
VYSOKÉ UČENI TECHNICKE V BRNE
BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJN ÍHO I NŽENÝRSTV Í

ÚSTAV MATEMAT IKY

FACULTY OF MECHANICAL ENGINEERING
INSTITUTE OF MATHEMATICS

STOCHASTIC PROGRAMMING ALGORITHMS

ALGORITMY STOCHASTICKÉHO PROGRAMOVANÍ

D I P L O M O V Á PRACE
MASTER'S THESIS

AUTOR PRACE
AUTHOR

V E D O U C Í P R Á C E
SUPERVISOR

Be. LUBOM ÍR KL IMEŠ

RNDr. PAVEL POPELA, Ph.D.

BRNO 2010

Vysoké učení technické v Brně, Fakulta strojního inženýrství

Ústav matematiky
Akademický rok: 2009/2010

Z A D Á N Í D I P L O M O V É P R Á C E

student(ka): Bc. Lubomír Klimeš

který/která studuje v magisterském navazujícím studijním programu

obor: Matematické inženýrství (3901T021)

Ředitel ústavu Vám v souladu se zákonem č.l 11/1998 o vysokých školách a se Studijním a
zkušebním řádem V U T v Brně určuje následující téma diplomové práce:

Algoritmy stochastického programování

v anglickém jazyce:

Stochastic Programming Algorithms

Stručná charakteristika problematiky úkolu:

Student si prohloubí znalosti problematiky algoritmů stochastického programování se zaměřením
na problematiku efektivní modifikace a implementace dekompozičních algoritmů. Pro vybranou
třídu dekompozičních algoritmů nalezne vhodné úpravy a heuristická doplnění. Vytvoří knihovnu
programových nástrojů použitelnou pro aplikace v inženýrském návrhu.

Cíle diplomové práce:

Vybraná třída algoritmů bude implementována a testována s cílem přispět k řešení rozsáhlých
inženýrských úloh.

Seznam odborné literatury:
Kail, P., Wallace, S.W. Stochastic Programming, Wiley and Sons, 1993.
Birge J.R., Louveaux, F. Introduction to Stochastic Programming, Springer 1996

Vedoucí diplomové práce: RNDr. Pavel Popela, Ph.D.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2009/2010.

V Brně, dne 20.11.2009

L.S.

prof. RNDr. Josef Šlapal, CSc.
Ředitel ústavu

prof. RNDr. Miroslav Doupovec, CSc.
Děkan fakulty

Summary

Stochastic programming and optimization are powerful tools for solving a wide variety of
engineering problems including uncertainty.

The progressive hedging algorithm is an effective decomposition method for solving
scenariobased stochastic programmes. Due to the vertical decomposition, this algorithm
can be implemented in parallel thereby the computing time and other resources could be
considerably spared.

The theoretical part of this master's thesis deals with mathematical and especially
with stochastic programming. Further, the progressive hedging algorithm is presented
and discussed in detail.

In the practical part, the original parallel implementation of the progressive hedging
algorithm is suggested, fruitfully discussed and tested to simple problems. Furthermore,
the presented parallel implementation is used for solving the continuous casting process
of steel slabs and the results are appraised.

Keywords

optimization, stochastic programming, scenariobased programmes, progressive hedging
algorithm, parallelization, continuous casting process

Abstrakt

Stochastické programování a optimalizace jsou mocnými nástroji pro řešení široké škály
inženýrských problémů zahrnujících neurčitost.

Algoritmus progressive hedging je efektivní dekompoziční metoda určená pro řešení
scénářových stochastických úloh. Z důvodu vertikální dekompozice je možno tento al

goritmus implementovat paralelně, čímž lze významně ušetřit výpočetní čas a ostatní
prostředky.

Teoretická část této diplomové práce se zabývá matematickým a zejména pak stocha

stickým programováním a detailně popisuje algoritmus progressive hedging.
V praktické části je navržena a diskutována původní paralelní implementace algo

ritmu progressive hedging, která je pak otestována na jednoduchých úlohách. Dále je uve

dená paralelní implementace použita pro řešení inženýrského problému plynulého odlévání
ocelové bramy a na závěr jsou získané výsledky zhodnoceny.

Klíčová slova

optimalizace, stochastické programovaní, scénářové úlohy, progressive hedging algoritmus,
paralelizace, plynulé odlévání oceli

KLIMEŠ, L. Stochastic programming algorithms. Brno: Vysoké učení technické v Brně,
Fakulta strojního inženýrství, 2010. 95 s. Vedoucí diplomové práce RNDr. Pavel Popela,
Ph.D.

Affirmation

I declare that the master's thesis is the result of my own work and all used sources are
duly listed in the bibliography.

Be. Lubomír Klimeš

Acknowledgement

I would like to thank RNDr. Pavel Popela, Ph.D. for supervising my master's thesis, for
all his support, advice, valuable comments and suggestions.

I would also like to express my gratitude to Ing. Tomáš Mauder for his advice and
fruitful discussions.

My special thanks belong to my parents for their support and love and to Tereza for
her love, forbearance and support.

Be. Lubomír Klimeš

Contents

1 A i m s of the Master ' s Thesis 3

2 Int roduct ion 5

3 Opt imiza t ion 7
3.1 Mathematical Programming 7
3.2 Deterministic Programming 8
3.3 Stochastic Programming 9
3.4 Two-Stage Stochastic Programming 13

3.4.1 Two-Stage Stochastic Programmes with Recourse 14
3.4.2 Scenario-Based Stochastic Programmes 16

3.5 Multi-Stage Stochastic Programming 18

4 Progressive Hedging A l g o r i t h m 19
4.1 Aggregation Principle for One-stage Stochastic Programmes 20
4.2 Progressive Hedging Algorithm for Multi-Stage Stochastic Programmes . . 22

5 Para l le l Implementat ion of Progressive Hedging A l g o r i t h m 29
5.1 Implementation Approaches to Progressive Hedging Algorithm 29
5.2 Principle of Parallel Implementation 31

5.2.1 Main Program 31
5.2.2 Message Passing Interface 33
5.2.3 G A M S 33

5.3 How Does It Work? 35
5.4 One-Stage Progressive Hedging Algorithm 36

5.4.1 One-Stage P H A Example 36
5.5 Two-Stage P H A Modification 39

5.5.1 Two-Stage P H A Application: Farmer's Problem 42

6 Continuous Cas t ing Process of Steel Slabs 49
6.1 Continuous Casting Method 49
6.2 Mathematical Model of Continuous Casting Process 51
6.3 Results for Continuous Casting Process 55
6.4 Two-Stage Stochastic Programme for Continuous Casting Process 55

6.5 Results for Two-Stage Continuous Casting Process 58

7 Conclus ion 65

References 67

Used Symbols and Abbrevia t ions 72

A Solver C O N O P T 73
A . l Reduced Gradient Method 74
A. 2 Generalized Reduced Gradient Method 75

B Opt ima l i ty Condi t ions 77
B. l Unconstrained Problems 77
B.2 Optimality Conditions for Constrained Problems 78

B.2.1 Geometric Interpretation of Optimality Conditions 78
B.2.2 Fritz John Conditions for Inequality Constraints 80
B.2.3 Karush-Kuhn-Tucker Conditions for Inequality Constraints 81
B.2.4 Fritz John Conditions for Inequality and Equality Constraints . . . 83
B. 2.5 Karush-Kuhn-Tucker Conditions for Inequality and Equality Con

straints 85
B. 3 Second-Order Optimality Conditions 86

C Augmented Lagrangian Techniques 89
C. l Concept of Penalty Function 89
C.2 Penalty Function Approach 91
C.3 Exact Penalty Functions 92
C.4 Augmented Lagrangian Penalty Functions 92

C. 4.1 Problems With Equality Constraints 93
C.4.2 Problems With Equality and Inequality Constraints 93

D W h a t Is on the C D 95

CHAPTER 1

Aims of the Master's Thesis

T H E main aims of this master's thesis are following:

1. To formulate basic ideas and principles of stochastic programming in which the un
certainty is modelled by random variables. Further, to describe the main approaches
wait-and-see and here-and-now of stochastic programming and to list common de
terministic equivalents to the stochastic models. Furthermore, to deal more pre
cisely with two-stage stochastic programming and with the scenario-based approach
that will play the crucial role in this thesis. To give the basic ideas of multi-stage
stochastic programming and to define basic qualitative characteristics to compare
the results acquired by various approaches of stochastic programming to each other.

2. To describe in detail the progressive hedging algorithm - a method for solving
scenario-based stochastic problems. To present the theory of this algorithm based on
the scenario aggregation principle. To state that algorithm for one-stage stochastic
problems and further, to generalize it for multi-stage case.

3. Due to the fact that the progressive hedging algorithm in each iteration requires to
solve scenario-independent subproblems, to deal with the parallelization of solving
those subproblems on hardware with several processors. The using of parallelism
will save the time needed for computing since in the same time several subproblems
will be solved simultaneously. To deal with the parallelization via Message Passing
Interface, MPI , which is the A P I 1 library allowing the parallel computing. Further,
to design and program a software in C++ for solving scenario-based stochastic
programmes by using G A M S optimization software and the progressive hedging
algorithm. Furthermore, to discuss in detail the parallel implementation of the
two-stage progressive hedging algorithm that can be very often used in practical
applications. To show the behaviour of the progressive hedging algorithm in simple
illustrative problems that could help the reader to understand the fundamental
principles of the progressive hedging algorithm and also of stochastic programming.
The main outcome will be universal implementations of the one-stage and especially

1 Application Programming Interface

3

4 Chapter 1 Aims of the Master's Thesis

of the two-stage progressive hedging algorithm that can be easily applied to various
optimization problems.

4. To apply all foregoing knowledges and to test the parallel implementation of the
progressive hedging algorithm for the technical problem of the continuous casting
process of steel slabs. This problem will be scenario-based and will embrace the
uncertainty via possible breakdown in the continuous casting machine. To derive in
detail the model from the second-order partial differential equation and its two-stage
scenario-based modification. Finally, to present the results obtained by using the
parallel implementation of the progressive hedging algorithm and to discuss the
suitability of the stochastic programming approach.

CHAPTER 2

Introduction

T ? H E mathematical programming and optimization is an interdisciplinary branch of sci
ence in which mathematics plays a significant role. The aim of optimization is to establish
an appropriate model of a particular problem and find its optimal solution (or optimal
solutions) that satisfies constraints and conditions of that model and minimizes or maxi
mizes its objective function.

People are dealing with decision problems and in certain sence with optimization
from ancient times. The rapid enlargement of computers in 1950s brings the intensive
theoretical research in this branch. Recently, due to the rich market competition, there is
an intention to design, manufacture and distribute goods with minimal loads and maximal
profit, and therefore, the optimization and methods of mathematical programming are
powerful tools to realize this idea.

In case all parameters and data of a given problem are fully known, we talk about
deterministic programming (see [2, 12]). Unfortunately, in many engineering problems
those parameters and data are often not fully known and such problems embrace the
randomness which brings the uncertainty to those models. The stochastic programming
deals with problems under uncertainty in which the randomness is modelled by random
variables for which the probability distribution is known.

In this thesis, we will deal with stochastic programming and optimization. The thesis
can be divided into two parts - theoretical and practical.

In the theoretical part, in particular in Chapter 3 and 4, we will describe the basis of
stochastic programming - the stochastic programme and its deterministic equivalents that
correctly interpret the randomness, here-and-now and wait-and-see decision approaches
and we will introduce the concept of scenarios and scenario-based programmes. Further,
we will especially deal with two-stage stochastic programming in which the decision maker
takes two decisions - the first decision is taken when no outcome of random parameters
is known and the second one is taken when a particular realization of random parameters
has been observed and is already known. We will also wish to compare results obtained by
using various approaches of stochastic programming and therefore, the useful character
istics will be presented for this purpose. Further, we will present the progressive hedging
algorithm - a decomposition algorithm based on the aggregation principle for solving

5

6 Chapter 2 Introduction

scenariobased stochastic programmes that was introduced by American mathematicians
Rockafellar and Wets in 1980s (see [19, 23]).

Chapters 5 and 6 deal with the practical part of this thesis. Chapter 5 is concerned with
a parallel implementation of the progressive hedgign algorithm whose theoretical principles
are presented in Chapter 4. The parallelism is provided by the feature of the progressive
hedging algorithm that decomposes an original problem into independent subproblems for
each particular scenario. Hence, in case that the multiprocessor hardware is available,
these independent subproblems can be solved simultaneously. This arrangement will
save the computing time since n subproblems can be solved simultaneously on n parallel
processors in roughly same time as one subproblem on oneprocessor machine. In this
chapter, the onestage and twostage parallel implementations of the progressive hedging
algorithm, programmed in C++ programming language with using G A M S optimization
software as a solver for subproblems and Message Passing Interface, MPI , an A P I for
parallel computing, will be greatly discussed and tested for simple problems.

In Chapter 6, we will test the parallel implementation from the foregoing Chapter 5
for the particular engineering problem to the continuous casting process of steels slabs
that will embrace the uncertainty via possible breakdown in a cooling part of continuous
casting machine. We will assemble the programme from the secondorder partial differen

tial equation describing the process of continuous casting and its twostage scenariobased
modification. Using that model, we will test the parallel implementation of the progres

sive hedging algorithm described in the foregoing chapters. In conclusion, we will also
determine qualitative characteristics of acquired solution and will discuss the suitability
of using the stochastic programming approach.

In Appendix A, the reduced gradient (RG) and the generalized reduced gradient
(RGR) methods are in detailed discussed. In Appendix B, the optimality conditions
for unconstrained and also for constrained problems are presented. In Appendix C, the
topics of the penalty functions and the augmented Lagrangian function are discussed.

The research leading to the results of Chapter 5 was supported by project from M S M T
of the Czech Republic no. 1M06047 and the obtained results of this chapter will be applied
by a grant from the Grant Agency of the Czech Republic reg. no. 103/08/1658 and by a
research plan from M S M T of the Czech Republic no. MSM0021630519.

The research leading to the results of Chapter 6 was supported by F M E B U T project
B T U BD13002 "Matematické modelování a optimalizace v průmyslových aplikacích" and
the results contained in Chapter 6 will be applied by a grant GACR106/08/0606 "Mod

elování přenosu tepla a hmoty při tuhnutí rozměrných systémů hmotných kovových ma

teriálů" and GACR106/09/0940 "Numerický a stochastický model plynule odlévaných
ocelových předlitků obdélníkového profilu".

CHAPTER 3

Optimization

In this chapter, we will introduce the concept of mathematical programming, determin
istic and especially stochastic optimization. Further, we will present several qualitative
characteristics useful for the comparison of results acquired by different approaches. At
the end of this chapter, we will deal with two-stage and multi-stage stochastic program
ming.

The mathematical programming is an interdisciplinary branch of science dealing with
problems to optimize a value of objective function with respect to given constraints. To
optimize means that we are looking for a particular optimal solution that minimizes or
maximizes an objective function and satisfies given constraints. The using of minimization
or maximization of an objective function depends on a character of a particular problem to
be solved. Note that the maximization problem can be easily transformed to the equivalent
minimization problem and conversely, the minimization problem can be transformed to
the equivalent maximization problem (see e.g. [1]).

Nevertheless, the optimal solution usually cannot be chosen arbitrarily. The con
straints mentioned above specify the feasible set as a subset of finite-dimensional space
and the optimal solution has to be searched only in this feasible set. The constraints can
be divided into two classes - the first class contains inequality constraints and the second
one is formed by equality constraints. Remark that the term mathematical programme
or just programme is often used instead of mathematical programming problem.

Now, we can formulate the general mathematical programming problem: Find a solu
tion £cm; n that

3.1 Mathematical Programming

minimizes fix)
subject to i — 1,... rn

hj(x) = 0,
x e x,

j — 1,... ,n

7

8 Chapter 3 Optimization

where X is a subspace of TV-dimensional space, X C K. , / , gi for all z = 1,..., m and
hj for all j = 1,... , n are functions —> M. Our goal is to find at least one optimal
solution cc m i n to 3.1. The feasible set C is determined as

C = {x e X | ̂ i(cc) < 0 for a l H = 1,..., m; hj(x) = 0 for all j — 1,..., n} .

Note that we usually will omit the sentence "Find a solution ccmm that...". We can also
use more compact vector notation and rewrite (3.1) to the following form:

minimize f(x)
subject to g(x) < 0, (3.2)

h(x) = 0,
x e x ,

where g and h are vector functions, g: ¥LN —> M m , h: M.N —> M n . Note that also the
following form of mathematical programme is sometimes used instead of (3.1) or (3.2):

? e argmin{/(a;) \ x eC = {x e X\ g(x) < 0, h(x) = 0} }, (3.3)

where "argmin" denotes the set of all optimal solutions (see e.g. [17]).

We have to note here that the so-called optimality conditions play the significant role
in mathematical programming. This topic is discussed in Appendix B.

3.2 Deterministic Programming

We already know what the mathematical programming is and what is its main goal. In
this section, we will describe the class of deterministic programmes which is a subset of
all mathematical programmes. Deterministic programme is a mathematical programme
for which all data are deterministic and fully known. By the term "data" we mean
all parameters and coefficients of the problem to be solved. In other words, there is
no uncertainty in a deterministic model. This is the most significant difference in the
comparison with stochastic programmes.

The deterministic programme has the form:

minimize f(x,a)
subject to g(x, a) < 0, (3.4)

h(x, a) — 0,
x e x ,

where a e RK is a X-dimensional constant vector. We have used the vector a in (3.4) to
emphasize that all parameters are constant and fully known (cf. (3.6)). The special case
of (3.4) is a programme having all components (objective function and constraints) linear
and X being the convex polyhedral set. Such a programme is called a linear deterministic
programme. Its form is:

minimize cTx
subject to Ax = 6, (3.5)

x e x ,

3.3 Stochastic Programming 9

where c is N-dimensional vector, A is (m + n) x N matrix and b is (m + n)-dimensional
vector. In the so-called standard form of a linear programme, the requirement of non-
negativity x > 0 of variable x is added to (3.5). Note that there exist many impor
tant linear programmes having special structures that lead to special algorithms. A n
example of special structure can be the staircase structure: coefficients of matrix
A = (aij)j=i,...,m+n; J=I,...,N satisfy the condition â - = 0 for all j > i.

3.3 Stochastic Programming

In the foregoing section, we discussed the concept of deterministic programming and de
terministic models. In practical problems and real applications, the using of deterministic
models is bounded since the real models include parameters that are not fully known.
In other words, the real problems include a certain level of uncertainty and the using of
deterministic models can lead to distorted or even completely incorrect results (see [2]).

In general, different approaches for modelling problems including uncertainty may be
used. One approach of them is stochastic programming in which the uncertain parameters
are modelled by random variables (see [2, 17]).

Defini t ion 3.1. Let the triplet (fi, P) be a probability space. The mapping £: Q —> R
is called a random variable if for all x G R holds

{uo: £(a>) < x} G £/ .

The general form of stochastic programme is

minimize f(x,$,)

subject to g(x,£.) < 0, (3.6)
h(x,£) = 0,

x e x,

where £ = (£i, • • •, £ x) T , £(^0 : & is a finite-dimensional random vector formed by
random variables on the probability space (Q, P). The mapping £: Q —> M x induces a
probability measure V on the space M x with the Borel algebra SB as underlying cr-algebra
(see [30, 8, 9]). Let us denote the corresponing probability space by (E,&,V). Thus, / ,
g and h in (3.6) are functions / : RN x E -> R, g: RN x E -»• Rm and h: RN x E -»• Rn.

The feasible set C(£) of (3.6) can be written in the form

C(£) = {xeX\ g(x, i) < 0; h(x, £) = 0} .

Observe that the model (3.6) is in fact the deterministic model (3.2) in which some
constant parameters have been replaced by random parameters. The programme (3.6) is
called an underlying mathematical programme.

The concept of random variable on the probability space included in the model allows
to deal with the probability distribution instead of constant parameters in case of deter
ministic programming. We will assume that the probability distribution of £ is completely
known.

Figures 3.1 and 3.2 illustrate original two-dimensional feasible set including random
parameters. The feasible set C(£) is determined by the quadratic inequality constraint

10 Chapter 3 Optimization

A X2 A X2

(£ 1 X 1 - 6) 2 + 6 + x 2 < 0

^ - i

> x . 1

\N 1

L

xi - 4 < 0

I -> Xi

x i - 4 < 0

> x i

Figure 3.1: A n example: the feasible set C(£) including random influences

(£ i x i - 6) 2 + 6 + x 2 < o

i x i - 4 < 0

A x 2

> X i

(C i x i - 6) 2 + 6 + * 2 < 0

i x i - 4 < 0

> X l

Figure 3.2: A n example: the feasible set C(£) including random influences

(£i^i — + £3 + X2 < 0, by the linear inequality constraint x i — 4 < 0 and by the
requirement of non-negativity of variable x, x\ > 0, x<i > 0. The figures show the feasible

set for three different realization of random parameters: £ x = £2, £,l)T = (§, h ,

e = (zuie3)T = {11-if and e = (e ? , e 2

3 , a T = (hi-if-

But what is the meaning of programme (3.6)? When a particular realization of random
parameters £ p is observed and becomes known, one can replace £ in (3.6) by particular
£ p and the meaning of the model is clear. But what is the meaning of given programme
before the realization of £ is observed?

Our aim is to find a solution to the programme (3.6). There are two basic approaches.
One of them is to wait for the particular realization £ p of £ and then solve the formed
deterministic programme. This technique is called the wait-and-see approach. On the
other hand, the decision maker usually cannot wait to observe the realization of He
has to take the decision before the realization of £ becomes known and he wants to find
a solution that will be in some sence "optimal" for each realization of This approach
is called here-and-now. In this case, we will need a tool that allows us to properly deal
with random parameters in (3.6).

As we already mentioned, the model (3.6) is not well defined and this fact lead to the
concept of deterministic equivalents that correctly interpret random parameters in (3.6).

3.3 Stochastic Programming 11

Deterministic Equivalents

In this section, we will deal with the programme (3.6). Our goal is to find its deterministic
equivalent - the model that correctly interprets random parameters included in (3.6).
There are several approaches how the deterministic equivalents of the objective function
and of the feasible set can be defined. Hence, we may consider two classes: deterministic
equivalents of the objective function and deterministic equivalents of the feasible set. By
the combination of elements of those two classes, the deterministic equivalents of (3.6)
can be assembled. We list below several typical deterministic equivalents of programme
(3.6) (see e.g. [17, 30]).

Wait-and-see Programme

The wait-and-see deterministic equivalent of programme (3.6), WS programme, is defined
by

z w s = E € (mm {f(x(£),Z) | z(0 G C(£) for all £ e s}) (3.7)

and its optimal solution is denoted by x w s . Unfortunately, above wait-and-see approach
usually cannot be used due to the lack of information about the future. Therefore, here-
and-now approach and its following here-and-now deterministic equivalents are commonly
used instead of (3.7).

Individual Scenario Programme

This programme is based on the idea that the random parameters in the underlying
programme (3.6) are replaced by a typical realization £ s . Such a particular realization £ s

is called a scenario. Hence, the individual scenario programme (IS programme) has the
form

minimize f(x,$,s)
subject to g(x,£s)<0, (3.8)

h(x,e) = 0,
x e x .

Its optimal solution is denoted x . This IS programme is useful in case the expert is able
to determine a typical realization of

"Fat solution" Programme

The idea of "fat solution" programme is similar to the individual scenario approach. But
instead of a typical representative £ s is considered the worst realization of £ that can
occur. Thus, we expect that the decision is then robust to all possible realizations of
The form of this so-called M M programme is

minimize sup/(cc,£)

subject to g(x,£) < 0 almost surely, (3.9)
h(x,£) = 0 almost surely,

x e x.

12 Chapter 3 Optimization

Its solution is denoted x u u . Almost surely means that given constraints are satisfied for
all £ G S except of a set {£: £ e S} whose measure is zero.

Observe that the evaluation of objective function (the calculation of supremum) is
from the computational point of view very expensive and leads to big costs. Therefore,
this schema is usually not appropriate to use.

Expected Value Programme

The idea of E V programme is to utilize a characteristic of random variable. In this case,
the expected value E of random vector £ is used to remove the uncertainty of (3.6). The
expected value programme (EV programme) has the form

minimize / (x, E (£))

subject to g(x,E{£)) < 0, (3.10)

/i(x,E(0) =0 ,
x e x.

Its optimal solution is denoted cc E V . Note that for the calculation of expected values, the
requirement of complete available information about random vector £ is crucial.

Expected Objective Programme

The EO programme is based on the expected value incorporated in the objective function.
Its form reads

minimize E^ (/(;£,£))

subject to g(x,£) < 0 almost surely, (3-11)
h(x,£) = 0 almost surely,

x e x.

The solution of EO programme is denoted xEO. In case that the variance of objective
function has to be taken into account, the objective of (3.11) can be replaced, for instance,
by

E € (/ (* , £)) + A ^vax € (/ (* , £)) ,

where A > 0 is a parameter. Remark that the reason for the square root is the unit
compatibility.

In what follows, we will define some helpful qualitative characteristic that will be
useful for the comparison of above approaches to each other (see [2]).

Defini t ion 3.2. Consider the E V programme (3.10) and let cc E V be its optimal solution.
Then, the quantity

EEV = Ez(f(xEy,£)) (3.12)

is called the expected result of using EV solution, E E V .

The above definition of the expected result of using E V solution leads to the useful
characteristic VSS.

3.4 Two-Stage Stochastic Programming 13

Defini t ion 3.3. Let E E V be the expected result of using E V solution (3.12) and xEO be
the optimal solution to the EO programme (3.11). Then the quantity

VSS = E E V - E ^ (/ (a ; E O , ^)) (3.13)

is called the value of stochastic solution, VSS.

Remark that the value of K^(f(xEO, £)) is actually the value of objective function of
programme (3.11) for x = xEO, i.e., for its optimal solution. This value is usually denoted
zEO, i.e.,

zEO = EJf(xEO,£)). (3.14)

Hence, VSS = E E V - z EO

What is the meaning of VSS? The value of stochastic solution is a useful characteristic
since it expresses how suitable is to use the E V approach instead of EO approach: the
using of E V approach and E V solution is suitable for small values of VSS. On the other
hand, the VSS gives us the information "how many" could be gained by solving EO
programme instead of simpler E V programme. Unfortunately, the weakness is that the
computation of VSS requires both EO solution and E V V .

The second useful characteristic, the expected value of perfect information, is intro
duced below.

Defini t ion 3.4. Let zEO be the value of objective function of EO programme for its
optimal solution xEO and let z w s be defined by (3.7). Then, the expected value of perfect
information, EVPI , is defined as follows,

E V P I = zEO - z w s . (3.15)

The expected value of perfect information represents "how many" should be gained
when the perfect information about the future is available. In other words, this value
represents how many the decision maker should be ready to pay for the perfect and
accurate information about future.

Nonetheless, since there is usually no additional information about the future that
could be "bought" in technical application, the value of stochastic solution, VSS, is a
more relevant characteristic of using stochastic programming than the expected value of
perfect information, E P V I .

The following theorem states the relationship between values of z w s , zEO and E E V .

Theorem 3.1. Let z w s , zEO and EEV be defined by (3.7), (3.14) and (3.12), respectively.
Then, it holds the following inequality,

z w s < zEO < E E V .

Proof. See [2, page 140]. •

3.4 Two-Stage Stochastic Programming

In the foregoing section, we discussed problems of stochastic programming in which the
decision maker had to take the only one decision. In this section, we will deal with

14 Chapter 3 Optimization

programmes that are "discretized" in time and in which the decision maker will take two
decisions in two different moments in time.

From the decision maker point of view, we can divide decisions to be taken into two
types according to the available information (see [2]):

1. the decision that the decision maker takes at the beginning of the experiment. In
this moment, there is no available information about the future particular realization
of random parameters. In other words, this decision has to be taken before the
realization of random parameters is observed. Such a decision is called a first-stage
decision and the period (the beginning of the experiment) when this decision is
taken is called the first stage.

2. the decision that the decision maker takes after the realization of random parameters
is observed and becomes known. Such a decision is called a second-stage decision
and the period when this decision is taken is called the second stage.

We denote the first-stage decision by x and the second-stage decision by y(£). Observe
that y(£) is actually vector function of Note that the second-stage decision y may
depend also on the first-stage decision, but this dependence is not obvious explicitly in
opposite to the dependence of y on the realization of

The moments when the decision maker takes the decision are called stages. Note that
there is a difference between stages and time periods. In general, stages do not correspond
to time periods and a stage can include several time periods. Hence, the stage decision
can consist of several time period decisions (see [17]).

3.4.1 Two-Stage Stochastic Programmes with Recourse

The significant programme in stochastic programming is the two-stage stochastic programe
with recourse (see [2, 12]). The reasons and the main idea are following: in the first-stage,
the decision maker takes the decision x without any information about the realization of

More specifically, in the first stage there is no realization of £ available. Then, the
programme continues to the second stage. In the second stage, the particular realization
of £ is observed and becomes known for the decision maker. The desicion maker takes
the second-stage decision y. The purpose of the second-stage decision y is to correct
prospective mistakes or unfeasibility that may be caused by the fist-stage decision x.
This type of the second-stage decision is called the recourse. Note that the second stage is
actually the deterministic programme since the random parameters already take particular
values.

We will introduce the linear case of the two-stage stochastic programme with fixed
recourse and further, we will generalize it to the non-linear case.

The two-stage linear programme with fixed recourse reads: Find x and y such that

minimize

subject to Ax = b.
T{£)x + Wy(£) = M O

(3.16)
almost surely,
almost surely.

The vector q in (3.16) in the second stage represents the costs of recourse y. The deter
ministic constraints Ax = b and x > 0 are connected to the first-stage decision and the

3.4 Two-Stage Stochastic Programming 15

Figure 3.3: Two-stage decisions structure and the requirement of nonanticipativity

constraints T(£)x + Wy(£) = and y(£) > 0 are connected to the both first-stage
and second-stage decisions.

The generalization of programme (3.16) for the non-linear case may have the following
form: Find x and y such that

minimize f(x) + Q{x)
subject to gl(x) < 0, (3.17)

h\x) = 0,

where Q(x) = E € (Q (cc,£)) and

Q(x,£)=mm{q(y(£),£)}

subject to ti(x,£) + g2(y{$,),< 0 almost surely, (3.18)

t2(x,£) + h 2 (y = 0 almost surely.

Observe that programmes (3.16) and (3.17) search in their second stages for the minimum
over y. This means that they are looking for the cheapest recourse.

Similarly to the linear case, functions g1 and h1 are linked to the first-stage decision
and functions ti,t2, g2 and h2 are linked to the both first-stage and second-stage decisions.

We assume that all these functions are continuous in x for any fixed £ and measurable
in £ for any fixed x since under this assumption the function Q(x,£) is measurable and
Q well-defined. The function Q is called the recourse cost function.

The very important thing in two-stage (and also in multi-stage) stochastic program
ming is that the first-stage decision has to satisfy the requirement of nonanticipativity.
The decision maker has to take the first-stage decision before any observation of random
parameters £ is available and known. The requirement of nonanticipativity means that
the first-stage decision has to be independent on the future realization of In other
words, the first-stage decision is constant for whatever happens in the future. This idea
is schematically shown in Figure 3.3.

We introduced the two-stage linear and non-linear stochastic programmes with re
course. We have to note that the second-stage decision - the recourse - is required only

16 Chapter 3 Optimization

when the recourse action is needed and this recourse brings additional costs. Thus, we
assume that in case the recourse action is not required, the second-stage decision y = 0
and the recourse cost is zero. These programmes are called stochastic programmes with
recourse, (see [17]).

On the other hand, there exist many practical problems where the second-stage deci
sion is not only the recourse action and is also required by the second-stage constraints.
This means that this second-stage decision cannot be omited and must be taken also in
case the recourse action is not needed. These programmes are called two-stage stochastic
programmes in general, (see [17]).

The third case is the programme in which the second stage is composed of the combi
nation of two discussed approaches - the first part is the decision required by the second
stage itself and the second part is the recourse decision. These programmes are called
two-stage stochastic programmes with recourse, (see [17]).

3.4.2 Scenario-Based Stochastic Programmes

In this chapter, we discuss several stochastic programmes and approaches. Observe that
they include very frequently the expected values in the objective function or/and in the
constraint equations. These expectations are in general in the integral form (see [17, 12, 2])

Ee(/(aj,0) = / f{x,£)dP

and this fact brings computational problems since it is hard and expensive to compute
these expectations repeatedly. Moreover, these integrals are often multidimensional.

Because of these reasons, many practitioners often deal with scenario-based pro
grammes and scenario analysis (see [23]). This approach is also very convenient in case
the random parameter £ has the finite discrete distribution, i.e., |S| < oo. The idea of
scenario-based programme follows.

The uncertainty and random events are modelled by scenarios. The scenario s is
actually a set of particular values £ s of random parameters. The set of all scenarios is
denoted by

S = {si\i = l,...,L}

where L is the number of scenarios. We can take all scenarios in case the set S is small.
In other hand, if the set H is large, we can, for instance, ask a specialist in desired branch
to choose several scenarios according to their relevance.

We denote ps the probability that the scenario s G S occurs, ps = P(£ = £s) > 0 and
J2sesPs = 1- Hence, the expected value of some function £>(•,£) is then easily

E ^ (- , o) = £ ^ (- , r) -
s e s

The advantage is that we can put out all scenarios having ps = 0 that cannot occur. In
the following paragraphs, we will use the notation ys = y(£s), qs = q($,s), Ws = W($,s),

3.4 Two-Stage Stochastic Programming 17

Ts = T(£s) and hs = h($,s). The scenario-based two-stage stochastic linear programme
has the form

minimize cTx + ^ psQ(x, £s)

subject to Ax = 6, (3.19)
x > 0,

where

Q(x,£a) = mjn{qjy a }

subject to T scc + V F s t / s = h s , (3.20)
y s > o .

We can rewrite the above programme to the more explicit structure that is often used:

minimize cTx + ^ PsQ^ys

subject to Ax = b,
TlX + WlVl =hx, (3.21)
T2x + W2y2 = h2.

Tsx + Wsys = hs-,
* > 0 , y i > 0 , . . . , y s > 0 .

It is obvious that the size of programme (3.21) very quickly grows with the number
of scenarios. The non-linear case of the two-stage scenario-based stochastic programme
reads:

minimize f(x) + ^ psQ(x, £s)
ses

subject to g1(x)<0, (3.22)

h\x) = 0,

where

Q(x,£a) = Tmn{q(x,ya,£a)}

subject to *i(a!,0 + g2(y(£s), £s) < 0 almost surely, (3.23)

t2(x,£s) + h2(y(£s),£s) = 0 almost surely.

As we mentioned earlier, we require the fulfillment of nonanticipativity in stochastic
programmes. In the context of scenario-based programmes, this requirement means that
the first-stage solution x has to be scenario-independent. This can be ensured either
directly as in (3.22) or by adding the nonanticipativity constraints (see Sections 4.1, 4.2,
5.1) to the programme:

Vu,v G S : xu = xv.

18 Chapter 3 Optimization

3.5 Multi-Stage Stochastic Programming

The generalization of the two-stage stochastic programmes presented in the foregoing sec
tion leads to the multi-stage stochastic programmes. The main idea of those programmes
is following: there are several stages T (more than two) and the decision maker takes
his decisions sequentially and also the realizations of random parameters are sequentially
observed and become known. These actions proceed alternatively. This process for T
stages can be schematically illustrated as follows:

xi — • £ i — • x2(xl,£l) —• £2 —• x3(xl,x2,£l,£2) —>

*• £ 3 *• ••• > £t-i > xt(xi, • • • 1 xt-i, £ 1 , • • •, C t - i) *•
• • • — • £ T - i —>• XT(XU...,XT-U£1,...,£T-I) [—* £T\-

In general, the decision xt in stage t depends on all previous decisions X \ , . . . , xt-\ and
all realizations of random parameters . . . , £t_i- From the decision maker point of
view, the observation of £ T in square brackets after the last desicion XT is only additional
information and the decision maker cannot react to it.

Note that in multi-stage programmes there can occur the difficulty with possible de
pendencies of random parameters across stages or even within stages.

Also remark that the two-stage programme is actually the special case of multi-stage
programme.

Since this thesis is not aimed at multi-stage programming, we refer the reader to
[17, 2, 12] for detailed information about multi-stage programmes and their formulations.

CHAPTER 4

Progressive Hedging Algorithm

In this chapter, we will describe a progressive hedging algorithm - a method for solving
scenario-based stochastic optimization problems. At first, we will present this method and
its theory for one-stage optimization problems based on the scenario aggregation principle.
Further, we will generalize this algorithm for multi-stage optimization problems.

The progressive hedging algorithm was developed and introduced by R. J.-B. Wets
and R. T. Rockafellar in 1980s, more detailed information the reader can find in their
papers [23] and [19].

Let us recall that the scenario-based optimization models and scenario analysis are
mathematical tools for modelling and analysing the stochastic optimization problems. The
uncertainty in scenario-based models is modelled by scenarios - this means that stochastic
parameters can reach only specified values and each setting of stochastic parameters is
modelled by one scenario (see Subsection 3.4.2). Denote the set of all scenarios by S,

S={8

i\i = l,...,L},

where L is the number of all scenarios. For each scenario s G S, we have a following
subproblem:

minimize f(x,s) (4-1)
subject to x G Cs,

where f(x, s) is the objective function and the set Cs is the feasible set for the given sce
nario s. Assume that this subproblem has the optimal scenario-solution xs for all s G S.
The scenario analysis deals with the analyse of all scenario-solutions X S , investigates if
there is a general trend or if there are clusters of solutions. Then, a weighted "combina
tion" of scenario-solutions XS is constructed and again analyzed by the scenario analysis,
etc. Our aim is to find one solution that will be in some sence optimal when an arbitrary
scenario situation occurs.

Let us denote by ps for all s G S the weight corresponding to the scenario s and
its solution xs, where ps > 0 and J2s&sPs — 1- We can consider that weight ps as the
probability that a particular scenario s occurs. The weights may be obtained, for instance,

19

20 Chapter 4 Progressive Hedging Algorithm

from experts according to the relative importance of each scenario. Further, define an
"average" solution x as

x = ^psxs.
ses

We can consider this combination of scenario-solutions as a defence against uncertainty
of the model.

On the other hand, if we want to find the solution that will be resistant and robust with
respect to all possible scenarios that can occur, we should solve the following problem:

minimize '^psf(x,s) (4-2)
s e s

subject to x G P | Cs.

The solution x* of the problem (4.2) is the solution that hedges all possible realizations
of uncertain parameters that can occur.

Nevertheless, there are several reasons to deal with scenario analysis instead of solving
the problem (4.2) directly. One reason is that the problem (4.2) is often very large and
difficult to solve and exceeds computational capacity. Other reason is that the weights
can be changed and the decision maker can easily observe how these changes in weights
change the solution. The third significant reason for the scenario analysis is that the
parallel computing facility can be used to process several scenarios at the same time and
to speed up the calculations.

4.1 Aggregation Principle for One-stage Stochastic Pro
grammes

In this section, we will present a method for one-stage stochastic programming problems
based on the scenario aggregation principle that "blends" scenario-solutions Xs of prob
lems (4.1) to the overall solution that will converge to the solution x* of the problem
(4.2). Note that the presented algorithm is not only one using the aggregation principle.

Assume that all scenario-solutions Xs of subproblems (4.1) for s G S are known. The
solution x = J2sesPsXs is said to be implementable which means that it is scenario-
independent. A solution x is said to be admissible if it is feasible for all scenario subprob
lems, i.e., for each s G S (see [23]). In other words, admissibility means that x G f)S£sCs,
where Cs is a feasible set for a given scenario s.

Our goal is to find the solution x* to the problem (4.2) that is feasible which means
both implementable and admissible (see [23]). On the other hand, admissibility is not a
property of solution that has to be unconditionally satisfied. We can imagine that the
decision maker can accept a solution that is "slightly" unadmissible, for instance, if the
violation of feasible set Cs happens for a paricular scenario s that is unlikely to occur.
Hence, we can accept a solution that is nearly admissible.

However, in the algorithm described below, we will look for a solution that will be
feasible, thus, it will be implementable and also admissible. This method will generate
from scenario-solutions Xs a sequence of solutions x\ j = 1,2,... that will converge to
the solution x* of (4.2). The terms xJ are obtained by increasing the requirement that the
scenario-solutions Xs to the subproblem (4.1) have to be implementable. The algorithm
follows.

4.1 Aggregation Principle for One-stage Stochastic Programmes 21

One-stage Progressive Hedging Algorithm

Ini t ia l izat ion. Choose the penalty parameter g > 0 and the termination parameter
e > 0. Set w°(s) = 0 for each s G S, x° = 0 and j = 1.

M a i n part.

1. For each s G 5* solve the problem

minimize f(x, s) + w3 1(s) • x + \Q

subject to x G CS

and denote its solution as x

2. Calculate

x — x J'-l

se5
a?

If the termination condition

5 = áV 1 — x3

ses
xJS - X3 < €

(4.3)

(4.4)

holds, then stop, x3 is the solution to the problem (4.2) with given tolerance
e. Otherwise, calculate

w3 (s) = wj~1(s) + g(xjs — x3)

for each s G S, set j = j'• +1, and return to step 1 of the main part of algorithm.

Several comments to the algorithm follow. Observe that the algorithm generates a
sequence of solutions converging to the solution x* of the problem (4.2), but it only
requires the capability to solve scenario-based subproblems (4.1) and linear-quadratic
perturbed versions of them.

Indeed, in the objective function (4.3), there are two so-called penalty terms in the
comparison with the objective function of subproblems (4.1). This arrangement is slightly
based on the augmented Lagrangian function. This topic is described in detail in Ap
pendix C.

Recall that our goal is to find a solution that will be optimal when an arbitrary scenario
occurs. This means that we need to find x3 that is close to x3S for all s G S. Hence, we
see that due to the quadratic penalty term ^g\\x — ay _ 1 | | 2 , the algorithm is "forced" to
seek x3S close to x3~l. Further, the linear penalty term w3~1{s)T • x, specifically the term
w3~1(s) penalizes the difference between x3S and x3 from the foregoing iteration of the
algorithm.

Also notice that the termination criterion (4.4) of the algorithm "measures" how close
x3 is to x3S for all s G S and how x3 varies with j. Hence, 8 in (4.4) is called the distance
parameter. If the square root of the sum of squares of differences in all coordinates in
vectors x3S and x3 plus the square of the difference between x3 and x3~x is less than
e > 0, then the loop of algorithm is terminated since the solution with given tolerance e
has been found, otherwise the algorithm proceeds to the next iteration.

22 Chapter 4 Progressive Hedging Algorithm

Finally, remark that norms used above are Euclidean norms that are defined by

i
II* - yII = (0&i - yif + • • • + (XN - VN)2) 2 ,

where N is the dimension of both vectors x and y. Nevertheless, one can imagine to use
another norm than Euclidean, for instance norms \\x — y\\i = \xi — y%\ or \\x — y\\oo =
= maxj \xi -yi\.

4.2 Progressive Hedging Algorithm for Multi-Stage Sto
chastic Programmes

In the foregoing section, we presented the algorithm for solving one-stage stochastic pro
gramming problems based on the aggregation principle. In this section, we will extend our
considerations and will present a modification of that algorithm for multi-stage stochastic
programming problems. This algorithm is called the progressive hedging algorithm.

At the beginning, recall basic ideas of multi-stage stochastic programming. The main
distinction between one-stage and multi-stage stochastic programming is that a multi
stage case has more decision stages and the decision maker takes more decisions than
only one. More precisely, the decision maker has to take the first-stage decision before a
realization of stochastic parameters £ s is known. Then, the programme continues to the
second stage, a particular realization £ s of random parameters becomes available and the
decision maker continues with his second-stage decision. Then, next particular realization
of random parameters is again observed and the process continues to the decision of the
third stage, etc. Hence, the process of making decisions and spreading information is
schematically following:

1 s t decision x1 —> £s is observed —> 2 n d stage decision cc 2(£ s) —>

It is evident that the question "What does the decision maker know and when does he
know it?" is crucial in multi-stage stochastic programming. Note that the decision stages
necessarily need not correspond to time periods, but we will keep this notation.

Let t — 1,..., T be the stage index and assume that the decision maker is confronted
with scenario s. Then xt(s) denotes a decision with respect to the scenario s in stage t.
The mapping X: S -> R" 1 x • • • x R"^

T

X(s) = (a; i (s) , . . . ,x T (s))

that assigns to each s G S a vector consisting of decisions in particular stages is called a
policy. The very important property of policies is that if there are two scenarios sl and
s-7 that are for the decision maker undistinguishable under available information at time
t, then decisions Xi(sl),..., x^s1) and c c i (V) , . . . , cc4~(V) generated by the policy X have
to be identical. Thus, it must hold

xT(sl) = xT(sj)

for all r = 1,..., i. This consideration is formalized below.

4.2 P H A for Multi-Stage Stochastic Programming Problems 23

t = l t = 2 t = 3 t = 4

I I I

Figure 4.1: A n example: a scenario structure

Let be the coarsest partition of set of all scenarios S in sets Ak with property that
if Ak G and scenarios s\ s J G then the scenarios sl and s J are undistinguishable up
to time t. This means that the decision Xt(-) may only depend on the information that
is available at time t. In other words,

xt(-) must be constant on Ak for each Ak G S?t for all £ = 1,..., T. (4.5)

Example of Scenario Structure and Its Partitions

To make clear the meaning of scenario structure and its partitioning, see Figure 4.1
and 4.2. Figure 4.1 describes the scenario structure in time from the decision maker
point of view for some four-stage case. It is obvious that at the beginning, in stage
one, there is no available significant information that could help the decision maker to
distinguish between all scenarios. This means that the decision in the first stage has to
be identical for all scenarios s £ 5. More presicely, the first component X\{s) of policy
X(s) = (xi(s),..., x±(s)) is not a function of s, but a constant, say a.. Hence, the policy
X is X(s) = (a , •, •, •) for each s G S.

In the second stage, new information is observed and the decision maker can distinguish
two classes of scenarios. The first class A\ includes scenarios s1, s2, s3 and s 4 and the
second class A2 includes scenarios s 5, s 6, s7 and s8. The new available information can
help the decision maker to identify the class including the scenario he is confronted with.
But the decision maker still cannot distinguish between all scenarios in both classes A\
and A-i. Hence, if we are confronted with a scenario from class A\, then the second stage
decision is, say, (3. On the other hand, in case a scenario is from class A2, the second
stage decision x2 = 7. Thus, the policy is X(s) = (a, (3, •,•) for s G {s1, s2, s3, s 4} and
X(s) = (a , 7 , •,•) for s G {s 5 , s 6, s7, s8}. Similarly, in the third stage, new information
again becomes available and the decision maker can refine two classes Ai and A2 from
the second stage to new four classes A1, A2, A3 and A±. Each new class Ak, k = 1,..., 4

24 Chapter 4 Progressive Hedging Algorithm

?2 ^3 ?4

• s 1 • s 1 • s 1

A l
• s 1 Ai

• s 2 • s 2

A l
• s 2

A l
• s 2 A 2

• s 3 • s 3

A l
• s 3

A 2

• s 3 A 3

• s 4

A l
• s 4 • s 4

A 2

• s 4 A 4

• s 5

A l
• s 5 • s 5

A 3

• s 5 A 5

• s 6 • s 6

A 2

• s 6

A 3

• s 6 A 6

• s 7 • s 7

A 2

• s 7

A 4

• s 7 A 7

• s 8 • s 8 • s 8

A 4

• s 8 A 8

Figure 4.2: A n example: partitions &t

includes two scenarios that are undistinguishable for the decision maker. In the third
stage, the policy X is

x r) = \ (a ' ^ e ' ") s e { s 3> s 4}>
l S J I (a,7,CO ^ { ^ , 4

k (a , 7, »7,-) s e { s 7 , s 8 } .

In the fourth stage, new information again becomes known and allows to the decision
maker to refine four classes of scenarios from the third stage to new eight classes A^,
k = 1,... ,8, whereas each class A& includes only one scenario sk. Hence, the decision
maker can identify each scenario and the policy X is

(a ß,8,6) s = s1

(a ß,ö,i) s = s2

(a ß,e,K) s = s3

(a ß,e,\) s = s4

(a 7, Cm) s = s5

(a 7,C^) s = s6

(a 7,»7,£) s = s7

(a 7,»7,7t) s = s8

Now, we know how does the structure of policy X look like, but the open question is, of
course, particular values of vectors a,..., 7r. Figure 4.2 describes the partitions £Pt in
sets Ak for t — 1,..., 4.

4.2 P H A for Multi-Stage Stochastic Programming Problems 25

Now, we can define the set ,JV of all implementable policies by the condition (4.5),

J/ = {X = (ah, . . . , xr): S -> R W 1 x ••• x \ xt is constant
T

on each A G 2?t for all £ = 1,..., T}.

Note that available information is usually increasing in time. Hence, the partition &t+i
in time t + 1 is a refinement of partition ^ in time t. A policy X is said admissible if
the following condition

X G V = {X | X (s) G Cs for all s e S }

holds, which means that the policy X satisfies the explicit constraints for all s G S.

Now, we can formulate the multi-stage scenario-based stochastic programming prob
lem: Find a policy X: S -> R" 1 x • • • x R"T_ that

T

minimize y ^ p s / f x (s) , (4.6)

subject to X e

Our aim is to find the solution to (4.6) that is feasible. A solution is feasible if it is
both implementable and admissible. Similarly as in one-stage case, the requirement of
admissibility can be waived if the violation of constraints is not "hard" or if the violation
occurs only for unlikely scenario or scenarios. On the other hand, the requirement of
implementability is crucial and cannot be violated or waived.

In what follows, we will introduce the multi-stage version of the algorithm described
in the foregoing section based on the aggregation principle. Define for each e & t

VAk = Ps
seAk

and
xt(Ak) = psxt(s).

PAk s e A k

This vector xt(Ak) is a weighted "average" of xt(s) of all scenarios s G Ak in time t.
Then, by setting

xt(s) = xt{Ak) for all s G Ak,

we will get an implementable "average" policy X(s) = (xi(s),..., XT(S)). The mapping
J : X i—> X is a projection1, depends on weights ps and is called the aggregation operator.

The progressive hedging algorithm, P H A , presented below is the method based on
the scenario aggregation principle and allows by blending solutions of particular scenario
problems to generate a sequence of solutions converging to the solution of the problem
(4.6) that is both implementable and admissible.

a mapping J is called a projection if it holds that J is linear and J 2 = J

26 Chapter 4 Progressive Hedging Algorithm

Progressive Hedging Algorithm

Ini t ia l izat ion. Choose the penalty parameter g > 0 and the termination parameter
e > 0. Set W°(s) = (0 , . . . , 0) for all s e S, X°(s) = (0 , . . . , 0) for all s G S and

M a i n part.

1. For all s G <S solve the problem

T

T

minimize f(x1,...,xT,s) + ^2(wl {s)T-xt + \o
t=i

xt - x\ 1(

subject to Xi,..., xT G Cs (4.7)

and denote its solution as X3\s) = (x{(s),..., xJ

T(s)

2. Calculate for all s G and £ = 1,..., T an "average" solution X

1
PAk s e A k

xJ

t(s) = y Vsxiis)

If the termination condition

i

f E E N _ 1 w - ^ w i r + i ; E f t N w - ^ w | | T < ^ (4- 8)
\t=lse5 t=lse5 /

holds, then stop, X J (s) = (x{(s),..., a?r(s)) i s the solution to (4.6) with given
tolerance e. Otherwise, for all t = 1,..., T and s G «S update the term

iuj(s) = u?t _ 1 (s) + e (^(s) -

set j = j + 1 and return to the step 1 of the main part of the algorithm.

Several comments and remarks follow. Observe that similarly as in one-stage case, the
progressive hedging algorithm produces a sequence of solutions to the problem (4.6), but it
only requires the capability to solve scenario-based subproblems and their linear-quadratic
perturbed versions.

If we will consider weights ps as probabilities, then we can interpet the "average"
decision xt as the conditional expectation of xt, xt(s) = E(xt \ Ak)(s).

Notice that the purpose of the term ^ | |a? t — ifĉ 1112 is to penalize the "distance"
between xt and x\~x, and therefore, the algorithm is "forced" to minimize this term to
find an optimal solution. The meaning of terms wt is the "prices" that are linked with
the implicit constraints that feasible solutions - policies - have to be implementable.

The initial value of W°(s) for all s G S is adjusted to (0 , . . . ,0), but we can use
any W°(s) satisfying E s e A f e PsWt(s) = 0 for all Ak G ^ t and all t = 1,... ,T . Also the

initial value X can be adjusted (instead of (0 , . . . ,0)) to "average" solution of initial
scenario-solutions and this arrangement can very effectively improve the behaviour of the
algorithm. Especially, this setting can increase the number of iterations needed to safisfy
the given tolerance e.

4.2 P H A for Multi-Stage Stochastic Programming Problems 27

We have to note here that the behaviour of the progressive hedging algorithm sig
nificantly depends on the choice of penalty parameter g. Unfortunately, the weakness
of the progressive hedging algorithm is that there is no general rule how to determine
the penalty parameter to obtain a "good" behaviour and the penalty parameter Q has
to be determined by experiments. For special case of linear mixed-integer2 programmes,
J.-P. Watson, D. L. Woodruff and D. R. Strip suggested in their paper [22] techniques
how to determine the appropriate penalty parameter and other improvement of using the
progressive hedging algorithm. Also remark that the penalty parameter can change with
iterations which brings an opportunity for heuristics.

The progressive hedging algorithm was also successfully tested for optimum design
problems in civil engineering (see [30, 31]).

Note that the reader can also find useful advice and discussion about the progressive
hedging algorithm, numerical techniques and software in [6].

Suppose that the objective functions f(x\,..., xn, s) and the feasible sets Cs are con
vex for all s 6 S. Furthermore, denote X* as a unique optimal solution to the problem
(4.6) and assume that the condition

{W G JV1-1 — W(s) is normal vector to the set Cs at the point X*(s)} = {0}

holds for all s G 5, where JV1- denotes the orthogonal complement of JV. Then, the
sequence of XJ generated by the progressive hedging algorithm converges to X*. For
more information about the convergence in convex and also in non-convex problems see
[19].

In our considerations, we have assumed that the weights ps are obtained from experts
regarding to the importance of each scenario. Note that it is usually very useful to analyze
how the solution reacts when the weights are changed. R. J.-B. Wets in [23] presented
the method how to obtain the solution for the changed weights when the solution x* for
particular weights is known.

2mixed-integer programmes are programmes in which a part of variables is restricted to be integers

CHAPTER 5

Parallel Implementation
of Progressive Hedging Algorithm

I N the foregoing chapter, we presented the progressive hedging algorithm - the method
for solving scenario-based problems in stochastic optimization. The properties of this
method allow us to use the parallel approach instead of classical serial techniques. This
parallel implementation can significantly speed up the computing and save the time.

In this chapter, we will describe the parallel implementations of the progressive hedg
ing algorithm, we will start with one-stage stochastic programmes and will illustrate its
behaviour to a simple problem. Further, we will also describe the implementation for
two-stage stochastic programmes and will test it for the farmer's problem.

5.1 Implementation Approaches to Progressive Hedging
Algorithm

The very important fact is that the progressive hedging algorithm belongs to the class
of decomposition methods. The crucial principle of those methods is that the original
problem to be solved is decomposed into smaller subproblems and these subproblems are
solved separately.

In particular, the progressive hedging algorithm decomposes the original problem into
independent scenario-based subproblems. This so-called vertical decomposition occurs in
the first step of the main part of the algorithm (see page 26). Indeed, the original problem
is decomposed to L subproblems

minimize f(xu ...,xT,s) + ^2[wJ

t

 1(s)T -xt + \o
t=i

subject to Xi,..., XT G C.

for each s G S, where |>S| = L. >r eacn s t o, wnere \D\ = Li.
The requirement of nonanticipativity is ensured by the penalty term involving xt

x{~l{s) with t — 1 in the objective function of each subproblem.

29

30 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

A l l these subproblems are independent to each other, and therefore, there is no rule in
what order these subproblems have to be solved. In other words, the algorithm continues
with step 2 as soon as all subproblems are solved.

The classical approach of step 1 is the serial implementation. This means that all
subproblems are solved sequentially, one by one. This is schematically shown in Figure
5.1.

solving
the subproblem
for scenario s1

solving
the subproblem
for scenario s 2

s
solving

the subproblem
for scenario s1

solving
the subproblem
for scenario s 2

solving
> the subproblem

for scenario sL

Figure 5.1: Serial approach - one by one

Denote the computing time needed for solving one subproblem for a particular scenario
by r and the total number of iterations of the progressive hedging algorithm by N. Hence,
the computing time needed for solving all subproblems in one iteration is Tj*e r = TL and
the total computing time consumed by solving subproblems is T t

s

o t a l = TNL, where the
superscript s stands for serial.

On the other hand, assume that we have a computing hardware with n processors.
Thus, these n processors can solve n subproblems simultaneously - in parallel. This idea
is shown in Figure 5.2.

solving
the subproblem
for scenario s

solving
the subproblem
for scenario s 2

solving
the subproblem
for scenario s"

Figure 5.2: Parallel approach - n subproblems are solved simultaneously

Usually, the number of processors n is less than the number of subproblems (scenarios)
L . Thus, the paralle
loop is repeated

part is repeated in a loop until all subproblems are solved, i.e., the
-times, where \x] denotes the smallest integer greater than x. In

other words, the first loop solves subproblems for scenarios s1, ..., sn. The second loop
computes subproblems for scenarios s n+l .,2n etc. Of course, in the last loop, the
number of used processors may be less than n. The schema of foregoing considerations
is shown in Figure 5.3. Note that this approach is actual
computing of n subproblems and a serial loop performed

Hence, the computing time needed for solving n subproblems in one loop is r and
the computing time needed for solving all subproblems in

ly the combination of parallel
- -times.
n

-iP
- iter r

TN

loops in one iteration of

Finally, the total computing time

-1 , where the superscript p stands for

the progressive hedging algorithm is X-

consumed by solving subproblems is T£OTG}

parallel.
Now, we can compare theoretical computing times for serial and parallel implemen

tation of the progressive hedging algorithm. Assume that the algorithm will reach the

5.2 Principle of Parallel Implementation 31

processor 1 processor 2 processor n

Figure 5.3: Parallel approach with loop

optimal solution in TV iterations. It is obvious that the total computing time consumed
by parallel implementation T t ^ t a l is less or equal than the total computing time consumed
by serial implementation TX total)

rps
1 total

TNL < TN rpp
± total-

The equality holds for the number of parallel processors n — 1, which is actually the serial
rpp

case. But with increasing n, n < L , the ratio T^T21 decreases and for n > L is constant
and equals to l

L'

5.2 Principle of Parallel Implementation

In this section, we will give and describe the concept of parallel implementation of the
progressive hedging algorithm. Note that this concept is, of course, not the only one that
can be implemented.

The concept that the author of this thesis decided to implement is following. The
main program is written in C++ programming language including the object-oriented
programming approach. The purpose of that main program is to drive the flow of the
algorithm and to make necessary computations. For the parallel running of optimization
subproblems is used the Message Passing Interface, MPI . A l l scenario subproblems are
solved by using G A M S which is a modelling system for mathematical programming. These
ideas are schematically shown in Figure 5.4. Also note that all implementations and
computing described in this thesis were realized in the operating system Linux Ubuntu
9.04 Jaunty Jackalope, 32 bits version.

5.2.1 Main Program

As we already mentioned, the main program is written in C++ including object-oriented
programming approach and consists of three fundamental classes. We suppose that the
reader is familiar with the basic ideas of object-oriented programming and with C++
programming language. The reader can find very detailed information about these topics
in [18].

32 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

mam program
in C++

MPI

GAMS

GAMS

GAMS

Figure 5.4: Concept of implementation

In the following, we will describe the framework of main program and the purposes of
its three fundamental classes: SCENARIO, SCENARIOS and P H A .

S C E N A R I O This class is the basic element of main program and its instance represents
one particular scenario that can occur. Its attributes (data) are particular values
of random parameters £ s , actual weights W and scenario solution X, the prob
ability ps that this scenario occurs and several other secondary data (see Section
4.2). Also several methods are implemented, but they are important only from the
programming point of view.

c l a s s SCENARIO {
p u b l i c :

d o u b l e * d a t a ;
VECTOR * w e i g h t s l ;
VECTOR * w e i g h t s 2 ;
VECTOR * s o l u t i o n l ;
VECTOR * s o l u t i o n 2 ;
i n t numParameters;
d o u b l e p r o b a b i l i t y ;
S C ENARIO(int, i n t) ;
SCENARIO(SCENARIO &);
"SCENARIO();

};

S C E N A R I O S The attributes of this class are the list of all scenarios, "average" solution
X and other secondary data. Further, several methods are implemented: method
for loading the scenario setting (particular values of random parameters and the
probability) from a text file, method for making G A M S source files, method for
loading solutions of subproblems from G A M S output LST files, methods for calcu
lating average solution X and the distance parameter 5, updating weights W and
several secondary methods.

c l a s s SCENARIOS {
p u b l i c :

SCENARIO ** s c e n a r i o s ;
VECTOR * a v e r a g e S o l u t i o n l ;
VECTOR ** a v e r a g e S o l u t i o n 2 ;
i n t n u m S c e n a r i o s ;
i n t numParameters;
i n t n u m V a r i a b l e s l ;
i n t n u m V a r i a b l e s 2 ;
d o u b l e r h o ;
SCENARIOS(char *, i n t , i n t) ;
"SCENARIOS () ;
v o i d c h a n g e R h o (d o u b l e) ;
v o i d c h e c k l n f e a s i b i l i t y (c h a r *, i n t) ;
v o i d u p d a t e A H W e i g h t s (double) ;

5.2 Principle of Parallel Implementation 33

v o i d p r i n t A H S c e n a r i o S o l u t i o n s (v o i d) ;
v o i d l o a d A H S c e n a r i o S o l u t i o n s F r o m L S T F i l e s (v o i d) ;
d o u b l e c a l c T e r m i n a t i o n C o n d i t i o n (v o i d) ;
v o i d c a l c A v e r a g e S o l u t i o n (v o i d) ;
v o i d r e a d S c e n a r i o F r o m L i n e (S C E N A R I O *, c h a r *) ;
v o i d l o a d S c e n a r i o s S e t t i n g F r o m F i l e (c h a r *) ;
v o i d p r i n t A H S c e n a r i o s (v o i d) ;
v o i d c h e c k l n t e g r i t y (d o u b l e) ;
v o i d m a k e G A M S S o u r c e F i l e s (c h a r *) ;
s t a t i c v o i d r e a d M a t r i x D a t a F r o m L S T F i l e (c h a r * s o u r c e F i l e ,

c h a r * n a m e O f V a r i a b l e , MATRIX & m);
s t a t i c v o i d r e a d V e c t o r D a t a F r o m L S T F i l e (c h a r * s o u r c e F i l e ,

c h a r * n a m e O f V a r i a b l e , VECTOR & v) ;
s t a t i c v o i d r e a d O b j V a l u e F r o m L S T F i l e (c h a r * s o u r c e F i l e ,

c h a r * n a m e O f V a r i a b l e , SCALAR & s) ;
};

P H A The instance of this class is the heart of main program. It consists of four at
tributes: an instance of SCENARIOS class, a template file and parameters g and e.
The P H A class has two methods: one for running the progressive hedging algorithm
and one for running G A M S via M P I in parallel.

c l a s s PHA {
p u b l i c :

SCENARIOS * S;
c h a r * t e m p l e t ;
d o u b l e eps, r h o ;
PHA(SCENARIOS *, c h a r *, d o u b l e , d o u b l e) ;
v o i d r u n P H A (d o u b l e , i n t) ;
v o i d r u n G A M S i n P a r a l l e l (i n t) ;

};

5.2.2 Message Passing Interface

Message Passing Interface, MPI , is an A P I library that allows to implement and run pro
grams in parallel. The MPI is available for wide class of programming languages, but
the most common is C, C++ and earlier also Fortran. There are several implementa
tion of Message Passing Interface, for instance OpenMPI, M P I C H or L A M / M P I . In the
implementation of the progressive hedging algorithm in this thesis, the L A M / M P I imple
mentation of M P I with C programming language has been used. The main aim of M P I is
to maintain the running of G A M S in parallel. But in fact, the M P I is very powerful tool
for parallel programming and the main feature is that programs running in parallel can
exchange information and communicate to each other.

The fundamental principle is following. The programmer writes a program that he
wishes to run in parallel and includes the M P I library, thereby M P I commands become
available. Thus, the message passing can be implemented. Then, the source file is com
piled by M P I compiler instead of ordinary compiler. In particular, the source file written
in C has to be compiled by m p i c c instead of ordinary gcc compiler. Finally, the com
piled program can be run in parallel via M P I by command mpi run . For details, see e.g.
[11].

5.2.3 GAMS

The General Algebraic Modeling System, G A M S , is a modeling system for solving prob
lems of mathematical programming and optimization. This system includes solvers for
linear, nonlinear and mixed integer problems of mathematical programming. The han
dling with G A M S is very similar to writing programs in ordinary programming language.

34 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

The mathematical problem is written in statements in a text file. This text file is an input
for G A M S . The output is a LST file containing results and additional information about
the execution. For details about G A M S , see [3].
Let us present a very simple example of nonlinear mathematical programme:

minimize X\ + x2 + 2x3 + x\ + 2x\
subject to x\ + x2 + X3 > 2, (5.1)

x2 + x3 = 1,
xi, x2, x 3 > 0,
xi, x2) x 3 e R.

The G A M S source file for this programme reads:
S e t s

i / 1, 2, 3 / ;
P a r a m e t e r s

a (i)
/ 1 1

2 1
3 2 /

b (i)
/ 1 0

2 1
3 2 /

c (i)
/ 1 0

2 1
3 1 / ;

V a r i a b l e s
z;

P o s i t i v e v a r i a b l e s
x (i) ;

E q u a t i o n s
o b j e c t i v e
c o n s t r a i n t A
c o n s t r a i n t B ;
o b j e c t i v e .. z =e= s u m (i , a (i) * x (i)) + s u m (i , b (i) * x (i) * x (i)) ;
c o n s t r a i n t A .. s u m (i , x (i)) =g= 2 ;
c o n s t r a i n t B .. s u m (i , c (i) * x (i)) =e= 1 ;

Model example / a l l / ;
S o l v e example u s i n g n i p m i n i m i z i n g z ;

The G A M S output LST file contains information about the execution (if there are some
non-optimal, infeasible, unbounded solutions or even errors) and these results: the optimal
solution cco pt = (xi, x2, x3)T = (1; 0.8333; 0.1667)T and the value of objective function
z = 2.9167. The part of output LST file with optimal values of variables and the optimal
value of objective function reads:

LOWER LEVEL UPPER MARGINAL

VAR z -INF 2.9167 +INF

VAR x

LOWER LEVEL UPPER MARGINAL

1 . 1.0000 +INF
2 . 0.8333 +INF
3 . 0.1667 +INF EPS

For the implementation of the progressive hedging algorithm, G A M S with the nonlin
ear solver C O N O P T has been used for solving each scenario subproblem. The reader can
find more detailed information about C O N O P T solver in Appendix A .

5.3 How Does It Work? 35

5.3 How Does It Work?

In foregoing sections, we described the concept of parallel implementation of the pro
gressive hedging algorithm and its individual parts. In what follows, we will put all
considerations of above paragraphs together and will explain how exactly the parallel
implementation of the progressive hedging algorithm works. This is also schematically
shown in Figure 5.5.

The input for the program are the following two text files: the file describing the
setting of scenarios - each scenario is represented by one line including its probability and
particular values of random parameters, and the file containing the template of source files
for G A M S . This template includes special labels instead of particular values of random
parameters.

N

a j
calc X and 6

finish, X is the solution

Figure 5.5: The concept of parallel implementation of the progressive hedging algorithm

The main program starts with the initialization part: it loads both input files described
above, allocates the memory for the list of all scenarios (an instance of SCENARIOS class)
and creates all scenarios (instances of SCENARIO class). In the initialization, it is also
checked the consistency of scenarios (if all scenarios have the same number of random

36 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

parameters and if the sum of their probabilities equals to one). Also other parameters
are set up: the number of available processors n for parallel computing, the termination
tolerance e and the penalty parameter g.

Then, the main program creates the source files for G A M S according to the template
file and to the setting of each scenario - special labels in the template are replaced by
particular values of each scenario. The number of generated source files for G A M S equals
to the number of all scenarios.

The main program continues with the parallel computing for first n scenario-based
programmes via MPI . The M P I is started with n threads and each thread executes G A M S
and solves own scenario programme. When last thread with G A M S is finished, also MPI
is turned off. Now, it is checked if all scenarios were solved via G A M S . If not so, the MPI
part is repeated with next n scenarios until all scenario programmes are solved.

Then, the main program loads all scenario solutions X from LST files (GAMS output
files) and continues with the evaluation of "average solution" X and the distance param
eter S. If that distance S is less or equals to the required tolerance e, the main program
finishes, X is the solution. Otherwise, the main program updates the weights W for all
scenarios and returns back to the M P I part.

5.4 One-Stage Progressive Hedging Algorithm

In this section, we will deal with the implementation of the one-stage progressive hedging
algorithm, P H A , and will test its behaviour for a simple problem. In next section, we will
extend this one-stage implementation to two-stage case and will test it for the farmer's
problem.

The progressive hedging algorithm for one-stage problems is described in Section 4.1
on page 20. It is actually special case of the general T-stage progressive hedging algorithm
described on page 26 for T = 1 and this fact can be easily checked.

Recall that the scenario-based subproblems to be solved in the first step of main part
read

minimize f(x, s) + wJ (s) • x + \Q X — x3 (s) (5.2)

subject to x G Cs,

which are linear-quadratic perturbed versions of original programme.
Now, we will test our one-stage implementation for the simple problem including two

scenarios and two variables that will help us to understand the behaviour of the algorithm.
This problem is slightly based on example presented in [17]. We will also discuss what
happend when we change probabilities of scenarios or the penalty parameter.

5.4.1 One-Stage PHA Example

Let us consider the following problem with two scenarios:

minimize (xi — £*)2 + (x2 —
subject to £3 < x1 < £f, (5.3)

a <*2< Q

5.4 One-Stage Progressive Hedging Algorithm 37

with the particular realization of random parameters for scenario s l .

and for scenario s2:

C1 = {ilililililHf = (3,4,1,3,2,4) T

(£i, & & & e6f = (4, 3, 2,4,1, 3) T .
The objective functions are actually paraboloids having vertices in points (3,4) and (4, 3)
and feasible sets are two shifted squares. More presicely: the objectives are paraboloids
of type z(xi, X2) = (xi — c\)2 + (X2 — C 2) 2 in M 3 space with vertex in (ci, ci , 0) G M 3 . This
situation (2D view to X1X2 plane) is pictured in Figure 5.6: the scenario s1 corresponding
to £ x is represented by blue colour and the scenario s2 corresponding to £ 2 is represented
by red colour. The dashed circles represent cuts of paraboloids by planes parallel to X\X2

plane, so-called contours.

x2

4

3

2

/ /

1 1/
1 >

' I I
/ j

/

- r

3
—1—

4
-1—> xi

x2

+ 4

3

2

1 ^ r 1

/

JO r

2
-1-

3
-+- -> xi

Figure 5.6: Scenario solutions and gener- Figure 5.7: Generated xj solutions for set-
ated xj solution for setting p1 = p2 = \ ting p1 = p2 = \ and P\ — \,P2 — \

It is obvious that the optimal solution for the scenario s1 is the right upper vertex of
square feasible set, i.e., xlpt = (3,4) T and the optimal solution for scenario s2 is the point
xlpt = (4, 3) T . These points are pictured by small coloured squares in Figure 5.6.

The results produced by the progressive hedging algorithm are in Table 5.1 for the
following setting: the probability of both scenarios equals to | , the penalty parameter
o = 3, the termination tolerance e = 10~9 and the distance parameter defined by (4.4).

The points xJ produced by the algorithm (see Table 5.1) converge to the optimal
point xopt = (3, 3) T (green point in Figure 5.6). That point is obviously the optimum
for considered problem with two scenarios. It is also easy to check that this point xopt is
both implementable and admissible, i.e., it is feasible.

The dependence between the number of iterations of algorithm needed to satify the
tolerance e and the penalty parameter is shown in Table 5.2. The smallest number of
iterations j needed for given e = 10~9 is for the choice of penalty parameter about g = 3.
The increasing of g leads to the increasing of the number of iterations. On the other
hand, also the decreasing of g leads again to the increasing of the number of iterations.
Hence, there is the significant relationship between the penalty parameter and the number
of iterations needed to find the solution with the given tolerance. Therefore, the proper

38 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

Table 5.1: Results for problem (5.3): g = 3, p\ = p2 = \

Iteration j x^ x3 5

1 (1.2000, 2.0000)T (2.0000,1.2000)T (1.6000,1.6000)T 2.4000

2 (2.4000, 2.3200)T (2.3200, 2.4000)T (2.3600, 2.3600)T 1.0778

3 (2.8320, 2.8000)T (2.8000, 2.8320)T (2.8160, 2.8160)T 0.6457

10 (3.0000, 3.0086)T (3.0086, 3.0000)T (3.0043, 3.0043)T 0.0155

11 (3.0000, 3.0006)T (3.0006, 3.0000)T (3.0003, 3.0003)T 0.0057

15 (3.0000, 2.9990)T (2.9990, 3.0000)T (2.9995, 2.9995)T 0.0010

16 (3.0000, 3.0000)T (3.0000, 3.0000)T (3.0000, 3.0000)T 0.0007

17 (3.0000, 3.0000)T (3.0000, 3.0000)T (3.0000, 3.0000)T < l O " 9

choice of penalty parameter is crucial. Unfortunately, there is no general rule to determine
the penalty parameter g and its suitable value differs for different problems to be solved.
This implies one of the weakness of the progressive hedging algorithm: the significant
sensitivity of behaviour of the algorithm to the value of penalty parameter g. A "good"
value of g has to be determine by experimentations.

Table 5.2: The numbers of iterations needed for different values of g

Penalty
parameter g

Number
of iterations

Penalty
parameter g

Number
of iterations

0.1 > 100 5 24

0.5 73 10 25

1 39 20 29

2 19 50 41

3 17 300 > 100

We have tested the algorithm for two scenarios with the same probability Pi = p2 = \-
But what happend when we change the probabilities of each scenario, for instance, to
Pi = \ and p2 = | ? In first moment, one can intuitively think that in this case the optimal
solution xopt should be close to the optimal solution of scenario s2 (since its probability is
greater than the probability of scenario s1), i.e., to the point (4, 3). But this is not possible
since such a point (say a point (3 + e, •), where e > 0) is not admissible. In fact, candi
dates for the optimal solution have to be from the set {(xi, x2): (xi, x2) G (2, 3) x (2,3)}
satisfying the property of admissibility and the right upper corner of that set, i.e., the
point (3, 3), is the "closest" admissible point to both optimal scenario solutions (3,4) and
(4,3).

5.5 Two-Stage P H A Modification 39

Hence, the optimal solution for both probability settings is the point xopt = (3, 3) T .
But there is another difference. The set of points x3 generated by the algorithm for the
setting P\ — \ and p2 = | do not coincide with the set of points x3 generated for the
setting p1 = p2 = \. Several those points are pictured in Figure 5.7: black filled points are
generated by the algorithm with setting p1 = p2 = \ and black unfilled points represent
points generated with setting p\ — |, p2 — f. Observe that unfilled points are at first
"attracted" by the dominant scenario s2 to the point (4,3), but due to the requirement
of admissibility, next unfilled points converge to the point (3,3).

Moreover, also the numbers of iterations needed to safisty the tolerance e are not
equal: 17 iterations for the setting p1 = p2 = \ and 26 iterations for the setting p1 — |,
P2 = | .

5.5 Two-Stage PHA Modification

In the foregoing section, we deal with the one-stage implementation of the progressive
hedging algorithm and tested it for a problem with two scenarios. This trivial one-stage
problem was proposed to help the reader to understand the fundamental behaviour of the
progressive hedging algorithm.

In this section, we will extend our considerations to the two-stage programme (see
Section 3.4) and its implementation. We will derive the particular case of the progres
sive hedging algorithm (see Section 4.2) for two-stage programmes: all scenarios in the
first stage will be undistiguishable and thus, the first-stage decision will be scenario inde
pendent. After the first-stage decision will be taken, a particular realization of random
parameters will be observed and all scenarios in the second stage will become distinguish
able to each other. This means that the partition & \ in the first stage will be the coarsest
partition of set of all scenarios S in sets containing the only set A \ . On the other hand,
the partition S?2 in the second stage will be the finest partition of S including sets A 1 .
..., AL, where L is the number of all scenarios, i.e., L — \S\ (see Section 4.2 and Example
on page 23).

The above considerations will lead to the particular case of the progressive hedging
algorithm and also to its certain simplifications.

In what follows, we will start with the general T-stage progressive hedging algorithm
(see page 26) and we will successively modify that for two-stage case described above.

Suppose L scenarios, i.e., S = {s1,... ,sL} and |>S| = L. Since T = 2 in two-stage
programme, policies X3 and weights W3(s) consist of two components, X.3 = (x{,x3

2^j

and W3(s) = (w{(s), w3

2(s)^.
The scenario subproblems (step 1 of the main part of algorithm) read in general

minimize f(x1,...,xT,s) + Y / (w t 1(sf • xt + lg\\xt - x3 1(s)\\2^
t=i ^ '

subject to Xi,..., xT G Cs. (5.4)

40 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

For desired two-stage case, we obtain the following subprogramines:

minimize f(xl,x2,s) +w{ 1{s)T x1 + \Q X I - x{ 1(s)

+ wl\s)T x2 + \Q

subject to x!,x2e Cs.

+
(5.5)

In the second step of the main part of algorithm, the "average" solutions x\ for both
t = {1,2} and all s G S are calculated by using the following formula:

x\(s)
PAk s e A k

J2 PsXt(s). (5.6)

Since all scenarios are in the first stage undistinguishable, the partition ^ consists of the
only set A1 (in other words, the partition ^ consists of the set S itself), and therefore,
all scenarios s1,..., sL are elements of A1. Hence, pAl = J2s^sPs — 1 a n d for an arbitrary
scenario s G S, the first-stage "average" decision x{ reads

x{(s) psx{(s) = Y,psx{(s) = x\.
PAk s e A k s e 5

Analogously, in the second stage, all scenarios are distinguishable after a particular
realization £ p of random parameters is observed and thus, the partition ^ 2 in the second
stage consists of L sets A1, ..., AL. Each set Ak for all k = 1,..., L is a singleton, i.e.,
it consists of one element, Ak = | s f c | and \Ak\ = 1.

A1

x2{sl) x2(s2) x2(sL)

• sL

Ax A2 ••• AL

Figure 5.8: Partitions & \ and ^ 2

Hence, pAk = ps and the second-stage "average" decision x3

2 for a particular scenario
s reads

J2 Psxi(s) = x3

2(s). (5.7)
PAk s e A k

x°2{s)

5.5 Two-Stage P H A Modification 41

When both "average" solutions x\ and x2 are available, the distance parameter S is
calculated by the formula (4.8) for T = 2. Thus,

s -
se5

+

se5
xj(s) — ccj(s) + £ p *

se5
x3

2{s) (5.

But we derived in (5.7) that x2(s) = x2(s). Moreover, the first-stage decision x\{s)
is scenario independent, i.e., x\{s) = x\ is constant for all scenarios s G S. Hence, the
termination criteria (5.8) can be simplified to the form:

A 7 — 1 — 7
+ £ |

s e s

J - 1 ,

ses
x\(s) — x{ (5.9)

If the distance S is greater than the tolerance e, the algorithm continues with the
updating of weights W(s) for all s G S:

wJ

2(s)

w{ 1 + Q (x{{s) - x{.

wi'1 + Q (xJ

2(s) — X Ks, (5.10)

But due to the fact that the vectors of weights are initialized to zero, i.e., w??(s) =
= w2(s) = 0 for all s G S and x2(s) = x2(s), we conclude that the vector of weights
corresponing to the second stage will be equal to zero for any iteration j > 0, i.e.,
w2(s) = 0 for all j > 0 and all s G S. Hence, the update (5.10) of w2(s) can be omitted.
Moreover, the vector of weights WJ(s) can be reduced to the form WJ(s) = (w{(s)^j.

since its second element w2(s) identically equals to zero. This arrangement will save the
memory.

Finally, the above discussion leads to the following two-stage implementation of the
progressive hedging algorithm.

Two-Stage Progressive Hedging Algorithm

Ini t ia l izat ion. Choose the penalty parameter g > 0 and the termination parameter
e > 0. Set W°(s) = u>°(s) = 0 for all s G S, X (s)

M a i n part.

1. For all s G S solve the problem

(0,0) for all s G S and j = 1.

minimize f(x\, x2, s) + w{

subject to X\,x2 G Cs

x1 + ±g Xi — x{ 1

(5.11)

and denote its solution as X3(s) = [x\{s), x2(s) I.

42 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

2. Calculate for all s G S an "average" solution X3(s) = (cc{,á^(\'

x{(s)
ses

x°2{s) = x°2{s)

If the termination condition

X S) - XJn[S,
ses

x\(s) — x{
i

2 \ 2 < e

holds, then stop, X.\s) = (x{, x3

2(sfj is the solution to the original programme
with given tolerance. Otherwise, for all s G S update the term

w{(s) — w{ 1(s) + Q (x[(s) — x{^

set j = j + 1 and return to the step 1 of the main part of algorithm.

5.5.1 Two-Stage PHA Application: Farmer's Problem

In the foregoing section, we described and discussed the two-stage implementation of the
progressive hedging algorithm. In this section, we will test this two-stage implementation
in parallel manner that is based on discussions from Sections 5.2, 5.3 and 5.5. For this
testing, the farmer's problem from the book [2] has been chosen. Notwithstanding, note
that this problem was not solved in [2] by using the progressive hedging algorithm.

The farmer's problem is a typical problem of two-stage stochastic programming. Con
sider a farmer who has a farm and specializes in raising three crops: grain, corn and sugar
beets. Assume that it is a winter and the farmer wants to decide how to divide his 500
acres of land available for the planting to maximize his total profit. In other words, how
many acres of land should he devote to grain, corn and sugar beets?

He knows that 200 tons of wheat and 240 tons of corn for cattle feed are needed.
This cattle feed can be raised on the farm or bought. Any production of wheat or corn
over the feed requirement is sold. The production of the third crop - sugar beets - is
completely sold. But there is a quota 6 000 tons for sugar beets production that is imposed
by the goverment. If this quota is exceeded, the selling price of the abundance will be
significantly reduced.

The uncertainty is included to the model via weather that significantly affects the
yields of each crop. Most crops need the rain and the moisture at the beginning of the
planting, then the sunshine is optimal with the occasional rain. The sunshine and dry
weather is also grateful for the harvesting. Due to the above requirements, the yields
depend on the weather during the whole planting period.

We will model the uncertainty of weather by the scenario approach. Assume three pos
sibilities of yields depending on weather: profitable yields when the weather is favourable
(scenario s 1), mean yields for the ordinary weather (scenario s2) and lower yields when
the weather is unfavourable (scenario s3). Assume that the probabilities of all scenarios
are equal. Thus, p\ — p2 — p3 — | . A l l data and parameters are given in Table 5.3.

As we mentioned above, this model has the two-stage structure. This means that
there are two decision moments when the farmer has to take his decisions.

5.5 Two-Stage P H A Modification 43

Table 5.3: The parameters for the farmer's problem

Parameter Wheat Corn Sugar

Total available land [acres 500

Profitable yield [tons/acre 3 3.6 24

Mean yield [tons/acre] 2.5 3 20

Lower yield [tons/acre] 2 2.4 16

Planting cost [dollars/acre 150 230 260

Selling price [dollars/ton] 170 150
36 under 6 000 tons

Selling price [dollars/ton] 170 150
10 above 6 000 tons

Purchase price [dollars/ton] 238 210 unavailable

Requirement for feeding [tons] 200 240 0

In winter, the farmer has to decide how to parcel his land to each crop for the next
year. Obviously, he does not know what weather will occur during the whole planting
period. Hence, this first-stage decision is under uncertainty. In particular, the type of the
first-stage decision is here-and-now since the decision maker cannot wait and observe the
particular weather - the first-stage decision has to be taken when no information about
future weather is available.

The time goes on and the particular weather and also the yields become known. In
other words, the particular realization of random parameters (weather) is observed. After
the harvesting, the yields of each crop are known and the second-stage decision is taken.
Now, the farmer has to decide how many tons of each crop should be sold and how
many tons should be purchased from sellers. The type of the second-stage decision is
wait-and-see since the decision is taken after the particular values of random parameters
are observed and known. The aim of the farmer is still to maximize his total profit. The
notation of variables used below is shown in Table 5.4.

Table 5.4: The variables for the farmer's problem

Xi the number

X2 the number

^3 the number
Si the number

S2 the number

4 the number

S3 the number

Pi the number

Pi the number

6 the yield of
the yield of

£3 the yield of

44 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

A l l above considerations lead to the following programme:

minimize 150a;i + 230x2 + 260x3 - 170si - 150s2 - 36s*3 - 10s3 + 238pi + 210p2,
subject to X\ + x2 + x3 < 500.

ZiXi+pi-S! > 200,
&x2+p2 -82 > 240, (5.12)

S3 + S 3 < 6 ^ 3 ,

S3 < 6 000,
X i , X 2 , X 3 , S i , S 2 , S 3 , S 3 , P i , p 2 > 0.

As we alredy mentioned, the farmer wants to maximize his total profit. In other word,
he wishes to minimize his costs and negative costs imply the positive profit for the farmer.
Also observe that the above programme 5.12 includes three random parameters £ 1 , £ 2 , £ 3 .
In fact, the uncertainty is modelled by three scenarios = (3, 3.6, 24) T, £ 2 = (2.5, 3, 20) T

and e = (2,2.4,16)T, where f =
The fist-stage decision is the parcelling of the farmer's land X\ = (xi,x2, x3)T and the

second-stage decision is the answer to the question "How many tons of each crop should
be sold and purchased to maximize the farmer's total profit?", x2 = (si, s 2, S3, s3,pi,p2)T.

Hence, combining above considerations with the two-stage progressive hedging algo
rithm (see page 41), the subproblems to be solved in the first step of the main part of the
algorithm read: for all s G S = {s 1 , s 2, s 3} solve

minimize 150a;i + 230x2 + 260x3 - 170si - 150s2 - 36sg - 10s3 + 238pi + 210p2 +

+ ivffxi + w{~2x2 + w{~3x3 +

+ \Q((XI ~ x{~i)2 + (x2 - x{~2y + (x3 - x i ^ 1) 2) ,

subject to X\ + x2 + x3 < 500,

gxi+pi-Si > 200,

£2x2+p2-s2 > 240, (5.13)

Sl + S3 < £ 3 X 3 ,

S3 < 6 000,
x1,x2,x3,s1,s2,s3",s3,p1,p2 > 0,

where wi'1 with j e {1,2,3} are components of the weight vector u ^ - 1 = (wi^1, w{~2 , w{~3

corresponding to the fist-stage decision X\ and x j " 1 with % G {1,2,3} are components of

the "average" solution ar} - 1 = (x{~i ,x{~2 ,x^1^ . Both vectors u ^ - 1 and cc j - 1 have the
same dimension as the first-stage decision, i.e., their dimension is three.

The results for the farmer's problem obtained by using the two-stage progressive hedg
ing algorithm are shown in Table 5.5. Notice that the second-stage decision consists of six
variables x2 = (x2,i, x2>2, x2>3, x 2] 4 , x2>5, x2fi)T = (s1, s 2, S3, s3,p1,p2)T and only non-zero
elements are shown in Table 5.5.

For this problem, the penalty parameter g = 0.25 was chosen. The number of iterations
needed to satisfy the termination condition S < e = 10~9 with g = 0.25 was j = 130. The
progresses of the elements xiti, xij2 and xij3 of the first-stage decision X\ are pictured in
Figure 5.9, 5.10 and 5.11, respectively.

5.5 Two-Stage P H A Modification 45

Table 5.5: The results for the farmer's problem obtained by using the progressive hedging
algorithm with the penalty parameter g = 0.25

Variable
The number of iterations

Variable
0 20 40 60 80 100 120 130

134 129.73 165.66 169.25 170.24 169.98 189.99 170.00

Xl,2 57.00 96.11 82.29 80.36 79.88 80.01 80.00 80.00

%1,3 308.00 274.16 252.05 250.36 249.88 250.01 250.00 250.00

X2,l 350.00 224.88 297.91 308.05 310.64 309.94 309.99 310.00

x2 X2,2 0.00 150.14 62.51 50.34 47.24 48.07 48.01 48.00
X2,3 6000.0 6000.0 6000.0 6000.0 6000.0 6000.0 6000.0 6000.0

x2

x2,l 100.00 100.00 215.52 223.37 225.53 224.95 224.99 225.00
x2

x2,3 6000.0 6000.0 5075.8 5013.0 4995.7 5000.0 5000.0 5000.0

, y» 3
x2,l 0.00 55.20 129.58 138.27 140.57 139.95 139.99 140.00

x2
, y» 3
x2,3 6000.0 4358.0 4037.9 4006.9 3997.7 4000.2 4000.0 4000.0
, y» 3
x2,6 180.00 0.00 41.17 46.96 48.34 47.97 47.99 48.00

5 13 348 1920 17.07 0.47 0.05 4•10" 4 2•10" 5 < l O " 9

Xi

170 • • • • -

145 -

II

120 -- i

1 1 1 1 1 1 1 1 1 1 1 1 h - >
10 20 30 40 50 60 70 80 90 100 110 120 130

the number of iterations

Figure 5.9: Progress of x^i of the fist-stage decision X\

The results in Table 5.5 show that at the beginning of the planting period the farmer
should devote 170 arces of his land to wheat, 80 acres to corn and 250 acres to sugar beets
to minimize his costs,

sci = (170,80,250)T.

46 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

Then, the farmer keeps with the planting and the particular weather becomes known for
him.

If the weather during the planting period is favourable (in other words, the farmer is
confronted with scenario s1), he should take the second-stage decision

x2 = x\ = (s\,s\,s?,s\,p\,ptf = (310,48, 6 000,0,0, O f .

This means that the farmer should sell 310 tons of wheat, 48 tons of corn and 6 000 tons
of sugar beets. No wheat or corn must be purchased and the farmer's profit is 167000
dollars.

Note that the value of objective function for X\ and x2 is negative since it represents
the farmer's costs and the negative costs imply the positive farmer's profit.

H 1 1 1 1 1 1 1 1 1 1 1 h - >
10 20 30 40 50 60 70 80 90 100 110 120 130

the number of iterations

Figure 5.10: Progress of x i j 2 of the fist-stage decision X\

On the other hand, if the weather is ordinary (not favourable and also not un
favourable) which corresponds to the scenario s2, the farmer should take the following
second-stage decision:

x2 = x\ = (slslsf,s2

3,plpl)T = (225,0,5 000,0,0,0) T.

Hence, 225 tons of wheat and 5 000 tons of sugar beets should be sold and no wheat or
corn must be purchased. This decision leads to the farmer's profit 109 350 dollars.

Finally, if the weather is unfavourable (scenario s 3), the farmer should take the second-
stage decision

x2 = x\ = (sls2

2,sf,slplpl)T = (140,0,4 000,0,0,48) T.

Thus, the farmer should sell 140 tons of wheat and 4 000 tons of sugar beets. But in
addition, he must purchase 48 tons of corn to feed his cattle. In this case, the farmer's
profit is 48 820 dollars.

Let us discuss about the results obtained by using the progressive hedging algorithm.
The farmer's profits are 167000, 109 350 and 48 820 dollars for favourable, ordinary and
unfavourable weather, respectively. Hence, the farmer's mean profit is 108 390 dollars
provided p\ — p2 — P3 — |.

5.5 Two-Stage P H A Modification 47

300

X3

— I 1 1 1 1 1 1 1 1 1 1 1 h - >
10 20 30 40 50 60 70 80 90 100 110 120 130

the number of iterations

Figure 5.11: Progress of £1,3 of the fist-stage decision x\

Assume the situation that in winter the farmer knows what weather will occur during
the planting period. Thus, he wants to solve the programme 5.12 with particular values
£ — {iii&iizV• Hence, for the favourable weather, the vector = (3,3.6,24)T is chosen
and the solution to 5.12 reads:

x\ = (183.33,66.67, 250)T x\ = (350,0, 6 000, 0, 0, 0) T .

In this case, the farmer's profit is 167667 dollars.
Similarly, for the ordinary weather, the programme 5.12 with £ 2 = (2.5,3,20)T leads

to the solution

x\ = (120, 80, 300)T x\ = (100, 0, 6 000, 0, 0, 0) T

with the farmer's profit 118 600 dollars.
For the unfavourable weather, the vector £ 3 = (2,2.4,16)T with programme 5.12 is

considered and its solution is

x\ = (100,25, 375)T x\ = (0,0, 6 000, 0,0,180) T.

The farmer's profit reachs 59 950 dollars.
Assume that the probabilities of each weather realization are equal to | . Thus, in the

long run of planting seasons, the farmer's mean profit is 115 406 dollars. This corresponds
to the situation under perfect information since the farmer knows what weather will occur
during the planting period.

Unfortunately, in a real situation the farmer clearly does not know what weather will
be realized in a coming planting period. Therefore, the best decision what the farmer
can take is the decision given in Table 5.5. The difference between the mean profit
under perfect information and the mean profit based on decisions given in Table 5.5, i.e.,
115 406 — 108 390 = 7016 dollars, is called the expected value of perfect information, E V P I
(see Definition 3.4). This characteristic represents the loss of the profit corresponding to

48 Chapter 5 Parallel Implementation of Progressive Hedging Algorithm

the uncertainty included in the model. In other words, the E V P I represents the maximum
that the farmer should pay to obtain perfect information about future, of course, in case
that it is possible.

The second useful characteristic is the value of stochastic solution, VSS (see Definition
3.3). In this case, the expected value of using EV solution, E V V (see Definition 3.2),
represents the farmer's mean profit by using E V programme (3.10). Hence, the first-
stage decision ccfv = (120,80, 300)T is taken and the second-stage decision depends on a
particular scenario:

xf1'1 = (160,48, 6 000,1 200, 0, 0) T ,

xf1'2 = (100,0,6 000,0,0,0) T,

a ^ v ' 3 = (40,0,4 800,0,0,48) T.

The corresponing profits are 148 000, 118 600 and 55120 dollars, respectively, and thus,
E V V = -107240 dollars.

The value of stochastic solution, VSS, is given by (3.13), where E 4 (/ (a;mf n,$)) is the
expected value of objective function with EO solution cc m ° . To find this a;m° solution,
one has to solve a problem

minimize E^ (x, £)).

But in the farmer's problem based on scenario approach, it holds

E € (/ (a j,0) = E f t /
s=l

Hence, to find ccm? requires to solve the problem

3
minimize *^2psf {&,£s) • (5-14)

s=l

But the problem (5.14) coincides with the programme (4.2) for which the progressive
hedging algorithm gives the solution. Thus, £C m m' s corresponing to the scenario s read

x ^ 1 = (xuxl) = ((170,80,250)T, (310,48, 6 000, 0, 0, 0) T) ,

x^n

2 = (xuxf) = ((170,80,250)T, (225, 0, 5 000,0, 0, 0) T) ,

a ^ ° n

3 = (x!,xl) = ((170,80,250)T, (140, 0,4 000,0, 0,48) T).

Finally,

(/ (*M°,£)) = J2PJ K?n

S) = -108390 dollars
s=l

and thus,
VSS = E E V - E € (/ (a ^ 9 ,£)) = 1150 dollars.

This value represents the gain obtained by using stochastic programming approaches,
the progressive hedging algorithm and solving EO programme instead of simpler E V
programme.

CHAPTER 6

Continuous Casting Process
of Steel Slabs

I N the foregoing Chapters 4 and 5, we discussed the progressive hedging algorithm - the
method for solving scenario-based stochastic optimization programmes, and its parallel
implementation based on the fact that the progressive hedging algorithm belongs to the
class of decomposition algorithms.

We also tested this algorithm for two exemplary and simple problems - the problem
including two paraboloids with the one-stage version of the progressive hedging algorithm,
and the farmer's problem with the two-stage progressive hedging algorithm.

In this chapter, we will present the application of the two-stage progressive hedging
algorithm to the problem of the continuous casting process of steel slabs. This problem
is solved in the collaboration with Energy Institute, Department of Thermodynamics
and Environmental Engineering at Faculty of Mechanical Engineering, Brno University
of Technology.

For detailed information about the continuous casting process, see e.g. [13, 14, 15, 28].

6.1 Continuous Casting Method

The continuous casting process of steel slabs is the modern production method of steel in
steelworks. In this process, molten steel is transformed to solid semi-finished products, so-
called blanks: billets, blooms or slabs (see Figure 6.1). These semi-products are designated
for next processing, for instance, for rolling in finishing mills.

(a) (b) (c) (d)

Figure 6.1: Products of continuous casting: (a) and (b) billets, (c) bloom, (d) slab

49

50 Chapter 6 Continuous Casting Process of Steel Slabs

Before 1950, steel was casted into stationary molds to form ingots. In 1950s, the
continuous casting method was evolved. This method has achieved to increase the pro
ductivity, quality and effectivity, and therefore, the continuous casting method became
the most widespread method of steelmaking.

In these days, over 95 % of the world production of steel is produced by the continuous
casting approach. Note that this method is, beside steel, also appropriate for the casting
of aluminium, copper and their alloys.

The requirements of increasing in the productivity, decreasing in costs and the compet
itiveness involve more accurate models and sophisticated approaches. The optimization
and mathematical programming approaches are welcome in these problems. Moreover,
these models describing real situations also must embrace the uncertainty to depict a
particular situation more credibly. These considerations lead to stochastic optimization
techniques.

|(a) |(c) |(d)

Figure 6.2: Schema of continuous casting process

The simplified schema of the continuous casting method is shown in Figure 6.2 where
the yellow colour represents molten steel and the red colour represents solidified steel. The
bold arrow on the left indicates molten steel that is transfered from an electric furnace
or from a convector and enters to the continuous casting machine through the copper
crystallizer (1). The crystallizer is water-cooled and its purpose is to form the profile
of casted blank and to cool down its surface to form the solid crust. Thus, behind the
crystallizer, the profile is already given by the solid crust, but under the crust - in the
core - steel is still liquid. In Figure 6.3, there are shown the cross-sections of billet in
four positions (a)-(d) corresponding to Figure 6.2, the position (b) corresponds to the
cross-section behind the crystallizer mentioned above. ooo«

(a) (b) (c) (d)

Figure 6.3: Cross-sections of a casted billet

From the crystallizer, steel with the crust on the surface continues through cooling
zones (2)-(5). The purpose of these water-cooled zones is the further cooling down of
casted billet so that the output of the continuous casting machine reachs the blank that
is completely solidified in its cross-section (position (d) in Figures 6.2 and 6.3). The
adjustment of the cooling parameters in zones (2)-(5) is crucial since it significantly

6.2 Mathematical Model of Continuous Casting Process 51

affects parameters and properties of casted steel. Note that the cooling parameters are
actually the flow volumes of water flowing through each cooling zone.

Since the problem in Figure 6.2 is symmetric with respect to the horizontal axis, we
will deal with the simplified model that is shown in Figure 6.4.

y

Figure 6.4: Schema of simplified continuous casting process

Our goal will be the maximization of the casting velocity v c a sting (productivity) and
to find the corresponing optimal adjustment of the cooling parameters htc,i, htc,2, htc,3

and htc,A for required parameters of produced steel. The uncertainty will be also included
to the model - we will deal with the question how the service of the continuous casting
machine should change the cooling parameters htCti, htCji when one cooling zone
suddenly breaks down. The mathematical description and its derivation follow. Note
that the deterministic model presented below is based on papers [13, 15] and especially
on [14].

6.2 Mathematical Model of Continuous Casting Process

The mathematical description of the continuous casting process is based on the Fourier-
Kirchhoff equation describing the heat conduction in a solidifying blank. Since the con
tinuous casting process embraces several phases and their transformations, the enthalpy
must be included to the model. Hence, the equation describing the process reads:

dH , (d2T d2T\ dH n . .

where T(y,z,t) is the temperature in a point (y,z) at time t, H(y,z,t) represents the
enthalpy in a point (y, z) at time t, A is the heat conductivity and vz is the casting
velocity. The following initial and boundary conditions

T(y,z,0)=T0(y,z) in Q x {0}, (6.2)
H(y,z,0) = H0(y,z) in Q x {0}, (6.3)

T = Tcasting i n r i n x (0 , r) , (6.4)
dT

- A — = 0 in r o u t x (0,r) and Ts x (0,r), (6.5)

dT

~X~dn=<i i n r M x (0 , r) , (6.6)

dT

52 Chapter 6 Continuous Casting Process of Steel Slabs

are added to the equation (6.1) and together form the mathematical model of the contin
uous casting process.

Further, the temperature-enthalpy relationship is known. But the difficulty is, due to
the phase transformations, that it is given for particular steel by empirical values, not in
an analytical form. The example of the enthalpy-temperature relationship for steel 11 325
is shown in Figure 6.5. Thus, an approximation or other techniques have to be used to
obtain the above relationship in a practicable form.

To solve the continuous casting problem numerically, the above model including the
second-order partial differential equation is discretized by the finite difference method.

Let Ay, Az and A t be the discretization steps in spatial axes y, z and in time axis t,
respectively, and let M + 1 be the number of nodes in the spatial axis y, N + 1 be the
number of nodes in the spatial axis z and r + 1 be the number of nodes in time axis t.
The discretized region Q is shown in Figure 6.7. Thus, T j \ denotes the temperature in a
node [j, k] at time n. Similarly, H™k denotes the enthalpy in a node [j, k] at time n.

Hence, the equation (6.1) can be rewritten by the finite difference method as follows,

rrn+1 r i n

At
^ f i j+l,fc Z i j,fc + 1j-l,k +

 i j , f c+ l Z i j,fc + 1j,k-l \ +

(Ay) 5

+ vz

' Tin Tin
nj,k n3,k-\

Az

(Az)

for
f j = l , . . . , M - l

k = 1,...,N- 1
n l , . . . , r - l

(6.

The discretized initial conditions (6.2) and (6.3) read

T°IK = T0(jAy,kAz) Hlk = H0(jAy,kAz) for
j = l , . . . , M - l
k = 1,...,N- 1 (6.9)

6.2 Mathematical Model of Continuous Casting Process 53

[0,M1

[0, 01
• \j,k]

\N, M l

\N,0]

Figure 6.7: Schema of discretization

Similarly, the discretized boundary condition (6.4) reads

2£„ = casting for | ^ ^ ' ' ; f ~ 1 • (6.10)

For the discretization of boundary condition (6.5), we will use the central difference
and so-called Active nodes. The discretization of (6.5) reads

_ A (T?,N+I ~ T-N-I\ (j = l M - l

\ 2Az J \n=l,...,T y '

and
_ X (T ? L I K - T ? A = Q (k = 0 N

\ 2Ay J \ n = l,...,r K '

Thus, T?N+1 = T?N_I from (6.11), and therefore, the equation for corresponding nodes
reads:

r r n + l rrn /rpn r\rpn i rpn c\rpn r\rpn \
3,N nj,N _ x I 1j+l,N zlj,N "T 1j-l,N zlj,N-l zlj,N \

At ~ \ {Ay? + {Azf) +

(HlN-HlN_x\ J j = l , . . . , M - l
+ Vz[A~z J f O T \ n = l , . . . , r - l ' (6 ' 1 3)

Analogously, T\ K = T" f c from (6.12) and the equation reads:

t r n + l Tjn / r>rVn r\rpn rpn nrpn i rpn \
-"0,fc -"0,fc _ x / Z J l , f c Z J 0 , f c J0,fc+1 Z J 0 , f c "T J 0,fc-1 \

A t ~ ^ (Ay)* + {Azf) +

(HS,k-m,k-l\ , j k = 0,...,N

+ Vz{ A~z J f O T \ n = l , . . . , r - l • (0 4)

From the discretization M + 1 , ^ A x

M ~ 1 , f c = — | of the boundary condition (6.6), we con
clude that T^j+lk = — ? ^ 2 _|_ T^j_lk and hence, the equation for corresponding nodes
reads:

r r n + l r r n / o A.x-g , nrpn c\rpn rpn c\rpn i /Tin \
-"M,fc -"M,fc _ x / z A ~ r Z J M - l , f c Z J M , f c J M,fc+1 Z J M,fc T 1 M,k-1 \

A t ~ ^ (Ayy + {Azf) +

(HM,k - HM,k-i\ f jk = 0,...,Nc /«-,r>>
+ V \ Az J f O T \ n = l , . . . , r - l ' (0 5)

where NQ denotes the last node belonging to the crystallizer in axis z.

54 Chapter 6 Continuous Casting Process of Steel Slabs

Finally, the discretization T £ + 1 - ^ S - 1 - f c = _(fe^+fe^)(-rsurface TX) O F B O U N D A R Y C O N D I .

tion (6.7) leads to the equation

r r n + l rrn (o A-x(htc,j-\-htcr)(TBUIfSiCe—Toc,) c\rpn nrpn
nM,k nM,k _ I A ~ r Z J M - l , f c zlM,k

At ~ \ (Ayy
™ nrpn , rpn \

. 1 M,k+1 M,k ' M,k—1 \ .

I ^M,k ~ ^M,k-1\ r J k = k(j) & Nj (c-\C\

+ V \ Az J f O T \ n = l , : . , r - l ' (6 - 1 6)

where JVj for j = 1, 2, 3,4 are sets of nodes corresponding to the j - t h cooling zone.
The empirical values of the temperature-enthalpy relationship (see Figure 6.5) were

approximated by the following fifth-order Fourier series

5
T" f c = A0 + J2 [A sm(iaH^k) + Bt cos(iaif£ f c)] , (6.17)

j=i

where coefficients A0, A\, B\, A5, B5 and scale coefficient a were calculated by
M A T L A B software.

Moreover, the following additional constraints are added to the above model because
of extra technological requests.

1. Upper bound for the cooling parameters htc,i, • • •, htc,A,

htc,l < ^tc,l,max) htCt2 < ^ic,2,max; ^tc,3 < ^ic,3,max; ^tc,4 < ^tc,4,max- (6.18)

2. Mechanical and qualitative properties of produced steel are very sensitive to the
temperature fluctuations in the casted product. To reduce those fluctuations and
improve the temperature course, the following constraints to the temperatures at
control positions 1-5 (see Figure 6.4) are added to the model:

- t l ,min _ M fci — - t l ,max;

^~2,min — ^M,k2 — -^2,maxj

? 3 i m i n < TMJIC3 < T 3 j m a x , (6.19)

- 14,min _ ±M,k4 — - t4,max;

± 5,min — - t M,fcs — •l5,TD3X.:

where ki corresponds to the closest node to the control position for temperature Tj
in z axis (see Figure 6.4).

3. To ensure the output of the continuous casting machine in the cross-section to be
solid, the following conditions

T^kinin > T l i q u i d , (6.20)

To,k^ < TsoM (6.21)

6.3 Results for Continuous Casting Process 55

specifying the so-called metalurgical length M* (see Figure 6.4) are added to the
model, where1 fcn JV^™ j and kmax = , L is the total length of the
continuous casting machine, M m i n and M m a x are the so-called minimal and maximal
metalurgical length, respectively. The condition (6.21) guarantees that all steel in
the cross-section of casted product is solidified.

Now, we can formulate the programme for the problem of the continuous casting
of steel based on above discretized equations and constraints, where unknown variables
to be optimized are the casting velocity vz, the cooling parameters htc,i, • • •, htc^, the
temperature T" f c and the enthalpy H™k in all nodes in spatial axes and time axis:

maximize vz

subject to (6.8), (6.9), (6.10), (6.13), (6.14), (6.15), (6.22)
(6.16), (6.17), (6.18), (6.19), (6.20), (6.21).

6.3 Results for Continuous Casting Process

The programme (6.22) was solved for steel 11325 by using the optimization software
G A M S and its solver C O N O P T for particular parameters given in Table 6.1. For detailed
information about C O N O P T solver and about the generalized reduced gradient method
used in C O N O P T , see Appendix A .

The initial values for the temperature T° f c and the enthalpy H®k were calculated
by M A T L A B software by solving the equation (6.1) with particular fixed values of the
cooling parameters and the constant initial temperature (1600 °C) and the initial enthalpy
(1.066- 1 0 1 0 J - m - 3) .

The programme (6.22) for the setting in Table 6.1 includes over 72 000 variables to be
optimized and the computation requires 34 minutes and 45 seconds with 1 255 iterations
of the C O N O P T solver on the laptop with A M D Turion X2 Ultra Dual-Core 2.2 GHz and
2.4 GB of R A M memory. Its optimal solution is given in Table 6.2, the temperature field
for n = 100 is shown in Figure 6.8 and the temperature in the core (blue colour) and on
the surface of a casted billet (red colour) are shown in Figure 6.9.

6.4 Two-Stage Stochastic Programme for Continuous
Casting Process

In the foregoing sections, we described the method for steelmaking - the continuous
casting process - and derived its mathematical model. Further, we calculated its optimal
solution by using the G A M S software for parameters given in Table 6.1. In this section,
we will include the uncertainty to the model via scenario approach and we will deal with
the following problem.

Assume that during the continuous casting process the total breakdown in the second
cooling zone can occur with the probability p2- This error means that the parameter
htc,2 becomes to zero. Hence, we can model the situation by two scenarios s1 and s2.
The scenario s1 will describe the normal situation without any error and we denote its

[a;] denotes the nearest integer to x

56 Chapter 6 Continuous Casting Process of Steel Slabs

Table 6.1: Parameters for programme (6.22)

Parameter Value Parameter Value

T 100 htc,2,max 400 W - m " 2 - ^ 1

TV 36 ^-ic,3,max 400 W - m " 2 - ^ 1

M 10 hfc, 4, max 300 W - m " 2 - ^ 1

A 33 W • m - 1 • K - 1 T
± l ,min

1300°C

L 20 m T
± l,max

1550°C

H 0.125m T
± 2,min

1050°C

T
± CO

20 °C ^ 2 , max 1250°C

4.51 W • m " 2 - K " 1

2~3,min 900 °C

Q -2.97- 1 0 3 W - m " 2

^3,max 1000°C

2 2~4,min 700 °C

N2 10 ^4, max 900 °C

N3 18 T
± 5,min

700 °C

26 T
± 5,max

800 °C

N5 35 T
± liquid

1511°C

500 W • m~ 2 • K - 1 T
± solid

1490°C

Table 6.2: Optimal solution for programme (6.22) with parameters given in Table 6.1

Parameter Optimal value

Casting velocity vz 2.2158 m - m i n - 1

Cooling parameter htc,i for zone 1 476.24 W • m~ 2 • K - 1

Cooling parameter htc,2 for zone 2 249.54 W • m~ 2 • K - 1

Cooling parameter htCj3 for zone 3 325.29 W • m~ 2 • K - 1

Cooling parameter htc^ for zone 4 0.00 W • m " 2 - K " 1

probability p\. On the other hand, the scenario s2 will describe the situation with the
total breakdown in the second cooling zone and we denote its probability p2-

Thus, we have the two-stage stochastic programme with two scenarios. The questions
to be answered are following: How we should set the cooling parameters htCti, . . . , htc^
at the beginning of the casting process (the first-stage decision) to maximize the casting
velocity, but regarding to both scenarios and to the possible breakdown in the second
cooling zone? And in case the breakdown occurs, how we should change the cooling
parameters htc,i, htc,3 and htc,A (the second-stage decision), whereas htc,2 = 0? Further,
we will be also interested in the possible gain that may be reached by solving the stochastic
programme. Thus, what is the value of stochastic solution, VSS?

6.4 Two-Stage Stochastic Programme for Continuous Casting Process 57

Figure 6.8: Temperature field for optimal Figure 6.9: Temperature in the core (blue
values and n = 100 colour) and on the surface (red colour) of

casted billet for optimal values and n = 100

To include the scenario approach to the model, the programme (6.22) must be modified
to the two-stage stochastic programme by replacing the cooling parameters h t C t i , . . . , htc,A

by the cooling parameters h t C j i j X , . . . , h t c ^ x and h t c , i , y r • • ,htc,4,y The nonnegative variables
htc,-,x correspond to the first-stage decision satisfying the modified equation (6.18),

htc,l,x 5: ^ ic , l ,max; ^tc,2,z 5: ^ic,2,max; ^tc,3,x ^ ^ic,3,max; ^tc,4,x ^ ^ic,4,max- (6.23)

On the other hand, the variables htc,.,y corresponing to the second-stage decision denote
the "correction" of the first-stage decision and may be also negative, i.e., the cooling
parameters that should be adjusted in the second-stage are htc,-,x + htc,-,y satisfying

htc,-,x + htc,-,y < htc,-,max- (6.24)

Obviously, for the scenario s1 we require

htc,l,y = htc,2,y = htc,3,y = htc,4,y = 0

since the control of the casting machine wish to change the setting of the cooling param
eters only when the breakdown occurs. For the scenario s2, to guarantee the breakdown
in the second cooling zone, it must hold htc,2,x + htc,2,y = 0.

Denote the time when the breakdown in the second cooling zone occurs by TB- Then,
the equation (6.16) is modified to the form

rrn-t-l r / n / Q ^x{htc^^x-\-htcr)(?surface~^oo) I c\rpn r\rpn
nM,k nM,k x / z A ~l~A1M-l,k zlM,k

At I (Ay) 2 +
rpn c\rpn I rpn \
1M,k+l M,k ' M,k—1 \

(Az)2) +

(Hbt-Hb+A for i k = k(j) e Nj (6 2 5)

V ^) \n = l,...,TB

 V ;

58 Chapter 6 Continuous Casting Process of Steel Slabs

and

r m + l r rn / Q A-X(htCfjfX-\-htcjy-\-htcr)(?surface~̂ oo) i r\rpn r\rpn
nM,k nM,k _ > / A t " M - l ; i i Z J M , f c .

A t ~ ^ (Ay)2

T<n rtrpn I T~>n \
1M,k+l M,k ' M,k—1 \

(AZy) +

+„, f ̂ " / ^ - ^ f o r J k = kiJ) eNj (6 . 2 6)

V Az J [n = r B + 1 , . . . , r - 1

where TV} for j = 1,2,3,4 are sets of nodes corresponding to the j-th cooling zone. In
particular, for the parameters given in Table 6.1, the sets Nj are N\ = {N\ + 1,..., =
= {3,4, 5 , . . . , 10}, N2 = {N2 + 1,..., 7V3} = {11,12,13,.. . , 18}, N3 = {N3 + 1,..., 7V4} =
= {19,20, 2 1 , . . . , 26} and NA = {NA + 1,..., 7V5} = {27, 28,29 . . . , 35}.

6.5 Results for Two-Stage Continuous Casting Process

For the above two-stage stochastic programme modelling the continuous casting process
with two scenarios described in the foregoing sections, the parallel implementation of the
two-stage progressive hedging algorithm, in detailed discussed in Chapter 4 and especially
in Chapter 5, was used.

The algorithm was tested on the laptop ASUS X71-TL with the operating system
Linux Ubuntu, 32 bits with dual-core C P U A M D Turion X2 Ultra Dual-Core ZM-82
with the frequency 2,2 GHz and 2,4 G B of R A M memory. Due to the dual-core C P U
hardware, the two-scenario programme could be realized very effectively in parallel - each
core computes one scenario problem in each iteration of the progressive hedging algorithm.

The parameters for the two-stage stochastic programme coincide with parameters
given in Table 6.1 with TD — 5, pi — 0.95 and p2 = 0.05.

The illustration of running implementation of the progressive hedging algorithm is
shown in Figure 6.10: the upper left window is the system monitor application, the upper
right window is the main window of the application where all results and information about
each iteration are displayed. The both lower window are running G A M S applications, left
for scenario s1 and right for scenario s2. The main window is shown in detail in Figure
6.11.

The optimal solutions for both scenarios s1 and s2 are presented in Table 6.3, the
temperature field and the temperatures on the surface and in the core of casted product
for scenario s1 and s2 are for n = 100 pictured in Figures 6.12, 6.13 and 6.14, 6.15, respec
tively. Note that Figures 6.12 and 6.13 coincide with Figures 6.8 and 6.9, respectively.

To decrease the number of iterations of the progressive hedging algorithm needed to
satisfy the given tolerance, the intial value of x-y, i.e., the value x\, was set to the weighted
average of both first-stage scenario solutions,

x° 0 _ (to to to to y
1 — ybtc,\,xi "tc,l,X> 'btC,l,Xl 'Hc,l,X)

2 2
T

» , •/'!.,.., X / ' , - / ' / , , , . ,] =(477.41, 257.06, 309.08, O f . (6.27)

6.5 Results for TwoStage Continuous Casting Process 59

| 1 CPU1 100,0% 1 1 CPU 2 100.0%

0

Historie použit í pamět i a odk ládac ího prostoru

i-^ Paměf

499,4 MÍB (20,9 %) Z 2,3 GiB

Odkládači prostor

0baj tŮ(0,0%)z6,B GiB

r£| Terminal

Soubor Upravit Zobrazit Terminál Nápověda

• X

- \n">;
. — V í " .
=\n\n ;

Job scenariol.gms Start 04/11/10 17:09:23 LNX-LX3 23.2.1 x86/Linux

GAMS Rev 232 Copyright [C] 1987-2009 GAMS Development. A l l rights reserved
Licensee: Eval Linux S100311/000 IAN-LNX

Brno University of Technology, Dept. of Process and EnvircnDCB248
License for teaching and research at degree granting in s t i tu t ions

Starting compilation
scenariol.gms(2] 2 Mb
GDXin=/home/lubaj z/cpp/TwoStageZP0/verze7/ScenarioDriver/input.gdx
scenariol.gms(362) 3 Hb
.teplotaSl.txt[36369] 6 Mb
scenariol.gms(363) 6 Mb
.entalpieSl.txt(363fJ0J 10 Hb
scenariol.gms(364] 10 Mb
.ostatniSl.txt[29] 10 Hb
scenariol.gms(460) 10 Hb
Starting execution: elapsed 0:00:01.395
scenariol.gms(73113) 14 Hb
Generating NLP model ZPO
scenariol.gms(234J 16 MtQ

0.09090
0.09090
0.09090
0.09090

Isecond-stage decision for scenario 2:

11.57090
-324.77090

-89.69090
0.09090

Rho = 6.091909
Delta in i terat ion 1 i s 2939.

= i terat ion 2 =

> GAMS source f i l e "scenariol.gins' with scenario 1 has been created.

Terminal
Upravit Zobrazit Terminál Nápověda

Job scenario2.gms Start 04/11/19 17:09:23 LNX-LX3 23.2.1 x86/Linux

GAMS Rev 232 Copyright (C] 1987-2009 GAMS Development. A l l rights reserved
Licensee: Eval Linux S100311/000 IAN-LNX

Brno University of Technology, Dept. of Process and EnvircnDCB248
License for teaching and research at degree granting in s t i tu t ions

Starting compilation
5cenario2.gms(2] 2 Mb
GDXin=/home/lubaj z/cpp/TwoStageZP0/verze7/ScenarioDriver/input.gdx
scenario2.gms(362) 3 Mb
.teplotaS2.txt[3G3G9l 6 Mb
scenario2.gms(363) 6 Mb
.entalpieS2.txt(36360J 10 Hb
scenario2.gms(364] 10 Hb
.ostatniS2.txt[29] 10 Hb
scenario2.gms(460J 10 Hb
Starting execution: elapsed 0:00:01.179
scenario2.gms(73113) 14 Hb
Generating NLP model ZPO

Q SeenarioDriver - NetB... Q Sledování systému E l Termin; a 6

Figure 6.10: The illustration of running programme

Table 6.3: Optimal solution for scenarios s1 and s2

Scenario s1 Scenario s2

Parameter Optimal value Parameter Optimal value

Vz
2.2158 m • m i n 1

Vz
1.8396 m • m i n 1

'Hc,l,x 476.24 W • m~ 2 • K 1 h2

'Hc,l,x
500.00 W • m " 2 K " 1

'Hc,2,x 249.54 W • m~ 2 • K 1 h2

'Hc,2,x
400.00 W • m " 2 K " 1

'Hc,3,x 325.29 W • m~ 2 • K 1 h2

'Hc,3,x
1.17 W • m~ 2 • K 1

'Hc,i,x 0.00 W • m~ 2 • K 1 h2
O.OOWm" 2 K " 1

h1

tc,l,y
0.00 W • m~ 2 • K 1 h2

tc,l,y
0.00 W • m " 2 K " 1

h1

tc,2,y
0.00 W • m~ 2 • K 1 h2

tc,2,y
400.00 W • m " 2 K " 1

h1

tc,3,y
0.00 W • m~ 2 • K 1 h2

ntc,3,y
66.89 W • m " 2 • K " 1

h1

tc,A,y
0.00 W • m~ 2 • K 1 h2

tc,A,y
0.00 W • m " 2 K " 1

As we already mentioned, for the continuous casting problem with two scenarios,
the parallel implementation of the progressive hedging algorithm, in detail discussed in
Chapters 4 and 5, was used with the penalty parameter g = 0.001 and the tolerance
e = 10~9. Due to the above choice of the initial setting x° and the dominance of the first
scenario with probability p\ = 0.95, the progressive hedging algorithm required only 4
iterations to satisfy the termination criteria. But without the initial setting (6.27) of x°,

60 Chapter 6 Continuous Casting Process of Steel Slabs

Rho = 0.001000
Delta i n 2-th iterat i o n i s 42.664777006

i t e ra t ion 3

> GAMS source f i l e 'scenario!..gins' with scenario 1 has been created.
> GAMS source f i l e 'scenario2.gins' with scenario 2 has been created.

Average solut ion:

476.30450
249.12100
3B9.11000

0.00000

Average second-stage solution for scenario 1:

0.00000
0.00000
0.00000
0.00000

Average second-stage solution for scenario 2:

23.49000
-248.38000
-235.50000

0.00000

RhO = 0.001000
Delta in 3-th iteration i s 0.561552500

i t e ra t ion 4

> GAMS source f i l e 'scenariol.gins' with scenario 1 has been created.

> CAMS source f i l e 'scenario2.gins' with scenario 2 has been created.

Average solut ion:

476.30000

Figure 6.11: The illustration of the main window

Figure 6.12: Temperature field for scenario Figure 6.13: Temperature in the core (blue
s1 and n = 100 colour) and on the surface (red colour) of

casted billet for scenario s1 and n — 100

the number of iterations exceeded the value 50 without the fulfillment of the tolerance
criteria and the experiment was stopped due to the huge time-consuming.

6.5 Results for Two-Stage Continuous Casting Process 61

The results are given in Table 6.4. Hence, the optimal initial setting of the cooling
parameters is

^ 1 = 476.32, h t c , 2 = 249.11, htc,3 = 309.11, htcA = 0.00.

If no breakdown occurs, no change in the setting of the cooling parameters is done. On the
other hand, in case the breakdown in the second cooling zone occurs, the control service
of the continuous casting machine should change the setting of the cooling parameters as
follows,

htCjl = 476.32 + 23.68 = 500.00, htc,2 = 249.11 - 249.11 = 0,
htc3 = 309.11 - 240.97 = 68.14, htcA = 0.00.

The temperature fields and temperatures on the surface and in the core of casted
product for optimal values obtained by using the progressive hedging algorithm for both
scenarios s1 and s2 are shown in Figures 6.16, 6.17, 6.18 and 6.19, respectively.

The difference between temperature fields obtained by solving the particular scenario
programme (Figure 6.12 and 6.14) and by using the progressive hedging algorithm (Figures
6.16 and 6.18) are shown for both scenarios s1 and s2 in Figures 6.20 and 6.21, respectively.

Let us now discuss about the solution obtained by using the progressive hedging al
gorithm, compare it with the E V approach via VSS characteristic and with case of the
perfect future information via E V P I characteristic.

As we already mentioned in Chapter 3, the value of stochastic solution, VSS, repre
sents the possible profit obtained by solving the EO programme instead of simpler E V
programme. We also discussed in Chapter 5 that the progressive hedging algorithm gives
the desired EO solution to the EO programme. Thus, for the continuous casting process,
the first-stage EO decision obtained by using the progressive hedging algorithm reads

xEO = (476.32, 249.11, 309.11, 0.00)T.

The second-stage EO decision corresponding to the scenario s1 reads

a^o,i = (0.00, 0.00,0.00, 0.00)T

62 Chapter 6 Continuous Casting Process of Steel Slabs

Figure 6.16: Temperature field for scenario Figure 6.17: Temperature in the core (blue
s1 and n = 100 for values obtained by using colour) and on the surface (red colour) of
P H A casted billet for scenario s1 and n = 100

for values obtained by using P H A

Figure 6.18: Temperature field for scenario Figure 6.19: Temperature in the core (blue
s2 and n = 100 for values obtained by using colour) and on the surface (red colour) of
P H A casted billet for scenario s2 and n = 100

for values obtained by using P H A

with the casting velocity vf0'1 = 2.215633 m-min 1 , the second-stage EO decision for the
scenario s2 is

xEO'2 = (23.68,-249.11,-240.97, 0.00)T

with the casting velocity vf°'2 = 1.836583 m • m i n - 1 . Thus,

2

Z EO J^Pj • vEO'j = 2.196681 m • min" 1 .
i = i

By solving the E V programme (3.10), one obtains the following results: the first-stage
E V decision reads

xEV = (451.24, 229.54, 305.29, 0.00)T,

the second-stage E V decision for scenario s1 is

x^'1 = (0.00,0.00,0.00,0.00)

6.5 Results for Two-Stage Continuous Casting Process 63

0 2 4 6 -3 -2 -1 0 1

Figure 6.20: Difference of temperature Figure 6.21: Difference of temperature
fields for scenario s1 and n = 100 fields for scenario s2 and n = 100

Table 6.4: The results for the continuous casting process with g = 0.001, e = 10

Variable
Iteration

Variable
0 1 2 3 4

Xi

h t c X x [W - m ^ - K - 1 477.41 476.42 476.32 476.32 476.32

Xi
htc,2,x [W - m - 2 - K - 1 257.06 249.85 249.11 249.11 249.11

Xi
htc,2,x [W - m - 2 - K - 1 309.08 309.11 309.11 309.11 309.11

Xi

htc,3,x [W - m - 2 - K - 1 0.00 0.00 0.00 0.00 0.00

x2

h\cXy [W - m - 2 - K - 1] 0.00 0.00 0.00 0.00 0.00

x2

hi,2,y [W - m - 2 - K - 1] 0.00 0.00 0.00 0.00 0.00
x2

hlc,3,y [W - m - 2 - K - 1] 0.00 0.00 0.00 0.00 0.00
x2

h\cAy [W - m - 2 - K - 1] 0.00 0.00 0.00 0.00 0.00

x2

hU,y [W - m - 2 - K - 1] 0.00 22.57 24.58 23.78 23.68

x2

hl,2,y [W - m - 2 - K - 1] -400 -257.06 -242.64 -248.37 -249.11
x2

[W - m - 2 - K - 1] 72.44 -241.05 -240.90 -240.96 -240.97
x2

^ 4 , w [W - m - 2 - K - 1] 0.00 0.00 0.00 0.00 0.00

S 116 070 53.15 42.79 0.56 < l O " 9

with the casting velocity vf^'1 = 2.188541 m-min 1 , the second-stage E V decision for the
scenario s2 reads

xEV'2 = (48.76,-229.54,-236.92,0.00)T

with the corresponding casting velocity vf^'1 = 1.835535 m • m i n - 1 . Hence,
2

E E V = J2PJ • V^Y,J = 2.170891 m • min" 1 .

64 Chapter 6 Continuous Casting Process of Steel Slabs

Finally, the value of stochastic solution (see Definition 3.3) for the maximization prob
lem is given by

VSS = zEO - E E V = 0.025790 m • min" 1 .

This value represents the gain in the productivity by solving the EO programme.
To calculate the expected value of perfect information, E V P I , one has to find z w s .

For the continuous casting process, one obtains by solving WS programme for scenario s1

the first-stage decision

xws,i = (476.24, 249.54, 325.29, 0.00)T

and the second-stage decision x^8,1 = (0.00, 0.00, 0.00, 0.00)T with the casting velocity
^ I ^ ' 1 = 2.215812 m • m i n - 1 . For the scenario s2, one gets the first-stage decision

xYS'2 = (500.00,400.00,1.17, 0.00)T

and the second-stage decision x^8,2 = (0.00, —400.00, 66.89, 0.00)T with the corresponding
casting velocity v^s'2 = 1.839574 m • m i n - 1 . Hence,

2

zws = J2PJ- z W S d = 2.197000m • min" 1 .
i = i

Then, the expected value of perfect information (see Definition 3.4), E V P I , for the
maximization problem is given by

E V P I = z w s - zEO = 0.000319 m • min" 1 .

This value represents the maximum expressed in the casting velocity which the decision
maker should be ready to pay to obtain the perfect information about future.

CHAPTER 7

Conclusion

T?HIS master's thesis deals with stochastic programming and optimization. The described
theory and tools of mathematical programming can be fruitfully utilized in many practical
applications in which the uncertainty and the randomness play a significant role. Also
the implementations of the progressive hedging algorithm presented in this thesis can be
easily used for wide variety of optimization problems.

In the theoretical part, in Chapter 3, the basis of stochastic programming, determin
istic equivalents, two-stage, multi-stage and scenario-based programmes are presented.
In Chapter 4, the progressive hedging algorithm - the method for solving scenario-based
stochastic programmes - is introduced for the one-stage and also for the muti-stage case.

In the practical part, in Chapter 5, the original parallel implementation of the pro
gressive hedging algorithm is discussed in details for the one-stage and two-stage case.
The parallel implementations are realized by using C++ programming language, the mes
sage passing interface for parallel computing, G A M S software for solving scenario-based
subproblems and the operating system Linux Ubuntu. There are also described two i l
lustrative problems that are solved by using the realized parallel implementations. These
problems were chosen and designed to help the reader to understand fundamental prin
ciples and behaviour of the progressive hedging algorithm. In Chapter 6, the two-stage
scenario-based model for the continuous casting process of steel slab is derived and solved
by using the two-stage parallel implementation of the progressive hedging algorithm from
Chapter 5. A l l results are visualized and the used approach of stochastic programming is
reviewed by qualitative characteristics.

In three appendixes, the reduced gradient and generalized reduced gradient methods,
the optimality conditions and the augmented Lagrangian penalty functions are presented.

The author of this thesis will be pleased if this thesis will be helpful for engineers
interested in applications of stochastic programming, scenario-based programmes, the
progressive hedging algorithm in general and also its parallel implementation or in the
continuous casting process of steel slabs.

The further intention of the author of this master's thesis is to deal with the continuous
casting process of steel slabs, with the process of heat transfer and with stochastic opti
mization in Ph.D. study programme in Energy Institute, Department of Thermodynamics

65

66

and Environmental Engineering at Faculty of Mechanical Engineering, Brno University
of Technology.

Bibliography

[1] M . S. Bazaraa, H. D. Sherali, and C. M . Sheety. Nonlinear Programming: Theory
and Algorithms. John Wiley & Sons, New York, second edition, 1993. ISBN 0471

557935.

[2] J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer Series
in Operations Research. Springer Verlag, New York, 1997. ISBN 0387982175.

[3] A . Brooke, D. Kendrick, A . Meeraus, and R. Raman. GAMS — A User's Guide.
G A M S Development Corporation, Washington, DC, USA, 2008.

[4] A . de Silva and D. Abramson. Computational experience with the parallel progressive
hedging algorithm for stochastic linear programs, 1994.

[5] Arne Drud. CONOPT. A R K I Consulting and Development A / S , Bagsvaerd, Den

mark. Available at http://www.gams.com/dd/docs/solvers/conopt.pdf.

[6] J. Dupačová, J. Hurt, and J. Štěpán. Stochastic Modeling in Economics and Finance,
chapter P. Popela: Numerical Techniques and Available Software, pages 206227.
Kluwer Academic Publishers, 2002. ISBN 1402008406.

[7] V . Dvořák. Architektura a programování paralelních systémů. V U T Brno, naklada

telství V U T I U M , first edition, 2004. ISBN 802142608X.

[8] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
Wiley, third edition, 1968. ISBN 9780471257080.

[9] W. Feller. An Introduction to Probability Theory and Its Applications, volume 2.
Wiley, second edition, 1991. ISBN 9780471257097.

[10] M . Goossens, F. Mittelbach, S. Rahtz, D. Roegel, and H. Vofi. The 3TEX Graphics
Companion. AddisonWesley, second edition, 2008. ISBN 0321508920.

[11] W. Gropp, E. Lusk, and A . Skjellum. Using MPI: Portable Parallel Programming
with the Message Passing Interface. MIT Press, second edition, 1999. ISBN 978

0262571326.

[12] P. Kail and S. W. Wallace. Stochastic Programming. John Wiley & Sons, Inc.,
Chichester, second edition, 1994.

67

http://www.gams.com/dd/docs/solvers/conopt.pdf

68 B I B L I O G R A P H Y

[13] T. Mauder. Optimization methods for the secondary cooling zone of a continuous
casting process of steel slabs. Strojárstvo /Strojírenství, 2009:175176, 2009. ISSN
13352938.

[14] T. Mauder. Teze k dizertační práci, 2010. Vysoké učení technické v Brně, Fakulta
strojního inženýrství.

[15] T. Mauder, F. Kávička, J. Štětina, Z. Franěk, and M . Masarik. A mathematical <__
stochastic modelling of the concasting of steel slabs. In 18th International conference
on metallurgy and materials, Hradec nad Moravicí, pages 4148. Tanger, s.r.o., 2009.
ISBN 9788087294109.

[16] F. Mittelbach, M . Goossens, J. Braams, D. Carlisle, and Ch. Rowley. The 3TEX
Companion. AddisonWesley, second edition, 2004. ISBN 0201362996.

[17] P. Popela. An Objected-Oriented Approach to Multistage Stochastic Programming.
PhD thesis, Charles University in Prague, 1998.

[18] S. Prata. Mistrovství v C++. Computer Press, Praha, first edition, 2001. ISBN
8072263390.

[19] R. T. Rockafellar and R. J.B. Wets. Scenarios and policy aggregation in optimization
under uncertainty. In Mathematics of Operation Research, volume 16, pages 119147.
INFORMS, Linthicium, Maryland, 1991.

[20] R. E. Rosenthal. A GAMS Tutorial. Naval Postgraduate School, Monterey, California
USA.

[21] R. Stones and N . Matthew. Linux: Začínáme programovat. Computer Press, Praha,
2000. ISBN 8072263072.

[22] J.P. Watson, D. L. Woodruff, and D. R. Strip. Progressive hedging innovations
for a class of stochastic resource allocation problems. Technical Report 20073722J
20073722J, Sandia National Laboratories, 2008.

[23] R. J.B. Wets. A n aggregation principle in scenario analysis and stochastic optimiza

tion. In S. W. Wallace, editor, Algorithms and Model Formulations in Mathematical
Programming. Springer Verlag, New York, 1989.

[24] Wikipedia. Continuous Casting.
Available at http:/ /en.wikipedia.org/wiki/Continuous_casting.

[Online; cited March 28, 2010].

[25] Wikipedia. General Algebraic Modelling System.
Available at http : / /en . wikipedia .org/wiki/General_Algebraic_Modeling_System.
[Online; cited April 4, 2010].

[26] Wikipedia. Message Passing Interface.
Available at http: / / en . wikipedia . org/wiki/Message_Passing_Interf ace.
[Online; cited April 15, 2010].

http://en.wikipedia.org/wiki/Continuous_casting

69

[27] Wikipedia. Multivariate Random Variable.
Available at http : / /en . wikipedia . org/wiki/Multivariate_random_variable.
[Online; cited May 16, 2010].

[28] J. Štětina. Dynamický model teplotního pole plynule odlévané bramy. PhD thesis,
Vysoká škola báňská Technická univerzita Ostrava, 2007.

[29] E. Zampachová. Approximate solution of P D E constrained stochastic optimization
problems. In FME Junior conference, pages 1623. Brno, 2009.

[30] E. Zampachová. Approximations in stochastic optimization and their applications.
PhD thesis, Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2010.

[31] E. Zampachová, P. Popela, and M . Mrázek. Optimum beam design via stochastic
programming. In Kybernetika, volume 46, pages 575586, 2010.

Used Symbols and Abbreviations

M. , E TV-dimensional real space, TV-dimensional Euclidean space

| it | number of elements (dimension) of vector u

x, X\ first-stage dicision

y, x2 second-stage decision

Xj j-th-stage decision

Wj weights corresponding to a j-th-stage decision

£, £ random variable, random vector

E^(-) expected value with respect to £

WS wait-and-see

IS individual scenario

M M "fat solution"

E V expected value

EO expected objective

E E V expected result of using E V solution

VSS value of stochastic solution

E V P I expected value of perfect information

X(-) policy, X (-) = (*!(•),...,**(•))

W(-) weights, W(-) = • • •, wt(-))

&t partition at time t

71

72

AK set in partition ÉtPt

JV set of implementable policies

c€ set of admissible policies

API Application Programming Interface

MPI Message Passing Interface

P H A progressive hedging algorithm

G A M S General Algebraic Modelling System

\x\ smallest integer greater than x

1*1 nearest integer to x

Q penalty parameter

e tolerance parameter

5 distance parameter

T temperature

H enthaply

casting velocity

A heat conductivity

Q heat flow

T
-1 casting

casting temperature

T
± CO

temperature of water flowing to cooling zones

htc,-i htCr
heat transfer coefficient, reduced heat transfer coefficient

Ay, Az, At discretization steps

T T
± solid i ± liquid

solidus temperature, liquidus temperature

N L P non-linear programming/programme

D N L P non-linear programming/programme with discontinuous derivatives

R G reduced gradient

G R G generalized reduced gradient

F J Fritz John

K K T Karush-Kuhn-Tucker

A L A G augmented Lagrangian

APPENDIX A

Solver CONOPT

I N this thesis, the general algebraic modelling system G A M S is used to solve each
scenario-based subproblem in the implementation of the progressive hedging algorithm.
Since these scenario-based subproblems require to solve linar-quadratic perturbed versions
of original (in general nonlinear) problem, the solver C O N O P T for nonlinear problems is
used.

The solver C O N O P T is designed for N L P and D N L P models. N L P models are non
linear models in which all functions (objective function, constraint functions, . . .) with
their derivatives are smooth1. On the other hand, D N L P models are such models in
which all functions are smooth, but their derivatives can be discontinuous. For instance,
the functions min, max or absolute value can be used in D N L P models, but not in N L P
models.

The C O N O P T solver and its algorithm is based on the Generalized Reduced Gradient
(GRG) method for solving nonlinear problems with nonlinear constraints. The G R G
method is the generalization of the Reduced Gradient (RG) method which is an algorithm
for solving nonlinear problems with linear constraints. The both methods belong to
the class of methods of feasible directions for which the following principle is typical.
The reader can find detailed information about C O N O P T implementation in G A M S , its
settings and algorithmic details in [5].

Let min{/(a;) | x G X} be a problem to be solved and assume Xk to be a feasible point.
The algorithms based on the method of feasible directions proceed as follows: a direction
dfe is determined and afterwards, one-dimensional optimization problem mm{xk + Xkdk}
is solved with respect to A^ > 0 so that the new point Xk+i = Xk + \kdk satisfies two
conditions: Xk+i is feasible and the objective value at Xk+i is better than at Xk, i.e.,
satisfying f(xk+i) < f(xk)- This leads to a new point Xk+i and the above process is
repeated. The question is, of course, how to determine the direction dk-

the function / is said to be smooth if / is continuous and has continuous derivatives of all orders

73

74 Appendix A Solver C O N O P T

A. l Reduced Gradient Method

The Reduced Gradient method is an algorithm for generating improving feasible direc
tions. This algorithm for solving nonlinear problems with linear constraints was developed
by P. Wolfe in 1963. The main idea is to reduce the dimensionality of the original problem
by using an independent subset of variables.

Consider the following nonlinear problem with linear constraints:

minimize f(x)
subject to Ax = b,

x>0,

where A is an matrix of type m x n with rank m, b is an m vector and function / is a
continuously differentiable. Further, it is assumed that any m columns of matrix A are
linearly independent and every extreme point 2 of the feasible region has m strictly positive
components. This so-called nondegeneracy assumption guarentees that each feasible point
has at least m positive components and, at most, n — m components equal to zero.

Due to the nondegeneracy assumption, the matrix A can be decomposed into (B, N)
and a feasible point xT can be decomposed into basic and nonbasic vectors, (x%,x%).
Note that B is invertible matrix of type m x m and XB > 0.

A direction d to be an improving feasible direction of function / at point x has to
satisfy two conditions:

Vf(x)Td<0, (A.l)
Ad = 0 with dj > 0 for X j = 0. (A.2)

Hence, our goal is to determine a direction d satisfying above two conditions. Assume
that the direction d is decomposed into two parts, d = (dB, dN). Let dB = —B~ Nd^
and observe that the condition Ad = Bds + Ndw = 0 holds for any vector thereby
(A.2) is satisfied. Define the reduced gradient r as follows,

rT = (rT

B,rT

N) = Vf(x)T - V B / (x) T

J B " 1 A =

= (0, VNf(xf - VsfixfB-'N) , (A.3)

where V B / (X) and VJV/(CC) are gradients with respect to basic vector xB and nonbasic
vector XN, respectively. To satisfy (A. l) , it must hold

Vf(x)Td = VBf(x)TdB + VNf(x)TdN =

= (vNf(x)T - VBf(x)TB-lN) dN = rT

NdN < 0 (A.4)

with dj > 0 for Xj = 0. To satisfy (A.4), for each component j of nonbasic XN let dj = —Vj
for Tj < 0 and dj = —Xjf-j for Tj > 0. This choice of dj guarantees that dj > 0 for Xj = 0.
In addition, it also improves the step size and enables the convergence.

Finally, the algorithm described below gives d = 0 iff the point x is K K T point. The
reader can find the proof in [1] as well as the proof of convergency of the Reduced Gradient
method.

2 a point x £ S is called an extreme point of nonempty convex set S if x = \x\ + (1 — X)x2 with
Xi,X2 S S and A € (0,1) implies x = xx = x2

A.2 Generalized Reduced Gradient Method 75

Reduced Gradient Algorithm

Ini t ia l izat ion. Choose an initial point X\ such that Ax\ = b and X\ > 0. Set k = 1
and proceed to the main part of algorithm.

M a i n part.

1. Let Ik be an index set of the m largest components of xk and % be the j - t h
column of matrix A. Define

B = {cij \j e 4}, N = {dj | j & 4},

and calculate the reduced gradient

rT = Vf(xkf - VBf{xk)TB-lA (A.5)

and the nonbasic part of direction dk according to the following rule:

^ f - r , f o r ^ 4 a n d r , < 0 ,

I ~xjr'j f ° r 3 & Ik and > 0.

Then, the improving feasible direction reads

(%=(-B-1NdN,dN).

If dk = 0, then stop, the point xk is K K T point. Otherwise, go to the second
step of the main part.

2. Solve the following line search problem:

minimize f(xk + \dk) (A.7)
subject to 0 < A < A m a x ,

where

A r i

(mini<,<~, | djk < 0} for dk ^ 0,

I oo for dk > 0

and where Xjk and djk denote the j - t h component of vectors xk and dk, respec
tively. Assume A& to be an optimal solution to (A.7) and set xk+i = xk + \kdk,
k — k + 1 and return to the step 1 of the main part.

A.2 Generalized Reduced Gradient Method

The Reduced Gradient method described above in Section A . l was generalized by J. Abadie
and J. Carpentier in 1969 to the Generalized Reduced Gradient (GRG) method designated
for solving nonlinear problems including nonlinear constraints.

Consider the following nonlinear problem with nonlinear constraints:

minimize f(x)
subject to h(x) = 0,

x > 0,

76 Appendix A Solver C O N O P T

where h(x) represents a nonlinear vector function h: M.n —> \Rm with m components.
h-(cc) = (hi(x),..., hm(x))T. Note that the constraints are assumed to be in the form of
equality and any inequality constraint can be rewritten to the equality form by adding a
slack variable, for instance, an inequality g(x) < 0 can be rewritten by using a nonnegative
slack variable x* > 0 to g(x) + x* =0.

Let Xk be a feasible point and V/i(cCfc) be the Jacobian matrix of function h at point
Xk defined by

dh^x) \
8xn dxi

dh^x) \
8xn

Vh(xk) =
dhm (x)

\ dxi
dhm(x) 1

dxn)

Consider the linearization of the constraint h(x) = o,

h(xk) 4-- Vh(xk)(x - xk) = 0

(xk).

(A.8)

Since xk is a feasible point, h(xk) = 0 holds, and therefore above linerizated equation
(A.8) can be written in the form

Vh(xk)x = Vh(xk)xk. (A.9)

By notation ^h(xk) = A and Vh(xk)Xk = b we conclude that (A.9) is in the form Ax =
= b. Assume that the rank of matrix A = Vh(xk) is m and that A can be decomposed
into (B,N) and xk into (s ^ s j) with XB > 0. Thus, with above assumptions, the
reduced gradient r can be computed by using formula (A.5) and the improving feasible
direction by (A.6). If dk = 0, then Xk is K K T point and the algorithm is stopped.
Otherwise, the method proceeds to the line search problem (A. 7).

Observe that due to the linerization (A.8), the new point x* = Xk + \kdk does not
necessarily satisfy the constraint h(x*) = 0. To fulfill that, the correction of x* has to
be performed. For this purpose, the Newton-Raphson method can be used to obtain the
feasible point Xk+i satisfying h(xk+i) = 0. Thus, the input for the Newton-Raphson
procedure is the point x*, not necessarily satisfying h(x*) = 0, and the output is the
point Xk+i satisfying h(xk+i) — 0.

More detailed information about RG, G R G and Newton-Raphson methods the reader
can find in [1].

APPENDIX B

Optimality Conditions

I N this appendix, we will present and discuss the optimality conditions for mathematical
programming problems. We will start with the unconstrained problems and will introduce
the necessary and sufficient optimality conditions. Then, we will generalize our discussion
by taking into account equality and inequality constraints. Finally, we will present the
second-order optimality conditions for discussed problems. Note that the reader can find
all proofs of presented theorems in [1].

B.l Unconstrained Problems

In this section, we will deal with an unconstrained problem, i.e., with a problem without
any constraints, in the following form:

minimize fix) (B-l)
subject to x G E ^ .

Let us begin with the definitions of the global and local minimum.

Defini t ion B . l . Consider the programming problem (B.l) . The point x G E ^ is said to
be a global minimum if it holds

f(x) < f(x) \/x G E " .

Defini t ion B . 2 . Let e > 0 and x G EN. Then, the set

Ne(x) = [x eEN: \x - x\ < e}

is said to be an e-neighborhood of the point x.

Defini t ion B . 3 . Consider the programming problem (B.l) . The point x G E ^ is said to
be a local minimum if there exists a positive number e such that

f{x) < f{x) Wx G Ne(x).

If there exists just one local minimum x, then it is said to be a strict local minimum.
More precisely, it must satisfy

fix) < fix) \/x G N£ix), x^x.

77

78 Appendix B Optimality Conditions

The following theorem presents the necessary condition for the point to be a minimum.

Theorem B . l (Necessary Optimality Conditions for Unconstrained Problem). Let the
function f: KN —> E be twice differentiable at the point x. If the point x is a local
minimum, then it holds

Vf{x) = = 0 (B.2)

and the Hessian matrix (in short the Hessian) at the point x

(B.3) H x)
, a 2/ a 2/ .
\dxpjdxi ' ' ' 9x2

N)

is positive semidefinite.

The condition (B.2) is the condition of the first order since the first derivatives play
the crucial roles in this condition. Similarly, the condition (B.3) is of the second order.
Let us also explain the meaning of the necessary condition. Theorem B . l says that if
some point is a minimum of a considered problem, then the necessary conditions (B.2)
and (B.3) are satisfied. On the other hand, although the both foregoing conditions are
satisfied in some point x, we still cannot decide if the minimum occurs in x or not. For
this purpose, we need a stronger tool, the sufficient optimality condition presented in the
following theorem.

Theorem B.2 (Sufficient Optimality Conditions for Unconstrained Problem). Let the
function f: KN —> E be twice differentiable at the point x. IfVf(x) = 0 and the Hessian
matrix H(x) is positive definite, then the point x is a strict local minimum.

Thus, the both satisfied conditions at x, V / (a ;) = 0 and H(x) be a positive definite,
guarantee that a strict local minimum occurs at x. Hence, the name sufficient optimality
conditions.

B.2 Optimality Conditions for Constrained Problems

In this section, we will extend our discussion to problems with constraints. We will start
with a problem including inequality constraints and will show an intuitive geometric op
timality conditions. Afterwards, we will formalize this geometric schema into rigorous
mathematical conditions that lead to Fritz John and Karush-Kuhn-Tucker conditions.
Finally, we will include equality constraints to the foregoing theory and will present im
portant results.

B.2.1 Geometric Interpretation of Optimality Conditions

In following, we are interested in optimality conditions and their geometric meaning.
Consider the problem

minimize f(x) (B-4)
subject to x G S,

file:///dxpjdxi

B.2 Optimality Conditions for Constrained Problems 79

where S C E ^ is a general feasible set. Afterwards, we will precise a set S by inequality
conditions. Nevertheless, basic definitions are now needed.

Defini t ion B .4 . Let S be a nonempty set in E ^ and x G cl S be a point from the closure
of S. Then, for some positive S, the set D defined by

D = {d:x + XdeS, d^O, VAG(0,5)}

is said to be the cone of feasible direction at point x.

Hence, a small shift from a feasible point x in the direction d G D is again a feasible
point.

Defini t ion B . 5 . Consider a function / : E ^ —> E and x G clS. Then, for some positive
8, the set F defined by

F = {d:f(x + \d) <f(x), VAG(0,5)}

is said to be the cone of improving directions at point x.

The interpretation of above definition is following: a small shift from a point x in the
direction d G F "improves" the value of the objective function. The following theorem
presents the necessary and sufficient conditions to the problem (B.4).

Theorem B . 3 . Assume the problem (B.4), where f : KN —> E is differentiable at a point
x G S and S C E ^ is a nonempty set. Define the set F0 as follows,

F0 = {d: Vf\x)Td< 0}. (B.5)

// a point x is a local optimal solution, then it holds

F0 n D = 0,

where D stands for the cone of feasible directions of set S at the point x. On the contrary,
assume that the condition F 0 fl D = 0 holds, the function f is pseudoconvex1 at the point
x and there exists an e-neighborhood N£(x) of the point x and it holds

d=(x-x)eD \/x G «S n N£(x).

Then, the point x is a local minimum to the problem (B.4).

Now, assume that a general set of feasible solutions S is described by using inequality
constraints. In following, we will deal with the programming problem in the form

minimize f{x)
subject to gi(x) < 0, % — 1,..., m, (B.6)

X G X,

where X is a nonempty open set in E ^ . Hence, the feasible set S is specified by

S = {x G X, gi(x) < 0 for a l H = 1,..., m} . (B.7)
x a differentiable function / : S C KN i—• E is said to be pseudoconvex if for all X\ and a; 2 satisfying

Vf(xi)T(x2 — Xi) > 0 the condition /(a^) > f(x\) holds

80 Appendix B Optimality Conditions

Defini t ion B .6 . Consider the problem (B.6) where the feasible is defined by (B.7). Let
x G S be a feasible point. Then, the set / defined by

/ = { i e { l 1 . . . , m } : f t (x) = 0} (B.8)

is said to be the index set of active constraints. Assume that the functions gi are differ
entiate at the point x for all % G / and gi are continuous at x for i £ I. Then, we define
the set Go as follows,

G0 = {d: Vgi(x)Td < 0 for all % G i} . (B.9)

Theorem B .4 . Consider the problem (B.6) where f and gi for all i = l,...,m are
functions / , E ^ —> E . Let x be a feasible point and assume that the functions f and
gi for all i G / are differentiable at point x and gi are continuous at x for all i £ I. If
the point x is a local minimum, then

F0nG0 = 0,

where F0 and Go are defined by (B.5) and (B.9), respectively. Conversely, if it holds
F0 fl Go = 0, / is a pseudoconvex function at a point x and the functions gi for all i G I
are strictly pseudoconvex2 over some e-neigborhood N£(x) of the point x, e > 0, then the
point x is a local minimum to the problem (B.6).

B.2.2 Fritz John Conditions for Inequality Constraints

In the following theorems, we will formalize the geometric optimality conditions based on
the condition F0 fl G0 = 0 to the optimality conditions including the gradient of objective
function and the gradients of active constraints. These optimality conditions were derived
by Fritz John in 1948.

Theorem B .5 (Fritz John Necessary Optimality Conditions). Consider the problem
(B.6). Let f and gi for all % = 1,... ,m be functions / , ^ : E ^ —> E , the set I be de
fined by (B.8) and a point x be a feasible solution. Moreover, assume that the functions
f and gi for alii G / are differentiable at x and functions gi for all i £ I are continuous
at x. If a point x is a local minimum to the problem (B.6), then there exist numbers uo
and Ui for alii G / such that

u0Vf(x) + J2ui^9i(x) = 0,

uo, Ui>0 for all i G I, (B.10)

(«o,«/) + (0,0),

where Ui is a vector that consists of all Ui for i E I. Moreover, if the functions gi for all
i I are also differentible at the point x, then the condition (B.10) can be rewritten to
the equivalent form

m
u0Vf(x) + J2uiVgi(x) = 0,

i = i

Uigi(x) — 0 for all i = 1,... ,m, (B . l l)

Uo, ^ > 0 for all i — 1,..., m,
(uo,u) + (0,0),

2 a differentiable function / : S C KN i—• E is said to be strictly pseudoconvex if for each x\ and X2,
X\ ^ x2, satisfying V f (x i) J \ x 2 — Xi) > 0 the condition f(x2) > f{x-\) holds

B.2 Optimality Conditions for Constrained Problems 81

where u = {u\,..., um)T.

Observe that Ui > 0 for a lH G / and Ui = 0 for all i $ I. The condition of feasibility of
point x in Theorem B.5 is called the primal feasibility condition, the conditions «oV/(a;) +
+ YliLiui^9i{x) — 0, uo,Ui > 0 for all i — 1 , . . . ,m and (uo,u) ^ (0,0) are called the
dual feasibility conditions and finally, the conditions Uigi(x) — 0 for all i — 1,..., m
are called the complementary slackness conditions. The primal feasibility, dual feasibility
and complementary slackness conditions together are called the Fritz John optimality
conditions. A point x is said to be a Fritz John (FJ) point if there exist so-called Lagrange
multipliers UQ, U\, ..., um such that the point x with UQ, U\, ..., um satisfies the Fritz John
conditions (B . l l) .

Theorem B . 6 (Fritz John Sufficient Optimality Conditions). Consider the problem (B.6).
Let X C E ^ be a nonempty open set, f and gi for all % — 1,... ,m be functions
f,gi~. EN —> E . Let a point x be a FJ point and the set I be defined by (B.8). Define the
set S by

S = {x G X: gi(x) <0,iel}.

If there exists an e-neighborhood N£{x), e > 0 of the point x such that the function f is
pseudoconvex over N£(x) fl S and g i for all i E I are strictly pseudoconvex over N£(x) fl S,
then the point x is a local minimum to the problem (B.6).

Note that the set S in above theorem is the relaxation of the feasible region of (B.6)
since all non-active constraints gi, i . e., g^ for all i $ I, are taken out.

Now, we will discuss the Fritz John necessary optimal conditions (B.10). Observe
that if the condition V<7i(cc) = 0 for some % G / at a point x is satisfied, then we can set
the corresponding U{ to any positive numbers and the others U{ to zero, thereby the Fritz
John optimality conditions (B.10) will be satisfied regardless to the objective function and
hence, x will be F J point. Moreover, by adding a redundant constraint to the problem,
any feasible point x can be a F J point. In particular, suppose the redundant condition
gm+i(x) — — \\x — x\\ < 0. It holds for all x G E ^ and becomes to be active for x = x,
and therefore, V g m + i (c c) = 0. Hence, with um+\ > 0 and Ui = 0 for all % — 0 , . . . , m,
the conditions (B.10) are satisfied and the point x is F J point. From the geometrical
point of view discussed above, in this case Go = 0, the condition F0 fl Go = 0 is satisfied
regardless to the set F0 and x is F J point. Thus, we wish to incorporate the objective
function (more precisely its gradient) to the optimality conditions. These considerations
lead to the Karush-Kuhn-Tucker optimality conditions.

B.2.3 Karush-Kuhn-Tucker Conditions for Inequality Constraints

In this subsection, we will describe the Karush-Kuhn-Tucker (KKT) optimality conditions
for the problem with inequality constraints motivated by the discussion at the end of the
foregoing subsection. K K T conditions are the extension of F J conditions with positive
Lagrange multiplier -u0 corresponding to the term V / . In following, we can suppose that
UQ — 1 without loss of generality, since other Lagrange multipliers Ui are just rescaled.
These well-known K K T optimality conditions were independently derived by Karush in
1939 and by Kuhn-Tucker in 1951.

Theorem B . 7 (Karush-Kuhn-Tucker Necessary Optimality Conditions). Consider the
problem (B.6). Let X be a nonempty open set in W*N, f and gi for all i = 1,... ,m be

82 Appendix B Optimality Conditions

functions f,gt: EN —> E 7 the set I be defined by (B.8) and x be a feasible point. Assume
that the functions f and gi for all i E I are differentiable at point x, the functions gi for
all i ^ I are continuous at the point x and the gradients Vgj(cc) for all i E I are linearly
independent. If the point x is a local minimum to the problem (B.6), then there exist
numbers Ui for alii G / such that

V / (x) + X) « i V f t (x) = 0,

Ui>0 for alii el. (B.12)

If gi for all % ^ I are also differentiable at point x, then (B.12) can be rewritten to the
equivalent form

rn
V / (x) + X) « i V ^ (x) = 0,

i=l
Uigi(x) = 0 for all i = 1,... ,m, (B.13)

Ui > 0 for all % = 1,..., m.

The scalars Ui are called the Lagrange multipliers, as in the F J conditions. Similarly,
the condition of feasibility of x is called the primal feasibility condition, the conditions
V / (i c) + Y%Li ui^9i(x) — 0 with ui > 0 for allz = 1,..., m are called the dual feasibility
conditions and the requirement Uigi(x) = 0 for all % = l,...,m is called the comple
mentary slackness condition. The primal feasibility, dual feasibility and complementary
slackness conditions together are called the Karush-Kuhn-Tucker optimality conditions.

A point x is said to be a Karush-Kuhn-Tucker (KKT) point if there exist Lagrange
multipliers u\,... ,um such that the point x with u\,... ,um satisfies the Karush-Kuhn-
Tucker optimality conditions.

Theorem B.8 (Karush-Kuhn-Tucker Sufficient Optimality Conditions). Consider the
problem (B.6). Let X C be a nonempty open set, f and gi for all i = 1,... ,m be
functions f,gi~. —> E , the set I be defined by (B.8) and a point x be a KKT point.
Define the set S by

S = {x e X-. gi(x) < o,i e /}.
If there exists an e-neighborhood Ne(x), e > 0 such that f is pseudoconvex over Ne(x) OS
and gi for i £ I are differentiable at x and are quasiconvex3 over Ne(x)nS, then the point
x is a local minimum to the problem (B.6).

Note that the set S is, as in Theorem B.6, the relaxation of the feasible region of (B.6)
since all non-active constraints gi are taken out. Also note that it can be shown that if /
and gi are convex at the point x, then K K T conditions (B.13) are sufficient.

So far, we considered problems with inequality constraints. In following, we will take
equality constraints into account and will generalize the above theory.

3 a function f:Sc E w i—• E is said to be quasiconvex, if for all X\,x<2 € S it holds

f{\xi + (1 - X)x2) < m a x { / (a ; i) , f(x2)}

for all A G (0,1)

B.2 Optimality Conditions for Constrained Problems 83

Consider the following problem including both inequality and equality constraints:

minimize f(x)
subject to gi(x) < 0, i — l,...,m, (B.14)

hj(x)=0, j = l,...,n,
x e x .

The following theorem is an extension of Theorem B.4 taking into account also equality
constraints.

Theorem B . 9 . Consider the problem (B.14) and let X C E ^ be a nonempty open set,
f, gi for all % = 1,..., m and hj for all j = 1,..., n be functions f, Qi, hj: KN —> E and
the set I be defined by (B.8). Assume that a point x is a local minimum to the problem
(B.14), the functions f and gi for all i & I are differentiable at x, the functions gi for
all % G" I are continuous at x and the functions hj for all j = 1,... ,n are continuously
differentiable4" at x. If the gradients Vhj(x) for all j = 1,... ,n are linearly independent,
then

F0 n G 0 H H0 = 0, (B.15)

where

F0 = {d: Vf(x)Td<o},

G0 = | d : Vgi(x)Td < 0 for all i e / } ,

H0 = {d: Vhj{x)Td = 0 for all j = 1,... ,n] .

Conversely, assume that (B.15) holds. If the function f is pseudoconvex at x, the func
tions gi for alii G / are strictly pseudoconvex over Ne{x) for some e > 0 and the functions
hj for all j = 1,... ,ra are affineb, then the point x is a local minimum to the problem
(B.14).

B.2.4 Fritz John Conditions for Inequality and Equality Constraints

In following, we will proceed similarly as in Subsection B.2.2. We will successively formal
ize the results from Theorem B.9 based on the geometric interpretation of the optimality
condition F0 fl Go H H0 = 0 to the algebraic form that leads to Fritz John necessary and
sufficient conditions.

Theorem B.10 (Fritz John Necessary Optimality Conditions). Consider the problem
(B.14). Let X C E ^ be a nonempty set, f, gi for all % = 1,... ,m and hj for all j =
= 1,..., n be functions f, gi, hj : E ^ —> E , a point x be a feasible solution and the set I
be defined by (B.8). Assume that the functions f and gi for all % G / are differentiable at
the point x, the functions gi for all i G" / are continuous at the point x and the functions
hj for all j = 1,... ,TI are continuously differentiable at the point x. If the point x is a

4 a function / is said to be continuously differentiable if it is differentiable and this derivative is a
continuous function

5 a function / is said to be affine if it can be expressed in the form f(x) = f(xi,... ,XN) = a\X\ +

+ h CINXN + b = aTx + b, where a is a N x 1 vector and b is a scalar

84 Appendix B Optimality Conditions

local minimum to the problem (B.14), then there exist numbers uo, Ui for alii E / and Vj
for all j = 1,... ,n such that

n
u0Vf{x) +YtuiVgi{x) + ^VjVhjix) = 0,

iei j=i
uo,Ui > 0 for all i E I, (B.16)

(«o ,« / ,«) + (0,0,0),

where Uj is a vector that consists of all Ui fori E / and v — (vi,..., vn)T. Moreover, if the
functions gi for all i ̂ I are also differentiable at the point x, then the above conditions
(B.16) can be rewritten to the equivalent form

m n

u0Vf{x) +Y/uiVgi{x) + YdVjVhj(x) = 0,
i=i j=i

Uigi(x) = 0 for all i

Uo,Ui > 0 for all i

(uQ,u,v) + (0,0,0),

where u = (u\,..., um)T and v = (v\,..., vn)T.

Note that there is no restriction of scalars Vj for all j = 1,... ,n in Theorem B.10,
Vj | 0 , but « = (« ! , . . . , vn)T ± (0 , . . . , 0) = 0.

Similarly as in Theorem B.5, the condition of the feasibility of the point x is called the
primal feasibility condition, the conditions UQV f(x) + YlTLi u^giix) + J2]=i vj^hj(x) =
= 0, uo, Ui > 0 for all % — 1,..., m and (uo, u, v) ̂ (0, 0, 0) are called the dual feasibility
conditions and finally, the conditions Uigi(x) — 0 for a lH — 1,..., m are called the comple
mentary slackness conditions. The primal feasibility, dual feasibility and complementary
slackness conditions together are called the Fritz John optimality conditions.

A point x is said to be a Fritz John (FJ) point if there exist Lagrange multipliers u~o,
u\,...,um and v\,... ,vn such that the point x with UQ, U\, ...,um, v\,... ,vn satisfies the
Fritz John conditions (B.17).

The following theorem states the Fritz John sufficient conditions.

Theorem B . l l (Fritz John Sufficient Optimality Conditions). Consider the problem
(B.14) and let X C be a nonempty open set, f, gi for all i,... ,m and hj for all
j — 1,..., n be functions f, giy hj : E ^ —> E . Let a point x be a FJ point and the set I be
defined by (B.8). Furthermore, define the set S by

S = {x: gi(x) < 0 for all i E I, hj(x) = 0 for all j = 1,..., n} .

If the functions hj for all j = 1,... ,n are affine and the gradients V/ i j (x) for all j =
= 1,... ,ra are linearly independent and if there exists an e-neighborhood N£(x) of the
point x, such that the function f is pseudoconvex over SO N£(x) and the functions gi for
all i E I are strictly pseudoconvex over S fl N£(x), then the point x is a local minimum
to the problem (B.14).

= l,...,m, (B.17)
= l,...,m,

B.2 Optimality Conditions for Constrained Problems 85

B.2.5 Karush-Kuhn-Tucker Conditions for Inequality and Equality
Constraints

The following Karush-Kuhn-Tucker optimality conditions are motivated by the similar
discussion as in case of problems with inequality constraints since the Fritz John opti
mality condition do not prescribe a positive Langangian multiplier UQ and it may hap
pen that Fritz John conditions are satisfied regardless to the objective function. The
Karush-Kuhn-Tucker conditions do not permit this situation and the objective function
is incorporated to play a significant role in these optimality conditions.

Theorem B.12 (Karush-Kuhn-Tucker Necessary Optimality Conditions). Consider the
problem (B.14). Let X C E ^ be a nonempty open set and f, g^ for alii = 1,... ,m and hj
for all j — 1,... ,n be functions f, giy hj: KN —> E . Let a point x be a feasible solution to
the problem (B.14) and the set I be defined by (B.8). Assume that the functions f and gi
for all i & I are differentiable at the point x, the functions gi for all % £ I are continuous
at the point x and the functions hj for all j = 1,..., n are continuously differentiable at
the point x. Moreover, assume that the gradients V<7j(a;) for all i E I and Vhj(x) for
all j = 1,..., n are linearly independent. If the point is a local minimum to the problem
(B.14), then there exist unique numbers Ui for all i & I and Vj for all j = 1,... ,n such
that

n

vf(x) + j2^9i(x) + J 2 v J v h J ^) = °> (B-18)
i&i j=i

Ui > 0 for all i E I.

Furthermore, if the functions gi for all i £ I are also differentiable at the point x, then
the above conditions (B.18) can be rewritten to the form

m n
Vf(x) +J2uiVgi(x) + Y,VjVhj{x) = 0,

i = l j=l
Uigi(x) = 0 for all i = 1,..., m, (B.19)

Ui> 0 for all i = 1,..., m.

As in foregoing cases, the scalars Ui and Vj are called the Lagrange multipliers. Simi
larly, the condition of the feasibility of x is called the primal feasibility condition, the con
ditions Vf(x) + YJiLi UiVgi(x) + Y!j=i vj^hj(x) = 0 with m > 0 for all i — 1,..., m are
called the dual feasibility conditions and the requirement Uigi(x) — 0 for all % — 1,..., m
is called the complementary slackness condition. The primal feasibility, dual feasibility
and complementary slackness conditions together are called the Karush-Kuhn-Tucker
optimality conditions.

A point x is said to be a Karush-Kuhn-Tucker (KKT) point if there exist Lagrange
multipliers u\,... ,um, v\,... ,vn such that the point x with u\,... ,um, v\,... ,vn satisfies
the Karush-Kuhn-Tucker optimality conditions.

If we allow relatively slight additional assumptions to the convexity of the funtions / ,
and hj in Theorem B.12, then it can be shown that the Karush-Kuhn-Tucker optimality
conditions are also sufficient conditions for local optimal solution. This result states the
following theorem.

Theorem B.13 (Karush-Kuhn-Tucker Sufficient Optimality Conditions). Consider the
problem (B.14). Let X C E ^ be a nonempty open set and f, gi for all % — 1,... ,m and

86 Appendix B Optimality Conditions

hj for all j — 1,... ,n be functions f, gi, hj : E —> E . Let a point x be a feasible solution
to the problem (B.14) and the set I be defined by (B.8). Further, let a point x be the
KKT point. Assume that the function f is pseudoconvex at the point x, the functions g^
for all i E I are quasiconvex at the point x, the functions hj for all j G J = {j: Vj > 0}
are quasiconvex and the functions hj for all j G K = {j: Vj < 0} are quasiconcave6 at the
point x. Then, the point x is a global minimum to the problem (B.14).

Note that all optimality conditions discussed above in this chapter can also be written
in more compact vector form. For example, we can write the Karush-Kuhn-Tucker
necessary optimality conditions (B.19) in the form

V/(sc) + Vg(x)Tu + Vh(x)Tv = 0,

uTg = 0
u>0,

where g: EN —> E m and h: EN —> E™ are vector functions, g(x) = (gi(x),...,gm(x))T,
__~T -f1 R~F h(x) = (hy (x),..., hn(x)) and u = (uu ... ,um) , v = (vu ..., vm) , x = (xu ..., xNy

are m-, n- and A^-dimensional vectors, respectively.

B.3 Second-Order Optimality Conditions

A l l optimality conditions so far discussed in this appendix are called the first-order op
timality conditions since they contain only the first derivatives of functions / , gi and
hj, i.e. their gradients. In this section, we will briefly introduce the concept of the
second-order optimality conditions including the second-order derivatives that are based
on the following motivation. The reader can find further information in detail in [1].

In theorem B . l , we saw that the necessary condition Vg(cc) = 0 holds for all optimal
solutions to a given problem. Nevertheless, if the condition Wg(x) = 0 holds at x, there
are still three posibilities since the point x can be a local minimum, a local maximum
or a saddle point. However, we can use the second-order (or higher order) optimality
conditions to reduce the set of suggested solutions by the first-order necessary conditions.

Consider the problem (B.14). The second-order optimality conditions are based on
the concept of the restricted Lagrangian function L(x) defined by

n

L(x) EE <$>(x,u,v) EE f(x) +Y/uigi{x) + J2vihj(x), (B.20)

where the set / of active constraints is defined by (B.8).

Theorem B.14 (Karush-Kuhn-Tucker Second-Order Necessary Optimality Conditions).
Consider the problem (B.14). Let X C E ^ be a nonempty open set and functions f, g^
for all i = 1,..., m and hj for all j = 1,..., n be twice differentiable. Let a point x be
a local minimum to the problem (B.14) and the set I be defined by (B.8), the restricted
Lagrangian function L(x) by (B.20) and its Hessian at the point x by

V2L(x) EE V2f(x) + J2utV2gt(x) + J2v3V2h3{x), (B.21)

6 a function f:Sc KN i—• E is said to be quasiconcave if the function —/is quasiconvex

B.3 Second-Order Optimality Conditions 87

where V 2 / (c c) 7 V 2gj(cc) for all i G / and V 2 / i j (cc) for all j — 1,... ,n are the Hessians of
objective and constraint functions, respectively, at the point x. Assume that the Hessians
V 2gj(cc) for all i £ I and V 2 / i j (cc) for all j = 1,..., n are linearly independent. Then,
the point x is a KKT point. Furthermore, it holds

dTV2L(x)d > 0 for all deC, (B.22)

where

C = [d^ 0: Vgi(x)Td < 0 for alii G I,Vhj(xfd = 0 for all j = 1,... ,n} . (B.23)

Theorem B.15 (Karuli-Kuhn-Tucker Second-Order Sufficient Optimality Conditions).
Consider the problem (B.14). Let X C E ^ be a nonempty open set and the functions
f, gi for all % = l,...,m and hj for all j = l , . . . , n be twice differentiate. Let a
point x be a KKT point to the problem (B.14) with corresponding Langrange multipliers
u and v and the set I be defined by (B.8). Define the sets I+ = {i G / : ui > 0} and
1° = {i G / : Ui = 0}, the restricted Lagrangian function L(x) by (B.20) and denote its
Hessian7 at the point x by

V2L(x) EE V2f(x) + J2utV2gt(x) + J2^V2hJ(x), (B.24)

where V 2 / (£ c) 7 V2(?j(a;) for alii G / and V 2 / i j (x) for all j = 1,..., n are the Hessians
of objective and constraint functions, respectively, at the point x. Define the cone8 C by

C = {d ^ 0: Vgi(xfd = 0 for all i G /+, Vgi(xfd < 0 for all i G 1°,

Vhj(x)Td = 0 for all j = 1,..., n} . (B.25)

If dT'V2L(x)d > 0 holds for all d G C, then the point x is a strict local minimum to the
problem (B.14).

7see the formula (B.3) on the page 78
8 a nonempty set C C EN is said to be a cone with vertex zero if for all x S C holds that Xx € C for

all A > 0

APPENDIX C

Augmented Lagrangian Techniques

I N this appendix, we will describe how to convert programming problems with equality
and inequality constraints into an equivalent unconstrained problem. The advangate is
that we can then use for solving the algorithms developed for unconstrained problems.
In fact, there are two approches how to do that. The first approach is to use the penalty
functions in which a penalty term is appended to the objective function to penalize
any violation of the constraints. This method produces a sequence of solutions that are
infeasible and the limit of that sequence gives the optimal solution to the original problem.
Since this method produces infeasible points converging to the optimal feasible point, we
also call this technique as the exterior penalty function method. The second approach is to
use the barrier functions in which the barrier term is appended to the objective function
in order to obviate generated feasible solutions to leave the feasible region. As in penalty
function approach, in the limit this method gives an optimal solution to the original
problem. Since this method generates feasible points converging to the optimal solution
of the original problem, we also call this approach as the interior penalty function method.
In following, we will focus to the penalty function approach, exact penalty functions and
the augmented Lagrangian penalty function that is closely linked with the progressive
hedging algorithm. The reader can find more information about barrier function methods
as well as all proofs of presented theorems in [1].

C.l Concept of Penalty Function

As we noticed above, the penalty function methods convert the programming problem
with constraints into a unconstrained problem. The penalty term is added to the objective
function to penalize any violation of constraints. In fact, the constraints of original

89

90 Appendix C Augmented Lagrangian Techniques

problem are incorporated to the penalty term. To make it clear, consider the following
problem with equality and inequality constraints:

minimize f(x)
subject to g(x) < 0,

h(x) = 0,
x e x c EN.

Now, we want to convert this problem into an equivalent problem in the form:

minimize f(x) + fia(x)

subject to x e E ^ ,

where \i is the so-called penalty coefficient, \i > 0 is a large number and a(x) is the
penalty term. Intuitively, the optimal solution for the above problem must have the value
of a(x) close to zero, since otherwise the penalty term will cause the large penalty. Thus,
we are looking for the function a(x) = ocg[x) + ah{x) such that the term otg{x) will be
zero for g{x) < 0 and positive for g{x) > 0 and the term ah(x) will be zero for h(x) = 0
and positive for h(x) ^ 0. A suitable penalty functions ag(x) and oth{x) are

a(x) = ag(x) + cih{x) = max {0, g(x)} + \h(x)\.

Indeed, if g(x) < 0, then the penalty term otg{x) = 0 and if h(x) = 0, then oth{x) = 0
and no penalty is realized. However, if g(x) > 0 or h(x) ^ 0, then a(x) > 0 and the
penalty is realized.

In general, the penalty function must cause a positive penalty for infeasible solutions
and no penalty for feasible solutions. For the problems with equality and inequality
constraints in the form gi{x) < 0 and hj(x) = 0, where % — 1,..., m, j — 1,...,n, a
suitable penalty function is in the form

m n

a(x) = 5>(<7i(a0) + E * (^ (*)) . (C- 1)
i=l j=l

where functions $ and \1/ are continuous functions with the following properties:

$ (0 = 0 for f < 0, $ (0 > 0 for f > 0 (C.2)

* (0 = 0 for $ = 0, > 0 for f ^ 0. (C.3)

Thus, the typical forms of $ and \1/ are

$(O = (m a x { 0 , O) l \

where p is a positive integer. Finally, we can rewrite the penalty function a(x) as

m n

a(x) = J2 (max {0,9i(x)})P + ^ {h^f . (C.4)
i=i i=i

C.2 Penalty Function Approach 91

C.2 Penalty Function Approach

In this section, we will introduce the crucial result that allows to use the penalty method
as a method for solving problems with constraints.

Theorem C . l . Consider the following constrained problem:

minimize f(x)
subject to gi(x)<0, i — l,...,m, (C.5)

hj(x)=0, j = l,...,n,
x e x,

where f, gi and hj are continuous functions on KN and X is a nonempty set in KN. Let
a(x) be a continuous function given by (C.l) satisfying (C.2) and (C.3). Assume that the
problem has a feasible solution. Moreover, suppose that for each \i, there exists a solution
x^ G X to the problem to minimize f(x) + fia(x) subject to x G X, and that {x^} is
contained in a compact subset of X. Then,

inf {f(x) : g(x) < 0, h(x) =0,xeX} = sup {6(fj)} = lim 0(ji),

where g(x) = (g^x),... ,gm(x))T, h(x) = (h^x),... ,hn(x))T and

9(fx) = inf {f(x) + fxa(x) : x G X} = f(xfJ) + /xa(ccM).

Moreover, the limit x of any convergent subsequence of {x^} is an optimal solution to the
original problem and fia(x^) —> 0 as \i —> oo.

Thus, from the above theorem, by choosing the penalty parameter /x large enough, we
can construct the solution x^ arbitrary close to the solution to the original problem. The
popular method to solve the problem (C.5) is to solve a sequence of the problems

minimize f(x) + HiCt{x)
subject to x G X,

where /Xj is an increasing sequence of penalty parameters. Then, the set {x^} consists of
infeasible solutions to the problem (C.5) and (by Theorem C. l) these solutions for a large
enough penalty parameters \ii converge to the optimal solution of the original problem
(C.5). This also explains the name exterior penalty function method, since it generates the
infeasible points from an exterior of the feasible set X. The above technique is described
in the following algorithm for solving the problem (C.5).

Ini t ia l izat ion. Set e > 0 to be a termination parameter. Choose an initial point XQ, an
initial penalty parameter /xo and a parameter (3 > 1. Let k = 0 and go to the main
part of the algorithm.

M a i n part.

1. Start with Xk and solve the problem

minimize f(x) + HkQ:(x)
subject to x G X,

Let Xk+i be an optimal solution for the above problem and continue with step
2 of the main part.

92 Appendix C Augmented Lagrangian Techniques

2. If /Xfca(cCfc+i) < e, then stop, the point xk+i is an approximate solution of the
original problem with the penalty less than e. Otherwise, set fik+i = PfJ>k,
k — k + 1 and go to the step 1 of the main part of the algorithm.

C.3 Exact Penalty Functions

For the penalty function methods described in Section C.I and C.2, we have seen that
we have to take the penalty parameter \x infinitely large if we want to reach the optimal
solution to the original problem in the limit sense. This can also cause numerical difficul
ties and ill-conditioning effects. Naturally, in practise we can take the penalty parameter
just finitely large. Thus, the question is whether we can construct a penalty function that
reachs an exact optimal solution to the original problem for reasonable finite value of the
penalty parameter \i. Such penalty functions are called exact penalty functions. We will
present one example of a penalty function with this property as a particular case of (C.4)
under additional assumptions and in the next section, we will present the concept of the
augmented Lagrangian function that also satisfies the mentioned property and plays the
role in the progressive hedging algorithm.

Let us consider the following problem

minimize f(x)
subject to 9i{x) < 0, i — 1,... ,m,

hj(x) = 0, j = l , . . . , n ,
x e x,

and its penalized objective function in the form

(m n \

£ m a x { 0 , ^ (*) } + E l M *) l • (C6)
i=l j=l)

In fact, its penalty part is in the form (C.4) with p — 1. Assume cc to be a K K T 1

point with Lagrangian multipliers Ui, i E I = {i: Qiix) = 0} and Vj for j = 1,... ,n.
Moreover, suppose that the functions / and gi for % e / are convex functions and
hi for % = l , . . . , n are affine functions. Then, it can be shown that for finite \x >
> max{Ui,i e I, \vj\,j — 1,... ,n} the point x minimizes the penalized objective function
F(x) defined by (C.6).

C.4 Augmented Lagrangian Penalty Functions

As we discussed in the foregoing section, we are interested in penalty functions that can
reach the optimal solution to the original problem for finite value of the penalty parameter.
In this section, we will introduce the concept of the augmented Lagrangian penalty function
(A L A G penalty function) that satisfies this property and in addition possess the property
of being differentiable.

Let us start with the problem containing only equality constraints that we will later
extend to the problem with equality and inequality constrains.

a point satisfying the Karush-Kuhn-Tucker conditions, see Appendix B

C.4 Augmented Lagrangian Penalty Functions 93

C.4.1 Problems With Equality Constraints

Consider the following problem with equality constraints:

minimize f(x)
subject to hj(x) = 0, j — 1,..., n.

If we take the quadratic penalty function (the general penalty function (C.4) with p — 2),
we will need infinite value of the penalty parameter \i to obtain the solution to the original
problem. However, try to shift the origin of the penalty term to the point w = (wi,..., wn)
and consider the penalized objective function for the problem with perturbations w of
the right-hand sides of constraints,

n 2

f(x) + fiY, {hAx)-wj) •
3=1

By the expansion of the quadratic term in the sum,

n

Denote v3- = —2fiWj and put out the constant term J2]=i w]- Finally, we can write

n n

FALAG(x,v) = f(x) +Y,Vjhj{x) +vY.h%x)- (°-7)
i = i i = i

Note that (C.7) is the standard Lagrangian function augmented by the quadratic penalty
term fiJ2]=i h2(x) which explains the name augmented Lagrangian penalty function.

The following theorem shows that the augmented Lagrangian penalty function is the
exact penalty function.

Theorem C.2 . Consider the following problem

minimize f(x) (C.8)
subject to hj(x) =0, j — 1,..., n.

and let the KKT solution (x, v) satisfy the second-order KKT sufficent condition for a
local minimum (see Theorem B.15). Then, there exists a penalty parameter p, such that
for (j, > p,, the augmented Lagrangian penalty function FALAG(-,V) also reachs a strict
local minimum at the point x. Especially, in case that the function f is convex and the
functions hj are affine for all j — 1,..., n, then any minimizing solution x for the problem
(C.8) also minimizes FALAG(',V) for all \i > 0.

C.4.2 Problems With Equality and Inequality Constraints

In following, we will show how to generalize the foregoing theory for the problems including
both equality and inequality constraints.

94 Appendix C Augmented Lagrangian Techniques

Consider the following problem

minimize f(x)
subject to gi(x) < 0, i — l,...,m, (C.9)

hj(x)=0, j = l,...,n.

To include the inequality constraints to the foregoing theory presented above, we need
to rewrite equivalently all inequality constraints gi(x) < 0 for a l H = 1,... ,m as equal
ity constraints. This is accomplished by adding the complementary variables Sj to all
inequality constraints. Thus, we can transform the inequality constraints to the form

g,t(x) + s2 = 0

for all % — 1,..., m, where obviously s2 > 0.

Assume a; to be a K K T point for the problem (C.9) with optimal Lagrange multipliers
u and v corresponding with the inequality and equality constraints, respectively. Suppose
that the strict complementary slackness conditions u~igi(x) = 0 hold for a l H = 1,... ,m
with ui > 0 for alH 6 / = {i : gi{x) = 0}. Further, assume that the second-order sufficient
conditions (see Theorem B.15) hold for the point (x, u, v). Then, we can apply Theorem
C.2 to the problem

minimize f(x)
subject to gi{x) + s2 = 0, % — 1,... ,m,

hj{x) = 0, j = l,...,n.

A l l conditions of Theorem C.2 are satisfied at the point (x,u,v,s), where s2 = —g^x)
for all % — 1,..., m. Thus, the point (x, s) for the penalty parameter \i large enough is
a strict local minimum for the following augmented Lagrangian penalty function at the
point (u,v):

FALAG(x,u,v) = f{x) + Y,Ui(gi{x) + s2) +
i=i

III I I I V IL

+ E vM*) + » E {9i(x) + s2) + h){x)
3=1 \i=l 3=1

that can be rewritten to the more suitable form:

FALAG(x, u, v) = f(x) +»'£[gi{x) + s2

i+-!-) _ f- + J2vMx) +^Y.h%x)
i = l \ i = l 4 ^ 3=1 3=1

APPENDIX D

What Is on the CD

The C D is attached to the thesis and contains

• the thesis in P D F 1 format

• / t h e s i s . p d f ,

• the parallel implementation of the one-stage progressive hedging algorithm for illus
trative example with two paraboloids (see Subsection 5.4.1, page 36)

•/OneStagePHAParaboloids/,

• the parallel implementation of the two-stage progressive hedging algorithm for the
farmer's problem (see Subsection 5.5.1, page 42)

Jfr/TwoStagePHAFarmersProblem/,

• G A M S source files for both scenarios s 1 and s2 of the continuous casting process
(see Section 6.4, page 55)

J f r/ContinuousCasting/,

• the parallel implementation of the two-stage progressive hedging algorithm for the
two-stage continuous casting process (see Sections 6.4 and 6.5, pages 55 and 58,
respectively)

X/TwoStageContinuousCasting/,

where X denotes your C D - R O M drive.

Portable Document Format

95

