a nonempty set S whose elements s will be called sorts. An S-sorted
language J (with equality) is given by the following: a set R of relation symbols, each
r ∈ R with a (possibly empty) string s1s2 . . .sn of sorts si ∈ S called the arity of r, R has to

57
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contain a relation symbol ≈s of the sort ss for each s ∈ S; object variables, each variable
x given with its sort s ∈ S, for each sort s there is a denumerable number of variables of
sort s; logical connectives ∧,∨,⇒ and ¬, truth constants 0 and 1, quantifiers ∀ and ∃, and
paranthesis. We denote the arity of r ∈ R by δ (r) and the sort of a variable x by δ (x). Each
S-sorted language J is fully specified by the pair (R,δ ), called the type of J . Note that
there is no function symbol in our logic.

Atomic formulas are of the form r(x1, . . . ,xn) where r ∈ R has arity s1 . . .sn and xi are
variables of sorts si, and truth constants; composed formulas are defined us usual from
atomic ones using logical connectives and quantifiers.

2.1.2 Conditional structures

An L-conditional structure for an S-sorted language of type (R,δ ) is a pair (M,RM) where:
M = {Ms | s ∈ S} is a system of sets Ms (Ms is called the universe of the sort s) and a set
RM = {rM ∈ LMs1×···×Msn | r ∈ R,δ (r) = s1 · · ·sn} of conditional relations such that each
≈M

s is a conditional equality on Ms and each rM ∈ RM with δ (r) = s1 · · ·sn is compatible
with ≈M

s1
, . . . ,≈M

sn
. We usually omit the superscripts in rM and ≈M

s , and write only r and
≈s.

An M-valuation v is a mapping assigning to each variable x an element v(x) ∈Mδ (x). The
condition ||ϕ||M,v under which a formula ϕ is true under an M-valuation v is defined as
follows:

(i) for atomic formulas:

||r(x1, . . . ,xn)||M,v = rM(v(x1), . . . ,v(xn)),

||0||M,v = 0,
||1||M,v = 1;

(ii) if ϕ and ψ are formulas then

||ϕ ∧ψ||M,v = ||ϕ||M,v∧||ψ||M,v,

||ϕ ∨ψ||M,v = ||ϕ||M,v∨||ψ||M,v,

||ϕ ⇒ ψ||M,v = ||ϕ||M,v→ ||ψ||M,v,

||¬ϕ||M,v = ||ϕ||′M,v;
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(iii) if ϕ is a formula and x is a variable of the sort s then

||(∀x)ϕ||M,v =
∧

m∈Ms

(m≈s m)→ ||ϕ||M,v(x/m),

||(∃x)ϕ||M,v =
∨

m∈Ms

(m≈s m)∧||ϕ||M,v(x/m)

where v(x/m) = (v\{(x,v(x))})∪{(x,m)}.
The value

∧
v ||ϕ||M,v is interpreted as the condition under which ϕ is valid in M. (“v” in

the subscript of
∧

means we are taking the infimum over all M-valuations v.)

Let h : L→ K be a reality. For each s ∈ S let fs be an h-realization of Ms such that for each
relation symbol r of arity s1 . . .sn it holds that h-realizations fs1, . . . , fsn partially respect
rM. By Lemma 13, for each relation symbol r of arity s1 · · ·sn it holds that the restricted
h-realization rM|h of rM is compatible with ≈M|h

s1 , . . . ,≈M|h
sn . Then the h-realization of M

is defined to be the K-conditional structure (N,RN) where N = {Mh
s | s ∈ S} and RN =

{rN | r ∈ R} and rN = rM|h for each r ∈ R. If h-realizations fs are given then we denote
N by Mh. We also call N itself an h-realization of M. In this situation, we assume that
h-realizations fs of Ms are given and satisfy above requirements.

An h-realization N of M is called total, merging, omitting, faithful and standard if Mh
s is

total, merging, omitting, faithful and standard h-realization of Ms, respectively, for each
s ∈ S.

Let v be an M-valuation such that v(x)h is defined for every object variable x. Then the Mh-
valuation vh defined by vh(x) = v(x)h for each object variable x is called the h-realization
of v.

Construction of conditional structures. We fix an S-sorted language. Suppose we have
an ordinary structure Mi for each i∈ I. Let L = 2I and, for each i∈ I, hi : L→ 2 be the total
reality given by hi(c) = 1 iff i ∈ c. Then we can by means of Lemma 3 find conditional
universes Ms (s ∈ S) with the following property: (Mi)s is a standard h-realization of Ms
for each total reality h. Two canonical ways how to find Ms are presented in the end of
Subsection 1.2.3. We set M = {Ms | s∈ S}. Now, for each relation symbol r of arity s1 · · ·sn
we set rM to be the unique completely present conditional relation between Ms1 , . . . ,Msn

compatible with ≈s1, . . . ,≈sn such that the hi-realization (rM)hi of rM is rMi for each i ∈ I
(Theorem 7).
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The preceding construction yields a conditional structure M such that Mi is the hi-realization
of M for each i ∈ I.

Isomorphism of conditional structures. Let M and N be L-conditional structures for
the same S-sorted language. We call a family of conditional bijections Fs : Ms→ Ns (s ∈
S) a conditional isomorphism between M and N if for each total reality h, standard h-
realizations fs and gs of Ms and Ns (s ∈ S), respectively, and relation symbol r of arity
s1 · · ·sn it holds rMh

(xh
1, . . . ,x

h
n) = rNh

(F |hs1 (x
h
1), . . . ,F

|h
sn (x

h
n)) where xh

1 ∈ Mh
s1
, . . . ,xh

n ∈ Mh
sn

(ordinary isomorphism of Mh and Nh).

Conditional structures M and N are called conditionally isomorphic if there is a conditional
isomorphism between M and N.

Earlier defined (Sec. 1.3.5) conditionally isomorphic conditional universes are a special
case of conditionally isomorphic conditional structures.

2.1.3 Truth in realizations

We will study a connection between the truth of a formula in a conditional structure M and
the truth of the formula in realizations of M.

Let M be an L-conditional structure.

Lemma 52. For each formula ϕ , reality h, faithful h-realization N of M and M-valuation
v such that the h-realization vh of v is defined it holds h(||ϕ||M,v) = ||ϕ||N,vh .

Proof. The proof goes by induction on complexity of ϕ . If ϕ = r(x1, . . . ,xn) then by Theo-
rem 5 we have h(||r(x1, . . .)||M,v)= h(rM(v(x1), . . .))= (rM)|h(v(x1)

h, . . .)= rN(v(x1)
h, . . .)=

rN(vh(x1), . . .) = ||r(x1, . . .)||N,vh .

If ϕ = ψ1∧ψ2 then we have h(||ψ1∧ψ2||M,v) = h(||ψ1||M,v∧ ||ψ2||M,v) = h(||ψ1||M,v)∧
h(||ψ2||M,v) = ||ψ1||N,vh ∧ ||ψ2||N,vh = ||ψ1∧ψ2||N,vh . The proof is similar for other con-
nectives.

If ϕ = (∀x)ψ with s = σ(x) then since the h-realization Ns of Ms is faithful we have
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h(||(∀x)ψ||M,v) = h

 ∧
m∈Ms

(m≈M
s m)→ ||ψ||M,v(x/m)


=

∧
m∈Ms

h(m≈M
s m)→ h(||ψ||M,v(x/m))

=
∧

m∈(Ms)h

(mh ≈N
s mh)→ ||ψ||N,vh(x/mh)

=
∧

mh∈Ns

(mh ≈N
s mh)→ ||ψ||N,vh(x/mh) = ||(∀x)ψ||N,vh.

The proof is similar for the existential quantifier.

Theorem 23. Let ϕ be a formula, M a conditional structure and v an M-valuation such
that v(x) ≈δ (x) v(x) = 1 for each object variable x. Then the following statements are
equivalent.

1. ||ϕ||M,v = 1.

2. ||ϕ||N,vh = 1 for every reality h and faithful h-realization N of M.

3. ||ϕ||N,vh = 1 for every total reality h and standard h-realization N of M.

Proof. Trivially, 2. implies 3. By Lemma 52, 1. implies 2. We prove that 3. implies 1.
Suppose ||ϕ||M,v 6= 1. Then there is a total reality h such that h(||ϕ||M,v) = 0. Let N be any
standard h-realization of M. The h-realization vh of v is defined and we have by Lemma
52, ||ϕ||N,vh = 0.

Conditional mappings compatible with conditional equalities. We show an applica-
tion of Theorem 23. Let F be a conditional relation between conditional universes X and
Y compatible with ≈X and ≈Y . Then we can regard F as a conditional structure for a
two sorted language with sorts X and Y and a relation symbol f of the arity XY with the
obvious interpretation f F = F . By Theorem 23, we have that F is a conditional mapping
if and only if formulas (∀x)(∃y) f (x,y) and (∀x,y1,y2)(( f (x,y1)∧ f (x,y2))⇒ (y1 ≈Y y2)),
where x is of the sort X and y,y1,y2 are of the sort Y , are valid in F . Semantic rules of our
logic yield that F is a conditional mapping if and only if

x≈X x≤
∨
y∈Y

(y≈Y y)∧F(x,y), (2.1)

(x≈X x)∧ (y1 ≈Y y1)∧ (y2 ≈Y y2)∧F(x,y1)∧F(x,y2)≤ y1 ≈Y y2 (2.2)
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hold for all x ∈ X and y,y1,y2 ∈ Y . Moreover, if F is completely present then the above
two inequalities simplify:

x≈X x≤
∨
y∈Y

F(x,y), (2.3)

F(x,y1)∧F(x,y2)≤ y1 ≈Y y2. (2.4)

Note that (2.3) and (2.4) appear also in [33] in the definition of fuzzy functions.

2.2 Conditional ordered sets

We introduce conditional ordered sets as examples of conditional structures.

Let L be a Boolean algebra of conditions and (V,≈) an L-conditional universe. A condi-
tional order on V is a binary conditional relation � on V compatible with ≈ from both
sides such that for each total reality h and standard h-realization f of V it holds that the
restricted h-realization �|h of � is an ordinary order.

V together with � is called a conditional ordered set and denoted by ((V,≈),�). If V is
an ordinary universe, we treat V as an ordinary ordered set. For elements v,w ∈ V , the
condition v � w ∈ L is interpreted as the condition under which v is less than or equal to
w.

We treat conditional ordered sets as conditional structures. Namely, as conditional struc-
tures of a one sorted language with binary relations symbols � and ≈.

Lemma 53. A conditional structure ((V,≈),�) such that � is compatible with ≈ from
both sides is a conditional ordered set if and only if formulas

(∀u)(u� u), (2.5)
(∀u)(∀v)(((u� v)∧ (v� u))⇒ (u≈ v)), (2.6)

(∀u)(∀v)(∀w)(((u� v)∧ (v� w))⇒ (u� w)) (2.7)

are valid in V .

Proof. Observe that formulas in the right hand side of the equivalence are axioms of or-
dered sets. Now, the equivalence is a consequence of the equivalence of the first and third
statement of Theorem 23.
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Lemma 54. Each faithful realization of a conditional ordered set is a conditional ordered
set.

Proof. Let h be a reality and f a faithful h-realization of V .

We first show that �|h is compatible with ≈|h from both sides. Let v1,v2 ∈ Vh. As usual
denote by�v1 and�v2 conditional sets in V given by�v1 (v)= v1� v and�v2 (v)= v� v2.
By Lemma 22, f respects�. By the compatibility of�with≈ from both sides, conditional
sets �v1 and �v2 are compatible with ≈ and clearly f partially respect �v1 and �v2 . By
Lemma 5, vh

1 �|h vh
2 = h(v1 � v2) =�|hv1 (vh

2) =�
|h
v2 (vh

1). By Lemma 13, the restricted
realization �|h of � is compatible with ≈|h from both sides.

Now, the claim follows from Lemma 53 and the implication from the first to the second
statement of Theorem 23.

Theorem 24. A conditional universe V with a binary conditional relation � compatible
with ≈ from both sides is a conditional ordered set if and only if

u≈ u≤ u� u, (2.8)
(u≈ u)∧ (v≈ v)∧ (u� v)∧ (v� u)≤ u≈ v, (2.9)

(u≈ u)∧ (v≈ v)∧ (w≈ w)∧ (u� v)∧ (v� w)≤ u� w (2.10)

hold for all u,v,w ∈V .

Proof. Semantics rules presented in Sec. 2.1.2 and Lemma 53 yield the equivalence.

If ≈ is separated then we denote by ≤ the restriction of the ordinary binary relation 1� to
1V . We have that ≤ is an ordinary partial order on 1V . We sometimes use the symbols ∧,∧

and ∨,
∨

for denoting infima and suprema w.r.t. ≤, respectively.

Theorem 25. Let X be an L-conditional universe with the conditional equality ≈. Then
((LX ,≈+),S≈) is a conditional ordered set.

Proof. In Sec. 1.4.1 we proved that S≈ is compatible with ≈+ from both sides. By (1.43),
inequalities (2.8) and (2.9) are satisfied. By (1.52), the inequality (2.10) holds.

The general definition of the isomorphism of conditional structures yields that L-conditional
ordered sets V and W are conditionally isomorphic if there is a conditional isomorphism
F : V →W . That is a conditional bijection F between V and W such that for each total
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reality h and standard h-realizations f and g of V and W , respectively, the restricted h-
realization F |h of F is an ordinary isomorphism of ordered sets, i.e. an isotone mapping
whose inverse is also isotone mapping.

2.2.1 Conditional complete lattices

We define notions of cones and suprema and infima in conditional ordered sets. For any
conditional set W in a conditional ordered set V and element w ∈V we set

LW (w) = (w≈ w)∧
∧
v∈V

W (v)→ (w� v), (2.11)

U W (w) = (w≈ w)∧
∧
v∈V

W (v)→ (v� w). (2.12)

Definitions of cones are inspired by [14, Section 4].

The conditions LW (w) and U W (w) are interpreted as conditions under which w is a
lower and upper bound of W , respectively. The conditional sets LW and U W are called
the lower cone and the upper cone of W , respectively.

We set

SupW = U W ∩L U W, InfW = LW ∩U LW, (2.13)

obtaining conditional sets SupW and InfW called the supremum and infimum of W , re-
spectively. SupW (w) or InfW (w) is interpreted as the condition under which w is the
supremum or infimum of W , respectively.

Lemma 55. For each conditional set W in a conditional ordered set V it holds that con-
ditional sets LW,U W,SupW and InfW are completely present and compatible with ≈.

Proof. It is obvious that the conditional sets are completely present.

We show that U W is compatible with≈. We have U W (v) = (v≈ v)∧ (W /� (v)) for v ∈
V . By the compatibility of � from both sides with ≈ and Lemma 20, W /� is compatible
with ≈. By (1.1), for v1,v2 ∈V we have U W (v1)∧ (v1 ≈ v2) = (v1 ≈ v1)∧ (W /� (v1))∧
(v1 ≈ v2) ≤ (v2 ≈ v2)∧ (W / � (v2)) = U W (v2). The compatibility of LW is proved
similarly.

We prove only the compatibility of SupW with ≈. The compatibility of InfW with
≈ is proved similarly. For v1,v2 ∈ V by compatibility of LW and U W with ≈ we
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have SupW (v1)∧(v1≈ v2) = (U W ∩L U W )(v1)∧(v1≈ v2) =U W (v1)∧L U W (v1)∧
(v1 ≈ v2)≤U W (v2)∧L U W (v2) = (U W ∩L U W )(v2) = SupW (v2).

Theorem 26. For conditional ordered set V , reality h, h-realization f of V and safe con-
ditional set W in V w.r.t. f it holds

(LW )|h = LW |h, (U W )|h = U W |h, (2.14)

(InfW )|h = InfW |h, (SupW )|h = SupW |h. (2.15)

Proof. LW is completely present and compatible with ≈ (Lemma 55). The h-realization
f of V respects LW (Lemma 10). By Theorem 2 and Theorem 10, for each wh∈V h we
have (LW )|h(wh)= h(LW (w))= h((w≈w)∧({w}�←W ))= (wh≈|h wh)∧({w}h�|h←
W |h) = LW |h(wh). The second equality can be proved analogously.

Now, since LW is safe w.r.t. f and by Theorem 2, (InfW )|h(wh) = h(InfW (w)) =
h(LW (w)∧U LW (w))= (LW )|h(wh)∧(U LW )|h(wh)=LW |h(wh)∧U (LW )|h(wh)=
LW |h(wh)∧U LW |h(wh) = InfW |h(wh) and similarly for Sup.

Let W be a conditional set in V . The supremal closure of W , denoted CSupW , is the union
of conditional sets SupA for all conditional sets A⊆W . W is said to be supremally dense
in V if CSupW = VE. Similarly, the infimal closure of W , denoted CInfW , is the union of
conditional sets InfA for all conditional sets A⊆W , and W is said to be infimally dense in
V if CInfW =VE.

Lemma 56. For each reality h, h-realization f of V and conditional set W in V such that
the h-realization W h of W is defined we have:

(CSupW )|h = CSupW h, (CInfW )|h = CInfW h.

Completely present W is supremally dense in V iff W h is supremally dense in V h for each
total reality h and standard h-realization f of V and similarly for infimal density.

Proof. First notice that since the h-realization W h of W is defined, for each conditional
set A ⊆W it holds that the h-realization Ah of A is also defined. By (1.18), Theorem
26 and Lemma 23, (CSupW )|h = (

⋃
A⊆W SupA)|h =

⋃
A⊆W (SupA)|h =

⋃
A⊆W SupAh =⋃

Ah⊆W h SupAh = CSupW h and similarly for Inf .

Suppose f is standard and W completely present. If W is supremally dense then W h being
supremally dense follows from what we just have proved. Conversely, if (CSupW )h =
CSupW h =V h for each standard h-realization f then CSupW =VE by Theorem 7. Similarly
for infimal density.
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A conditional ordered set V is called a conditional complete lattice if for each total reality
h and standard h-realization f of V , the restricted h-realization �|h of � is a complete
lattice order on V h. Since any ordinary complete lattice is nonempty, the height of VE is 1
for every conditional complete lattice V .

Theorem 27. The following statements are equivalent for each conditional ordered set
((V,≈),�):

1. V is a conditional complete lattice.

2. For each completely present conditional set W in V it holds that the height of InfW
is 1.

3. For each completely present conditional set W in V it holds that the height of SupW
is 1.

Proof. First suppose that 2. is not satisfied. We will prove that then neither 1. is true. By
the assumption, there is a completely present conditional set W in V such that the height
of InfW is not 1, i.e. there exists a total reality h and standard h-realization f of V such
that (InfW )h = /0. By (2.15), (InfW )h = InfW h. So,

∧
W h does not exist, and �|h is not a

complete lattice order.

Next, we prove that 2. implies 1. Let h be a total reality, f a standard h-realization of V
and Wh⊆V h. By Theorem 7, there is a completely present conditional set W in V such that
W h = Wh. By the definition of hight of conditional sets, properties of ordinary infimum
and (2.15), the set (InfW )h consists of exactly one point, say wh. But (InfW )h = InfW h =
InfWh (Theorem 26) and so wh =

∧
Wh. Thus, each subset of V h has infimum which proves

that V h along with �|h is a complete lattice.

The equivalence of 1. and 3. is dual.

2.3 Conditional concept lattices

Concept lattices were introduced in [32]. A concept lattice consists of formal concepts
extracted from a formal context. A formal context is a binary relation between two sets.
Formal contexts with missing information can be represented by binary conditional rela-
tions. We extract concepts from a binary conditional relation. An appropriate subset of
such concepts can be chosen as a representation of the concept lattice of the unknown
context.
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2.3.1 Concept lattices

Our basic reference for concept lattices is [7]. A (formal) context is a triple (X ,Y, I) where
X is a set of objects, Y a set of attributes and I ⊆ X×Y a binary relation between X and Y .
For (x,y) ∈ I we say that the object x has the attribute y.

For subsets A⊆ X and B⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds (x,y) ∈ I}, (2.16)

B↓I = {x ∈ X | for each y ∈ B it holds (x,y) ∈ I}. (2.17)

Mappings ↑I : 2X→ 2Y and ↓I : 2Y → 2X are called the concept forming operators. If A↑I =B
and B↓I = A then the pair (A,B) is called a (formal) concept of (X ,Y, I). Sets A and B are
called the extent and the intent of the concept (A,B), respectively.

A partial order ≤ on the set B(X ,Y, I) of all concepts of (X ,Y, I) is defined by

(A1,B1)≤ (A2,B2) iff A1 ⊆ A2 iff B2 ⊆ B1 (2.18)

and called the hierarchical order of the concepts. B(X ,Y, I) together with ≤ is called the
concept lattice of (X ,Y, I).

Theorem 28 (basic theorem of concept lattices [32]). 1. B(X ,Y, I) is a complete lattice
in which infima and suprema are be described as follows:

∧
j∈J

(A j,B j) =

⋂
j∈J

A j,

(⋃
j∈J

B j

)↓↑, (2.19)

∨
j∈J

(A j,B j) =

(⋃
j∈J

A j

)↑↓
,
⋂
j∈J

B j

. (2.20)

2. A complete lattice V is isomorphic to B(X ,Y, I) iff there are mappings γ : X → V ,
µ : Y → V such that γ(X) is supremally dense in V , µ(Y ) is infimally dense in V and
γ(x)≤ µ(y) iff (x,y) ∈ I. In particular, V is isomorphic to B(V,V,≤).

2.3.2 Conditional contexts

Let L be a Boolean algebra of conditions. A conditional (formal) context is a triple (X ,Y, I)
where X and Y are conditional universes with associated conditional equalities ≈X and



CHAPTER 2. STRUCTURES WITH INCOMPLETE INFORMATION 68

≈Y , respectively, and I is a completely present binary conditional relation between X and
Y compatible with ≈X and ≈Y . Since I is completely present and compatible with ≈X and
≈Y , I is also compatible with ≈X and ≈Y from both sides. Conditional contexts model
ordinary formal contexts with missing information. The value I(x,y) is interpreted as the
condition under which the object x has the attribute y.

We regard a conditional context as a two sorted conditional structure. Namely, a condi-
tional context (X ,Y, I) is viewed as a conditional structure I for a language with sorts X
and Y and a binary relation symbol I of arity XY . We apply the definition of a realization
of a conditional structure on a conditional context and obtain the following. For a reality
h and h-realizations fX and fY of X and Y , respectively, the h-realization of (X ,Y, I) is
(Xh,Y h, I|h). Realizations fX and fY partially respect I. If fX and fY are standard then the
h-realization of (X ,Y, I) is a form of the unknown context modeled by (X ,Y, I) in the total
reality h.

2.3.3 Conditional concept forming operators

Let (X ,Y, I) be an L-conditional context. Then for a conditional set A in X we define a
conditional set A↑I in Y by

A↑I(y) = (y≈Y y)∧
∧
x∈X

A(x)→ I(x,y) (2.21)

for y ∈ Y and, similarly, for a conditional set B in Y we define a conditional set B↓I in X
by

B↓I(x) = (x≈X x)∧
∧
y∈Y

B(y)→ I(x,y) (2.22)

for x ∈ X . We denote ↑I and ↓I also simply by ↑ and ↓, respectively. Generally, A* A↑↓ and
B* B↓↑. We have A↑(y) = (y≈Y y)∧ (A / I(y)) and B↓(x) = (x≈X x)∧ (B / I−1(x)).

Lemma 57. Conditional sets A↑ and B↓ are completely present and compatible with ≈Y
and ≈X , respectively.

Proof. It is clear from the definition that A↑ and B↓ are completely present. We show that
A↑ is compatible with ≈Y . Similarly can be shown that B↓ is compatible with ≈X .

By Lemma 20, A/I is compatible with≈Y . Now, by (1.1), A↑(y1)∧(y1≈Y y2)= (y1≈Y y1)∧
(A / I)(y1)∧ (y1 ≈Y y2)≤ (y2 ≈Y y2)∧ (A / I)(y2) = A↑(y2).
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Let A and B be conditional sets in X and Y , respectively, h a reality, fX and fY h-realizations
of X and Y , respectively.

Lemma 58. If A and B are safe w.r.t. fX and fY , respectively, then A|h↑ = A↑|h and B|h↓ =
B↓|h.

Proof. We show the first equality. The second can be proven similarly.

First, we show that fY respects A / I. Let y1,y2 ∈ Yh such that yh
1 = yh

2. Since fX and fY
respect I, it holds for each x∈Xh that h(I(x,y1)) = h(I(x,y2)). Now, by the safeness of A/I
w.r.t. fY , h(A/I(y1))= h(

∧
x∈Xh

A(x)→ I(x,y1))= h(
∧

x∈Xh
A(x)→ I(x,y2))= h(A/I(y2)).

We can use Theorem 2 and obtain (A / I)|h(yh) = h(A / I(y)) for all y ∈ Yh. Thus, by
know facts, for yh ∈ Y h we have A|h↑(yh) = (yh ≈|hY yh)∧ (A|h / I|h)(yh) = (yh ≈|hY yh)∧
(A/I)|h(yh) = h((y≈Y y)∧ (A / I)(y)) = h(A↑(y)) = A↑|h(yh).

Lemma 59. Suppose h is total and h-realizations fX and fY standard. If Ah is not defined
then A↑h = /0 and similarly if Bh is not defined then B↓h = /0.

Proof. We prove only the first implication. The second can be proven analogously. Since
I is completely present, it holds for yh ∈ Y h that A↑h(yh) = h(A↑(y)) = h((y ≈Y y) ∧∧

x∈X A(x)→ I(x,y))≤ h(
∧

x∈X A(x)→ (x≈X x)) = h(EA) = 0.

Lemma 60. If A and B are completely present then A↑↓↑ = A↑ and B↓↑↓ = B↓.

Proof. Since L is complete and atomic, to prove the first equality it suffices to show that
h(A↑↓↑(y)) = h(A↑(y)) for each total reality h and y ∈ Y . Let h be a total reality and fX
and fY standard h-realizations of X and Y , respectively. Then by Lemma 58 and properties
of ordinary concept forming operators, it holds that h(A↑↓↑(y)) = A↑↓↑h(yh) = Ah↑↓↑(yh) =
Ah↑(yh) = A↑h(yh) = h(A↑(y)). The second equality is proved similarly.

Lemma 61. For each conditional sets A1,A2 in X and B1,B2 in Y it holds

S≈(A1,A2)≤ S≈(A
↑
2,A
↑
1), (2.23)

S≈(B1,B2)≤ S≈(B
↓
2,B
↓
1). (2.24)

Proof. We show that h(S≈(A1,A2)) ≤ h(S≈(A
↑
2,A
↑
1)) for each total reality h. Let h be

a total reality and fX and fY standard h-realizations of X and Y , respectively. Then the
interesting case is if h(S≈(A1,A2)) = 1. By (1.56), the h-realization Ah

1 of A1 is defined. By
A↑1 and A↑2 are completely present, the h-realizations A↑h1 and A↑h2 of A↑1 and A↑2, respectively,
are defined. Suppose first that the h-realizations Ah

1 and Ah
2 of A1 and A2, respectively, are
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defined. Then by Theorem 15 and properties of ordinary concept forming operators, it
holds that h(S≈(A1,A2))= S≈h(Ah

1,A
h
2)≤ S≈h(Ah↑

2 ,Ah↑
1 )= S≈h(A↑h2 ,A↑h1 )= h(S≈(A

↑
2,A
↑
1)).

Now, suppose that the h-realization Ah
2 of A2 is not defined. Then A↑h2 = /0 and we have

h(S≈(A
↑
2,A
↑
1)) = S≈h(A↑h2 ,A↑h1 ) = 1.

Since L is complete and atomic, the first inequality holds. The second is proved similarly.

Theorem 29. Let (X ,Y, I) be a conditional context. Then the mappings A 7→ A↑↓ and
B 7→B↓↑ are conditional closure operators on X and Y , respectively. Moreover, they satisfy:

S≈(A1,A2)≤ S≈(A
↑↓
1 ,A↑↓2 ), (2.25)

S≈(B1,B2)≤ S≈(B
↓↑
1 ,B↓↑2 ), (2.26)

A↑↓↑↓ = A↑↓, (2.27)

B↓↑↓↑ = B↓↑ (2.28)

for each conditional sets A,A1,A2 in X and B,B1,B2 in Y .

Proof. We prove only that A 7→ A↑↓ is a conditional closure operator on X . The fact that
B 7→ B↓↑ is a conditional closure operator on Y can be shown similarly. It can be directly
checked that the mapping A 7→ A↑↓, denoted for a moment by r, is a presence preserv-
ing conditional mapping and r|h(Ah) = f (A)h holds for each total reality h, standard h-
realizations fX and fY of X and Y , respectively, and conditional set A in X such that the
h-realization Ah of A is defined. Therefore, we can use Theorem 18.

Let A1 and A2 be conditional sets in X . Then by Lemma 61 we have S≈(A1,A2) ≤
S≈(A

↑
2,A
↑
1) ≤ S≈(A

↑↓
1 ,A↑↓2 ). We proved monotony of the mapping A 7→ A↑↓, (2.25) and

(2.25).

Now, we show extensivity. Let A be a conditional set in X . We need to show that A≈+A≤
S≈(A,A↑↓). The inequality is equivalent to A(x)∧ (A ≈+ A) ≤ C≈A↑↓(x) for each x ∈ X .
Which holds if A(x)∧ (A ≈+ A) ≤ (x ≈ x)∧A↑↓(x) for each x ∈ X . By (1.48), A(x)∧
(A≈+A) ≤ x ≈ x. In order to show extensivity, we need to prove that A(x)∧ (A≈+A) ≤
A↑↓(x).

We will show that h(A(x)∧(A≈+ A))≤ h(A↑↓(x)) holds for each total reality h and x∈ X .
Let h be a total reality, fX and fY standard h-realizations of X and Y , respectively. The
only interesting case here is when h(A(x)∧ (A ≈+ A)) = 1. Since h(A ≈+ A) = 1, the
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h-realization Ah of A and the h-realization xh of x are defined. By Lemma 58 and prop-
erties of ordinary concept forming operators, we have h(A↑↓(x)) = A↑↓h(xh) = Ah↑↓(xh)≥
Ah(xh)≥ h(A(x)) = 1. By L is complete and atomic, A(x)∧ (A≈+ A)≤ A↑↓(x) and exten-
sivity is proved.

Idempotency: (2.27) and (2.28) follow directly from Lemma 60.

2.3.4 Conditional concepts

For conditional sets A and B in X and Y , respectively, we call the pair (A,B) a conditional
(formal) concept of (X ,Y, I) if A↑I = B and B↓I = A. A is called the extent and B the intent
of the conditional concept (A,B). By Lemma 57, A and B are completely present and
compatible with ≈X and ≈Y , respectively.

The set of all conditional concepts of (X ,Y, I) is denoted by B(X ,Y, I).

For a reality h, h-realizations fX and fY of X and Y , respectively, the pair (A|h,B|h) is called
the h-realization of (A,B). From Lemma 58 it follows that the h-realization (A|h,B|h) of
(A,B) is a conditional concept of (Xh,Y h, I|h).

Lemma 62. For conditional sets A and B in X and Y , respectively, we have (A,B) is a
conditional concept of (X ,Y, I) if and only if A and B are compatible with ≈X and ≈Y ,
respectively, and for each total reality h and standard h-realizations fX and fY of X and
Y , respectively, the h-realization (Ah,Bh) of (A,B) is defined and is an ordinary concept of
(Xh,Y h, Ih).

Proof. Above we proved the implication from left to right. So, suppose the right hand side
holds. From the fact that for each total reality h and standard h-realizations fX and fY of X
and Y , respectively, it holds that the h-realization (Ah,Bh) of (A,B) is defined follows that
both A and B are completely present.

Let h be a total reality, fX and fY standard h-realizations of X and Y , respectively, from the
claim. For y ∈Yh we have h(A↑(y)) = A↑h(yh) = Ah↑(yh) = Bh(yh) = h(B(y)). If y ∈Y \Yh
then by complete presence of A↑ and B, h(A↑(y)) = 0 = h(B(y)).

We showed that h(A↑(y)) = h(B(y)) for each total reality h and y ∈ Y . Therefore, since
L is complete and atomic, A↑ = B. Similarly can be shown that B↓ = A. We proved that
(A,B) is a conditional concept of (X ,Y, I).
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2.3.5 Conditional concept lattices

We fix for each total reality h standard h-realizations fh and gh of X and Y , respectively.
For a set V of conditional concepts of (X ,Y, I) and total reality h we denote by hV the
mapping V →B(Xh,Y h, Ih) defined by hV (A,B) = (Ah,Bh).

Let V be a set of conditional concepts of (X ,Y, I),≈V a conditional equality and�V a con-
ditional order on (V,≈V ). The conditional ordered set ((V,≈V ),�V ) is called a conditional
concept lattice of (X ,Y, I) if for each total reality h the mapping hV is an h-realization of
V .

As we can see from the definition, a conditional concept lattice of a conditional context is
not defined uniquely. A challenge is to construct conditional concept lattices which meet
additional user requirements. Each conditional concept lattice represents the unknown
concept lattice of the context with missing information.

Lemma 63. A conditional ordered set V consisting of conditional concepts of (X ,Y, I) is
a conditional concept lattice of (X ,Y, I) if and only if for each total reality h the mapping
hV is surjective and the conditional relations ≈V and �V satisfy

(A1,B1)≈V (A2,B2) = (A1 /A2)∧ (A2 /A1) = (B1 /B2)∧ (B2 /B1), (2.29)
(A1,B1)�V (A2,B2) = A1 /A2 = B2 /B1. (2.30)

Proof. By (1.47), (A1 /A2)∧ (A2 /A1) = A1 ≈+
X A2 and (B1 /B2)∧ (B2 /B1) = B1≈+

Y B2.
We use Lemma 3 for X = V and fh = hV . As we can easily check, h(A1 ≈+

X A2) =

Ah
1≈h+

X Ah
2 = 1 iff Ah

1 = Ah
2 iff hV (A1,B1) = (Ah

1,B
h
1) = (Ah

2,B
h
2) = hV (A2,B2) iff Bh

1 = Bh
2 iff

1=Bh
1≈h+

Y Bh
2 = h(B1≈+

Y B2). Therefore, A1≈+
X A2 =B1≈+

Y B2, hV (A1,B1)= hV (A2,B2)
iff h((A1,B1)≈V (A2,B2)) = 1 and the L-relation≈V is the unique conditional equality on
V such that the mappings hV (h is a total reality) are h-realizations.

Let (A1,B1) and (A2,B2) be two conditional concepts in V . By (1.46), A1 /A2 =S≈X (A1,A2)
and B2 /B1 =S≈Y (B2,B1). We have for each total reality h, h(S≈X (A1,A2))=S≈h

X
(Ah

1,A
h
2)=

1 iff Ah
1 ⊆ Ah

2 iff Bh
2 ⊆ Bh

1 iff 1 = S≈h
Y
(Bh

2,B
h
1) = h(S≈Y (B2,B1)) (Theorem 15).

Since ≈V is reflexive, �V is completely present. It can be easily checked that �V is
compatible with ≈V and for each total reality h, the h-realization �h

V of �V is equal to
the standard partial order (2.18) on B(Xh,Y h, Ih). Thus, by Lemma 53, ((V,≈V ),�V ) is a
conditional concept lattice of (X ,Y, I). Uniqueness of �V follows by Theorem 7.
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Denote by Bc(X ,Y, I) the set of all conditional concepts ((B0∩YE)
↓,(B0∩YE)

↓↑) where
B0 is an ordinary set in Y . Note that concepts in Bc(X ,Y, I) are an analogy of crisply
generated concepts [5].

Lemma 64. Bc(X ,Y, I) is a conditional concept lattice of (X ,Y, I).

Proof. Let h be a total reality, fX and fY standard h-realizations of X and Y , respectively,
and (Ah,Bh) a concept of (Xh,Y h, Ih). Denote by B0 an ordinary set in Y defined by y ∈ B0
iff yh is defined and yh ∈ Bh. We treat B0 as a conditional set as usual and show that
(B0 ∩YE)

↓h = Ah. It can be easily checked that (B0 ∩YE)
h = Bh

0 = Bh. Now by Lemma
58, (B0∩YE)

↓h = (B0∩YE)
h↓ = B↓h = Ah. We showed that (Ah,Bh) is the h-realization of a

conditional concept ((B0∩YE)
↓,(B0∩YE)

↓↑) in Bc(X ,Y, I).

The first part of the proof shows the surjectivity of the mapping hBc(X ,Y,I) : Bc(X ,Y, I)→
B(Xh,Y h, Ih) for each total reality h and by definition Bc(X ,Y, I) is a conditional concept
lattice of (X ,Y, I).

As a consequence of the preceding lemma, we obtain that B(X ,Y, I) is a conditional con-
cept lattice of (X ,Y, I).

2.3.6 Basic theorem of conditional concept lattices

For a conditional set M of conditional concepts of (X ,Y, I), we denote by MX and MY the
corresponding conditional set of extents and intents, respectively. These conditional sets
satisfy for any (A,B) ∈B(X ,Y, I),

MX(A) = MY (B) = M(A,B).

Theorem 30 (basic theorem of conditional concept lattices). 1. Any conditional concept
lattice V of (X ,Y, I) is a conditional complete lattice. Suprema and infima in V are given
by

SupM(A,B) = B≈+
Y

⋂
MY , (2.31)

InfM(A,B) = A≈+
X

⋂
MX , (2.32)

for any conditional set M in V .

2. A conditional complete lattice V is conditionally isomorphic to a conditional con-
cept lattice of (X ,Y, I) if and only if there exist presence preserving conditional mappings
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γ : X →V and µ : Y → V such that γ(XE) is supremally dense in V , µ(YE) is infimally
dense in V , and for each x ∈ X and y ∈ Y it holds

I(x,y) = (x≈X x)∧ (y≈Y y)∧ (γ(x)�+
µ(y)). (2.33)

Proof. For each total reality h we fix standard h-realizations f X
h , fY

h and fV
h of X ,Y and V ,

respectively.

1. By definition, V h equals the complete lattice B(Xh,Y h, Ih) for each total reality h.
V is therefore a conditional complete lattice. To prove (2.31), it suffices to show that
h(SupM(A,B)) = h(B ≈+

Y
⋂

MY ) holds for each total reality h. By the first part of the
basic theorem of ordinary concept lattices, Lemma 40 and Theorem 26, h(SupM(A,B)) =
(SupM)h(Ah,Bh)=SupMh(Ah,Bh)= 1 iff (Ah,Bh)=

∨
Mh iff Bh =

⋂
Mh

Y iff 1=Bh≈h+
Y
⋂

Mh
Y =

Bh ≈h+
Y (

⋂
MY )

h = h(B≈+
Y
⋂

MY ). (2.32) can be proven analogously.

2. Let W be a conditional concept lattice of (X ,Y, I). By definition, W is conditionally
isomorphic to V iff for each total reality h the ordered sets W h and V h are isomorphic and
W h = B(Xh,Y h, Ih). Therefore, the left-hand side of the equivalence we need to prove
means that V h is isomorphic to B(Xh,Y h, Ih) for each total reality h. By 2. of Theorem 28,
this is equivalent to the existence of ordinary mappings γh : Xh→V h and µh : Y h→V h such
that γh(Xh) is supremally dense in V h, µh(Y h) is infimally dense in V h, and γh(xh)≤ µh(yh)
iff (xh,yh) ∈ Ih.

Let γ : X → V and µ : Y → V be presence preserving conditional mappings. By (1.41), it
holds for each total reality h that γ(XE)

h = γ |h((XE)
h) and µ(YE)

h = µ |h((YE)
h). Therefore

(Lemma 56), γ(XE) is supremally dense in V iff γ |h((XE)
h) is supremally dense in V h for

each total reality h. Similarly, µ(YE) is infimally dense in V iff µ |h((YE)
h) is infimally

dense in V h for each total reality h.

In the next step, we show that for total reality h it holds h(γ(x)�+ µ(y)) = 1 iff γ |h(xh)≤
µ |h(yh) for each x ∈ Xh and y ∈Yh. By Theorem 10, h(γ(x)�+ µ(y)) = γ(x)h �|h+ µ(y)h.
Since h-realizations fXh and fY h are standard, γ(x)h and µ(y)h are singletons with elements
γ |h(xh) and µ |h(yh), respectively. The ordinary relation�|h coincides with the partial order
≤ on V h. Therefore, γ(x)h �|h+ µ(y)h = 1 iff {γ |h(xh)} ≤+ {µ |h(yh)}, which is the same
as γ |h(xh)≤ µ |h(yh).

If x ∈ X \Xh or y ∈Y \Yh then the complete presence of I implies 0 = h(I(x,y)) = h((x≈X
x)∧ (y≈Y y)∧ (γ(x)�+ µ(y))).

Now, we are ready to prove the assertion. Suppose first that V is conditionally isomorphic
to a conditional concept lattice of (X ,Y, I) and let γh and µh be the mappings whose exis-
tence we have proved above. By Theorem 7, there exist presence preserving conditional
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mappings γ : X → V and µ : Y → V such that γh = γh and µh = µh for each total reality
h. As we have proved, from known properties of γh and µh we can now derive the right-
hand side of the equivalence. The converse implication follows directly from the above
considerations by putting γh = γ |h and µh = µ |h.

2.3.7 Clarified and reduced conditional contexts

We begin with ordinary clarified and reduced contexts as defined in [7]. An ordinary
context (X ,Y, I) is clarified if for any x1,x2 ∈ X from {x1}↑ = {x2}↑ it follows that x1 = x2
and, correspondingly, for any y1,y2 ∈ Y from {y1}↓ = {y2}↓ if follows that y1 = y2. A
clarified context is reduced if all objects and attributes are not reducible. Recall that an
object x is called reducible if there are objects xi 6= x (i ∈ I) such that {x}↑ = ⋂

i∈I{xi}↑
and, dually, an attribute y is called reducible if there are attributes yi 6= y (i ∈ I) such that
{y}↓ =⋂i∈I{yi}↓ where yi ∈ Y and yi 6= y.

Each finite context can be turned to a clarified and reduced context with the concept lattice
isomorphic to the concept lattice of the original context. Note that the finiteness require-
ment can be weakened, for details see [7]. In order to obtain the clarified and reduced
context, we first merge objects with the same extent and attributes with the same intent.
Then we delete all reducible objects and attributes. The first step is called the clarification
and second reduction.

For a finite context reducibility of objects and attributes can be tested by the following
relations, called arrow relations, between X and Y :

x↙I y if

{
(x,y) /∈ I, and
{x}↑ ⊆ {x̄}↑ and {x}↑ 6= {x̄}↑ imply (x̄,y) ∈ I,

(2.34)

x↗I y if

{
(x,y) /∈ I, and
{y}↓ ⊆ {ȳ}↓ and {y}↓ 6= {ȳ}↓ imply (x, ȳ) ∈ I,

(2.35)

x↗↙I y if x↙I y and x↗I y, (2.36)

where x ∈ X and y ∈ Y .

We usually write ↙, ↗ and ↗↙ instead of ↙I , ↗I and ↗↙I , respectively. An object x is
reducible iff there is y ∈ Y with x↗↙ y. An attribute y is reducible iff there is x ∈ X with
x↗↙ y.
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We can compute the clarification and reduction of (X ,Y, I) in one step as a standard realiza-
tion of a suitable 2-conditional context. The details will follow. Consider sets X ′ = X and
Y ′ = Y equipped with 2-conditional equalities (partial equivalences) RX and RY , respec-
tively, given by (x1,x2) ∈ RX iff {x1}↑ = {x2}↑ and there are y1,y2 ∈ Y such that x1↗↙ y1
and x2↗↙ y2; and, similarly, (y1,y2) ∈ RY iff {y1}↓ = {y2}↓ and there are x1,x2 ∈ X such
that x1↗↙ y1 and x2↗↙ y2. Further let I′ be a 2-conditional (ordinary) binary relation be-
tween X ′ and Y ′ defined by (x,y) ∈ I′ iff (x,y) ∈ I, (x,x) ∈ RX and (y,y) ∈ RY .

Lemma 65. Let (X ,Y, I) be a finite ordinary context and h the identity on 2. Then (X ′,Y ′, I′)
is a 2-conditional context and for any standard h-realizations f and g of X ′ and Y ′, re-
spectively, it holds that the h-realization (X ′h,Y ′h, I′h) is isomorphic to the clarification
and reduction of (X ,Y, I).

Proof. Clearly, I′ is completely present. The compatibility of I′ follows from the fact that
if (x1,y) ∈ I′ and (x1,x2) ∈ RX then {x1}↑I(y) = {x2}↑I(y) and thus (x2,y) ∈ I, and, by
(1.1), (x2,x2) ∈ RX , proving that (x2,y) ∈ I′. Similarly can be shown that (x,y1) ∈ I′ and
(y1,y2) ∈ RY imply (x,y2) ∈ I′. Therefore, (X ′,Y ′, I′) is a 2-conditional context. The rest
follows from the above considerations.

We generalize the clarification and reduction to the conditional case. We call a conditional
context (X ,Y, I) clarified or reduced if for each total realty h, standard h-realizations f and
g of X and Y , respectively, it holds that the h-realization (Xh,Y h, Ih) of (X ,Y, I) is clarified
or reduced, respectively. We fix a reality h and faithful h-realizations f and g of X and Y ,
respectively. When no misunderstanding could be caused, we denote ≈X and ≈Y by ≈.
The following conditional relations↗I ,↙I and↗↙I between X and Y are generalizations
of arrow relations to the conditional case:

x↙I y = I(x,y)′

∧
∧
x̄∈X

((x̄≈ x̄)∧S≈({x}↑,{x̄}↑)∧ ({x}↑ ≈+ {x̄}↑)′)→ I(x̄,y), (2.37)

x↗I y = I(x,y)′

∧
∧
ȳ∈Y

((ȳ≈ ȳ)∧S≈({y}↓,{ȳ}↓)∧ ({y}↓ ≈+ {ȳ}↓)′)→ I(x, ȳ), (2.38)

x↗↙I y = (x↙I y)∧ (x↗I y). (2.39)

Again we also write↙,↗ and↗↙ instead of↙I ,↗I and↗↙I , respectively. When (X ,Y, I)
is an ordinary context then ↙I,↗I and ↗↙I coincides with (2.34), (2.35) and (2.36), re-
spectively.
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Lemma 66. For each x ∈ Xh and y ∈ Yh we have

xh↙Ih yh = h(x↙I y), (2.40)

xh↗Ih yh = h(x↗I y), (2.41)

xh↗↙Ih yh = h(x↗↙I y). (2.42)

Proof. We prove only (2.40). The proof of (2.41) is similar and (2.42) follows from
(2.41), (2.40) and (2.39). The equality (2.40) can be directly checked using the fact that
h-realizations f and g are faithful, Lemmas 5 and 58 and Theorem 15.

For an L-conditional context (X ,Y, I), we define binary L-conditional relations RX and RY
on X and Y , respectively, by

RX(x1,x2) = (x1 ≈ x1)∧ (x2 ≈ x2)∧ ({x1}↑ ≈+ {x2}↑)
∧

∨
y1,y2∈Y

(y1 ≈ y1)∧ (y2 ≈ y2)∧ (x1↗↙ y1)∧ (x2↗↙ y2), (2.43)

RY (y1,y2) = (y1 ≈ y1)∧ (y2 ≈ y2)∧ ({y1}↓ ≈+ {y2}↓)
∧

∨
x1,x2∈X

(x1 ≈ x1)∧ (x2 ≈ x2)∧ (x1↗↙ y1)∧ (x2↗↙ y2). (2.44)

If (X ,Y, I) is an ordinary context then RX and RY coincide with the earlier defined ordinary
relations denoted by the same symbols.

Lemma 67. For each x1,x2 ∈ Xh and y1,y2 ∈ Yh it holds

RXh(xh
1,x

h
2) = h(RX(x1,x2)), (2.45)

RY h(yh
1,y

h
2) = h(RY (y1,y2)). (2.46)

Proof. The proof goes similarly as the proof of Lemma 66. We show only (2.45) since
the proof of (2.46) is analogous. The equality (2.45) follows from Lemmas 66 and (1.5),
Theorem 15 and the fact that h-realizations f and g are faithful.

Theorem 31. Let (X ,Y, I) be a conditional context, X ′ = X and Y ′ = Y be conditional
universes with conditional equalities RX and RY , respectively, and I′ a conditional rela-
tion between X ′ and Y ′ given by I′(x,y) = I(x,y)∧RX(x,x)∧RY (y,y). Then (X ′,Y ′, I′)
is a clarified and reduced conditional context and for each total reality h and standard h-
realizations f , f ′,g,g′ of X ,X ′,Y,Y ′, respectively, it holds that the h-realization (X ′h,Y ′h, I′h)



CHAPTER 2. STRUCTURES WITH INCOMPLETE INFORMATION 78

of (X ′,Y ′, I′) is isomorphic to the clarification and reduction of the h-realization (Xh,Y h, Ih)
of (X ,Y, I).

Proof. We show that (X ′,Y ′, I′) is a conditional context. Clearly, I′ is completely present.
The compatibility of I′ with RX and RY : For x1,x2 ∈X and y∈Y it holds {x1}↑≈+

Y {x2}↑≤
{x1}↑ / {x2}↑ ≤ {x1}↑(y)→ {x2}↑(y) = I(x1,y)→ I(x2,y). Now, I(x1,y)∧RX(x1,x2) ≤
I(x1,y)∧ (I(x1,y)→ I(x2,y)) ≤ I(x2,y). Similarly can be shown I′(x,y1)∧RY (y1,y2) ≤
I′(x,y2).

The rest follows from Lemma 67 and Lemma 65.

2.3.8 Illustrative example

We demonstrate the theory of conditional concept lattices on a small dataset with incom-
plete information. We use data from a study of belemnites (extinct cephalopod group) [4].
(Species with incomplete information were excluded from the original research and can
not be found in the paper.) Figure 2.2 (left) shows a table of four species of belemnites
and four rostrum characteristics. Characteristics of the last two species is incomplete. The
right side of the figure shows a conditional context representing the data in the table. The
underlying Boolean algebra of conditions is a Boolean algebra L freely generated by ele-
ments c and d. The Boolean algebra of conditions L is shown in Fig. 2.1. It admits four
total realities.

The conditional context (X ′,Y ′, I′) from Figure 2.3 is the result of clarification and re-
duction of (X ,Y, I) (Theorem 31). Standard realizations of (X ′,Y ′, I′) are depicted in
Fig. 2.4.

The conditional concept lattice Bc(X ′,Y ′, I′) consists of the following eight conditional
concepts:

v1 = ({c/x1,x2,x3,x4}, /0), v2 = ({c′∧d/x2,
c′∧d/x3,

d/x4},{c∨d′/y1,
c∨d′/y2,

d′/y3,
c∨d′/y4}),

v3 = ({x3,x4},{y2,
c/y4}), v4 = ( /0,{c∨d′/y1,y2,y3,y4}),

v5 = ({x2,
c/x3,x4},{y4}), v6 = ({c′∧d/x3,

d/x4},{c∨d′/y1,y2,
d′/y3,

c∨d′/y4}),
v7 = ({c/x3,x4},{y2,y4}), v8 = ({c′∧d/x2,

d/x4},{c∨d′/y1,
c∨d′/y2,

d′/y3,y4}).

Let h be a total reality, f and g standard h-realizations of X ′ and Y ′, respectively. Then for
any conditional concept v in Bc(X ′,Y ′, I′) it holds that the h-realization vh of v is a concept
of (X ′h,Y ′h, I′h). For example, let h3 be the total reality given by h3(c) = 0 and h3(d) = 1,
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0

c ^ d

c0 ^ d c ^ d0

c0 ^ d0

d c d0c0

c _ d c0 _ d0

d! cc! d

c$ d

(c$ d)0

1

Figure 2.1: Boolean algebra freely generated by elements c and d.

h v γ λ

Actinocamax verus antefragilis (1)
Praeactinocamax planus (9) ×
Praeactinocamax aff. plenus × ?

Praeactinocamax paderbornensis ? × ×

I y1 y2 y3 y4

x1
x2 ×
x3 × c
x4 d × ×

Figure 2.2: Left: a small part of a table of belemnite (extinct cephalopod group) species and their
rostrum characteristics from a research published in [4]. The last two species are not present in
the paper, since they were excluded due to incomplete information. Symbol “?” means that it is
unknown if a specie has the corresponding characteristic. Right: a conditional context (X ,Y, I)
representing the table on the left. The underlying Boolean algebra of conditions L is a Boolean
algebra freely generated by elements c and d. The conditions c and d are interpreted as the con-
ditions under which “P. aff. plenus has the characteristic λ” and “P. paderbornensis has the
characteristic h”, respectively. Values 0 and 1 in L are depicted by empty space and× in the table,
respectively. The conditional equalities ≈X and ≈Y of X and Y , respectively, are both ordinary
equalities.
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RX x1 x2 x3 x4

x1 c 0 0 0
x2 0 1 0 0
x3 0 0 1 c∧d′

x4 0 0 c∧d′ 1

RY y1 y2 y3 y4

y1 c∨d′ 0 d′ 0
y2 0 1 0 0
y3 d′ 0 1 0
y4 0 0 0 1

I′ y1 y2 y3 y4

x1
x2 ×
x3 × c
x4 c∧d × ×

Figure 2.3: The conditional context (X ′,Y ′, I′) (bottom middle) is the result of the clarification
and reduction of the conditional context (X ,Y, I) from Fig. 2.2. The clarification and reduction is
described in Sec. 2.3.7. The conditional relation RX (top left) is the conditional equality of X ′ and
RY (top right) the conditional equality of Y ′. Crosses represent 1 and empty places 0.

I′h1 y1,3 y2 y4

x2 ×
x3 ×
x4 × ×

I′h2 y1,3 y2 y4

x1
x2 ×

x3,4 × ×

I′h3 y2 y3 y4

x2 ×
x3 ×
x4 × ×

I′h4 y1 y2 y3 y4

x1
x2 ×
x3 × ×
x4 × × ×

Figure 2.4: Four standard realizations of the conditional context (X ′,Y ′, I′) depicted in Fig. 2.3.
The realizations correspond to total realities h1,h2,h3,h4 given by h1(c)= h1(d)= h2(d)= h3(c)=
0 and h2(c) = h3(d) = h4(c) = h4(d) = 1. Standard realizations fi : X ′ → X ′i and gi : Y ′ → Y ′i
of X ′ and Y ′, respectively, are given by X ′1 = X ′3 = {x2,x3,x4}, X ′2 = {x1,x2,x3,4}, X ′4 = X and
Y ′1 =Y ′2 = {y1,3,y2,y4}, Y ′3 = {y2,y3,y4}, Y ′4 =Y , and fi(x) = x and gi(y) = y for any i∈ {1,2,3,4},
x ∈ X and y ∈ Y with the following exceptions: f2(x3) = f2(x4) = x3,4 and g1(y1) = g1(y3) =
g2(y1) = g2(y3) = y1,3.
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(X ′h3,Y ′h3, I′h3), the h3-realization of (X ′,Y ′, I′) given in Fig. 2.4 (bottom left) and v6 the
conditional concept ({c′∧d/x3,

d/x4},{c∨d′/y1,y2,
d′/y3,

c∨d′/y4}). Then

vh3
6 = ({c′∧d/x3,

d/x4}h3,{c∨d′/y1,y2,
d′/y3,

c∨d′/y4}h3)

= ({h3(c′∧d)/x3,
h3(d)/x4},{h3(c∨d′)/y1,y2,

h3(d′)/y3,
h3(c∨d′)/y4})

= ({1/x3,
1/x4},{0/y1,y2,

0/y3,
0/y4})

= ({x3,x4},{y2}).

We can easily check that ({x3,x4},{y2}) is a concept of the context (X ′h3,Y ′h3, I′h3).

Suppose we fix a standard realization of (X ′,Y ′, I′). Then we can use conditional re-
lations ≈V and �V to reason about equality and order, respectively, of realizations of
conditional concepts in Bc(X ′,Y ′, I′). For example, let v3 and v5 be conditional con-
cepts ({x3,x4},{y2,

c/y4}) and ({x2,
c/x3,x4},{y4}) of (X ′,Y ′, I′), respectively. Then by

Lemma 63 we have v3 � v5 = {x3,x4}/{x2,
c/x3,x4}= {y4}/{y2,

c/y4}= c and v5 � v3 =
{x2,

c/x3,x4} /{x3,x4} = {y2,
c/y4} /{y4} = 0. Thus, for each total reality h and standard

h-realizations f and g of X ′ and Y ′, respectively, it holds that vh
3 6= vh

5, vh
5 � vh

3 and vh
3 ≤ vh

5
iff the condition c is satisfied in h.

Equalities (2.31) and (2.32) describe suprema and infima of conditional sets in Bc(X ′,Y ′, I′),
respectively. For example, we take again the conditional concepts v3,v5 and let v7 be the
conditional concept ({c/x3,x4},{y2,y4}). Then Inf{v3,v5}= {c/v3,v7} and thus for each
total reality h and standard h-realizations f and g of X ′ and Y ′, respectively, it holds that
vh

3∧ vh
5 = vh

7 and vh
3∧ vh

5 = vh
3 = vh

7 iff the condition c is satisfied in h.



Conclusions

The definition of a realization of a conditional universe admits that there is no realization of
an element for which it is satisfied in the respective reality that it is present. The definition
of a realization of a conditional universe can be possibly narrowed in such a way that it
covers only faithfuls realizations. This would simplify proofs in the theory.

There is another possibility how to simplify the theory. The use of partial mappings as
realizations of conditional universes causes many complications in proofs. One can try
to leave non-present elements in standard realizations of conditional universes and use
ordinary functions as realizations.

Many results on conditional sets can be easily extended for L-sets where L is a complete
Heyting algebra. We presented original results which are not covered by the literature.
Namely, we study also non-strict L-sets which are not compatible with ≈. We also pro-
posed the definition of extensionality of L-sets.

Only conditional relations compatible with conditional equalities can be part of conditional
structures. One can try to drop the requirement on compatibility. It should be then possible
to define a set of formulas for which the truthfulness is transferred to realizations, i.e. the
set of formulas for which Lemma 52 holds.

The conditional concept lattice Bc(X ,Y, I) is a candidate for practical model of the un-
known concept lattice of a context with missing information. The conditional concept
lattice Bc(X ′,Y ′, I′) of the conditional context (X ′,Y ′, I′) from the illustrative example
(Fig. 2.3) can be represented by a labeled Hasse diagram shown in Fig. 2.5. A general
method for representing conditional concept lattices by labeled Hasse diagrams is a topic
for further research. We could generalize results on crisply generated fuzzy concepts pre-
sented in [5] and results on

∨
- and

∧
-compatible conditional concept lattices presented in

[19]. Also results similar to [20] on the size of Bc(X ,Y, I) would be welcomed.

The conditional equality of any conditional concept lattice is reflexive. We can drop the

82



CHAPTER 2. STRUCTURES WITH INCOMPLETE INFORMATION 83

c/x3, x4 c0^d/x2,
d/x4

x2x3

c/x1

y4y2 c_d0
/y1

c0^d/x3,
d/x4

Figure 2.5: Conditional concept lattice Bc(X ′,Y ′, I′) of the conditional context (X ′,Y ′, I′) in
Fig. 2.2 (right). The ordinary order ≤ on Bc(X ′,Y ′, I′) is given by the Hasse diagram. The di-
agram also specifies conditional mappings γ : X → Bc(X ′,Y ′, I′) and µ : Y → Bc(X ′,Y ′, I′): if
for x ∈ X and v ∈ Bc(X ′,Y ′, I′) it holds γ(x,v) = 0 then the vertex for v is not labeled by x. If
γ(x,v) = a > 0 then the vertex is labeled by a/x if a < 1 and by x if a = 1. Similarly for µ . We have
I(x,y) =

∨
v1,v2∈V, v1≤v2

γ(x,v1)∧µ(y,v2) for each x∈ X and y∈Y . For the extent A of a conditional
concept v in Bc(X ′,Y ′, I′) it holds A(x) =

∨
v̄≤v γ(x, v̄) for each x ∈ X.
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requirement on the complete presence of I in the definition of conditional contexts (X ,Y, I)
and try to describe also partially present concepts in (X ,Y, I). An example of such concept
is shown in Fig. 2.6.

I y1 y2
x1
x2 ×

≈X x1 x2
x1 1 0
x2 0 c

≈X y1 y2
y1 1 0
y2 0 c

I|h1 y1 y2
x1
x2 ×

I|h2 y1
x1

Figure 2.6: Top: Non-completely present conditional relation I between X and Y (top left), condi-
tional equalities ≈X and ≈Y of X (top middle) and Y (top right), respectively. Empty places rep-
resent 0 and crosses 1. The underlying Boolean algebra of conditions is the four-element Boolean
algebra {0,c,c′,1}. Bottom: Restricted h1-realization (bottom left) and h2-realization (bottom
right) of I where h1 and h2 are total realities given by h1(c) = h2(c′) = 1. Realizations of X and
Y are given by the following. The h1-realization of X is the identity on X and the h2-realization
of Y is the identity on Y . f2 : X 9 {x1} and g2 : Y 9 {y1} are h2-realizations of X and Y , respec-
tively, given by f2(x1) = x1, g2(y1) = y1, f2(x2) and g2(y2) are not defined. The pair ({x2},{y2})
is present in X ×Y under the condition c and it represents the only non-trivial formal concept of
(Xh1 ,Y h1 , I|h1).

The theory of conditional structures can be used to model another incompletely defined
structures. Especially, conditional structures where partial presence of elements natu-
rally appear. For example, removing unreachable states in finite automatons with missing
information could produce conditional structures with non-reflexive conditional equali-
ties.
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[15] Ulrich Höhle. On the fundamentals of fuzzy set theory. Journal of Mathematical
Analysis and Applications, 201(3):786 – 826, 1996.
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