
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

EXTENSION OF THE TMT TOOL FOR REPORTING
THROUGH THE REPORTPORTAL API
ROZŠÍŘENÍ NÁSTROJE TMT UMOŽŇUJÍCÍ REPORTOVÁNÍ POMOCÍ API NÁSTROJE
REPORTPORTAL

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR NATÁLIA BUBÁKOVÁ
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

Institut: Department of Intelligent Systems (DITS)

Student: Bubáková Natália

Programme: Information Technology

Category: Software analysis and testing

Academic year: 2023/24

Assignment:

1. Study the field of the test management. Investigate tmt tool for test management. Focus on the way
tmt reports results of the executed tests. Investigate ReportPortal, a tool for reporting and managing
test results. Focus on the tool's API which allows other tools to report their results.

2. Analyse the requirements of automated reporting of test results. Propose and design an extension of
the tmt which will enable reporting to the ReportPortal.

3. Implement the proposed solution as a new tmt plugin.
4. Evaluate the implemented plugin on different test suites managed by tmt.

Literature:
• Homepage of tmt tool: https://github.com/teemtee/tmt
• Documentation of tmt tool: https://tmt.readthedocs.io/en/stable/
• O. Dubaj. Systém pro správu výsledků testů doplňující nástroj tmt. Brno, 2021. Master thesis. FIT

BUT.

Requirements for the semestral defence:
The first two points.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Smrčka Aleš, Ing., Ph.D.

Head of Department: Hanáček Petr, doc. Dr. Ing.

Beginning of work: 1.11.2023

Submission deadline: 9.5.2024

Approval date: 6.11.2023

Bachelor's Thesis Assignment
156937

Extension of the tmt Tool for Reporting through the ReportPortal APITitle:

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

Abstract
This Bachelor’s thesis provides insight into testing processes practiced across teams

at Red Hat and describes a new testing infrastructure proposed to improve testing work-
flow within the company. With this infrastructure serving as the main motivation for
the assignment, the work targets several use cases of report functionality resulting from
the integration of the Test Management Tool commonly known as tmt and the reporting
platform ReportPortal. It examines both of these tools, analyses alternative approaches,
and proposes an implementation of a tmt plugin that integrates seamlessly with ReportPor-
tal, via its REST API. The focus of the thesis encapsulates all steps behind a community-
driven project, closely examining detailed aspects of design, implementation, and testing of
all requested features of the plugin that actively resides within the tmt open-source project.

Abstrakt
Táto bakalárska práca nahliada na testovacie procesy využívané Red Hat tímami v praxi,

a zároveň opisuje novú testovaciu infraštruktúru navrhnutú pre účel zlepšenia testovacích
praktík v spoločnosti. Infraštruktúra predstavuje hlavnú motiváciou pre zadanie tejto práce,
ktorá sa sústredí na niekoľko scenárov tvorby reportov s výsledkami testov, ktoré sú reali-
zované práve prepojením nástroju na správu testov známeho ako tmt a ReportPortalu, teda
rozhrania pre zobrazenie výsledkov. Práca skúma oba tieto nástroje a prezentuje imple-
mentáciu v podobe tmt rozšírenia plynule prepojeného s ReportPortalom cez jeho REST
API rozhranie, čím vylučuje alternatívne prístupy. Práca sa komplexne zaoberá všetkými
etapamy projektu, ktorý je realizovaný v spolupráci s komunitou a detailne skúma aspekty
návrhu, implementácie a testovania všetkých požadovaných funkcií rozšírenia, ktoré aktívne
komplimentuje open-source tmt projekt.

Keywords
Test Management Tool, tmt, fmf, Report Portal, test report, software testing, test result
management, test plan, test run, test case

Kľúčové slová
Test Management Tool, tmt, fmf, Report Portal, reportovanie testov, testovanie programu,
správa výsledkov testov, plán testovania, spustenie testu, prípad testovania

Reference
BUBÁKOVÁ, Natália. Extension of the tmt tool for reporting through the ReportPortal
API. Brno, 2024. Bachelor’s thesis. Brno University of Technology, Faculty of Information

Technology. Supervisor Ing. Aleš Smrčka, Ph.D.

Extension of the tmt tool for reporting through
the ReportPortal API

Declaration
I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Aleš Smrčka, Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

. .
Natália Bubáková

May 15, 2024

Acknowledgements
I would like to express my sincere gratitude to everyone who contributed to the completion
of this thesis. Specifically, I extend my thanks to my supervisor Ing. Aleš Smrčka, Ph.D.
for his willingness and patience throughout the process. I am grateful to my technical
supervisor, Mgr. Petr Šplíchal, and all colleagues who contributed to defining requirements,
reviewing and evaluating implementations, and providing assistance in understanding and
addressing all related issues. Additionally, I acknowledge those who contributed to the
clarity of the documentation of the tmt tool and RHEL processes, and also everyone who
supported the main initiative which laid the foundation for this work.
Last but not least, I am deeply grateful to my partner for his enduring support throughout
the writing process.

Contents

1 Introduction 3

2 Software testing and testing tools 4
2.1 Introduction to software testing . 5

2.1.1 Test terminology . 5
2.1.2 Testing tools . 8
2.1.3 Test processes . 10

2.2 Test report solutions . 14
2.2.1 Report tools . 14

3 Analysis or requirements specification 16
3.1 Motivation and problem setting . 16

3.1.1 Deficiency of the current status . 16
3.1.2 Motivation example . 18
3.1.3 Aim of the thesis . 20

3.2 Tool analysis . 21
3.2.1 Tool tmt . 21
3.2.2 Tool ReportPortal . 25

3.3 Mapping the terminology . 28
3.4 Requirements . 31

3.4.1 High-level use cases and analysis . 31
3.4.2 Functional Requirements . 32
3.4.3 Non-functinal Requirements . 34

4 Design 35
4.1 Ways to integrate tmt and ReportPortal . 35

4.1.1 A tmt plugin - Via JUnit XML import 35
4.1.2 A tmt plugin - Via API library . 36
4.1.3 A tmt plugin - Via REST API . 38

4.2 Program structures . 38
4.2.1 Class structure of tmt . 38
4.2.2 ReportPortal REST API . 40

4.3 Details of tmt plugin design . 44
4.3.1 Definition of plugin options . 44
4.3.2 Supported use cases and limitation of option combinations 45
4.3.3 Design decisions in tmt plugin . 47
4.3.4 Design decisions in ReportPortal interface 49

1

5 Implementation details 50
5.1 Upload plan to ReportPortal . 50

5.1.1 Establish the connection to ReportPortal instance 51
5.1.2 Create launch and test items . 52
5.1.3 Upload details of test results . 54
5.1.4 Close launch and test items . 54

5.2 Grouping several plans to ReportPortal . 55
5.3 Support of reruns . 57
5.4 Report with an idle status . 57
5.5 Additional upload to the launch . 59
5.6 Finalization and documentation of tmt plugin 59

6 Evaluation of the plugin 61
6.1 Test coverage . 61

6.1.1 Test coverage for core functionality 62
6.1.2 Test coverage for advanced use cases 63

6.2 User feedback . 65

7 Conclusion 68

Bibliography 70

A Contents of included storage media 71

2

Chapter 1

Introduction

In the life cycle of a software product, testing emerges as the bedrock of quality assurance. It
plays a crucial role not only in the pre-deployment phase but also throughout maintenance,
where it monitors behaviour, facilitates easy bug identification, and ensures the stability
and functionality of the product with each software update or upgrade iteration. Hence,
establishing and maintaining effective test management and automation through a stable
and comprehensive system is imperative, particularly within large corporations.

Red Hat, a wide-broad open source company, with its flagship Red Hat Enterprise
Linux (RHEL), is no exception to the challenge, testing across a multitude of software
components, each with its unique testing requirements. In the field of security and quality
assurance of the operating system, software testing is supported by test result management
to report, store, and analyze historical development or the current state of the product to
detect bugs and develop the quality of the product. Alongside manual execution, this is
primarily achieved through test automation, conducted at different intervals, with diverse
environmental conditions, and on multiple priority levels, resulting in a variety of result
states to be considered.

Across multiple teams and components, these varied needs often lead to inconsistent
usage of tools, ranging from outdated systems to adopting several simple tools or even
developing custom software solutions to cover specific needs. This can be understood as
a widely demanding and inefficient approach.

In response, a cross-functional initiative further introduced as the Big Picture has been
launched, aiming to develop a large-scale infrastructure of cooperating testing tools with
a uniform approach. This initiative serves as the primary motivation for the thesis, as it
encompasses the approach to execute tests and report their results for them to be addi-
tionally analyzed, filtered, and evaluated. Central to this effort is the necessity for robust
and flexible tools to process, display, and store data, accommodating various use cases and
ensuring accessibility and active support, thus replacing current obsolete tools.

Aligned with this idea, the thesis targets the integration of the tmt tool and Report-
Portal and the reasoning behind it offered as a solution. It explores testing terminology
and provides an overview of current tools used within the company and those that will
replace them, elucidating test result management processes and all the needs or use cases
listed for the implementation. The main focus is however on a key test management tool
tmt, its structures, metadata notation, and the way it is integrated with ReportPortal API
via the report plugin. Finally, it discusses the possibilities, complications, and resolutions,
followed by testing the functionality and evaluation based on the user feedback.

3

Chapter 2

Software testing and testing tools

Testing is an extensive topic for the thesis, but what testing is and why it is done can
hardly be understood without any testing experience beforehand. An understanding of
testing purposes is outlined in the standard IEEE 29119-1[2] as follows:

Testing usually serves more than one purpose. Typical purposes include, but
are not restricted to:

(a) detecting defects - this allows for their subsequent removal thus increasing
software quality;

(b) gathering information on the test item - testing generates information; this
information can serve different purposes, such as:
— developers can use the information to remove defects, increase the code

quality, or learn to create better code in the future;
— testers can use the information to create better test cases;
— managers can use the information to decide when to stop testing;
— users eventually benefit from a higher product quality.

(c) creating confidence and taking decisions - by providing evidence that the test
item performs correctly under specific circumstances, the stakeholders’ con-
fidence that the test item will perform correctly operationally increases;
with sufficient confidence, stakeholders can decide to release the test item.
Testing may be performed for some or all of the above purposes, and ad-
ditional purposes not listed may also exist; these purposes should be iden-
tified and agreed upon as a starting point for any testing activity.

With all that being said, none of the testing purposes above could be done without
the test execution and test report. As all, defect detection, information gathering, and evi-
dence providing refer to a need for a quality overview of test results and other test artifacts,
that can provide an easy approach for human reading, further analysis, and additional ac-
cess. Thus test report and its integration into the testing infrastructure plays an essential
role in the idea of testing itself.

Furthermore, the rest of the chapter is dedicated to an understanding of software testing
and the practices behind it, followed by a focus on the test report approach and priorities.

4

2.1 Introduction to software testing
Whilst the thesis will follow the integration of two tools to support the needs for a test re-
port, the project is planted in a real-life operation behind the development and maintenance
of a software product. On a corporate scale, such terminology tends to be very specific and
testing processes comprehensive enough to keep the operation in order on several levels.
This leads to a need to understand the common terms from the work environment, thus
define them and use them in the context of test processes that are used.

In the section, all of the main terms and testing processes introduced for purposes of
the thesis, are inquired by a broad group of engineers working on a Quality Assurance
of the operation system and participating in the Userspace Subsystems for Red Hat Enter-
prise Linux, which is commonly referred to as RHEL. These are not necessarily Quality En-
gineers, but rather RHEL Security Engineering teams whose established testing strategies
are related therefore can share tools and methods within a comprehensive infrastructure.

2.1.1 Test terminology

Terms used in the thesis are adapted from the RHEL testing practice derived from estab-
lished standards and testing tools terminology. The terms are defined based on the RHEL
community terminology [9], and for better understanding merged with general terms of
software testing, defined in the standard ISO/IEC/IEEE 29119-1 [2] and supplemented by
the standard ISO/IEC/IEEE 24765 [1].

(a) Testing is a set of activities conducted to facilitate the discovery and evaluation of
properties of test items.
An act of testing, in the standard referred to as a test, is an activity in which a sys-
tem or component is executed under specified conditions, the results are observed or
recorded, and an evaluation is made of some aspect of the system or component.

(aa) Testing activities include planning, preparation, execution, reporting, and
management activities, insofar as they are directed towards testing.

(ab) Manual testing is performed by humans by entering information into a test
item and verifying the results.

(ac) Scripted testing is performed based on a documented test script.
(ad) Automated testing uses tools, robots, and other test execution engines to

perform tests.
(ae) Continuous testing refers to when a test execution is started via an automated

process that can occur on-demand, triggered by a specific event or routine. Con-
tinuous testing typically occurs in the context of continuous integration (CI) and
continuous delivery (CD).

(b) Test is a test unit, in the standard referred to as a test procedure; detailed instructions
for the setup, execution, and evaluation of results for a given test case.

(ba) Test case can be an alternative term for a test unit specifically used in terms of
test management tools as the lowest level item displayed in the test structure.

(bb) Test script is a test procedure specification document specifying one or more
test procedures.

5

(bc) Test command is understood as the smallest unit in the test defined by the test-
ing framework used. It drives the test execution through a command with pre-
conditions, input, and expected results set, and corresponds to one line in the test
results log.

Figure 2.1: Test terminology demonstrated on details of test script and test metadata per
test case

(c) Test item is a test object, alternatively test subject; a work product to be tested.
Example of test items includes software component, system, and user guide procedure.

(ca) Test objective is a reason for performing testing

(d) Test environment describes an environment containing facilities, hardware, soft-
ware, firmware, and procedures, needed to conduct a test.

(da) Test environment requirements describe prerequisites or necessary proper-
ties of the test environment.

(db) Test preconditions are conditions that are required to be true for test exe-
cution, they include the required state of the test environment, data used by
the test item, and the test item itself.

(dc) Test context represents an immediate environment in which a procedure or set
of procedures operates.

(e) Test execution is a process of running a test on the test item, producing actual
results

(f) Test result is an indication of whether or not a specific test case or test suite has
passed or failed, i.e. if the actual results correspond to the expected results or if
deviations were observed.

(fa) Test status is an alternative term for test result per procedure or per group of
procedures, specifically used in the terms of report tools where it can be manually
switched.

6

(fb) Test artifact is any additional output of the test suite such as the stdout/stderr
output, log files, and screenshots. Test artifacts are for consumption by humans,
archival, or big data analysis.

(fc) Test log is a chronological record of relevant details about the execution of one
or more test procedures.

(fd) Test report is defined in the standard as a document that describes the conduct
and results of the testing carried out for a system or component. In the context of
automated testing and testing tools, it refers to an overview of test statuses and
other test artifacts that are easily readable and accessible for human analysis.

Figure 2.2: Test report terminology demonstrated on analogy of 2.1

(g) Test run refers to a single instance of performing a set of testing activities on one
or more test cases or plans. It typically identifies the group of tests for test execution,
after which it results in the generation of a group of test results and other test artifacts.

(ga) Test plan is defined in the standard as a detailed description of test objectives
to be achieved, and the means and schedule for achieving them, organized to co-
ordinate testing activities for some test item or set of test items. In the context
of testing tools, it identifies a group of test cases and its resources for execution
with a particular objective against one or more test items.

(gb) Test suite is set of test cases or test procedures.

7

Figure 2.3: Test run terminology demonstrated on relation of test 2.1 and test report 2.2

(h) Test management generally involves planning, scheduling, estimating, monitoring,
reporting, control, and completion of test activities.

(ha) Testing tool is a specific or generic tool that is used for test execution and test
management such as test results recording, test results display and interpreta-
tion, generation of test scripts, etc.

(hb) Testing framework is a library or component that the test suite and tests use
to accomplish their job.

(hc) Testing system is a CI or other testing system that would like to discover,
stage, and invoke tests for a test subject.

(hd) Testing infrastructure refers to an ecosystem related to testing, a set of tools
and services providing stable and consistent support for testing the test item
or group of test items within a product.

2.1.2 Testing tools

As some of the terms above suggest, terminology can widely vary based on the tools used in
the work practice. For starters, there are a few essential software tools to obtain an overview
of RHEL Quality Assurance and all the processes related, further elaborated in the subsec-
tion 2.1.3. Tools information listed within both old and new test infrastructure is mostly
defined according to the internal RHEL documentation [9].

(a) git repositories
Repositories for source code of tests used to store source code of automated tests.
The most used repositories are github.com or gitlab.com for open-sourced tests to-
gether with internal gitlab or dist-git instances for private projects. Both GitLab and
GitHub support continuous integration and continuous delivery (CI/CD) that allows
to automate the build, test, and deployment pipeline.

(b) BeakerLib
A shell-level integration testing library that serves as a main testing framework for
verification.

8

(c) Nitrate
Web-based Test Case Management System, also known as TCMS, is designed for
creating, organizing, and analyzing test plans, test cases, and test runs. Nitrate offers
a wide range of functionality including robust test life-cycle management, extensible
issue tracker, detailed analysis of test results, and fast search capabilities. It is an open
source project, written in Python and Django framework, that is currently obsoleted.
[5]

(d) tmt
The tmt tool, shortened for Test Management Tool, is an open source Python mod-
ule and command-line tool that provides a user-friendly way to identify tests, pre-
pare the testing environment, execute tests, and report their results. It implements
the Metadata Specification which allows storing all needed test execution data directly
within a git repository, which can be then remotely referenced. The specification
serves as a successor of the Ansible-based Standard Test Interface. [12]
Its test identification is based on the format of an open source Python module and
command line tool fmf, shortened for Flexible Metadata Format, derived from declar-
ative YAML format. It is an efficient format used to store all test execution metadata
in both human and machine-readable ways in one place and offers an alternative to
test metadata stored in Makefile. [7, 11]

(e) Beaker
An open source software for managing and automating labs of test computers. It en-
ables users and administrators to oversee systems across multiple labs, maintain hard-
ware inventory, provision task environments, schedule tasks across systems, and view
stored task results.

(f) Testing Farm
An open source Testing System is a Service designed to provide a reliable and scal-
able service for executing automated tests from various users, such as Fedora CI,
RHEL CI, Packit, and others. It serves as a test execution back-end across diverse
infrastructures, from private to public clouds. Using the tmt tool format, it abstracts
test infrastructure, enabling specific hardware requirements and transparent provi-
sioning. Testing Farm aims to optimize test execution across different environments
and projects within the Red Hat ecosystem and open source community.

(g) ReportPortal
Service that provides increased capabilities to speed up results analysis and reporting
through the use of built-in analytic features. There are multiple instances of Report-
Portal running internally.

(h) Polarion
A complete web-based Application Lifecycle Management Solution (ALMS) within
Linux QE is mostly used for storing test results and related testing-related documents
such as test plans, test specifications, or release readiness reports to allow traceability
and auditing.

(i) Bugzilla
The Red Hat Bugzilla is a Red Hat bug-tracking system for submitting and reviewing
defects found in Red Hat distributions.

9

(j) Jira
An issue-tracking and project-management system with advanced visualization capa-
bilities, intuitive hierarchy management, and extensive REST API. It functions as
a central tracking, planning, and collaboration tool in Red Hat.

(k) Errata
The Errata Tool is a system for managing the Red Hat Errata process. Errata, also
known as advisories, is the vehicle by which fixes and enhancements are released to
customers for RHEL and other Red Hat products.

(l) Packit
An open source project aiming to ease the integration of your project with Fedora
Linux, CentOS Stream, and other distributions.

(m) Brew
Red Hat’s build system. It is designed to build packages from sources in a reproducible
and auditable manner and to keep track of those packages for the lifetime of their
related products and longer.

(n) Jenkins
An open source automation server that enables developers around the world to reli-
ably build, test, and deploy their software. Multiple Jenkins instances are running
internally.

2.1.3 Test processes

When software is developed and maintained, it is accompanied by testing activities de-
scribed by test processes that are generally defined at 3 levels, Organizational test processes,
Test management processes, and particularly Dynamic test processes [2]. While the first
two serve an important role as wrappers covering mostly organizational and strategic pur-
poses, there lie the Dynamic test processes as a core of the operation. The infrastructure
covering the dynamic processes consists of several parts, that dynamically cooperate either
fully or semi-automatized.

Firstly there is a source of the test scripts. These depend on the testing framework, and
test environment requirements. A tested component or any test item of a requested version
must be built and provided either manually or passed into the infrastructure beforehand.
Secondly, the test scripts and requirements including the test item are identified and passed
to a preset testing environment. Afterward, test execution occurs for test results and
additional information to be logged. Lastly, the outcome of the testing is reported into
the interface where the logs are stored and can be additionally analyzed and evaluated.

10

Figure 2.4: Adapted diagram of dynamic test processes based on the standard
ISO/IEC/IEEE 29119-1 [2]

With insight into tools listed in 2.1.2, specific testing processes used in the RHEL
subsystems can be introduced.

Figure 2.5: Extended diagram of dynamic test processes with tools specification 2.4

Naturally, test suites must be stored in a repository, for this purpose git repositories
are used. They are either internal instances (dist-git) or public code hosting platforms to
support an idea of open source (GitLab, GitHub). Git repository serves as a main test code
storage that allows the maintenance of common test code in one place, prevents test code
duplication, and also enables integration testing.

Tests stored consist of raw source code and metadata, as shown before in figure 2.1. Code
is built with shell-level testing framework BeakerLib, that provides simple commands to
generate test log on execution. It uses shell command to cover the objective, its description,
and the expected result to generate the description with test results, each per line, allowing
the structure of phases.

11

1

2 rlJournalStart
3 rlPhaseStartSetup
4 rlAssertRpm $PACKAGE
5 rlRun ’TmpDir=$(mktemp -d)’ 0 ’Setup directory’
6 rlRun "pushd $TmpDir"
7 rlPhaseEnd
8

9 rlPhaseStartTest
10 rlRun "touch test" 0 "Create test file"
11 rlAssertExists "test"
12 rlPhaseEnd
13

14 rlPhaseStartCleanup
15 rlRun "popd"
16 rlRun "rm -r $TmpDir" 0 "Clean up directory"
17 rlPhaseEnd
18 rlJournalEnd
19

Figure 2.6: Example of test written with BeakerLib framework

Metadata per each test holds information such as test objective, contact name, environ-
ment requirements, and much more depending on the type of infrastructure used. Metadata
typically uses an additional file and is noted in a markup language, based on the test case
management tool used. It can be either passed via Makefile, together with an identifier to
link the test case in a web-based test management organization (Nitrate, Beaker), or it is all
stored in the metadata file based on YAML format that is read when the run is performed
(tmt, fmf). This is further examined in the section 3.1.

In order to execute tests, the test management tool is used to identify the group of tests.
This process is usually based on a test plan. Then it creates a test run passing the data to
the environment to perform the execution.

When testing RHEL components, the test items are ready in the environment before-
hand as they are shipped with the release of the RHEL version. If testing a new package
before it is shipped in the release, it must be built in the Brew first and manually spec-
ified or via the Errata tool by automated processes passed in the compose. The services
responsible for automation are Jenkins, Packit, etc.

By the time the test execution starts, the installation of environment requirements and
preconditions is triggered within the test system providers Beaker or Testing Farm.
These prerequisites are installed for each test or plan, or within the setup phase of the test
case. This includes all tested components, additional components, and libraries used in
the test required to be present, otherwise the test concludes with an error or warning.

Only afterwards the test execution can take place, driven by the framework mentioned
above, generating well-structured test logs and test results. BeakerLib generates a log
with details of execution, a log with a summary of test results, includes protocol details
with information about the compose, and allows description used for definition of the test
purpose and test contact.

12

1

2 ...
3 ::
4 :: Setup
5 ::
6 :: [12:00:03] :: [PASS] :: Setup directory (Expected 0, got 0)
7 :: [12:00:03] :: [PASS] :: Command ’pushd /tmp/tmp.oUo’ (Expected 0, got 0)
8 :: [12:00:03] :: [PASS] :: Command ’set -o pipefail’ (Expected 0, got 0)
9 ::

10 :: Duration: 0s
11 :: Assertions: 3 good, 0 bad
12 :: RESULT: PASS (Setup)
13

14 ::
15 :: Test
16 ::
17 :: [12:00:03] :: [PASS] :: Create test file (Expected 0, got 0)
18 :: [12:00:03] :: [PASS] :: File test should exist
19 ::
20 :: Duration: 0s
21 :: Assertions: 2 good, 0 bad
22 :: RESULT: PASS (Test)
23

24 ::
25 :: Cleanup
26 ::
27 :: [12:00:04] :: [PASS] :: Command ’popd’ (Expected 0, got 0)
28 :: [12:00:04] :: [PASS] :: Clean up directory (Expected 0, got 0)
29 ::
30 :: Duration: 0s
31 :: Assertions: 2 good, 0 bad
32 :: RESULT: PASS (Cleanup)
33

34 ...
35 ::
36 :: Duration: 1s
37 :: Phases: 3 good, 0 bad
38 :: OVERALL RESULT: PASS ()
39

Figure 2.7: Example of summarized test log generated by BeakerLib framework,
analogous to the source code in the figure 2.6

These logs are in the execution tool (Beaker, Testing Farm, tmt) wrapped in another
journal supplemented with details of accompanying processes. Within the run reported
in the test management tool, they are displayed or passed to another interface for better
visualization. Thus test results are reported in test management tool like Nitrate or tmt,
or in a dedicated report service such as ReportPortal. They can also pass artifacts linked
to the logs (HTML file, Beaker log, Testing Farm log, etc.). Details of data management
based on management tools and report services are elaborated in the section 2.2 below.

Generally, a report interface such ReportPortal or Nitrate (supplemented by Beaker
logs), allows an analysis of test results with comments, and switchable statuses and ensure
its preservation.

Based on the manual verification another decision can be made. Typically it needs
a rerun in case the environment setup fails, otherwise it is identified as a bug that must be

13

filed to fix it. Tracking tools used for the issue record are Bugzilla or Jira, which manage
the planning behind another release and trigger the next cycle of testing.[9]

2.2 Test report solutions
As one of the main principles, Red Hat embraces open source, and most of the tools
developed and used adhere to this philosophy. While not all tools used are entirely Red
Hat-developed, most of them flourish in the open source due to contributions from Red
Hatters, which help to keep the software tools under control and cover all the internal
needs.

With this in mind, a new Testing Tools & Infrastructure community has emerged with
the goal of enhancing tools, infrastructure, and testing processes to improve efficiency,
compatibility, and alignment with Red Hat’s strategies and open source beliefs. Members
of this community have contributed to existing tools, identified gaps, and embarked on
building a complex infrastructure capable of meeting future testing needs and facilitating
potential improvements.

In line with open source philosophy and the evolving needs of RHEL subsystems, there
is a perceived need for a more robust system aligned with current developments, driven by
the community’s initiative. Consequently, teams lean towards transitioning from the Nitrate
test case management tool to the tmt tool, a tool specifically made for the needs of testing
the operating system in both downstream and upstream conditions. Within its scope, it
is superior to alternative test management systems that engage in other areas of Red Hat
workflow such as Polarion, Xray for Jira, codeBeamer or PractiTest.

However, unlike Nitrate, tmt lacks a built-in test report interface. To address this re-
quirement, an integration of tmt with ReportPortal through its plugin is taken into consid-
eration. Before diving into the details of the integration with ReportPortal, it is important
to conduct market research to evaluate alternative tools available for comparison.

2.2.1 Report tools

This section prompts us to investigate the reasoning behind the choice of ReportPortal and
evaluates alternative options within the spectrum of reporting tools. Aligned with Red Hat’s
values, the focus is directed towards open source tools that provide straightforward test
reporting and analysis capabilities, along with potentially compelling features. Here follows
a list of a few popular open source tools meeting these criteria based on an independent
source [3] supported with personal research:

(a) Zebrunner

+ AI/ML used for auto-classification of failures.
+ Real-time progress reports.
+ Support of test artifacts including logs, screenshots, and video recordings.
+ Customization options for test results.
+ Integration with popular frameworks and tools (Jenkins, Jira, Slack), REST API
− May require expertise for setup and configuration.
− Limited community support compared to more widely adopted tools.

14

(b) Allure Report

+ Generates attractive and interactive HTML reports.
+ Historical trend analysis
+ Extensive customization options and visualization of test results.
+ Support of multiple frameworks, REST API.
− May require expertise for setup and configuration.

(c) ReportPortal

+ ML algorithms used for failure prediction and detection.
+ Real-time analytics and visualization of auto-test results.
+ Excellent in acquiring, aggregating, and analyzing test results.
+ Versatile customization of failure types.
+ Integration with major frameworks and tools (Jenkins, Jira), robust REST API.
+ High scalability and performance
+ Large open source community.
− May require expertise for setup and configuration.

In summary, each of the software solutions listed offers distinct advantages in the realm
of test reporting, very similar to each other. However, when considering the specific needs
of RHEL Security teams, ReportPortal emerges as the optimal choice. Its adherence to
open source principles, extensive reporting and analytics functionalities, scalability, flexi-
bility, and robust community support renders it well-suited for the comprehensive analysis
of RHEL components. By offering teams a reliable framework for data-driven decision-
making and efficient testing processes, ReportPortal supports the efforts of teams already
using the tool and sets the stage for the potential expansion across additional teams and
subsystems through the implementation of the report portal plugin within the tmt tool.

15

Chapter 3

Analysis or requirements
specification

Transitioning from general concepts, this chapter first delves into the RHEL security engi-
neering infrastructure, exploring its current state, identifying deficiencies, and the motiva-
tion driving the need for improvements, as notable gaps in the transition towards automated
testing and the integration of comprehensive test management tools exist. It also provides
insights into the details of the planned infrastructure which leads to the core of the problem
covered in the subsequent implementation - the integration of tmt and ReportPortal.

To gain a comprehensive understanding of the integration process and its requirements,
it is essential to first establish the context and the key factors in the sections 3.2 and 3.3,
as they may influence the implementation of requirements listed in the section 3.4.

3.1 Motivation and problem setting
This section aims to further elaborate on the current state of obsolete tools, vaguely intro-
duced in the subsection 2.1.3. These include tools such as Nitrate, Beaker, and Bugzilla,
which are currently used but do not fully cover the needs.

The subsystems that embrace the migration have a variety of different objectives.
The components tested within the RHEL operating system are far from trivial; they may
require multi-host systems, rebooting, continuity of voluminous procedures, etc. Moreover,
RHEL components often align with those in systems such as Fedora or CentOS Stream.
Thus, these and a few other supported projects require testing and maintenance as well,
ideally in an upstream manner.

Despite the varied system objectives, it is essential for core test automation workflows
to be shared by definition and provide clear interfaces for teams to seamlessly connect to
these workflows. To address varied needs, a shared set of workflow building blocks is offered
as a solution. This allows teams to choose the modules they need while still benefiting from
an improving and unifying test experience.

Thus there’s the initiative to build a whole new infrastructure that is further elaborated
in this section, leading to the objective of the thesis.

3.1.1 Deficiency of the current status

The current solution covers the test management in the Platform Security Subsystem as
a representative of RHEL Userspace Subsystems in the core, RHEL subsystems are web-

16

based test case management systems called TCMS or Nitrate. It is not only a test manage-
ment tool but also a report interface. Its report feature allows one to investigate test results,
determine the status type, add comments, and link with tracking systems (Bugzilla, Jira).
Additionally, it allows efficient filtering, attribute management, and metadata tracking for
all its objects. [4]

Figure 3.1: Nitrate’s screen view of the test plan report enabling further analysis of test
cases

It provides the following object hierarchy:

(a) test case
Representing a specific test with a unique identifier, attributes, and relevance for
distributions, it can also be reused across the other plans.

(b) test plan
Defining a group of tests, allows feature management and arrangement within a tree
hierarchy of plans.

(c) test run
Executing a test plan for a specific compose and assigning status per each test case.

Though Nitrate’s interface is quite comprehensive, access to the test management is
also required by test automation and terminal commands. This is possible via the Python-
Nitrate library, a high-level Python API built on the XMLRPC API that Nitrate offers.

17

Additionally, the approach is also supplemented by internal scripts implementing the pri-
mary test case management functions and integration with Beaker, offering possibilities
such as adding new test cases, merging duplicates, populating it with Beaker job results,
etc.[6]

However such approach Nitrate and its additions offer ends up with test case metadata
partially uploaded in the web interface and partially stored in the Makefile for Beaker exe-
cution. Some data are passed with automation triggers (Jenkins), some are done manually
from the terminal, and some actions are allowed only via the interface. This leads to a sys-
tem that is too bulky, has data fragmented into several places, and is difficult to build on
additional improvements and automation, in addition, the project stopped its development
and is considered obsolete.

Based on the internal documents and discussions [10], there are also other core in-
frastructure parts shared among RHEL teams, including Bugzilla, Beaker, Resource Hub,
RHEL compose gating, and others not relevant to the thesis’s scope. Unfortunately,
the tools and services responsible for integrating these parts for team-specific use cases
are fragmented and typically developed and maintained by individuals as secondary re-
sponsibilities. This poses risks to pipeline security and contributes to instability and lack
of resilience, resulting in increased workload and stress. Given the demands of continuous
integration, gating, and the expanding scope of test automation, any infrastructure outages
significantly impact team productivity. A shared infrastructure operated as a service by
a dedicated team of expert Site Reliability Engineers offers the potential to optimize team
capacity over the long term.

3.1.2 Motivation example

To unveil the improvement plan, the initiative outlined by the Big Picture aims to address
long-term problems in testing infrastructure by implementing the proposed architecture of
Shared OS Testing Infrastructure.

Based on internal documents and discussions [10], its primary goal is to establish a con-
sistent workflow, familiar to teams across RHEL CI, Fedora CI, CentOS Stream CI, and
upstream projects, centered around tests, plans, and runs. It also intends to establish
a metadata specification system that liberates metadata from the old test case management
system, eliminating inconsistency and data fragmentation. Finally, the initiative seeks to
replace current fragmented approaches used within RHEL Security Subsystems, enhance
and unify the test experience across all supported environments, and easily support any
future improvements.

The architecture is composed of building blocks that support the entire testing life-
cycle. It begins with the initial pull request, continues through packaging and adding
essential context details, organizes tests into plans, and ultimately facilitates their execu-
tion. Whether the tests run automatically or manually, the process concludes by reporting
and storing the results along with all necessary test artifacts. This comprehensive approach
ensures a seamless and efficient testing workflow from start to finish, ideally within a single
command or simple automated setup.

The diagram provided in the figure 3.2 interprets how these building blocks integrate
to enable consistent workflows and comprehensive test management, aligning with the en-
visioned goals of the Big Picture initiative.

18

Figure 3.2: An adopted diagram of Shared OS Testing Infrastructure, emphasizing the role
of the integration tmt and ReportPortal that is further examined

The first important building block is represented by git. The git repository serves as
a consistent and stable storage place for the majority of the data, typically application
source code, tests, and test metadata. Utilizing the fmf metadata format ensures that all
relevant data for execution are kept within the repository without any extra dependencies.
In case, the data are split into more repositories (e.g., upstream, downstream), git also
provides remote referencing. Consequently, this enables neat contribution, prevents code
duplication, and provides an easy approach to enable integration testing.

Alongside git, another key piece is tmt, building its functionality on the fmf format.
This comprehensive tool provides teams with consistent and concise configuration to execute
tests easily. Contents of this crucial building block include the test metadata itself and
the plans, which group tests and enable testing. All configurations are stored as plain
text versioned under git using a human-readable YAML-based format with inheritance and
hierarchy. the tmt specification also has an additional feature of tracking requirements in
future stories, such as implementation, test, or documentation coverage, all within the git
repository.

In addition to its data specification capabilities, tmt can facilitate the entire testing
process through several operational steps, as elaborated in the subsection 3.2.1. It supports
the execution based on selected plans, starting from the identification of all test sources and
their requirements, through environment preparation and setup based on preferences and
requirements, up to the test execution itself. It then reports the test results and artifacts
and performs cleanup tasks afterwards.

For purposes such as CI, tmt’s function is closely related to the Testing Farm, a testing
system as a service that provides a variety of test environments supporting rich hardware re-

19

quirements. It serves as a unified test execution back-end with seamless access to machines,
boxes, and virtual machines from systems such as AWS, Beaker, OpenStack, Resource Hub,
and more under the Artemis system, all obtained by a simple request. the transition to
Testing Farm will enable teams to execute test jobs in the cloud and easily expand testing
capabilities in RHEL, Fedora, and CentOS Stream.

Furthermore, the building tools such as Packit in upstream picking up GitHub pull
requests, and other services like Koji, Brew and Module Build Service play a critical role in
the automation process. Pipelines orchestrate tasks, listen to events, and trigger activities
such as packaging or running tests.

Another essential component is ReportPortal, which serves as a platform for display-
ing uploaded results, logs, and other test artifacts obtained after the execution from tmt
data within the environment provided by Testing Farm. This platform not only addresses
functionalities utilized by the old system Nitrate, such as deep search capabilities in well-
structured test result history and persistent audit logs, but also offers additional features
including dashboards, saved filters, custom issue types, and machine learning-based auto-
detection for advanced analysis of tests. ReportPortal enhances these capabilities in a more
visually appealing and comprehensive manner, providing a robust solution for managing
and analyzing test results effectively

Finally, the processes are overseen by issue-tracking systems Jira and Bugzilla. While
both systems are not new in RHEL teams, there is a Bugzilla-Jira transition, so Jira
is no longer used only for tracking team activities but covers bug tracking and eventually
becomes a central tracking, planning, and collaboration tool. Jira can handle larger product
requirements where Bugzilla’s feature set is insufficient to meaningfully capture the work
effectively. Despite the emphasis on Jira, Bugzilla remains a bug-tracking system used to
collaborate with partners and for bugs that need public errata.

To sum up the workflow, it involves triggering tests based on events such as pull re-
quests or commits, initiating builds, and gathering context from artifacts. Test discovery
is a critical step that identifies all required tests based on the context, including manual
tests. The discovered tests can be passed to a ReportPortal and reported as a planned
test to show progress for comprehensive testing. Finally, test execution is performed using
the testing farm API, with results and detailed logs updated and stored for audit purposes
and investigation. This comprehensive workflow streamlines the testing process and ensures
effective management and analysis of test results and artifacts.

3.1.3 Aim of the thesis

As the title of this thesis reveals, the aim is an integration of the tmt tool and ReportPortal
tool. Ultimately, the proposed architecture of Shared OS Testing Infrastructure strongly
affects the topic of this thesis and vice versa, the architecture also depends on the thesis’s
implementation much as it creates an essential connection between the key building blocks
in the infrastructure.

As indicated in the previous subsection and visualized in figure 3.2, the emphasized flow
of data starts with data source in a git repository, where the metadata provides an identifi-
cation of tests when tmt intends to discover them within its run. Furthermore, tmt passes
provided data including the names of plans and tests to ReportPortal in order to create
the report structure with idle status prepared for additional upload. Then when tests are
executed and results are generated they are passed to the ReportPortal once again, and if

20

the ReportPortal has prepared a report for them, it just updates it with obtained data of
test results and artifacts.

To present the targeted connection, it is involved in the part of infrastructure where
the specified tests are identified and passed as idle reports to the ReportPortal, further
where the results from the test execution are reported to the ReportPortal.

Although not immediately apparent, the tmt specification plays the main role behind
all these processes, thus it is an essential factor for reports to be displayed in the interface
or ReportPortal.

For purposes of the infrastructure’s development, there was a proof of concept conducted
independently and outside the scope of this thesis. It involved using a tmt plugin to upload
a simple XML file to ReportPortal, as explained in the design chapter in subsection 4.1.1.
The objective was to offer a temporary solution for infrastructure development purposes
and served as a foundational starting point for the tasks undertaken in this thesis. But this
temporary solution does not cover the needs of the integration of tmt and ReportPortal as
it omits the use of several features the ReportPortal provides, and even completely skips
the step of an initial report and the progress update. This implementation helped with
assembling the idea of the plugin realization and supported the analysis for requirements
to be set and listed in the section 3.4 and the design elaborated in the section 4.3.

Also tmt is an comprehensive tool with far more use cases than visualized in the plan
for Shared Infrastructure, see subsection 3.4.1. And though the shared infrastructure is
the main motivation for the development of tmt specification and its integration to Report-
Portal, it is not aimed only for this purpose. It can be simulated via isolated functionality of
tmt, and afterwards to be adopted in order to run via Testing Farm request. As the Testing
Farm is out of the scope of this thesis, the test coverage and evaluation of the implementa-
tion targets isolated approach within the functionality of tmt.

3.2 Tool analysis
In the context of this thesis, which focuses on the integration of tmt and ReportPortal,
it is essential to conduct an in-depth introduction to these tools. This introduction lays
the groundwork for understanding the terminology, functionalities, and capabilities neces-
sary for their effective utilization.

The analysis of tmt and ReportPortal involves a detailed examination of the use cases
they address, along with their respective features and limitations. This understanding
is crucial for identifying the requirements and design considerations needed to seamlessly
integrate these tools within the scope of the thesis project.

3.2.1 Tool tmt

The tmt is a powerful tool that as well uses test case, test plan and test run as the pri-
mary objects the test management system is built on, with a few differences from the Ni-
trate. Above all, it implements metadata specification which allows storing all needed test
execution data in one place, directly in a git repository that can even be remotely referenced.
The specification of metadata units is covered on several levels:

(a) core | L0
Attributes used across all other metadata levels such as summary, description, test
contact, id, tag, order, adjust, etc.

21

(b) tests | L1
Attributes closely related to individual test cases such as test script, framework,
directory path, maximum test duration or environment requirements, etc.

(c) plans | L2
Attributes related to plans, allowing the definition of all details for each step of the test
run listed below 3.2.2, in addition, there is context, environment variables, etc.

(d) stories | L3
Attributes related to stories in order to track expected or required features, these are
title, priority, story and example.

Such metadata is written in YAML based fmf format, both human and machine read-
able, and stored in the repository with source code. For a complex image, the configuration
data per plan are composed of summary, description, details of the run steps including
a list of tests to be discovered and included in the plan, context attributes and environment
variables. The data defined per tests are summary, description, contact, executable file,
environment requirements, environment variables, tags and any other additive test data
written in the same format. See the example in the figure 3.3.

directory tree
.

plan
plan_01.fmf
plan_02.fmf

test_01
main.fmf
test.sh

test_02
main.fmf
test.sh

plan/plan_01.fmf
summary: Plan metadata
description: Testing fmf

discover:
how: fmf
test:
- /test_01
- /test_02

execute:
how: tmt

report:
how: reportportal
project: test_tmt

context:
component: tmt
distro: rhel-8
arch: x86_64
purpose: upgrade
milestone: rc

environment:
RELEASE: rhel8

test_01/main.fmf
summary: Test metadata
description: Testing fmf

contact: nbubakov@redhat.com

test: ./test.sh
framework: beakerlib

require:
- name: /smoke_library/basic

url: https://git.com/smoke/
ref: master
type: library

- library(another/smoke_lib)

tag:
- flaky_test

tier: ’1’

environment:
TEST_VAR: test_string

duration: 5m

Figure 3.3: Example of fmf metadata for test plans and test cases

Moreover, tmt is also an extensive command line tool that allows to create new tests,
safely and easily run tests across different environments, review test results, debug test code
and enable tests in the CI using a consistent and concise configuration.

22

Figure 3.4: Structure of the tmt tool with the focus on run functionality for the purpose of
the thesis

Its run feature involves 6 main steps, that are each chronologically performed per each
plan:

(a) discover
Identify test cases and gather information about them.

(b) provision
Provision an environment for testing or use localhost.

(c) prepare
Prepare the environment for testing.

(d) execute
Run tests using the specified executor.

(e) report
Provide test results overview and send reports.

(f) finish
Perform the finishing tasks and clean up provisioned guests.

Steps drive the run of a plan or group of plans, can be either run all by default or specified
to omit others. Each of them includes several plugins to support additional features that
are needed, that can be in line easily specified.[12]

The discover plugins enable to specify the identification of tests included in the run.
The choice of the environment is done by provision plugins, which allow to run the tests
locally, in container via podman or connect to any machine via ssh, it is also integrated with
systems such Beaker, Artemis, 1minutetip or TestCloud virtual machines. The prepare
plugins define the way of environment setup, via shell script by default, but it can be
switched into other ways, for example with the packages defined in the errata.

There are several plugins for each step, and though all the steps are essential for the run,
it is the ‘report’ step that is the most relevant for the purpose of the thesis. The ‘report’
step offers three elementary report plugins such display for log output in terminal, html in

23

order to get a better but simple overview in HTML format, or junit for needs of an upload to
test report tools. Additionally, there is polarion plugin which covers a direct integration
with a Polarion Software, and reportportal plugin with primitive upload of data via
xunit format. The reportportal plugin is where the assingment of the thesis is targeted, so
it can be rewritten into a complex plugin via ReportPortal’s REST API to allow additional
features ReportPortal enables.

For an overview understanding of tmt for purposes of the thesis, the command structure
can be summarized with a diagram in the figure 3.5.

Figure 3.5: Structure of the tmt command tool and its options for the purpose of the thesis

The run steps are performed per each plan chronologically and those to be performed
can be selected. To continue with the previous run it is done via --last or --id ID for
its id specification. Each step is performed once per run unless it is specified by –force
(deleting the previous data) or –again (preserving the previous data) to repeat the step.
There is an universal option --help for listing options and details related to any part of
the command that is listed before it.

To name a few example commands:
$ tmt init to create initialize tmt specification in the repository;
$ tmt plans ls to list plans configured in the repository;
$ tmt run discover tests --name . plans --default to perform a ‘discover’

step on the run with all the tests under the current working directory, within the plan that
was not pre-configured;

$ tmt run --until report to perform run except finishing the run;

24

$ tmt run --last --all execute --force to perform the test execution by force
on the latest run with deleting data of previous ‘execute’ step.

3.2.2 Tool ReportPortal

ReportPortal is a complex service with a clear and intuitive interface. It can accommodate
numbers of different projects, which allows convenient and organized parallel work on several
projects, or offers a space for private purposes. Each project has a separate organization,
customization. Within a project, the access and permissions per user are given by the role
such Project Manager, Member, Operator and Customer.

The tab panel on the side offers quick access to dashboards, launches, filters and debugs.
The first space view lists all project dashboards, offering the visualization of test

analytics within several types of tables or graphs based on filters.
Then there is the main part, the list of launches. The launch term is derived from

the elements structure that ReportPortal offers:

(a) launch
The main container that encapsulates the hierarchy of all the other elements, with
suites or tests accessed directly.

(b) suite
An optional container that typically encapsulates other suites or tests.

(c) test
An item per each test case, encapsulating information about the test case.

(d) step
A collapsible element within the log area that wraps other steps or logs.

(e) log
An output written in the log area directly or within the step.

Where the items such as launch, suite and test have name, description, attributes, log area
and unique identifier in the URL.

To describe the main features in the view of launches, there are filter options, buttons
for Import, Actions an Refresh. Actions allow to edit, merge, compare, move to debug, force
to finish or delete all selected launches. the launches in the main view can be displayed
either by run or grouped by the launch name. In the overview, each of them displays its
start time and a number of tests in total, those passed, failed, skipped, with product
bug, automation bug, system issue or labelled as to investigate. Furthermore,
there is a similar view on the list of suites after opening one of the launches, alternatively
one of the nested suites. Only the overview of test items offers a listing of method type,
status, start time and specific defect type per each test case. Beside the list view,
an overview of suites and tests also offers to display unique errors, log view and history
table.

25

Figure 3.6: ReportPortal’s screen view of launch list that demonstrates a simplistic visual-
ization of test results per each launch

Finally, opening the test item offers the most information including all the details per
test case, additionally history line and retry items, both explained later. There is a tab for
report analysis that can be expanded and used to comment on it, switch its status, mark
the issue or integrate with the issue-tracker. On the central tab there are listed stack
trace, attachments, item details, history of actions and the most important all
logs which stands for the log area. Log area contains logs or steps with logs, they all can
be collapsed for a better overview and can also be searched for the presence of a wanted
expression. The log area also offers several phases like Fatal, Error, Warn, Info, Debug and
Trace to reduce the log entries based on the verbosity, where the Fatal phase is the most
brief and the Trace phase shows the most. Within the log are also the attachments allowed.

Additionally, the information shown in the item details are test name, description, sta-
tus, attributes and length of the test run. There are also properties such as code reference,
test case ID and parameters intended for environment variables, that are important for his-
tory aggregation shown in the history line or history table. History of test cases intends
to aggregate tests based on the real history of the test case, thus it is built on the uniqueness
of the test case identifier provided from the test management system. If the test case ID
is not provided, it is generated based upon the code reference and parameters, otherwise
based on its path names (test case name and all parents names, except the launch name)
and parameters.

The names are generally used as an important identifier in ReportPortal. They are also
used to identify launch and items within for a feature generating an additional element of
retry item within the test item. This feature allows to rerun the tests and report its results
within the latest launch with the same name by default, or within the launch specified with
an UUID. However, the mapping of items is based on individual path names.

26

Figure 3.7: ReportPortal’s screen view of the test case that demonstrates history aggrega-
tion, retry items, analysis properties and all logs up to the Info phase, including an attach-
ment.

Moving forward, the high level filters can be accessed from the filters tab as well as
from the view of launches, they offer a view of launches specified by a variety of condition
combinations and can be saved for additional access. This filter can be conditioned by
the number of total launches, total tests and tests based on its status or issue type; by
the start time or by the presence of expression in the launch name, description, owner or
attributes. Though similar but only transient filtering is allowed within the launch or suite,
currently there is no filter access to test names, descriptions or attributes within the high
level view.

Lastly, the ”Debug“ tab is intended for private debugging with no access to the role
Customer having almost the same features as ”Launches“, only filters cannot be saved.

To conclude ReportPortal, project setting allows a range of modifications such as re-
tention periods, integrations with other systems (Jira, Email Server, etc.), properties of

27

auto-analysis or pattern-analysis and creation of new Defect Types within all issue groups
(product bugs group, automation bugs group, system issues group, no defect
group, to investigate group). The interface also enables an access to the profile with
generated user’s token and also provides well-structured API with dynamical requests useful
for study purposes of the integration.

3.3 Mapping the terminology
To report results of obtained by tmt tool and send them to ReportPortal, there must be
strictly defined the way of mapping the terms used as they may widely differ throughout
both systems.

For tmt, there are three main elements in terms of the run data, similar to what is
known from the Nitrate system:

• test
A specific test, identified by its name, corresponding to the tmt specification data L1
in 3.2.1.

• plan
A group of tests within the hierarchy data unit above the tmt steps (see figure 4.5),
corresponding to the tmt specification data L2 in 3.2.1.

• run
Representing a single high-level data unit made by a new run of plans that is separately
identified and can be additionally reused.

Figure 3.8: Sequence of the process between the primary elements run, plan and test;
displayed also with the run steps positioned within the tmt data relation.

28

This hierarchy is important for understanding the execution data obtained in order to
report test results and logs, that is further examined in the design subsection 4.2.1.

While the ReportPortal hierarchy is mainly based on the following three elements:

• test
An element for an individual test case, wrapping all its data (name, description,
attributes, etc.), logs and analysis details.

• suite
A wrapper of elements involving other suites or test elements, with its own separate
data.

• launch,
A high-level wrapper of elements involving suites or test elements, with its own sep-
arate data.

Compared to the three-level elements of tmt, the ReportPortal’s three elements are not
limited to three levels. Due to the optional suite elements with a nesting ability, ReportPor-
tal allows whatever level structure including two and more (launch > test, launch > suite >
tests, launch > suite > suite > test, etc.).

For practical purposes, there can be 2 different ways of mapping the tmt and Report-
Portal elements. Both have its positive and negative factors and can be prioritised based
on the individual use cases or preferences.

The first one implicitly clear is to map them analogously like showed in the figure 3.9
under the term suite-per-plan mapping, which is with ReportPortal element to the tmt
one mapped as launch - run, suite - plan, test - test. This way of mapping adheres to the fa-
miliar well-structured display of reports, often preferred e.g. for purposes of errata testing.
However, it makes tmt plans in ReportPortal suites much less accessible, as the subsection
3.2.2 states, the filter from the high-level overview of launches cannot approach the data
per suite or test. Though plan data within a suite can contain specific information essential
for the analysis or reports such reference to a tested component, compose or architecture,
etc. within the field of suite name, description or attributes. These data currently cannot
be accessed unless they are pulled out for the launch data.

29

Figure 3.9: Relations of the tmt and ReportPortal elements with suite-per-plan mapping

Alternatively, there can be a simple two-level structure established that would map tmt
plans to high-level launch elements in the interface of ReportPortal. This would create
a group of new launches per run, a new launch per each executed plan, as visualised in
the figure 3.10. This approach not only allows a direct search access to the data extracted
from the plan, but it is more natural and much easier to implement within the tmt structure,
as each plan is processed separately as referred to above (figure 3.8). This type of mapping
is further in the thesis referred to as launch-per-plan mapping.

Figure 3.10: Relations of the tmt and ReportPortal elements with launch-per-plan map-
ping

30

3.4 Requirements
The integration of tmt and ReportPortal within the scope of this thesis is driven by a neces-
sity to address the essential needs inherited from the outdated Nitrate system and align with
the evolving demands of advanced RHEL testing process, particularly within the domain
of Testing Tools community and the Shared OS Testing Infrastructure initiative.

As the mission of this thesis is built on real team needs and real-life scenarios, there
were many factors to consider in order to assemble the list of use cases and consequential
requirements. This process involved collective input from representatives of the Testing
Tools community. Though real requirements can be volatile in the course of time based on
continuous tool evaluation, for purposes of the thesis, these are summarized in universal
manner to cover all the needs that were communicated at first.

This section examines the use-case demands and the reasoning behind them as a base
for setting detailed functional and non-functional requirements. Afterwards, these can be
used for the purpose of project design and implementation, providing clarity and guidance
for the integration of tmt and ReportPortal into the testing infrastructure.

3.4.1 High-level use cases and analysis

The primary motivation behind plugin implementation via the ReportPortal API is to
leverage the full potential of ReportPortal’s capabilities. Given that the rapidly growing
tool tmt is utilized across many subsystems and extends even beyond the RHEL, Fedora
or CentOS Stream reaches, it is important that tmt plugin covers not only essential use
cases for neighboring teams but also to offer a variety of options that can be potentially
demanded.

A collaborative effort involving key representatives responsible for Testing Tools im-
provement identified several key use cases that serve as examples for distinct groups of fea-
tures the plugin can offer. Each of these use cases must be grounded in real-world jus-
tifications within testing processes, ranging from basic to advanced demands in terms of
implementation or usage practices. They ensure the plugin meets diverse and evolving
testing requirements across various contexts and scenarios.

Before naming the use cases, they cover scenarios such as fundamental data upload to
ReportPortal on a run, additional upload on rerun of the tmt run or additional upload
from different tmt run. Though data that are uploaded can differ between use cases, a data
upload generally refers to creating a ReportPortal item and providing it with data such as
name, description, attributes, logs, status, etc.

(a) User can upload test results per each plan.
This is a simple use case that covers an essential scenario where the user desires to
display test results and logs in the ReportPortal after a common test run. The data
upload utilizes the straightforward and practical approach of launch-per-plan map-
ping, demonstrated in figure 3.10. With this mapping, a new ReportPortal launch
is generated after each tmt plan is executed, containing the respective tests within.
Each launch possesses a name, description, and attributes corresponding to each plan’s
data, akin to ReportPortal and tmt tests. This mapping allows an easy approach to
all plans data from the high-level list of launches, where their name, description and
attributes can be directly searched, especially when plans differ in the component
or distribution tested. This use case serves as a foundation for the primary inte-

31

gration of tmt and ReportPortal before advanced features can be applied, for more
implementation details see the section 5.1.

(b) User can upload test results grouped per run.
Another use case for the same scenario as above, but with a structured launch with
suites and tests within, mirroring the tmt run, plan, and tests with suite-per-plan
mapping, illustrated in the figure 3.9. This approach addresses purposeful testing like
errata testing. Though it utilizes the hierarchy supported by ReportPortal, it requires
a more comprehensive design enabling the suite upload to the same launch after
execution of each tmt plan. It involves an extra data layer, recommending the user
to define the launch name and launch description, and the launch attributes display
the intersection of all plans data. This is implemented in the section 5.2.

(c) User can rerun the tests and update it within the same launch
Another scenario arises when the tests are already reported to ReportPortal, but a mi-
nor change was made in the environment setup, source code of the test, or the test
item, making it unnecessary to duplicate the run in another launch. Using the fea-
ture that ReportPortal offers, the plugin can enable the retry items within the old
test items in the same launch whenever demanded by the user. ReportPortal maps
the elements based on their name within the last launch of the same launch name.
See section 5.3 for more information.

(d) Automated process can upload IDLE tests and update them after execution
This use case addresses the needs of testing automation processes indicated in the OS
Shared Infrastructure introduced in the section 3.1. It aims to display activity in
the ReportPortal interface, even though the tests processed take a long time to finish
execution. The run begins by discovering tests, which are then displayed in the Re-
portPortal with no logs and IDLE state, prepared for an additional update after
the run is executed. To achieve precise mapping, the identifiers of ReportPortal items
are stored within tmt, offering additional rerun possibilities such repeated aggregating
of logs.Implementation is covered in the section 5.4.

(e) User can additionally upload new tests to already existing launch
The final scenario occurs when there is already a reported launch but it is incomplete
because some tests were forgotten, or the tests cannot be executed in one run, e.g.,
multihost testing. In such cases, there should be an option to manually upload addi-
tional tests or suites into the launch identified by the launch ID displayed in the URL
of the ReportPortal launch. Analogically, in the structure of suite-per-plan map-
ping, there is an option to update one or more tests to a specific suite.
See 5.5.

3.4.2 Functional Requirements

In this subsection, the list of functional requirements assembled based on the use cases
named above is presented. the requirements are related to the tmt tool and its integration
with ReportPortal within the tmt plugin, supporting both the use of tmt as both command-
line tool and metadata specification. They are also further examined and explained in
the design section 4.3, most of them particularly in its subsection 4.3.1 defining the options
that derived from them.

32

ID Requirement Description

FR1 Reporting to
ReportPortal on request

The tmt tool must support integration with ReportPortal,
defined either by using ‘––how reportportal’ option in
the tmt command within the ‘report’ step, or equivalently
through metadata specification.

FR2 Connection to
ReportPortal instance

The plugin must be able to access the ReportPortal using
the mandatory data obtained from user such as authorization
token, URL to the ReportPortal instance and name of
the targeted project.

FR3
Reporting with
launch-per-plan
mapping

New request to upload report should create a new launch item
per each plan of tmt run, when prompted by option for
launch-per-plan mapping. The data are uploaded to
ReportPortal in the structure of ‘launches > tests’.

FR4
Reporting with
suite-per-plan
mapping

New request to upload report should create a new launch item
per tmt run with suites within per each plan, when prompted
by option for suite-per-plan mapping. The data are
uploaded to ReportPortal in the structure of
‘launch > suites > tests’.

FR5
Printing out a link to
the reported
ReportPortal launch

The plugin must display a link in the terminal in order to
redirect the user to the ReportPortal launch the report is
uploaded to.

FR6 Uploading detailed
report data

The plugin must upload all test results and logs per each test
case obtained from the test execution step to ReportPortal.

FR7
Definition of relevant
name and description for
the ReportPortal launch

The plugin should support the capability of user to define
the launch name or launch description in ReportPortal
otherwise use default alternatives based on metadata.

FR8
Definition of relevant
attributes per elements in
ReportPortal

The plugin should upload relevant context and contact
information recognized from the metadata and display them as
attributes per each launch, suite and test in ReportPortal

FR9
Definition of test
parameters in
ReportPortal

The plugin should upload all relevant environment variables
recognized from the metadata and display them as parameters
per test in ReportPortal

FR10 Definition of test case id
in ReportPortal

The plugin should upload the tmt id recognized from
the metadata and display it as test case id per test in
ReportPortal

FR11
Consistency in
ReportPortal’s test
history aggregation

The plugin must not disturb the consistency of history
aggregation that ReportPortal enables.

FR12
Launch rerun via build-in
option for ReportPortal
retry items

The plugin should support an additional data uploads to
a previous ReportPortal launch via name-based mapping,
wrapping it in separated retry item within each test item.

. . . continued on next page

33

FR13
Launch preparation with
IDLE test items for tests
only discovered

The plugin should prepare a launch and display tests with
IDLE status if tests were discovered but yet not executed.

FR14 Launch rerun via tmt run
with stored identifiers

The tmt should support an additional data uploads to
an existing ReportPortal launch when rerunning the ‘report’
step within the same tmt run. This update must use stored
ReportPortal item identifiers in tmt for precise mapping.

FR15
Data upload to
the launch based on its
URL identifier

The plugin should allow additional uploads of new tests or
suites to an existing launch based on the URL identifier
obtained from the user.

FR16
Data upload to the suite
based on its URL
identifier

The plugin should allow additional uploads of new tests to
an existing suite based on the URL identifier obtained from
the user.

FR17 Test coverage of
the plugin

The tmt must have the test coverage for all newly implemented
features in the report plugin for integration with ReportPortal.

FR18 Usage documentation
within the tmt tool

The tmt must provide specification of all added features in its
manual requested on –-help.

Table 3.1: Functional Requirements

3.4.3 Non-functinal Requirements

As it was already implied, the integration of tmt and ReportPortal should be implemented
within the tmt tool as a report plugin using ReportPortal’s API. Here it is summarized in
the table, so it can be further simply referenced.

ID Requirement

NR1 The solution must be implemented within the tmt tool

NR2 The integration of tmt and ReportPortal should use ReportPortal API

NR3 The plugin implementation must be written in Python 3

NR4 The test coverage should be written with BeakerLib framework in bash

NR5 All user data passed to the plugin must be obtained from the command arguments or
through fmf metadata

NR6 Language of all operative and descriptive elements should be English

Table 3.2: Non-Functional Requirements

34

Chapter 4

Design

This chapter examines the possible approaches to achieve the objective of the thesis leading
to the integration of tmt and ReportPortal as tmt plugin using the ReportPortal API as
the best solution. This decision is thoroughly justified and demonstrated on alternative
attempts. Before the design details of the objective, there is elaborated structure of tmt
and capabilities of ReportPortal API building up their fundamental functionality. Lead-
ing to the design essentials that describe the theory and all steps it takes to fully cover
the requirements in the implementation.

4.1 Ways to integrate tmt and ReportPortal
There are two points of view that the integration of the tool can be done either from the side
of ReportPortal or from the side of tmt.

There was an attempt to implement a direct access to the ReportPortal via extension
of ReportPortal within a diploma thesis Test Results Management System Complementing
the tmt Tool [4]. But this solution was later considered non-effective as the extension
intervenes to the external tool, requiring an extra responsibility for its maintenance.

That’s why it makes sense to examine the ways to implement the objective from the side
of tmt, internally developed tool, which is the aim of this thesis. Beside direct code inter-
vention, the ReportPortal offers several approaches for external tools to communicate with
its interface. There is a library for Python clients and REST API offered as the only com-
patible mediators with tmt. Further in the section, there are described three approaches for
integration tmt with ReportPortal, simple import of xml file, elaborated communication
via the API library for Python client and finally the elaborate solution via REST API.
Providing the specification of the attempts that were demonstrated as no sufficient solution
for the requirements, and suggestions sufficient for this thesis assignment.

4.1.1 A tmt plugin - Via JUnit XML import

First approach a simple REST API command to import JUnit XML report into Report-
Portal. This is done via report plugin establishing the contact with ReportPortal after
obtaining all required data as user token, target project, instance URL, launch name and
execution data. The data such as test results and logs are then transformed into JUnit XML
format via Python module to create structured data that ReportPortal can work with and
inserted into API command, as further demonstrated. the results can remain in an XML

35

file or be compressed into ZIP file for more effective upload. There is also the possibility
of setting launch description and launch attributes. [13]

1

2 import requests
3

4 url = "https://demo.reportportal.io/api/v1/<PROJECT>/launch/import" \
5 "?description=<LAUNCH_DESCRIPTION>&launchName=<LAUNCH_NAME>"
6

7 headers = {’Content-Type’: ’multipart/form-data’,
8 ’Accept’: ’*/*’,
9 ’Authorization’: ’Bearer <USER_TOKEN>’}

10

11 # CREATE LAUNCH AND IMPORT XML/ZIP FILE
12 response = requests.request("POST", url, headers=headers,
13 files={’file’: (<FILE_NAME>, <BYTESTREAM>, "application/zip")})
14

Figure 4.1: Demonstration of Python request for importing JUnit XML report
via ReportPortal API

Though this approach was implemented in order to provide the proof of concept,
out of the scope of the thesis. Its capabilities were too limited in the sake of Report-
Portal features, uploading hierarchy of launch > suites > test with test names and logs only.
The functionality such as test attributes, parameters, id, code reference or any additional
information per item was not supported, failing the requirements FR8 - FR10. Results
could be uploaded only after the run finished when all data were available not showing
the progress and also reruns or any additional uploads to existing launch, were not sup-
ported as the requirements FR12 - FR16 suggest. It was only suitable as a temporary
solution and foundation for the task of this thesis.

4.1.2 A tmt plugin - Via API library

Another option is using a common client library for Python-based agents that provides
commands to upload the data to ReportPortal, with more detailed approach. The com-
mands provided by the library can create a launch loading it with name, description and
attributes, as well as can create other items within it. The items can be defined with a type
of the item which is suite, test or step. In case of a test item, its data can be enriched also
by parameters, test case ID and code reference (FR7-FR10). What is more, detailed logs
are supported, defining the log level or uploading attachments (FR6). Finally, the items
can be closed with result status and issue type, and afterwards launch can be finished con-
nection is terminated. It allows uploading data in real-time and also supports the rerun
tag for launch in order to update existing launch via retry item (FR12).

36

1

2 from reportportal_client import ReportPortalService
3

4 client = RPClient(endpoint, project=project, api_key)
5 client.start()
6

7 launch = client.start_launch(name, timestamp(), description)
8

9 item_id = client.start_test_item(name="Test Case",
10 start_time=timestamp(),
11 item_type="STEP",
12 description="First Test Case",
13 attributes={"key1": "val1",
14 "key2": "val2"},
15 parameters={"var1": "val1",
16 "var2": "val2"})
17

18 client.log(time=timestamp(), message="Hello World!", level="INFO")
19 client.log(timestamp(), "Screenshot of issue.", "WARN", attachment)
20

21 client.finish_test_item(item_id, timestamp(), status, issue)
22 client.finish_launch(end_time=timestamp())
23 client.terminate()
24

Figure 4.2: Demonstration of Python API request for importing JUnit XML report
to Report Portal

The library reportportal_client mostly showed a potential to cover all the require-
ments as it was implemented within the scope of this thesis and attached within appendix
(A.2.2). However, it showed weaknesses that were discovered only during the implementa-
tion as it was actively in development and still not documented properly.

After all it was refused as insufficient solution for the integration of tmt and Report
Portal with following reasoning:

(a) Limited in functionality and currently unstable behaviour.

(aa) It does not allow the update of an existing launch with additional results F13 -
FR16.

(ab) It does not show any progress update before the launch is finished and connection
terminated.

(ac) It fails to differentiate the item types such suite, test, step.
(ad) Rerun feature has unstable behaviour, different in outcome for launch > suite > test

structure (new logs within retry items, appending attributes) and for launch > test
structure (appending logs, rewriting attributes).

(b) Using library is less stable, efficient and managable than REST API.

(ba) It is not packaged as RPM, thus it would not work unless installed from pypi or
there was invested time to get it packaged in Fedora.

(bb) It is in an active development with updates that are not backward compatible
and break the plugin.

37

(bc) When new features are added to the REST API it takes time to update the python
client, which could slow down the development in the future.

4.1.3 A tmt plugin - Via REST API

After all as the most reliable solution available for the communication between tmt and
Report Portal is chosen the Report Portal REST API. This is fully developed, documented
and offers the most functionality. the structure of data upload is similar to the one with API
library. There is only no need to establish connection with Report Portal, but afterwards
the requests are used to create launch and items within it, upload logs and finally close
the items with corresponding test results, as further demonstrated in 4.2.2. the REST
API allows to define all properties displayed in ReportPortal which covers requirements
FR6 - FR10. It provides requests for managing issue types, obtaining any item-related data
and also offers the access to the previous launches based URL ID or UUID of created
elements. Hence it as well covers the requirements FR13 - FR16 leaving the rest up to
the implementation purely within tmt plugin that is fully capable of it.

4.2 Program structures
Following the introduction of tools tmt and ReportPortal in the section 3.2, this section
aims to delve into tmt functionality and its code structure in order to understand its build-
ing blocks before detailed design of all required features is demonstrated. Furthermore,
the REST API of ReportPortal is presented to learn all the possibilities of this mediator
between the command-line tool tmt and the interface of ReportPortal.

4.2.1 Class structure of tmt

The program structure of tmt tool source code is very complicated as it integrates many
features and plugins. As presented in tmt documentation [12], it is based mainly on two
groups of classes: functional classes and data containers.

As figure 4.3 below with an overview of the first group present, the ‘Common’ class is
the parent of most of the available classes, providing common methods for logging, running
commands and handling of working directory. To name a few, it implements read(),
write() for comfortable file access and run() method for an easy command execution.

The ‘Core’ class together with its child classes ‘Test’, ‘Plan’ and ‘Story’ cover the Meta-
data Specification. The other child classes are managed in order to keep structure of tmt
steps, particularly ‘Steps’ and those under ‘BasePlugin’ covering each individual step
of tmt run. Therefore, the class for a functionality of test report to a ReportPortal in-
stance must be ‘ReportReportPortal’ derived from the common parent of report plugins
‘ReportPlugin’. This class inherits an essential function go() from the GuestlessPlugin
class so the functionality can be performed and logged in ‘report’ step within the step
sequence.

The tmt structure offers in addition to standard python modules its own modules
which have many predefined functions and methods that are either inherited or imported
throughout the tmt and used for various purposes. To name a few, there is a logging mod-
ule, module with result definitions and especially the module with utilities. The logging
module tmt.log provides important functions for communication with user in terminal
such info(), verbose() and debug(), with logging priority in this order. It logs in at-

38

tributes (key: value) and allows specifying the text color and shift integer for indentation.
In tmt.utils, there is a function field() important for defining the option data and other
aspects related to option. It is declared with @overload which provide a range of data types
and numerous parameters offered to define the option. The most relevant are for naming
the option, setting the holder for value, setting the default value, providing the description
for ‘––help’, setting it as flag and even allowing multiple uses for lists or dictionaries.

Common

Core
Plan
Story
Test

Clean
Guest

Phase

Action
Login
Reboot

BasePlugin

GuestlessPlugin

DiscoverPlugin
ProvisionPlugin

ReportPlugin

ReportDisplay
ReportHtml
ReportJUnit
ReportPolarion

ReportReportPortal

Plugin
ExecutePlugin
FinishPlugin
PreparePlugin

Run
Status
Step

Discover
Provision
Prepare
Execute
Report
Finish

Tree

Figure 4.3: Inheritance of tmt method classes

DataContainer

SpecBasedContainer,
SerializableContainer

FmfId
RequireFmfId

Link
Links

StepData

DiscoverStepData
DiscoverFmfStepData
DiscoverShellData

ExecuteStepData
ExecuteInternalData
ExecuteUpgradeData

FinishStepData
FinishShellData

PrepareStepData
PrepareAnsibleData
PrepareInstallData
PrepareMultihostData
PrepareShellData

ProvisionStepData
ProvisionArtemisData
ProvisionConnectData
ProvisionLocalData
ProvisionPodmanData
ProvisionTestcloudData

ReportStepData

ReportHtmlData
ReportJUnitData
ReportPolarionData

ReportReportPortalData

Figure 4.4: Inheritance of tmt data classes

39

In order to obtain test results and logs from the execution data and report them, it is
important to understand the hierarchy of data stored. As the figure 4.5 suggests, the class
containers manage the file system created for each tmt run. This file system is labeled by run
identifier storing run data and data per each plan. Run data compose of run log and YAML
file listing all plans, steps and central data for the run. Each plan is composed of data per
step, which reflects that via requested plugins the steps are performed chronologically and
separately per each plan. List of tests included in the plan and all configuration data are
stored under ‘discover’ step in YAML file. Their results are under ‘execute’ step, where
YAML file points to the source per each test, storing files such output.txt, journal.txt,
and other related to test metadata and execution results. At last, there is a directory for
‘report’ step with YAML file prepared for data definition from the report class.

/var/tmp/tmt/run-032
.

plan
plan_01

data
discover
provision
prepare
execute

data
test_01-1
test_01-2
test_02-3

report
finish

plan_02
data

...

Figure 4.5: Overview of directories within the data structure stored per run

To elaborate the data accessible from the plugin via ReportReportPortal class for pur-
pose of the thesis, there are essential plan data providing name (self.step.plan.name),
brief description (self.step.plan.summary), list of context attributes (self.step.plan.
_fmf_context.items()) and other data obtained from fmf plan configuration. Then there
are data within the step related to its processing, especially list of tests within the ‘dis-
cover’ step (self.step.plan.discover.tests()) and tests results within the ‘execute’
step (self.step.plan.execute.results()). These methods allow a direct access to all
the test’s attributes and execution data needed for uploading all required data about test
cases.

4.2.2 ReportPortal REST API

The ReportPortal REST API provides a comprehensive and well documented set of op-
erations that enable users to interact with the ReportPortal server via HTTP requests.
The requests are targeted for integration of ReportPortal functionality into custom work-
flows, building automation scripts, or developing custom tools.

To introduce the capability and composition of the REST API requests, there are
mandatory data elements that are required in each request to be successfully sent to the tar-

40

geted Report Portal instance. It is a user token used for authorization within a request
header. The token serves for an identification of Report Portal user, it is displayed in
the user profile of the Report Portal instance. Besides, there are an instance URL and
a project name needed to determine the target of request.

1

2 url = "<REPORTPORTAL_URL>/api/v1/<PROJECT_NAME>/"
3

4 headers = {’Content-Type’: ’application/json’,
5 ’Accept’: ’*/*’,
6 ’Authorization’: ’Bearer <USER_TOKEN>’}
7

Figure 4.6: Demonstration of mandatory data for Python requests of Report Portal
REST API, related to the requirement FR2.

Here are groups of API-supported operations and demonstrations that are most relevant
for the purpose of this thesis:

(a) Launch Controller

(aa) Create a new empty launch with properties.
(ab) Create a launch with JUnit XML import.
(ac) Merge set of specified launches in a common one.
(ad) Update launch properties.
(ae) Stop or finish launch with status.
(af) Get launch properties, identifiers, result status, etc.
(ag) Search launches based on launch properties.
(ah) Delete launch.

There are up to 30 requests related to launch with many additional functionalities,
but mostly varying the options and approach choice, which is mostly via project name,
launch ID or launch UUID, in some cases also launch name or other launch properties.

1

2 # CREATE LAUNCH
3 response = requests.request("POST",
4 url + "launch", headers=headers,
5 data=json.dumps({
6 "name": <LAUNCH_NAME>,
7 "description":<LAUNCH_DESCRIPTION>,
8 "attributes": <LAUNCH_ATTRIBUTES>,
9 "startTime": timestamp()}))

10

11 # CLOSE LAUNCH
12 response = requests.request("PUT",
13 url + "launch/<LAUNCH_UUID>/finish",
14 headers=headers,
15 data={"endTime": timestamp()})
16

Figure 4.7: Demonstration of Python API requests related to launch within
report upload to Report Portal

41

For creating a new report upload, there must be created a launch and at last finished.
With launch creation, the launch parameters are defined. The mandatory launch
parameters are launch name and start time, then there are launch description, launch
attributes, launch mode and pair of fields for activation of rerun with an optional
specification of launch UUID. The request response returns UUID and number of
created launch.

(b) Item Controller

(ba) Start a root or child item with item parameters.
(bb) Update an item parameters.
(bc) Finish an item.
(bd) Attach external issue for items.
(be) Get item parameters, statistics, history, etc.
(bf) Search items based on item parameters or its contents.
(bg) Delete an item.

There are also up to 30 requests related to items (suites, tests, steps, etc.) with
functionalities varying only in its requested scope of details and approaches either via
launch ID or launch ID or searches based on particular item parameters.

1

2 # CREATE TEST ITEM
3 response = requests.request("POST",
4 url + "item", headers=headers,
5 data=json.dumps({
6 "name": "SUITE_NAME",
7 "description":<TEST_DESCRIPTION>,
8 "attributes": <TEST_ATTRIBUTES>,
9 "parameters": <TEST_PARAMETERS>,

10 "testCaseId": "TEST_ID",
11 "startTime": timestamp(),
12 "type": "TEST",
13 "launchUuid": <LAUNCH_UUID>}))
14

15 # CLOSE TEST ITEM
16 response = requests.request("PUT",
17 url + "item", headers=headers,
18 data=json.dumps({
19 "launchUuid": <LAUNCH_UUID>,
20 "endTime": timestamp(),
21 "status": <TEST_RESULT>,
22 "issue": { "issueType": <DEFECT_TYPE>}}))
23

Figure 4.8: Demonstration of Python API requests processing test root item
within the report upload to Report Portal, which is related to the require-
ments FR3 and FR7 - FR10

Within launch there is a suite or test with its parameters, it must be started and closed
afterwards. There are root items and child items based on the parent of the item

42

(launch or suite item). The parameters of item include name, description, attributes,
parameters (environment variables), test case ID (test management system), code
reference, unique ID and type of the item. the Report Portal allows diverse types of
item, beside suite, test, step, there is scenario, before_class, after_class,
before_groups, after_groups, before_method, after_method, story,
before_test, after_test the response returns the UUID of the item, which is
used as identifier of item passed to child item or any other internal data.

(c) Log Controller

(ca) Create log
(cb) Get or search log
(cc) Delete log

There are 13 log-related requests in order to manage logs and its parameters. Log
request allows uploading file as attachment, and it sorts logs based on the log level,
which is FATAL, ERROR, WARNING, INFO, DEBUG. There are also identified
either by ID or UUID.

1

2 # UPLOAD LOG
3 response = requests.request("POST",
4 url + "log/entry", headers=headers,
5 data=json.dumps({
6 "message": <TEST LOG>,
7 "itemUuid": <TEST_UUID>,
8 "launchUuid": <LAUNCH_UUID>,
9 "level": level,

10 "time": result.end_time}))
11

Figure 4.9: Demonstration of Python API requests for logging with report
upload to Report Portal, related to FR6

Beside the operations for standard report upload named above, Report Portal API
allows management of projects, users, dashboards, integration with other systems, etc.

In the figure 4.10 is an example of GET request for a defect type defined in the project
for a check related to FR13.
1

2 \item Project setting
3 \begin{enumerate}[label = (\alph{enumi}\alph{enumii})]
4 \item Create, get or delete project issue sub-types
5 \end{enumerate}
6

Figure 4.10: Demonstration of Python API requests for logging with report upload
to Report Portal

43

4.3 Details of tmt plugin design
Based on the primary use-cases that inspired the requirements, the requirement coverage
can be divided into several parts by design, there is a core functionality - report upload
either with trivial launch-per-plan mapping or with more complex suite-per-plan
mapping, covering the requirements FR1 - FR11. And then there are individual extensions
of core report for each of the requirements FR12- FR16.

This section will elaborate the essential factors based either on user choice or tools
possibilities and limitations. To cover the user choice, there are options which are neces-
sary for most of the requirements to specify the intended action, which must be further
examined for all supported combinations. And then, there can be designed the principles
of targeted use-cases, that rely on the tools. Especially understanding of tmt functionality
explained in sections 3.2.1 and 4.2.1 is essential to build on. It is especially the sequence of
the steps ‘discover’, ‘provision’, ‘prepare’, ‘execute’, ‘report’ and ‘finish’. From those, only
steps‘discover’, ‘execute’ and ‘report’ are relevant to the plugin design. Together with
the fact that the order of steps cannot be changed, the run goes through them per each
plan and the run can be reused. This influences the progress report, need to store data so
‘report’ step can communicate with previous or following ‘report’ steps within a run and
the approach each use case can be achieved.

4.3.1 Definition of plugin options

As FR1 requires, the tmt plugin class enables the selection of options for reporting to Re-
portPortal by specifying parameters immediately after ––how reportportal’ in the com-
mand section of the ‘report’ step (tmt run report’). These options can also be speci-
fied within the fmf plan metadata or as environment variables using the template format
TMT_PLUGIN_REPORT_REPORTPORTAL_<option>. The priority of relevance for these defini-
tions follows this order, with environment variables read only as default values.

––token USER_TOKEN
The token from the user profile used to authenticate the user for upload to the Re-
portPortal instance.

––url RP_URL
The URL of the ReportPortal instance where the data should be sent to.

––project PROJECT_NAME
Name of the project into which the results should be uploaded.

––launch-per-plan
launch-per-plan mapping, creating one or more launches with no suite structure
(launch - test).

––suite-per-plan
suite-per-plan mapping, creating one launch and continuously uploading suites into
it (launch - sute - test).

––launch LAUNCH_NAME
Set the launch name, otherwise the tmt plan name is used by default.

44

––launch-description DESCRIPTION
Pass the description for ReportPortal launch (with ‘suite-per-plan’) or append
the description from the plan summary with additional info (with ‘launch-per-plan’).

––defect-type STATUS_NAME
Pass the defect type to be used for failed tests. It is defined in the project (e.g. ’Idle’),
with ’To Investigate’ used by default.

––exclude-variables PATTERN
A regular expression for excluding environment variables from reporting to Report-
Portal, using the pattern ’^TMT_.*’ by default. Parameters in ReportPortal can dis-
play all environment variables, but with ‘exclude-variables’ they get filtered out
by the pattern to prevent overloading and to preserve the history aggregation for
ReportPortal item.

––launch-rerun
Rerun the last launch based on its name and unique test paths to create a retry item
with a new version per each test. Supported in ’suite-per-plan’ structure only.

––upload-to-launch LAUNCH_ID
Pass the launch ID for an additional test/suite upload to an existing launch. ID can
be found in the launch URL. To upload specific info into the description see also
launch-description.

––upload-to-suite SUITE_ID
Pass the suite ID for an additional test upload to a suite within an existing launch.
ID can be found in the suite URL.

Where all ‘token’, ‘url’ and ‘project’ are mandatory options in order to establish
connection to the instance of ReportPortal and enable reporting there, see FR2. Especially
for the needs of these options, the alternative definition via environment variable is very
essential.

Then there are flag options ‘launch-per-plan’ and ‘suite-per-plan’ that define the launch
structure and the mapping (FR3, FR4). They are mutually exclusive, and ‘launch-
per-plan’ is active by default if none is specified.

the ‘suite-per-plan’ option is recommended to use with voluntary options ‘launch’
and ‘launch-description’ to cover the FR7, as there is no relevant data level above plan
in tmt structure. Otherwise, by default, the launch is named after the first plan of the run
and the description remains empty.

More about the values including the default ones that are to be visualised in the Report-
Portal interface, read in the section 4.3.4. And limitation or potential of possible option
combinations are elaborated in the next section 4.3.2.

4.3.2 Supported use cases and limitation of option combinations

With the amount of offered option there is a need to limit forbidden combinations and
ensure the full potential of supported ones for variety of use cases.

The table 4.1 demonstrates all supported use cases formed by combinations of the plugin
options. Most of them are open to options that would affect launch name, launch descrip-
tion, defect type and exclude-variables, which may be either recommended, situational or
redundant per given use case.

45

A The use case 3.4.1(a) representing a simple upload with launch-per-plan mapping
(FR3), open to other options, where the ‘launch’ is mostly redundant.

B The use case 3.4.1(b) representing a composite upload with suite-per-plan mapping
(FR4), open to other options, where the ‘launch’ and ‘launch-description’ are
recommended.

C, D The use case 3.4.1(e) applying the requirement FR15, uploading all tests either di-
rectly (C) or in suites per plan (D) to given launch. No new launch is created in
the use case thus the launch parameters are not affected by the options.

E The use case 3.4.1(e) applying the requirement FR16, uploading all tests directly to
given suite.

F The use case 3.4.1(c) creating a new retry item within existing test items with name-
based mapping in the last launch with given name. Supported only with suite-per-
plan mapping.

G, H The first part of the use case 3.4.1(d), if no ‘execute’ step is performed before-hand. It
applies the requirement FR13 and can be complemented with ‘I’ below. See the tem-
plate example in 4.3.3 (a).

I The second part of the use case 3.4.1(d), if the ‘discover’, ‘report’ and ‘execute’ steps
were completed beforehand. It covers the requirement FR14 and complements ‘G’ or
‘H’ above. It ignores all options and reuses the mapping and the ReportPortal ele-
ments based on the UUID identifiers stored by the ‘report’ step before. It only uploads
new logs to given items if the item identifiers are already known. See the template
example in 4.3.3 (b).

UR
L,

to
ke

n,
pr

oj
ec

t

la
un

ch
-p

er
-p

la
n

su
it

e-
pe

r-
pl

an

la
un

ch

la
un

ch
-d

es
cr

ip
ti

on

de
fe

ct
-t

yp
e

ex
cl

ud
e-

va
ri

ab
le

s

up
lo

ad
-t

o-
la

un
ch

up
lo

ad
-t

o-
su

it
e

la
un

ch
-r

er
un

A × × ? ? ? ?
B × × ? ? ? ?
C × × - - ? ? × -
D × × - - ? ? × -
E × - - - - ? ? - × -
F × × ? ? ? ? ×
G × × ? ? × ?
H × × ? ? × ?
I × - - - - - - - - -

Table 4.1: the table demonstrates combinations of plugin options per row, where the ‘×’
means the option is applied, the ‘?’ means the option may be applied, and the ‘-’ means
that the option is ignored (even when applied) in given use case

46

Here follows the list of derived limitations.

(a) When one of the options ‘URL’, ‘token’ and ‘project’ is not defined, the report is
unsuccessful, therefore error should be raised.

(b) When there are both ‘launch-per-plan’ and ‘suite-per-plan’ defined, an unex-
pected behaviour may appear, therefore the default value is used and warning should
be logged.

(c) When ‘upload-to-launch’ and ‘upload-to-suite’ are defined, an unexpected be-
haviour may appear, therefore ‘upload-to-suite’ is prioritised and warning should
be logged.

(d) When ‘launch-rerun’ together with ‘upload-to-launch’ or ‘upload-to-suite’ is
defined, an unexpected behaviour may appear, therefore ‘launch-rerun’ is ignored
and warning should be logged.

(e) When ‘launch-rerun’ and ‘launch-per-plan’ is defined, an unexpected behaviour
may appear as current version of ReportPortal does not support this functionality,
therefore warning should be logged.

4.3.3 Design decisions in tmt plugin

To dig into details of the core report upload, as the report plugin is within the run performed
once per each plan it makes the mapping launch-per-plan trivial, creating a new launch
with launch - test hierarchy per plan.

On the other side, the launch-per-plan mapping intends to add several plans from
several ‘report’ steps to one launch. That’s why this requires to create a new launch once
for the first plan and pass the launch UUID to the following plans so they can be added
and the last plan can close the launch. The report upload in this case is structured with
launch - suite - test hierarchy

In both cases the launches and items within are created, then filled with corresponding
logs and they are closed afterwards to show real time progress grouped by tmt plans.
The current implementation of tmt does not allow a mutual concurrence of individual
steps for progress update more frequent than per each plan, as the ‘report’ step is always
performed after completed ‘execute’ step per plan.

The problem of step succession must be considered also for the scenario of uploading
an empty report with IDLE state (FR13) and then updating it after execution (FR14).

47

Figure 4.11: An activity diagram that demonstrates an intended communication between
tmt steps ‘discover’, ‘execute’ and ‘report’ to cover use case 3.4.1(d) and the require-
ments FR13 and FR14

The figure 4.11 drafts the idea of data flow for the use case 3.4.1(d), hence as the plugin
is called from the ‘report’ step, this cannot be done in one run unless the tmt step succession
is modified. On the other hand, tmt does allow storing data into file structure per run that
can be additionally reused. So the main idea of the use case for the purposes of transparent
automated testing is to perform it in two commands.

(a) Prepare the report with IDLE state (FR13)
Template example:

$ tmt run discover report ––how reportportal ––defect-type IDLE

Here the ‘discover’ step discovers and stores all the test data within the run. Skipping
the ‘execute’ step, the ‘report’ step obtains only descriptive data per each test with no
results. These data are used to create a launch and prepare the test items (or suites
and test items within) with name, attributes and other parameters. The items are
labeled as IDLE if opted as a defect type. To allow updating with precise mapping,
all item UUIDs must be stored in tmt structure.

(b) Update the report with results (FR14)
Template example:

$ tmt run ––last ––all report ––how reportportal ––again

The other step requires to enable repeating the ‘report’ step with ability to reuse data
achieved with the option --again. This time the ‘report’ step follows the ‘execute’
step, thus it obtains test results that can upload to ReportPortal. In case, it has
the identifiers to ReportPortal items stored, it does not create new but reuse the pre-
pared ones, where it updates the data parameters including test results and appends
the logs.

48

Mapping of additional data to already created items is much more precise with stored
identifiers than with default mapping the Report Portal offers for reruns (FR12). Though
the implementation is built-in in the API command, it has its limitations and can be used
on plans with unique test names only.

Additionally, to upload additional data in new items within an existing launch (FR15,
FR16), there is needed the UUID of the target. Though the user knows only the ID found
in the URL of launch or suite, this is passed by option and can be used to obtain its UUID
via API command.

To sum up the design decisions, there must be check for known identifiers or Report-
Portal launch or items that can be reused, either UUIDs stored in the previous ‘report’
step or IDs passed by user. If there is no existing launch available, new one is created and
the UUID is stored, as well for the rest of the items based on the hierarchy opted. All
provided data are loaded in the data parameters either from the fmf metadata or directly
from the user via plugin options. After logs are uploaded, independent items are closed.
Only after all data are uploaded the launch is closed, so the visualisation of launch loading
in ReportPortal represents an actual progress in Report Portal.

Additional tmt design decision is to print plugin update in output, on verbose in ter-
minal. This involves printing names of launches, suites or tests to display the progress of
report to ReportPortal. And finally the URL is printed per each launch at the end (FR5).

4.3.4 Design decisions in ReportPortal interface

The goal view in ReportPortal is specified by the design decisions that involve mapping
data to the parameters of ReportPortal elements that are visualised in the interface.

For names, there are used tmt names derived from the paths of plans and tests. For
launch, there is prioritized name specified by the user in the option, otherwise plan name is
used by default. If the launch name is not defined in combination with ––suite-per-plan
option, there is a first plan name used.

Description of elements is filled with a summary obtained from fmf metadata per plan
and per test. Only the description of launch created for ––suite-per-plan option would
remain empty if it is not specified by the option.

For FR8, the attributes on the plan level (launch or suite items), are obtained from
the plan context, where tmt allows to define the architecture, compose, and many others,
including non-defined personalised attributes. The attributes of test items contain all in-
herited context attributes that tmt holds per each test, additionally with contact per test.
The launch attributes when ––suite-per-plan is opted, are collected by the intersection
of all plans that the launch contains.

The test parameters are filled with environment variables as FR9 states. However,
tmt and other tools involved (Testing Farm etc.) may generate the environment variables
that are unique by their character (TMT_TREE=/var/tmp/tmt/run-012, etc.) and therefore
break the history aggregation (FR11) if use case ID is not provided. In case, there is
an use case for displaying these variables, they cannot be fully omitted, see the option
––exclude-variables.

Finally, the use case ID serves for purposes of test identification which corresponds with
the tmt ID generated within fmf metadata (FR10).

49

Chapter 5

Implementation details

The implementation strategy can be divided into two parts, core base and extension features
built on it. Simple upload of test results to ReportPortal serve as a proof of concept. Before
additional requirements can be delivered, the core base must be verified and then used as
a building block for the extension.

This chapter elaborates major details of final implementation of tmt plugin integrating
with ReportPortal via its REST API.

Using all the potential of report plugin within tmt and requests of ReportPortal API, it
aims to address all the functions that are either required by named use cases and require-
ments in the section 3.4 or beneficial in testing processes that tmt is or may be used for.

Throughout the process of implementation the plugin, all new features are also manually
tested so any partial issues can be addressed immediately and name the resolution.

Finally, the overall implementation is polished with all the functionalities together re-
sulting in the final code implementation attached in the appendix (A.1). Beside the core
plugin code, the tmt tool integrates the plugin throughout its implementation in additional
files including definition of report schema and documentation specifications. The tmt di-
rectly involves also test coverage but it will be examined in the next chapter 6.

5.1 Upload plan to ReportPortal
This core part of the implementation serves for purposes of applying trivial functionality
on plugin structure and laying foundation for additional features. Using the classes and
functions in the tmt structure along with requests to the ReportPortal REST API, build
upon the knowledge from the section provided in appendix (A.2.3).

As elaborated in the section 4.2.1, the report plugin stands on two essential classes, data
class and common class. Where the data class defines all supported options and the common
class ReportReportPortal derived from the class tmt.steps.report.ReportPlugin en-
velopes the main functonality with go() function inherited from the class GuestlessPlugin.

The core upload of test results to the interface of ReportPortal tool covers the initial
connection establishment, and upload of logs in the bare structure of launch-test items, par-
ticularly based on direct launch-per-plan mapping and additional processes and features
indicated by the use case 3.4.1 (a), covering the requirements FR1-FR3 and FR5-FR11.

The implementation in this section targets to cover the following command:

50

$ tmt run ––all report ––how reportportal ––url <REPORTPORTAL_URL>
––token <USER_TOKEN> ––project <PROJECT_NAME> [––launch <LAUNCH_NAME>]
[––launch-description <DESCRIPTION>] [––exclude-variables <PATTERN>]

Where at least the URL and token must be supported to pass via the environment variable,
all options can be passed via fmf metadata instead and there is no mapping option needed
as a launch-per-plan mapping only is used in a core implementation.

5.1.1 Establish the connection to ReportPortal instance

Unlike the reportportal library for python plugin, the REST API does not need an initial
connection establishments, but it still needs the mandatory data as URL of ReportPortal
instance, user token and name of the targeted project that are used for each REST API
request. These all are obtained from user via option, which need to be defined in dedicated
data class ReportReportPortalData.

The option is defined via the function field(option, metavar, default, help), set-
ting the option name, metavar to represent the value, the default value, and help description.
The default value is either the environment variable ”TMT_PLUGIN_REPORT_REPORTPORTAL_“
+ option.upper() or None if the variable is not defined. The ‘None’ value influences
the data typ and therefore requires using a predefined type Optional[str].

The functional part of the plugin is encapsulated within the class ReportReportPortal
which must be labeled with decorator @tmt.steps.provides_method(”reportportal“)
to be identified as ‘reportportal’ method. This will guarantee a proper integration with tmt
report step so the plugin can be called on ‘report ––how reportportal’ and cover FR1.
This class must involve the definition for class ReportReportPortalData and function go()
which calls an equally named superfunction and includes entire report functionality.

The plugin body starts with option handling. Even if the options server_url, token,
and project are allowed to be None, they are mandatory, therefore each of them must
be handled by raising an error if not provided. For this is purpose, tmt utilities provide
tmt.utils.ReportError(message) to raise an exception with error message.

Afterwards, token is used to prepare headers and the server url with project name
are used to form a link that is throughout the plugin used to establish connection with
ReportPortal within every API request and successfully cover FR2.

1

2 url = f"{server_url}/api/v1/{project}"
3 headers = {"Content-Type": "application/json",
4 "Accept": "*/*",
5 "Authorization": "Bearer " + token}
6

Figure 5.1: Variables for URL and headers are defined to be further used for API requests
to establish connection with ReportPortal, based on the template 4.6 in design chapter.

Finally, a function from tmt utilities is used to start communication with ReportPortal
via API requests. Defined variable session then provides requests such as GET or POST.

51

1

2 with tmt.utils.retry_session() as session:
3

Figure 5.2: Define a session to commence the communication with Report Portal.

5.1.2 Create launch and test items

Before sending the first API request, the necessary data must be collected to fill all launch or
item parameters. the options that affect these parameters are launch, launch-description
and exclude-variables. They are defined the same way as previous options introduced
above. Beyond these, data are obtained from tmt structure based on fmf plan and test
metadata.

Only an option exclude-variables has a pattern of a regular expression ‘^TMT_.*’ as
a default value to avoid reporting tmt variables that may break the history aggregation
which FR11 requests. In case, an user uses the option but sets it with an empty string
instead of pattern, it is assumed that they do not want to use any filter thus a pattern ‘$^’
is applied. And it is further used to filter all environment variables by external function.
The environments variables are obtained from plan metadata labelled by ‘environment’.
These must be prepared as a list of dictionaries with key and value of each environment
variable to pass it to parameters of ReportPortal test item. Similarly, the attributes are
obtained from plan context within fmf metadata.

1

2 envar_pattern = self.get("exclude-variables") or "$^"
3 env_vars = [{’key’: key, ’value’: value}
4 for key, value in test.environment.items()
5 if not re.search(envar_pattern, key)]
6

7 attributes = [{’key’: key, ’value’: value[0]}
8 for key, value in self.step.plan._fmf_context.items()]
9

Figure 5.3: Constructing list of dictionaries to prepare environment variables and context
attributes for report to ReportPortal.

With all data constructed, launch can be created via the API request with prepared
url, headers and json data with all paramters made by options and tmt metadata such plan
name, plan summary, initial execution time of plan and already explained attributes. From
the response, after it is handled for possible errors, a launch UUID is obtained to use it
further for report of additional data.

52

1

2 response = session.post(
3 url=f"{url}/launch",
4 headers=headers,
5 json={"name": self.data.launch or self.step.plan.name,
6 "description": self.step.plan.summary + self.data.launch_description,
7 "startTime": self.step.plan.execute.results()[0].start_time,
8 "attributes": attributes})
9 self.handle_response(response)

10 launch_uuid = yaml_to_dict(response.text).get("id")
11 assert launch_uuid is not None
12

Figure 5.4: Demonstration of API request creating a launch in ReportPortal, based on 4.7.

To create a test item within the launch, tests cases are processed in a loop to get
result data from ‘execute’ step (‘result in self.step.plan.execute.results()’) a and
test data from the ‘discover’ step (‘test in self.step.plan.discover.tests()’). This
allows an access to the tmt data from fmf test metadata, such as name tmt name for test
case, test summary, test ID and additional data that may be possibly useful when displayed
in ReportPortal. List of test attributes is based on launch attributes with a contact added
per each test, and list of environment variables obtained from fmf metadata per each test
as explained in the figure 5.3 into details. Basically these parameters cover requirements
FR7 - FR10. After all, type of item is set to test, launch UUID from previous response was
inserted and then another UUID for test item is received from the new response to enable
logging into the element.

1

2 response = session.post(
3 url=f"{url}/item",
4 headers=headers,
5 json={
6 "name": test.name,
7 "description": test.summary,
8 "attributes": item_attributes,
9 "parameters": env_vars,

10 "testCaseId": test.id or None,
11 "codeRef": test.web_link() or None,
12 "startTime": self.time(),
13 "launchUuid": launch_uuid,
14 "type": "step"})
15 self.handle_response(response)
16 item_uuid = yaml_to_dict(response.text).get("id")
17 assert item_uuid is not None
18

Figure 5.5: Demonstration of API request creating a test item in ReportPortal, based
on 4.8.

53

5.1.3 Upload details of test results

With UUID of created test items the test logs obtained from the execution step can be
processed and uploaded via request to ReportPortal.

1

2 for index, log_path in enumerate(result.log):
3 log = self.step.plan.execute.read(log_path)
4

5 response = session.post(
6 url=f"{url}/log/entry",
7 headers=headers,
8 json={
9 "message": log,

10 "itemUuid": item_uuid,
11 "launchUuid": launch_uuid,
12 "level": level,
13 "time": result.end_time})
14 self.handle_response(response)
15

Figure 5.6: Demonstration of API request uploading standard log in ReportPortal, based
on 4.8.
As framework including BeakerLib may generate multiple logs (output, journal, etc.) and
tmt offers filtering based on errors (‘result.failures(log)’), the level parameters for Re-
portPortal log can be used with multiple logging. Failures are filtered from the standard
log and uploaded with ERROR level, a full standard log is used for INFO level and rest of
the logs for TRACE level. This feature is not necessary but can be beneficial for test result
analysis.

5.1.4 Close launch and test items

After all logs with test result details are uploaded, the test results can be assigned to each
test item. Each result status is based on the results provided by tmt. In tmt, there are
differentiated 5 types of result status, which is ‘PASS’, ‘FAIL’, ‘ERROR’, ‘WARN’ and
‘INFO’. While in ReportPortal there are ‘PASSED’, ‘FAILED’, ‘SKIPPED’ which are rele-
vant to evaluation of test results. Therefore the mapping is done with dictionary as ‘PASS’:
‘PASSED’, ‘INFO’: ‘SKIPPED’ and rest of tmt’s states are assigned to ReportPortal’s
‘FAILED’. the test results are uploaded together at closing the test item. It requires item
UUID obtained at its creation for the url.
1

2 response = session.put(
3 url=f"{url}/item/{item_uuid}",
4 headers=headers,
5 json={"launchUuid": launch_uuid,
6 "endTime": self.time(),
7 "status": status})
8 self.handle_response(response)
9 launch_time = result.end_time

10

Figure 5.7: Demonstration of API request closing item in ReportPortal, based on 4.8.

54

When all test item are closed, the launch gets closed as well, with the stored UUID used
as well. As demonstrated at the bottom of 5.8, the launch item at closing returns the URL
link to the launch item that is useful to display it in the terminal via tmt standard logging
function and cover the requirement FR5.

1

2 response = session.put(
3 url=f"{url}/launch/{launch_uuid}/finish",
4 headers=headers,
5 json={"endTime": launch_time})
6 self.handle_response(response)
7

8 link = yaml_to_dict(response.text).get("link")
9 self.info("url", link, "magenta")

10

Figure 5.8: Demonstration of API request closing launch in ReportPortal, based on 4.7.

In this point the basic upload to ReportPortal is fully functional. Ater closing the launch
report steps ends, and the upload is repeated for another plan when the report step is called.

5.2 Grouping several plans to ReportPortal
This section aims to introduce boolean flag options for mapping, launch-per-plan option
for a core implementation from the previous section and suite-per-plan which will extend
the core implementation with suite hierarchy.

The main problem is that a launch needs to contain numerous plans therefore numerous
‘report’ step executions need to approach this launch. It leads to a need of a launch UUID to
be stored after launch is created in the first plan. Value for purposes of a report step can be
saved within the ReportReportPortalData class together with the options as follows.

launch_uuid: Optional[str] = None

In the body section, mapping options must be handled so exactly one type is applied.
If suite-per-plan is active, a new launch is created only if there is no ‘launch_uuid’ in
report step data within a first plan, and within it suite - test structure is created.

When launch is created it, the only difference in the implementation of its parameters
from the launch-per-plan mapping is the value for attributes. Launch attributes are
composed of intersection of all plan attributes. It is constructed on comparison of each
plan attribute list with a lastly composed temporary list, which as at last made into key-
value form for ReportPortal. This way, the final list involves only attributes that are truly
relevant for each plan. The code algorithm for this process follows in the figure 5.9.

55

1

2 merged_plans = [{key: value[0] for key, value in plan._fmf_context.items()}
3 for plan in self.step.plan.my_run.plans]
4 result_dict = merged_plans[0]
5 for current_plan in merged_plans[1:]:
6 tmp_dict = {}
7 for key, value in current_plan.items():
8 if key in result_dict and result_dict[key] == value:
9 tmp_dict[key] = value

10 result_dict = tmp_dict
11 launch_attributes = [{’key’: key, ’value’: value}
12 for key, value in result_dict.items()]
13

Figure 5.9: Demonstration of the algorithm obtaining intersection attributes of all plans as
explained in the text above

Otherwise the launch request is mostly reused from the launch-per-plan implementa-
tion. Within the launch, there is a suite created as a root item as well as test item above.
This suite is filled with tmt plan data for parameters such name, description and attributes.

1

2 self.info("suite", suite_name, color="cyan")
3 response = session.post(
4 url=f"{self.get_url()}/item",
5 headers=self.get_headers(),
6 json={"name": self.step.plan.name,
7 "description": self.step.plan.summary,
8 "attributes": attributes,
9 "startTime": self.time(),

10 "launchUuid": launch_uuid,
11 "type": "suite"})
12 self.handle_response(response)
13 suite_uuid = yaml_to_dict(response.text).get("id")
14 assert suite_uuid is not None
15

Figure 5.10: Demonstration of API request closing launch in ReportPortal, based on 4.8.

The suite UUID obtained from the response is inserted into the link used to create its
child test items. For this, the core implementation of test items can be slightly modified
to switch between the root item and child item based on the mapping used. It takes only
one-line modification within a link as presented below:

url=f”self.get_url()/itemf’/suite_uuid’ if suite_uuid else ”“

All the rest remains same until the conclusion, where the launch is closed for suite-per-
plan option only if it is the last plan being processed. This way, the run process is simulated
in the visual interface while all the plans are being executed and continuosly uploaded.
After all, the URL of one launch for all plans is reported.

56

5.3 Support of reruns
ReportPortal build-in function that allows rerun by creating retry items within a test item
(FR12) is easily approached within API command for launch creation. There is only added
one more parameter in the json data on line 5 of figure 5.4 for activating rerun as below,
where launch_rerun is assigned with a value from the launch-rerun option.

”rerun“: launch_rerun

With name-based mapping this rerun approach is not suitable for plans with repeating
names of tests, therefore there is an alternative way to rerun those tests and upload the data,
though the logs can be only appended to previous ones or to empty tests instead of adding
new retry items. It is done via storing all UUIDs per each launch, suite or test item and
using them for a precise mapping when a rerun is requested (FR14).

1

2 launch_url: Optional[str] = None
3 launch_uuid: Optional[str] = None
4 suite_uuid: Optional[str] = None
5 test_uuids: dict[int, str] =
6 field(default_factory=dict)
7

Figure 5.11: Definition of values within the ReportReportPortalData class storing UUIDs
of ReportPortal elements.

Unlike the name-based build-in rerun, mapping via stored identifiers can be applied only
within the same tmt run to reuse the report data. However, the option ––again must be
used to allow repeating the report step and avoid deleting stored data. In that case, when
there is in subsequent report step with a launch, suite and test UUIDs already defined, no
elements are created again but reused the existing ones based on their UUIDs.

5.4 Report with an idle status
The use case 3.4.1 (d) is based on ‘report’ step being run twice, which can be currently
done only by running the tmt run twice as elaborated in the design section 4.3.3.

To support the first part of use case, the report step must allow reporting even if
execution data are empty and upload only data from discover step without logs and results.
Though the plugin is targeted further than the neighbouring teams reach, the idle status
is no defined value in ReportPortal projects unless the project administrators choose so.
That’s why this use case should be supported an option that support a wider range of
demands thus allows setting any requested value for tests which would be reported as
unsuccessful with no result data.

It is defined under ‘defect-type’ within ReportReportPortalData class, while the class
of a functional code section includes a whole function dedicated to this feature. The function
demonstrated in the figure 5.12 is responsible for obtaining the locator of requested defect
type value, as it is needed to use it for issue report in case of failures.

If none specific defect type is requested, the function returns the locator of a default
value for failures, which is ‘To investigate’ with a static locator ti001) under the defect

57

type group ‘To investigate’. Otherwise it gets the locator via API request and finds it
defined under one of the defect type groups ‘To investigate’,‘No defect’,‘System issues’,
‘Automation bugs’ or ‘Product bugs’. If given value is not defined in the project, the error
must be raised.
1

2 def get_defect_type_locator(self, session: requests.Session,
3 defect_type: Optional[str]) -> str:
4 if not defect_type:
5 return "ti001"
6

7 response = self.get_rp_api(session, "settings")
8 defect_types = yaml_to_dict(response.text).get("subTypes")
9 if not defect_types:

10 return "ti001"
11

12 groups_to_search = [’TO_INVESTIGATE’, ’NO_DEFECT’,
13 ’SYSTEM_ISSUE’, ’AUTOMATION_BUG’, ’PRODUCT_BUG’]
14 for group_name in groups_to_search:
15 defect_types_list = defect_types[group_name]
16 dt_tmp = [dt[’locator’] for dt in defect_types_list
17 if dt[’longName’].lower() == defect_type.lower()]
18 dt_locator = dt_tmp[0] if dt_tmp else None
19 if dt_locator:
20 break
21 if not dt_locator:
22 raise tmt.utils.ReportError(f"Defect type ’{defect_type}’ "
23 "is not be defined in the~project {self.data.project}")
24 self.verbose("defect_type", defect_type, color="cyan", shift=1)
25 return str(dt_locator)
26

Figure 5.12: Demonstration of a function that returns a defect type locator to report
the issue in case of failed or empty report in ReportPortal, further explained in the text
above.

The function is called within a single parameter added in the json data on line 5 of fig-
ure 5.8 to report the issue if a failed or empty test is reported.

”issue“: ”issueType“: self.get_defect_type_locator(session, defect_type)

Though this functionality offers variety of possibilities, it enables reporting an idle status
as well, in case a project administrator allowed this feature with a setup of a defect type
‘IDLE’.

Eventually, it allows uploading an empty report with defined status, which can be
‘IDLE’ therefore covers a requirement FR13. Together with an implementation mentioned
in the previous part, it allows to update these empty reports with a rerun of the same
tmt run via precise mapping covering requirement FR14 and also a full use case they form
together.

58

5.5 Additional upload to the launch
In the long run, the last supported function should upload new additional tests or suites
into an existing launch. This can be approached with an implementation of FR14 described
in the section 5.3, which supports an upload of tests to a launch with given UUID. If suites
or tests are not bound with its UUID in the ‘report’ step data, a new suite or test is created.
Though if a new tmt run is used to upload a report to an existing launch, it has no UUID
stored and is expected to be obtained from the user via dedicated option.

In contrast with a launch ID, UUID is no freely available identifier for a common user
to know. Therefore the plugin expects an user to pass the launch ID which can be sim-
ply found in the launch URL. For this an option upload-to-launch is defined within
the ReportReportPortalData class. Afterwards, the UUID is obtained via API request
based on the provided ID, as can be seen in 5.13

1

2 if launch_id:
3 response = session.get(url=f"{self.get_url()}/launch/{launch_id}",
4 headers=self.get_headers())
5 self.handle_response(response)
6 launch_uuid = yaml_to_dict(response.text).get("uuid")
7

Figure 5.13: Demonstration of an API request in order to obtain a launch UUID with
a launch ID.

With upload-to-launch option, launch UUID is obtained and used for all uploads,
therefore based on mapping option either suites will be created within the launch, or all
tests will be directly inserted into the launch, which does cover the requirement FR15. It is
not recommended to run more than one plan with mapping based on launch-per-plan
option, as this approach supports only uploads to one launch per run.

Analogically, this is done for FR16 with the option upload-to-suite. If given the op-
tion, no launch or suite is created, but suite UUID is obtained with its ID and reused
to upload the launch. As a common practice of plugin based on the requirements builds
either launch - test or launch - suite - test structure, and no launch - suite - suite - test struc-
ture, then it cannot allow creating more suites within a suite. Therefore mapping options
launch-per-plan ad suite-per-plan are ignored in this case and only a direct upload
of tests is supported. Again, it is not recommended to run more than one plan with this
option, as this approach supports only uploads to one suite per run.

5.6 Finalization and documentation of tmt plugin
After the main part of plugin within the folder structure dedicated to plugin implementation
is done, there are several additional modifications needed to fully integrate the plugin to
the tmt structure.

Firstly, for purposes of FR18, there must be a support of help argument to print
a description of plugin functionality and instructions to the options supported. This is done
within the file with plugin implementation. The functionality description is generated from
the Python plugin docstring within the comment section under the ReportReportPortal

59

class and the description to individual options is supported in the function field()
under the ‘help’ parameter.

Additionally, there are other files where the documentation related to plugin can be
updated. The most relevant involves the specification for plugin, which is displayed in
web interface as part of tmt documentation, see [12]. It falls under the report specification
in the file further specified in the appendix (A.2.3). The plugin specification is described
in YAML with a summary, story, description, link to the source file, and several examples
that present a variety of supported use cases in the form of both command and metadata
specifications.

Among the other relevant files to the plugin, there is a dedicated file for schema definition
for metadata specifying the reportportal plugin options. It is marked up in JSON language
and used to verify options with tmt command or metadata.

1

2 properties:
3

4 how:
5 type: string
6 enum:
7 - reportportal
8

9 name:
10 type: string
11

12 project:
13 type: string
14

15 launch-per-plan:
16 type: boolean
17

18 suite-per-plan:
19 type: boolean
20

Figure 5.14: Demonstration of a part of reportportal plugin schema specifying the option
properties.

60

Chapter 6

Evaluation of the plugin

Beside the implementation, tmt requires a test coverage which verifies the functionality
implemented is truly working. the test coverage aims to focus on the functionality of
tmt in relation to the plugin as well as towards the targeted functionality, particularly
the integration with ReportPortal tool. This can be tested on regular basis, supporting
automated testing as well.

Moreover, the requirements definition in the real setting of the work environment is
a process based on analysis and gained experience. Though it began with an idea that is
elaborated in the chapter 3 under the sections with use cases and requirements. The plans
for an initial implementation were sceptical against the possibilities of tools, therefore
the implementation was separated into two parts the core one and the extensions as in-
dicated in the previous chapter. After an implementation of each of them, an user feedback
was very essential factor, which is further explained and summarizes the evaluation in
the last section.

6.1 Test coverage
Based on the segmentation of implementation goals derived from the supported use cases,
the test coverage of the plugin is structured into two main parts.

The first part primarily focuses on core functionality related to detailed aspects of
a common report upload. In summary, it ensures that all ReportPortal properties including
logs and result statuses within a launch-test structure are successfully uploaded and no
problem appeared in the communication between tmt and ReportPortal.

The second part has a broader scope, verifying the primary functionality of all features
that extend beyond the core report requirements. It involves multiple tmt runs, each
addressing different aspects derived from all use cases, besides the core one. This part
includes only brief verification of details already covered in the first part with goal to
validate all supported use cases.

Encapsulating features related to both tmt and ReportPortal, both of them read stan-
dard output based on the server response and verify ReportPortal interface values via
the REST API. Also both parts are written in bash with BeakerLib framework, organized
within a test that is divided into phases, with each phase mostly corresponding to one test
objective. Beside the targeted test phases, there is setup and cleanup phase for an approach
to the temporary data that the framework implements.

61

In addition to the executable bash file, the test includes a data directory containing
sample tests with metadata demonstrating both different statuses, with a range of param-
eters, see 6.1. This directory has tmt initialized (.fmf directory) and contains fmf plan
metadata to support the plans within tmt run. The plan definition includes several pa-
rameters interesting for plugin functionality like summary, context attributes, environment
variables and report specifications.

1

2 /bad:
3 summary: Failing test
4 contact: tester@redhat.com
5 test: echo "Something bad happened!"; false
6

7 /good:
8 summary: Passing test
9 contact: tester_2@redhat.com

10 test: echo "Everything’s fine!"
11 id: 63f26fb7-69c4-4781-a06e-098e2b58129f
12

13 /weird:
14 summary: an~error encountered
15 test: this-is-a-weird-command
16

Figure 6.1: Three versions of simplified tests with metadata, targeting three types of sta-
tuses.

Furthermore, the test itself can be executed by tmt, involving a brief fmf file at the same
level to support the test automation. It aims to cover requirements FR1 - FR16. This way
the test suite goes through all supported scenarios described in the thesis and fully verifies
its functionality in each execution.

6.1.1 Test coverage for core functionality

With an intention of a thorough verification, this part is divided into two phases. Starting
with a tmt run representing an essential functionality of the plugin, the tmt run executes
and reports three tests targeting good, bad and unexpected result, all specified in metadata.
The run is performed with default values (launch-per-plan mapping, metadata values)
and shared in first two phases for detailed approach.

The first phase verifies whether all tests were correctly reported from the side of tmt.
Reading the the standard output, it uses grep to assert launch link FR5 and names of all
reported tests to ensure the connection and full communication was successful FR2. It also
reads ID and UUID identifiers of launch and test elements to assert they are not empty.
Parts of this phase are reused also throughout the test suite for testing extended features
as well, as it has an access to names and identifiers which are essential for approaching
the launch and all items within via REST API.

The second phase tests this run from the ReportPortal point of view via the REST
API requests. It obtains a response from the API request and compares it with a static
expected data, it is data read from the metadata and data as identifiers printed out in
standard output acquired from the previous phase. To illustrate the idea of testing, figure
6.2 provides an example with a beakerlib assert function that is used for the comparison.

62

The function takes comment for log, followed by tested data and expected data to generate
a status for log. For searching terms within json response and fmf metadata are used
Python tools jq and yq.

1

2 response=$(curl -X GET "$URL/api/v1/$PROJECT/launch/uuid/$launch_uuid" \
3 -H "accept: */*" -H "Authorization: bearer $TOKEN")
4

5 rlAssertEquals "Assert the~URL ID of launch is correct" \
6 "$(echo $response | jq -r ’.id’)" "$launch_id"
7 rlAssertEquals "Assert the~name of launch is correct" \
8 "$(echo $response | jq -r ’.name’)" "$launch_name"
9 rlAssertEquals "Assert the~status of launch is correct" \

10 "$(echo $response | jq -r ’.status’)" "$launch_status"
11

Figure 6.2: Demonstration of a few asserts testing launch properties URL ID, name and
status based on the response of the API request.

It starts with a launch request to validate the launch ID, launch name, launch status
and launch description. Additionally, it goes through all metadata and compares it with
launch attributes.

Another step is based on a test request, where the test goes in a loop through all three
tests and verifies details such UUID, name, or result status. It also checks all environment
variables in parameters individually, including a negative assert for filtered environment
variables that should be omitted by the default value of exclude-variables option.

Finalizing with a log request, where each log is processed and asserted on its contents
and assigned level in ReportPortal.

In summary, with these first two phases passing without problem, it validates the sup-
port of requirements FR1 - FR10 with an exception of the first requirement which is mostly
implicit based on the valid use of the plugin, and the requirements defining mapping on re-
quest (no default mapping) which are covered in the second part of test coverage described
below.

6.1.2 Test coverage for advanced use cases

Targeting verification of all supported features in addition to the core report upload, there
are several phases to cover each of them. In this part, each phase involves at least one
separate tmt run to simulate an use case. And each of them includes brief verification to
cover key properties of requirements FR3 - FR4 and FR11 - FR16. Having a similar approach
to testing the core functionality, they sum up it all in one phase per each obejctive while
they do not focus on details already covered in the first part of previous subsection.

To name them in the order of requirements, an essential phase to begin with is one
that supplements the coverage of core functionality with launch-per-plan mapping on
demand. It tests the functionality of plugin with a mapping requested on demand by
launch-per-plan option and verifies if no suite structure is created. In addition to the core
test coverage, this ensures that all expectations were met for the requirement FR3.

Another phase is analogical to the previous one with pure suite-per-plan mapping on
demand. It verifies the presence of launch-suite-test structure, but also replicates detailed

63

testing examined in the previous subsection to ensure no problem appeared with a change
of launch structure and mapping. Therefore, it meets the requirement FR4.

There is also a need to validate the integrity of historical data aggregation, as requested
in FR11. This validation process involves a sequence of two tmt runs. During the first
run, a launch is created containing items that serve as direct predecessors to the items in
the launch created in the subsequent run. The validation is conducted through an API
request that retrieves a history of depth 2. This API response is then utilized to assert
the identifiers of the items, ensuring that the historical aggregation remains intact.

This phase is extended by another test run using the exclude-variables option, tar-
geting FR9, to demonstrate valid functionality in relation to test parameters, test case ID
and history aggregation in ReportPortal. It adopts a similiar approach, but involves tmt
environment variables that tend to be unique per run and therefore may disrupt the history
aggregation. It verifies the preserved history aggregation of test items with a test case ID
present and identifies any interruptions otherwise.

Next phase targets the ReportPortal built-in feature of launch rerun, which is objective
of FR12 covered by two runs and launch mapped on name basis. There is an initial run that
creates a launch and provides its identifiers for verification of rerun feature in the second
run. It asserts the report is mapped to the previous launch with same name, and its test
items contain retry items. The access is mostly enabled via API request that lists all test
items and its data filtered by any property, particularly a launch ID.

Furthermore, the rerun functionality is also tested using a different approach in another
test phase, aligning with the requirements specified in FR14. This involves a single tmt
run, initially executed to perform a standard upload. Subsequently, the run is rerun with
the option ––last and option ––again specifically on the ‘report’ step to append logs based
on the UUID identifiers of ReportPortal elements. During this process, assertions are used
to ensure that identifiers of reported items are correctly mapped and that the logs are
accurately appended.

In another test phase, the UUID-based rerun functionality on a top of an implementation
for a requirement FR13 is used to simulate the scenario of intagrating the plugin in Shared
OS Testing Infrastructure introduced as motivation example in section 3.1. Within tmt run
‘discover’ step and ‘report’ step are performed opting defect-type to label the empty report
in ReportPortal as ‘idle’. Afterwards the same tmt run is rerun and updates the report.
While the API request helps to verify the validity of the process through defect types
assigned to each test item and logs uploaded to the corresponding items

Finally, there are three test phases implemented using the options upload-to-launch
for both launch-suite-test’ and launch-test’ structures, and upload-to-suite specifically for
the ‘launch-suite-test’ structure, in alignment with the requirements outlined in FR15 and
FR16. These phases involve creating a launch with an initial run, followed by an additional
run to supplement new ReportPortal items. Validation of the upload process is performed
using the same API request to retrieve all items with details per launch. This validation
includes comparisons of identifiers and parsing of content to ensure accurate upload.

In conclusion, this section comprehensively addressed and tested all specified require-
ments through the implementation of various test phases. Each test phase, including either
core or key properties of extended functionality, was meticulously explained and executed
to validate the functionality of the system according to FR1 - FR16 requirements. Whereas
the requirement FR17 is implicit given this test suite and FR18 is covered by tmt function-
ality that is tested as well, once the plugin description is defined in corresponding functions
as stated in 5.6.

64

Ultimately, all proposed requirements were met, with functional requirements fully sat-
isfied as detailed above and non-functional requirements adequately covered. This achieve-
ment is implicitly demonstrated through the implementation discussed within the imple-
mentation, chapter 5.

Importantly, all test phases resulted in successful outcomes, confirming the system’s ad-
herence to requirements and demonstrating the achievement of all intended functionalities
of the plugin as well as the purposes of the thesis. This robust evaluation of the thesis’ im-
plementation underscores the system’s adherence to requirements and successful realization
of its intended functionalities.

6.2 User feedback
In real-world scenarios involving the developer, client, and end-user, initial requirements and
goal setting are often distorted, insufficient and unclear, leaving room to adjustments during
the implementation process. Especially, if all three authorities of the scenario converge
as the assignment evolves in a ‘community-driven’ approach to improve the tools used
via community discussions. Therefore, just as the design and implementation, which are
summarized earlier in this thesis for clarity, the evaluation of the implementation also
occurred in two steps, with user feedback being a crucial factor after each of them.

This way, the evaluation of the implementation was conducted in two steps as well,
with user feedback playing a pivotal role. Especially, after the core implementation based
on initial requirements that were barely ambitious. With a few concepts as plans or ‘nice-
to-have-features’ to be further evaluated based on a profound experience of core report
implementation.

The evaluation process involved meetings with key users transitioning to these tools, as
well as representatives of current and potential users. The survey was based on a sample
of colleagues who participated in meetings and those who voluntarily contributed feedback
through a dedicated chat channel for tmt, GitHub issues related to tmt, or any direct
communication with one of the representatives.

This approach was possible due to a direct contribution to tmt tool living in GitHub
repository, which is newly released on monthly basis.

Here are the main points summarized from the first session after all members had
a opportunity to test the plugin with core report functionality, uploading test results, logs
and other properties to ReportPortal within launch - test structure, covered in section 5.1.

(aa) launch - suite - test hierarchy
Transitioning exclusively to a direct hierarchy of the launch - suite structure was
deemed impractical and unrealistic based on feedback from users accustomed to a hi-
erarchical structure with three levels in past approaches. This feedback was particu-
larly targeted at addressing the needs of errata testing, which involves grouping results
from multiple plans based on different approaches, architectures, or components to
validate specific components or features. To accommodate a broader scope of testing
requirements, the addition of options for switching the hierarchy and mapping was
identified as a viable solution.

(ab) update of idle tests via rerun
The initial plan to generate an empty report by triggering the report’ step from

the discover’ step in one run was considered redundant due to the significant alter-
ations required to tmt functionality and the need to allow for repeating the report

65

step. Instead, the problem was simplified by utilizing options ––last and id RUN-ID
to enable reruns, prompting exploration of methods to repeat the step. This chal-
lenge was addressed by the timely implementation of the ––again option, inspired by
a similar option ––force, with the key distinction of preserving data before repeating
the step.

(ac) defect types
The plan to report empty tests with an idle status became partially irrelevant due to
evolving processes and the expanding scope of tmt. It became challenging to antic-
ipate the general impact and necessity of this flag, especially as new flags emerged.
Therefore, it was reconsidered to allow users to define any supported value within
the project, keeping the possibilities open even if the concept of reporting idle tests
is no longer viable.

(ad) UUID-mapped rerun
There appeared an interest for rerun functionality. While the name-based rerun fea-
ture provided by ReportPortal generates nicely structured retry items, it proved in-
sufficient for covering plans where test cases are repeated with changing conditions.
Therefore, only UUID-based mapping would be accepted, even if test results are
rewritten and logs appended. This approach could be leveraged from the point refer-
enced in (ab). Although retry functionality was considered a ”nice to have“ feature
and was not prioritized for broader support, it was still planned for implementation
due to its simplicity, with the understanding that it would not be extensively sup-
ported.

(ae) appending the description
The original plan to add files was deemed redundant and ineffective for storage, as
the testing farm already provided URLs to the test artifacts. Consequently, attach-
ments were replaced with the ability to append a string such as URL directly within
the launch description.

To evaluate the initial phase of analysis, design, implementation, and feedback, it was
essential to explore the capabilities of the ReportPortal REST API and establish realistic
expectations for integrating tmt with ReportPortal.

In the gathered feedback, key users highlighted specific challenges and requirements
that influenced subsequent refinements and adjustments to optimize the system’s usability
and alignment with user expectations. Building on former plans, there were provided
valuable insights laying the groundwork for subsequent development iterations. Eventually,
the feedback resulted in finalizing all requirements planned for the integration or tmt and
ReportPortal and finally implementing this comprehensive solution.

The community’s feedback was again solicited to evaluate and assess the effectiveness
of these enhancements.

(ba) all options available via environment variables
As the functionality of tmt is in Testing Farm run via metadata specifications and

environment variables, it lacks the functionality of plugin options unless they can be
approached via environment variables.

(bb) option for REST API version
Given the availability of two different versions of the ReportPortal API offering syn-

66

chronous (v1) and limited asynchronous (v2) approaches, there was a desire to lever-
age the asynchronous functionality. As a solution, an option was proposed to allow
switching between these two versions as needed.

(bc) an option targeted to link to artifacts
A link to artifacts within a launch description was found insufficient for scenarios
involving merged launches or additional uploads into launches. Therefore, a new
option is intended to be dedicated specifically for this purpose, allowing users to
insert the link into the description at each level within the ReportPortal launch.

(bd) need of an instance upgrade
Execution of complex test suites often results in timeouts, preventing the completion
of uploads. This issue was identified and resolved within ReportPortal, and the solu-
tion is available in a new version of the software.

Despite receiving feedback that highlighted certain deficiencies, these were promptly ad-
dressed. The issues mentioned in (ba) were included in the thesis’s implementation, while
others were deemed out of scope for this project. Ultimately, the plugin’s implementation
was deemed a success, effectively meeting all requested testing needs and replacing previous
systems. This achievement instilled a deep sense of gratitude for the functionality deliv-
ered and fostered ambitions for ongoing improvements. Through iterative evaluation steps
and active engagement with users, the implemented solution was refined to enhance user
experience and align with practical needs and expectations in real-world usage scenarios.
The incorporation of user feedback proved instrumental in driving meaningful improvements
and shaping the final successful implementation of the system.

67

Chapter 7

Conclusion

This thesis embarked on an extensive exploration of testing terminology, processes, and
tool integration within Red Hat’s testing ecosystem. The primary objective was to facilitate
the seamless integration of the tmt tool with ReportPortal, driven by the overarching goal of
establishing a Shared OS Testing Infrastructure that addressed the complexities of testing
diverse software components within Red Hat Enterprise Linux (RHEL).

Throughout the study, alternative solutions were considered, yet none proved sufficient
to surpass the final design of the tmt plugin integrated via the REST API of ReportPor-
tal. The thesis analyzed the functionalities of existing and forthcoming tools, focusing
particularly on tmt’s capabilities and the possibilities the ReportPortal REST API offers.

The implementation phase was structured into two essential components. Firstly,
the core report functionality addressed the need for reporting to ReportPortal. However,
this implementation fell short of fulfilling all requirements for automated testing within
the tmt and ReportPortal. Following thorough testing and successful execution of the core
implementation, extensive feedback was solicited and incorporated into plugin’s design and
implementation. Secondly, advanced features were introduced, carefully designed, and im-
plemented to cover a broad range of scenarios, leveraging the full potential of integrated
tmt and ReportPortal API. Each new feature was incrementally built upon previously im-
plemented components, manually tested, and validated with full test coverage to ensure
that all requirements were met without disrupting existing functionalities.

Feedback from stakeholders and users was instrumental in shaping the direction of this
project, driving meaningful improvements, and fostering ambitions for ongoing enhance-
ments within Red Hat’s testing infrastructure. The positive response and constructive
suggestions received underscored the value of collaborative efforts in advancing software
testing practices and achieving higher standards of quality assurance.

Looking ahead, the integration of tmt with ReportPortal represented a significant step
towards the modernization and optimization of testing processes within Red Hat. As Red
Hat transitioned from legacy systems to innovative solutions, the commitment remained
strong to refining and expanding testing capabilities, ultimately delivering improved out-
comes for RHEL teams and contributing to the evolution of software testing practices in
the open-source community.

In conclusion, this thesis underscored the importance of effective test management, au-
tomation, and collaboration in ensuring the quality, stability, and functionality of software
products. By integrating tmt with ReportPortal and leveraging user feedback, a solid foun-
dation was laid for future advancements in testing methodologies and infrastructure within
Red Hat.

68

69

Bibliography

[1] ISO/IEC/IEEE International Standard - Systems and software
engineering–Vocabulary. ISO/IEC/IEEE 24765:2017(E). 2017, p. 1–541, [cit.
2024-04-10]. DOI: 10.1109/IEEESTD.2017.8016712.

[2] ISO/IEC/IEEE International Standard - Software and systems engineering –Software
testing –Part 1:General concepts. ISO/IEC/IEEE 29119-1:2022(E). 2022, p. 1–60,
[cit. 2024-04-10]. DOI: 10.1109/IEEESTD.2022.9698145.

[3] Bravin, A. Top 11 test reporting tools to supercharge your QA process [online]. [cit.
2024-04-14]. Available at: https://zebrunner.com/blog-posts/top-11-test-
reporting-tools-to-supercharge-your-qa-process.

[4] Dubaj, O. Systém pro správu výsledků testů doplňující nástroj tmt. Brno, CZ, 2021.
Diplomová práce. Vysoké učení technické v Brně, Fakulta informačních technologií.
Available at: https://www.fit.vut.cz/study/thesis/23921/.

[5] Open Source Contributors. Nitrate [online]. [cit. 2024-04-18]. Available at:
https://nitrate.readthedocs.io.

[6] Red Hat Contributors. BaseOS QE Project Page [online]. [cit. 2024-04-16].
Internal document accessible upon request.

[7] Red Hat Contributors. fmf [online]. [cit. 2024-04-21]. Available at:
https://fmf.readthedocs.io.

[8] Red Hat Contributors. GitHub repository: tmt [online]. Available at:
https://github.com/teemtee/tmt.

[9] Red Hat Contributors. RHEL Development Guide [online]. [cit. 2024-04-18].
Internal document accessible upon request.

[10] Red Hat Contributors. Shared OS Testing Infrastructures [online]. [cit.
2024-04-17]. Internal document accessible upon request.

[11] Red Hat Contributors. Testing Tools [online]. [cit. 2024-04-16]. Internal document
accessible upon request.

[12] Red Hat Contributors. tmt [online]. [cit. 2024-04-30]. Available at:
https://tmt.readthedocs.io.

[13] ReportPortal Contributors. What is ReportPortal? [online]. [cit. 2024-04-25].
Available at: https://reportportal.io/docs/.

70

https://zebrunner.com/blog-posts/top-11-test-reporting-tools-to-supercharge-your-qa-process
https://zebrunner.com/blog-posts/top-11-test-reporting-tools-to-supercharge-your-qa-process
https://www.fit.vut.cz/study/thesis/23921/
https://nitrate.readthedocs.io
https://fmf.readthedocs.io
https://github.com/teemtee/tmt
https://tmt.readthedocs.io
https://reportportal.io/docs/

Appendix A

Contents of included storage media

(A.1) plugin_implementation
A source code of tmt tool with implemented plugin, documentation and test coverage.[8]

(A.1.1) README.md
(A.1.2) tmt

spec
plans

report.fmf
tests

report
reportportal

data
plan.fmf
test.fmf

main.fmf
test.sh <-

tmt
schemas

report
reportportal.yaml

steps
report

reportportal.py <-

(A.2) alternative_plugin_implementations/
Alternative or partial implementations of the plugin for reference.

(A.2.1) via_junit_xml_import/ [not authored by me]
(A.2.2) via_api_library/
(A.2.3) via_rest_api_core_only/

(A.3) output.txt
A log from an executed test coverage with detailed test results.

(A.4) docs
Documentation including PDF file and LATEX source code.

71

	Introduction
	Software testing and testing tools
	Introduction to software testing
	Test terminology
	Testing tools
	Test processes

	Test report solutions
	Report tools

	Analysis or requirements specification
	Motivation and problem setting
	Deficiency of the current status
	Motivation example
	Aim of the thesis

	Tool analysis
	Tool tmt
	Tool ReportPortal

	Mapping the terminology
	Requirements
	High-level use cases and analysis
	Functional Requirements
	Non-functinal Requirements

	Design
	Ways to integrate tmt and ReportPortal
	A tmt plugin - Via JUnit XML import
	A tmt plugin - Via API library
	A tmt plugin - Via REST API

	Program structures
	Class structure of tmt
	ReportPortal REST API

	Details of tmt plugin design
	Definition of plugin options
	Supported use cases and limitation of option combinations
	Design decisions in tmt plugin
	Design decisions in ReportPortal interface

	Implementation details
	Upload plan to ReportPortal
	Establish the connection to ReportPortal instance
	Create launch and test items
	Upload details of test results
	Close launch and test items

	Grouping several plans to ReportPortal
	Support of reruns
	Report with an idle status
	Additional upload to the launch
	Finalization and documentation of tmt plugin

	Evaluation of the plugin
	Test coverage
	Test coverage for core functionality
	Test coverage for advanced use cases

	User feedback

	Conclusion
	Bibliography
	Contents of included storage media

