

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

INSTITUTE OF AUTOMOTIVE ENGINEERING

ANALÝZA NÁVRHU ŠROUBOVÉHO PŘÍPOJE OTOČNÉ DESKY KOLESOVÉHO SKLÁDKOVÉHO STROJE

ANALYSIS OF THE DESIGN OF THE BOLTED CONNECTION PIVOT PLATE-WHEEL OF BUCKET WHEEL STACKER-RECLAIMERLOADER

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Jan Šrajer

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Přemysl Pokorný, Ph.D.

BRNO 2016

Zadání diplomové práce

Ústav:	Ústav automobilního a dopravního inženýrství
Student:	Bc. Jan Šrajer
Studijní program:	Strojní inženýrství
Studijní obor:	Automobilní a dopravní inženýrství
Vedoucí práce:	Ing. Přemysl Pokorný, Ph.D.
Akademický rok:	2015/16

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Analýza návrhu šroubového přípoje otočné desky kolesového skládkového stroje

Stručná charakteristika problematiky úkolu:

Analýza návrhu šroubového přípoje otočné desky kolesového skládkového stroje namáhaného klopným momentem a porovnání klasického výpočtu s předpisem VDI 2230.

Cíle diplomové práce:

Vypracujte technickou zprávu obsahující zejména:

- popis konstrukčního návrhu strojního zařízení,
- provedené pevnostní analýzy,
- srovnání výpočtů dle norem ČSN a předpisu VDI 2230,
- návrh konstrukčních změn spoje ložiska s ocelovou konstrukcí.
- Vypracujte výkresovou dokumentaci obsahující:
- celkovou sestavu zařízení,
- podsestavy a výrobní výkresy dle pokynů vedoucího DP.

Seznam literatury:

JURÁŠEK, O.: Teorie nosných konstrukcí, skripta VUT v Brně, 1989

VANĚK, A.: Moderní strojní technika a technologie zemních prací, Academia Praha, ISBN 80-20--1045-9, Praha 2003

WUNDERLICH, W., KIENER, G.: Statik der Stabtragwerke 1, ed. Teubner B.G. GmbH, 2004, s. 450, ISBN-10: 3-519-05061-7, ISBN-13: 978-3-519-05061-2

GRIMM, F. B.: Stahlbauten 3. Konstruieren mit Hohlprofilen, ed. Ernst W. + Sohn Verlag, 2003, s. 204, ISBN-10: 3-433-02833-8, ISBN-13: 978-3-433-02833-9

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2015/16

V Brně, dne

L. S.

prof. Ing. Václav Píštěk, DrSc. ředitel ústavu doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

V této diplomové práci je zpracována analýza návrhu šroubového přípoje otočné desky kolesového skládkového stroje. Úkolem řešení je rozhodnout, jestli stávající konstrukční řešení je vyhovující. Diplomová práce obsahuje porovnání výpočtu dle předpisu VDI s normou ČSN, provedení pevnostní analýzy použitím MKP výpočtového modelu, a dále návrh konstrukčních změn spoje ložiska s ocelovou konstrukcí.

KLÍČOVÁ SLOVA

skládkový stroj, pevnostní výpočet, metoda konečných prvků, šroub, šroubový spoj

ABSTRACT

This thesis describes an analysis of the design of the bolted connection pivot platewheel of bucket wheel stacker-reclaimer loader. The challenge solution is to decide whether the current design is suitable. The thesis contains comparison of calculation according to VDI regulation with the ČSN, performing stress analysis using FEM calculation model and a design of changes, joint bearings with steel structures.

KEYWORDS

stacker, stress analysis, finite element method, bolt, bolt join

BIBLIOGRAFICKÁ CITACE

ŠRAJER, J. *Analýza návrhu šroubového přípoje otočné desky kolesového skládkového stroje*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2016. 74 s. Vedoucí diplomové práce Ing. Přemysl Pokorný Ph.D.

Prohlašuji, že tato práce je mým původním dílem, zpracoval jsem ji samostatně pod vedením Ing. Přemysl Pokorný Ph.D. a s použitím literatury uvedené v seznamu.

V Brně dne 27. května 2016

.....

Bc. Jan Šrajer

BRNO 2016

Poděkování

Děkuji Ing. Přemyslu Pokornému, Ph.D. za připomínky a rady týkající se zpracování diplomové práce. A dále mé rodině a přítelkyni za podporu během studia.

OBSAH

Ú	vod			10
1	Cíle práce11			
2 Druhy otáčivých ústrojí zemních strojů			12	
2.1 Kulová dráha			Kulová dráha	12
	2.2	١	Velkoprůměrová valivá ložiska	14
	2.3	N	Málokladkový opěrný systém	15
	2.4	N	Mnohokladkový opěrný systém	16
3	Р	opis	is konstrukčního návrhu strojního zařízení	17
	3.1	Ι	Ložisko otočného ústrojí	17
	3	.1.1	1 Rozměry použitého ložiska	18
	3	.1.2	2 Přenos sil přes ložisko se zkříženými válečky	19
	3	.1.3	3 Zátěžové stavy	20
	3.2	S	Spodní stavba	21
	3.3	Š	Šroubový spoj	22
	3	.3.1	1 Rozměry použitého šroubového spoje	22
	3	.3.2	2 Rozměry spojovaných součástí	23
	3	3.3.3	3 Síly při provozním stavu ve šroubovém spoji	24
	3	3.3.4	4 Vyvození předpětí ve šroubovém spoji	25
	3	3.3.5	5 Zvolený způsob vyvození předpětí ve šroubovém spoji	26
4	A	Anal	llytická kontrola	
	4.1	V	Výpočet maximálních provozních sil	
	4.2	ŀ	Kontrola dle VDI 2230	
	4	1.2.1	1 Axiální tuhost šroubu	
	4	1.2.2	2 Ohybová tuhost šroubu	32
	4	1.2.3	3 Tuhost spojovaných součástí	
	4	1.2.4	4 Vzdálenost osy symetrie od osy šroubu	35
	4	1.2.5	5 Tuhost při excentrickém sevření	
	4	1.2.6	6 Určení zátěžového součinitele <i>n</i>	37
	4	1.2.7	7 Změny vlivem předpětí	
	4	1.2.8	8 Montážní síla předpětí	
	4	1.2.9	9 Pracovní napětí	
	4	1.2.1	10 Kontrola prokluzu	41
4.3 Výsledno		v	Výsledné hodnoty dle VDI 2230	41
	4.4	ł	Kontrola dle ČSN EN 1993-1-8	
5	I	Pevn	nostní analýza	

počtový model	44	
Náhrada ložiska se zkříženými válečky	44	
Model spodní stavby	45	
Náhrada šroubových spojů		
Okrajové podmínky		
sledky pevnostního výpočtu		
Zátěžový stav č. 1	49	
Zátěžový stav č. 2	49	
Zátěžový stav č. 3		
Zátěžový stav č. 4		
Zátěžový stav č. 5	51	
Zátěžový stav č. 6		
Zátěžový stav č. 7		
ýsledky pevnostní analýzy		
konstrukčních změn	54	
něna počtu šroubů	54	
Zátěžový stav č. 1	54	
Zátěžový stav č. 2		
Zátěžový stav č.3		
Zátěžový stav č. 4		
Zátěžový stav č. 5		
Zátěžový stav č. 6		
Zátěžový stav č. 7		
něna tvaru vnějších žeber		
ormační zdroje	61	
užitých zkratek a symbolů	62	
rázků	67	
Seznam tabulek		
loh		
	počtový model Náhrada ložiska se zkříženými válečky Model spodní stavby Náhrada šroubových spojů Okrajové podmínky Okrajové podmínky Zátežový stav č. 1 Zátěžový stav č. 2 Zátěžový stav č. 3 Zátěžový stav č. 3 Zátěžový stav č. 4 Zátěžový stav č. 5 Zátěžový stav č. 5 Zátěžový stav č. 6 Zátěžový stav č. 7 rsledky pevnostní analýzy konstrukčních změn něna počtu šroubů Zátěžový stav č. 1 Zátěžový stav č. 2 Zátěžový stav č. 2 Zátěžový stav č. 3 Zátěžový stav č. 4 Zátěžový stav č. 5 Zátěžový stav č. 7 něna tvaru vnějších žeber prmační zdroje užitých zkratek a symbolů rázků loh	

Úvod

Kombinované skládkové stroje jsou určeny hlavně k obsluze skládek uhlí na povrchových dolech nebo u tepelných elektráren k vyrovnávání nerovnoměrnosti těžby, spotřeby uhlí nebo k jeho homogenizaci. Můžou pracovat i s jinými druhy zrnitých materiálů. Existují v provedení jednoúčelové skládkové stroje (Obr. 1.1) tj. stroje na nakládání nebo zakládání materiálu a skládkové stroje kombinované, kdy jeden stroj v sobě obsahuje nakladač i zakladač.

Hlavním pracovním orgánem je koleso, letmo uchycené v hlavě výložníku, na jehož obvodě jsou pevné korečky. U menších rypadel, jsou korečky podobné jako u řetězových rypadel, kdežto u větších rypadel jsou korečky na jednom boku otevřeny a přecházejí v profilový žlab, vytvořený v tělese kolesa. Úkolem žlabu je odvádět materiál vysypaný z korečku k ose tak, aby vypadával na dopravní pás, umístěný po straně kolesa v kolesovém výložníku. Výškovou i směrovou polohu kolesového výložníku lze na otočném svršku rypadla, nezávisle měnit. Z výložníkového dopravního pásu přechází materiál na nákladní výložník s dopravním pásem.

Obr. 1.1 Kombinovaný skládkový stroj [1]

Stroj se skládá z podvozku, může být pásový, kráčivý nebo používanější kolejový, který pojíždí na kolejích, mezi kterými je vedena dálková pasová doprava dopravovaného materiálu. Část navazující na podvozek je spodní stavba, na které se otáčí horní stavba. Tento pohyb umožňuje otoč, což je kulová dráha nebo velkorozměrové ložisko. Dalšími částmi jsou kolesový výložník s hydraulickým zdvihem, bezkomorové koleso, střední pylon, vyvažovací výložník, dopravní pás a hydraulicky sklopný náběhový vůz.

1 CÍLE PRÁCE

Cílem této diplomové práce je provést pevnostní výpočet šroubového přípoje otočné desky skládkového stroje a porovnat s předpisem VDI 2230. Dále návrh řešení přípoje otočné desky skládkového stroje a jeho pevnostního výpočtu metodou konečných prvků. Výkresová dokumentace a silové účinky na otočnou desku jsou určeny ze zátěžových stavů, poskytnutých firmou Vítkovice Gearworks a.s.

ZÁKLADNÍ PARAMETRY ŠROUBOVÉHO PŘÍPOJE:

Počet šroubů:	40
Rozměr šroubu:	M30
Délka šroubu:	$l_s = 370mm$
Pevnostní třída šroubu:	12.9
Síla předpětí šroubu:	$F_p = 302,3kN$

Ložisko válečkové se zkříženými válečky SKF RKS.82935-0201

2 DRUHY OTÁČIVÝCH ÚSTROJÍ ZEMNÍCH STROJŮ

Otáčivé ústrojí představuje spojení mezi podvozkem a spodní stavbou stroje s horní stavbou. Tímto vytváří kompaktní celek, který umožňuje otáčení horní stavby zemního stroje na stojícím podvozku a musí zaručit spolehlivý přenos sil a momentů mezi horní stavbou a podvozkem zemního stroje. Odpory proti otáčení mají být co nejmenší. V konstrukci strojů pro zemní práce jsou používány známá konstrukční provedení otočného prvku. Zde patří kulové dráhy, velkoprůměrová valivá ložiska a kladkové opěrné systémy, které jsou málokladkové nebo mnohokladkové.

2.1 KULOVÁ DRÁHA

Kulové dráhy se používají u strojů pro velké zemní práce, jako jsou velkostroje pro lomovou těžbu a zakládání materiálu. Kulové dráhy se vyrábějí pro velké rozměry, velmi značná zatížení a ve velkém množství konstrukčních provedení. Provedení bývá jednořadé (Obr. 2.1) nebo dvouřadé (Obr. 2.2). Ozubený věnec bývá umístěn na vnitřním nebo vnějším kroužku a někdy je také součástí jednoho z kroužků kulové dráhy. Pro dobrou funkci kulové dráhy je nutna rovinnost ploch ocelové konstrukce, na níž dosedají kroužky kulové dráhy. Kroužky kulové dráhy jsou vytvořeny ze segmentů z legované oceli. Problémem je mazání kulových drah. V dnešní době se místo mazání plastickým mazivem používá kapalné mazivo a oběhové dlouhodobé mazání.

Navzdory celé řadě požadavků na otoč má kulová dráha některé přednosti:

- Dovoluje vytvořit pevnou konstrukční skupinu uzavřeného tvaru
- Odpadají chyby ve středění při montáži
- Nízká stavební výška
- Výhodnější rozložení zatížení

Obr. 2.1 Jednořadá kulová dráha [2]

Kulové dráhy se pletou s valivými axiálními ložisky, protože je na první pohled skutečně připomínají. Proto jsou zde uvedeny podstatné odlišnosti:

- geometrická rozdílnost. Poměr $D/d = 50 \div 250$ u kulové dráhy, oproti 10 ÷ 30 u konvenčního ložiska,
- kroužky kulových drah jsou vždy dělené,
- materiál, tepelné zpracování a jakost povrchu jsou odlišné,
- nízké otáčky,
- kulová dráha se při práci stroje pootáčí o určitý úhel (120° ÷ 270°),
- musí zabezpečit stabilitu horní stavby proti převrácení,
- velké rozměry připouští větší tolerance, a tím také použití zvláštních měřících metod,
- uložení kulové dráhy je méně příznivé než tuhé uložení valivých ložisek, navíc je rozdílné pro spodní a horní stavbu,
- vznikají problémy s utěsněním proti vlivu prostředí,
- požadovaná doba životnosti je 10 ÷ 15 let s minimální údržbou nebo bez údržby,
- velký počet valivých těles,
- při extrémních zatíženích je nutno zabezpečit, aby nedošlo u krajně namáhaných koulí k jejich rozdrcení, vytváření pittingu apod.

Obr. 2.2 Dvouřadá kulová dráha [2]

Pro správnou funkčnost kulových drah je nutné se také zabývat otázkou údržby, protože některé kulové dráhy mají vyjímatelnou vložku pro umožnění kontroly a výměny koulí. Také je nutné dodržení stálé rozteče mezi koulemi. Tato podmínka je zabezpečována vkládáním distančních elementů nebo konstrukcí klece.

Tyto typy ložisek se používají hlavně u strojů pro zemní práce, a to zejména u hydraulických lopatových rypadel. Spojují horní otočnou stavbu s podvozkem a spodní stavbou. Na obrázku 2.3a a 2.3b jsou zobrazeny dvouřadá, třídílná velkoprůměrová ložiska. Jsou vhodná pro přenos velikých klopných momentů a velikých axiálních i radiálních sil, kde hlavní zatížení přejímá řada větších kuliček. Další typ je znázorněn na obrázku 2.3c. Toto ložisko má dvě řady koulí, které jsou uloženy v horizontální rovině. Dva ze tří věnců, v nichž jsou vytvořeny dráhy pro koule, jsou sešroubovány a tvoří mezeru kolem osy otáčení rypadla. V této mezeře je zasunut třetí věnec. Tímto uspořádáním je docíleno menší stavební výšky otočného spoje. Na obrázku 2.3d jsou použita valivá tělesa komolých kuželů dvojích rozměrů, osy kuželů svírají s osou otáčení horní stavby úhel 45°. Valivá tělesa jsou střídána a opírají se o ně svými drahami čtyři věnce. Konstrukce ložiska na obrázku 2.3e ukazuje řez tzv. drátovým ložiskem. U ložisek tohoto typu je oběžná dráha vytvořena ze čtyř drátěných kroužků, které jsou uloženy v drážkách věnců ložiska.

Obr. 2.3 Konstrukce velkoprůměrových ložisek otočí [2]

Dvouřadé ložisko s kosoúhlým stykem je zobrazeno na obrázku 2.4. Průměry kuliček v horní a dolní řadě jsou stejné. Oběžné dráhy ložiska jsou vytvořeny tak, aby spojnice stykových bodů kuliček protínaly osu ložiska ve vzdálenosti h, což umožňuje vedle přenosu axiálních a radiálních sil také zachycení klopných momentů. Rozdělení tlaku na jednotlivé kuličky není rovnoměrné.

Průběh tlaku v ložisku závisí na stykovém úhlu kuliček α , na úhlu β , pod kterým působí výslednice všech sil na horní otočnou stavbu, na poměru l/h, na vůli v ložisku, na tvrdosti stykových ploch a na tuhosti oběžných drah.

Obr. 2.4 Ložisko otoče se zatíženým vnitřním kroužkem [2] a) s vnitřním ozubením b) s vnějším ozubením

2.3 MÁLOKLADKOVÝ OPĚRNÝ SYSTÉM

Tento systém se používá pro stavební zemní stroje, je schématicky znázorněn na obrázku 2.5. Horní otočná stavba stroje (2) je středěná na rámu podvozku (1) svislým, tzv. královským čepem (3), který zachycuje radiální sílu F_r . Vertikální sílu F_a a klopný moment M zachycuje soustava kuželových nebo soudečkových kladek (4, 5), umístěných v bodech B1, B2, A1, A2 rámu horní stavby. Tyto opěrné kladky jsou zpravidla zdvojené, uložené ve vahadlech. Zatížení opěrných kladek se stanovuje z momentových rovnic rovnováhy. Podobné řešení konstrukčního provedení se používá u velkostrojů, většinou u starších typů, kde se pro rozložení hmotnosti používá vícestupňových otočových pojezdových vahadel.

Obr. 2.5 Málokladkový opěrný systém [2]

2.4 MNOHOKLADKOVÝ OPĚRNÝ SYSTÉM

Toto konstrukční provedení otočného ústrojí se používá u lopatových rypadel a rypadel s vlečným korečkem. Samotné konstrukční provedení pro lopatová rypadla je na obrázku 2.6 a pro rypadla s vlečným korečkem na obrázku 8. Z uvedených obrázků, především z obrázku 2.7, je patrné, že vertikální síly přenášejí kladky kladkového věnce a horizontální síly jsou přenášeny hlavním čepem (královská hřídel), takže se v podstatě jedná o konstrukci s centrálním čepem.

Obr. 2.6 Kladkový věnec lopatového rypadla [2]

Obr. 2.7 Kladkový věnec rypadla s vlečným korečkem [2]

3 POPIS KONSTRUKČNÍHO NÁVRHU STROJNÍHO ZAŘÍZENÍ

Při práci otočná deska přenáší vzniklé nárazy a klopné momenty od pracovního zařízení na podvozek, umožňuje na něm otáčení horní stavby kolesového skládkového stroje. Otočná deska je nejčastěji provedena jako kulová dráha nebo velkorozměrové víceosé ložisko. Jedna jeho část se nachází na spodní stavbě a druhá část na horní otočné stavbě. Ložisko je s horní i spodní stavbou spojeno předepjatými šrouby, které se při montáži utahují hydraulickým utahovákem.

3.1 LOŽISKO OTOČNÉHO ÚSTROJÍ

V tomto případě je použito axiálně - radiální ložisko se zkříženými válečky (Obr. 3.1). Konstrukce ložiska se skládá z vnitřního nosného věnce, vnějšího věnce a řady válečků. Vnější věnec je opatřen vnějším ozubením, do něhož zabírá pastorek hydraulického motoru mechanismu otočného ústrojí, umístěný na horní stavbě skládkového stroje. Zuby pastorku zabírají při pohonu do pevného ozubení věnce, který je upevněn pomocí předepjatých šroubů na spodní stavbu stroje, a tím se tedy musí otáčet horní stavba stroje oproti podvozku.

Obr. 3.1 Ložisko se zkříženými válečky [3]

Ložiska se zkříženými osami válečků (Obr. 3.2) zachycují radiální i axiální zatížení a též klopný moment. Mohou být dodávána s děleným vnitřním nebo vnějším kroužkem. Valivými elementy je jedna řada válečků, které mají vůči sobě pootočeny osy o 90°. Válečky jsou vedeny v kleci. Sblížením vnitřních kroužků lze vymezit vůle, popřípadě dosáhnout předpětí. Vnitřní prostory ložiska bývají chráněny proti škodlivým účinkům pracovního prostředí gumovým těsněním, které také zabraňuje úniku plastického maziva z ložiska. Běžně se tyto ložiska používají při teplotách od -30°C do + 110°C.

Obr. 3.2 Ložisko se zkříženými válečky [3]

3.1.1 ROZMĚRY POUŽITÉHO LOŽISKA

Pro zadanou aplikaci je použito ložisko se zkříženými válečky s označením RKS.82935-0201. Rozměry ložiska (Obr. 3.3) obsahuje Tab. 1.

Tab. I Rozměry ložiska	
$d_m = 4245,5$	Střední průměr ložiska [mm]
H = 206	Celková výška ložiska [mm]
	Vnější věnec
D = 4593,6	Vnější průměr [mm]
$D_1 = 4262$	Vnitřní průměr [<i>mm</i>]
$J_e = 4411$	Průměr roztečné kružnice děr [mm]
$K_e = 30$	Průměr otvorů pro šrouby [mm]
$H_1 = 176$	Výška [<i>mm</i>]
Vnitřní věnec	
$J_i = 4080$	Průměr roztečné kružnice děr [mm]
$d_L = 4014$	Vnitří průměr [<i>mm</i>]
$d_1 = 4239,5$	Vnější průměr [mm]
$H_2 = 178$	Výška [<i>mm</i>]
$K_i = 30$	Průměr otvorů pro šrouby [mm]

3.1.2 PŘENOS SIL PŘES LOŽISKO SE ZKŘÍŽENÝMI VÁLEČKY

Ložiska, v uspořádání se zkříženými válečky, zachycují axiální síly z obou směrů, radiální síly, klopný moment a libovolné kombinace zatížení daného místa uložení (Obr.3.4). Díky tomu lze konstrukce se dvěma místy uložení zredukovat na jediné. Křížová válečková ložiska jsou velmi tuhá, mají velkou přesnost oběhu a dodávají se s normální vůlí, s malou vůlí a s předpětím. Jednotlivá zatížení na ložisko se zkříženými válečky, a také přenos zatížení na šroubový přípoj jsou znázorněna na obrázcích 3.5 až 3.8.

Obr. 3.4 Schématické zatížení ložiska se zkříženými válečky

Obr. 3.5 Záporné axiální zatížení ložiska se zkříženými válečky [3]

Obr. 3.6 Kladné axiální zatížení ložiska se zkříženými válečky [3]

Obr. 3.7 Radiální zatížení ložiska se zkříženými válečky [3]

Obr. 3.8 Zatížení klopným momentem na ložisko se zkříženými válečky [3]

3.1.3 ZÁTĚŽOVÉ STAVY

Pro řešení diplomové práce je firmou Vítkovice Gearworks a.s. zadáno sedm provozních stavů, které jsou považovány za extrémy zatěžových stavů (Tab. 2). Stavy zohledňují rozsah výložníků při rotaci.

1			
Stav	$F_{Ai} [kN]$	$F_{Ri}[kN]$	$M_{Ki} [kNm]$
1	-2901	-78	2730
2	-3650	-834	8424
3	-3121	-810	9316
4	-3090	-948	9311
5	-4258	-821	4412
6	-3740	-508	6738
7	-3537	-590	8292

Tab.	2	Zátěžové	stavy

3.2 SPODNÍ STAVBA

Spodní stavba kolesového skládkového stoje je konstrukční část, která je umístěna pod otočnou deskou, a stejně jako otočná deska také nese celou váhu stroje. Tato část je velký svařenec kuželového tvaru (Obr. 3.4). Na horní straně je rozšířen, aby zde vznikla dostatečná dosedací plocha pro otočnou desku. Tato plocha se většinou zarovnává na montáži, a tím se předchází možným nerovnostem. Dále jsou v této části vyvrtány otvory pro šrouby.

Obr. 3.4 Spodní stavba - nárys [1]

Spodní stavba je vyztužena žebry na vnější i vnitřní straně svařence. Žebra slouží ke zvýšení tuhosti svařence a jsou zobrazena na Obr. 3.5 vpravo v řezu C-C.

Obr. 3.5 Spodní stavba - řez [1]

3.3 ŠROUBOVÝ SPOJ

Jde o spoj se silovým stykem, který spojuje součásti volně průchozím šroubem. Šroubové spoje jsou nejčastěji používané rozebíratelné spoje dvou nebo více součástí. Jsou tvořeny spojovanými součástmi s dírou pro šroub, šroubem, maticí a podložkou (nemusí být součástí spoje). Pro šroubové spoje se většinou používají normalizované šrouby, matice i podložky. V naprosté většině případů se utažením šroubu před zatížením vyvolává osová (normálová) síla neboli předpětí. Předpětí způsobí prodloužení šroubu a stlačení spojovaných součástí, takže mezi šroubem a maticí vzniká silový styk. Následně po utažení je spoj zatížen stálou nebo proměnlivou provozní silou. Šrouby používané pro předepjaté spoje bývají vysoce namáhány.

3.3.1 ROZMĚRY POUŽITÉHO ŠROUBOVÉHO SPOJE

Analýza bude provedena pro šroubový spoj spojující vnější věnec ložiska se zkříženými válečky a spodní stavbu stroje. Spoj je proveden čtyřiceti šrouby velikosti M30 o třídě přesnosti 12.9, které jsou rovnoměrně rozmístěny. Rozměry šroubového spoje (Obr. 3.5) jsou uvedeny v Tab. 3.

Obr. 3.5 Rozměry šroubového spoje

$L_s = 370$	Délka šroubu [mm]
$L_k = 304$	Svěrná délka [<i>mm</i>]
$L_1 = 285$	Délka dříku [<i>mm</i>]
b = 85	Délka závitu [<i>mm</i>]
$d_w = 46$	Vnější průměr dosedací plochy šroubu [mm]
d = 30	Velký průměr závitu [<i>mm</i>]
P = 3,5	Rozteč závitu [mm]
$d_2 = 27,727$	Střední průměr závitu [mm]
$d_3 = 25,706$	Průměr jádra závitu [<i>mm</i>]

	Tab.	3	Rozměry	šroubového	spoje
--	------	---	---------	------------	-------

Mechanické vlastnosti šroubů o třídě pevnosti 12.9 jsou dle [4]. Potřebné hodnoty jsou uvedeny v Tab.4.

1 ab. 4 Mechanicke vlasinosti sroubu triay pevnosti 12.9 die [4]		
$R_{ES} = 1080$	Jmenovitá mez kluzu [MPa]	
$R_{PS} = 1200$	Jmenovitá mez pevnosti v tahu [MPa]	
$E_{s} = 206$	Modul pružnosti v tahu [GPa]	

Tab A Machanická vlastnosti šroubů třídy povposti 120 dla [4]

3.3.2 ROZMĚRY SPOJOVANÝCH SOUČÁSTÍ

Rozměry spojovaných součástí (Obr. 3.6) jsou uvedeny v Tab. 5. Materiál vnějšího kroužku ložiska je 42CrMo4 a materiál spodní stavby je S355J0.

Obr. 3.6 Rozměry šroubového spoje

Tab. 5 Rozměry spojo	waných součástí	
$h_{min} = 130$	Minimální délka spojovaných součástí [mm]	
$R_a = 2245,5$ Vnější poloměr plochy v kontaktu [<i>mm</i>]		
$r_s = 2205,5$ Roztečná kružnice otvorů pro šrouby [mm]		
$r_i = 2131$	$v_i = 2131$ Vnitřní poloměr plochy v kontaktu [<i>mm</i>]	
$d_{h} = 30$	Průměr otvorů pro šrouby [<i>mm</i>]	
∝= 9 Roztečný úhel otvorů pro šrouby [°]		
t = 346,44 Rozteč šroubů [mm]		
$C_t = 114,5$	t = 114,5 Šířka plochy v kontaktu [<i>mm</i>]	
e = 74,5	Vzdálenost roztečné kružnice otvoru k hraně plochy v kontaktu [mm]	

....

Mechanické vlastnosti materiálů spojovaných součástí jsou uvedeny v Tab. 6.

1 do: 0 Mechanicke vlasinosti materiala spojovaných současti			
Materiál 42CrMo4 (ČSN EN 10083/1)			
$R_{EP1} = 550$	Mez kluzu [<i>MPa</i>]		
$R_{PP1} = 950$	Meze pevnosti v tahu [MPa]		
$E_{P1} = 206$	Modul pružnosti v tahu [GPa]		
Materiál S355J0 (ČSN EN 10025-96)			
$R_{EP2} = 295$	Mez kluzu [<i>MPa</i>]		
$R_{PP2} = 630$	Meze pevnosti v tahu [MPa]		
$E_{P2} = 206$	Modul pružnosti v tahu [GPa]		

Tab. 6 Mechanické vlastnosti materiálu spojovaných součástí

3.3.3 SÍLY PŘI PROVOZNÍM STAVU VE ŠROUBOVÉM SPOJI

Při montáži se ve šroubovém spoji vyvozuje předpětí. Utahovaný šroub se prodlužuje a spojované součásti, nacházející se mezi hlavou šroubu a maticí, se stlačují směrem k sobě. Po utažení je šroub namáhán silou předpětí F_i , která je stejně velká jako síla, kterou jsou k sobě přitlačovány spojované součásti. Diagram předepjatého šroubového spoje vznikne spojením diagramů závislosti síly a deformace šroubu a spojovaných součástí tak, aby se body odpovídající síle předpětí v obou diagramech ztotožnily. Po zatížení provozní silou P dojde k dalšímu prodloužení šroubu o hodnotu δ a uvolnění spojovaných součástí o stejnou hodnotu. Současně s tím vzroste síla ve šroubu z F_i na F_b a síla ve spojovaných součástech klesne z F_i na F_m . Mají-li zůstat spojované součásti za provozu přitlačeny např. z důvodu těsnosti, musí být $F_m > 0$.

Obr. 3.7 Montážní a pracovní diagram předepjatého šroubového spoje [4]

Limitujícím faktorem pro výpočet bezpečnosti šroubu vůči vzniku plastických deformací je minimální mez kluzu R_e nebo smluvní mez kluzu $R_{P0,2}$.

Vztah pro tuhostní konstantu spoje dle [4]:

$$C = \frac{k_b}{k_b + k_m} \tag{1}$$

Vztah pro bezpečnost vůči vzniku plastické deformace dle [4]:

$$k_{P} = \frac{R_{P0,2} A_{t} - F_{P}}{C P_{r}}$$
(2)

Kde:

k_P	[—]	bezpečnost vůči vzniku plastické deformace
$R_{P0.2}$	[MPa]	smluvní mez kluzu
F_P	[N]	síla předpětí
Ċ	[-]	tuhostní konstanta spoje
P_r	[N]	provozní síla

3.3.4 VYVOZENÍ PŘEDPĚTÍ VE ŠROUBOVÉM SPOJI

Předpětí ve šroubovém spoji se dříve realizovalo obyčejnými šroubovými klíči pouze podle zkušenosti a odhadu montéra. Ovšem vyvozené předpětí muselo značně kolísat. V dnešní době existuje více metod, přesnějších i méně přesných. Jednou z možností vyvození předpětí je použití momentového klíče. Klíč je vybaven mechanismem s nastavitelným utahovacím momentem v daném rozsahu, který automaticky vypne a nedovolí další utahování. Další možností k vyvození požadované hodnoty předpětí je použítí metody úhlu pootočení matice. Nevýhodou této metody je potřebná preciznost při utahování matice o daný úhel. K vyvození vyššího předpětí se dá využít pneumatický utahovák, který je vhodný pro větší průměry šroubů. Je zapotřebí pneumatická jednotka, která zde dodává dostatečný stlačený vzduch, a také opěrné rameno, jež slouží k zajištění utahováku při samotném utahování, aby nedocházelo k prokluzu (Obr. 3.8).

Obr. 3.8 Pneumatický utahovák [7]

Podobnou variantou pneumatickému utahováku je elektrický utahovák. Pracuje stejným principem, ale místo pneumatické jednotky mu stačí dodat elektrickou energii. Výrobci udávají, že velikost utahovacího momentu může dosahovat stejných hodnot jako u pneumatických utahováků a s větší přesností vyvození předpětí, která se pohybuje do 3 %.

Pro největší šrouby, a také nejvyšší předpětí se používají hydraulické utahováky. Zde je zapotřebí hydraulický agregát, který dodává tlak do upínací hlavy, s využitím média jako voda nebo olej. Moment pro utažení může dosahovat až 75 000 Nm. Přesnost vyvozeného předpětí danou metodou se pohybuje v rozmezí 1 % až 10 %. Existují také tzv. hydraulické podvodní utahováky, které slouží k vyvození předpětí na šroubech nacházejících se pod hladinou vody. Tyto utahováky jsou konstrukčně upraveny tak, aby odolávaly korozi a vysokým tlakům působícím pod vodní hladinou.

Obr. 3.8 Hydraulický utahovák [8]

3.3.5 ZVOLENÝ ZPŮSOB VYVOZENÍ PŘEDPĚTÍ VE ŠROUBOVÉM SPOJI

Pro vyvození předpětí v tomto případě bylo využito hydraulického utažení systémem Hydrocam bolt tensioners od firmy SKF. Tato metoda má hlavní výhodou, že v utahovaném šroubu nevzniká kroutící moment, jak je tomu u pneumatického a hydraulického utahováku uvedených v předchozí kapitole (3.3.5). Další podstatnou výhodou je, že při utažení nedochází k porušení povrchu spojovaných součástí. Hodnota předpětí lze poměrně přesně kontrolovat z Hookova zákona. Modul pružnosti v tahu, také Youngův modul, lze definovat jako poměr napětí, a jím vyvolané deformace.

Vztah pro modul pružnosti v tahu dle [7]:

$$E = \frac{F_i L_S}{S \Delta L_S} \tag{3}$$

Kde:

F_i	[<i>N</i>]	síla potřebná k vyvození předpětí
L_S	[mm]	délka šroubu
5	$[mm^2]$	prodloužení šroubu
ΔL_S	[mm]	proutouzeni stoudu

Systém pracuje ve třech krocích (Obr. 3.9). V prvním kroku se přípravek umístí nad matici utahovaného šroubu. Přípravek se našroubuje na šroub tak, aby dosedl na spojovanou součást. V dalším kroku za pomocí tlaku hydrauliky je šroub natažen na požadovanou hodnotu předpětí. Při dosažení požadované síly předpětí je utažena matice klíčem bez použití síly. V posledním kroku je odstraněn tlak na šroub a přípravek se může odšroubovat.

Obr. 3.9 Hydrocam bolt tensioners [9]

V této kapitole je proveden analytický výpočet šroubového spoje. Výpočet je dělen do dvou částí, jedna zohledňuje normu ČSN EN 1993-1-8 a druhá část se řídí dle předpisu VDI 2230. Následně je zpracováno porovnání výsledků těchto dvou přístupů výpočtu. Postup výpočtu je proveden pro provozní stav 2 (Tab.2) a výsledky ostatních stavů jsou sepsány do tabulky.

4.1 VÝPOČET MAXIMÁLNÍCH PROVOZNÍCH SIL

Pro samotný výpočet je zapotřebí znát maximální provozní síly ve šroubovém spoji. Maximální provozní sílu je třeba určit v radiálním i axiálním směru pro nejvíce namáhaný šroub.

Maximální radiální provozní síla v jednom šroubu F_{Rmax} :

$$F_{Rmax} = \frac{F_{R2}}{n_{\rm S}} = \frac{834}{40} = \underline{20,85kN} \tag{4}$$

Kde:

 F_{R2} [kN]celková radiální síla při provozním stavu 2 $n_{\tilde{S}}$ [-]počet šroubů

Maximální axiální síla se skládá z účinků celkové axiální síly na ložisko F_{A2} , a také z účinku klopného momentu M_{K2} . Pro zjištění maximální axiální síly od klopného momentu je třeba určit uvažovanou klopnou hranu stroje. V tomto případě je uvažována klopná hrana tečna ke kružnici o poloměru 0,95 J_e dle normy ČSN 27 7008. [10]

Složka maximální axiální provozní síly od axilnálního zatížení v jednom šroubu F_{AA} :

$$F_{AA} = \frac{F_{A2}}{n_{\tilde{5}}} = \frac{-3650}{40} = -91,25kN \tag{5}$$

Kde:

 F_{A2}

celková axiální síla při provozním stavu 2

Pro výpočet složky axiální provozní síly způsobené klopným momentem M_{K2} jsou vzdálenosti jednotlivých šroubů zobrazeny na Obr. 4.1 a rozměry v Tab.6.

R _i	Vzdálenost [mm]	R _i	Vzdálenost [<i>mm</i>]	R _i	Vzdálenost [mm]
1	19	7	1639	13	3544
2	200	8	1985	14	3769
3	425	9	2330	15	3950
4	688	10	2666	16	4082
5	983	11	2986	17	4163
6	1303	12	3281	18	4190

Tab. 7 Vzdálenosti jednotlivých šroubů od klopné hrany stroje

[kN]

Obr. 4.1 Vzdálenosti jednotlivých šroubů od klopné hrany stroje

Složka maximální axiální provozní síly od klopného momentu F_{1max} :

$$F_{1max} = \frac{M_{K2} \cdot R_{18}}{\sum R_i^2} =$$

$$= \frac{8424 \cdot 10^{3} \cdot 4190}{2 \cdot 19^{2} + 2 \cdot 200^{2} + 2 \cdot 425^{2} + 2 \cdot 688^{2} + 2 \cdot 983^{2} + 2 \cdot 1303^{2} + 2 \cdot 1639^{2} + \frac{8424 \cdot 10^{3} \cdot 4190}{42 \cdot 10^{3} \cdot 4190}$$
(6)
$$= \frac{8424 \cdot 10^{3} \cdot 4190}{42 \cdot 10^{3} \cdot 4190} = \frac{8424 \cdot 10^{3} \cdot 4190}{42 \cdot 3769^{2} + 2 \cdot 3950^{2} + 2 \cdot 4082^{2} + 2 \cdot 4163^{2} + 4190^{2}} = \frac{138,39 \ kN}{R_{i}}$$
(6)
Kde:
$$= \frac{M_{K2}}{R_{i}} [Nm] \qquad \text{celkový klopný moment při provozním stavu 2 vzdálenost od klopné hrany}$$

Maximální axiální síla v jednom šroubu F_{Amax} :

$$F_{Amax} = F_{1max} - F_{AA} = 138,39 + 91,25 = 229,64 \, kN \tag{7}$$

V německém předpisu VDI 2230 je u výpočtu pro provozní sílu působící v ose šroubu uveden i tzv. nelineární výpočet s uvažováním nesouosé provozní síly a následného ohybového namáhání spoje. Nejnovější návrh VDI 2230 umožňuje počítat pouze s provozní silou působící mimo těžiště dotykové plochy spojovaných částí, tím se zjednoduší matematický model výpočtu.

4.2.1 AXIÁLNÍ TUHOST ŠROUBU

Materiál je lineárně pružný, je-li závislost mezi deformací a silou lineární a při zatěžování nedojde k překročení meze kluzu. Konstanta úměrnosti k je podíl mezi silou F a deformací δ , nazývá se tuhost (1).

Vztah pro tuhost dle [4]:

$$k = \frac{\delta}{F} \tag{8}$$

Kde:

k	$[mmN^{-1}]$	tuhost
F	[<i>N</i>]	síla při zatěžování
δ	[mm]	deformace

Tuhost šroubu se určí z jednotlivých částí těla šroubu, které jsou řazeny sériově (3), tudíž celková poddajnost šroubového spoje je závislá na jeho svěrné délce l_k (Obr. 4.2). Svěrná délka l_k je vzdálenost od dosedací plochy šroubu k dosedací ploše matice. Celková tuhost šroubu (22) vychází z tuhostí jednotlivých částí šroubu.

Obr. 4.2 Svěrná délka šroubu

Vztah pro uvažovanou deformovanou délku závitu v záběru L_G dle [5]:

$$L_G = 0.5 \cdot d = 0.5 \cdot 30 = \underline{15 \ mm} \tag{9}$$

Vztah pro uvažovanou deformovanou délku matice v záběru L_M dle [5]:

$$L_M = 0.4 \cdot d = 0.4 \cdot 30 = \underline{12 \ mm} \tag{10}$$

Vztah pro délku závitu v sevření L_{Gem} dle [5]:

$$L_{Gem} = b - (L_1 - L_K) = 85 - (285 - 304) = \underline{104 \ mm}$$
(11)

Vztah pro uvažovanou délku deformované části hlavy šroubu L_{SK} dle [5]:

$$L_{SK} = 0.5 \cdot d = 0.5 \cdot 30 = \underline{15 \ mm} \tag{12}$$

Vztah pro plochu průřezu části dříku bez závitu A_n dle [5]:

$$A_n = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 30^2}{4} = \frac{706,86 \ mm^2}{4}$$
(13)

Vztah pro minimální plochu závitu A_{d3} dle [5]:

$$A_{d3} = \frac{\pi \cdot d_3^2}{4} = \frac{\pi \cdot 25,706^2}{4} = \underline{518,99 \ mm^2}$$
(14)

Vztah pro výpočtovou plochu průřezu šroubu A_S dle [5]:

$$A_{S} = \frac{\pi}{4} \cdot \left(\frac{d_{3} + d_{2}}{2}\right)^{2} = \frac{\pi}{4} \cdot \left(\frac{25,706 + 27,727}{2}\right)^{2} = \frac{560,60 \ mm^{2}}{15}$$

Vztah pro tuhost závitu v záběru δ_G dle [5]:

$$\delta_G = \frac{L_G}{E_S \cdot A_{d3}} = \frac{15}{206 \cdot 10^3 \cdot 518,99} = \frac{1,403 \cdot 10^{-7} \ mmN^{-1}}{1,403 \cdot 10^{-7} \ mmN^{-1}}$$
(16)

Vztah pro tuhost matice v záběru δ_M dle [5]:

$$\delta_M = \frac{L_M}{E_S \cdot A_n} = \frac{12}{206 \cdot 10^3 \cdot 706,86} = \frac{8,241 \cdot 10^{-8} \ mmN^{-1}}{10^{-8} \ mmN^{-1}}$$
(17)

Vztah pro tuhost závitu v sevření δ_{Gem} dle [5]:

$$\delta_{Gem} = \frac{L_{Gem}}{E_S \cdot A_{d3}} = \frac{104}{206 \cdot 10^3 \cdot 518,99} = \frac{9,728 \cdot 10^{-7} \ mmN^{-1}}{1000}$$
(18)

Vztah pro tuhost uvažované části hlavy šroubu δ_{SK} dle [5]:

$$\delta_{SK} = \frac{L_{SK}}{E_S \cdot A_n} = \frac{15}{206 \cdot 10^3 \cdot 706,86} = \underline{1,030 \cdot 10^{-7} \ mmN^{-1}}$$
(19)

Vztah pro tuhost dříku šroubu δ_1 dle [5]:

$$\delta_1 = \frac{L_1}{E_s \cdot A_n} = \frac{285}{206 \cdot 10^3 \cdot 706,86} = \frac{1,957 \cdot 10^{-6} \ mmN^{-1}}{200}$$
(20)

Vztah pro tuhost částí závitu v záběru δ_{GM} dle [5]:

$$\delta_{GM} = \delta_G + \delta_M = 1,403 \cdot 10^{-7} + 1,957 \cdot 10^{-6} + 8,241 \cdot 10^{-8} = \delta_{GM} = \frac{2,227 \cdot 10^{-7} \, mmN^{-1}}{2}$$
(21)

Vztah pro celkovou tuhost šroubu δ_S dle [5]:

$$\delta_{S} = \delta_{SK} + \delta_{1} + \delta_{Gem} + \delta_{GM} = 1,030 \cdot 10^{-7} + 1,957 \cdot 10^{-6} + 9,728 \cdot 10^{-7} + 2,227 \cdot 10^{-7} = 3,256 \cdot 10^{-6} mmN^{-1}$$
(22)

Kde:

δ_{SK}	$[N^{-1}mm]$	tuhost uvažované části hlavy šroubu
δ_1	$[N^{-1}mm]$	tuhost dříku šroubu
δ_{Gem}	$[N^{-1}mm]$	tuhost části se závitem v sevření
δ_{GM}	$[N^{-1}mm]$	tuhost části se závitem v záběru

4.2.2 OHYBOVÁ TUHOST ŠROUBU

V německém předpisu VDI 2230 se uvažuje také ohybové namáhání spoje. Ohybová tuhost šroubu je třeba zohledňovat za účelem výpočtu přídavného namáhání. Vyplývá z ohybového zatížení šroubu, může být definována podobně jako na axiální tuhost šroubu.

Vztah pro kvadratický moment v jádře závitu I_3 dle [5]:

$$I_3 = \frac{\pi \cdot d_3^4}{64} = \frac{\pi \cdot 25,706^4}{64} = \frac{28,924 \cdot 10^3 \, mm^4}{64} \tag{23}$$

Vztah pro kvadratický moment dříku šroubu I_n dle [5]:

$$I_n = \frac{\pi \cdot d^4}{64} = \frac{\pi \cdot 30^4}{64} = \frac{39,761 \cdot 10^3 \ mm^4}{64}$$
(24)

Celková ohybová tuhost šroubu (31) vychází z tuhostí jednotlivých částí šroubu, které jsou znázorněny na Obr. 4.2.

Vztah pro ohybovou tuhost závitu v záběru β_G dle [5]:

$$\beta_G = \frac{L_G}{E_S \cdot I_3} = \frac{15}{206 \cdot 10^3 \cdot 28,924 \cdot 10^3} = \frac{3,397 \cdot 10^{-9} \, mm^{-1} N^{-1}}{206 \cdot 10^3 \cdot 28,924 \cdot 10^3}$$
(25)

Vztah pro ohybovou tuhost matice v záběru β_M dle [5]:

$$\beta_M = \frac{L_M}{E_S \cdot I_n} = \frac{12}{206 \cdot 10^3 \cdot 39,761 \cdot 10^3} = \frac{1,465 \cdot 10^{-9} \, mm^{-1} N^{-1}}{1,465 \cdot 10^{-9} \, mm^{-1} N^{-1}}$$
(26)

Vztah pro ohybovou tuhost závitu v sevření β_{Gem} dle [5]:

$$\beta_{Gem} = \frac{L_{Gem}}{E_S \cdot I_3} = \frac{104}{206 \cdot 10^3 \cdot 28,924 \cdot 10^3} = \frac{2,355 \cdot 10^{-8} \ mm^{-1}N^{-1}}{206 \cdot 10^3 \cdot 28,924 \cdot 10^3}$$
(27)

Vztah pro ohybovou tuhost uvažované části hlavy šroubu β_{SK} dle [5]:

$$\beta_{SK} = \frac{L_{SK}}{E_S \cdot I_n} = \frac{15}{206 \cdot 10^3 \cdot 39,761 \cdot 10^3} = \frac{1,831 \cdot 10^{-9} \, mm^{-1} N^{-1}}{206 \cdot 10^3 \cdot 39,761 \cdot 10^3}$$
(28)

Vztah pro ohybovou tuhost dříku šroubu β_1 dle [5]:

$$\beta_1 = \frac{L_1}{E_s \cdot I_n} = \frac{285}{206 \cdot 10^3 \cdot 39,761 \cdot 10^3} = \frac{3,479 \cdot 10^{-8} \ mm^{-1}N^{-1}}{206 \cdot 10^3 \cdot 39,761 \cdot 10^3}$$
(29)

Vztah pro ohybovou tuhost částí závitu v záběru β_{GM} dle [5]:

$$\beta_{GM} = \beta_G + \beta_M = 3,397 \cdot 10^{-9} + 1,465 \cdot 10^{-9} = \beta_{GM} = \underline{4,862 \cdot 10^{-9} \ mm^{-1}N^{-1}}$$
(30)

Vztah pro celkovou ohybovou tuhost šroubu β_S dle [5]:

$$\beta_{S} = \beta_{SK} + \beta_{1} + \beta_{Gem} + \beta_{GM} = 1,831 \cdot 10^{-9} + 3,479 \cdot 10^{-8} + 2,355 \cdot 10^{-8} + 4,862 \cdot 10^{-9} = 6,504 \cdot 10^{-8} mm^{-1} N^{-1}$$
(31)

Kde:

β_{SK}	$[mm^{-1}N^{-1}]$	ohybová tuhost uvažované části hlavy šroubu
β_1	$[mm^{-1}N^{-1}]$	ohybová tuhost části bez závitu
β_{gem}	$[mm^{-1}N^{-1}]$	ohybová tuhost části se závitem v sevření
β_{GM}	$[mm^{-1}N^{-1}]$	ohybová tuhost části se závitem v záběru

4.2.3 TUHOST SPOJOVANÝCH SOUČÁSTÍ

K vyšetření silových poměrů v předepjatém šroubovém spoji je důležité znát tuhost spojovaných součástí. Šroubovým spojem mohou být spojeny i více než dvě součásti. Tyto součásti si můžeme přestavit jako sérii tlačných pružin, které tvoří celkovou poddajnost spojovaných součástí. Tuhost spojovaných součástí lze složitě získat experimentálně například pomocí ultrazvuku. Při výpočtu se předpokládá, že vlivem předpětí šroubu se deformují pouze ty části spojovaných součástí nacházející se v nejtěsnější blízkosti šroubu. Jednodušší přístup využívá náhradu spojovaných součástí komolými kužely (Obr. 4.3) majícím vrcholový úhel 2φ , přičemž pro většinu případů platí $25^{\circ} \le \varphi \le 33^{\circ}$.

Obr. 4.3 Tuhost spojovaných součástí – náhrada komolými kužely

V německém předpisu VDI 2230 je využito také komolých kuželů o vrcholovém úhlu 2φ , ale v kombinaci se střední válcovou částí (Obr. 4.4).

Obr. 4.4 a) Tuhost spojovaných součástí – náhrada dle VDI 2230 [5] b) Výpočtový model spojovaných součástí [5]

K určení vrcholového úhlu 2φ je jedním z kroků určení koeficientu druhu šroubového spoje w = 1 pro tento druh šroubového spoje. Dále je vypočten poměr průměrů y (32), poměr délek β_L (33), a následně vrcholového úhlu 2φ (34).

Vztah pro poměr průměrů *y* dle [5]:

$$y = \frac{D'_A}{d_w} = \frac{80}{46} = \underline{1,739} \tag{32}$$

Kde:

 D'_A

[mm] maximální průměr spojovaných součástí od osy šroubu

Vztah pro poměr délek β_L dle [5]:

$$\beta_L = \frac{L_K}{d_w} = \frac{304}{46} = \underline{6,609} \tag{33}$$

Vztah pro vrcholový úhel φ dle [5]:

$$\varphi = \operatorname{arctg}\left(0,362 + 0,032 \cdot \ln\left(\frac{\beta_L}{2}\right) + 0,153 \cdot \ln(y)\right) =$$

$$= \operatorname{arctg}\left(0,362 + 0,032 \cdot \ln\left(\frac{6,609}{2}\right) + 0,153 \cdot \ln(1,739)\right) = \underline{24,30^{\circ}}$$
(35)

Vztah pro délku deformačního kužele L_V dle [5]:

$$L_V = \frac{D_A - d_w}{2 \cdot tg\varphi} = \frac{80 - 46}{2 \cdot tg(24,30)} = \frac{37,65 \ mm}{(34)}$$

Vztah pro délku deformačního válce L_H dle [5]:

$$L_H = L_K - \frac{2 \cdot L_V}{w} = 304 - \frac{2 \cdot 37,652}{1} = \underline{228,70 \ mm}$$
(36)

Výsledná tuhost spojovaných součástí (39) vychází z tuhosti deformačního kužele (37), a také z tuhosti deformačního válce (38).

Vztah pro tuhost deformačního kužele δ_P^V dle [5]:

$$\delta_P^V = \frac{ln \left[\frac{(d_w + d_h) \cdot (d_w + 2 \cdot L_V \cdot tg\varphi - d_h)}{(d_w - d_h) \cdot (d_w + 2 \cdot L_V \cdot tg\varphi + d_h)} \right]}{E_P \cdot d_h \cdot \pi \cdot tg\varphi} = \frac{ln \left[\frac{(46 + 30) \cdot (46 + 2 \cdot 37,65 \cdot tg(24,30) - 30)}{(46 - 30) \cdot (46 + 2 \cdot 37,65 \cdot tg(24,30) + 30)} \right]}{206 \cdot 10^3 \cdot 30 \cdot \pi \cdot tg(24,30)} = \frac{8,175 \cdot 10^{-8} mmN^{-1}}{10^{-8} mmN^{-1}}$$
(37)

Vztah pro tuhost deformačního válce δ_P^H dle [5]:

$$\delta_P^H = \frac{4 \cdot L_H}{E_P \cdot d_h \cdot (D_A^2 - d_h^2)} = \frac{4 \cdot 228,70}{206 \cdot 10^3 \cdot 30 \cdot (80^2 - 30^2)} = \frac{5,084 \cdot 10^{-7} mmN^{-1}}{5,084 \cdot 10^{-7} mmN^{-1}}$$
(38)

Vztah pro celkovou tuhost spojovaných součástí δ_P dle [5]:

$$\delta_P = \frac{2}{w} \cdot \delta_P^V + \delta_P^H = \frac{2}{1} \cdot 8,175 \cdot 10^{-8} + 5,084 \cdot 10^{-7} = \frac{4,263 \cdot 10^{-7} mmN^{-1}}{4,263 \cdot 10^{-7} mmN^{-1}}$$
(39)

4.2.4 VZDÁLENOST OSY SYMETRIE OD OSY ŠROUBU

Vzdálenost osy symetrie od osy šroubu (40) určuje střed plochy součástí v kontaktu, a také vzdálenost tohoto středu k ose šroubu. Vzdálenost se určí ze zadané geometrie (šířka plochy v kontaktu C_t a vzdálenost roztečné kružnice otvoru k hraně plochy v kontaktu e).

Vztah pro vzdálenost osy symetrie od osy šroubu S_{sym} dle [5]:

$$S_{sym} = \frac{C_t}{2} - e = \frac{114,5}{2} - 74,5 = -17,25mm \tag{40}$$

4.2.5 TUHOST PŘI EXCENTRICKÉM SEVŘENÍ

V důsledku různých tuhostí součástí na obou stranách osy šroubu není deformace součástí symetrická, což vede k vyššímu namáhání hlavy šroubu. Při zatížení provozní silou ve vzdálenosti *a* od osy symetrie kontaktu spoje S_{sym} , vzniká ve spojovaných součástech ohybová deformace. Tuhost spojovaných součástí u excentrického sevření (45) a tuhost spojovaných součástí u excentrického sevření a zatížení (46) je potřebná pro výpočet zátěžového součinitele Φ_{en}^* (52).

Obr. 4.5 Tuhost spojovaných součástí – náhrada dle VDI 2230 [5]

Vztah pro kvadratický moment deformačního kužele I_{Bers}^V dle [5]:

$$I_{Bers}^{V} = 0,147 \cdot \frac{(D_{A} - d_{w}) \cdot d_{w}^{3} \cdot D_{A}^{3}}{D_{A}^{3} - d_{w}^{3}} = 0,147 \cdot \frac{(80 - 46) \cdot 46^{3} \cdot 80^{3}}{80^{3} - 46^{3}} = \frac{6,007 \cdot 10^{5} mm^{4}}{100}$$
(41)

Vztah pro kvadratický moment deformačního kužele k ose symetrie I_{Bers}^{Ve} dle [5]:

$$I_{Bers}^{Ve} = I_{Bers}^{V} + S_{sym}^{2} \cdot \frac{\pi}{4} \cdot D_{A}^{2} = 6,007 \cdot 10^{5} + (-17,25)^{2} \cdot \frac{\pi}{4} \cdot 80^{2} =$$

$$= 2,096 \cdot 10^{6} mm^{4}$$
(42)

Vztah pro kvadratický moment deformačního válce I_{Bers}^H dle [5]:

$$I_{Bers}^{H} = \frac{b_1 \cdot C_t^3}{12} = \frac{80 \cdot 114,5^3}{12} = \underline{1,001 \cdot 10^7 mm^4}$$
(43)

Vztah pro kvadratický moment otvoru pro šroub *I_{Bers}* dle [5]:

$$I_{Bers} = \frac{L_K}{\frac{2}{w} \cdot \frac{L_V}{I_{Bers}^{Ve}} + \frac{L_H}{I_{Bers}^H}} = \frac{304}{\frac{2}{1} \cdot \frac{37,65}{2,096 \cdot 10^6} + \frac{228,70}{1,001 \cdot 10^7}} = \frac{5,351 \cdot 10^6 mm^4}{1001 \cdot 10^7}$$
(44)
Vztah pro tuhost spojovaných součástí u excentrického sevření δ_P^* dle [5]:

$$\delta_P^* = \delta_P + \frac{S_{sym}^2 \cdot L_K}{E_P \cdot I_{Bers}} = 4,263 \cdot 10^{-7} + \frac{(-17,25)^2 \cdot 304}{206 \cdot 10^3 \cdot 5,351 \cdot 10^6} =$$

$$= \frac{5,084 \cdot 10^{-7} mmN^{-1}}{10^{-7} mmN^{-1}}$$
(45)

Vztah pro tuhost spojovaných součástí u excentrického sevření a zatížení δ_P^{**} dle [5]:

$$\delta_P^{**} = \delta_P + \frac{a \cdot S_{sym}^2 \cdot L_K}{E_P \cdot I_{Bers}} = 4,263 \cdot 10^{-7} + \frac{41,23 \cdot (-17,25)^2 \cdot 304}{206 \cdot 10^3 \cdot 5,351 \cdot 10^6} =$$
(46)
= 6,225 \cdot 10^{-7} mmN^{-1}

4.2.6 URČENÍ ZÁTĚŽOVÉHO SOUČINITELE *n*

Zátěžový součinitel *n* je definován jako poměr mezi součinitelem δ_{VA} , který ukazuje posunutí hlavy šroubu, a celkovou tuhostí spojovaných součástí δ_P . Zátěžový součinitel může být definován z jednotlivých posunutí v předepjatém šroubovém spoji použitím mechanických pracovních principů. Na obrázku 4.6 je předepjatý šroubový spoj, kde je zobrazena počáteční poloha posunutí dvou dosedacích ploch šroubu f_{V1} , f_{V2} , a konečná poloha posunutí f_{VK1} , f_{VK2} v bodě K, kde působí pracovní zatížení. Zátěžový součinitel (47) je poměr těchto zatížení.

Obr. 4.6 Určení zátěžového součinitele z deformace předepjatého šroubového spoje [5]

Vztah pro zátěžový součinitel *n* dle [5]:

$$n = \frac{\delta_{VA}}{\delta_P} = \frac{f_{VK1} + f_{VK2}}{f_{V1} + f_{V2}}$$
(47)

Kde:

δ_{VA}	[mm]	axiální posunutí hlavy šroubu vlivem síly F_A
f_{VK1}	[mm]	posunutí bodu K1
f_{VK2}	[mm]	posunutí bodu K2
f_{V1}	[mm]	posunutí dosedací plochy šroubu V1
f_{V2}	[mm]	posunutí dosedací plochy šroubu V2

Předpis VDI 2230 umožnuje určení zátěžového součinitele n pomocí parametrů znázorněných na obrázku 4.7a. Dále je zvolen typ spoje na základě polohy pracovní síly, v tomto případě je zvolen případ s označením SV3 (Obr. 4.7b). Po výpočtu jednotlivých parametrů je požadovaný součinitel zvolen z tabulky. Typy spojů na základě polohy pracovní síly a tabulka se zátěžovými součiniteli je uvedena v příloze č. 1.

Obr. 4.7 a) Parametry určující zátěžový součinitel dle VDI 2230 [5] b) Zvolený typ spoje [5]

Vztah pro vzdálenost a_K mezi hranou předepjaté oblasti a bodem K_G dle [5]:

$$a_K = a - |S_{sym}| = 41,23 - 17,25 = \underline{23,98\,mm} \tag{48}$$

Vztah pro poměr mezi vzdáleností a_K a výškou součásti H_1 dle [5]:

$$\frac{a_K}{H_1} = \frac{23,98}{174} = \underline{0,138} \tag{49}$$

Vztah pro vzdálenost l_A mezi bodem K_G a místem působení provozní síly dle [5]:

$$l_A = a - a_K = 41,23 - 23,98 = \underline{17,25mm}$$
(50)

Vztah pro poměr mezi vzdáleností l_A a výškou součásti H_1 dle [5]:

$$\frac{l_A}{H_1} = \frac{17,25}{174} = \underline{0,099} \tag{51}$$

Ze zvolených a vypočtených parametrů je zvolen zátěžový součinitel n = 0,30. Tento součinitel je následně použit pro vypočet faktoru zatížení (52).

Vztah pro faktor zatížení Φ_{en}^* dle [5]:

$$\Phi_{en}^* = n \cdot \frac{\delta_P^{**}}{\delta_S + \delta_P^*} = 0.30 \cdot \frac{6.225 \cdot 10^{-7}}{3.256 \cdot 10^{-6} + 5.084 \cdot 10^{-7}} = \underline{0.049}$$
(52)

4.2.7 ZMĚNY VLIVEM PŘEDPĚTÍ

Při předepnutí šroubového spoje může docházet ke změnám v samotném šroubu způsobeným: - předepnutím okolních šroubů

- vtisknutím dosedacích ploch
- uvolněním spoje vlivem rotace
- relaxací spojovaných materiálů
- změnami vlivem teploty
- přetížením spoje

S použitím hodnot v příloze č. 2 pro velikost vtisknutí odpovídající $R_Z \le 16\mu m$ a hodnoty tahového zatížení jsou individuální hodnoty vtisknutí:

- závit $f_1 = 3\mu m$
- hlava šroubu a matice $f_2 = 2 \cdot 3 = 6\mu m$
- kontakt součástí $f_3 = 2\mu m$

Celková hodnota vtisknutí je $f_Z = 11 \mu m$. Vztah pro ztrátu předpětí F_Z vlivem deformace f_Z šroubového spoje je uveden v rovnici (53).

Vztah pro ztrátu předpětí F_Z dle [5]:

$$F_Z = \frac{f_Z}{\delta_S + \delta_P} = \frac{11 \cdot 10^{-3}}{3,256 \cdot 10^{-6} + 4,263 \cdot 10^{-7}} = \frac{2,984 \, kN}{2,984 \, kN}$$
(53)

4.2.8 MONTÁŽNÍ SÍLA PŘEDPĚTÍ

Stanovení montážního předpětí je jednou z hlavních úloh při návrhu předepjatého šroubového spoje. Velikost montážního předpětí je rozhodující pro správnou funkci spoje. Zároveň však ovlivňuje i výslednou sílu působící ve spojovacím šroubu, tedy i míru bezpečnosti proti případnému porušení šroubu. Montážní předpětí musí být navrženo tak, aby byl u spojů namáhaných v ose šroubu zajištěn požadavek kompaktnosti resp. těsnosti spoje, a u spojů zatížených v rovině spojovaných částí požadavek smykové únosnosti spoje.

Vztah pro plocha kontaktu s otvorem pro šroub A_{BT} :

$$A_{BT} = \frac{(R_A^2 - r_i^2) \cdot \pi}{n_{\check{S}}} = \frac{(2245, 5^2 - 2131^2) \cdot \pi}{40} = \frac{3,936 \cdot 10^4 \ mm^2}{100}$$
(54)

Vztah pro plocha kontaktu bez otvoru pro šroub A_D :

$$A_D = A_{BT} - \frac{\pi \cdot d_h^2}{4} = 3,936 \cdot 10^4 - \frac{\pi \cdot 30^2}{4} = \underline{3,865 \cdot 10^4 \ mm^2}$$
(55)

Vztah pro kvadratický moment kontaktu součástí I_{BT} dle [5]:

$$I_{BT} = \frac{t \cdot C_t^3 \cdot [R_a^2 + 4 \cdot R_a \cdot r_i + r_i^2]}{36 \cdot r_s \cdot (R_a + r_i)} =$$

$$= \frac{346 \cdot 114,5^3 \cdot [2245,5^2 + 4 \cdot 2245,5 \cdot 2131 + 2131^2]}{36 \cdot 2205,5 \cdot (2245,5 + 2131)} = \frac{4,2989 \cdot 10^7 \ mm^4}{10^7 \ mm^4}$$
(56)

Vztah pro vzdálenost *u* vnitřní hrany v kontaktu k ose symetrie dle [5]:

$$u = \frac{C_t}{2} = \frac{114,5}{2} = \frac{57,25 \ mm}{2} \tag{57}$$

Vztah pro sílu sevření F_{kerf} dle [5]:

$$F_{kerf} = F_{AAmax} \frac{a \cdot u \cdot A_D - S_{sym} \cdot u \cdot A_D}{I_{BT} + S_{sym} \cdot u \cdot A_D} =$$

= 229,64 \cdot 10³ $\frac{41,23 \cdot 57,25 \cdot 3,865 \cdot 10^4 - 17,25 \cdot 57,25 \cdot 3,865 \cdot 10^4}{4,2989 \cdot 10^7 + 17,25 \cdot 57,25 \cdot 3,865 \cdot 10^4} =$ (58)
= 73,85 kN

Vztah pro minimální montážní předpětí F_{Mmin} dle [5]:

$$F_{Mmin} = F_{kerf} + (1 - \Phi_{en}^*) \cdot F_{Amax} + F_Z =$$

$$= 73,85 \cdot 10^3 + (1 - 0,049) \cdot 229,64 \cdot 10^3 + 2,984 \cdot 10^3 = \underline{295,22 \ kN}$$
(59)

Pro určení maximálního montážního předpětí (61) je zvolen součinitel utažení $\propto_A =$ 1,2. Hodnota součinitele utažení je zvolena z tabulky v příloze č.3 s ohledem na způsob utažení (Hydrocam bolt tensioners).

Vztah pro maximální montážní předpětí F_{Mmax} dle [5]:

$$F_{Mmax} = \alpha_A \cdot F_{Mmin} = 1,2 \cdot 295,22 \cdot 10^3 = 354,27 \ kN \tag{60}$$

V následujících krocích výpočtu bude síla předpětí zvolena $F_P = 302,3 kN$, na základě požadavku firmy Vítkovice Gearworks a. s.

4.2.9 PRACOVNÍ NAPĚTÍ

K pevnostní kontrole je třeba určit výsledné maximální zatížení (61). Výsledné napětí (62) je srovnáním výsledného maximálního zatížení ve výpočtovém průřezu šroubu A_s . Výsledná bezpečnost (63) je získána z výsledného napětí a meze kluzu materiálu šroubu.

Vztah pro maximální axiální zatížení šroubu *F_{smax}* dle [5]:

$$F_{Smax} = F_P + (1 - \Phi_{en}^*) \cdot F_{AAmax} = 302,3 \cdot 10^3 + (1 - 0,049) \cdot 229,64 \cdot 10^3 =$$

= 520,69 kN (61)

Vztah pro axiální napětí ve šroubu σ_{smax} dle [5]:

$$\sigma_{Smax} = \frac{F_{Smax}}{A_S} = \frac{520,69 \cdot 10^3}{560,60} = \frac{928,80 MPa}{62}$$
(62)

Vztah pro bezpečnost šroubu vůči mezi kluzu S_F dle [5]:

$$S_F = \frac{R_{ES}}{\sigma_{Smax}} = \frac{1080}{928,80} = \underline{1,16}$$
(63)

4.2.10 KONTROLA PROKLUZU

Prokluzu spojovaných součástí je zabráněno statickým třením v ploše kontaktu součástí. Limitující zatížení k prokluzu F_{KG} závisí na součiniteli statického tření μ_T pro individuální plochy v kontaktu součástí. Součinitel statického tření je zvolen z tabulky v příloze č. 4.

Vztah pro radiální sílu na plochu kontaktu F_{Pmax} dle [5]:

$$F_{Pmax} = (1 - \Phi_{en}^*) \cdot F_{Rmax} = (1 - 0.049) \cdot 20.85 \cdot 10^3 = 19.82 \underline{kN}$$
(64)

Vztah pro zbytkové svěrné zatížení F_{KR} dle [5]:

$$F_{KR} = F_P + F_{Pmax} - F_Z = 302,30 \cdot 10^3 + 19,82 \cdot 10^3 - 2,984 \cdot 10^3 =$$

= 319,14kN (65)

Vztah pro minimální svěrné zatížení pro přenos zatížení F_{KQ} dle [5]:

$$F_{KQ} = \frac{F_{Rmax}}{\mu_T} = \frac{20,85 \cdot 10^3}{0,14} = \underline{148,93kN}$$
(66)

Vztah pro bezpečnost šroubu vůči prokluzu S_G dle [5]:

$$S_G = \frac{F_{KR}}{F_{KQ}} = \frac{319,14}{148,93} = \frac{2,14}{148,93}$$
(67)

4.3 VÝSLEDNÉ HODNOTY DLE VDI 2230

V této kapitole jsou uvedeny výsledné hodnoty bezpečnosti šroubu dle VDI 2230 pro všechny zadané zátěžové stavy. Hodnoty jsou uvedeny v Tab. 7. Z výsledků lze usoudit, že použité šrouby jsou vyhovující pro tuto aplikaci, jelikož ve všech stavech je hodnota bezpečnosti vůči mezi kluzu větší než jedna.

Tab. 8 Výsledné hodnoty bezpečnosti dle VDI 2230

Zátěžový stav	Bezpečnost šroubu vůči mezi kluzu S _F	Bezpečnost šroubu vůči prokluzu S _G
1	1,46	21,62
2	1,16	2,14
3	1,15	2,20
4	1,16	1,90
5	1,33	2,18
6	1,22	3,43
7	1,18	2,97

Tato norma stanovuje podmínky pro navrhování ocelových konstrukcí. Konkrétně část 1-8 popisuje podmínky navrhování styčníků. Norma obsahuje také všeobecné požadavky pro spoje ocelových konstrukcí, takže popisuje také šroubové spoje. V normě ČSN EN 1993-1-8 jsou šroubové spoje rozděleny do dvou základních kategorií, spoje ve smyku a spoje v tahu. Tyto dvě základní kategorie dále rozděluje podle způsobu namáhání šroubového spoje, podle třídy pevnosti šroubů a podle požadavku předpětí spoje.

Norma udává pro jakostní třídu šroubu 12.9 jmenovitou mez kluzu $f_{yb} = 1080MPa$ a jmenovitou mez pevnosti $f_{ub} = 1200MPa$. Pro kontrolu je zvolena kategorie E – předpjaté šroubové spoje. V této kategorii jsou kontrolovanými kritérii únosnost šroubového spoje v tahu (69) a únosnost v protlačení (71) proti maximální axiální síle ve šroubu $F_{t.Ed}$.

Vztah pro maximální axiální sílu ve šroubu $F_{t,Ed}$ (zátěžový stav č. 2):

$$F_{t,Ed} = F_{Amax} + F_P = 229,64 \cdot 10^3 + 302,3 \cdot 10^3 = \underline{532,94 \, kN} \tag{68}$$

Vztah pro únosnost v tahu $F_{t,Rd}$ dle [6]:

$$F_{t,Rd} = \frac{k_2 \cdot f_{ub} \cdot A_S}{\gamma_{M2}} = \frac{0.9 \cdot 1200 \cdot 560.60}{1.25} = \underline{484.36 \ kN}$$
(69)

Kde:

k_2	[—]	součinitel pro šroub bez zapuštěné hlavy
f_{ub}	[MPa]	jmenovitá mez pevnosti šroubu
<i>Ү</i> м2	[—]	součinitel únosnosti šroubu

Vztah pro kritérium únosnosti v tahu $F_{t,Rd}$ dle [6]:

$$F_{t,Ed} \le F_{t,Rd} \tag{70}$$

Vztah pro únosnost v protlačení $B_{p,Rd}$ dle [6]:

$$B_{p,Rd} = \frac{0.6 \cdot \pi \cdot d_{m1} \cdot t_p \cdot f_u}{\gamma_{M2}} = \frac{0.6 \cdot \pi \cdot 45 \cdot 130 \cdot 630}{1.25} = \frac{5.557,60 \text{ kN}}{1.25}$$
(71)

Kde:

$$d_{m1}$$
 $[mm]$ menší ze středních průměrů kružnice opsané a vepsané
do šestihranu hlavy šroubu nebo matice t_p $[mm]$ menší z tlouštěk desek pod hlavou šroubu nebo maticí
jmenovitá mez pevnosti spojovaných součástí

Vztah pro kritérium únosnosti v protlačení $B_{p,Rd}$ dle [6]:

$$F_{t,Ed} \le B_{p,Rd}$$

(72)

Kvůli porovnání výsledků normy VDI 2230 a ČSN EN 1993 1-8 je také provedena kontrola únosnosti v prokluzu (72) vůči maximální radiální síle, kde se zohledňuje tvar otvorů, délka otvorů a součinitel tření povrchu μ . Hodnota součinitele tření je zvolena $\mu = 0,14$, aby korespondovala s kontrolou prokluzu v kapitole 4.2.10.

Vztah pro únosnost v prokluzu $F_{s,Rd}$ dle [6]:

$$F_{s,Rd} = \frac{k_s \cdot n_P \cdot \mu}{\gamma_{M3}} \cdot F_P = \frac{1 \cdot 1 \cdot 0.14}{1.25} \cdot 302.3 \cdot 10^3 = \underline{33.86 \ kN}$$
(73)

Kde:

k_s	[—]	součinitel pro šrouby v obyčejných otvorech
n_P	[—]	počet třecích ploch
μ	[—]	součinitel tření
Υ _{МЗ}	[—]	součinitel únosnosti v prokluzu
F_P	[N]	síla předpětí

Vztah pro kritérium únosnosti v prokluzu $F_{s,Rd}$ dle [6]:

$$F_{Rmax} \le F_{s,Rd} \tag{74}$$

Výsledné hodnoty kontrolovaných kritérií jsou uvedeny v Tab. 8. Při kontrole jsou směrodatné hodnoty kritérií, které ve vyhovujících případech jsou vyšší než jedna.

	Max.	Max.	Kontrolované l	kritérium únosnos	ti (Bezpečnost)
Zátěžový	axiální síla	radiální síla	v tahu	v protlačení	v prokluzu
stav	ve šroubu	ve šroubu	F _{t,Rd}	$B_{p,Rd}$	F _{s,Rd}
	$F_{t,Ed}$ [kN]	F_{Rmax} [kN]	$\overline{F_{t,Ed}}$	$\overline{F_{t,Ed}}$	$\overline{F_{Rmax}}$
1	419,67	1,95	1,15	13,24	17,36
2	531,94	20,85	0,91	10,45	1,62
3	533,37	20,25	0,91	10,42	1,67
4	532,52	23,70	0,91	10,44	1,43
5	481,23	20,53	1,01	11,55	1,65
6	506,50	12,70	0,96	10,97	2,67
7	526,95	14,75	0,92	10,55	2,30

Tab. 9 Výsledné hodnoty kontrolovaných kritérií

5 PEVNOSTNÍ ANALÝZA

V této části je popsán vytvořený MKP (Metoda konečných prvků) model, použité prvky a náhrady jednotlivých celků, okrajové podmínky výpočtu, a následně výsledky daných zátěžových stavů.

Pevnostní analýza je provedena pomocí zjednodušeného skořepinového MKP modelu vytvořeného v programu NX I-deas. Skořepinový model je pro danou aplikaci dostačující, oproti objemovému modelu, který pro dostatečnou přesnost výpočtu potřebuje vysoký počet prvků, což značně prodlužuje dobu výpočtu a to při téměř srovnatelných výsledcích.

5.1 VÝPOČTOVÝ MODEL

Jednotlivé plochy spodní stavby jsou vytvořeny jako jejich střednice. Plochám je následně v programu NX I-deas přidána tloušťka, fyzikální a mechanické vlastnosti. Při tvorbě výpočtového modelu je použita řada zjednodušení, které nahrazují použité součásti.

5.1.1 NÁHRADA LOŽISKA SE ZKŘÍŽENÝMI VÁLEČKY

Zjednodušení pro ložisko se zkříženými válečky je nahrazeno sadou prvků GAP. Náhrada ložiska je zobrazena na Obr. 5.1. Prvky GAP jsou poskládány střídavě tak, aby každý prvek nahrazoval jeden valivý element ložiska. Vnitřní věnec ložiska je pomocí prvků Rigid uchycen do jednoho bodu, přes který je do modelu přenášeno zatížení z jednotlivých zátěžových stavů.

Obr. 5.1 Náhrada ložiska se zkříženými válečky (osmina modelu)

5.1.2 MODEL SPODNÍ STAVBY

Výpočtový skořepinový model spodní stavby skládkového stroje je tvořen mapovanou sítí skládající se z plošného prvků QUAD 4, což je zobecněný čtyřúhelník se čtyřmi uzly. Síť modelu je zobrazena na obrázku 5.2, kde jsou popsány jednotlivé část mapované sítě. Jednotlivé části tenkostěnné skořepiny mají přiřazenou tloušťku (Thin shell) a jejich velikosti jsou seřazeny v tabulce 9. Materiál výpočtového modelu je zvolen z knihovny I-deasu. Zvolený materiál označen "Generic_isotropic_steel" s parametry: Youngův modul = $2,1 \cdot 10^5 MPa$, hustota = $7,8 \cdot 10^3 kg \cdot m^3$ a Poissonův poměr = 0,29.

Obr. 5.2 Plošného prvků QUAD 4 [11]

Tab. 10 Hodnoty tloušťky jednotlivých částí			
Část skořepiny	Tloušťka [mm]		
Síť věnce	130		
Síť pláště	45		
Síť vnějšího žebra	10		
Síť vnitřního žebra	10		
Síť základní desky	40		

Spojení vnějšího věnce ložiska se zkříženými válečky je realizováno pomocí čtyřiceti šroubů M30, které jsou rovnoměrně rozmístěny po obvodu otočeného ústrojí. Každý ze šroubů je nahrazen zjednodušením z důvodu problematiky kontaktní úlohy.

Sítě vnějšího věnce ložiska a spodní stavby jsou odděleny, aby byla zjištěna maximální síla ve šroubech. Sítě jsou spojeny samotnou náhradou šroubového spoje a prvkem GAP, zobrazeno na obrázku 5.4. Samotný šroub je nahrazen prvkem Beam, který je v horní části připojen ke vnějšímu věnci ložiska prvkem Rigit a ve spodní části je připojen ke spodní stavbě stroje. Prvek Beam má nahoře i dole zamezen pohyb v ose X a Z, aby byly zjištěny maximální síly ve šroubovém spoji.

Prvek Beam má přiřazené rozměry použitého šroubu (Beam options), a také sílu předpětí (Beam data - preload), která má hodnotu $F_P = 302,3 \ kN$.

Obr. 5.4 Náhrada šroubového spoje

5.1.4 OKRAJOVÉ PODMÍNKY

Spodní část pro výpočet předpokládáme dostatečně tuhou, a proto je síť základní desky spojena se středem **B** prvkem Rigit, kde jsou zachyceny veškeré posuvy i rotace. Zatížení je přenášeno z bodu **A** prvky Rigit do vnitřního věnce ložiska, následně do ostatních částí výpočtového modelu a především do šroubů. Bod **A** leží na klopné hraně stroje. Hodnoty zátěžových stavů jsou uvedeny v kapitole 3.1.3. Okrajové podmínky jsou zobrazeny na obrázku 5.5, kde je pro přehlednost zobrazena pouze osmina výpočtového modelu. Celý model je zobrazen na obrázku 5.6.

Obr. 5.5 Okrajové podmínky (osmina modelu)

Obr. 5.6 Výpočtový model

5.2 VÝSLEDKY PEVNOSTNÍHO VÝPOČTU

Výpočtový model obsahuje síť (Mesh) s nadefinovanými parametry, okrajové podmínky a zatížení pro podstoupení výpočtu. Pro každý zátěžový stav je nastaven Load Set se stejným pořadovým číslem.

Na obrázku 5.7 je zobrazen výsledek zátěžového stavu č. 2, náhrada šroubového spoje není zde zřetelná. Proto byl oddělen výsledek samotných šroubových spojů a výsledky pro jednotlivé zátěžové stavy jsou uvedeny samostatně.

Obr. 5.7 Výsledek zátěžového stavu č. 2

U každého zátěžového stavu je uvedena hodnota bezpečnosti S_{F1} vzhledem k jmenovité mezi kluzu. Pro šrouby třídy pevnosti 12.9 je jmenovitá mez kluzu $R_{ES} = 1080 MPa$ dle [4]. Požadovaným výsledkem je bezpečnost vyšší nebo rovna jedné.

5.2.1 ZÁTĚŽOVÝ STAV Č. 1

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 1, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,36 \cdot 10^5 N$, extrémní napětí: 741 *MPa*, hodnota Bezpečnosti $S_{F1} = 1,46 \rightarrow \text{Vyhovuje}$

5.2.2 ZÁTĚŽOVÝ STAV Č. 2

Obr. 5.9 Síly působící na šrouby - zátěžový stav č. 2

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 2, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $5,04 \cdot 10^5 N$, extrémní napětí: 1083 MPa, hodnota Bezpečnosti $S_{F1} = 0,99 \rightarrow$ Nevyhovuje

5.2.3 ZÁTĚŽOVÝ STAV Č. 3

Obr. 5.10 Síly působící na šrouby - zátěžový stav č. 3

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 3, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $5,11 \cdot 10^5N$, extrémní napětí: 1082 MPa, hodnota Bezpečnosti $S_{F1} = 0,99 \rightarrow$ Nevyhovuje

5.2.4 ZÁTĚŽOVÝ STAV Č. 4

Obr. 5.11 Síly působící na šrouby - zátěžový stav č. 4

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 4, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $5,07 \cdot 10^5 N$, extrémní napětí: 1066 MPa, hodnota Bezpečnosti $S_{F1} = 1,01 \rightarrow \text{Vyhovuje}$

Obr. 5.12 Síly působící na šrouby - zátěžový stav č. 5

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 5, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $4,15 \cdot 10^5 N$, extrémní napětí: 915 MPa, hodnota Bezpečnosti $S_{F1} = 1,18 \rightarrow \text{Vyhovuje}$

5.2.6 ZÁTĚŽOVÝ STAV Č.6

Obr. 5.13 Síly působící na šrouby - zátěžový stav č. 6

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 6, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $4,67 \cdot 10^5 N$, extrémní napětí: 1020 MPa, hodnota Bezpečnosti $S_{F1} = 1,05 \rightarrow \text{Vyhovuje}$

Obr. 5.14 Síly působící na šrouby - zátěžový stav č. 7

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 7, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $5,01 \cdot 10^5 N$, extrémní napětí: 1085 MPa, hodnota Bezpečnosti $S_{F1} = 0.99 \rightarrow \text{Nevyhovuje}$

Výsledky ukazují, že šrouby s nejvyšším napětím jsou v úzké úseči, která je nejvzdálenější od klopné hrany stroje. To znamená, že většina zatížení může být přenášena nízkým počtem šroubů.

Z výsledků skořepinového MKP modelu jednotlivých zátěžových stavů vyplývá, že při stavu č. 2, 3 a 7 šroubový spoj je na hranici použitelnosti, jelikož hodnoty extrémního napětí jsou vyšší než jmenovitá mez kluzu, takže výsledná bezpečnost je menší než jedna. Výsledné napětí na spodní stavbě je zobrazeno na obrázku 5.15, kde lze pozorovat vysoké zatížení na vnější žebra. Tato skutečnost se dá kompenzovat změnou tvaru samotného žebra, aby se napětí nekumulovalo v malé oblasti, jak tomu je na obrázku.

Obr. 5.15 Napětí na vnějších žebrech - zátěžový stav č. 2

Popis: napětí na vnějších žebrech při zatěžovacím stavu č. 2, legenda: 0 - 390 MPa, nedeformovaný, extrémní napětí: 1083 MPa

6 NÁVRH KONSTRUKČNÍCH ZMĚN

V této kapitole je pojednáno o možných konstrukčních změnách, které lze provést při stávajících rozměrech spodní stavby a velkoprůměrového ložiska se zkříženými válečky. Pro změnu šroubového spoje se dá vycházet ze dvou směrů, jedním je navýšení počtu šroubů a druhým směrem je použití šroubů s vyšší třídou pevnosti.

Další konstrukční změna se týká tvaru vnějších žeber za účelem rozložení napětí do celého žebra a eliminace vysokého lokálního zatížení.

6.1 ZMĚNA POČTU ŠROUBŮ

Pro tuto konstrukční změnu je zvolena varianta s navýšením počtů šroubu o nižší třídě pevnosti. Namísto stávajících čtyřiceti šroubů M30 a třídě pevnosti 12.9 je použito šedesát šroubů o třídě pevnosti 10.9. Další změnou je rozmístění šroubu po obvodu otoče, u stávajícího řešení jsou šrouby rozmístěny v rovnoměrných rozestupech. Kriticky namáhanou oblastí je úzká úseč otoče, která leží nejvzdáleněji od klopné hrany stroje. Rozmístění šroubů je zobrazeno v příloze č. 5. Počet šroubů a jejich rozmístění je voleno tak, aby v nejvíce namáhané oblasti byl počet šroubů navýšen a také, aby byly zachovány stávající rozměry a rozmístění vnější i vnitřních žeber.

U každého zátěžového stavu je uvedena hodnota bezpečnosti S_{F2} vzhledem k jmenovité mezi kluzu. Pro šrouby třídy pevnosti 10.9 je jmenovitá mez kluzu $R_{ES2} = 900 MPa$ dle [6]. Požadovaným výsledkem je bezpečnost vyšší nebo rovna jedné.

Obr. 6.1 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 1

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 1, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $2,79 \cdot 10^5 N$, extrémní napětí: 535 MPa, hodnota Bezpečnosti $S_{F2} = 1,68 \rightarrow \text{Vyhovuje}$

6.1.2 ZÁTĚŽOVÝ STAV Č. 2

Obr. 6.2 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 2

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 2, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,82 \cdot 10^5 N$, extrémní napětí: 729 *MPa*, hodnota Bezpečnosti $S_{F2} = 1,23 \rightarrow \text{Vyhovuje}$

6.1.3 ZÁTĚŽOVÝ STAV Č.3

Obr. 6.3 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 3

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 3, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,85 \cdot 10^5 N$, extrémní napětí: 719 *MPa*, hodnota Bezpečnosti $S_{F2} = 1,25 \rightarrow \text{Vyhovuje}$

6.1.4 ZÁTĚŽOVÝ STAV Č. 4

Obr. 6.4 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 4

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 4, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,83 \cdot 10^5 N$, extrémní napětí: 711 MPa, hodnota Bezpečnosti $S_{F2} = 1,27 \rightarrow \text{Vyhovuje}$

6.1.5 ZÁTĚŽOVÝ STAV Č. 5

Obr. 6.5 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 5

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 5, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,30 \cdot 10^5 N$, extrémní napětí: 644 MPa, hodnota Bezpečnosti $S_{F2} = 1,40 \rightarrow \text{Vyhovuje}$

6.1.6 ZÁTĚŽOVÝ STAV Č.6

Obr. 6.6 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 6

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 6, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,62 \cdot 10^5 N$, extrémní napětí: 704 MPa, hodnota Bezpečnosti $S_{F2} = 1,28 \rightarrow \text{Vyhovuje}$

6.1.7 ZÁTĚŽOVÝ STAV Č. 7

Obr. 6.7 Změna počtu šroubů - Síly působící na šrouby - zátěžový stav č. 7

Popis: zobrazení zatížení šroubů při zatěžovacím stavu č. 7, legenda: 0 - 520 kN, nedeformovaný, maximální síla na šroub: $3,82 \cdot 10^5 N$, extrémní napětí: 734 *MPa*, hodnota Bezpečnosti $S_{F2} = 1,23 \rightarrow \text{Vyhovuje}$

6.2 ZMĚNA TVARU VNĚJŠÍCH ŽEBER

Další možnou konstrukční změnou je změna tvaru vnějšího výztužného žebra. Na tomto žebru vniká vysoké napětí, které se kumuluje v úzké oblasti žebra (Obr. 5.15). Při změně tvaru žebra je možno dosáhnou rozšíření této oblasti, a tím také snížit maximální napětí v součásti.

Obr. 6.8 a) Stávající tvar vnějšího žebra b) Navrhovaná změna tvaru vnějšího žebra

Samotná změna spočívá v provedení výřezu na vnější hraně žebra, která je zobrazena na obrázku 6.8. Výsledné napětí po změně tvaru vnějšího žebra je na obrázku 6.9, kde je zřetelné zvětšení zatížené oblasti, a také snížení maximálního napětí na součásti.

Obr. 6.9 Napětí na vnějších žebrech po změně tvaru - zátěžový stav č. 2

Popis: napětí na vnějších žebrech po změně tvaru při zatěžovacím stavu č. 2, legenda: 0 - 390 MPa, nedeformovaný, extrémní napětí: 729 MPa

ZÁVĚR

Tématem této diplomové práce je analýza návrhu šroubového přípoje otočné desky kolesového skládkového stroje z produkce firmy Vítkovice Gearworks a.s. Konkrétně jde o analýzu předepjatého šroubového spoje, spojujícího ložisko otoče se spodní stavbou skládkového stroje.

V teoretické časti je pojednáno o jednotlivých druzích otáčivých ústrojí zemních strojů, jsou popsány jejich vlastnosti, konstrukční uspořádání, a také pro jaké typy zemních strojů se používají. Následující část je věnována popisu konstrukčního návrhu strojního zařízení s popisem, rozměry a použitým materiálem jednotlivých částí uvažovaného šroubového spoje. Uveden je také rozbor použitého ložiska se zkříženými válečky a schématicky je zobrazen přenos sil při zatížení ložiska jednotlivými druhy zatížení, což je důležité pro následnou tvorbu výpočtového modelu. V závěru této části je popsán zvolený způsob vyvození předpětí ve šroubovém spoji – Hydrocam bolt tensioners, který vyvodí přepětí s vysokou přesností a zároveň nezpůsobuje kroutící moment.

Analytická kontrola obsahuje dvě hlavní části, první zohledňuje německý předpis VDI 2230 a druhá část se řídí dle normy ČSN EN 1993-1-8. Pro řešení diplomové práce je na požadavek Vítkovice Gearworks a.s. zadáno sedm provozních stavů, které jsou považovány za extrémy a zohledňují rozsah výložníku při rotaci. Společným krokem je výpočet maximálních provozních sil v axiálním i radiálním směru. První část dle VDI 2230 zohledňuje tuhost šroubu, tuhost i tvar spojovaných součástí, polohu provozní síly působící mimo těžiště dotykové plochy spojovaných částí a změny vlivem předpětí. Druhá část dle ČSN EN 1993-1-8 postupuje určením kategorie spoje, zvolena je kategorie E, kde je kontrolována únosnost v tahu a únosnost v protlačení. Dále je kontrolována únosnost v prokluzu z důvodu porovnání výsledků obou norem. Výsledkem analytické kontroly obou přístupů jsou hodnoty bezpečnosti. Při použití stejných vstupních parametrů lze konstatovat, že podle normy ČSN EN 1993-1-8 jsou výsledné hodnoty bezpečnosti nižší oproti německému předpisu VDI 2230. Dále lze konstatovat, že použitý šroubový spoj je podle ČSN EN 1993-1-8 na hranici použitelnosti, protože většina výsledných hodnot bezpečnosti u provozních stavů není vyšší než jedna. Pro rozhodnutí o použitelnosti je zapotřebí vzít v potaz jak často zátěžové stavy nastávají a také jak dlouho trvají. Podle německého předpisu VDI 2230 šroubový spoj vyhovuje s minimální požadovanou bezpečností.

Další část je provedení pevnostní analýzy, zhotovení skořepinového MKP modelu s náhradami jednotlivých celků. Analýza je provedena v programu NX I-deas pro všechny zadané provozní stavy stroje. Výsledkem je zobrazení sil působících na samotné šrouby pro jednotlivé provozní stavy. Síly znázorňují, že šrouby s nejvyšším napětím jsou v úzké úseči, která je nejvzdálenější od klopné hrany stroje. Toto znamená, že většina zatížení může být přenášena nízkým počtem šroubů. U výsledků jsou uvedený hodnoty bezpečnosti vycházející z MKP modelu a potvrzují výsledky analytické kontroly.

Poslední část diplomové práce je zaměřena na návrh konstrukčních změn spojení ložiska otočného ústrojí s ocelovou konstrukcí stroje. Navrhovanou změnou je použití vyššího počtu šroubů o nižší třídě pevnosti, a také změna tvaru vnějších žeber spodní stavby. Změny jsou podrobeny pevností analýze a jejich výsledky jsou přijatelné. Pro navržené konstrukční změny jsou vytvořeny výkresy součástí a výkres sestavy spodní stavby stroje.

POUŽITÉ INFORMAČNÍ ZDROJE

- [1] Podklady poskytnuté firmou Vítkovice Gearworks a. s.
- [2] FRIES, Jiří. Zemní stroje: učební text : studijní materiály pro studijní obor Zemní, těžební a stavební stroje Fakulty strojní. Vyd. 1. Ostrava: Vysoká škola báňská - Technická univerzita, 2012, 1 CD-ROM. ISBN 978-80-248-2567-0.
- [3] SKF. Slewing bearings.[online]. [cit. 2015-12-02] Dostupné z: http://www.skf.com/binary/tcm:12-182061/Slewing%20bearing%20catalogue%20-%2006115_2_EN_tcm_12-182061.pdf
- [4] SHIGLEY, Joseph Edward; MISCHKE, Charles R; BUDYNAS, Richard G et al. Konstruování strojních součástí. 1. vyd. Brno: VUTIUM, 2014. 1159 s. ISBN 978-802-1426-290.
- [5] *VDI 2230: Systematische Berechnung hochbeanspruchter Schraubenverbindungen Zylindrische Einschraubenverbindungen.* 10/01. Düsseldorf: Beuth Verlag GmbH, 2003.
- [6] ČSN EN 1993-1-8 Eurokód 3 : Navrhování ocelovýcch konstrukcí. Praha: Úřad pro technickou normalizaci, metrologii a státní zkušebnictví, 2013. Česká technická norma.
- [7] Pneumatický utahovák. *Nibtorque headquarters* [online]. Pennsylvania, 2016 [cit. 2016-02-02]. Dostupné z: http://www.nibtorque.com/id28.html
- [8] Hydraulický utahovák *Nibtorque headquarters* [online]. Pennsylvania, 2016 [cit. 2016-03-02]. Dostupné z: http://www.nibtorque.com/id27.html
- [9] Hydrocam bolt tensioners. *SKF Group Headquarters* [online]. Göteborg, 2016 [cit. 2016-04-02]. Dostupné z: http://www.skf.com/binary/83-124616/PUB_MT-P2_10255_EN.pdf
- [10]*ČSN 27 7008: Navrhování ocelových konstrukcí rypadel, nakladačů a zakladačů*. Praha: Český normalizační institut, 2007.
- [11]*FSv* Č*VUT* [online]. 2011 [cit. 2016-04-08]. FSv ČVUT. Dostupné z WWW: http://people.fsv.cvut.cz/~pkabele/YNAK/YNAK-pr03.pdf

SEZNAM POUŽITÝCH ZKRATEK A SYMBOLŮ

A_{BT}	$[mm^2]$	plocha kontaktu s otvorem pro šroub
A_D	$[mm^2]$	plocha kontaktu bez otvoru pro šroub
A_{d3}	$[mm^2]$	minimální plocha závitu
A_n	$[mm^2]$	plocha průřezu části dříku bez závitu
A_S	$[mm^2]$	výpočtová plocha průřezu šroubu
$B_{p,Rd}$	[<i>N</i>]	únosnost v protlačení
С	[-]	tuhostní konstanta
C_t	[mm]	šířka plochy v kontaktu
D	[mm]	vnější průměr vnějšího věnce ložiska
D_1	[mm]	vnitřní průměr vnějšího věnce ložiska
D'_A	[mm]	maximální průměr spojovaných součástí od osy šroubu
Ε	[GPa]	modul pružnosti v tahu
E_S	[GPa]	modul pružnosti v tahu šroubu
E_{P1}	[GPa]	modul pružnosti v tahu šroubu materiálu 42CrMo4
E_{P2}	[GPa]	modul pružnosti v tahu šroubu materiálu S355J0
F	[<i>N</i>]	síla při zatěžování
F _{1max}	[<i>N</i>]	maximální axiální provozní síly od klopného momentu
F _{Ai}	[<i>N</i>]	axiální síla jednotlivých provozních stavů
F_{AA}	[<i>N</i>]	max. axiální provozní síla od axiálního zatížení v jednom šroubu
F_{A2}	[<i>N</i>]	celková axiální síla při provozním stavu 2
F _{Amax}	[<i>N</i>]	maximální axiální síla v jednom šroubu
F_{KQ}	[<i>N</i>]	minimální svěrné zatížení pro přenos zatížení
F_{KR}	[<i>N</i>]	zbytkové svěrné zatížení
F _{kerf}	[<i>N</i>]	síla sevření
F _{Mmin}	[<i>N</i>]	minimální montážní předpětí
F _{Mmax}	[<i>N</i>]	maximální montážní předpětí
F _i	[<i>N</i>]	síla potřebná k vyvození předpětí
F_p	[N]	síla předpětí
F _{Pmax}	[<i>N</i>]	radiální síla na plochu kontaktu
F_{R2}	[<i>N</i>]	celková radiální síla při provozním stavu 2
F_{Ri}	[<i>N</i>]	radiální síla jednotlivých provozních stavů
F _{Rmax}	[N]	maximální radiální provozní síla v jednom šroubu

F _{Smax}	[N]	maximální axiální zatížení šroubu
$F_{s,Rd}$	[N]	únosnost v prokluzu
$F_{t,Ed}$	[N]	maximální axiální síla ve šroubu
$F_{t,Rd}$	[N]	únosnost v tahu
F_Z	[N]	ztráty předpětím
Н	[mm]	celková výška ložiska
H_1	[mm]	výška vnějšího věnce ložiska
H_2	[mm]	výška vnitřního věnce ložiska
I_3	$[mm^4]$	kvadratický moment v jádře závitu
I_{Bers}^{H}	$[mm^4]$	kvadratický moment deformačního válce
I_{Bers}^V	$[mm^4]$	kvadratický moment deformačního kužele
I_{Bers}^{Ve}	$[mm^4]$	kvadratický moment deformačního kužele k ose symetrie
I _{Bers}	$[mm^4]$	kvadratický moment otvoru pro šroub
I_{BT}	$[mm^4]$	kvadratický moment kontaktu součástí
I_n	$[mm^4]$	kvadratický moment dříku šroubu
J _e	[mm]	průměr roztečné kružnice děr ve vnějším věnci
Ji	[mm]	průměr roztečné kružnice děr ve vnitřním věnci
K_e	[mm]	průměr otvorů pro šrouby ve vnějším věnci
K_i	[mm]	průměr otvorů pro šrouby ve vnitřním věnci
L_1	[mm]	délka dříku šroubu
L_G	[mm]	deformovaná délka závitu v záběru
L_{Gem}	[mm]	délku závitu v sevření
L_H	[mm]	délka deformačního válce
L_k	[mm]	svěrná délka
L_M	[mm]	deformovaná délka matice v záběru
L_s	[mm]	délka šroubu
L_{SK}	[mm]	délka deformovaní části hlavy šroubu
L_V	[mm]	délka deformačního kužele
M_{Ki}	[Nm]	klopný moment jednotlivých provozních stavů
Р	[mm]	rozteč závitu
P_r	[N]	provozní síla
R_a	[mm]	vnější poloměr plochy v kontaktu
R_{ES}	[MPa]	jmenovitá mez kluzu šroubu

R_{EP1}	[MPa]	mez kluzu materiálu 42CrMo4
R_{EP2}	[MPa]	mez pevnosti materiálu 42CrMo4
R_i	[mm]	vzdálenost od klopné hrany
R_{PS}	[MPa]	jmenovitá meze pevnosti v tahu šroubu
R_{PP1}	[MPa]	mez kluzu materiálu S355J0
R_{PP2}	[MPa]	mez pevnosti materiálu S355J0
$R_{P0,2}$	[MPa]	smluvní mez kluzu
S	$[mm^2]$	plocha průřezu šroubu
S_G	[—]	bezpečnost šroubu vůči prokluzu
S_F	[—]	bezpečnost šroubu vůči mezi kluzu
S_{F1}	[—]	hodnota bezpečnosti při provozním stavu č. 1
S_{F2}	[-]	hodnota bezpečnosti při provozním stavu č. 2
S _{sym}	[mm]	vzdálenost osy symetrie od osy šroubu
а	[mm]	vzdálenost provozní síly od osy symetrie
a_A	[-]	součinitel podle použitého typu utažení
a_K	[mm]	vzdálenost mezi hranou předepjaté oblasti a bodem K_G
b	[mm]	délka závitu
d	[mm]	velký průměr závitu šroubu
d_h	[mm]	průměr otovorů pro šrouby
d_L	[mm]	vnitřní průměr vnitřního věnce ložiska
d_m	[mm]	střední průměr ložiska
d_{m1}	[mm]	menší hodnota opsané a vepsané do šestihranu hlavy šroubu nebo matice
d_W	[mm]	vnější průměr dosedací plochy šroubu
d_1	[mm]	vnější průměr vnitřního věnce ložiska
d_2	[mm]	střední průměr závitu
d_3	[mm]	průměr jádra závitu
е	[mm]	vzdálenost roztečné kružnice otvoru k hraně plochy v kontaktu
f_u	[MPa]	jmenovitá mez pevnosti spojovaných součástí
f_{ub}	[MPa]	jmenovitá mez pevnosti
f_{V1}	[mm]	posunutí dosedací plochy šroubu V1
f_{V2}	[mm]	posunutí dosedací plochy šroubu V2
f_{VK1}	[mm]	posunutí bodu K1
f _{vк2}	[mm]	posunutí bodu K2

f_{yb}	[MPa]	jmenovitá mez kluzu
f_Z	$[\mu m]$	celková hodnota velikosti vtisknutí
f_1	$[\mu m]$	hodnota velikosti vtisknutí závitu
f_2	$[\mu m]$	hodnota velikosti vtisknutí hlavy šroubu a matice
f_3	$[\mu m]$	hodnota velikosti vtisknutí součástí
h_{min}	[mm]	minimální délka spojovaných součástí
k	$[mmN^{-1}]$	tuhost
k_b	$[mmN^{-1}]$	tuhost šroubu
k_m	$[mmN^{-1}]$	tuhost spojovaných součástí
k_P	[-]	bezpečnost vůči vzniku plastické deformace
k_s	[—]	součinitel pro šrouby v obyčejných otvorech
k_2	[—]	součinitel pro šroub bez zapuštěné hlavy
l_A	[mm]	vzdálenost mezi bodem K_G a místem působení provozní síly
n	[—]	zátěžový součinitel
$n_{\check{ ext{S}}}$	[—]	počet šroubů
n_P	[—]	počet třecích ploch
r_i	[mm]	vnitřní poloměr plochy v kontaktu
r_s	[mm]	roztečná kružnice otvorů pro šrouby
t	[mm]	rozteč šroubů
t_p	[mm]	menší z tlouštěk desek pod hlavou šroubu nebo maticí
и	[mm]	vzdálenost vnitřní hrany v kontaktu k osy symetrie
W	[—]	koeficient druhu šroubového spoje
у	[—]	poměr průměrů
¢	[°]	roztečný úhel otvorů pro šrouby
\propto_A	[—]	součinitel druhu utažení
β_G	$[mm^{-1}N^{-1}]$	ohybová tuhost závitu v záběru
β_{Gem}	$[mm^{-1}N^{-1}]$	ohybová tuhost závitu v sevření
β_{GM}	$[mm^{-1}N^{-1}]$	ohybová tuhost částí závitu v záběru
β_M	$[mm^{-1}N^{-1}]$	ohybová tuhost matice v záběru
eta_L	[—]	poměr délek
β_S	$[mm^{-1}N^{-1}]$	celková ohybová tuhost šroubu
β_{SK}	$[mm^{-1}N^{-1}]$	ohybová tuhost uvažované části hlavy šroubu
eta_1	$[mm^{-1}N^{-1}]$] ohybová tuhost dříku šroubu

<i>Ү</i> м2	[—]	součinitel únosnosti šroubů
<i>Y</i> мз	[—]	součinitel únosnosti v prokluzu
δ	[mm]	deformace
δ_G	$[mmN^{-1}]$	tuhost závitu v záběru
δ_{Gem}	$[mmN^{-1}]$	tuhost závitu v sevření
δ_{GM}	$[mmN^{-1}]$	tuhost částí závitu v záběru
δ_M	$[mmN^{-1}]$	tuhost matice v záběru
δ_P	$[mmN^{-1}]$	tuhost spojovaných součástí
δ_P^H	$[mmN^{-1}]$	tuhost deformačního válce
δ_P^V	$[mmN^{-1}]$	tuhost deformačního kužele
δ_P^*	$[mmN^{-1}]$	tuhost spojovaných součástí u excentrického sevření
δ_P^{**}	$[mmN^{-1}]$	tuhost spojovaných součástí u excentrického sevření a zatížení
δ_S	$[mmN^{-1}]$	celková tuhost šroubu
δ_{SK}	$[mmN^{-1}]$	tuhost uvažované části hlavy šroubu
δ_{VA}	[mm]	axiální posunutí hlavy šroubu vlivem síly F_A
μ	[-]	součinitel tření
σ_{Smax}	[MPa]	axiální napětí ve šroubu
Φ_{en}^{*}	[-]	factor zatížení
arphi	[°]	vrcholový úhel deformačního kužele

SEZNAM OBRÁZKŮ

Obr. 1.1 Kombinovaný skládkový stroj	10
Obr. 2.1 Jednořadá kulová dráha	12
Obr. 2.2 Dvouřadá kulová dráha	13
Obr. 2.2 Dvouřadá kulová dráha	13
Obr. 2.3 Konstrukce velkoprůměrových ložisek otočí	14
Obr. 2.4 Ložisko otoče se zatíženým vnitřním kroužkem	15
Obr. 2.5 Málokladkový opěrný systém	15
Obr. 2.6 Kladkový věnec lopatového rypadla	16
Obr. 2.7 Kladkový věnec rypadla s vlečným korečkem	16
Obr. 3.1 Ložisko se zkříženými válečky	17
Obr. 3.2 Ložisko se zkříženými válečky	17
Obr. 3.3 Rozměry ložisko se zkříženými válečky	18
Obr. 3.4 Schématické zatížení ložiska se zkříženými válečky	19
Obr. 3.5 Záporné axiálního zatížení ložiska se zkříženými válečky	19
Obr. 3.6 Kladné axiálního zatížení ložiska se zkříženými válečky	19
Obr. 3.7 Radiální zatížení ložiska se zkříženými válečky	20
Obr. 3.8 Zatížení klopným momentem na ložisko se zkříženými válečky	20
Obr. 3.4 Spodní stavba – nárys	21
Obr. 3.5 Spodní stavba – řez	21
Obr. 3.5 Rozměry šroubového spoje	22
Obr. 3.6 Rozměry šroubového spoje	23
Obr. 3.7 Montážní a pracovní diagram předepjatého šroubového spoje	24
Obr. 3.8 Pneumatický utahovák	25
Obr. 3.8 Hydraulický utahovák	26
Obr. 3.9 Hydrocam bolt tensioners	27
Obr. 4.1 Vzdálenosti jednotlivých šroubů od klopné hrany stroje	29
Obr. 4.2 Svěrná délka šroubu	30
Obr. 4.3 Tuhost spojovaných součástí – náhrada komolými kužely	33
Obr. 4.4 a) tuhost spojovaných součástí – náhrada dle VDI 2230	34
Obr. 4.4 b) výpočtový model spojovaných součástí	34
Obr. 4.5 tuhost spojovaných součástí – náhrada dle VDI 2230	36
Obr. 4.6 Určení zátěžového součinitele z deformace předepjatého šroubového spoje	37
Obr. 4.7 a) Parametry určující zátěžový součinitel dle VDI 2230	38
Obr. 4.7 b) zvolený typ spoje	38
Obr. 5.1 Náhrada ložiska se zkříženými válečky (osmina modelu)	44
Obr. 5.2 plošného prvků QUAD 4	45
Obr. 5.3 Výpočtový model spodní stavby (osmina modelu)	45
Obr. 5.4 Náhrada šroubového spoje	46
Obr. 5.5 Okrajové podmínky (osmina modelu)	47
Obr. 5.6 Výpočtový model	47
Obr. 5.7 Výsledek zátěžového stavu č. 2	48
Obr. 5.8 Síly působící na elementy Beam - zátěžový stav č. 1	49

Obr. 5.9 Síly působící na elementy Beam - zátěžový stav č. 2	49
Obr. 5.10 Síly působící na elementy Beam - zátěžový stav č. 3	50
Obr. 5.11 Síly působící na elementy Beam - zátěžový stav č. 4	50
Obr. 5.12 Síly působící na elementy Beam - zátěžový stav č. 5	51
Obr. 5.13 Síly působící na elementy Beam - zátěžový stav č. 6	51
Obr. 5.14 Síly působící na elementy Beam - zátěžový stav č. 7	52
Obr. 5.15 Napětí na vnějších žebrech - zátěžový stav č. 2	53
Obr. 6.1 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 1	54
Obr. 6.2 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 2	55
Obr. 6.3 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 3	55
Obr. 6.4 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 4	56
Obr. 6.5 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 5	56
Obr. 6.6 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 6	57
Obr. 6.7 Změna počtu šroubů - Síly působící na elementy Beam - zátěžový stav č. 7	57
Obr. 6.8 a) stávající tvar vnějšího žebra	58
Obr. 6.8 b) navrhovaná změna tvaru vnějšího žebra	58
Obr. 6.9 Napětí na vnějších žebrech po změně tvaru - zátěžový stav č. 2	58

Tab. 1 Rozměry ložiska	18
Tab. 2 Zátěžové stavy	20
Tab. 3 Rozměry šroubového spoje	22
Tab. 4 Mechanické vlastnosti šroubů třídy pevnosti 12.9	23
Tab. 5 Rozměry spojovaných součástí	23
Tab. 6 Mechanické vlastnosti materiálu spojovaných součástí	24
Tab. 7 Vzdálenosti jednotlivých šroubů od klopné hrany stroje	28
Tab. 8 Výsledné hodnoty bezpečnosti dle VDI 2230	41
Tab. 9 Výsledné hodnoty kontrolovaných kritérií	43
Tab. 10 Hodnoty tloušťky jednotlivých částí	45

SEZNAM PŘÍLOH

- Příloha č. 1 Tabulka hodnot zátěžového součinitele n
- Příloha č. 2 Tabulka hodnot velikosti vtisknutí
- Příloha č. 3 Tabulka hodnot součinitele \propto_A podle způsobu utažení
- Příloha č. 4 Tabulka součinitel statického tření μ
- Příloha č. 5 Navrhovaná změna rozmístění šroubů

Příloha č. 1 - Tabulka hodnot zátěžového součinitele n

l _A /h		0	,00			0	,10		0,20			≥ 0,30				
a _k /h	0,00	0,10	0,30	≥ 0,50	0,00	0,10	0,30	≥0,50	0,00	0,10	0,30	≥ 0,50	0,00	0,10	0,30	≥ 0,50
SV 1	0,70	0,55	0,30	0,13	0,52	0,41	0,22	0,10	0,34	0,28	0,16	0,07	0,16	0,14	0,12	0,04
SV 2	0,57	0,46	0,30	0,13	0,44	0,36	0,21	0,10	0,30	0,25	0,16	0,07	0,16	0,14	0,12	0,04
SV 3	0,44	0,37	0,26	0,12	0,35	0,30	0,20	0,09	0,26	0,23	0,15	0,07	0,16	0,14	0,12	0,04
SV 4	0,42	0,34	0,25	0,12	0,33	0,27	0,16	0,08	0,23	0,19	0,12	0,06	0,14	0,13	0,10	0,03
SV 5	0,30	0,25	0,22	0,10	0,24	0,21	0,15	0,07	0,19	0,17	0,12	0,06	0,14	0,13	0,10	0,03
SV 6	0,15	0,14	0,14	0,07	0,13	0,12	0,10	0,06	0,11	0,11	0,09	0,06	0,10	0,10	0,08	0,03

Table 5.2/1. Load introduction factors n for joint types SV 1 to SV 6

Gleichmäßig verspannter und konstruktiv sinnvoller Trennfugenbereich interfaces evenly clamped and appropriate from the design point of view

PŘÍLOHA Č. 2 - TABULKA HODNOT VELIKOSTI VTISKNUTÍ

Average roughness height	Loading	Guide values for amount of embedding in µm				
<i>R_z</i> accord- ing to DIN 4768		in the thread	per head or nut bearing area	per inner interface		
< 10 µm	tension/compression	3	2,5	1,5		
	shear	3	3	2		
10 μm up to	tension/compression	3	3	2		
< 40 μm	shear	3	4,5	2,5		
40 μm up to	tension/compression	3	4	3		
< 160 μm	shear	3	6,5	3,5		

Table 5.4/1. Guide values for amounts of embedding of bolts, nuts and compact clamped parts made of steel

3 - TABULKA HODNOT SOUČINITELE \propto_A PODLE ZPŮSOBU UTAŽENÍ

Tightening factor α _A	Scatter $\frac{\Delta F_{\rm M}}{2 \cdot F_{\rm Men}} = \frac{\alpha_{\rm A} - 1}{\alpha_{\rm A} + 1}$	Tightening technique	Adjusting technique	Remarks		
1,05 to 1,2	±2% to ±10%	Elongation-control- led tightening with ultrasound	Echo time	 Calibrating values n Allow for progressiv <i>l_k/d < 2</i> Smaller errors with a coupling, larger with 	ecessary e increase in errors at direct mechanical i indirect coupling	
1,1 to 1,5	±5 % to ±20 %	Mechanical elongation measurement	Adjustment via longitudinal measurement	 Exact determination ience of the bolt is r depends substantial measuring techniqu Allow for progressive <i>I_K/d</i> < 2 	of the axial elastic resil- ecessary. The scatter ly on the accuracy of the e. e increase in errors at	
1,2 to 1,4	±9% to ±17%	Yield-controlled tightening, motor or manually operated	Input of the relative torque/rotation-angle coefficient	The scatter in preload mined by the scatter in Here, the bolts are din a design of the bolts for	is substantially deter- the bolt yield point. thensioned for F _{Mmin} ; or F _{Mmax} with the tighten-	
1,2 to 1,4	±9 % to ±17 %	Angle-controlled tightening, motor or manually operated	Experimental deter- mination of pre-tight- ening torque and angle of rotation (steps)	ing factor α_A therefore does not apply to the tightening techniques.		
1,2 to 1,6	±9% to ±23%	Hydraulic tightening	Adjustment via length or pressure measurement	 Lower values for lon (l_K/d ≥ 5) Higher values for sh 	g bolts ort bolts $(l_g/d \le 2)$	
1,4 to 1,6	±17% to ±23%	Torque-controlled tightening with torque wrench, indicating wrench, or precision tightening spindle with dynamic torque measurement	Experimental deter- mination of required tightening torques on the original bolt- ing part, e.g. by measuring bolt elon- gation	Lower values: large number of cali- bration or check tests (e.g. 20) required; low scatter of the transmitted torque (e.g. ±5 %) necessary	Lower values for: • small angles of rotation, i.e. rela- tively stiff joints • relatively soft mating surface ¹) • mating surface ¹) • mating surfaces which are not inclined to "seize", e.g. phosphated or with sufficient lubri- cation	
1,6 to 2,0 (friction coeffi- cient class B)	±23 % to ±33 %	Torque-controlled tightening with torque wrench, indicating wrench, or precision tightening spindle with dynamic torque measurement	Determination of the required tightening torque by estimating the friction coeffi- cient (surface and lubricating condi- tions)	Lower values for: Measuring torque wrenches with steady tightening and for precision tightening spindles Higher values for:	 Higher values for: large angles of rotation, i.e. rela- tively resilient joints and fine threads high mating surface hardness combined with a rough surface 	
1,7 to 2,5 (friction coeffi- cient class A)	±26 % to ±43%			Signaling or auto- matic tripping torque wrenches		
2,5 to 4	±43% to ±60%	Tightening with impact wrench or impact wrench with momentum control	Calibration of the bolt by means of re- tightening torque, made up of the required tightening torque (for the esti- mated friction coeffi- cient) and an additional factor	 Lower values for: large number of calibration tests (re-tightening torque) on the horizontal segment of the bolt characteristic momentum transfer free from play 		

Příloha č. 4 - Tabulka součinitel statického tření μ

Friction coefficient class	Range for $\mu_{\rm G}$ and $\mu_{\rm K}$	Selection of typical examples for	
		Material/surfaces	Lubricants
A	0,04 to 0,10	metallically bright black oxide phosphated galvanic coatings such as Zn, Zn/Fe, Zn/Ni Zinc laminated coatings	solid lubricants, such as MoS ₂ , graphite, PTFE, PA, PE, PI in lubricating varnishes, as top coats or in pastes; liquefied wax wax dispersions
В	0,08 to 0,16	metallically bright black oxide phosphated galvanic coatings such as Zn, Zn/Fe, Zn/Ni Zinc laminated coatings Al and Mg alloys	solid lubricants, such as MoS ₂ , graphite, PTFE, PA, PE, PI in lubricating varnishes, as top coats or in pastes; liquefied wax; wax dispersions, greases; oils; delivery state
		hot-galvanized	MoS ₂ ; graphite; wax dispersions
		organic coatings	with integrated solid lubricant or wax dispersion
		austenitic steel	solid lubricants or waxes; pastes
с	0,14 to 0,24	austenitic steel	wax dispersions, pastes
		metallically bright phosphated	delivery state (lightly oiled)
		galvanic coatings such as Zn, Zn/Fe, Zn/Ni Zinc laminated coatings adhesive	none
D	0,20 to 0,35	austenitic steel	oil
		galvanic coatings such as Zn, Zn/Fe; hot-galvanized	none
E	≥ 0,30	galvanic coatings such as Zn/Fe, Zn/Ni austenitic steel Al, Mg alloys	none

PŘÍLOHA Č. 5 - NAVRHOVANÁ ZMĚNA ROZMÍSTĚNÍ ŠROUBŮ