
B R N O U N I V E R S I T Y O F T E C H N O L O G Y
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

E X T E N S I O N O F T H E T M T T O O L F O R R E P O R T I N G
T H R O U G H T H E R E P O R T P O R T A L A P I
ROZŠÍŘENÍ NÁSTROJE TMT UMOŽŇUJÍCÍ REPORTOVÁNÍ POMOCÍ API NÁSTROJE
REPORTPORTAL

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR NATALIA BUBÁKOVA
AUTOR PRÁCE

SUPERVISOR Ing. ALEŠ SMRČKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2024

B a c h e l o r ' s T h e s i s A s s i g n m e n t

Institut:

Student :

P rogramme:

Tit le:

Category:

Depar tment of Intel l igent Sys tems (DITS)
B u b á k o v a Na tá l i a
Informat ion Techno logy

E x t e n s i o n o f t h e t m t T o o l f o r R e p o r t i n g t h r o u g h t h e R e p o r t P o r t a l A P I

Sof tware analys is and test ing

156937

Academic year: 2023/24

Ass ignment :

1. S tudy the field of the test management . Invest igate tmt tool for test management . Focus on the w a y
tmt reports results of the executed tests. Invest igate ReportPortal, a tool for report ing and manag ing
test results. Focus on the tool 's API wh ich a l lows other tools to report their results.

2. Ana lyse the requi rements of au tomated report ing of test results. Propose and des ign an extens ion of
the tmt wh ich wil l enab le report ing to the ReportPortal.

3. Imp lement the proposed solut ion as a new tmt p lugin.
4 . Evaluate the imp lemented plugin on di f ferent test sui tes managed by tmt.

Literature:
• H o m e p a g e of tmt too l : h t tps: / /g i thub.com/teemtee/ tmt
• Documenta t ion of tmt tool : ht tps: / / tmt . readthedocs. io/en/stable/
• O. Duba j . Systém pro správu výsledků testů doplňující nástroj tmt. Brno, 2 0 2 1 . Master thesis. FIT

BUT.

Requ i rements for the semest ra l de fence :
The first two points.

Detai led formal requi rements can be found at ht tps: / /www.f i t .vut .cz/study/ theses/

Superv isor : S m r č k a A l e š , I ng . , Ph .D .

Head of Depar tment : Hanáček Petr, doc. Dr. Ing.

Beginning of work : 1.11.2023

Submiss ion deadl ine: 9.5.2024

Approva l date: 6.11.2023

Faculty of Informat ion Techno logy , Brno Universi ty of Techno logy / Božetěchova 1/2 / 612 66 / Brno

https://github.com/teemtee/tmt
https://tmt.readthedocs.io/en/stable/
https://www.fit.vut.cz/study/theses/

Abstract
This Bachelor's thesis provides insight into testing processes practiced across teams

at R e d Hat and describes a new testing infrastructure proposed to improve testing work­
flow wi th in the company. W i t h this infrastructure serving as the ma in motivat ion for
the assignment, the work targets several use cases of report functionality resulting from
the integration of the Test Management Tool commonly known as tmt and the reporting
platform Repor tPor ta l . It examines both of these tools, analyses alternative approaches,
and proposes an implementat ion of a tmt plugin that integrates seamlessly wi th Repor tPor­
tal , v ia its R E S T A P I . The focus of the thesis encapsulates a l l steps behind a community-
driven project, closely examining detailed aspects of design, implementation, and testing of
a l l requested features of the plugin that actively resides wi th in the tmt open-source project.

Abstrakt
T á t o b a k a l á r s k a p r á c a nahl iada na testovacie procesy využ ívané R e d Hat t í m a m i v praxi ,

a zá roveň opisuje novú testovaciu infrastrukturu n a v r h n u t ú pre účel z lepšenia tes tovac ích
p r a k t í k v spo ločnos t i . Infrastruktura predstavuje h l a v n ú mot ivác iou pre zadanie tejto p ráce ,
k t o r á sa sú s t r ed í na niekoľko scenárov tvorby reportov s výs l edkami testov, k t o r é sú reali­
zované p ráve p r e p o j e n í m n á s t r o j u na s p r á v u testov z n á m e h o ako tmt a Repor tPor ta lu , teda
rozhrania pre zobrazenie výs ledkov. P r á c a s k ú m a oba tieto n á s t r o j e a prezentuje imple­
m e n t á c i u v podobe tmt rozš í renia plynule p r e p o j e n é h o s Repor tPor ta lom cez jeho R E S T
A P I rozhranie, č ím vylučuje a l t e r n a t í v n e p r í s tupy . P TctCct Scl komplexne z a o b e r á v š e t k ý m i
etapamy projektu, k t o r ý je real izovaný v spo lup rác i s komuni tou a detailne s k ú m a aspekty
n á v r h u , i m p l e m e n t á c i e a testovania v še tkých p o ž a d o v a n ý c h funkcií rozš í renia , k t o r é a k t í v n e
komplimentuje open-source tmt projekt.

Keywords
Test Management Tool , tmt, fmf, Report Por ta l , test report, software testing, test result
management, test plan, test run, test case

Kľúčové slová
Test Management Tool , tmt, fmf, Report P o r t á l , reportovanie testov, testovanie programu,
sp ráva výs ledkov testov, p l án testovania, spustenie testu, p r í p a d testovania

Reference
B U B Á K O V A , N a t á l i a . Extension of the tmt tool for reporting through the ReportPortal
API. Brno , 2024. Bachelor's thesis. Brno Univers i ty of Technology, Facul ty of Information

Technology. Supervisor Ing. Aleš Smrčka , P h . D .

E x t e n s i o n o f t h e t m t t o o l f o r r e p o r t i n g t h r o u g h

t h e R e p o r t P o r t a l A P I

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. Ales Smrcka, P h . D . I have listed a l l the l i terary sources,
publications and other sources, which were used during the preparation of this thesis.

N a t á l i a B u b á k o v a
M a y 15, 2024

Acknowledgements
I would like to express my sincere gratitude to everyone who contributed to the completion
of this thesis. Specifically, I extend my thanks to my supervisor Ing. Ales Smrcka, P h . D .
for his willingness and patience throughout the process. I a m grateful to my technical
supervisor, M g r . Pe t r Splichal , and a l l colleagues who contributed to defining requirements,
reviewing and evaluating implementations, and providing assistance i n understanding and
addressing a l l related issues. Addi t ional ly , I acknowledge those who contributed to the
clarity of the documentation of the tmt tool and R H E L processes, and also everyone who
supported the main ini t iat ive which la id the foundation for this work.
Last but not least, I a m deeply grateful to my partner for his enduring support throughout
the wr i t ing process.

Contents

1 Introduction 3

2 Software testing and testing tools 4
2.1 Introduction to software testing 5

2.1.1 Test terminology 5
2.1.2 Testing tools 8
2.1.3 Test processes 10

2.2 Test report solutions 14
2.2.1 Report tools 14

3 Analysis or requirements specification 16
3.1 Mot iva t ion and problem setting 16

3.1.1 Deficiency of the current status 16
3.1.2 Mot iva t ion example 18
3.1.3 A i m of the thesis 20

3.2 Tool analysis 21
3.2.1 Tool tmt 21
3.2.2 Too l Repor tPor ta l 25

3.3 M a p p i n g the terminology 28
3.4 Requirements 31

3.4.1 High-level use cases and analysis 31
3.4.2 Funct ional Requirements 32
3.4.3 Non-functinal Requirements 34

4 Design 35
4.1 Ways to integrate tmt and Repor tPor ta l 35

4.1.1 A tmt plugin - V i a J U n i t X M L import 35
4.1.2 A tmt plugin - V i a A P I l ibrary 36
4.1.3 A tmt plugin - V i a R E S T A P I 38

4.2 Program structures 38
4.2.1 Class structure of tmt 38
4.2.2 Repor tPor ta l R E S T A P I 40

4.3 Details of tmt plugin design 44
4.3.1 Defini t ion of p lugin options 44
4.3.2 Supported use cases and l imi ta t ion of option combinations 45
4.3.3 Design decisions in tmt plugin 47
4.3.4 Design decisions i n Repor tPor ta l interface 49

1

5 Implementation details 50
5.1 Upload plan to Repor tPor ta l 50

5.1.1 Es tabl i sh the connection to Repor tPor ta l instance 51
5.1.2 Create launch and test items 52
5.1.3 Upload details of test results 54
5.1.4 Close launch and test items 54

5.2 Grouping several plans to Repor tPor ta l 55
5.3 Support of reruns 57
5.4 Report w i t h an idle status 57
5.5 Add i t i ona l upload to the launch 59
5.6 F ina l iza t ion and documentat ion of tmt plugin 59

6 Evaluation of the plugin 61
6.1 Test coverage 61

6.1.1 Test coverage for core functionality 62
6.1.2 Test coverage for advanced use cases 63

6.2 User feedback 65

7 Conclusion 68

Bibl iography 70

A Contents of included storage media 71

2

Chapter 1

Introduction

In the life cycle of a software product, testing emerges as the bedrock of quali ty assurance. It
plays a crucial role not only in the pre-deployment phase but also throughout maintenance,
where it monitors behaviour, facilitates easy bug identification, and ensures the stabil i ty
and functionality of the product w i th each software update or upgrade iteration. Hence,
establishing and maintaining effective test management and automation through a stable
and comprehensive system is imperative, par t icular ly wi th in large corporations.

Red Hat , a wide-broad open source company, w i th its flagship R e d Hat Enterprise
L i n u x (R H E L) , is no exception to the challenge, testing across a mult i tude of software
components, each w i t h its unique testing requirements. In the field of security and quali ty
assurance of the operating system, software testing is supported by test result management
to report, store, and analyze historical development or the current state of the product to
detect bugs and develop the quali ty of the product. Alongside manual execution, this is
pr imar i ly achieved through test automation, conducted at different intervals, w i th diverse
environmental conditions, and on mult iple pr ior i ty levels, resulting in a variety of result
states to be considered.

Across mult iple teams and components, these varied needs often lead to inconsistent
usage of tools, ranging from outdated systems to adopting several simple tools or even
developing custom software solutions to cover specific needs. Th i s can be understood as
a widely demanding and inefficient approach.

In response, a cross-functional ini t iat ive further introduced as the Big Picture has been
launched, a iming to develop a large-scale infrastructure of cooperating testing tools w i th
a uniform approach. This ini t iat ive serves as the pr imary motivat ion for the thesis, as it
encompasses the approach to execute tests and report their results for them to be addi­
t ional ly analyzed, filtered, and evaluated. Cent ra l to this effort is the necessity for robust
and flexible tools to process, display, and store data, accommodating various use cases and
ensuring accessibility and active support, thus replacing current obsolete tools.

Al igned wi th this idea, the thesis targets the integration of the tmt tool and Report-
Por t a l and the reasoning behind it offered as a solution. It explores testing terminology
and provides an overview of current tools used wi th in the company and those that w i l l
replace them, elucidating test result management processes and a l l the needs or use cases
listed for the implementation. The main focus is however on a key test management tool
tmt, its structures, metadata notation, and the way it is integrated wi th Repor tPor t a l A P I
v i a the report plugin. Final ly , it discusses the possibilities, complications, and resolutions,
followed by testing the functionality and evaluation based on the user feedback.

3

Chapter 2

Software testing and testing tools

Testing is an extensive topic for the thesis, but what testing is and why it is done can
hardly be understood without any testing experience beforehand. A n understanding of
testing purposes is outl ined i n the standard I E E E 29119-1 [2] as follows:

Testing usually serves more than one purpose. T y p i c a l purposes include, but
are not restricted to:

(a) detecting defects - this allows for their subsequent removal thus increasing
software quality:

(b) gathering information on the test i tem - testing generates information; this
information can serve different purposes, such as:

- developers can use the information to remove defects, increase the code
quality, or learn to create better code in the future:

- testers can use the information to create better test cases:

- managers can use the information to decide when to stop testing:

— users eventually benefit from a higher product quality.

(c) creating confidence and taking decisions - by providing evidence that the test
i tem performs correctly under specific circumstances, the stakeholders' con­
fidence that the test i tem w i l l perform correctly operationally increases:
w i th sufficient confidence, stakeholders can decide to release the test i tem.
Testing may be performed for some or a l l of the above purposes, and ad­
di t ional purposes not listed may also exist; these purposes should be iden­
tified and agreed upon as a starting point for any testing activity.

W i t h a l l that being said, none of the testing purposes above could be done without
the test execution and test report. A s a l l , defect detection, information gathering, and evi­
dence providing refer to a need for a quali ty overview of test results and other test artifacts,
that can provide an easy approach for human reading, further analysis, and addi t ional ac­
cess. Thus test report and its integration into the testing infrastructure plays an essential
role in the idea of testing itself.

Furthermore, the rest of the chapter is dedicated to an understanding of software testing
and the practices behind i t , followed by a focus on the test report approach and priorities.

4

2.1 In t roduct ion to software test ing

Whi l s t the thesis w i l l follow the integration of two tools to support the needs for a test re­
port, the project is planted i n a real-life operation behind the development and maintenance
of a software product. O n a corporate scale, such terminology tends to be very specific and
testing processes comprehensive enough to keep the operation i n order on several levels.
Th is leads to a need to understand the common terms from the work environment, thus
define them and use them i n the context of test processes that are used.

In the section, a l l of the ma in terms and testing processes introduced for purposes of
the thesis, are inquired by a broad group of engineers working on a Qual i ty Assurance
of the operation system and part ic ipat ing i n the Userspace Subsystems for R e d Hat Enter­
prise L i n u x , which is commonly referred to as R H E L . These are not necessarily Qual i ty E n ­
gineers, but rather R H E L Security Engineering teams whose established testing strategies
are related therefore can share tools and methods wi th in a comprehensive infrastructure.

2.1.1 Test t e r m i n o l o g y

Terms used i n the thesis are adapted from the R H E L testing practice derived from estab­
lished standards and testing tools terminology. The terms are defined based on the R H E L
community terminology [9], and for better understanding merged w i t h general terms of
software testing, defined i n the standard I S O / I E C / I E E E 29119-1 [2] and supplemented by
the standard I S O / I E C / I E E E 24765 [1].

(a) Testing is a set of activities conducted to facilitate the discovery and evaluation of
properties of test items.
A n act of testing, i n the standard referred to as a test, is an act ivi ty i n which a sys­
tem or component is executed under specified conditions, the results are observed or
recorded, and an evaluation is made of some aspect of the system or component.

(aa) Testing activities include planning, preparation, execution, reporting, and
management activities, insofar as they are directed towards testing.

(ab) M a n u a l testing is performed by humans by entering information into a test
i tem and verifying the results.

(ac) Scripted testing is performed based on a documented test script.

(ad) Automated testing uses tools, robots, and other test execution engines to
perform tests.

(ae) Continuous testing refers to when a test execution is started v ia an automated
process that can occur on-demand, triggered by a specific event or routine. C o n ­
tinuous testing typical ly occurs i n the context of continuous integration (CI) and
continuous delivery (C D) .

(b) Test is a test unit , i n the standard referred to as a test procedure; detailed instructions
for the setup, execution, and evaluation of results for a given test case.

(ba) Test case can be an alternative term for a test unit specifically used i n terms of
test management tools as the lowest level i tem displayed i n the test structure.

(bb) Test script is a test procedure specification document specifying one or more
test procedures.

5

(be) Test command is understood as the smallest unit in the test defined by the test­
ing framework used. It drives the test execution through a command wi th pre­
conditions, input, and expected results set, and corresponds to one line in the test
results log.

TEST

r u n t e s t . s h main.f mf

SETUP
—* Test Preconditions

PHASE
> Test Commands

PHASE
> Test Commands

CLEANUP
—»Post Execution

summary
—»Test Objective

component
—»Test Item

r e q u i r e
—»Test Environment

Requirements

adj ust
—* Context Check

Figure 2 .1: Test terminology demonstrated on details of test script and test metadata per
test case

(c) Test item is a test object, alternatively test subject; a work product to be tested.
Example of test items includes software component, system, and user guide procedure.

(ca) Test objective is a reason for performing testing

(d) Test environment describes an environment containing facilities, hardware, soft­
ware, firmware, and procedures, needed to conduct a test.

(da) Test environment requirements describe prerequisites or necessary proper­
ties of the test environment.

(db) Test preconditions are conditions that are required to be true for test exe­
cution, they include the required state of the test environment, data used by
the test i tem, and the test i tem itself.

(dc) Test context represents an immediate environment in which a procedure or set
of procedures operates.

(e) Test execution is a process of running a test on the test i tem, producing actual
results

(f) Test result is an indicat ion of whether or not a specific test case or test suite has
passed or failed, i.e. i f the actual results correspond to the expected results or i f
deviations were observed.

(fa) Test status is an alternative term for test result per procedure or per group of
procedures, specifically used in the terms of report tools where it can be manually
switched.

(i

(fb) Test artifact is any addi t ional output of the test suite such as the stdout/stderr
output, log files, and screenshots. Test artifacts are for consumption by humans,
archival, or big data analysis.

(fc) Test log is a chronological record of relevant details about the execution of one
or more test procedures.

(fd) Test report is defined in the standard as a document that describes the conduct
and results of the testing carried out for a system or component. In the context of
automated testing and testing tools, it refers to an overview of test statuses and
other test artifacts that are easily readable and accessible for human analysis.

SUITE
—• Test Suite Result

TEST

[FAILED]
—> Test Case Result

o u t p u t . t x t

SETUP

PHASE

PHASE

CLEANUP

—* Test Log

[ERROR]

[PASSED]

[F A I L E D ;

[PASSED]

Figure 2.2: Test report terminology demonstrated on analogy of 2.1

(g) Test run refers to a single instance of performing a set of testing activities on one
or more test cases or plans. It typical ly identifies the group of tests for test execution,
after which it results i n the generation of a group of test results and other test artifacts.

(ga) Test plan is defined in the standard as a detailed description of test objectives
to be achieved, and the means and schedule for achieving them, organized to co­
ordinate testing activities for some test i tem or set of test items. In the context
of testing tools, it identifies a group of test cases and its resources for execution
wi th a part icular objective against one or more test items.

(gb) Test suite is set of test cases or test procedures.

7

(h) Test management generally involves planning, scheduling, estimating, monitoring,
reporting, control, and completion of test activities.

(ha) Testing tool is a specific or generic tool that is used for test execution and test
management such as test results recording, test results display and interpreta­
t ion, generation of test scripts, etc.

(hb) Testing framework is a l ibrary or component that the test suite and tests use
to accomplish their job.

(he) Testing system is a C I or other testing system that would like to discover,
stage, and invoke tests for a test subject.

(hd) Testing infrastructure refers to an ecosystem related to testing, a set of tools
and services providing stable and consistent support for testing the test i tem
or group of test items wi th in a product.

2.1.2 T e s t i n g tools

A s some of the terms above suggest, terminology can widely vary based on the tools used in
the work practice. For starters, there are a few essential software tools to obtain an overview
of R H E L Qual i ty Assurance and a l l the processes related, further elaborated i n the subsec­
t ion 2.1.3. Tools information listed w i th in bo th old and new test infrastructure is mostly
defined according to the internal R H E L documentation [9].

(a) git repositories
Repositories for source code of tests used to store source code of automated tests.
The most used repositories are github.com or gitlab.com for open-sourced tests to­
gether w i th internal gitlab or dist-git instances for private projects. B o t h G i t L a b and
G i t H u b support continuous integration and continuous delivery (C I / C D) that allows
to automate the bui ld , test, and deployment pipeline.

(b) BeakerLib
A shell-level integration testing l ibrary that serves as a main testing framework for
verification.

8

http://github.com
http://gitlab.com

Nitrate
Web-based Test Case Management System, also known as T C M S , is designed for
creating, organizing, and analyzing test plans, test cases, and test runs. Ni t ra te offers
a wide range of functionality including robust test life-cycle management, extensible
issue tracker, detailed analysis of test results, and fast search capabilities. It is an open
source project, wri t ten in P y t h o n and Django framework, that is currently obsoleted.
[5]

tint
The tmt tool , shortened for Test Management Tool , is an open source P y t h o n mod­
ule and command-line tool that provides a user-friendly way to identify tests, pre­
pare the testing environment, execute tests, and report their results. It implements
the Metada ta Specification which allows storing a l l needed test execution data directly
wi th in a git repository, which can be then remotely referenced. The specification
serves as a successor of the Ansible-based Standard Test Interface. [12]

Its test identification is based on the format of an open source P y t h o n module and
command line tool fmf, shortened for Flexible Metada ta Format , derived from declar­
ative Y A M L format. It is an efficient format used to store a l l test execution metadata
in bo th human and machine-readable ways in one place and offers an alternative to
test metadata stored in Makefile. [7, 11]

Beaker
A n open source software for managing and automating labs of test computers. It en­
ables users and administrators to oversee systems across mult iple labs, mainta in hard­
ware inventory, provision task environments, schedule tasks across systems, and view
stored task results.

Testing F a r m
A n open source Testing System is a Service designed to provide a reliable and scal­
able service for executing automated tests from various users, such as Fedora C I ,
R H E L C I , Packi t , and others. It serves as a test execution back-end across diverse
infrastructures, from private to public clouds. Us ing the tmt tool format, it abstracts
test infrastructure, enabling specific hardware requirements and transparent provi­
sioning. Testing F a r m aims to optimize test execution across different environments
and projects wi th in the R e d Hat ecosystem and open source community.

ReportPorta l
Service that provides increased capabilities to speed up results analysis and reporting
through the use of bui l t - in analyt ic features. There are mult iple instances of Report-
Por ta l running internally.

Polarion
A complete web-based App l i ca t i on Lifecycle Management Solut ion (A L M S) wi th in
L i n u x Q E is mostly used for storing test results and related testing-related documents
such as test plans, test specifications, or release readiness reports to allow traceabili ty
and audit ing.

Bugzi l la
The R e d Hat Bugz i l l a is a R e d Hat bug-tracking system for submit t ing and reviewing
defects found in R e d Hat distributions.

9

(j) J i r a
A n issue-tracking and project-management system wi th advanced visualizat ion capa­
bilities, intuit ive hierarchy management, and extensive R E S T A P I . It functions as
a central tracking, planning, and collaboration tool i n R e d Hat .

(k) E r r a t a
The E r r a t a Too l is a system for managing the R e d Hat E r r a t a process. E r ra t a , also
known as advisories, is the vehicle by which fixes and enhancements are released to
customers for R H E L and other R e d Hat products.

(1) Packit
A n open source project a iming to ease the integration of your project w i th Fedora
L inux , Cen tOS Stream, and other distributions.

(m) Brew
Red Hat ' s bu i ld system. It is designed to bu i ld packages from sources i n a reproducible
and auditable manner and to keep track of those packages for the lifetime of their
related products and longer.

(n) Jenkins
A n open source automation server that enables developers around the world to reli­
ably bui ld , test, and deploy their software. M u l t i p l e Jenkins instances are running
internally.

2.1.3 Test processes

W h e n software is developed and maintained, it is accompanied by testing activities de­
scribed by test processes that are generally defined at 3 levels, Organizat ional test processes,
Test management processes, and part icular ly Dynamic test processes [2]. W h i l e the first
two serve an important role as wrappers covering mostly organizational and strategic pur­
poses, there lie the Dynamic test processes as a core of the operation. The infrastructure
covering the dynamic processes consists of several parts, that dynamical ly cooperate either
fully or semi-automatized.

F i r s t ly there is a source of the test scripts. These depend on the testing framework, and
test environment requirements. A tested component or any test i tem of a requested version
must be buil t and provided either manual ly or passed into the infrastructure beforehand.
Secondly, the test scripts and requirements including the test i tem are identified and passed
to a preset testing environment. Afterward, test execution occurs for test results and
addi t ional information to be logged. Last ly, the outcome of the testing is reported into
the interface where the logs are stored and can be addi t ional ly analyzed and evaluated.

10

r a t e a t r e s u l t s

test procedures t e s t

s p e c i f i c a t i o n

test execution
t e s t r e s u l t s

test status report

t e s t e n v i r o n m e n t s

r e q u i r e m e n t s

test environment

Figure 2.4: Adapted diagram of dynamic test processes based on the standard
I S O / I E C / I E E E 29119-1 [2]

W i t h insight into tools listed i n 2.1.2, specific testing processes used i n the R H E L
subsystems can be introduced.

Figure 2.5: Extended diagram of dynamic test processes w i th tools specification 2.4

Natural ly, test suites must be stored i n a repository, for this purpose git repositories
are used. They are either internal instances (dist-git) or public code hosting platforms to
support an idea of open source (GitLab, GitHub). G i t repository serves as a main test code
storage that allows the maintenance of common test code i n one place, prevents test code
duplicat ion, and also enables integration testing.

Tests stored consist of raw source code and metadata, as shown before i n figure 2.1. Code
is buil t w i th shell-level testing framework BeakerLib, that provides simple commands to
generate test log on execution. It uses shell command to cover the objective, its description,
and the expected result to generate the description w i t h test results, each per line, allowing
the structure of phases.

11

2 r l J o u r n a l S t a r t
3 rlPhaseStartSetup
4 rlAssertRpm $PACKAGE
5 rlRun 'TmpDir=$(mktemp -d)' 0 'Setup d i r e c t o r y '
6 rlRun "pushd $TmpDir"
7 rlPhaseEnd
8

9 rlPhaseStartTest
10 rlRun "touch t e s t " 0 "Create t e s t f i l e "
n r l A s s e r t E x i s t s " t e s t "
12 rlPhaseEnd
13

14 rlPhaseStartCleanup
15 rlRun "popd"
16 rlRun "rm - r $TmpDir" 0 "Clean up d i r e c t o r y "
17 rlPhaseEnd
18 rlJournalEnd
19

Figure 2.6: Example of test wri t ten wi th BeakerLib framework

Metada ta per each test holds information such as test objective, contact name, environ­
ment requirements, and much more depending on the type of infrastructure used. Metada ta
typical ly uses an addi t ional file and is noted in a markup language, based on the test case
management tool used. It can be either passed v i a Makefile, together w i th an identifier to
l ink the test case in a web-based test management organization (Nitrate, Beaker), or it is a l l
stored i n the metadata file based on Y A M L format that is read when the run is performed
(tmt, fmf). This is further examined i n the section 3.1.

In order to execute tests, the test management tool is used to identify the group of tests.
This process is usually based on a test plan. Then it creates a test run passing the data to
the environment to perform the execution.

W h e n testing R H E L components, the test items are ready in the environment before­
hand as they are shipped wi th the release of the R H E L version. If testing a new package
before it is shipped i n the release, it must be buil t i n the Brew first and manually spec­
ified or v ia the E r r a t a tool by automated processes passed in the compose. The services
responsible for automation are Jenkins, Packi t , etc.

B y the t ime the test execution starts, the instal lat ion of environment requirements and
preconditions is triggered wi th in the test system providers Beaker or Testing Farm.
These prerequisites are installed for each test or plan, or wi th in the setup phase of the test
case. T h i s includes a l l tested components, addi t ional components, and libraries used in
the test required to be present, otherwise the test concludes wi th an error or warning.

On ly afterwards the test execution can take place, driven by the framework mentioned
above, generating well-structured test logs and test results. BeakerLib generates a log
wi th details of execution, a log wi th a summary of test results, includes protocol details
w i th information about the compose, and allows description used for definition of the test
purpose and test contact.

12

3 :

4 :: Setup
5 :

6 : : [12:00:03] :: [PASS] :: Setup d i r e c t o r y (Expected 0, got 0)
7 : : [12:00:03] :: [PASS] :: Command 'pushd /tmp/tmp.oUo' (Expected 0, got 0)
8 : : [12:00:03] :: [PASS] :: Command 'set -o p i p e f a i l ' (Expected 0, got 0)
9 :

10 : : Duration: 0s
n :: Assertions: 3 good, 0 bad
12 :: RESULT: PASS (Setup)
13

14 :

15 : : Test
16 :

17 : : [12:00:03] :: [PASS] :: Create t e s t f i l e (Expected 0, got 0)
18 : : [12:00:03] :: [PASS] :: F i l e t e s t should e x i s t
19 :

20 :: Duration: 0s
21 :: Assertions: 2 good, 0 bad
22 :: RESULT: PASS (Test)
23
24 :

25 :: Cleanup
26 :

27 : : [12:00:04] :: [PASS] :: Command 'popd' (Expected 0, got 0)
28 : : [12:00:04] :: [PASS] :: Clean up d i r e c t o r y (Expected 0, got 0)
29 :

30 : : Duration: 0s
31 :: Assertions: 2 good, 0 bad
32 :: RESULT: PASS (Cleanup)
33

34

35 :

36 : : Duration: Is
37 :: Phases: 3 good, 0 bad
38 :: OVERALL RESULT: PASS 0
39

Figure 2.7: Example of summarized test log generated by BeakerLib framework,
analogous to the source code i n the figure 2.6

These logs are in the execution tool (Beaker, Testing Farm, tmt) wrapped in another
journal supplemented wi th details of accompanying processes. W i t h i n the run reported
in the test management tool , they are displayed or passed to another interface for better
visual izat ion. Thus test results are reported i n test management tool like Nitrate or tmt,
or in a dedicated report service such as Repor tPor ta l . They can also pass artifacts l inked
to the logs (H T M L file, Beaker log, Testing F a r m log, etc.). Details of data management
based on management tools and report services are elaborated i n the section 2.2 below.

Generally, a report interface such ReportPortal or Nitrate (supplemented by Beaker
logs), allows an analysis of test results w i th comments, and switchable statuses and ensure
its preservation.

Based on the manual verification another decision can be made. Typ ica l ly it needs
a rerun in case the environment setup fails, otherwise it is identified as a bug that must be

13

filed to fix i t . Tracking tools used for the issue record are Bugz i l l a or J i ra , which manage
the planning behind another release and trigger the next cycle of testing. [9]

2.2 Test report solutions

A s one of the main principles, R e d Hat embraces open source, and most of the tools
developed and used adhere to this philosophy. W h i l e not a l l tools used are entirely Red
Hat-developed, most of them flourish i n the open source due to contributions from Red
Hatters, which help to keep the software tools under control and cover a l l the internal
needs.

W i t h this in mind , a new Testing Tools & Infrastructure community has emerged wi th
the goal of enhancing tools, infrastructure, and testing processes to improve efficiency,
compatibil i ty, and alignment w i th R e d Hat ' s strategies and open source beliefs. Members
of this community have contributed to existing tools, identified gaps, and embarked on
bui lding a complex infrastructure capable of meeting future testing needs and facili tating
potential improvements.

In line w i t h open source philosophy and the evolving needs of R H E L subsystems, there
is a perceived need for a more robust system aligned wi th current developments, driven by
the community 's ini t iat ive. Consequently, teams lean towards transi t ioning from the Nitra te
test case management tool to the tmt tool, a tool specifically made for the needs of testing
the operating system in both downstream and upstream conditions. W i t h i n its scope, it
is superior to alternative test management systems that engage i n other areas of R e d Hat
workflow such as Polarion, Xray for Jira, codeBearner or PractiTest.

However, unlike Nit ra te , tmt lacks a bui l t - in test report interface. To address this re­
quirement, an integration of tmt wi th Repor tPor ta l through its p lugin is taken into consid­
eration. Before d iv ing into the details of the integration wi th Repor tPor ta l , it is important
to conduct market research to evaluate alternative tools available for comparison.

2.2.1 R e p o r t tools

This section prompts us to investigate the reasoning behind the choice of Repor tPor ta l and
evaluates alternative options wi th in the spectrum of reporting tools. A l igned wi th R e d Hat ' s
values, the focus is directed towards open source tools that provide straightforward test
reporting and analysis capabilities, along wi th potential ly compell ing features. Here follows
a list of a few popular open source tools meeting these cri teria based on an independent
source [3] supported wi th personal research:

(a) Zebrunner

+ A I / M L used for auto-classification of failures.

+ Real- t ime progress reports.

+ Support of test artifacts including logs, screenshots, and video recordings.

+ Customizat ion options for test results.

+ Integration wi th popular frameworks and tools (Jenkins, J i ra , Slack), R E S T A P I

— M a y require expertise for setup and configuration.

— L i m i t e d community support compared to more widely adopted tools.

14

(b) A l lure Report

+ Generates attractive and interactive H T M L reports.

+ His tor ica l t rend analysis

+ Extensive customization options and visual izat ion of test results.

+ Support of mult iple frameworks, R E S T A P I .

— M a y require expertise for setup and configuration.

(c) ReportPorta l

+ M L algorithms used for failure predict ion and detection.

+ Real- t ime analytics and visual izat ion of auto-test results.

+ Excellent i n acquiring, aggregating, and analyzing test results.

+ Versatile customization of failure types.

+ Integration wi th major frameworks and tools (Jenkins, J i ra) , robust R E S T A P I .

+ H i g h scalabili ty and performance

+ Large open source community.

— M a y require expertise for setup and configuration.

In summary, each of the software solutions listed offers distinct advantages i n the realm
of test reporting, very similar to each other. However, when considering the specific needs
of R H E L Security teams, Repor tPor t a l emerges as the op t imal choice. Its adherence to
open source principles, extensive reporting and analytics functionalities, scalability, flexi­
bility, and robust community support renders it well-suited for the comprehensive analysis
of R H E L components. B y offering teams a reliable framework for data-driven decision­
making and efficient testing processes, Repor tPor t a l supports the efforts of teams already
using the tool and sets the stage for the potential expansion across addi t ional teams and
subsystems through the implementat ion of the report por ta l p lugin wi th in the tmt tool .

15

Chapter 3

Analysis or requirements
specification

Transi t ioning from general concepts, this chapter first delves into the R H E L security engi­
neering infrastructure, exploring its current state, identifying deficiencies, and the motiva­
t ion dr iv ing the need for improvements, as notable gaps in the transi t ion towards automated
testing and the integration of comprehensive test management tools exist. It also provides
insights into the details of the planned infrastructure which leads to the core of the problem
covered i n the subsequent implementat ion - the integration of tmt and Repor tPor ta l .

To gain a comprehensive understanding of the integration process and its requirements,
it is essential to first establish the context and the key factors in the sections 3.2 and 3.3,
as they may influence the implementat ion of requirements listed i n the section 3.4.

3.1 M o t i v a t i o n and p r o b l e m sett ing

This section aims to further elaborate on the current state of obsolete tools, vaguely intro­
duced i n the subsection 2.1.3. These include tools such as Ni t ra te , Beaker, and Bugz i l l a ,
which are currently used but do not fully cover the needs.

The subsystems that embrace the migrat ion have a variety of different objectives.
The components tested wi th in the R H E L operating system are far from t r iv ia l ; they may
require multi-host systems, rebooting, continuity of voluminous procedures, etc. Moreover,
R H E L components often al ign wi th those i n systems such as Fedora or Cen tOS Stream.
Thus, these and a few other supported projects require testing and maintenance as well,
ideally i n an upstream manner.

Despite the varied system objectives, it is essential for core test automation workflows
to be shared by definition and provide clear interfaces for teams to seamlessly connect to
these workflows. To address varied needs, a shared set of workflow bui ld ing blocks is offered
as a solution. This allows teams to choose the modules they need while s t i l l benefiting from
an improving and unifying test experience.

Thus there's the ini t iat ive to bu i ld a whole new infrastructure that is further elaborated
in this section, leading to the objective of the thesis.

3.1.1 Def ic iency of the current status

The current solution covers the test management i n the P la t fo rm Security Subsystem as
a representative of R H E L Userspace Subsystems i n the core, R H E L subsystems are web-

16

based test case management systems called T C M S or Nitrate. It is not only a test manage­
ment tool but also a report interface. Its report feature allows one to investigate test results,
determine the status type, add comments, and l ink wi th t racking systems (Bugzi l la , J i ra) .
Addi t ional ly , it allows efficient filtering, at tr ibute management, and metadata t racking for
al l its objects. [4]

HOME PLANNING TESTING ENVIRONMENT REPORTING ^ ^ ^ ^ ^ ^ ^ ^ Ffl Advanced Search

Home > > Search Runs > > [437165] sudo / Handover test ing on RHEL 9.3

Edit! [Clone] I Delete! [Export To CSV] [Export To XML

sudo / Handover testing on RHEL 9.3
Test Plan : [34666] sudo / General plan / Handover testing

Product Version : unspecified

Manager : nbubakov@redhat.com

Estimated Time : 5 d l l h l 9 m

Started a t : 2024-02-13 00 :03 :41

Tags : =5= Add Tag

Env i ronment : Variant: All
Add Property

Note :

Prodjc t : RHEL Tests

Build : unspecified

Errata :

Default Tester : nbubakov@redhat.ccm

S t a t u s : Running J" Set to Finished

Finished at :

CC : Q A d d CC

Set Status False

Automatical ly :

IDLE 30

FAILED

PAUSED 3

ERROR 2

TOTAL 173

g Report | | , Bugs [6]

PASSED 130

RUNNING

BLOCKED

WAIVED 8

Cases: 17 • , 1 1 _ , 1 I - . . , S B | Show f i l ter options 1 • A u t o m a t i c a l l y • H i g h l i g h t

T a g s : NoRHEL4 N&RHEL5 - RHEL6 - RHEL61 - RHEL7

Tier2security - Tier3 - Tier3security - TipWaived5

RHEL8_needs_improvement

TipWaivedS TipWaivedľ

TIPFaiLSecurity TIPpass TIPpass_FIPS

fedora-wanted fmf-expor t n e e d s j d a p

TIPpass_Security - Tier2 -

not ier - rhel-5.8

rhel-6.4 rhel-6.5 - rhel-6.6 - rhel-7.6 rhel-7.7 rhel-bui ldroot

• • Case Run ID Case ID Assignee Automated Priority Bugs Status Comments Sort

/CoreOS/sudo/Samty/Support- ror-

• • #29913800 76018 mult ip le-sudoers_base-and-ur i -entr ies- in-

Idap-conf

nbubakov nbubakov Auto Sanity P2 0 D 0

/CoreOS/sudo/Reg ression/bz697111-

• • #29913808 122817 sudo-l- inserts-new- l ines-based-on-

terminal -width

nbubakov nbubakov Auto Regression P2 0 © 0 0

/Core OS/sudo/ Secu rity/CV E-2012-2337-

• #29913823 175428 sudo-Mult iple-netmask-va lues-used-in­

Host

nbubakov nbubakov Auto Security P2 0 0 0

/CoreOS/sudo/Reg ression/bz876578-

• • #29913834 230074 ereal loc3-error-on-sssd-sudoHost-

netgroup-mismatch

nbubakov nbubakov Auto Regression P2 0

0
0 0

• • #29913837 236669
/CoreQS/sudo/Sani ty/upstream-testsui te-

execution-and-rebui ld-test
nbubakov nbubakov Auto Sanity P2 0 0 0 0

/CoreOS/sudo/Reg ression/bz855836-

• #29913840 244653 sudo-l-does-not-parse- informat ion-after-

the

None nbubakov Auto Regression P2 0 Q CD 1 0

Figure 3.1: Nitrate 's screen view of the test p lan report enabling further analysis of test
cases

It provides the following object hierarchy:

(a) test case
Representing a specific test w i th a unique identifier, attributes, and relevance for
distributions, it can also be reused across the other plans.

(b) test plan
Defining a group of tests, allows feature management and arrangement wi th in a tree
hierarchy of plans.

(c) test run
Execut ing a test p lan for a specific compose and assigning status per each test case.

Though Nitrate 's interface is quite comprehensive, access to the test management is
also required by test automation and terminal commands. This is possible v i a the Py thon-
Nit ra te library, a high-level P y t h o n A P I buil t on the X M L R P C A P I that Ni t ra te offers.

17

mailto:nbubakov@redhat.com
mailto:nbubakov@redhat.ccm

Addi t ional ly , the approach is also supplemented by internal scripts implementing the pr i ­
mary test case management functions and integration wi th Beaker, offering possibilities
such as adding new test cases, merging duplicates, populat ing it w i th Beaker job results,
etc. [6]

However such approach Ni t ra te and its additions offer ends up wi th test case metadata
part ia l ly uploaded i n the web interface and par t ia l ly stored in the Makefile for Beaker exe­
cution. Some data are passed w i t h automation triggers (Jenkins), some are done manually
from the terminal , and some actions are allowed only v i a the interface. This leads to a sys­
tem that is too bulky, has data fragmented into several places, and is difficult to bu i ld on
addi t ional improvements and automation, i n addit ion, the project stopped its development
and is considered obsolete.

Based on the internal documents and discussions [10], there are also other core in ­
frastructure parts shared among R H E L teams, including Bugz i l l a , Beaker, Resource H u b ,
R H E L compose gating, and others not relevant to the thesis's scope. Unfortunately,
the tools and services responsible for integrating these parts for team-specific use cases
are fragmented and typical ly developed and maintained by individuals as secondary re­
sponsibilities. This poses risks to pipeline security and contributes to instabi l i ty and lack
of resilience, resulting i n increased workload and stress. G i v e n the demands of continuous
integration, gating, and the expanding scope of test automation, any infrastructure outages
significantly impact team productivi ty. A shared infrastructure operated as a service by
a dedicated team of expert Site Rel iab i l i ty Engineers offers the potential to optimize team
capacity over the long term.

3.1.2 M o t i v a t i o n example

To unveil the improvement plan, the ini t iat ive outl ined by the Big Picture aims to address
long-term problems i n testing infrastructure by implementing the proposed architecture of
Shared O S Testing Infrastructure.

Based on internal documents and discussions [10], its pr imary goal is to establish a con­
sistent workflow, familiar to teams across R H E L C I , Fedora C I , Cen tOS Stream C I , and
upstream projects, centered around tests, plans, and runs. It also intends to establish
a metadata specification system that liberates metadata from the old test case management
system, el iminat ing inconsistency and data fragmentation. Final ly , the ini t iat ive seeks to
replace current fragmented approaches used wi th in RHEL Security Subsystems, enhance
and unify the test experience across a l l supported environments, and easily support any
future improvements.

The architecture is composed of bui ld ing blocks that support the entire testing life-
cycle. It begins wi th the in i t i a l pu l l request, continues through packaging and adding
essential context details, organizes tests into plans, and ul t imately facilitates their execu­
t ion. Whether the tests run automatical ly or manually, the process concludes by reporting
and storing the results along wi th a l l necessary test artifacts. Th is comprehensive approach
ensures a seamless and efficient testing workflow from start to finish, ideally wi th in a single
command or simple automated setup.

The diagram provided in the figure 3.2 interprets how these bui lding blocks integrate
to enable consistent workflows and comprehensive test management, al igning wi th the en­
visioned goals of the Big Picture init iat ive.

18

git

tmt

tr ie '"un d i scove r

Testing
Farm

commit

context

discover
tests

tests

execute
tests

tmt run

results -

package

build / errata
f compose

Building
Tools

planned
tests

finished
tests

tint run r e p o r t
>

Report
Portal

Issue
Tracking

Figure 3.2: A n adopted diagram of Shared O S Testing Infrastructure, emphasizing the role
of the integration tmt and Repor tPor ta l that is further examined

The first important bui ld ing block is represented by git. The git repository serves as
a consistent and stable storage place for the majori ty of the data, typical ly applicat ion
source code, tests, and test metadata. U t i l i z i n g the fmf metadata format ensures that a l l
relevant data for execution are kept wi th in the repository without any extra dependencies.
In case, the data are split into more repositories (e.g., upstream, downstream), git also
provides remote referencing. Consequently, this enables neat contr ibution, prevents code
duplicat ion, and provides an easy approach to enable integration testing.

Alongside git, another key piece is tmt, bui ld ing its functionality on the fmf format.
Th is comprehensive tool provides teams wi th consistent and concise configuration to execute
tests easily. Contents of this crucial bui ld ing block include the test metadata itself and
the plans, which group tests and enable testing. A l l configurations are stored as pla in
text versioned under git using a human-readable Y A M L - b a s e d format w i th inheritance and
hierarchy, the tmt specification also has an addi t ional feature of tracking requirements in
future stories, such as implementation, test, or documentation coverage, a l l w i th in the git
repository.

In addi t ion to its data specification capabilities, tmt can facilitate the entire testing
process through several operational steps, as elaborated i n the subsection 3.2.1. It supports
the execution based on selected plans, start ing from the identification of a l l test sources and
their requirements, through environment preparation and setup based on preferences and
requirements, up to the test execution itself. It then reports the test results and artifacts
and performs cleanup tasks afterwards.

For purposes such as C I , tmt 's function is closely related to the Testing Farm, a testing
system as a service that provides a variety of test environments support ing rich hardware re-

19

quirements. It serves as a unified test execution back-end wi th seamless access to machines,
boxes, and v i r tua l machines from systems such as A W S , Beaker, OpenStack, Resource H u b ,
and more under the Ar temis system, a l l obtained by a simple request, the transi t ion to
Testing F a r m w i l l enable teams to execute test jobs i n the cloud and easily expand testing
capabilities in R H E L , Fedora, and Cen tOS Stream.

Furthermore, the building tools such as Packit i n upstream picking up G i t H u b pu l l
requests, and other services like Koji, Brew and Module Build Service play a cr i t ica l role in
the automation process. Pipelines orchestrate tasks, l isten to events, and trigger activities
such as packaging or running tests.

Another essential component is ReportPorta l , which serves as a platform for display­
ing uploaded results, logs, and other test artifacts obtained after the execution from tmt
data wi th in the environment provided by Testing Fa rm. This platform not only addresses
functionalities ut i l ized by the old system Nitrate , such as deep search capabilities i n well-
structured test result history and persistent audit logs, but also offers addi t ional features
including dashboards, saved filters, custom issue types, and machine learning-based auto-
detection for advanced analysis of tests. Repor tPor t a l enhances these capabilities i n a more
visual ly appealing and comprehensive manner, providing a robust solution for managing
and analyzing test results effectively

Final ly , the processes are overseen by issue-tracking systems J i r a and Bugzil la. Wh i l e
both systems are not new in R H E L teams, there is a Bugz i l l a - J i r a transit ion, so J i r a
is no longer used only for tracking team activities but covers bug tracking and eventually
becomes a central tracking, planning, and collaboration tool . J i r a can handle larger product
requirements where Bugzi l la ' s feature set is insufficient to meaningfully capture the work
effectively. Despite the emphasis on J i ra , Bugz i l l a remains a bug-tracking system used to
collaborate w i th partners and for bugs that need public errata.

To sum up the workflow, it involves triggering tests based on events such as pu l l re­
quests or commits, in i t ia t ing builds, and gathering context from artifacts. Test discovery
is a cr i t ical step that identifies a l l required tests based on the context, including manual
tests. The discovered tests can be passed to a Repor tPor t a l and reported as a planned
test to show progress for comprehensive testing. F ina l ly , test execution is performed using
the testing farm A P I , w i th results and detailed logs updated and stored for audit purposes
and investigation. Th is comprehensive workflow streamlines the testing process and ensures
effective management and analysis of test results and artifacts.

3.1.3 A i m of the thesis

A s the tit le of this thesis reveals, the a i m is an integration of the tmt tool and Repor tPor ta l
tool . Ul t imately , the proposed architecture of Shared O S Testing Infrastructure strongly
affects the topic of this thesis and vice versa, the architecture also depends on the thesis's
implementation much as it creates an essential connection between the key bui ld ing blocks
in the infrastructure.

A s indicated i n the previous subsection and visualized i n figure 3.2, the emphasized flow
of data starts w i th data source i n a git repository, where the metadata provides an identifi­
cation of tests when tmt intends to discover them wi th in its run. Furthermore, tmt passes
provided data including the names of plans and tests to Repor tPor t a l i n order to create
the report structure wi th idle status prepared for addi t ional upload. Then when tests are
executed and results are generated they are passed to the Repor tPor t a l once again, and if

20

the Repor tPor t a l has prepared a report for them, it just updates it w i t h obtained data of
test results and artifacts.

To present the targeted connection, it is involved in the part of infrastructure where
the specified tests are identified and passed as idle reports to the Repor tPor ta l , further
where the results from the test execution are reported to the Repor tPor ta l .

A l though not immediately apparent, the tmt specification plays the main role behind
al l these processes, thus it is an essential factor for reports to be displayed i n the interface
or Repor tPor ta l .

For purposes of the infrastructure's development, there was a proof of concept conducted
independently and outside the scope of this thesis. It involved using a tmt plugin to upload
a simple X M L file to Repor tPor ta l , as explained i n the design chapter i n subsection 4.1.1.
The objective was to offer a temporary solution for infrastructure development purposes
and served as a foundational start ing point for the tasks undertaken in this thesis. B u t this
temporary solution does not cover the needs of the integration of tmt and Repor tPor t a l as
it omits the use of several features the Repor tPor t a l provides, and even completely skips
the step of an in i t i a l report and the progress update. Th is implementat ion helped wi th
assembling the idea of the plugin realization and supported the analysis for requirements
to be set and listed i n the section 3.4 and the design elaborated i n the section 4.3.

Also tmt is an comprehensive tool w i th far more use cases than visualized in the plan
for Shared Infrastructure, see subsection 3.4.1. A n d though the shared infrastructure is
the main motivat ion for the development of tmt specification and its integration to Report­
Por ta l , it is not aimed only for this purpose. It can be simulated v ia isolated functionality of
tmt, and afterwards to be adopted i n order to run v i a Testing F a r m request. A s the Testing
Fa rm is out of the scope of this thesis, the test coverage and evaluation of the implementa­
t ion targets isolated approach wi th in the functionality of tmt.

3.2 T o o l analysis

In the context of this thesis, which focuses on the integration of tmt and Repor tPor ta l ,
it is essential to conduct an in-depth introduct ion to these tools. Th is introduct ion lays
the groundwork for understanding the terminology, functionalities, and capabilities neces­
sary for their effective ut i l izat ion.

The analysis of tmt and Repor tPor t a l involves a detailed examinat ion of the use cases
they address, along wi th their respective features and l imitat ions. Th is understanding
is crucial for identifying the requirements and design considerations needed to seamlessly
integrate these tools wi th in the scope of the thesis project.

3.2.1 T o o l t m t

The tmt is a powerful tool that as well uses test case, test plan and test run as the pr i ­
mary objects the test management system is buil t on, w i th a few differences from the N i ­
trate. Above a l l , it implements metadata specification which allows storing a l l needed test
execution data i n one place, directly i n a git repository that can even be remotely referenced.
The specification of metadata units is covered on several levels:

(a) core | LO
Att r ibutes used across a l l other metadata levels such as summary, description, test
contact, id , tag, order, adjust, etc.

21

(b) tests | L I
At t r ibutes closely related to ind iv idua l test cases such as test script, framework,
directory path, m a x i m u m test durat ion or environment requirements, etc.

(c) plans | L 2
Att r ibutes related to plans, al lowing the definition of a l l details for each step of the test
run listed below 3.2.2, i n addit ion, there is context, environment variables, etc.

(d) stories | L 3
Att r ibutes related to stories in order to track expected or required features, these are
title, priority, story and example.

Such metadata is wr i t ten i n Y A M L based fmf format, bo th human and machine read­
able, and stored i n the repository w i t h source code. For a complex image, the configuration
data per p lan are composed of summary, description, details of the run steps including
a list of tests to be discovered and included i n the plan, context attributes and environment
variables. The data defined per tests are summary, description, contact, executable file,
environment requirements, environment variables, tags and any other additive test data
wri t ten i n the same format. See the example in the figure 3.3.

d i r e c t o r y tree _

plan
I— plan_01.fmf
I— plan_02.fmf
test_01 t main.fmf

tes t . s h
test_02 t main.fmf

tes t . s h

plan/plan_01.fmf
summary: Plan metadata
de s c r i p t i o n : Testing fmf

discover:
how: fmf
t e s t :
- /test_01
- /test_02

execute:
how: tmt

report:
how: r e p o r t p o r t a l
project: test_tmt

context:
component: tmt
d i s t r o : rhel-8
arch: x86_64
purpose: upgrade
milestone: r c

environment:
RELEASE: rhel8

test_01/main.fmf
summary: Test metadata
des c r i p t i o n : Testing fmf

contact: nbubakov@redhat.com

te s t : ./test.sh
framework: beakerlib

require:
- name: /smoke_library/basic

u r l : https://git.com/smoke/
r e f : master
type: l i b r a r y

- library(another/smoke_lib)

tag:
- f l a k y _ t e s t

t i e r : '1'

environment:
TEST_VAR: t e s t _ s t r i n g

duration: 5m

Figure 3.3: Example of fmf metadata for test plans and test cases

Moreover, tmt is also an extensive command line tool that allows to create new tests,
safely and easily run tests across different environments, review test results, debug test code
and enable tests i n the C I using a consistent and concise configuration.

22

mailto:nbubakov@redhat.com
https://git.com/smoke/

tests

tmt plans tmt plans

]

stories

run

discover)) provision)) prepare }} execute report finish

Figure 3.4: Structure of the tmt tool w i t h the focus on run functionality for the purpose of
the thesis

Its run feature involves 6 main steps, that are each chronologically performed per each
plan:

(a) discover
Identify test cases and gather information about them.

(b) provision
Provis ion an environment for testing or use localhost.

(c) prepare
Prepare the environment for testing.

(d) execute
R u n tests using the specified executor.

(e) report
Provide test results overview and send reports.

(f) finish
Perform the finishing tasks and clean up provisioned guests.

Steps drive the run of a plan or group of plans, can be either run a l l by default or specified
to omit others. E a c h of them includes several plugins to support addi t ional features that
are needed, that can be i n line easily specified.[12]

The discover plugins enable to specify the identification of tests included in the run.
The choice of the environment is done by provision plugins, which allow to run the tests
locally, i n container v i a podman or connect to any machine v i a ssh, it is also integrated wi th
systems such Beaker, Ar temis , lminu te t ip or Tes tCloud v i r tua l machines. The prepare
plugins define the way of environment setup, v i a shell script by default, but it can be
switched into other ways, for example wi th the packages defined in the errata.

There are several plugins for each step, and though a l l the steps are essential for the run,
it is the 'report ' step that is the most relevant for the purpose of the thesis. The 'report '
step offers three elementary report plugins such display for log output i n terminal , h tml in

23

order to get a better but simple overview in H T M L format, or junit for needs of an upload to
test report tools. Addi t ional ly , there is polarion plugin which covers a direct integration
wi th a Polar ion Software, and reportportal plugin w i th pr imit ive upload of data v ia
xuni t format. The reportportal p lugin is where the assingment of the thesis is targeted, so
it can be rewritten into a complex plugin v i a Repor tPor ta l ' s R E S T A P I to allow addi t ional
features Repor tPor t a l enables.

For an overview understanding of tmt for purposes of the thesis, the command structure
can be summarized wi th a diagram i n the figure 3.5.

Figure 3.5: Structure of the tmt command tool and its options for the purpose of the thesis

The run steps are performed per each plan chronologically and those to be performed
can be selected. To continue wi th the previous run it is done v i a — l a s t or — i d ID for
its i d specification. Each step is performed once per run unless it is specified by -force
(deleting the previous data) or -aga in (preserving the previous data) to repeat the step.
There is an universal option —help for l is t ing options and details related to any part of
the command that is listed before i t .

To name a few example commands:
$ tmt i n i t to create ini t ial ize tmt specification i n the repository:
$ tmt plans Is to list plans configured i n the repository:
$ tmt run discover tests —name . plans — d e f a u l t to perform a 'discover'

step on the run wi th a l l the tests under the current working directory, wi th in the plan that
was not pre-configured:

$ tmt run — u n t i l report to perform run except finishing the run;

24

$ tmt run — l a s t — a l l execute — f o r c e to perform the test execution by force
on the latest run w i t h deleting data of previous 'execute' step.

3.2.2 T o o l R e p o r t P o r t a l

ReportPorta l is a complex service wi th a clear and intuit ive interface. It can accommodate
numbers of different projects, which allows convenient and organized parallel work on several
projects, or offers a space for private purposes. Each project has a separate organization,
customization. W i t h i n a project, the access and permissions per user are given by the role
such Project Manager, Member , Operator and Customer.

The tab panel on the side offers quick access to dashboards, launches, filters and debugs.
The first space view lists a l l project dashboards, offering the visual izat ion of test

analytics wi th in several types of tables or graphs based on filters.
Then there is the ma in part, the list of launches. The launch term is derived from

the elements structure that Repor tPor t a l offers:

(a) launch
The main container that encapsulates the hierarchy of a l l the other elements, w i th
suites or tests accessed directly.

(b) suite
A n optional container that typical ly encapsulates other suites or tests.

(c) test
A n i tem per each test case, encapsulating information about the test case.

(d) step
A collapsible element wi th in the log area that wraps other steps or logs.

(e) log
A n output wri t ten i n the log area directly or wi th in the step.

Where the items such as launch, suite and test have name, description, attributes, log area
and unique identifier in the U R L .

To describe the main features i n the view of launches, there are filter options, buttons
for Import , Act ions an Refresh. Act ions allow to edit, merge, compare, move to debug, force
to finish or delete a l l selected launches, the launches i n the main view can be displayed
either by run or grouped by the launch name. In the overview, each of them displays its
start t ime and a number of tests in total , those P A S S E D , F A I L E D , S K I P P E D , W I T H P R O D U C T

B U G , A U T O M A T I O N B U G , S Y S T E M I S S U E or labelled as T O I N V E S T I G A T E . Furthermore,

there is a similar view on the list of suites after opening one of the launches, alternatively
one of the nested suites. O n l y the overview of test items offers a l is t ing of M E T H O D T Y P E ,
S T A T U S , S T A R T T I M E and specific D E F E C T T Y P E per each test case. Beside the list view,
an overview of suites and tests also offers to display unique errors, log view and history
table.

25

LATEST LAUNCHES T+ Add filter < t < Test

Retry jest #1 ffHffü

© 3rn 29s íTl i nbubakov

PASSED FAILED SKIPPED PRODUCT Bi

Import | = Actions v | Q Refresh |

TO n

INVESTIGATE '- ' AUTO BUG SYSTEM ISSUE

ú
•

RPtest (via xml) #13

0 1 s i nbubakov
Testing implementation \

REST API test #33

© Is X nbubakov 4* arch:x86_6d distrarhel-S
Testing implementation via REST API

RPtest (viaAPI) #65

© Is i nbubakov 4? archx86_64 punose:upgrade
compose:RHEL-S.9.0-20230323.20 trigger:code componenttmi
subsystem ::<!< fieri distro:rhEl-8 milestones
Testing implementation via -eportportal-client

6

Figure 3.6: Repor tPor ta l ' s screen view of launch list that demonstrates a simplist ic visual­
izat ion of test results per each launch

Final ly , opening the test item offers the most information including a l l the details per
test case, addi t ional ly history line and retry items, both explained later. There is a tab for
report analysis that can be expanded and used to comment on it , switch its status, mark
the issue or integrate w i t h the issue-tracker. O n the central tab there are listed S T A C K
T R A C E , A T T A C H M E N T S , I T E M D E T A I L S , H I S T O R Y O F A C T I O N S and the most important A L L

L O G S which stands for the log area. Log area contains logs or steps wi th logs, they a l l can
be collapsed for a better overview and can also be searched for the presence of a wanted
expression. The log area also offers several phases like Fatal, Error, Warn, Info, Debug and
Trace to reduce the log entries based on the verbosity, where the Fa ta l phase is the most
brief and the Trace phase shows the most. W i t h i n the log are also the attachments allowed.

Addi t ional ly , the information shown in the i tem details are test name, description, sta­
tus, attributes and length of the test run. There are also properties such as code reference,
test case ID and parameters intended for environment variables, that are important for his­
tory aggregation shown i n the history line or history table. His tory of test cases intends
to aggregate tests based on the real history of the test case, thus it is buil t on the uniqueness
of the test case identifier provided from the test management system. If the test case I D
is not provided, it is generated based upon the code reference and parameters, otherwise
based on its path names (test case name and a l l parents names, except the launch name)
and parameters.

The names are generally used as an important identifier i n Repor tPor ta l . They are also
used to identify launch and items wi th in for a feature generating an addi t ional element of
retry item w i th in the test i tem. This feature allows to rerun the tests and report its results
wi th in the latest launch wi th the same name by default, or wi th in the launch specified wi th
an U U I D . However, the mapping of items is based on ind iv idua l path names.

26

Q New_filteM > Demo Api Tests #5 > Suite with retries > Firsttestcase > first test • History Across All Launches < > O Refresh

S) Comment

1 2 3 4

g STACK TRACE L«?| ALL LOGS [Dj ATTACHMENTS (7) ITEM DETAILS

• FAILED . # System Issue Make decision

PASSED

• FAILED • FAILED

• SKIPPED

Fatal Error Warn Info Debug Trace L o E 5 w i t h A t t a c h m e n t < 1 of 1 >

LOG MESSAGE Q. TIME-

[main] com.epam.ta .ut i l s . logger .Logger - Attempt t o f i n d element by By.xpath: / / d i v [$ d a t a - i d = ' a

l lCases '] / span[@c la s s= - name- text m u l t i p l e - s p a c e s '] .

2023-04-11 1 4 : 1 0 : 5 7

11:29:92.237 [Tes tNG- te s t s - l] INFO c . e . t . r . q . w . c . F a i l u r e L o g g i n g L i s t e n e r - Cannot f i n i s h t e s t i

tem #590ae64c08813bB006bba653 on cur ren t s tep.

2023-04-11 1 4 : 1 0 : 5 7

10:21:29.314- [mail] INFO com.epam.ta .ut i l s . logger .Logger - [STEP] Open ' P r o j e c t 5e t t i n g s te s t_p

roject_wskwd6abrij ' page

2023-04-11 1 4 : 1 0 : 5 7

10:21:19.363 [mail] INFO co i r .epam.ta .u t i l s . l ogger .Logger - Switch to p r o j e c t : d e f a u l t _ p r o j e c t . 2023-04-11 1 4 : 1 0 : 5 7

11:59:04.568 [TestNG-tests -2] ERROR c . e . t . r . q . w . c . F a i l u r e L o g g i n g L i s t e n e r - Con f i gura t i on prepar

eEnv has been f a i l e d with except ion com.epam. ta . c l i en t . excep t i on .Repo r tPo r t a lC l i en tExcep t i on : R

eport P o r t a l returned e r r o r

Status code: 409

Status message:

E r ro r Message: Impossible i n t e r a c t with e x t e r n a l system. tes t_project_ghuhzkxcfy

E r ro r Type: UNABLE_INTERACT_WITH_EXTERNAI SVSTEH

Stack T race :

at c o m . e p a m . t a . c l i e n t . s e r v i c e . R e p o r t P o r t a l E r r o r H a n d l e r . h a n d l e C l i e n t E r r o r (R e p o r t P o r t a l E r

rorHandler .Java:47)

at com.epam. ta . re s t c l i en t .endpo in t .De fau l t E r ro rHand le r .hand le (De fau l t E r ro rHand le r . Java :

2823-64-11 1 4 : 1 8 : 5 7

Figure 3.7: Repor tPor ta l ' s screen view of the test case that demonstrates history aggrega­
t ion, retry items, analysis properties and a l l logs up to the Info phase, including an attach­
ment.

M o v i n g forward, the high level filters can be accessed from the filters tab as well as
from the view of launches, they offer a view of launches specified by a variety of condit ion
combinations and can be saved for addi t ional access. Th is filter can be conditioned by
the number of to ta l launches, to ta l tests and tests based on its status or issue type; by
the start t ime or by the presence of expression i n the launch name, description, owner or
attributes. Though similar but only transient filtering is allowed wi th in the launch or suite,
currently there is no filter access to test names, descriptions or attributes wi th in the high
level view.

Lastly, the „Debug" tab is intended for private debugging wi th no access to the role
Customer having almost the same features as „Launches" , only filters cannot be saved.

To conclude Repor tPor ta l , project setting allows a range of modifications such as re­
tention periods, integrations w i t h other systems (Jira, E m a i l Server, etc.), properties of

27

auto-analysis or pattern-analysis and creation of new Defect Types wi th in a l l issue groups
(P R O D U C T B U G S G R O U P , A U T O M A T I O N B U G S G R O U P , S Y S T E M I S S U E S G R O U P , N O D E F E C T

G R O U P , T O I N V E S T I G A T E G R O U P) . The interface also enables an access to the profile w i th
generated user's token and also provides well-structured A P I w i t h dynamical requests useful
for study purposes of the integration.

3.3 M a p p i n g the terminology

To report results of obtained by tmt tool and send them to Repor tPor ta l , there must be
str ict ly defined the way of mapping the terms used as they may widely differ throughout
both systems.

For tmt, there are three ma in elements i n terms of the run data, s imilar to what is
known from the Ni t ra te system:

• test
A specific test, identified by its name, corresponding to the tmt specification data L I
in 3.2.1.

• plan
A group of tests wi th in the hierarchy data unit above the tmt steps (see figure 4.5),
corresponding to the tmt specification data L 2 i n 3.2.1.

• run
Representing a single high-level data unit made by a new run of plans that is separately
identified and can be addi t ional ly reused.

R U N S

d i s c o v e r) .^provision) / prepa execute r e p o r t f i n i s h

Figure 3.8: Sequence of the process between the pr imary elements run, p lan and test:
displayed also wi th the run steps positioned wi th in the tmt data relation.

28

This hierarchy is important for understanding the execution data obtained in order to
report test results and logs, that is further examined i n the design subsection 4.2.1.

W h i l e the Repor tPor ta l hierarchy is mainly based on the following three elements:

• test
A n element for an ind iv idua l test case, wrapping a l l its data (name, description,
attributes, etc.), logs and analysis details.

• suite
A wrapper of elements involving other suites or test elements, w i th its own separate
data.

• launch,
A high-level wrapper of elements involving suites or test elements, w i th its own sep-
ciXctte dcttct.

Compared to the three-level elements of tmt, the Repor tPor ta l ' s three elements are not
l imi ted to three levels. Due to the optional suite elements w i th a nesting ability, Repor tPor­
ta l allows whatever level structure including two and more (launch > test, launch > suite >
tests, launch > suite > suite > test, etc.).

For pract ical purposes, there can be 2 different ways of mapping the tmt and Report-
Por t a l elements. B o t h have its positive and negative factors and can be priorit ised based
on the ind iv idua l use cases or preferences.

The first one impl ic i t ly clear is to map them analogously like showed in the figure 3.9
under the term S U I T E - P E R - P L A N mapping, which is wi th Repor tPor t a l element to the tmt
one mapped as launch - run, suite - plan, test - test. This way of mapping adheres to the fa­
mil iar well-structured display of reports, often preferred e.g. for purposes of errata testing.
However, it makes tmt plans i n Repor tPor t a l suites much less accessible, as the subsection
3.2.2 states, the filter from the high-level overview of launches cannot approach the data
per suite or test. Though plan data wi th in a suite can contain specific information essential
for the analysis or reports such reference to a tested component, compose or architecture,
etc. w i th in the field of suite name, description or attributes. These data currently cannot
be accessed unless they are pulled out for the launch data.

29

tmt

RUN
tmt run report

--how reportportal

0 .. N
include
1.. N

PLAN
<plan>.fnf

0 .. N
consists of
0 .. N

TEST

=test>.fnf

Report Portal

LAUNCH

SUITE

TEST

results log

Figure 3.9: Relations of the tmt and Repor tPor ta l elements w i th S U I T E - P E R - P L A N mapping

Alternatively, there can be a simple two-level structure established that would map tmt
plans to high-level launch elements i n the interface of Repor tPor ta l . This would create
a group of new launches per run, a new launch per each executed plan, as visualised in
the figure 3.10. This approach not only allows a direct search access to the data extracted
from the plan, but it is more natural and much easier to implement wi th in the tmt structure,
as each p lan is processed separately as referred to above (figure 3.8). Th is type of mapping
is further in the thesis referred to as L A U N C H - P E R - P L A N mapping.

tmt

RUN

tmt run report
—how reportportal

0 N
include
1 .. N

PLAN
<̂ plan>. fmf

0 .. N
consists of
0 .. N

TEST

<test>.fmf

Figure 3.10: Relations of the tmt and Repor tPor t a l elements w i t h L A U N C H - P E R - P L A N map­
ping

30

3.4 Requirements

The integration of tmt and Repor tPor t a l wi th in the scope of this thesis is driven by a neces­
sity to address the essential needs inherited from the outdated Ni t ra te system and align wi th
the evolving demands of advanced R H E L testing process, par t icular ly wi th in the domain
of Testing Tools community and the Shared O S Testing Infrastructure ini t iat ive.

A s the mission of this thesis is buil t on real team needs and real-life scenarios, there
were many factors to consider i n order to assemble the list of use cases and consequential
requirements. Th is process involved collective input from representatives of the Testing
Tools community. Though real requirements can be volatile in the course of t ime based on
continuous tool evaluation, for purposes of the thesis, these are summarized i n universal
manner to cover a l l the needs that were communicated at first.

This section examines the use-case demands and the reasoning behind them as a base
for setting detailed functional and non-functional requirements. Afterwards, these can be
used for the purpose of project design and implementation, providing clar i ty and guidance
for the integration of tmt and Repor tPor t a l into the testing infrastructure.

3.4.1 H i g h - l e v e l use cases a n d analysis

The pr imary motivat ion behind plugin implementat ion v ia the Repor tPor t a l A P I is to
leverage the full potential of Repor tPor ta l ' s capabilities. G iven that the rapidly growing
tool tmt is ut i l ized across many subsystems and extends even beyond the R H E L , Fedora
or Cen tOS Stream reaches, it is important that tmt plugin covers not only essential use
cases for neighboring teams but also to offer a variety of options that can be potential ly
demanded.

A collaborative effort involving key representatives responsible for Testing Tools im­
provement identified several key use cases that serve as examples for distinct groups of fea­
tures the plugin can offer. Each of these use cases must be grounded i n real-world jus­
tifications wi th in testing processes, ranging from basic to advanced demands in terms of
implementation or usage practices. They ensure the plugin meets diverse and evolving
testing requirements across various contexts and scenarios.

Before naming the use cases, they cover scenarios such as fundamental data upload to
Repor tPor ta l on a run, addi t ional upload on rerun of the tmt run or addi t ional upload
from different tmt run. Though data that are uploaded can differ between use cases, a data
upload generally refers to creating a Repor tPor t a l i tem and providing it w i th data such as
name, description, attributes, logs, status, etc.

(a) User can upload test results per each plan.
This is a simple use case that covers an essential scenario where the user desires to
display test results and logs in the Repor tPor t a l after a common test run. The data
upload utilizes the straightforward and pract ical approach of L A U N C H - P E R - P L A N map­
ping, demonstrated i n figure 3.10. W i t h this mapping, a new Repor tPor t a l launch
is generated after each tmt plan is executed, containing the respective tests wi th in .
Each launch possesses a name, description, and attributes corresponding to each plan's
data, ak in to Repor tPor t a l and tmt tests. T h i s mapping allows an easy approach to
al l plans data from the high-level list of launches, where their name, description and
attributes can be directly searched, especially when plans differ i n the component
or dis t r ibut ion tested. This use case serves as a foundation for the pr imary inte-

31

gration of tmt and Repor tPor t a l before advanced features can be applied, for more
implementation details see the section 5.1.

(b) User can upload test results grouped per run.
Another use case for the same scenario as above, but wi th a structured launch wi th
suites and tests wi th in , mirror ing the tmt run, plan, and tests w i t h S U I T E - P E R - P L A N
mapping, i l lustrated i n the figure 3.9. This approach addresses purposeful testing like
errata testing. Though it utilizes the hierarchy supported by Repor tPor ta l , it requires
a more comprehensive design enabling the suite upload to the same launch after
execution of each tmt plan. It involves an extra data layer, recommending the user
to define the launch name and launch description, and the launch attributes display
the intersection of a l l plans data. This is implemented i n the section 5.2.

(c) User can rerun the tests and update it within the same launch
Another scenario arises when the tests are already reported to Repor tPor ta l , but a mi ­
nor change was made i n the environment setup, source code of the test, or the test
item, making it unnecessary to duplicate the run i n another launch. Us ing the fea­
ture that Repor tPor ta l offers, the plugin can enable the retry items wi th in the old
test items in the same launch whenever demanded by the user. Repor tPor t a l maps
the elements based on their name wi th in the last launch of the same launch name.
See section 5.3 for more information.

(d) Automated process can upload I D L E tests and update them after execution
This use case addresses the needs of testing automation processes indicated in the OS

Shared Infrastructure introduced i n the section 3.1. It aims to display act iv i ty in
the Repor tPor ta l interface, even though the tests processed take a long time to finish
execution. The run begins by discovering tests, which are then displayed i n the Re­
por tPor ta l w i th no logs and I D L E state, prepared for an addi t ional update after
the run is executed. To achieve precise mapping, the identifiers of Repor tPor t a l items
are stored wi th in tmt, offering addi t ional rerun possibilities such repeated aggregating
of logs.Implementation is covered in the section 5.4.

(e) User can additionally upload new tests to already existing launch
The final scenario occurs when there is already a reported launch but it is incomplete
because some tests were forgotten, or the tests cannot be executed i n one run, e.g.,
multihost testing. In such cases, there should be an option to manual ly upload addi­
t ional tests or suites into the launch identified by the launch I D displayed i n the U R L
of the Repor tPor t a l launch. Analogical ly, i n the structure of S U I T E - P E R - P L A N map­
ping, there is an option to update one or more tests to a specific suite.
See 5.5.

3.4.2 F u n c t i o n a l R e q u i r e m e n t s

In this subsection, the list of functional requirements assembled based on the use cases
named above is presented, the requirements are related to the tmt tool and its integration
wi th Repor tPor t a l wi th in the tmt plugin, support ing both the use of tmt as both command-
line tool and metadata specification. They are also further examined and explained in
the design section 4.3, most of them part icular ly i n its subsection 4.3.1 defining the options
that derived from them.

32

I D Requ i r emen t D e s c r i p t i o n

FR1 Reporting to
ReportPortal on request

The tmt tool must support integration with ReportPortal,
defined either by using '—how r e p o r t p o r t a l ' option in
the tmt command within the 'report' step, or equivalently
through metadata specification.

FR2 Connection to
ReportPortal instance

The plugin must be able to access the ReportPortal using
the mandatory data obtained from user such as authorization
token, U R L to the ReportPortal instance and name of
the targeted project.

FR3
Reporting with
L A U N C H - P E R - P L A N

mapping

New request to upload report should create a new launch item
per each plan of tmt run, when prompted by option for
L A U N C H - P E R - P L A N mapping. The data are uploaded to
ReportPortal in the structure of ' launches > tests ' .

FR4
Reporting with
S U I T E - P E R - P L A N

mapping

New request to upload report should create a new launch item
per tmt run with suites within per each plan, when prompted
by option for S U I T E - P E R - P L A N mapping. The data are
uploaded to ReportPortal in the structure of
' launch > su i t e s > tests ' .

FR5
Printing out a link to
the reported
ReportPortal launch

The plugin must display a link in the terminal in order to
redirect the user to the ReportPortal launch the report is
uploaded to.

FR6
Uploading detailed
report data

The plugin must upload all test results and logs per each test
case obtained from the test execution step to ReportPortal.

F R 7
Definition of relevant
name and description for
the ReportPortal launch

The plugin should support the capability of user to define
the launch name or launch description in ReportPortal
otherwise use default alternatives based on metadata.

FR8
Definition of relevant
attributes per elements in
ReportPortal

The plugin should upload relevant context and contact
information recognized from the metadata and display them as
attributes per each launch, suite and test in ReportPortal

FR9
Definition of test
parameters in
ReportPortal

The plugin should upload all relevant environment variables
recognized from the metadata and display them as parameters
per test in ReportPortal

FRIO Definition of test case id
in ReportPortal

The plugin should upload the tmt id recognized from
the metadata and display it as test case id per test in
ReportPortal

FR11
Consistency in
ReportPortal's test
history aggregation

The plugin must not disturb the consistency of history
aggregation that ReportPortal enables.

FR12
Launch rerun via build-in
option for ReportPortal
retry items

The plugin should support an additional data uploads to
a previous ReportPortal launch via name-based mapping,
wrapping it in separated retry item within each test item.

. . . continued on next page

33

FR13
Launch preparation with
I D L E test items for tests
only discovered

The plugin should prepare a launch and display tests with
I D L E status if tests were discovered but yet not executed.

FR14
Launch rerun via tmt run
with stored identifiers

The tmt should support an additional data uploads to
an existing ReportPortal launch when rerunning the 'report'
step within the same tmt run. This update must use stored
ReportPortal item identifiers in tmt for precise mapping.

FR15
Data upload to
the launch based on its
U R L identifier

The plugin should allow additional uploads of new tests or
suites to an existing launch based on the U R L identifier
obtained from the user.

FR16
Data upload to the suite
based on its U R L
identifier

The plugin should allow additional uploads of new tests to
an existing suite based on the U R L identifier obtained from
the user.

FR17
Test coverage of
the plugin

The tmt must have the test coverage for all newly implemented
features in the report plugin for integration with ReportPortal.

FR18
Usage documentation
within the tmt tool

The tmt must provide specification of all added features in its
manual requested on —help.

Table 3.1: Funct ional Requirements

3.4.3 N o n - f u n c t i n a l R e q u i r e m e n t s

A s it was already impl ied, the integration of tmt and Repor tPor t a l should be implemented
wi th in the tmt tool as a report plugin using Repor tPor ta l ' s A P I . Here it is summarized in
the table, so it can be further s imply referenced.

ID Requirement

NR1 The solution must be implemented within the tmt tool

NR2 The integration of tmt and ReportPortal should use ReportPortal A P I

NR3 The plugin implementation must be written in Python 3

NR4 The test coverage should be written with BeakerLib framework in bash

NR5
A l l user data passed to the plugin must be obtained from the command arguments or
through fmf metadata

NR6 Language of all operative and descriptive elements should be English

Table 3.2: Non-Funct iona l Requirements

34

Chapter 4

Design

This chapter examines the possible approaches to achieve the objective of the thesis leading
to the integration of tmt and Repor tPor t a l as tmt plugin using the Repor tPor t a l A P I as
the best solution. Th is decision is thoroughly justified and demonstrated on alternative
attempts. Before the design details of the objective, there is elaborated structure of tmt
and capabilities of Repor tPor t a l A P I bui ld ing up their fundamental functionality. Lead­
ing to the design essentials that describe the theory and a l l steps it takes to fully cover
the requirements i n the implementation.

4.1 Ways to integrate t m t and R e p o r t P o r t a l

There are two points of view that the integration of the tool can be done either from the side
of Repor tPor t a l or from the side of tmt.

There was an attempt to implement a direct access to the Repor tPor t a l v i a extension
of Repor tPor t a l wi th in a d ip loma thesis Test Results Management System Complementing
the tmt Too l [4]. B u t this solution was later considered non-effective as the extension
intervenes to the external tool , requiring an extra responsibility for its maintenance.

That ' s why it makes sense to examine the ways to implement the objective from the side
of tmt, internally developed tool , which is the a im of this thesis. Beside direct code inter­
vention, the Repor tPor t a l offers several approaches for external tools to communicate w i th
its interface. There is a l ibrary for P y t h o n clients and R E S T A P I offered as the only com­
patible mediators w i th tmt. Further in the section, there are described three approaches for
integration tmt wi th Repor tPor ta l , simple import of x m l file, elaborated communicat ion
v i a the A P I l ibrary for P y t h o n client and finally the elaborate solution v i a R E S T A P I .
Prov id ing the specification of the attempts that were demonstrated as no sufficient solution
for the requirements, and suggestions sufficient for this thesis assignment.

4.1.1 A t m t p l u g i n - V i a J U n i t X M L i m p o r t

Firs t approach a simple R E S T A P I command to import J U n i t X M L report into Report­
Por ta l . Th is is done v i a report plugin establishing the contact w i th Repor tPor ta l after
obtaining a l l required data as user token, target project, instance U R L , launch name and
execution data. The data such as test results and logs are then transformed into J U n i t X M L
format v i a P y t h o n module to create structured data that Repor tPor t a l can work wi th and
inserted into A P I command, as further demonstrated, the results can remain i n an X M L

35

file or be compressed into Z I P file for more effective upload. There is also the possibil i ty
of setting launch description and launch attributes. [13]

1

2 import requests
3

4 u r l = "https://demo.reportportal.io/api/vl/<PROJECT>/launch/import" \
5 "?description=<LAUNCH_DESCRIPTION>&launchName=<LAUNCH_NAME>"
(i

7 headers = {'Content-Type': 'multipart/form-data',
s 'Accept': '*/*',
9 'Authorization': 'Bearer <USER_TOKEN>'}

10

n # CREATE LAUNCH AND IMPORT XML/ZIP FILE
12 response = requests.request("POST", u r l , headers=headers,
13 f i l e s = { ' f i l e ' : (<FILE_NAME>, <BYTESTREAM>, " a p p l i c a t i o n / z i p ") })
14

Figure 4.1: Demonstrat ion of P y t h o n request for impor t ing J U n i t X M L report
v i a Repor tPor ta l A P I

Though this approach was implemented i n order to provide the proof of concept,
out of the scope of the thesis. Its capabilities were too l imi ted i n the sake of Report-
Por t a l features, uploading hierarchy of launch > suites > test w i th test names and logs only.
The functionality such as test attributes, parameters, i d , code reference or any addi t ional
information per i tem was not supported, failing the requirements F R 8 - F R 1 0 . Results
could be uploaded only after the run finished when a l l data were available not showing
the progress and also reruns or any addi t ional uploads to existing launch, were not sup­
ported as the requirements F R 1 2 - F R 1 6 suggest. It was only suitable as a temporary
solution and foundation for the task of this thesis.

4.1.2 A t m t p l u g i n - V i a A P I l i b r a r y

Another option is using a common client l ibrary for Python-based agents that provides
commands to upload the data to Repor tPor ta l , w i th more detailed approach. The com­
mands provided by the l ibrary can create a launch loading it w i th name, description and
attributes, as well as can create other items wi th in i t . The items can be defined wi th a type
of the i tem which is suite, test or step. In case of a test i tem, its data can be enriched also
by parameters, test case I D and code reference (F R 7 - F R 1 0) . W h a t is more, detailed logs
are supported, defining the log level or uploading attachments (F R 6) . F ina l ly , the items
can be closed w i t h result status and issue type, and afterwards launch can be finished con­
nection is terminated. It allows uploading data in real-time and also supports the rerun
tag for launch i n order to update existing launch v i a retry i tem (FR12) .

36

https://demo.reportportal.io/api/vl/%3cPROJECT%3e/launch/import

2 from r e p o r t p o r t a l _ c l i e n t import ReportPortalService
3

4 c l i e n t = RPClient(endpoint, project=project, api_key)
5 c l i e n t . s t a r t ()
(i

t launch = c l i e n t . s t a r t _ l a u n c h (name, timestampO, de s c r i p t i o n)
8
9 item_id = client.start_test_item(name="Test Case",

10 start_time=timestamp(),
n item_type="STEP",
12 d e s c r i p t i o n = " F i r s t Test Case",
13 a t t r i b u t e s = { " k e y l " : " v a i l " ,
14 "key2": "val2"},
15 parameters={"varl": " v a i l " ,
16 "var2": "val2"})
17

is client.log(time=timestamp(), message="Hello World!", level="INF0")
19 client.log(timestamp(), "Screenshot of iss u e . " , "WARN", attachment)
20

21 c l i e n t . f i n i s h _ t e s t _ i t e m (i t e m _ i d , timestampO, status, issue)
22 client.finish_launch(end_time=timestamp())
23 c l i e n t . t e r m i n a t e ()
24

Figure 4.2: Demonstrat ion of P y t h o n A P I request for impor t ing J U n i t X M L report
to Report Po r t a l

The l ibrary reportportal_client mostly showed a potential to cover a l l the require­
ments as it was implemented wi th in the scope of this thesis and attached wi th in appendix
(A.2.2). However, it showed weaknesses that were discovered only during the implementa­
t ion as it was actively in development and s t i l l not documented properly.

After a l l it was refused as insufficient solution for the integration of tmt and Report
Po r t a l w i th following reasoning:

(a) L i m i t e d i n functionality and currently unstable behaviour.

(aa) It does not allow the update of an existing launch w i t h addi t ional results F 1 3 -
F R 1 6 .

(ab) It does not show any progress update before the launch is finished and connection
terminated.

(ac) It fails to differentiate the i tem types such suite, test, step.

(ad) Rerun feature has unstable behaviour, different i n outcome for launch > suite > test
structure (new logs wi th in retry items, appending attributes) and for launch > test
structure (appending logs, rewrit ing attributes).

(b) Us ing l ibrary is less stable, efficient and managable than R E S T A P I .

(ba) It is not packaged as R P M , thus it would not work unless installed from pyp i or
there was invested t ime to get it packaged in Fedora.

(bb) It is in an active development w i th updates that are not backward compatible
and break the plugin.

37

(be) W h e n new features are added to the R E S T A P I it takes t ime to update the python
client, which could slow down the development in the future.

4.1.3 A t m t p l u g i n - V i a R E S T A P I

After a l l as the most reliable solution available for the communicat ion between tmt and
Report Po r t a l is chosen the Report Po r t a l R E S T A P I . Th i s is fully developed, documented
and offers the most functionality, the structure of data upload is similar to the one wi th A P I
library. There is only no need to establish connection wi th Report Por ta l , but afterwards
the requests are used to create launch and items wi th in it , upload logs and finally close
the items wi th corresponding test results, as further demonstrated in 4.2.2. the R E S T
A P I allows to define a l l properties displayed in Repor tPor t a l which covers requirements
F R 6 - F R 1 0 . It provides requests for managing issue types, obtaining any item-related data
and also offers the access to the previous launches based U R L I D or U U I D of created
elements. Hence it as wel l covers the requirements F R 1 3 - F R 1 6 leaving the rest up to
the implementat ion purely wi th in tmt plugin that is fully capable of i t .

4.2 P r o g r a m structures

Following the introduct ion of tools tmt and Repor tPor t a l i n the section 3.2, this section
aims to delve into tmt functionality and its code structure i n order to understand its bui ld­
ing blocks before detailed design of a l l required features is demonstrated. Furthermore,
the R E S T A P I of Repor tPor t a l is presented to learn a l l the possibilities of this mediator
between the command-line tool tmt and the interface of Repor tPor ta l .

4.2.1 C lass s t ruc ture of t m t

The program structure of tmt tool source code is very complicated as it integrates many
features and plugins. A s presented i n tmt documentation [12], it is based mainly on two
groups of classes: functional classes and data containers.

A s figure 1.3 below wi th an overview of the first group present, the 'Common' class is
the parent of most of the available classes, providing common methods for logging, running
commands and handling of working directory. To name a few, it implements read(),
write () for comfortable file access and run() method for an easy command execution.

The 'Core' class together w i th its chi ld classes 'Test', 'Plan' and 'Story' cover the Meta ­
data Specification. The other chi ld classes are managed i n order to keep structure of tmt
steps, par t icular ly 'Steps' and those under 'BasePlugin' covering each ind iv idua l step
of tmt run. Therefore, the class for a functionality of test report to a Repor tPor t a l in ­
stance must be 'ReportReportPortal' derived from the common parent of report plugins
'ReportPlugin'. Th is class inherits an essential function go() from the GuestlessPlugin
class so the functionality can be performed and logged i n 'report ' step wi th in the step
sequence.

The tmt structure offers in addi t ion to standard python modules its own modules
which have many predefined functions and methods that are either inherited or imported
throughout the tmt and used for various purposes. To name a few, there is a logging mod­
ule, module wi th result definitions and especially the module wi th util i t ies. The logging
module tmt. log provides important functions for communicat ion wi th user i n terminal
such info(), verbose() and debug(), w i th logging prior i ty i n this order. It logs in at-

38

tributes (key: value) and allows specifying the text color and shift integer for indentation.
In tmt .ut i l s , there is a function f ield() important for defining the option data and other
aspects related to option. It is declared wi th ©overload which provide a range of data types
and numerous parameters offered to define the option. The most relevant are for naming
the option, setting the holder for value, setting the default value, providing the description
for '—help', setting it as flag and even allowing mult iple uses for lists or dictionaries.

Common

Core
.Plan
.Story
Test

Clean
Guest

DataContainer

Phase

SpecBasedContainer,
S e r i a l i z a b l e C o n t a i n e r
.Fmfld

RequireFmfId
Link
.Links

Action
Login
Reboot

BasePlugin

GuestlessPlugin
DiscoverPlugin
.ProvisionPlugin

ReportPlugin
ReportDisplay
ReportHtml
.ReportJUnit
ReportPolarion
ReportReportPortal

, P l u g i n
ExecutePlugin
F i n i s h P l u g i n
PreparePlugin

. Run

.Status

.Step
Discover
P r o v i s i o n
Prepare
Execute
Report
F i n i s h

. Tree

StepData
DiscoverStepData

DiscoverFmfStepData
DiscoverShellData

ExecuteStepData
ExecutelnternalData
ExecuteUpgradeData

FinishStepData
1 FinishShellData
PrepareStepData

PrepareAnsibleData
.PreparelnstallData
.PrepareMultihostData
.PrepareShellData

ProvisionStepData
, ProvisionArtemisData

ProvisionConnectData
ProvisionLocalData
ProvisionPodmanData
ProvisionTestcloudData

ReportStepData
ReportHtmlData
.ReportJUnitData
ReportPolarionData
ReportReportPortalData

Figure 4.3: Inheritance of tmt method classes Figure 4.4: Inheritance of tmt data classes

39

In order to obtain test results and logs from the execution data and report them, it is
important to understand the hierarchy of data stored. A s the figure 4.5 suggests, the class
containers manage the file system created for each tmt run. This file system is labeled by run
identifier storing run data and data per each plan. R u n data compose of run log and Y A M L
file l is t ing a l l plans, steps and central data for the run. Each plan is composed of data per
step, which reflects that v i a requested plugins the steps are performed chronologically and
separately per each plan. L i s t of tests included i n the p lan and a l l configuration data are
stored under 'discover' step i n Y A M L file. The i r results are under 'execute' step, where
Y A M L file points to the source per each test, storing files such output .txt, journal.txt,
and other related to test metadata and execution results. A t last, there is a directory for
'report ' step wi th Y A M L file prepared for data definition from the report class.

/var/tmp/tmt/run-032

'— plan
— plan_01

— data
— discover
— p r o v i s i o n
— prepare
— execute

— data
I t e s t _ 0 1 - l
— test_01-2
I test_02-3

— report
I — f i n i s h

— plan_02
|— data

Figure 4.5: Overview of directories wi th in the data structure stored per run

To elaborate the data accessible from the plugin v i a ReportReportPortal class for pur­
pose of the thesis, there are essential p lan data providing name (self .step.plan.name),
brief description (self . step .plan, summary), list of context attributes (self . step.plan.
_fmf _context. items()) and other data obtained from fmf plan configuration. T h e n there
are data wi th in the step related to its processing, especially list of tests wi th in the 'dis­
cover' step (self . step .plan, discover .tests ()) and tests results wi th in the 'execute'
step (self . step .plan.execute .results ()) . These methods allow a direct access to a l l
the test's attributes and execution data needed for uploading a l l required data about test
cases.

4.2.2 R e p o r t P o r t a l R E S T A P I

The Repor tPor t a l R E S T A P I provides a comprehensive and well documented set of op­
erations that enable users to interact w i th the Repor tPor t a l server v i a H T T P requests.
The requests are targeted for integration of Repor tPor t a l functionality into custom work­
flows, bui ld ing automation scripts, or developing custom tools.

To introduce the capabil i ty and composi t ion of the R E S T A P I requests, there are
mandatory data elements that are required i n each request to be successfully sent to the tar-

40

geted Report Po r t a l instance. It is a user token used for authorizat ion wi th in a request
header. The token serves for an identification of Report Po r t a l user, it is displayed in
the user profile of the Report Po r t a l instance. Besides, there are an instance U R L and
a project name needed to determine the target of request.

1

2 u r l = "<REPORTPORTAL_URL>/api/vl/<PROJECT_NAME>/"
3

4 headers = {'Content-Type': ' a p p l i c a t i o n / j s o n ' ,
5 'Accept': '*/*',
6 'Authorization': 'Bearer <USER_TOKEN>'}

Figure 4.6: Demonstrat ion of mandatory data for P y t h o n requests of Report Po r t a l
R E S T A P I , related to the requirement F R 2 .

Here are groups of API-suppor ted operations and demonstrations that are most relevant
for the purpose of this thesis:

(a) Launch Control ler

e a new empty launch wi th properties.

(ab) Create a launch wi th J U n i t X M L import .

(ac) Merge set of specified launches i n a common one.

(ad) Update launch properties.

(ae) Stop or finish launch wi th status.

(af) Get launch properties, identifiers, result status, etc.

(ag) Search launches based on launch properties.

(ah) Delete launch.

There are up to 30 requests related to launch w i t h many addi t ional functionalities,
but mostly varying the options and approach choice, which is mostly v i a project name,
launch I D or launch U U I D , i n some cases also launch name or other launch properties.

1

2 # CREATE LAUNCH
3 response = requests.request("POST",
4 u r l + "launch", headers=headers,
5 data=json.dumps({
6 "name": <LAUNCH_NAME>,
7 "description":<LAUNCH_DESCRIPTION>,
s " a t t r i b u t e s " : <LAUNCH_ATTRIBUTES>,
9 "startTime": timestampO}))

10

n # CLOSE LAUNCH
12 response = requests.request("PUT",
13 u r l + "launch/<LAUNCH_UUID>/finish",
14 headers=headers,
15 data={"endTime" : timestampO})
16

Figure 4.7: Demonstrat ion of P y t h o n A P I requests related to launch wi th in
report upload to Report Por ta l

41

For creating a new report upload, there must be created a launch and at last finished.
W i t h launch creation, the launch parameters are defined. The mandatory launch
parameters are launch name and start time, then there are launch description, launch
attributes, launch mode and pair of fields for activation of rerun w i t h an optional
specification of launch U U I D . The request response returns U U I D and number of
created launch.

(b) Item Controller

(ba) Start a root or chi ld i tem wi th i tem parameters.

(bb) Update an i tem parameters,

(be) F i n i s h an i tem.

(bd) A t t ach external issue for items.

(be) Get i tem parameters, statistics, history, etc.

(bf) Search items based on i tem parameters or its contents.

(bg) Delete an i tem.

There are also up to 30 requests related to items (suites, tests, steps, etc.) w i th
functionalities varying only i n its requested scope of details and approaches either v i a
launch ID or launch ID or searches based on part icular i tem parameters.

1

2 # CREATE TEST ITEM
3 response = requests.request("POST",
4 u r l + "item", headers=headers,
5 data=json.dumps({
6 "name": "SUITE_NAME",
7 "description":<TEST_DESCRIPTION>,
s " a t t r i b u t e s " : <TEST_ATTRIBUTES>,
9 "parameters": <TEST_PARAMETERS>,

10 "testCaseld": "TEST_ID",
n "startTime": timestampO,
12 "type": "TEST",
13 "launchUuid": <LAUNCH_UUID>»)
14

is # CLOSE TEST ITEM
16 response = requests.request("PUT",
17 u r l + "item", headers=headers,
is data=json.dumps({
19 "launchUuid": <LAUNCH_UUID>,
20 "endTime": timestampO,
21 "status": <TEST_RESULT>,
22 "issue": { "issueType": <DEFECT_TYPE>»))
23

Figure 4.8: Demonstrat ion of P y t h o n A P I requests processing test root i tem
wi th in the report upload to Report Por ta l , which is related to the require­
ments F R 3 and F R 7 - F R 1 0

W i t h i n launch there is a suite or test w i th its parameters, it must be started and closed
afterwards. There are root items and chi ld items based on the parent of the i tem

42

(launch or suite i tem). The parameters of i tem include name, description, attributes,
parameters (environment variables), test case ID (test management system), code
reference, unique ID and type of the i tem, the Report Po r t a l allows diverse types of
i tem, beside S U I T E , T E S T , S T E P , there is S C E N A R I O , B E F O R E C L A S S , A F T E R _ C L A S S ,

B E F O R E G R O U P S , A F T E R G R O U P S , B E F O R E M E T H O D , A F T E R M E T H O D , S T O R Y ,

B E F O R E T E S T , A F T E R T E S T the response returns the U U I D of the i tem, which is

used as identifier of i tem passed to chi ld i tem or any other internal data.

(c) Log Control ler

(ca) Create log

(cb) Get or search log

(cc) Delete log

There are 13 log-related requests i n order to manage logs and its parameters. L o g
request allows uploading file as attachment, and it sorts logs based on the log level,
which is F A T A L , E R R O R , W A R N I N G , I N F O , D E B U G . There are also identified
either by ID or U U I D .

2 # UPLOAD LOG
3 response = requests.request("POST",
4 u r l + "log/entry", headers=headers,
5 data=json.dumps({
6 "message": <TEST LOO,
7 "itemUuid": <TEST_UUID>,
s "launchUuid": <LAUNCH_UUID>,
9 " l e v e l " : l e v e l ,

10 "time": result.end_time}))
11

Figure 4.9: Demonstrat ion of P y t h o n A P I requests for logging wi th report
upload to Report Por ta l , related to F R 6

Beside the operations for standard report upload named above, Report Po r t a l A P I
allows management of projects, users, dashboards, integration wi th other systems, etc.

In the figure 1.10 is an example of G E T request for a defect type defined in the project
for a check related to F R 1 3 .

1

2 \item Project s e t t i n g
3 \begin{enumerate}[label = (\alph{enumi}\alph{enumii})]
4 \item Create, get or delete project issue sub-types
5 \end{enumerate}

Figure 4.10: Demonstrat ion of P y t h o n A P I requests for logging wi th report upload
to Report Po r t a l

43

file:///item
file:///item

4.3 Detai ls of t m t p l u g i n design

Based on the pr imary use-cases that inspired the requirements, the requirement coverage
can be divided into several parts by design, there is a core functionality - report upload
either w i th t r iv i a l L A U N C H - P E R - P L A N mapping or w i th more complex S U I T E - P E R - P L A N
mapping, covering the requirements F R 1 - F R 1 1 . A n d then there are ind iv idua l extensions
of core report for each of the requirements F R 1 2 - F R 1 6 .

This section w i l l elaborate the essential factors based either on user choice or tools
possibilities and l imitat ions. To cover the user choice, there are options which are neces­
sary for most of the requirements to specify the intended action, which must be further
examined for a l l supported combinations. A n d then, there can be designed the principles
of targeted use-cases, that rely on the tools. Especial ly understanding of tmt functionality
explained i n sections 3.2.1 and 4.2.1 is essential to bu i ld on. It is especially the sequence of
the steps 'discover', 'provision' , 'prepare', 'execute', 'report ' and 'finish'. F r o m those, only
steps'discover', 'execute' and 'report' are relevant to the plugin design. Together w i th
the fact that the order of steps cannot be changed, the run goes through them per each
plan and the run can be reused. This influences the progress report, need to store data so
'report ' step can communicate w i t h previous or following 'report ' steps wi th in a run and
the approach each use case can be achieved.

4.3.1 D e f i n i t i o n of p l u g i n opt ions

A s F R 1 requires, the tmt plugin class enables the selection of options for reporting to Re-
por tPor ta l by specifying parameters immediately after —how reportportal' in the com­
mand section of the 'report ' step (tmt run report'). These options can also be speci­
fied wi th in the fmf plan metadata or as environment variables using the template format
TMT_PLUGIN_REPORT_REPORTPORTAL_<option>. The prior i ty of relevance for these defini­
tions follows this order, w i th environment variables read only as default values.

—token USER_TOKEN
The token from the user profile used to authenticate the user for upload to the Re-
por tPor ta l instance.

— u r l RP_URL

The U R L of the Repor tPor t a l instance where the data should be sent to.

— p r o j e c t PROJECT_NAME

Name of the project into which the results should be uploaded.

—launch-per-plan
L A U N C H - P E R - P L A N mapping, creating one or more launches w i t h no suite structure
(launch - test).
—suite-per-plan
S U I T E - P E R - P L A N mapping, creating one launch and continuously uploading suites into
it (launch-sute- tes t) .
—launch LAUNCH_NAME
Set the launch name, otherwise the tmt plan name is used by default.

44

—launch-description DESCRIPTION
Pass the description for Repor tPor ta l launch (with 'suite-per-plan') or append
the description from the plan summary wi th addi t ional info (with 'launch-per-plan').

—defect-type STATUS_NAME
Pass the defect type to be used for failed tests. It is defined in the project (e.g. 'Idle'),
w i th 'To Investigate' used by default.

—exclude-variables PATTERN
A regular expression for excluding environment variables from reporting to Report-
Por ta l , using the pattern '~TMT_.*' by default. Parameters i n Repor tPor ta l can dis­
play a l l environment variables, but w i t h 'exclude-variables' they get filtered out
by the pattern to prevent overloading and to preserve the history aggregation for
Repor tPor ta l i tem.

—launch-rerun
Rerun the last launch based on its name and unique test paths to create a retry i tem
wi th a new version per each test. Supported in 'suite-per-plan' structure only.

--upload-to-launch LAUNCH_ID
Pass the launch ID for an addi t ional test/suite upload to an existing launch. ID can
be found in the launch U R L . To upload specific info into the description see also
launch-description.

—upload-to-suite SUITE_ID
Pass the suite I D for an addi t ional test upload to a suite wi th in an existing launch.
ID can be found i n the suite U R L .

Where a l l 'token', 'url' and 'project' are mandatory options in order to establish
connection to the instance of Repor tPor t a l and enable reporting there, see F R 2 . Especial ly
for the needs of these options, the alternative definition v i a environment variable is very
essential.

Then there are flag options 'launch-per-plan' and 'suite-per-plan' that define the launch
structure and the mapping (F R 3 , F R 4) . They are mutual ly exclusive, and 'launch-
per-plan' is active by default i f none is specified.

the 'suite-per-plan' option is recommended to use w i t h voluntary options 'launch'
and 'launch-description' to cover the F R 7 , as there is no relevant data level above plan
in tmt structure. Otherwise, by default, the launch is named after the first plan of the run
and the description remains empty.

More about the values including the default ones that are to be visualised i n the Report­
Por t a l interface, read in the section 4.3.4. A n d l imi ta t ion or potential of possible option
combinations are elaborated i n the next section 4.3.2.

4.3.2 S u p p o r t e d use cases a n d l i m i t a t i o n of o p t i o n combinat ions

W i t h the amount of offered option there is a need to l imi t forbidden combinations and
ensure the full potential of supported ones for variety of use cases.

The table 4.1 demonstrates a l l supported use cases formed by combinations of the plugin
options. Mos t of them are open to options that would affect launch name, launch descrip­
t ion, defect type and exclude-variables, which may be either recommended, si tuational or
redundant per given use case.

45

A The use case 3.4.1(a) representing a simple upload wi th L A U N C H - P E R - P L A N mapping
(F R 3) , open to other options, where the 'launch' is mostly redundant.

B The use case 3.4.1(b) representing a composite upload wi th S U I T E - P E R - P L A N mapping
(FR4) , open to other options, where the 'launch' and 'launch-description' are
recommended.

C , D The use case 3.4.1(e) applying the requirement F R 1 5 , uploading a l l tests either d i ­
rectly (C) or i n suites per plan (D) to given launch. N o new launch is created in
the use case thus the launch parameters are not affected by the options.

E The use case 3.4.1(e) applying the requirement F R 1 6 , uploading a l l tests directly to
given suite.

F The use case 3.4.1(c) creating a new retry i tem wi th in existing test items wi th name-
based mapping in the last launch w i t h given name. Supported only wi th S U I T E - P E R -
P L A N mapping.

G , H The first part of the use case 3.4.1(d), i f no 'execute' step is performed before-hand. It
applies the requirement F R 1 3 and can be complemented wi th T below. See the tem­
plate example i n 4.3.3 (a).

I The second part of the use case 3.4.1(d), if the 'discover', 'report ' and 'execute' steps
were completed beforehand. It covers the requirement F R 1 4 and complements ' G ' or
'H' above. It ignores a l l options and reuses the mapping and the Repor tPor t a l ele­
ments based on the U U I D identifiers stored by the 'report ' step before. It only uploads
new logs to given items if the i tem identifiers are already known. See the template
example in 4.3.3 (b).

0

V tr V tr 4-

A X X ? ? ? ?

B X X ? ? ? ?

C X X - - ? ? X -
D X X - - ? ? X -
E X - - - - ? ? - X -
F X X ? ? ? ? X
G X X ? ? X ?

H X X ? ? X ?

I X - - - - - - - - -

Table 4.1: the table demonstrates combinations of plugin options per row, where the ' x '
means the option is applied, the '? ' means the option may be applied, and the '- ' means
that the option is ignored (even when applied) i n given use case

46

Here follows the list of derived l imitat ions.

(a) W h e n one of the options 'URL', 'token' and 'project' is not defined, the report is
unsuccessful, therefore error should be raised.

(b) W h e n there are both 'launch-per-plan' and 'suite-per-plan' defined, an unex­
pected behaviour may appear, therefore the default value is used and warning should
be logged.

(c) W h e n 'upload-to-launch' and 'upload-to-suite' are defined, an unexpected be­
haviour may appear, therefore 'upload-to-suite' is priorit ised and warning should
be logged.

(d) W h e n 'launch-rerun' together w i th 'upload-to-launch' or 'upload-to-suite' is
defined, an unexpected behaviour may appear, therefore 'launch-rerun' is ignored
and warning should be logged.

(e) W h e n 'launch-rerun' and 'launch-per-plan' is defined, an unexpected behaviour
may appear as current version of Repor tPor ta l does not support this functionality,
therefore warning should be logged.

4.3.3 D e s i g n decisions in t m t p l u g i n

To dig into details of the core report upload, as the report plugin is wi th in the run performed
once per each plan it makes the mapping L A U N C H - P E R - P L A N t r iv ia l , creating a new launch
wi th launch-tes t hierarchy per plan.

O n the other side, the L A U N C H - P E R - P L A N mapping intends to add several plans from
several 'report ' steps to one launch. That ' s why this requires to create a new launch once
for the first plan and pass the launch U U I D to the following plans so they can be added
and the last plan can close the launch. The report upload i n this case is structured wi th
launch - suite - test hierarchy

In both cases the launches and items wi th in are created, then filled w i th corresponding
logs and they are closed afterwards to show real t ime progress grouped by tmt plans.
The current implementat ion of tmt does not allow a mutual concurrence of ind iv idua l
steps for progress update more frequent than per each plan, as the 'report ' step is always
performed after completed 'execute' step per plan.

The problem of step succession must be considered also for the scenario of uploading
an empty report w i th I D L E state (FR13) and then updat ing it after execution (FR14) .

47

/h ome/uar/teata

Report Portal

h t t p s : //xeportp-ortal, * L fui./
^ ^ r " t e a t _ p r a j ect/launc : h e 3/all/1232^

Figure 4.11: A n act ivi ty diagram that demonstrates an intended communicat ion between
tmt steps 'discover', 'execute' and 'report' to cover use case 3.4.1(d) and the require­
ments F R 1 3 and F R 1 4

The figure 4.11 drafts the idea of data flow for the use case 3.4.1(d), hence as the plugin
is called from the 'report ' step, this cannot be done i n one run unless the tmt step succession
is modified. O n the other hand, tmt does allow storing data into file structure per run that
can be addi t ional ly reused. So the ma in idea of the use case for the purposes of transparent
automated testing is to perform it i n two commands.

(a) Prepare the report w i th I D L E state (FR13)
Template example:

$ tmt run discover report —how r e p o r t p o r t a l — d e f e c t - t y p e IDLE

Here the 'discover' step discovers and stores a l l the test data wi th in the run. Skipping
the 'execute' step, the 'report ' step obtains only descriptive data per each test w i th no
results. These data are used to create a launch and prepare the test items (or suites
and test items within) w i t h name, attributes and other parameters. The items are
labeled as I D L E i f opted as a defect type. To allow updat ing w i t h precise mapping,
al l i tem U U I D s must be stored in tmt structure.

(b) Update the report w i th results (FR14)
Template example:

$ tmt run — l a s t — a l l report —how r e p o r t p o r t a l — a g a i n

The other step requires to enable repeating the 'report ' step wi th abi l i ty to reuse data
achieved wi th the option —again. This t ime the 'report ' step follows the 'execute'
step, thus it obtains test results that can upload to Repor tPor ta l . In case, it has
the identifiers to Repor tPor t a l items stored, it does not create new but reuse the pre­
pared ones, where it updates the data parameters including test results and appends
the logs.

18

M a p p i n g of addi t ional data to already created items is much more precise w i t h stored
identifiers than wi th default mapping the Report Po r t a l offers for reruns (FR12) . Though
the implementat ion is bui l t - in i n the A P I command, it has its l imitat ions and can be used
on plans w i th unique test names only.

Addi t ional ly , to upload addi t ional data i n new items wi th in an existing launch (FR15 ,
F R 1 6) , there is needed the U U I D of the target. Though the user knows only the I D found
in the U R L of launch or suite, this is passed by option and can be used to obtain its U U I D
v ia A P I command.

To sum up the design decisions, there must be check for known identifiers or Report-
Por t a l launch or items that can be reused, either U U I D s stored i n the previous 'report '
step or IDs passed by user. If there is no existing launch available, new one is created and
the U U I D is stored, as well for the rest of the items based on the hierarchy opted. A l l
provided data are loaded i n the data parameters either from the fmf metadata or directly
from the user v ia plugin options. After logs are uploaded, independent items are closed.
On ly after a l l data are uploaded the launch is closed, so the visualisation of launch loading
in Repor tPor t a l represents an actual progress in Report Por ta l .

Add i t iona l tmt design decision is to print p lugin update i n output, on verbose i n ter­
minal . This involves pr int ing names of launches, suites or tests to display the progress of
report to Repor tPor ta l . A n d finally the U R L is printed per each launch at the end (FR5) .

4.3.4 D e s i g n decisions in R e p o r t P o r t a l interface

The goal view i n Repor tPor t a l is specified by the design decisions that involve mapping
data to the parameters of Repor tPor t a l elements that are visualised i n the interface.

For names, there are used tmt names derived from the paths of plans and tests. For
launch, there is priori t ized name specified by the user i n the option, otherwise plan name is
used by default. If the launch name is not defined i n combinat ion wi th —suite-per-plan
option, there is a first plan name used.

Description of elements is filled w i th a summary obtained from fmf metadata per plan
and per test. O n l y the description of launch created for —suite-per-plan opt ion would
remain empty i f it is not specified by the option.

For F R 8 , the attributes on the plan level (launch or suite items), are obtained from
the plan context, where tmt allows to define the architecture, compose, and many others,
including non-defined personalised attributes. The attributes of test items contain a l l in ­
herited context attributes that tmt holds per each test, addi t ional ly w i th contact per test.
The launch attributes when —suite-per-plan is opted, are collected by the intersection
of a l l plans that the launch contains.

The test parameters are filled w i t h environment variables as F R 9 states. However,
tmt and other tools involved (Testing F a r m etc.) may generate the environment variables
that are unique by their character (TMT_TREE=/var/tmp/tmt/run-012, etc.) and therefore
break the history aggregation (FR11) if use case ID is not provided. In case, there is
an use case for displaying these variables, they cannot be fully omitted, see the option
—exclude-variables.

Final ly , the use case ID serves for purposes of test identification which corresponds wi th
the tmt I D generated wi th in fmf metadata (FRIO) .

49

Chapter 5

Implementation details

The implementat ion strategy can be divided into two parts, core base and extension features
buil t on i t . Simple upload of test results to Repor tPor t a l serve as a proof of concept. Before
addi t ional requirements can be delivered, the core base must be verified and then used as
a bui ld ing block for the extension.

This chapter elaborates major details of final implementat ion of tmt plugin integrating
wi th Repor tPor ta l v i a its R E S T A P I .

Using a l l the potential of report plugin wi th in tmt and requests of Repor tPor t a l A P I , it
aims to address a l l the functions that are either required by named use cases and require­
ments in the section 3.4 or beneficial i n testing processes that tmt is or may be used for.

Throughout the process of implementat ion the plugin, a l l new features are also manually
tested so any par t ia l issues can be addressed immediately and name the resolution.

Final ly , the overall implementat ion is polished wi th a l l the functionalities together re­
sulting i n the final code implementat ion attached i n the appendix (A . l) . Beside the core
plugin code, the tmt tool integrates the plugin throughout its implementat ion i n addi t ional
files including definition of report schema and documentation specifications. The tmt d i ­
rectly involves also test coverage but it w i l l be examined in the next chapter 6.

5.1 U p l o a d p l a n to R e p o r t P o r t a l

This core part of the implementat ion serves for purposes of applying t r iv ia l functionality
on plugin structure and laying foundation for addi t ional features. Us ing the classes and
functions i n the tmt structure along wi th requests to the Repor tPor t a l R E S T A P I , bu i ld
upon the knowledge from the section provided i n appendix (A.2.3).

A s elaborated i n the section 4.2.1, the report plugin stands on two essential classes, data
class and common class. Where the data class defines a l l supported options and the common
class ReportReportPortal derived from the class tmt. steps .report.ReportPlugin en­
velopes the main functonality w i th go () function inherited from the class GuestlessPlugin.

The core upload of test results to the interface of Repor tPor t a l tool covers the in i t i a l
connection establishment, and upload of logs in the bare structure of launch-test items, par­
t icular ly based on direct L A U N C H - P E R - P L A N mapping and addi t ional processes and features
indicated by the use case 3.4.1 (a), covering the requirements F R 1 - F R 3 and F R 5 - F R 1 1 .

The implementat ion i n this section targets to cover the following command:

50

$ tmt run — a l l report —how r e p o r t p o r t a l — u r l <REPORTPORTAL_URL>
— t o k e n <USER_TOKEN> — p r o j e c t <PROJECT_NAME> [— l a u n c h <LAUNCH_NAME>]
[— l a u n c h - d e s c r i p t i o n <DESCRIPTION>] [— e x c l u d e - v a r i a b l e s <PATTERN>]

Where at least the U R L and token must be supported to pass v i a the environment variable,
al l options can be passed v i a fmf metadata instead and there is no mapping option needed
as a L A U N C H - P E R - P L A N mapping only is used in a core implementation.

5.1.1 E s t a b l i s h the connec t ion to R e p o r t P o r t a l instance

Unlike the reportportal l ibrary for python plugin, the R E S T A P I does not need an in i t i a l
connection establishments, but it s t i l l needs the mandatory data as U R L of Repor tPor ta l
instance, user token and name of the targeted project that are used for each R E S T A P I
request. These a l l are obtained from user v ia option, which need to be defined in dedicated
data class ReportReportPortalData.

The option is defined v ia the function field(option, metavar, default, help), set­
t ing the option name, metavar to represent the value, the default value, and help description.
The default value is either the environment variable „TMT_PLUGIN_REPORT_REPORTPORTAL_"
+ opt ion. upper () or None i f the variable is not defined. The 'None ' value influences
the data typ and therefore requires using a predefined type Optional [str].

The functional part of the plugin is encapsulated wi th in the class ReportReportPortal
which must be labeled wi th decorator Stmt. steps .provides_method(„reportportal")
to be identified as ' reportportal ' method. This w i l l guarantee a proper integration w i t h tmt
report step so the plugin can be called on 'report —how reportportal' and cover F R 1 .
This class must involve the definition for class ReportReportPortalData and function go ()
which calls an equally named superfunction and includes entire report functionality.

The plugin body starts w i th option handling. Even i f the options server_url, token,
and project are allowed to be None, they are mandatory, therefore each of them must
be handled by raising an error i f not provided. For this is purpose, tmt utili t ies provide
tmt . u t i l s .ReportError (message) to raise an exception wi th error message.

Afterwards, token is used to prepare headers and the server u r l w i th project name
are used to form a l ink that is throughout the plugin used to establish connection wi th
Repor tPor ta l wi th in every A P I request and successfully cover F R 2 .

1

2 u r l = f " { s e r v e r _ u r l } / a p i / v l / { p r o j e c t } "
3 headers = {"Content-Type": " a p p l i c a t i o n / j s o n " ,
4 "Accept": "*/*",
5 "Authorization": "Bearer " + token}
6

Figure 5.1: Variables for U R L and headers are defined to be further used for A P I requests
to establish connection w i t h Repor tPor ta l , based on the template 4.6 i n design chapter.

Final ly , a function from tmt util i t ies is used to start communicat ion wi th Repor tPor ta l
v ia A P I requests. Defined variable session then provides requests such as G E T or P O S T .

51

2 with t m t . u t i l s . r e t r y _ s e s s i o n () as session:

Figure 5.2: Define a session to commence the communicat ion wi th Report Por ta l .

5.1.2 C r e a t e l a u n c h a n d test i tems

Before sending the first A P I request, the necessary data must be collected to fill a l l launch or
i tem parameters, the options that affect these parameters are launch, launch-description
and exclude-variables. They are defined the same way as previous options introduced
above. Beyond these, data are obtained from tmt structure based on fmf plan and test
metadata.

On ly an option exclude-variables has a pattern of a regular expression '~TMT_.*' as
a default value to avoid reporting tmt variables that may break the history aggregation
which F R 1 1 requests. In case, an user uses the option but sets it w i th an empty string
instead of pattern, it is assumed that they do not want to use any filter thus a pattern ' $ " '
is applied. A n d it is further used to filter a l l environment variables by external function.
The environments variables are obtained from plan metadata labelled by 'environment'.
These must be prepared as a list of dictionaries w i th key and value of each environment
variable to pass it to parameters of Repor tPor t a l test i tem. Similarly, the attributes are
obtained from plan context wi th in fmf metadata.

1

2 envar_pattern = self.getC'exclude-variables") or "$~"
3 env_vars = [{'key': key, 'value': value}
4 f o r key, value i n test.environment.items()
5 i f not re.search(envar_pattern, key)]
(i

7 a t t r i b u t e s = [{'key': key, 'value': value[0]}
8 f o r key, value i n self.step.plan._fmf_context.items()]
9

Figure 5.3: Const ruct ing list of dictionaries to prepare environment variables and context
attributes for report to Repor tPor ta l .

W i t h a l l data constructed, launch can be created v i a the A P I request w i th prepared
ur l , headers and json data w i th a l l paramters made by options and tmt metadata such plan
name, p lan summary, in i t i a l execution t ime of plan and already explained attributes. F r o m
the response, after it is handled for possible errors, a launch U U I D is obtained to use it
further for report of addi t ional data.

52

2 response = session.post(
3 u r l = f " { u r l } / l a u n c h " ,
4 headers=headers,
5 json={"name": self.data.launch or self.step.plan.name,
6 " d e s c r i p t i o n " : self.step.plan.summary + sel f . d a t a . l a u n c h _ d e s c r i p t i o n ,
7 "startTime": s e l f . s t e p . p l a n . e x e c u t e . r e s u l t s O [0] . s t a r t _ t i m e ,
8 " a t t r i b u t e s " : a t t r i b u t e s })
9 self.handle_response(response)

10 launch_uuid = yaml_to_dict(response.text).get("id")
n assert launch_uuid i s not None
12

Figure 5.4: Demonstrat ion of A P I request creating a launch i n Repor tPor ta l , based on 4.7.

To create a test i tem wi th in the launch, tests cases are processed i n a loop to get
result data from 'execute' step ('result i n self . step .plan, execute .results () ') a and
test data from the 'discover' step ('test i n self . step .plan, discover .tests () ') . Th i s
allows an access to the tmt data from fmf test metadata, such as name tmt name for test
case, test summary, test ID and addi t ional data that may be possibly useful when displayed
in Repor tPor ta l . L i s t of test attributes is based on launch attributes w i th a contact added
per each test, and list of environment variables obtained from fmf metadata per each test
as explained in the figure 5.3 into details. Basical ly these parameters cover requirements
F R 7 - F R 1 0 . After a l l , type of i tem is set to test, launch U U I D from previous response was
inserted and then another U U I D for test i tem is received from the new response to enable
logging into the element.

1

2 response = session.post(
3 u r l = f " { u r l } / i t e m " ,
4 headers=headers,
5 json={
6 "name": test.name,
7 " d e s c r i p t i o n " : test.summary,
8 " a t t r i b u t e s " : i t e m _ a t t r i b u t e s ,
9 "parameters": env_vars,

10 "testCaseld": t e s t . i d or None,
n "codeRef": test.web_link() or None,
12 "startTime": s e l f . t i m e () ,
13 "launchUuid": launch_uuid,
14 "type": "step"})
15 self.handle_response(response)
16 item_uuid = yaml_to_dict(response.text).get("id")
17 assert item_uuid i s not None
18

Figure 5.5: Demonstrat ion of A P I request creating a test i tem in Repor tPor ta l , based
on 4.8.

53

5.1.3 U p l o a d details of test results

W i t h U U I D of created test items the test logs obtained from the execution step can be
processed and uploaded v ia request to Repor tPor ta l .

1

2 f o r index, log_path i n enumerate(result.log):
3 l o g = self.step.plan.execute.read(log_path)
4

5 response = session.post(
6 u r l = f " { u r l } / l o g / e n t r y " ,
7 headers=headers,
8 json={
9 "message": l o g ,

10 "itemUuid": item_uuid,
n "launchUuid": launch_uuid,
12 " l e v e l " : l e v e l ,
13 "time": result.end_time})
14 self.handle_response(response)
15

Figure 5.6: Demonstrat ion of A P I request uploading standard log i n Repor tPor ta l , based
on 4.8.
A s framework including BeakerLib may generate mult iple logs (output, journal , etc.) and

tmt offers filtering based on errors ('result. f a i l u r e s (log) ') , the level parameters for Re­
por tPor ta l log can be used wi th mult iple logging. Failures are filtered from the standard
log and uploaded wi th E R R O R level, a full standard log is used for I N F O level and rest of
the logs for T R A C E level. This feature is not necessary but can be beneficial for test result
analysis.

5.1.4 C lose l a u n c h a n d test i tems

After a l l logs wi th test result details are uploaded, the test results can be assigned to each
test i tem. Each result status is based on the results provided by tmt. In tmt, there are
differentiated 5 types of result status, which is ' P A S S ' , ' F A I L ' , ' E R R O R ' , ' W A R N ' and
' I N F O ' . W h i l e in Repor tPor t a l there are ' P A S S E D ' , ' F A I L E D ' , ' S K I P P E D ' which are rele­
vant to evaluation of test results. Therefore the mapping is done wi th dict ionary as ' P A S S ' :
' P A S S E D ' , ' I N F O ' : ' S K I P P E D ' and rest of tmt 's states are assigned to Repor tPor ta l ' s
' F A I L E D ' , the test results are uploaded together at closing the test i tem. It requires i tem
U U I D obtained at its creation for the ur l .

1

2 response = session.put(
3 url=f"{url}/item/{item_uuid}",
4 headers=headers,
5 json={"launchUuid": launch_uuid,
6 "endTime": s e l f . t i m e () ,
7 "status": status})
8 self.handle_response(response)
9 launch_time = result.end_time

10

Figure 5.7: Demonstrat ion of A P I request closing i tem i n Repor tPor ta l , based on 4.8.

54

W h e n a l l test i tem are closed, the launch gets closed as well, w i th the stored U U I D used
as well . A s demonstrated at the bo t tom of 5.8, the launch i tem at closing returns the U R L
l ink to the launch i tem that is useful to display it i n the terminal v i a tmt standard logging
function and cover the requirement F R 5 .

1

2 response = session.put(
3 url=f"{url}/launch/{launch_uuid}/finish",
4 headers=headers,
5 json={"endTime": launch_time})
6 self.handle_response(response)
r

8 l i n k = yaml_to_dict(response.text).getC'link")
9 s e l f . i n f o (" u r l " , l i n k , "magenta")

10

Figure 5.8: Demonstrat ion of A P I request closing launch i n Repor tPor ta l , based on 4.7.

In this point the basic upload to Repor tPor ta l is fully functional. A te r closing the launch
report steps ends, and the upload is repeated for another plan when the report step is called.

5.2 G r o u p i n g several plans to R e p o r t P o r t a l

This section aims to introduce boolean flag options for mapping, launch-per-plan opt ion
for a core implementat ion from the previous section and suite-per-plan which w i l l extend
the core implementat ion wi th suite hierarchy.

The ma in problem is that a launch needs to contain numerous plans therefore numerous
'report ' step executions need to approach this launch. It leads to a need of a launch U U I D to
be stored after launch is created i n the first plan. Value for purposes of a report step can be
saved wi th in the ReportReportPortalData class together w i th the options as follows.

launch_uuid: O p t i o n a l [s t r] = None

In the body section, mapping options must be handled so exactly one type is applied.
If suite-per-plan is active, a new launch is created only i f there is no 'launch_uuid' in
report step data wi th in a first plan, and wi th in it suite-test structure is created.

W h e n launch is created i t , the only difference i n the implementat ion of its parameters
from the launch-per-plan mapping is the value for attributes. Launch attributes are
composed of intersection of a l l plan attributes. It is constructed on comparison of each
plan at tr ibute list w i th a lastly composed temporary list, which as at last made into key-
value form for Repor tPor ta l . Th i s way, the final list involves only attributes that are t ru ly
relevant for each plan. The code algori thm for this process follows i n the figure 5.9.

55

2 merged_plans = [{key: value[0] f o r key, value i n plan._fmf_context.items()}
3 f o r plan i n self.step.plan.my_run.plans]
4 r e s u l t _ d i c t = merged_plans[0]
5 f o r current_plan i n merged_plans[1:]:
6 tmp_dict = {}
7 f o r key, value i n current_plan.items():
8 i f key i n r e s u l t _ d i c t and r e s u l t _ d i c t [k e y] == value:
9 tmp_dict[key] = value

10 r e s u l t _ d i c t = tmp_dict
11 launch_attributes = [{'key': key, 'value': value}
12 f o r key, value i n r e s u l t _ d i c t . i t e m s ()]
13

Figure 5.9: Demonstrat ion of the a lgori thm obtaining intersection attributes of a l l plans as
explained in the text above

Otherwise the launch request is mostly reused from the launch-per-plan implementa­
t ion. W i t h i n the launch, there is a suite created as a root i tem as well as test i tem above.
This suite is filled w i th tmt plan data for parameters such name, description and attributes.

1

2 s e l f . i n f o (" s u i t e " , suite_name, color="cyan")
3 response = session.post(
4 u r l = f " { s e l f . g e t _ u r l () } / i t e m " ,
5 headers=self.get_headers(),
6 json={"name": self.step.plan.name,
7 " d e s c r i p t i o n " : self.step.plan.summary,
8 " a t t r i b u t e s " : a t t r i b u t e s ,
9 "startTime": s e l f . t i m e O ,

10 "launchUuid": launch_uuid,
n "type": "suite"})
12 self.handle_response(response)
13 s u i t e _ u u i d = yaml_to_dict(response.text).get("id")
14 assert s u i t e _ u u i d i s not None
15

Figure 5.10: Demonstrat ion of A P I request closing launch i n Repor tPor ta l , based on 4.8.

The suite U U I D obtained from the response is inserted into the l ink used to create its
child test items. For this, the core implementat ion of test items can be sl ightly modified
to switch between the root i tem and chi ld i tem based on the mapping used. It takes only
one-line modification wi th in a l ink as presented below:

url=f„seif.get_url()/itemf'/suite_uuid' i f s u i t e _ u u i d else ""

A l l the rest remains same un t i l the conclusion, where the launch is closed for suite-per-
plan opt ion only i f it is the last plan being processed. Th is way, the run process is simulated
i n the visual interface while a l l the plans are being executed and continuosly uploaded.
After a l l , the U R L of one launch for a l l plans is reported.

56

5.3 Support of reruns

Repor tPor ta l bui ld- in function that allows rerun by creating retry items wi th in a test i tem
(FR12) is easily approached wi th in A P I command for launch creation. There is only added
one more parameter i n the json data on line 5 of figure 5.4 for activating rerun as below,
where launch_rerun is assigned wi th a value from the launch-rerun option.

Mrerun": launch_rerun

W i t h name-based mapping this rerun approach is not suitable for plans wi th repeating
names of tests, therefore there is an alternative way to rerun those tests and upload the data,
though the logs can be only appended to previous ones or to empty tests instead of adding
new retry items. It is done v i a storing a l l U U I D s per each launch, suite or test i tem and
using them for a precise mapping when a rerun is requested (FR14) .

1

2 launch_url: O p t i o n a l [s t r] = None
3 launch_uuid: O p t i o n a l [s t r] = None
4 s u i t e _ u u i d : O p t i o n a l [s t r] = None
5 t e s t _ u u i d s : d i c t [i n t , s t r] =
6 f i e l d (d e f a u l t _ f a c t o r y = d i c t)
7

Figure 5.11: Defini t ion of values wi th in the ReportReportPortalData class storing U U I D s
of Repor tPor t a l elements.

Unl ike the name-based bui ld- in rerun, mapping v ia stored identifiers can be applied only
wi th in the same tmt run to reuse the report data. However, the option —again must be
used to allow repeating the report step and avoid deleting stored data. In that case, when
there is in subsequent report step wi th a launch, suite and test U U I D s already defined, no
elements are created again but reused the existing ones based on their U U I D s .

5.4 R e p o r t w i t h an idle status

The use case 3.4.1 (d) is based on 'report ' step being run twice, which can be currently
done only by running the tmt run twice as elaborated i n the design section 4.3.3.

To support the first part of use case, the report step must allow reporting even i f
execution data are empty and upload only data from discover step without logs and results.
Though the plugin is targeted further than the neighbouring teams reach, the idle status
is no defined value i n Repor tPor t a l projects unless the project administrators choose so.
That ' s why this use case should be supported an option that support a wider range of
demands thus allows setting any requested value for tests which would be reported as
unsuccessful w i th no result data.

It is defined under 'defect-type' w i th in ReportReportPortalData class, while the class
of a functional code section includes a whole function dedicated to this feature. The function
demonstrated in the figure 5.12 is responsible for obtaining the locator of requested defect
type value, as it is needed to use it for issue report i n case of failures.

If none specific defect type is requested, the function returns the locator of a default
value for failures, which is 'To investigate' w i th a static locator tiOOl) under the defect

57

type group 'To investigate'. Otherwise it gets the locator v i a A P I request and finds it
defined under one of the defect type groups 'To investigate' , 'No defect ' , 'System issues',
'Au tomat ion bugs' or 'Product bugs'. If given value is not defined i n the project, the error
must be raised.

1

2 def ge t _ d e f e c t _ t y p e _ l o c a t o r (s e l f , session: requests.Session,
3 defect_type: O p t i o n a l [s t r]) -> s t r :
4 i f not defect_type:
5 r e t u r n "tiOOl"
(i

7 response = s e l f . g e t _ r p _ a p i (s e s s i o n , "settings")
8 defect_types = yaml_to_dict(response.text).getO'subTypes")
9 i f not defect_types:

10 r e t u r n "tiOOl"
11

12 groups_to_search = ['T0_INVESTIGATE', 'N0_DEFECT',
13 'SYSTEM_ISSUE', 'AUT0MATI0N_BUG', 'PRODUCT_BUG']
14 f o r group_name i n groups_to_search:
15 d e f e c t _ t y p e s _ l i s t = defect_types[group_name]
16 dt_tmp = [dt [' l o c a t o r '] f o r dt i n d e f e c t _ t y p e s _ l i s t
17 i f dt['longName'].lower() == defect_type.lower()]
i s d t _ l o c a t o r = dt_tmp[0] i f dt_tmp else None
19 i f d t _ l o c a t o r :
20 break
21 i f not d t _ l o c a t o r :
22 r a i s e tmt.utils.ReportError(f"Defect type '{defect_type}' "
23 " i s not be defined i n the~project {self.data.project}")
24 self.verbose("defect_type", defect_type, color="cyan", s h i f t = l)
25 r e t u r n s t r (d t _ l o c a t o r)
26

Figure 5.12: Demonstrat ion of a function that returns a defect type locator to report
the issue i n case of failed or empty report i n Repor tPor ta l , further explained i n the text
above.

The function is called wi th in a single parameter added in the json data on line 5 of fig­
ure 5.8 to report the issue i f a failed or empty test is reported.

M i s s u e " : MissueType": s e l f . g e t _ d e f e c t _ t y p e _ l o c a t o r (s e s s i o n , defect_type)

Though this functionality offers variety of possibilities, it enables reporting an idle status
as well, i n case a project administrator allowed this feature wi th a setup of a defect type
' I D L E ' .

Eventually, it allows uploading an empty report w i th defined status, which can be
' I D L E ' therefore covers a requirement F R 1 3 . Together w i th an implementat ion mentioned
in the previous part, it allows to update these empty reports w i t h a rerun of the same
tmt run v ia precise mapping covering requirement F R 1 4 and also a full use case they form
together.

5 8

5.5 A d d i t i o n a l upload to the launch

In the long run, the last supported function should upload new addi t ional tests or suites
into an existing launch. This can be approached wi th an implementat ion of F R 1 4 described
in the section 5.3, which supports an upload of tests to a launch wi th given U U I D . If suites
or tests are not bound wi th its U U I D i n the 'report ' step data, a new suite or test is created.
Though i f a new tmt run is used to upload a report to an existing launch, it has no U U I D
stored and is expected to be obtained from the user v i a dedicated option.

In contrast w i th a launch ID , U U I D is no freely available identifier for a common user
to know. Therefore the plugin expects an user to pass the launch I D which can be sim­
ply found i n the launch U R L . For this an option upload-to-launch is defined wi th in
the ReportReportPortalData class. Afterwards, the U U I D is obtained v i a A P I request
based on the provided ID , as can be seen i n 5.13

1

2 i f launch_id:
3 response = sessi o n . g e t (u r l = f " { s e l f . g e t _ u r l () } / l a u n c h / { l a u n c h _ i d } " ,
4 headers=self.get_headers())
5 self.handle_response(response)
6 launch_uuid = yaml_to_dict(response.text).get("uuid")
7

Figure 5.13: Demonstrat ion of an A P I request in order to obtain a launch U U I D w i t h
a launch I D .

W i t h upload-to-launch option, launch U U I D is obtained and used for a l l uploads,
therefore based on mapping option either suites w i l l be created wi th in the launch, or a l l
tests w i l l be direct ly inserted into the launch, which does cover the requirement F R 1 5 . It is
not recommended to run more than one plan wi th mapping based on launch-per-plan
option, as this approach supports only uploads to one launch per run.

Analogical ly, this is done for F R 1 6 wi th the option upload-to-suite. If given the op­
t ion, no launch or suite is created, but suite U U I D is obtained wi th its I D and reused
to upload the launch. A s a common practice of plugin based on the requirements builds
either launch-tes t or launch - suite - test structure, and no launch - suite - suite - test struc­
ture, then it cannot allow creating more suites wi th in a suite. Therefore mapping options
launch-per-plan ad suite-per-plan are ignored in this case and only a direct upload
of tests is supported. Aga in , it is not recommended to run more than one plan wi th this
option, as this approach supports only uploads to one suite per run.

5.6 F i n a l i z a t i o n and documentat ion of t m t p l u g i n

After the main part of plugin wi th in the folder structure dedicated to plugin implementat ion
is done, there are several addi t ional modifications needed to fully integrate the plugin to
the tmt structure.

Firs t ly , for purposes of F R 1 8 , there must be a support of help argument to print
a description of plugin functionality and instructions to the options supported. Th i s is done
wi th in the file w i th plugin implementat ion. The functionality description is generated from
the P y t h o n plugin docstring w i th in the comment section under the Repor tRepor tPor ta l

59

class and the description to individual options is supported in the function f i e ld ()
under the 'help' parameter.

Addi t ional ly , there are other files where the documentation related to plugin can be
updated. The most relevant involves the specification for plugin, which is displayed in
web interface as part of tmt documentation, see [12]. It falls under the report specification
in the file further specified in the appendix (A.2.3) . The plugin specification is described
in Y A M L wi th a summary, story, description, l ink to the source file, and several examples
that present a variety of supported use cases i n the form of both command and metadata
specifications.

A m o n g the other relevant files to the plugin, there is a dedicated file for schema definition
for metadata specifying the reportportal plugin options. It is marked up in J S O N language
and used to verify options w i t h tmt command or metadata.

1

2 p r o p e r t i e s :
3

4 how:
5 type: s t r i n g
6 enum:
7 - r e p o r t p o r t a l
8

9 name:
10 type: s t r i n g
n
12 p r o j e c t :
13 type: s t r i n g
14

15 launch-per-plan:
16 type: boolean
17

i s suite-per-plan:
19 type: boolean
20

Figure 5.14: Demonstrat ion of a part of reportportal p lugin schema specifying the option
properties.

60

Chapter 6

Evaluation of the plugin

Beside the implementation, tmt requires a test coverage which verifies the functionality
implemented is t ru ly working, the test coverage aims to focus on the functionality of
tmt i n relation to the plugin as well as towards the targeted functionality, par t icular ly
the integration wi th Repor tPor t a l tool . Th is can be tested on regular basis, supporting
automated testing as well.

Moreover, the requirements definition i n the real setting of the work environment is
a process based on analysis and gained experience. Though it began wi th an idea that is
elaborated i n the chapter 3 under the sections wi th use cases and requirements. The plans
for an in i t i a l implementat ion were sceptical against the possibilities of tools, therefore
the implementat ion was separated into two parts the core one and the extensions as in ­
dicated i n the previous chapter. After an implementat ion of each of them, an user feedback
was very essential factor, which is further explained and summarizes the evaluation in
the last section.

6.1 Test coverage

Based on the segmentation of implementat ion goals derived from the supported use cases,
the test coverage of the plugin is structured into two main parts.

The first part pr imar i ly focuses on core functionality related to detailed aspects of
a common report upload. In summary, it ensures that a l l Repor tPor t a l properties including
logs and result statuses wi th in a launch-test structure are successfully uploaded and no
problem appeared in the communicat ion between tmt and Repor tPor ta l .

The second part has a broader scope, verifying the pr imary functionality of a l l features
that extend beyond the core report requirements. It involves mult iple tmt runs, each
addressing different aspects derived from a l l use cases, besides the core one. This part
includes only brief verification of details already covered i n the first part w i th goal to
validate a l l supported use cases.

Encapsulat ing features related to both tmt and Repor tPor ta l , both of them read stan­
dard output based on the server response and verify Repor tPor t a l interface values v ia
the R E S T A P I . Also both parts are wr i t ten in bash w i t h BeakerLib framework, organized
wi th in a test that is d ivided into phases, w i t h each phase mostly corresponding to one test
objective. Beside the targeted test phases, there is setup and cleanup phase for an approach
to the temporary data that the framework implements.

61

In addi t ion to the executable bash file, the test includes a data directory containing
sample tests w i th metadata demonstrating both different statuses, w i th a range of param­
eters, see 6.1. Th is directory has tmt ini t ia l ized (.fmf directory) and contains fmf plan
metadata to support the plans w i th in tmt run. The plan definition includes several pa­
rameters interesting for plugin functionality like summary, context attributes, environment
variables and report specifications.

1

2 /bad:
3 summary: F a i l i n g t e s t
4 contact: tester@redhat.com
5 t e s t : echo "Something bad happened!"; f a l s e
(i

7 /good:
8 summary: Passing t e s t
9 contact: tester_2@redhat.com

10 t e s t : echo "Everything's f i n e ! "
n i d : 63f26fb7-69c4-478l-a06e-098e2b58129f
12

13 /weird:
14 summary: an~error encountered
15 t e s t : this-is-a-weird-command
16

Figure 6.1: Three versions of simplified tests w i th metadata, targeting three types of sta­
tuses.

Furthermore, the test itself can be executed by tmt, involving a brief fmf file at the same
level to support the test automation. It aims to cover requirements F R 1 - F R 1 6 . This way
the test suite goes through a l l supported scenarios described i n the thesis and fully verifies
its functionality in each execution.

6.1.1 Test coverage for core funct ional i ty

W i t h an intention of a thorough verification, this part is divided into two phases. Start ing
wi th a tmt run representing an essential functionality of the plugin, the tmt run executes
and reports three tests targeting good, bad and unexpected result, a l l specified in metadata.
The run is performed wi th default values (L A U N C H - P E R - P L A N mapping, metadata values)
and shared in first two phases for detailed approach.

The first phase verifies whether a l l tests were correctly reported from the side of tmt.
Reading the the standard output, it uses grep to assert launch l ink F R 5 and names of a l l
reported tests to ensure the connection and full communicat ion was successful F R 2 . It also
reads ID and U U I D identifiers of launch and test elements to assert they are not empty.
Parts of this phase are reused also throughout the test suite for testing extended features
as well, as it has an access to names and identifiers which are essential for approaching
the launch and a l l items wi th in v ia R E S T A P I .

The second phase tests this run from the Repor tPor t a l point of view v ia the R E S T
A P I requests. It obtains a response from the A P I request and compares it w i t h a static
expected data, it is data read from the metadata and data as identifiers printed out in
standard output acquired from the previous phase. To illustrate the idea of testing, figure
6.2 provides an example wi th a beakerlib assert function that is used for the comparison.

62

mailto:tester@redhat.com
mailto:tester_2@redhat.com

The function takes comment for log, followed by tested data and expected data to generate
a status for log. For searching terms wi th in json response and fmf metadata are used
P y t h o n tools j q and yq.

1

2 response=$(curl -X GET "$URL/api/vl/$PROJECT/launch/uuid/$launch_uuid" \
3 -H "accept: */*" -H "Authorization: bearer $T0KEN")
4

5 r l A s s e r t E q u a l s "Assert the~URL ID of launch i s correct" \
6 "$(echo $response I j q - r ' . i d ') " "$launch_id"
7 r l A s s e r t E q u a l s "Assert the~name of launch i s correct" \
8 "$(echo $response I j q - r '.name')" "$launch_name"
9 r l A s s e r t E q u a l s "Assert the~status of launch i s correct" \

10 "$(echo $response | j q - r ' . s t a t u s ') " "$launch_status"
11

Figure 6.2: Demonstrat ion of a few asserts testing launch properties U R L ID , name and
status based on the response of the A P I request.

It starts w i th a launch request to validate the launch ID , launch name, launch status
and launch description. Addi t ional ly , it goes through a l l metadata and compares it w i th
launch attributes.

Another step is based on a test request, where the test goes i n a loop through a l l three
tests and verifies details such U U I D , name, or result status. It also checks a l l environment
variables i n parameters individual ly, including a negative assert for filtered environment
variables that should be omit ted by the default value of exclude-variables option.

F ina l i z ing wi th a log request, where each log is processed and asserted on its contents
and assigned level in Repor tPor ta l .

In summary, w i th these first two phases passing without problem, it validates the sup­
port of requirements F R 1 - F R I O wi th an exception of the first requirement which is mostly
impl ic i t based on the val id use of the plugin, and the requirements defining mapping on re­
quest (no default mapping) which are covered in the second part of test coverage described
below.

6.1.2 Test coverage for advanced use cases

Targeting verification of a l l supported features i n addi t ion to the core report upload, there
are several phases to cover each of them. In this part, each phase involves at least one
separate tmt run to simulate an use case. A n d each of them includes brief verification to
cover key properties of requirements F R 3 - F R 4 and F R 1 1 - F R 1 6 . Hav ing a s imilar approach
to testing the core functionality, they sum up it a l l i n one phase per each obejctive while
they do not focus on details already covered i n the first part of previous subsection.

To name them i n the order of requirements, an essential phase to begin wi th is one
that supplements the coverage of core functionality wi th L A U N C H - P E R - P L A N mapping on
demand. It tests the functionality of plugin wi th a mapping requested on demand by
launch-per-plan opt ion and verifies i f no suite structure is created. In addi t ion to the core
test coverage, this ensures that a l l expectations were met for the requirement F R 3 .

Another phase is analogical to the previous one wi th pure S U I T E - P E R - P L A N mapping on
demand. It verifies the presence of launch-suite-test structure, but also replicates detailed

63

testing examined in the previous subsection to ensure no problem appeared wi th a change
of launch structure and mapping. Therefore, it meets the requirement F R 4 .

There is also a need to validate the integrity of historical data aggregation, as requested
in F R 1 1 . This val idat ion process involves a sequence of two tmt runs. Dur ing the first
run, a launch is created containing items that serve as direct predecessors to the items in
the launch created i n the subsequent run. The val idat ion is conducted through an A P I
request that retrieves a history of depth 2. This A P I response is then ut i l ized to assert
the identifiers of the items, ensuring that the historical aggregation remains intact.

This phase is extended by another test run using the exclude-variables option, tar­
geting F R 9 , to demonstrate val id functionality i n relation to test parameters, test case I D
and history aggregation i n Repor tPor ta l . It adopts a s imil iar approach, but involves tmt
environment variables that tend to be unique per run and therefore may disrupt the history
aggregation. It verifies the preserved history aggregation of test items wi th a test case I D
present and identifies any interruptions otherwise.

Next phase targets the Repor tPor t a l bui l t - in feature of launch rerun, which is objective
of F R 1 2 covered by two runs and launch mapped on name basis. There is an in i t i a l run that
creates a launch and provides its identifiers for verification of rerun feature in the second
run. It asserts the report is mapped to the previous launch wi th same name, and its test
items contain retry items. The access is mostly enabled v i a A P I request that lists a l l test
items and its data filtered by any property, par t icular ly a launch ID .

Furthermore, the rerun functionality is also tested using a different approach i n another
test phase, al igning wi th the requirements specified in F R 1 4 . This involves a single tmt
run, in i t ia l ly executed to perform a standard upload. Subsequently, the run is rerun wi th
the option — l a s t and option —again specifically on the 'report ' step to append logs based
on the U U I D identifiers of Repor tPor t a l elements. D u r i n g this process, assertions are used
to ensure that identifiers of reported items are correctly mapped and that the logs are
accurately appended.

In another test phase, the UUID-based rerun functionality on a top of an implementat ion
for a requirement F R 1 3 is used to simulate the scenario of intagrating the plugin i n Shared
OS Testing Infrastructure introduced as motivat ion example i n section 3.1. W i t h i n tmt run
'discover' step and 'report ' step are performed opt ing defect-type to label the empty report
in Repor tPor t a l as 'idle'. Afterwards the same tmt run is rerun and updates the report.
W h i l e the A P I request helps to verify the val idi ty of the process through defect types
assigned to each test i tem and logs uploaded to the corresponding items

Final ly , there are three test phases implemented using the options upload-to-launch
for bo th launch-suite-test' and launch-test' structures, and upload-to-suite specifically for
the 'launch-suite-test' structure, i n alignment w i th the requirements outl ined in F R 1 5 and
F R 1 6 . These phases involve creating a launch wi th an in i t i a l run, followed by an addi t ional
run to supplement new Repor tPor t a l items. Val ida t ion of the upload process is performed
using the same A P I request to retrieve a l l items wi th details per launch. This val idat ion
includes comparisons of identifiers and parsing of content to ensure accurate upload.

In conclusion, this section comprehensively addressed and tested a l l specified require­
ments through the implementat ion of various test phases. Each test phase, including either
core or key properties of extended functionality, was meticulously explained and executed
to validate the functionality of the system according to F R 1 - F R 1 6 requirements. Whereas
the requirement F R 1 7 is impl ic i t given this test suite and F R 1 8 is covered by tmt function­
ality that is tested as well, once the plugin description is defined in corresponding functions
as stated i n 5.6.

64

Ultimately, a l l proposed requirements were met, w i th functional requirements fully sat­
isfied as detailed above and non-functional requirements adequately covered. This achieve­
ment is impl ic i t ly demonstrated through the implementat ion discussed wi th in the imple­
mentation, chapter 5.

Importantly, a l l test phases resulted i n successful outcomes, confirming the system's ad­
herence to requirements and demonstrating the achievement of a l l intended functionalities
of the plugin as well as the purposes of the thesis. Th is robust evaluation of the thesis' im­
plementation underscores the system's adherence to requirements and successful realization
of its intended functionalities.

6.2 User feedback

In real-world scenarios involving the developer, client, and end-user, in i t i a l requirements and
goal setting are often distorted, insufficient and unclear, leaving room to adjustments during
the implementat ion process. Especially, i f a l l three authorities of the scenario converge
as the assignment evolves i n a 'community-driven ' approach to improve the tools used
v i a community discussions. Therefore, just as the design and implementation, which are
summarized earlier i n this thesis for clarity, the evaluation of the implementat ion also
occurred in two steps, w i th user feedback being a crucial factor after each of them.

This way, the evaluation of the implementat ion was conducted i n two steps as well,
w i th user feedback playing a pivotal role. Especially, after the core implementat ion based
on in i t i a l requirements that were barely ambitious. W i t h a few concepts as plans or 'nice-
to-have-features' to be further evaluated based on a profound experience of core report
implementation.

The evaluation process involved meetings wi th key users transi t ioning to these tools, as
well as representatives of current and potential users. The survey was based on a sample
of colleagues who part icipated i n meetings and those who voluntar i ly contributed feedback
through a dedicated chat channel for tmt, G i t H u b issues related to tmt, or any direct
communicat ion wi th one of the representatives.

This approach was possible due to a direct contr ibution to tmt tool l iv ing i n G i t H u b
repository, which is newly released on monthly basis.

Here are the ma in points summarized from the first session after a l l members had
a opportuni ty to test the plugin wi th core report functionality, uploading test results, logs
and other properties to Repor tPor t a l wi th in launch-tes t structure, covered in section 5.1.

(aa) launch - suite - test hierarchy
Transi t ioning exclusively to a direct hierarchy of the launch-sui te structure was
deemed impract ica l and unrealistic based on feedback from users accustomed to a h i ­
erarchical structure wi th three levels i n past approaches. This feedback was part icu­
larly targeted at addressing the needs of errata testing, which involves grouping results
from mult iple plans based on different approaches, architectures, or components to
validate specific components or features. To accommodate a broader scope of testing
requirements, the addi t ion of options for switching the hierarchy and mapping was
identified viable solution.

(ab) update of idle tests via rerun
The in i t i a l p lan to generate an empty report by triggering the report ' step from

the discover' step i n one run was considered redundant due to the significant alter­
ations required to tmt functionality and the need to allow for repeating the report

65

step. Instead, the problem was simplified by ut i l iz ing options — l a s t and id R U N - I D
to enable reruns, prompt ing exploration of methods to repeat the step. This chal­
lenge was addressed by the t imely implementat ion of the —again option, inspired by
a s imilar option —force, w i th the key dis t inct ion of preserving data before repeating
the step.

(ac) defect types
The plan to report empty tests w i th an idle status became par t ia l ly irrelevant due to
evolving processes and the expanding scope of tmt. It became challenging to antic­
ipate the general impact and necessity of this flag, especially as new flags emerged.
Therefore, it was reconsidered to allow users to define any supported value wi th in
the project, keeping the possibilities open even if the concept of report ing idle tests
is no longer viable.

(ad) U U I D - m a p p e d rerun
There appeared an interest for rerun functionality. W h i l e the name-based rerun fea­
ture provided by Repor tPor t a l generates nicely structured retry items, it proved in­
sufficient for covering plans where test cases are repeated wi th changing conditions.
Therefore, only UUID-based mapping would be accepted, even if test results are
rewritten and logs appended. This approach could be leveraged from the point refer­
enced in (ab). A l though retry functionality was considered a „nice to have" feature
and was not priori t ized for broader support, it was s t i l l planned for implementat ion
due to its simplicity, w i th the understanding that it would not be extensively sup­
ported.

(ae) appending the description
The original plan to add files was deemed redundant and ineffective for storage, as
the testing farm already provided U R L s to the test artifacts. Consequently, attach­
ments were replaced wi th the abi l i ty to append a str ing such as U R L directly wi th in
the launch description.

To evaluate the in i t i a l phase of analysis, design, implementation, and feedback, it was
essential to explore the capabilities of the Repor tPor t a l R E S T A P I and establish realistic
expectations for integrating tmt w i t h Repor tPor ta l .

In the gathered feedback, key users highlighted specific challenges and requirements
that influenced subsequent refinements and adjustments to optimize the system's usabil i ty
and alignment w i th user expectations. B u i l d i n g on former plans, there were provided
valuable insights laying the groundwork for subsequent development iterations. Eventually,
the feedback resulted i n finalizing a l l requirements planned for the integration or tmt and
Repor tPor ta l and finally implementing this comprehensive solution.

The community 's feedback was again solicited to evaluate and assess the effectiveness
of these enhancements.

(ba) all options available via environment variables
A s the functionality of tmt is i n Testing F a r m run v i a metadata specifications and

environment variables, it lacks the functionality of plugin options unless they can be
approached v ia environment variables.

(bb) option for R E S T A P I version
Given the availabil i ty of two different versions of the Repor tPor t a l A P I offering syn-

66

chronous (v l) and l imi ted asynchronous (v2) approaches, there was a desire to lever­
age the asynchronous functionality. A s a solution, an option was proposed to allow
switching between these two versions as needed.

(be) an option targeted to link to artifacts
A l ink to artifacts wi th in a launch description was found insufficient for scenarios
involving merged launches or addi t ional uploads into launches. Therefore, a new
option is intended to be dedicated specifically for this purpose, al lowing users to
insert the l ink into the description at each level wi th in the Repor tPor t a l launch.

(bd) need of an instance upgrade
Execut ion of complex test suites often results i n timeouts, preventing the completion
of uploads. Th is issue was identified and resolved wi th in Repor tPor ta l , and the solu­
t ion is available in a new version of the software.

Despite receiving feedback that highlighted certain deficiencies, these were prompt ly ad­
dressed. The issues mentioned i n (ba) were included in the thesis's implementation, while
others were deemed out of scope for this project. Ult imately, the plugin's implementat ion
was deemed a success, effectively meeting a l l requested testing needs and replacing previous
systems. Th i s achievement insti l led a deep sense of gratitude for the functionality deliv­
ered and fostered ambitions for ongoing improvements. Through iterative evaluation steps
and active engagement w i th users, the implemented solution was refined to enhance user
experience and align wi th pract ical needs and expectations in real-world usage scenarios.
The incorporation of user feedback proved instrumental i n dr iv ing meaningful improvements
and shaping the final successful implementat ion of the system.

67

Chapter 7

Conclusion

This thesis embarked on an extensive exploration of testing terminology, processes, and
tool integration wi th in R e d Hat ' s testing ecosystem. The pr imary objective was to facilitate
the seamless integration of the tmt tool w i th Repor tPor ta l , driven by the overarching goal of
establishing a Shared O S Testing Infrastructure that addressed the complexities of testing
diverse software components wi th in R e d Hat Enterprise L i n u x (R H E L) .

Throughout the study, alternative solutions were considered, yet none proved sufficient
to surpass the final design of the tmt plugin integrated v i a the R E S T A P I of Repor tPor­
ta l . The thesis analyzed the functionalities of existing and forthcoming tools, focusing
part icularly on tmt's capabilities and the possibilities the Repor tPor t a l R E S T A P I offers.

The implementat ion phase was structured into two essential components. Fi rs t ly ,
the core report functionality addressed the need for reporting to Repor tPor ta l . However,
this implementat ion fell short of fulfilling a l l requirements for automated testing wi th in
the tmt and Repor tPor ta l . Fol lowing thorough testing and successful execution of the core
implementation, extensive feedback was solicited and incorporated into plugin's design and
implementation. Secondly, advanced features were introduced, carefully designed, and im­
plemented to cover a broad range of scenarios, leveraging the full potential of integrated
tmt and Repor tPor t a l A P I . E a c h new feature was incrementally buil t upon previously im­
plemented components, manually tested, and validated wi th full test coverage to ensure
that a l l requirements were met without disrupt ing existing functionalities.

Feedback from stakeholders and users was instrumental i n shaping the direction of this
project, d r iv ing meaningful improvements, and fostering ambitions for ongoing enhance­
ments wi th in R e d Hat ' s testing infrastructure. The positive response and constructive
suggestions received underscored the value of collaborative efforts i n advancing software
testing practices and achieving higher standards of quali ty assurance.

Look ing ahead, the integration of tmt w i th Repor tPor t a l represented a significant step
towards the modernizat ion and opt imizat ion of testing processes wi th in R e d Hat . A s Red
Hat transitioned from legacy systems to innovative solutions, the commitment remained
strong to refining and expanding testing capabilities, ul t imately delivering improved out­
comes for R H E L teams and contr ibut ing to the evolution of software testing practices in
the open-source community.

In conclusion, this thesis underscored the importance of effective test management, au­
tomation, and collaboration i n ensuring the quality, stability, and functionality of software
products. B y integrating tmt wi th Repor tPor t a l and leveraging user feedback, a solid foun­
dation was la id for future advancements i n testing methodologies and infrastructure wi th in
R e d Hat .

68

69

Bibliography

[1] I S O / I E C / I E E E International Standard - Systems and software
engineering-Vocabulary ISO/IEC/IEEE 24765.-2017(E). 2017, p. 1-541, [cit.
2024-04-10]. D O I : 10.1109/IEEESTD.2017.8016712.

[2] I S O / I E C / I E E E International Standard - Software and systems engineering -Software
testing - P a r t l :Genera l concepts. ISO/IEC/IEEE 29119-1:2022(E). 2022, p. 1-60,
[cit. 2024-04-10]. D O I : 10.1109/IEEESTD.2022.9698145.

[3] B R A V I N , A . Top 11 test reporting tools to supercharge your QA process [online], [cit.
2024-04-14]. Available at: h t t p s : / / z e b r u n n e r . c o m / b l o g - p o s t s / t o p - l l - t e s t -
r epor t ing- too l s - to - supercharge-your -qa -p rocess .

[4] D U B A J , O . Systém pro správu výsledků testů doplňující nástroj tmt. Brno , C Z , 2021.
Dip lomová p ráce . Vysoké učen í technické v B r n ě , Faku l ta in formačních technologi í .
Available at: https://www . f i t .vut.cz/study/thesis/23921/.

[5] O P E N S O U R C E C O N T R I B U T O R S . Nitrate [online], [cit. 2024-04-18]. Available at:
h t tps : / /n i t r a te . read thedocs . io .

[6] R E D H A T C O N T R I B U T O R S . BaseOS QE Project Page [online], [cit. 2024-04-16].
Internal document accessible upon request.

[7] R E D H A T C O N T R I B U T O R S , fmf [online], [cit. 2024-04-21]. Available at:
h t tp s : / / fmf .readthedocs.io.

[8] R E D H A T C O N T R I B U T O R S . GitHub repository: tmt [online]. Available at:
h t tp s : //github.com/teemtee/tmt.

[9] R E D H A T C O N T R I B U T O R S . REEL Development Guide [online], [cit. 2024-04-18].
Internal document accessible upon request.

[10] R E D H A T C O N T R I B U T O R S . Shared OS Testing Infrastructures [online], [cit.
2024-04-17]. Internal document accessible upon request.

[11] R E D H A T C O N T R I B U T O R S . Testing Tools [online], [cit. 2024-04-16]. Internal document
accessible upon request.

[12] R E D H A T C O N T R I B U T O R S , tmt [online], [cit. 2024-04-30]. Available at:
h t tp s : / / tmt.readthedocs. io.

[13] R E P O R T P O R T A L C O N T R I B U T O R S . What is ReportPortal? [online], [cit. 2024-04-25].
Available at: h t t p s : / / r e p o r t p o r t a l . i o / d o c s / .

70

https://zebrunner.com/blog-posts/top-ll-test-
https://www.fit.vut.cz/study/thesis/23921/
https://reportportal.io/docs/

Append i x A

Contents of included storage media

(A . l) plugin_implementation
A source code of tmt tool w i t h implemented plugin, documentation and test coverage. [

(A.1.1) README.md
(A.1.2) tmt

- spec
I — plans

' — report.fmf
- tests

' — report
' — reportportal

- data
— plan.fmf
— test.fmf

- main.fmf
- test.sh <-

tmt
' — senemas

I — report
' — reportportal.yaml

steps
' — report

I — reportportal.py <-

(A.2) alternative_plugin_implementations/
Alternat ive or par t ia l implementations of the plugin for reference.

(A.2.1) via_junit_xml_import/ [NOT A U T H O R E D B Y M E]

(A.2.2) v i a _ a p i _ l i b r a r y /
(A.2.3) via_rest_api_core_only/

(A.3) output.txt
A log from an executed test coverage wi th detailed test results.

(A.4) docs
Documentat ion including P D F file and L ^ I p X source code.

71

