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ABSTRACT 

This paper discusses the possibility of using wavelet transform applications dealing with 
noise suppression, especially in the area of filtering E C G signals. It is primarily to evaluate 
the influence of various parameters setting itself filtration, as is the way thresholding wavelet 
coefficients, setting thresholds and selection decomposition, and reconstruction filter banks. 

Also there are the results of Wiener filtering, where the combination of banks used 
decomposition and reconstruction filters were tested. A l l filtration methods described here are 
tested on real E C G records with additive interference myopotencial noise and implemented in 
the Matlab enviroment. 

Keywords: wavelet transform, E C G signal, wavelet filtering, wiener filter 

ABSTRAKT 

Tato práce se zabývá možností využití vlnkové transformace v aplikacích, které se 
zabývají potlačením šumu. Především se jedná o oblast filtrace signálu E K G . Úkolem je 
zhodnotit vliv různých parametrů nastavení samotné filtrace a zjistit jaký vliv má různé nastavení 
prahování wavelet koeficientů. Výsledkem práce je také stanovení hodnot prahů, stanovení 
nej lepšího způsobu rozkladu signálu a volba rekonstrukčních bank filtrů. 

Text obsahuje výsledky Wienerovy filtrace, při které byly testovány různé banky 
rozkladových a rekonstrukčních filtrů.Všechny popsané filtrační metody byly testovány na 
reálných záznamech E K G s aditivním myopotenciálním šumem. Algoritmy byly realizovány v 
prostředí M A T L A B . 

Klíčová slova: vlnková transformace, E K G signál, vlnková filtrace, wienerovská filtrace 
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I N T R O D U C T I O N 

Spontaneous electrical signals produced by the body is a kind of guidance for doctor in 
assessing the health status of patients. The most commonly measured and monitored signals are 
electrical brain activity - electroencephalogram (EEG), heart -electrocardiogram (ECG), muscles 
- electromyogram (EMG), stomach - elektrogastrogram (EEG). E C G signal is used to diagnose 
disorders such as heart rate, ventricular activation outside heart beat - extrasystoles, ischemic 
heart disease and its most severe forms - heart attack. When evaluating an electrocardiogram 
(ECG) is considered in particular the duration of each sections, their amplitude and changes the 
shape of waves and oscillations. It is therefore important to evaluate only useful signal without 
the interference that occurs in almost all E C G recordings. 

Wavelet transform is a modern tool for signal processing, its application located mainly in 
the compression of images. Recently, due to its ability (eg capture rapid changes or 
discontinuities) is widely used to suppress noise in the signals. This paper is focused on the use 
of wavelet transform (with discrete time - DTWT) at filtering of electrocardiographic signals. 

In first part of paper there are some theoretical bases about human's physiology. It is 
necessary to understand the process of electrokardiography, the one of the important subject of 
our work. Also we considered the main interferences of E C G signal. 

The second part describe the theory of wavelets and wiener filtering. Here we considered 
discrete and inverse wavelet transform and their conditions. Also there is wiener filter 
application. 

The last part summarizes the results obtained in different experiments with setting the 
parameters of wavelet filtering. They are listed here as a numerical value expressing the obtained 
from the output signal to noise ratio (SNR - Signal to noise ratio) and videooutputs 
filtration obtained in Matlab. 
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1.Theoretical bases 

1.1 Electrical activity of the heart 

Each heart contraction precedes the wave of electrical irritation, which begins in the 

sinoatrial (SA) node (Figure 1.1). The waves of electrical activity spreads through the chambers 

until they reach atrioventricular (AV) node. Minutes of the SA node has no permanent resting 

potential. What can be registered in contractile muscle cells. Spontaneous depolarization 

andrepolarizationSA node is unique, miraculous source of automatic impulses, whichactivate the 

A V node and atrium. This leads to impulses Tawar branch and they are activated muscle cells. 

In cardiomyocytes outside the SA node does not take plac eunder normal circumstances 

spontaneous depolarization, and therefore must be activated by impulses from the outside. 

Figure. 1.1: Cardiac conduction system 
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1.2 Depolarization and repolarization 

The resting heart muscle cell molecules dissociate into ions with positive charge on 

external and negative charge inside the cell membrane, the cell isin an electrically balanced, or 

vice versa polarized state. It works if the cell waveelectrical irritation, with negatively 

charged ions penetrate the surface of cells withpositivecharge inside the cell, this change of 

polarity is called depolarization. If the electrode is positioned so that the depolarization wave 

front is directed to the electrode, galvanometer deflection recorded positive. Directed the wave 

of depolarization from the electrode,writes the negative frequency.In the recovery phase with 

positive ions return to the outer surface of cells, while ions with a negative charge inside the 

cell. It restores the electrical balance of cells, this process is called repolarization. [4] 

1.3 Action potential 

In electrocardiography, the cardiac action potential is a specialized action potential in 

the heart, necessary for the electrical conduction system of the heart. The standard model used to 

understand the cardiac action potential is the action potential of the ventricular myocyte. The 

action potential has 5 phases (numbered 0-4). Phase 4 is the resting membrane potential. This is 

the period that the cell remains in until it is stimulated by an external electrical stimulus 

(typically an adjacent cell). This phase of the action potential is associated with diastole of the 

chamber of the heart. Phase 0 is the rapid depolarization phase. The slope of phase 0 represents 

the maximum rate of depolarization of the cell and is known as dV/dt m a x . This phase is due to the 

opening of the fast Na + channels causing a rapid increase in the membrane conductance to 

Na + (G N a ) and thus a rapid influx of N a + ions (/Na) into the cell; a Na+current [6]. 

Phase 1 of the action potential occurs with the inactivation of the fast Na + channels. The 

transient net outward current causing the small downward deflection of the action potential is 

due to the movement of K + and CI" ions, carried by the I t o i and It02 currents, respectively. 

Particularly the I t o i contributes to the "notch" of some ventricular cardiomyocyte action 

potentials. 

Phase 2. This "plateau" phase of the cardiac action potential is sustained by a balance 

between inward movement of C a 2 + (Ica) through L-type calcium channels and outward 

movement of K + through the slow delayed rectifier potassium channels, IKS- The sodium-calcium 

exchanger current, lNa,ca and the sodium/potassium pump current, lNa,K also play minor roles 

during phase 2. During phase 3 (the "rapid repolarization" phase) of the action potential, the L -

type C a 2 + channels close, while the slow delayed rectifier (IK s) K + channels are still open. [6] 
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• K + , CI" (out) 

Figure. 1.2: Membrane action potential 

1.4 Sinoatrial and atrioventricular node 

The uniqueness of the SA node that it doesn't have no permanent resting potential. After 

completion of repolarization taking place in phase 4 spontaneous slow action potential 

depolarization occurs, which is cause of the SA node automaticity fibers. This provides a unique 

pacemaker automatic delivery of pulses driving the electrical activity of the heart and its 

contractions. The frequency of the SA node, typically 50-100 per minute, is influenced by 

vegetative nervous system, chemical and hormonal influences. 

A V node slows the electrical current physiologically coming from the hall, thus gaining 

time for filling the chambers of the atrial systole, the period preceding the systole chambers. 

After passing through the A V node and bundle of His electrical pulse is veryquickly transfer all 

components of the chambers, left and right Tawara's branches and all the Purkinje fibers and 

muscle cells is depolarized. Depolarization spreads from the base to the tip of interventricular 

septum and then free left ventricular wall, always spreads from endocardium toward the 

epicardium. [4] 
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Fine peripheral branching arm of which creates a network of Purkinje fibers is 

anatomically located the endocardial cells. Temporary detention and leadership in slowing A V 

node has an important protective role in patients with atrial fibrillation and atrial flutter. In both 

these situations frequently come the fast A V node impulses from the atrial rate 300-600 per 

minute, this "barrier" decreases frequency of electrical impulses that reach the motorway 

network of chambers approximately 120-180pulses per minute, thereby preventing serious 

incidents tachycardia, which would compromise patient's life. 

1.6 Electrocardiogram 

Cardiac muscle is composed of many thousands (approximately 1010) of muscle cells. 

Each time depolarization and repolarization represents a large group of different phases of cell 

activity. The electrical activity of each component can be understood as a vector force. 

The vector is defined as the force that has direction and magnitude. Sum of all instantaneous 

vectors produces cardiac electrical activity of heart. E C G records the sequence of instantaneous 

cardiac vectors. Cardiac muscle is composed of three muscle masses: interventricular septum, 

large muscle mass and left ventricular muscle mass much smaller chamber right. The size or 

amplitude of the recorded mass displacements is affected depolarize muscle and its distance from 

the electrodes registering. 

A graphic record of electrical activity recorded by electrodes in the heart of strategic 

locations creates a body surface electrocardiogram (ECG). Record electrical currents, their 

direction and size, as well as the frequency of heart contractions, the instrument - an 

electrocardiograph. Its essence is the galvanometer, the deflection records the registration paper. 

E C G recording is thus obtained. For simple evaluation is sufficient to note 

that captures the E C G (Figure 1.3): 

• three prominent oscillations and waves: P wave, QRS complex oscillations and T wave 

• two time intervals important in clinical practice: the PR interval and QRS duration 

ST segment, the most important part of the ECG. 

• The findings of ST segment abnormalities store allows early diagnosis of A M I and myocardial 

ischemia. 
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Figure. 1.3: The basic shape of the electrocardiogram 

P wave 

The first part of the P wave records the electrical activity of the right atrium. The central 

part of P wave arises at the completion of right atrial activation and early activation of the left 

atrium. The terminal portion of P wave consists of left atrium. P wave is the first deflection of 

the electrocardiogram, is a small, smooth rounded contour displacement before complex 

oscillations of QRS complex. 

PR Interval 

PR interval time information on who needs an electrical impulse from the atrium to the 

A V intersection node bundle of His, Tawara's branches and Purkinje fibers to the beginning 

depolarization of muscle cells. 

QRS complex 

QRS complex is the image of the electrical activation of the ventricular myocardium and 

electric power resulting in depolarization of ventricular muscle in the E C G register as sharp 

oscillations. Sharp scissors oscillations are referred to as the QRS complex regardless of whether 

they are mostly positive (directed upward) or negative (downward). 

The origin of the QRS complex 

QRS complex formation makes the three vectors. The electrical impulse that spreads 

from the SA node,activates the hall and there is a P wave, the first wave of the 
12 



electrocardiogram. Procedure electric impulse slows briefly at the A V node and then quickly 

spread bundle of His, right and left Tawara's branches and the Purkinje fibers into the ventricular 

myocardium.Dissemination electrical impulse ventricular septal myocardium is called 

depolarization, and that is the cause oscillations of the QRS complex on ECG. 

ST segment 

ST segment lies between the end of the QRS wave and the beginning of T. inform the 

moment in which all parts of the ventricles is depolarized, or the phase in which they are aligned 

electric power and incipient depolarization ended repolarization, which are mutually offset 

(neutralize). The course of ST segment may be affected in varying degrees early 

repolarization. The point at which the ST segment withdraws from the QRS complex is called J 

(Junction). ST segment normally flows into the ascending part of the T wave and has no place 

quite horizontally, nor with ascending part of the T wave to create sharp angle. 

Twave 

T wave, broad rounded wave shape, resulting from the electrical recovery, repolarization 

chambers. T wave following each QRS complex and is separated from the QRS time interval, 

which is constant for each ECG. Given that the recovery Chambers is the direction of their 

activation, polarity of the resulting vector is similar to T polarity of the QRS vector. T wave 

arises at the time of mechanical systole ventricles, the QRS complex it immediately precedes 

it.Processes associated with the emergence of the T wave of energy-in the development QRS 

energy is consumed. Metabolic activity of muscle cells and energy is necessary for repolarization 

during movement of ions in this process. Repolarization and configuration of the T wave may 

therefore be influenced by some metabolic, haemodynamic and physiological circumstances. 

According to Levine, there are approximately 67 causes of T wave shape changes, like drinking 

ice water, swallowing food, exercise, starvation, infection, fever, tachycardia, anoxia, shock, 

electrolyte disturbances, acidosis, alkalosis, hormonal disorders, subarachnoid hemorrhage and 

the influence of drugs or alcohol. 

U wave 

The U wave is a wave that follows the T wave is seen on the E C G records only for some 

individuals. Its voltage is low, in some leads, it can be difficult to find. Its origin is unclear. 
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1.7 Lead systems 

According to the site to capture leakage distinguish between different systems: 

• standard 12-lead system (leads I, II, III, aVR, aVL, aVF, VI-V6) using 10 electrodes, 

• orthogonal discharge system according to Frank (leads X , Y , Z) uses eight electrodes 

• modified systems for stress ECG. 

1.7.1 The standard 12-lead system 

Classic mode is E C G registration 12 lead system. It consists of both bipolar leads, 

through which we register the potential difference between two points, and both unipolar 

leads. Unipolar leads potentials recorded from a single location due to the zero potential 

(indifferent electrode). Bipolar limb are leads I, II, III, the other leads are unipolar. For a 

standard form 12 lead system E C G bipolar limb leads the Einthoven triangle. The combination 

of limb electrodes using the same resistance is obtained Wilson's terminal, which is virtually 

constant, zero potential to form a reference point against which to measure the potential of the 

unipolar chest and limb leads enlarged. 

Figure. 1.4: (A) The circuit of the Wilson central terminal (CT). 

(B) The location of the Wilson central terminal in the image space (CT'). It is located in 

the center of the Einthoven triangle. 
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Electrodes limb leads is the best place on the inside of the forearm or leg where the skin 

is less resistance than on the outside. Of course, after soaking or applying a small amount of 

paste according to the type of E C G electrodes. Localization of electrodes the limb leads is not 

essential, it means that they can be attached the arm or thigh, possibly on the shoulders ofpatients 

after amputation or significant tremor. The correct location is shown in Figure 1.5 

Location chest leads: 

• V I = 4 intercostal space to the right of the sternum 

• V2 = 4 intercostal space at left sternal 

• V3 = on a halfway between V2 and V4 

• V4 = 5 intercostal space in midclavicular line (center of the germ) 

• V5 = 5 intercostal space in the front axillary line 

• V6 = 5 intercostal space in mid axillary line 

1.7.2 Orthogonal lead system 

Taking orthogonal leads is not very widespread in Czech Republic. They provide a 

Mid Axillary 
Line 

Figure. 1.5: Positioning of the 6 chest leads 
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continuous image vector in three mutually perpendicular planes: frontal, sagittal and 

horizontal. Electrodes for sensing orthogonal leads are placed differently from conventional 

ECG. The most common is lead system according to Frank. Recording of cardiac vectors can be 

perform either a scalar, ie oscillations of ECG, or flat. In scalar views we get three leads, X , Y 

and Z. When we receive the printed display vector loop which form the essence 

vektokardiografie. Unlike the scalar E C G display can vektokardiografie obtained using planar 

display the size and direction of each vectors. Displaying horizontal in the frontal and sagittal 

plane and so we obtain a spatial orientation (Figure 1.6). 

TRANSVERSE 

Figure 1.6. Orthogonal lead system 
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1.7.3 Intracardiac leads 

They represent no special invasive investigative method by which we can information 

about the shape of the electric potential in the individual heart sections. It helps in the diagnosis 

of arrhythmias during catheterization informs us about the position the catheter in the heart. The 

implementation for permanent pacing electrodes, which can simultaneously serve as an electrode 

sensing, potentials can be recorded from the right heart and to assess the correct location. An 

important diagnostic method is the potential scan of His bundle. It is the structure of the 

conduction system connected to the atrioventricular node. They are divided into part joint and 

the arm, formerly known as the bundle. Bundle of His is an important from the 

electrophysiological point of view. Its cells are endowed with the ability of spontaneous 

excitation and thus produce rhythm. We talk about junctional ectopic contractions (junction - the 

area connection). Electrogram of His bundle gives detailed information on the atrioventricular 

conduction time. 

1.7.4 Special Lead Systems 

12-lead electrocardiogram represents a classic fundamental electrocardiographic 

examination. For more accurate diagnosis is sometimes necessary to supplement the examination 

of other leads, which can provide us with valuable information. Complementary to conventional 

E C G leads as leads V3R, V4R, which register from the right side of chest. Similarly, we 

continued to record leads V7, V8, V9, left axillary line between the back and spine at the level of 

leakage V6. With esophageal electrode can record high atrial potentials, better assess the 

electrical activity of fibrillation and its relation to ventricular electrical activity. Using the 

indicated in the differential-diagnostic resolution of atrial and ventricular arrhythmias. 

Scanning is simple. Esophageal electrode is introduced through the nose or mouth to a depth of 

35-40 cm from the teeth and the registration form is evaluated E C G atrial potential. 

Monitoring leads .We use them to monitor arrhythmias, usually in patients in bed. This is 

a manifold bipolar, with the placement of electrodes usually on the front chest. Monitoring leads 

are also used in some investigations of stress, such as stress echocardiography or during 

endurance training at high-risk persons. 

1.8 Electrodes 

A l l electrodes have one thing in common, despite all the diversity. It is metal-electrolyte 

combination. Metal is the material of electrodes, an electrolyte solution may take the form, 

gel can be formed or body fluids. What features will this pair will be depend both on the 
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electrode material, as well as on the chemical composition of the electrolyte. 

Capture and record an electrocardiogram (ECG) from the body surface is performed in principle. 

Three types of electrodes: 

a) The standard large-scale metal electrodes made of an alloy of zinc, copper and nickel. They 

are used for short-term E C G recording signals from limb leads. They are applied with a thin 

layer of electrode gel or aqueous electrolyte consisting of sodium chloride and potassium 

chloride. Are fixed to the skin elastic bandage or spring clamp. 

b) Suction electrodes used for sensing short-thoracic leads E C G signal, which are easily 

movable. They have the shape of hollow metal goblet. The skins fix the rubber suction blower 

through a layer of electrolyte. 

c) Floating electrodes Ag / AgCl . The electrodes are made of metal ceramic 

with silver and coated with a layer of silver chloride. Bulging discs are placed in 

plastic sleeve with space for gel or polyurethane foam saturated gel. Fixation to the skin is 

carried out double-sided adhesive tape. Electrodes are among unpolarized and are suitable for 

application in long-term monitoring. 

Division of electrodes can be made according to various criteria. According to the 

polariability electrode polarity and non-polarity, according to the location of the electrode 

surface and electrodes placed inside the body. Another division can be for example the shape or 

method of use. Some types of electrodes are shown in Fig 1.7 

Figure. 1.7: Children electrode, suction chest electrodes, limb electrodes 
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2. Basic types of E C G interference 

2.1 Sources of E C G Monitoring Artifact 

The electrical activity of the heart is sensed by monitoring electrodes placed on the skin 

surface. The electrical signal is very small (normally 0.0001 to 0.003 volt). These signals are 

within the frequency range of 0.05 to 100 Hertz (Hz.) or cycles per second. Unfortunately, other 

artifactual signals of similar frequency and often larger amplitude reach the skin surface and mix 

with the E C G signals.9'12 Artifactual signals arise from several internal and external sources. 

Internal or physiologic sources of artifact are: (1) signals from other muscles (electromyographic 

signals) and (2) signals produced in the epidermis. External or non-physiologic sources of 

artifact are: (1) 60 Hz. Pickup, (2) offset signals produced by the electrode itself, (3) signals 

produced by the interaction of body fluids and the electrode gel, and (4) lead wire and patient 

cable problems. [14] 

2.2 Physiologic Sources of E C G Artifact 

Electromyographic (EMG) Signals - A l l muscle activity produces electrical signals. 

Signals from muscles other than the heart are called E M G signals and appear on the monitor as 

narrow, rapid spikes associated with muscle movement. These signals are sufficiently dissimilar 

to the E C G signals that they can be electronically reduced or "filtered" from the trace. This 

filtering is readily observed by reduction in the size of E M G signals as the monitor is switched 

from the diagnostic mode to the monitor mode (in monitors so equipped). [14] 

Epidermal Signals - The skin is a source of electrical signals which produce motion 

artifact. Studies have revealed that a voltage of several millivolts can be generated by stretching 

the epidermis, the outer layer of the skin. This stretching is the primary source of movement-

related (motion) artifact. This type of artifact is visible as large baseline shifts occurring when the 

patient changes positions in bed, eats or ambulates. Epidermal artifact is more troublesome than 

other types of artifact because: (1) it is difficult to filter electronically and (2) its amplitude is 

often larger than the E C G signal. [14] 

2.3 Non-Physiologic Sources of E C G Artifact 

50 Hz. Pickup - This type of artifact, also called 50 Hz. Interference, produces a wide, 

fuzzy baseline. It is related to poor electrode contact associated with poor skin preparation 

techniques, dried electrode gel, or defective patient cables or lead wires. [14] 
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The source of 50 Hz. pickup is the 50 Hz. current which supplies power to the electrical wall 

outlets. The 50 Hz. energy "radiates" from the electrical wiring in the patient's room and is 

received in the lead wires and by the patient. The source of radiation cannot be eliminated, but 

modern monitors can reduce 50 Hz. pickup by filtering and by an electronic technique called 

common mode rejection. This technique requires good skin contact by all electrodes. One or 

more electrodes with poor contact will result in the wide fuzzy baseline. [14] 

Offset Potentials - An offset potential is a voltage that is stored by the electrode. This 

stored voltage will add to the E C G signal and interfere with it. (The offset potential causes the 

disappearance of the E C G after defibrillation.) The amount of offset potential and the length of 

time required for it to dissipate are determined by the materials used for the electrode and the 

gel. Certain combinations of metals and gels generate large voltages (up to 200 millivolts) with 

the ability to hold this voltage for long periods of time. Electrode materials such as silver-silver 

chloride do not allow significant buildup of offset potential, whereas stainless steel electrodes 

have poor offset characteristics. Most electrodes used for E C G monitoring today are made of 

silver-silver chloride. With the common use of the silver-silver chloride electrode, offset 

potentials are no longer considered to be a significant problem. [14] 

Electrode Gel - until recently, movement of the electrode gel under the electrode was 

thought to be the primary cause of motion artifact; however, studies have revealed that this effect 

is minimal. 8 ' 1 2 The electrode gel does, however, significantly affect the transmission of signals 

from the skin to the electrode. The lack of sufficient electrode gel, frequently due to evaporation 

caused by improper storage, results in 50 Hz. pickup and extremely unstable traces. This type of 

artifact is easily identified by very high electrode impedances. [14] 

Lead Wire and Cable Problems - Breaks in the wires and connections between the 

electrode and the monitor will always be a source of monitoring problems. Poor contact at any 

snap connection, loose pins at the cable end of the lead wire, and breaks in the conductors of the 

lead wire or patient cable can cause intermittent loss of the E C G tracing, 60 Hz. pickup, or trace 

instability. [14] 

2.4 Electrode Impedance 

In order for E C G signals to pass from the body to the electrode, an electrically conductive path 

between the skin and electrode must be established. The conductive ability of this path is 

referred to as electrode impedance or contact impedance. Electrode impedance is measured in 

ohms. High impedance decreases the conduction of the E C G signal. Low impedances improve 
2U 



this conduction. The major factors affecting electrode impedance are: (1) the quantity and quality 

of gel between the electrode and the patient and (2) the degree to which the outer layer of the 

epidermis (the stratum corneum) has been bridged by the conductive gel. 

Proper site preparation (as described below) will produce contact impedances of 10,000 ohms or 

less in 90% of patients.9 Less than 5,000 ohms is a good target value. Improper site preparation 

will usually produce contact impedances as high as 100,000 to 200,000 ohms. [14] 
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3. E C G processing 

3.1 Basic functions 

It is simpler to explain a basis function if we move out of the realm of analog (functions) 

and into the realm of digital (vectors) (*). Every two-dimensional vector (x,y) is a combination 

of the vector (1,0) and(0,l). These two vectors are the basis vectors for(x,y). Why? Notice 

that x multiplied by (1,0) is the vector (x,0), and y multiplied by (0,1) is the vector (0,y). The 

sum is (x,y). [13] 

The best basis vectors have the valuable extra property that the vectors are perpendicular, 

or orthogonal to each other. For the basis (1,0) and (0,1), this criteria is satisfied. Now let's go 

back to the analog world, and see how to relate these concepts to basis functions. Instead of the 

vector (x,y), we have a function f(x). Imagine that f(x) is a musical tone, say the note A in a 

particular octave. We can construct A by adding sines and cosines using combinations of 

amplitudes and frequencies. The sines and cosines are the basis functions in this example, and 

the elements of Fourier synthesis. For the sines and cosines chosen, we can set the additional 

requirement that they be orthogonal. How? By choosing the appropriate combination of sine and 

cosine function terms whose inner product add up to zero. The particular set of functions that are 

orthogonal and that construct f(x) are our orthogonal basis functions for this problem. [13] 

A basis function varies in scale by chopping up the same function or data space using 

different scale sizes. For example, imagine we have a signal over the domain from 0 to 1. We 

can divide the signal with two step functions that range from 0 to 1/2 and 1/2 to 1. Then we can 

divide the original signal again using four step functions from 0 to 1/4, 1/4 to 1/2, 1/2 to 3/4, and 

3/4 to 1. And so on. Each set of representations code the original signal with a particular 

resolution or scale. [13] 

3.2 Some examples of wavelet form 

Wavelet transforms comprise an infinite set. The different wavelet families make 

different trade-offs between how compactly the basis functions are localized in space and how 

smooth they are. Some of the wavelet bases have fractal structure. The Daubechies wavelet 

family is one example 
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Z300 

Fig . 3.3 The fractal self-similiarity of the Daubechies mother wavelet 

This figure was generated using the WaveLab command: 

wave=MakeWavelet(2, -4, 'Daubechies', 4, 'Mother', 2048). 

The inset figure was created by zooming into the region x=1200 to 1500. 

Within each family of wavelets (such as the Daubechies family) are wavelet subclasses 

distinguished by the number of coefficients and by the level of iteration. Wavelets are classified 

within a family most often by the number of vanishing moments. This is an extra set of 

mathematical relationships for the coefficients that must be satisfied, and is directly related to the 

number of coefficients .For example, within the Coiflet wavelet family are Coiflets with two 

vanishing moments, and Coiflets with three vanishing moments. In Figure 3.4,1 illustrate several 

different wavelet families. [13] 
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Fig. 3.4 Several different families of wavelets 
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The number next to the wavelet name represents the number of vanishing moments (A stringent 

mathematical definition related to the number of wavelet coefficients) for the subclass of 

wavelet. Note: These figures were created using WaveLab, by typing: 

wave = MakeWavelet(2,-4,'Daubechies',6,'Mother', 2048); 
wave = M a k e W a v e l e t ( 2 , - 4 , ' C o i f l e t ' , 3 , ' M o t h e r ' , 2048); 
wave = MakeWavelet(0,0,'Haar',4,'Mother', 512); 
wave = MakeWavelet(2,-4,'Symmlet',6,'Mother', 2048); 

3.4 Wavelet filtering of E C G signal 

Scanned E C G signal is a mixture of useful signal and (almost entirely additive) 

interference spectrum of additive interference mingle with the useful signal spectrum. 

Classical linear filtering is applied for suppression of narrowband interference (drift and 

mains hum), the suppression of broadband myopotentials linear filters is problematic.The 

spectrum of useful signal occupies a band from about 1 to 125 Hz (lower limit is determined 

by heart rate). 

The quality resting E C G signal spectrum occupies myopotentials region above 100 

Hz, less good records (especially in very young children ECG), however, extends to 

muchlower frequencies. The presence complicates computing season's myopotential signal, 

especially finding the start and end of QRS complexes. Resting E C G signals preprocessing 

linear filters leads to extreme cropping cycles in breach of the QRS complex and sharp 

transitions at the beginning and end of QRS. 

Figure 3.5 Example of a possible shape of the cycle of the E C G signal indicating the voltage 

andtime data, which is measured as a basis for subsequent interpretation. [2] 
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3.5 Signal filtration with DTWT 
Signal filtering is to modify the wavelet coefficients resulting from direct application 

DTWT and their reconstruction using inverse DTWT. The whole process is nonlinear 
because of the use of non-linear thresholding of these coefficients. 

DTWT 

y?(n) 

o 
o 
o 

y,(n) 

Correction 
of wavelet 
coefficients I DTWT 

0(n) 

Fig. 3.6 Wavelet filtration principle [2] 

Where x(n) is a signal with additive noise component, yt(n) is divided into signals 
different frequency bands and o(n) are filtered output signal. 

3.6 Thresholding of wavelet coefficients 

3.6.1 Hard thresholding 

Hard and soft thresholding is one of the basic types of thresholding coefficients DTWT. 
Let the input value as y (n) as a threshold X and the output value as y. Then for hard 
threshold applies: 

y pro v M |>A 
\ 0 pro \y(n\ < A 

(3.1) 

This means that all the coefficients y (n), which are smaller than the specified threshold will be 
reset. 

3.6.2 Soft thresholding 

For the soft thresholding we can apply: 

yv*)=' 
pro \y(n] >A 

pro \y{n)\ < A 
(3.2) 
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This means that all the coefficients y (n), which are smaller than the specified threshold 
will be reset (as well as the hard thresholding), but also to move the remaining coefficients size 
threshold toward zero. 

Fig. 3.7 Principle of thresholding: a) hard, b) soft 

3.6.3 Determination of thresholding values 

Threshold depends on the input noise level when the input is highthe ratio of signal to 
noise threshold is higher. Noise level w is represented by ow standard deviation or by dispersion 
a.2Assuming an additive mixture of x (n) of the useful signal s (n) and noise w (n): 

x(ri) = s(ri) + w(ri) (3.3) 

If we denote the coefficients DTWT input signal JC (n) as ym(n), the useful signal 
um (n) and noise vm(n) where n is the index of the coefficient of m-th level of decomposition, 
thanks linearity DTWT we can write: 

yjn) = ujn) + vm(n) (3.4) 

Next, suppose that the noise component of the input signal is represented by white 
noise, i.e a stochastic signal which is characterized by three features: 

- zero mean value 

/*„ = E{w(n)} = 0, (3.5) 

- medium output which equals to dispersion 

Pw = E{w2(n)J = E{(w(n) - Mw)2} = o\ (3.6) 

- autocorrelation sequence 

rww(n) = o WS (n), where S (n) = 1 for n=0, S (n) = 0,for 0, (3.7) 

from which it is clear that it is not correlated. 
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3.6.4 Universal threshold 

Universal method of threshold determination was created by Donoho and Johnstone [8]. 
Based on number of samples N and the standard deviation of additive white noise ow, we 
calculate the value X that minimizes the risk of deviations from the optimal (but unknown) 
threshold values. 

X = awV21n(JV) (3.8) 

Thresholding is then performed for all the wavelet coefficients. The method can be used for 
soft, hard and hybrid thresholding. 

3.6.5 Empirical threshold 

Empirical threshold is used in cases where the use of universal threshold does not 
achieve the desired results. This is the multiplication of noise by standard deviation with 
empirical constant K, and the result is the threshold value 

X = Kow (3.9) 

or threshold values for every band separately 

Xm = Kmo~m (3.10) 

3.7 Wiener Filtration 

Wiener filter is used incases of appreciable diffusion noise spectrum components^ (n) 
and the spectrum of useful signal s (n). Assuming that the input signal JC (n) = s (n) +w (n), i.e a 
mixture of both additive (uncorrelated components), Wiener filter in frequency domainis an 
optimal correction factor Hopt (co) for the correction of the spectrum X (co), for 

Y(co)=X(co)Hopt(co) (3.11) 

being optimal approximation for the spectrum S(co) of useful signal in the meaning of the 

smallest standard deviation of y(n) from s(n), here: y(n) = s(n) + e(n), where 

E{e2(n)J—>mmWiener's correction factor has the form: 

/ W O ) = / f ( t d ) : -, (3.12) 

where R s s (co) is a useful signal power spectrum and R w w (CD) is the noise power spectrum. 
This expression contains the original signal power spectrum, which in practice often 
not occur, that's why it has relationship (3.13) and more practical form: 
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Rxx{oi) 
because expected non-correlation of separated components leads to the possibility of expression 
power spectrum Rxx (co) input as Rxx(co) = Rss (co) + Rww (co). The correction factor becomes 
always fair value from the interval <0, 1 > for each specific value of frequency co. 

There is also an analogy to the above method of filtering, in which the appropriate 
correction factors multiplied by the individual coefficients DTWT. We define analog (3.11) 
correction factors that are looking for gm(n) such that the adjusted values of the coefficients 
DTWT 

Aym(n) = ym(n)gm(n) = gm(n)[um(n)+vm(n)] (3.14) 

were optimal approximation of coefficients um(n) of useful signal in the meaning of the smallest 

standard deviation of y(n) from s(n), 
Wiener correction factor is defined as 
standard deviation of y(n) from s(n), hereof") = s(n) + e(n), where E{e2(n)}^min. In [2] this 

Unfortunately we do not know the value of noise coefficients vm(n) in the m-th band, 
because they are part of an additive mixture of wavelet coefficients ym(n), but their square can 
bereplaced by estimation in the form of dispersion of noise in the m-th band, so we get 

«-<»> = *Mf> (3-16) 

3.7.1 Hybrid threshold 

This threshold is about estimation of useful signal coefficients um(n), according to the example 

u?n(n) = max|/c • y£ - 0| (3.17) 

from [2]. After achieving the form [3.16] we will find the correction factor gm(n)in the form: 

gm(n)= max [ 1 - ^ ^ , 0 ] . (3.18) 

To find the correct coefficients of DTWT ym(n)let us multiply factor on "brutal" coefficients 
ym(n) according to (3.14) 

Ay(n) = ym{n)gm{n) = max [ym(n) - fc ^ ( w ) * o]. (3.19) 

If Jmin) - - T " - < 0 than xym(n) = 0, 
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2 2 
i f y - ( n ) - > 0 t h a n A ^ ( n j = ^ • • 

It is possible to derive, that there is a coefficient's thresholding of ym(n) with threshold 

A m = j=av and conditions A y (n) = [ y m ( n ) " ^ S ) / 0 r l y m ( n ) l > X m (3.20) [0 / o r \ym(n)\ <Xr 

Retrieved thresholding process defined above is shown in Fig. 3.8. It forms a sort of 
compromise between soft and hard thresholding. Coefficients whose values will be close to the 
threshold value will be affected (adjusted)substantially more than the coefficients with 
significantly under-threshold value. 

Hybrid thresholding 

output 
(thres=2) 0 

yy 
yy 

y/ 

y / 
y f 

/ y 
/ / 

/ y 
/y 

? - , , . 
-10 -8 -6 J -2 0 2 i 6 8 10 

Input 

Fig. 3.8 Hybrid thresholding according to (3.20) for Am=2. 

3.7.2 Pilot estimation method 

Another possibility to obtain the coefficients u (n) m is a useful method for the 
pilot signal estimate, which is described in [2], [9]. Its principle is outlined in Fig. 3.9 upper 
branch scheme used to obtain a pilot signal s(n) which should as far as possible correspond to a 
useful signal without noise. WT1 contains transformation, followed by treatment coefficients 
in block H and the inverse transformation IWT1. Transformation WT2, which is the basis 
Wiener wavelet filtering, is subject to both the input signal (electrocardiogram) and a pilot 
signal s (n). Both outputs are processed by hardware block, in which the correction factor is 
applied 

— 2 

2 2 
(3.21) 

where (n)are quadrates of useful signal coefficients from the pilot estimate s (n). 
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There is a bug in the calculation of adjusted coefficients ym(n) due to disagreement 
between optimal (from the pilot estimate) and the estimated coefficients of m-th band useful 
signal. This error is considered in detail in [2]. 

Input 

WT1 H IWT1 WT1 H IWT1 

I 
WT2 

WT2 HW IWT2 WT2 4 * HW IWT2 Output 

Fig.3.9 Wiener filtration with pilot estimate method [2] 

Appropriate adjustment of wavelet coefficients in a block of H is described in [2]. In the 
case when useful coefficients significantly higher than the noise coefficients is preferable to 
use hard thresholding. Otherwise, use a hard thresholding resulted in preservation under-
threshold values with a high proportion of noise and estimate the values of the pilotwill 
beaftertransformation WT2 mistakenly misrepresented as coefficients useful. For this 
reason, there will be more suitable to use soft thresholding, or choose a compromise in the form 
of hybridthresholding. 

3.7.3 Wiener filtering with FFT 

There are a lot of tasks in numerical processing, which are based on Fourier techniques. 
One of these is filtering to remove a noise from "corrupted" signals. Let us consider, that there is 
some underlying, uncorrupted signal u(t) that we want to measure. The measurementprocess is 
imperfect, however, and what comes out of our measurement device is acorrupted signal c(t). 
The signal c(t) may be less than perfect in either or both of two respects. First, the apparatus may 
not have a perfect "delta-function" response, so that the true signal u(t) is convolved with 
(smeared out by) some known responsefunction r(t) to give a smeared signal s(t) [11], 

S(f) = R(f)U(f) (3.22) 

where S, R, U are the Fourier transforms of s, r, u, respectively. Second, the measured signal c(t) 
may contain an additional component of noise n(t), 
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c(t) = s(t) + n(t) (3.23) 

We divide C(f) by R(f) to get a deconvolved signal. Now we want to treat a problem, when there 
is a noise. The task is to construct optimal filter 0(f), which will estimate true signal Uby [11] : 

0 ( O = ^ (3-24) 

How U can be close to £/? We want them be close in the least-square sense 

r j u ( t ) - u(t)\2dt = r j U ( / ) - f / ( / ) | 2 d/ is minimized (3.25) 

Substitutions equations (3.24) and (3.23), the right hand side of (3.25) becomes 

\[S(f)+N(f)]<t>(f) S(f) 

L 
df 

(. CO 

= l « ( / ) r 2 { | 5 ( / ) | 2 | i - HO\2 + \N(f)\2 MO\2W 
J —00 

(3.26) 

The signal S and the noise Af are uncorrected, so their cross product, when integrated over 
frequency/, gave zero.(This is practically definition of noise). Obviously (3.26) will be 
minimum if and only if the integrandis minimized with respect to (P(f) at every value of/. Let us 
search for such asolution where 0(f) is a real function. Differentiating with respect to 0, and 
settingthe result equal to zero gives 

This is the formula for optimal Wiener filter 0(f) [7] 
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4. E C G processing. Practical part. 

4.1 Choice of DTWT type. 
For tests carried out in other chapters is good to select the appropriate option DTWT. 

From studies carried out in [2] it is clear that 4 levels of decomposition is the most suitable, but 
in this paper we will consider 5 types of decomposition: from 2-level to 6-level. 

4.2 Choice of threshold value 
Wavelet coefficients are modified depending on the chosen threshold value. 

Determination of the threshold level has a significant influence on the outcome of filtration 
itself. Its value should be calculated for each m band separately and its value may be based 
on the levelofinterference(standard deviation or variance) in this band[l] [2]. In this paper the 
level of threshold is defined by two methods: empirical and universal threshold (according to 
equations (3.8), (3.9)). 

4.3 Tested signals 
We have tested 5 signals from E C G database physionet.org [12] . This website includes a 

lot of E C G signal number, with different shape,they were taken from different people. 

We assume that all signals have zero noise component, i.e waveforms contain only useful 
signal. This assumption we will use in evaluating different methods of filtering by signal / noise 
ratio (SNR below). To evaluate the proposed methods of filtration in the ratio of the SNR is 
necessary to have a folder useful signal (ECG database) and noise component. Filtration methods 
are designed to get the best results in suppressing of myopotencial interference ("motion 
artifact"), so that's why spectral interference properties of the model should have myopotencial 
character. Frequency content of myopotentials is upwards of 10 to 500Hz with the dominant 
frequencies of 20 to 250Hz, useful signal spectrum has a band approximately 1 - 250Hz 
(where the bottom line is affected heart rate), [2]. 

One of the most important criteria of signal filtration quality is SNR. The output SNR 
will be calculated according to equation: 

2>(")P 
OTJ^,=10-logI0^ [dB]. 

2>(" ) - s ( " ) ] 2 

(4.1) 

Another outcome measure will be changes in the shape of filtered signals compared to 
the original signals. The primary area will be as a rule beginning and end of the QRS complex, 
a Q wave and S wave, the process can be considerably influenced by the higher threshold. Also 
the size of the R wave will be rated, but it can be cut off, filtration may also be the reason of 
the QRS complex dilatation. 
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Fig. 4.1 Example of tested signals 

4.4 Threshold experiments 
There are results from three type of thresholding. 4-level decomposition DTWT was used. 

Tab. 4.1 Values of output SNR for different thresholding 

E K G signal Input SNR [dB] Output SNR [dB] E K G signal Input SNR [dB] 

Hard thres. Soft thres. Hybrid thres. 

a l l 7 10 16,42 9.89 13.77 

e0103 10 17,88 11,15 14.95 

e0104 10 19.04 13,13 16,11 

e0105 10 18,33 12,24 15,78 

e0106 10 17,45 11,23 14,88 

Hard thresholding 

Hard thresholding method is quite radical. Weighted coefficient remaining after DTWT 
will be either left without change or will be reset. This has its advantages - strong 
suppression of noise components, minimal damage (distortion, dilatation), QRS high oscillation 
complex, but also disadvantages in terms of leaving a sharp noise pulses. This method 
of thresholding was, according to Tab. 4.1 as the best resultobtained in terms of output SNR. 
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Fig.4.2 the results after hard thresholding (signal e0106, universal threshold, filivHaar) 

Soft thresholding 

When using soft thresholding we can achieve "more smoothly" impression from the 
output signal that lacks sharp transitions.On the contrary, to some extent offset above-
threshold coefficients, which is reflected especially with cropping of high frequencies of QRS 
complex. The values obtained in the tab. 4.1 by this soft method are not very convenient, the 
main reason is a universal threshold. 

34 



original signal, filtered signal a chybový signal 

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 BOO 9 0 0 
n(.) 

1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 BOO 9 0 0 1000 

1*1 

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 
n(-) 

Fig.4.3 the results after soft thresholding (signal e0106, universal threshold, iiXivHaar) 

Hybrid thresholding 

This threshold constitutes a compromise between hard and soft thresholding method. 
It combines the advantages of both previous methods i.e. suppression and random interference 
pulses cropping and minimal dilatation of the QRS complex. Similarly, the range 
satisfactory results with respect to the output SNR (see Tab. 4.1). 

original signal, filtered signal a chybový signal 

100 200 300 400 500 600 700 800 900 1000 

n(-) 

100 200 300 400 500 600 700 800 900 1000 
n(.) 

0 100 200 300 400 500 600 700 800 900 1000 
n(-) 

Fig.4.4 the results after hybridthresholding (signal e0106, universal threshold, filtrHaar) 
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4.5 Wiener filtration with different level of DTWT decomposition 
Let us consider the problem of choice of level DTWT decomposition. There are 5 

possible variants: 2.3.4.5 and 6 levels. In this chapter we will use only hybrid threshold, like the 
most suitable for E C G filtration. 

Six-level DTWT decomposition 
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Fig. 4.5 Realization of six-level DTWT and IDTWT decomposition 

Realization in MatLab is obtained due to command swt, which performs a multilevel 1-D 
stationary wavelet decomposition using specific wavelet decomposition filters. From [2], we 
know that the best mixture of filters WT1 and WT2 are 'haar' and 'db3'. 
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signal: původní, zašuměny, vyfiltrovaný redundantní DTVvT 
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Fig. 4.6 Signal all7aüer 6-level decomposition 

Wiener Filter 
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Fig.4.7 Signal all7 after Wiener filter 

As we can see on fig. 4.7 the 6-level decomposition of DTWT is not very good variant 
for obtaining satisfaction results. A lot of useful information were lost during the first step -
decomposition on bands WT1. After that we obtained a signal without QRS complex and big P 
wave. Then Wiener filter's coefficients smooth this signal, but nevertheless it has lost useful 
data. 
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5-level of DTWT decomposition 
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Fig. 4.8 Realization of five-level DTWT and IDTWT decomposition 

puvodni signal, vyfiltrovaný signal a chybový signal 
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Fig. 4.9 Signal al 17 after 5-level decomposition, universal threshold 
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Fig. 4.10 Signal al 17 after Wiener filter, 5-level decomposition. 

As we can see on fig.4.9 and especially on fig.4.10, 5-level decomposition is going better, 
than the previous one. But it is also far from ideal, for example the wave T has a bigger value 
than any point of QRS complex. If we know the initial signal (our case), it is clear, that this 
filtration can be much better. 

4-level of DTWT decomposition 

So according to the [2], we should get good result. First of all let see the scheme: 
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Fig. 4.11 Realization of four-level DTWT and IDTWT decomposition 
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Fig. 4.12 Signal al 17 after 4-level decomposition, universal threshold 

Wiener Filter 

Fig. 4.13 Signal al 17 after Wiener filtration, 4-level decomposition 

As we can see, this type of decomposition is much more better than other previous, even 
after first part (I mean hybrid thresholding of signal allT), it seems to be good. The signal is 
smooth, without any peaks and another interferences. After Wiener filtration the max.values of 
the wave T is almost equal to the values of QRS complex. 

3-level of DTWT decomposition 

Let us consider next step - 3-level of DTWT decomposition. Here is its scheme: 
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Fig.4.14 Realization of three-level DTWT and IDTWT decomposition 
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Fig.4.15 Signal al 17 after 3-level decomposition, universal threshold 
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Fig. 4.16 Signal al 17 after Wiener filtration, 3-level decomposition 

As we can see on fig. 4.15 and 4.16, 3-level decomposition is not suitable for denoising of E C G 

signal. There are a lot of un-denoised myopotentials, which lead to bad quality of output signal. 

2-level of DTWT decomposition 

This is the last try to get good results, now there are only 2 levels. First of all scheme: 

x(n)=dc(n) Hh(z) 
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Fig.4.17 Realization of two-level DTWT and IDTWT decomposition 
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Signal: original, noisy, filtered by DTWT 

100 200 300 400 500 600 700 800 000 1000 

Fig.4.18 Signal al 17 after 2-level decomposition, universal threshold 
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Fig. 4.19 Signal al 17 after Wiener filtration, 2-level decomposition 

It seems that this algorithm almost doesn't work. Even after Wiener filtering, noise and 
other artifacts don't disappear. There some positive moments in QRS complex, but they are not 
so bright and evident. 

Now we can make a conclusion, that the most suitable form for E C G denoising is 4-level 
decomposition. 

Let us consider other 4 signals, which will be tested with Wiener filter with 4-level 
decomposition of DTWT and IDTWT. 
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Fig. 4.20 Signal e0103after Wiener filtration, universal threshold, hybrid thresholding 
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Fig. 4.21 Signal e0704after Wiener filtration, universal threshold, hybrid thresholding 
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Fig. 4.22 Signal e0705after Wiener filtration, universal threshold, hybrid thresholding 
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Fig. 4.23 Signal e070<5after Wiener filtration, universal threshold, hybrid thresholding 
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5. Discussion 

Before I started to work on this paper, I had thought that it would be much easier. But 
than during finding of good knowledge resources, I understood, that these theme of E C G Wiener 
filtering is not so popular and not a lot of people work with it. That's why for me it seemed much 
more interesting, try to implement Wiener filtering to the medical signal and also make some 
experiments with wavelet transformation and filtration. 

Now let me consider some results of my work with other researchers who are interested 
in this theme. One of the basing kriteria is signal - to noise ratio[dB]. For example [10] have got 
SNRout=17,5 dB for hard threshold, while [3] have got value about 20 dB. So even my 
expeirence in MatLab and in signal processing is very small, my SNR o u t =16.3 for hard 
threshold, and I think it is not bad result. 

Also it is very interesting to see on level of decomposition of other authors. So in this 
paper I made a conclusion, that 4-level of decomposion is the most suitable. Other researches 
for example [3] has also the same opinion. But there are also good results with 5 and 6 level of 
decomposition, it means that you can properly set a suitable threshold for every signal 

There is also another question - choise of filter for wavelet transform. Some 
works dealing with this issue for example, [10] prefer the use of filters with a short pulse 
characteristics for the position of WT1. Filters with longer impulse characteristics cause the 
emergence of oscillations at the beginning and end of QRS complexes.Recommended filters for 
the position of WT2 [10], they even have a longer pulse char, because of better frequency 
resolution. In this field there are bid number of variants, you need just to choose the most 
suitable one. 

Of course, this method of Wilter wavelet filtering is not the last point. There is another, 
which is more complicated method called „ Adaptive Wavelet Wiener Filtering Method " 
(AWWFM). Our method is improved by adding the block for the noise estimate (NE) (fig. 5.1) 

4n) 

WT3 
S 1 

H3 IWT3 
—>

 1 

WT3 
S 1 

H3 IWT3 
—>

 1 

SNR 

WWF N E WT4 
jSNR 

-4 

WT4 HW IWT4 
Output 

#0 

Fig. 5.1 The block diagram of the A W W F M method [3]. 

So the using of this method may be the logical continuous of my work and if in 
future I will decide to stay in this area, A W W F M method may be first aim to reach good results. 
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C O N C L U S I O N 

This paper describes various methods and their modifications suitable for filtering noisy 
signals, especially the real E C G records. 

The choice of hard thresholding method of wavelet coefficients DTWT filtration brings 
fair value of the output signal to noise ratio and significantly harm QRS complex, but leads 
to the occurrence of sharp noise pulses formed above-threshold DTWT coefficients. With 
appropriate setting of thresholds can these soft thresholding completely suppress the artifacts, 
but, unfortunately, there is a reduction of peak waves of a certain R. Compromise is to use a 
hybrid thresholding, which with a suitable minimum threshold cuts peaks of QRS waves and to 
some extent able to suppress the above-threshold noise DTWT coefficients. 

The selection threshold is appropriate to combine the chosen threshold. Some 
combinations such as hard thresholding with universal threshold (as well as with empirical 
threshold at which it is chosen too high constant K) whose value is based is too high 
does not bring good results. It is suitable for the selected thresholding experiment with the 
settings of the empirical constants at threshold. Selection of filter banks for wavelet 
transform is evaluated according to two aspects similarly to the selection threshold. From the 
group of orthogonal filters achieved in terms of output SNR better filters with 
shorter impulse characteristic, which have smaller ripple output signal at the end of the 
QRS complex. The lower level of the input SNR perform better biorthogonal filters longer 
impulse response at higher SNR at the input, the resulting values are comparable. The output 
signal waveforms at biorthogonal filters is evident that a shorter impulse response 
better to suppress ripple end of the QRS complex. 
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