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ABSTRACT
The main objective of this thesis is to derive the Hamiltonian equations for left-invariant
problems on Lie groups. Our motivation is as follows. The motion of a 3D rigid body
can be formulated as an optimal control problem in R3. The Pontryagin’s Maximum
Principle (PMP) can be applied to solve such a problem. However, the motion of a rigid
body can also be viewed as a problem on the Lie group SE(3). This problem belongs to
the class of left-invariant problems. To further simplify the problem, we assume a left-
invariant Hamiltonian function. The usual approach in studying such problems involves
first defining the Lagrangian function, then obtaining the Hamiltonian function, and
finally formulating the Hamiltonian equations. However, we take a different approach.
We derive the Hamiltonian equations for a general Lie group and a general left-invariant
Hamiltonian, and then explore the types of problems that can be described by choosing
specific Lie groups and Hamiltonian functions. The theoretical results obtained are then
applied in the development of simulation scripts for both rigid body motion and soft
body motion which utilizes CGA as its computational core. We have opted for CGA
due to its remarkable computational capabilities in this context. By utilizing CGA, we
naturally obtain dimension independence without any additional effort.

KEYWORDS
Lie group, Lie algebra, left-invariant systems, left-invariant Hamiltonian, control theory
on Lie groups, rigid body motion, soft body motion, conformal geometric algebra, CGA

ABSTRAKT
Cílem této práce je odvodit rovnice levo-invariantních Hamiltonovských systémů na Lie-
ových grupách. Naše motivace je následující. Pohyb tuhého tělesa v 3D prostoru lze
formulovat jako úlohu optimálního řízení na R3. Pro takto formulovanou úlohu lze vyu-
žít Pontryaginův princip maxima (PMP). Nicméně pohyb tuhého tělesa lze také chápat
jako úlohu na Lieově grupě SE(3). Tato úloha patří do skupiny tzv. levo-invariantních
úloh. Jako další zjednodušení volíme také levo-invariantní Hamiltoniány. Běžný postup
při studiu takových úloh je, že formulujeme Lagrangián této úlohy, odvodíme Hamil-
tonián a následně formulujeme Hamiltonovy rovnice. Náš postup je opačný. Odvodíme
Hamiltonovy rovnice pro obecnou Lieovu grupu a obecný levo-invariantní Hamiltonián
a následně zkoumáme, jaké typy úloh můžeme popsat volbou konkrétní Lieovy grupy
a konkrétního Hamiltoniánu. Teoretické výsledky poté využijeme k vytvoření simulač-
ního skriptu pohybu tuhého a pružného tělesa, který využije konformní geometrickou
algebru (CGA) jako své výpočetní jádro. CGA je totiž nesmírně silný nástroj pro popis
této problematiky, jelikož využitím CGA lze vyvinout kód, který je nezávislý na dimenzi
uvažovaného prostoru bez větší námahy.

KLÍČOVÁ SLOVA
Lieova grupa, Lieova algebra, levo-invariantní systémy, levo-invariantní Hamiltonián, te-
orie řízení na Lieových grupách, pohyb tuhého tělesa, pohyb pružného tělesa, konformní
geometrická algebra, CGA





ROZŠÍŘENÝ ABSTRAKT
Cílem této práce je odvodit rovnice levo-invariantních Hamiltonovských systémů na
Lieových grupách. Naše motivace je následující. Pohyb tuhého tělesa v 3D prostoru
lze formulovat jako úlohu optimálního řízení na R3. Pro takto formulovanou úlohu
lze využít Pontryaginův princip maxima (PMP). Nicméně pohyb tuhého tělesa lze
také chápat jako úlohu na Lieově grupě SE(3). Tato úloha patří do skupiny tzv.
levo-invariantních úloh. Jako další zjednodušení volíme také levo-invariantní Hamil-
toniány. Běžný postup při studiu takových úloh je, že formulujeme Lagrangián
této úlohy, odvodíme Hamiltonián a následně formulujeme Hamiltonovy rovnice.
Náš postup je opačný. Odvodíme Hamiltonovy rovnice pro obecnou Lieovu grupu
a obecný levo-invariantní Hamiltonián a následně zkoumáme, jaké typy úloh můžeme
popsat volbou konkrétní Lieovy grupy a konkrétního Hamiltoniánu. Teoretické
výsledky poté využijeme k vytvoření simulačního skriptu pohybu tuhého a pružného
tělesa, který využije konformní geometrickou algebru (CGA) jako své výpočetní já-
dro. CGA je totiž nesmírně silný nástroj pro popis této problematiky. Tento fakt
můžeme velmi jednoduše ilustrovat. Uvažujme grupy SE(2) a SE(3). Jejich prvky
jsou pochopitelně velmi rozdílné matice a vývoj kódu, který by byl nezávislý na
tom, kterou z nich zvolíme by byl velmi složitý. Ve velmi ostrém kontrastu pak
máme 2D CGA a 3D CGA. Báze vektorů v 3D CGA obsahuje oproti 2D CGA jeden
prvek navíc. Ostatní blady (včetně bivektorů, které jsou pro náš zvlášť podstatné)
jsou generovány touto bází. Ve výsledku je tedy popis využívající CGA naprosto
nezávislý na dimenzi a můžeme využít stejné výpočetní jádro pro 2D CGA i 3D
CGA.

Jak vyplývá z předchozího odstavce, tato práce využívá teorii z několika různých
oblastí matematické teorie, které jsou v práci popsány. V první kapitole se věnu-
jeme zavedení pojmů potřebných algebraických struktur a funkcí na nich. Vycházíme
z pojmů diferenciální geometrie. Připomene definici 𝑛-dimenzionální hladké variety
𝑀 , jejího tečného prostoru v bodě 𝑇𝑞𝑀 a tečného bandlu 𝑇𝑀 . Dále definujeme
hladká vektorová pole na hladké varietě, což jsou hladká zobrazení 𝑋 : 𝑞 ↦→ 𝑇𝑞𝑀 .
Definujeme tento pojem (a relevantní pojmy s ním spojené) také pro hladkou vari-
etu, protože řešení úlohy levo-invariantních Hamiltonovských systémů na Lieových
grupách je integrální křivka v Lieově grupě. Zavedené pojmy následně demonstru-
jeme na 2-dimenzionální sféře 𝑆2. Následuje zavedení Lieovy závorky vektorových
polí. V této práci nevycházíme z axiomatického zavedení obecné Lieovy závorky,
ale využíváme její vlastnosti na vektorových polích a axiomy poté ukazujeme jako
její vlastnosti. Tento alternativní postup je běžnější při zavádění pro účely teorie
Lieových grup, proto jsme jej zvolili též. Dalším krokem je definice Poissonovy
závorky, to je bilineární a antisymetrický operátor na 𝐶∞(𝑇 *𝑀) – hladkých funkcích
na tzv. kotečném bandlu. Začneme tedy s definicí 𝑇 *𝑀 a poté uvádíme definici Pois-



sonovy závorky jako takové. Definice Poissonovy závorky je pro nás důležitá, pro-
tože nám umožňuje zavést pojem Hamiltonovského vektorového pole přidruženého
Hamiltoniánu.

S využitím těchto pojmů můžeme přistoupit k definici Lieovy grupy a Lieovy
algebry. Uvádíme jednak přesné definice a jednak příklady maticových Lieových
grup (obecnou lineární grupu GL(𝑛), speciální ortogonální grupu SO(𝑛) a Euk-
lidovskou grupu SE(𝑛)) a jejich příslušných Lieových algeber (gl(𝑛), so(𝑛), se(𝑛)).
Tyto příklady ukazujeme, protože na nich budeme zkoumat Hamiltonovské systémy.
Dále ukážeme, že tečné prostory (resp. kotečné prostory) Lieovy grupy jsou levo-
invariantní. Díky tomu máme globální trivializaci tečného bandlu (resp. kotečného
bandlu): 𝑇𝐺 ∼= 𝐺× 𝐿 (resp. 𝑇 *𝐺 ∼= 𝐺× 𝐿*), kde 𝐺 je Lieova grupa, 𝐿 její Lieova
algebra a 𝐿* duál Lieovy algebry. Tato vlastnost, která pro obecnou hladkou varietu
platí jen lokálně, nám umožní zjednodušit Hamiltonovy rovnice.

V druhé kapitole se věnujeme teorii optimálního řízení. Nejprve připomeneme
úlohu optimálního řízení a PMP na R𝑛 a poté ukážeme, jak tuto úlohu a PMP
formulujeme pro případ obecné hladké variety. Následně uvádíme, jak vypadají
Hamiltonovy rovnice pro zjednodušený případ levo-invariantního systému a levo-
invariantního Hamiltoniánu. Tvrzení o tom, jak rovnice můžeme zjednodušit také
dokazujeme, jelikož je klíčové pro tuto práci.

V třetí kapitole zavádíme indefinitní speciální ortogonální grupu SO(p, q), která
je Lieovou grupou, její Lieovu algebru a konformní geometrickou algebru (CGA).
Jak čtenář jistě tuší, v následujících kapitolách budeme volit SO(3), SE(3) a také
SO(4, 1) jako Lieovy grupy, na kterých budeme pozorovat výsledky ze sekce 2.1.
Protože bivektory v CGA jsou izomorfní Lieově algebře so(4, 1), můžeme úlohu také
zformulovat na CGA. Toho využijeme v kapitole 5.

Ve čtvrté kapitole začínáme komentářem ohledně koadjungovaného operátoru,
který se vyskytuje v rovnici 2.8. Dále se již věnujeme příkladům Hamiltonovského
formalismu. Jak jsme již zmínili, volíme postupně grupy SO(3), SE(3) a SO(4, 1).
Ve všech třech případech volíme Hamiltoniány ve formě kvadratické formy, lineární
formy a kvadratické funkce bez absolutního členu na dané Lieově algebře.

Ne příliš překvapivě jsme zjistili, že kvadratická forma na SO(3) modeluje rotační
pohyb tuhého tělesa, nicméně volbou koeficientů kvadratické formy lze také získat
vyjádření rovnic geodetiky, případně sub-Riemannovské geodetiky. Ukazuje se, že
lineární Hamiltonián nemá nijak zvlášť hezké aplikace, což plyne z toho, že pro
něj nelze zformulovat Lagrangián. Hamiltonián v podobě kvadratické funkce bez
absolutního členu lze využít jako model modelu pohybu tuhého tělesa, na které
působí síly konstantní v referenční soustavě tělesa. Jelikož Lagrangián této úlohy
je také kvadratická forma, lze takto modelovat geodetiky. Volba SE(3) přidává
navíc tři dimenze v Lieově algebře. Pomocí nich lze nyní modelovat nejen rotační,



ale i translační pohyb tuhého tělesa. Jelikož zbylé aplikace jsou podobné těm na
SO(3), věnujeme se blíže především pohybu tuhého tělesa. Přidáním lineárního členu
získáme navíc působení sil, ale opět jen těch, které jsou konstatní v body framu.
V opačném případě by Hamiltonián nemohl být levo-invariantní. Zvolením SO(4, 1)
získáme navíc k translačnímu a rotačnímu pohybu involuce, inverze, škálování a další
operace. Pro nás je především zajímavé škálování. V aplikacích tohoto případu
už nemůžeme mluvit o tuhém tělese, jelikož dochází k jeho deformaci. V oblasti
výpočetní grafiky a modelů je toto těleso nazýváno „soft body“ (srov. s „rigid
body“). Český ekvivalent tohoto pojmu je pružné těleso. Hamiltonián ve formě
kvadratické formy modeluje pohyb pružného tělesa bez působení sil, které lze přidat
pomocí lineárního členu v Hamiltoniánu.

V poslední kapitole jsou popsány tři skripty, které byly naprogramovány k této
práci. V prvním ukazujeme pohyb tuhého tělesa (popsaný v projektivní geometrické
algebře), nicméně tento příklad je koncipován tak, že můžeme demonstrovat jednu
vlastnost popisu levo-invariantních systémů pomocí Lieovy algebry a to, že tento
popis nezávisí na dimenzi prostoru, který uvažujeme. Každý příklad tedy ukazujeme
pro 2D i 3D prostor v tom smyslu, že tuto dimenzi volíme jako proměnnou skriptu,
veškerý ostatní kód zůstává stejný. Byly vyvinuty dvě verze toho skriptu, jedna
generující animace pohybu a druhá, která pohyb vygeneruje na nějakém časovém
intervalu a poté zobrazí několik řezů v čase, abychom mohli výsledky prezentovat
v této práci. Výsledky simulací se shodovaly s výsledky kapitoly 4.

Následující skript ukazuje výpočty v CGA, modelujeme tedy pohyb pružného
tělesa s i bez působení sil. V první řadě demonstrujeme, že CGA (a tedy i so(4, 1))
opravdu obsahuje translace a rotace, následně ukazujeme efekty smršťování a roz-
tahování při volbě nenulového koeficientu u bivektoru 𝑒0∞, který toto chování způ-
sobuje. Podobně jako v předchozím případě byly vytvořeny dvě verze tohoto skriptu,
jeden tvořící animace a jeden tvořící časové řezy pohybu. Výsledky opět reflektovaly
ty z kapitoly 4.

Výše popsané skripty byly napsány v jazyce JavaScript, poslední je napsaný
v Matlabu, ukazuje řešení úloh na SO(4, 1), tedy v maticové formulaci. K řešení
rovnice 2.8 využíváme funkci ode45, vývoj na grupě počítáme pomocí analytick-
ého řešení. Jelikož nemáme zvlášť vhodnou možnost prezentace výsledné křivky
na maticové grupě, vykreslujeme graf rychlostí v čase a kontrolujeme, že mat-
ice na křivce opravdu patří do grupy SO(4, 1), tedy jestli ve výpočtu nedochází
k velkým numerickým chybám. Výpočty jsme prováděli na datech ekvivalentních
datům z předchozího skriptu. Výsledné rychlosti reflektovaly výsledky animací,
křivka také zůstala na grupě. Celkově tedy máme pozitivní výsledek.
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Introduction
This thesis seeks to unify and generalize the concept of left-invariant Hamiltonian
systems on Lie groups which is currently regarded as state of art theory for the area
of simulation of rigid body motion in computer science ([1]). The following objectives
have been identified:

• Formulate Hamiltonian equations for general Lie groups and arbitrary left-
invariant Hamiltonian functions.

• Explore potential applications by selecting specific Lie groups and Hamiltonian
functions.

• Develop a computational tool for simulating rigid body motion using the the-
oretical findings.

While the concept of rigid body motion is widely recognized, its formulation as
an optimal control problem on the Lie group SE(3), particularly the simplification
of the Hamiltonian equations resulting from the group structure, is not as well-
known. Furthermore, the representation of this problem in geometric algebra is
a relatively novel research outcome from recent years.

The thesis will begin by defining the concepts of differential geometry, which
serve as the building blocks for more complex structures. This will be followed by
the definitions of Lie groups, Lie algebras, and left-invariant Hamiltonian systems,
which are crucial for the main statement and its proof. The subsequent chapter will
recall notions of control theory on R𝑛 and extend it to smooth manifolds. We will
then demonstrate the simplifications that arise when focusing on Lie groups and
left-invariant Hamiltonian functions, substantiating this claim with a proof.

To illustrate the practical implications of the research, we will apply the devel-
oped framework to real-world problems. In addition to well-established Lie groups
such as SO(3) and SE(3), we will introduce the Lie group SO(4,1), which encom-
passes both SO(3) and SE(3) as subgroups. Furthermore, we will introduce the Con-
formal Geometric Algebra (CGA). With these concepts established, our investigation
will delve into each of the three Lie groups, presenting the Hamiltonian equations
resulting from different choices of left-invariant Hamiltonian functions.

Finally, to visualize the outcomes in the context of rigid body motion, we will
develop an animation tool that leverages CGA as its computational core. We have
opted for CGA due to its remarkable computational capabilities in this context. Let
us consider the cases of SE(2) and SE(3) as illustrative examples. Those are funda-
mentally different matrix groups and it would be extremely challenging to develop
a unified code that accommodates both groups. In stark contrast, the utilization of
2D CGA and 3D CGA demonstrates the converse situation. The basis of vectors of
3D CGA has one more element in addition to the basis of vectors of 2D CGA. Since
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all other blades, including bivectors which are crucial in our approach, are generated
by base vectors, we naturally obtain dimension independence as a valuable attribute,
without any additional effort.
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1 Mathematical Background
In this chapter, our objective is to present a set of concepts that will aid in stream-
lining the formulations of control theory. We will begin by providing an overview
of fundamental notions in differential geometry. Subsequently, we will employ these
concepts to construct the Lie group, Lie algebra, and other relevant entities. The pri-
mary references utilized for this chapter are [2] and [3].

1.1 Introduction to Differential Geometry
In this section, our focus will be on introducing the fundamental concepts of differ-
ential geometry. Specifically, we will cover topics such as smooth manifolds, tangent
bundles, vector fields, and the flow of vector fields. It is assumed that the reader
has prior knowledge of basic notions in topology and analysis, chiefly the notion of
manifold.

Recall that on any manifold 𝑀 there are charts (𝑉, 𝜓), with 𝑉 ⊂ 𝑀 and home-
omorphism 𝜓 : 𝑉 → R𝑛, and the coordinate functions 𝑥𝑗 : 𝑉 → R. Thus, a point 𝑝
can be identified with an 𝑛-tuple:

𝜓(𝑝) = (𝑥1(𝑝), . . . , 𝑥𝑛(𝑝)) .

Now, a smooth manifold is, roughly speaking, a manifold endowed with smooth
maps between its charts. What exactly we mean by these smooth maps is shown in
the precise definition below.

Definition 1.1.1. Let 𝑀 be an 𝑛-dimensional manifold and let there be a collection
of charts {(𝑉𝛼, 𝜓𝛼)}𝛼∈𝐼 , where 𝐼 is a set of indices. Suppose that

∪𝛼∈𝐼𝑉𝛼 = 𝑀,

and that ∀𝛼, 𝛽 ∈ 𝐼, 𝑉𝛼 ∩ 𝑉𝛽 ̸= ∅, the map

Ψ𝛼𝛽 = 𝜓𝛼 ∘ 𝜓−1
𝛽 : 𝜓𝛽 (𝑉𝛼 ∩ 𝑉𝛽) → 𝜓𝛼 (𝑉𝛼 ∪ 𝑉𝛽)

is smooth. Then 𝑀 is called smooth (differentiable) manifold.

By our construction, the map Ψ𝛼𝛽 is map from R𝑛 to itself and thus the smooth-
ness is meant in the usual way.

1.1.1 Tangent Bundle and Vector Field

We now shift our focus to tangent bundles and vector fields. To begin, we explore
the concept of curves on smooth manifolds, which allows us to construct tangent
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vectors at points. Within the domain of differential geometry, smooth curves are
defined as smooth maps from an interval to a smooth manifold. However, it’s im-
portant to note that this parametrization is not unique. We say that two smooth
curves, denoted as 𝛾1 and 𝛾2, both mapping from the interval 𝐼 to the manifold
𝑀 and based at the point 𝑞 = 𝛾1(0) = 𝛾2(0) ∈ 𝑀 , are considered equivalent if
they share the same 1st order Taylor polynomial within some coordinate chart. It
becomes evident that this notion of equivalence satisfies the properties of an equiv-
alence relation, namely, reflexivity, symmetry, and transitivity. By utilizing these
equivalent curves, we can define the tangent space at a point on a smooth manifold.

Definition 1.1.2. Let𝑀 be an 𝑛-dimensional smooth manifold and let 𝛾 be a smooth
curve, s.t. 𝛾(0) = 𝑞 ∈ 𝑀 . Its tangent vector at 𝑞, denoted by

d
d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝛾(𝑡), or 𝛾̇(0), (1.1)

is the equivalence class in the space of all smooth curves in 𝑀 such that 𝛾(0) = 𝑞.
Moreover, the set of all tangent vectors at point 𝑞 is called the tangent space, and
we denote it by 𝑇𝑞𝑀 ,

𝑇𝑞𝑀 =
{︃

d
d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝛾(𝑡), 𝛾: 𝐼 → 𝑀, 𝛾(0) = 𝑞

}︃
.

The tangent space has a structure of an 𝑛-dimensional vector space. Moreover, by
𝑇𝑀 = ⋃︀

𝑝∈𝑀 𝑇𝑝𝑀 we denote the tangent bundle.

Remark 1.1.3. The tangent bungle 𝑇𝑀 of a smooth manifold 𝑀 is locally isomorphic
to 𝑀 × 𝑇𝑞𝑀 .

Definition 1.1.4. Let 𝑀 be a smooth manifold, 𝑞 ∈ 𝑀 . Then a smooth map
𝑋: 𝑞 ↦→ 𝑋(𝑞) ∈ 𝑇𝑞𝑀 is called a smooth vector field. The set of all smooth vector
fields on 𝑀 we denote by Vec (𝑀).

Now, let us shift our attention towards a few properties of the vector field.
Drawing an analogy from physics, we can envision the vector field as guiding us
along a path of least resistance. In classical calculus, we achieve this by solving
certain types of differential equations, be they ordinary or partial. Building upon
this intuitive notion, we aim to formalize these concepts based on the principles of
classical calculus.

An ordinary differential equation (ODE) on a smooth manifold 𝑀 given by
a vector field 𝑋 ∈ Vec (𝑀) is the following equation.

𝑞 = 𝑋(𝑞), 𝑞 ∈ 𝑀 (1.2)
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A solution of 1.2 is every smooth curve 𝛾: 𝐽 → 𝑀 , where 𝐽 ⊂ R is an open interval,
s.t.

𝛾̇(𝑡) = 𝑋(𝛾(𝑡)), ∀𝑡 ∈ 𝐽. (1.3)

We also call 𝛾 the integral curve of the vector field 𝑋. The standard theorem on
ODEs guarantees the existence of a unique solution to the equation 1.2 for any
initial condition within an open interval 𝐼. For full statements, proofs and results
of classical ODE, we advise to see [4]. Hence, we can formulate the Cauchy problem
on a smooth manifold.

Theorem 1.1.5. Let 𝑋 ∈ Vec (𝑀) and consider following problem⎧⎨⎩ 𝑞(𝑡) = 𝑋(𝑞(𝑡)),
𝑞(0) = 𝑞0.

(1.4)

Then ∀𝑞0 ∈ 𝑀, ∃𝛿 > 0 and there is an unique solution 𝛾: (−𝛿, 𝛿) → 𝑀 of 1.4, de-
noted by 𝛾(𝑡; 𝑞0). Moreover, the map (𝑡, 𝑞) ↦→ 𝛾(𝑡; 𝑞) is smooth on some neighborhood
of (0, 𝑞0).

The uniqueness of the solution is meant in following sense. Let 𝛾1: 𝐼1 → 𝑀 , 𝛾2:
𝐼2 → 𝑀 be two solutions of 1.4 on two intervals 𝐼1, 𝐼2 containing zero ⇒ ∀𝑡 ∈ 𝐼1 ∩𝐼2,

𝛾1(𝑡) = 𝛾2(𝑡). Thus definition of a maximal solution is sensible. The definition is
very natural. It is such a solution 𝛾: 𝐼 → 𝑀 of 1.4 that it is not extendable to
any interval 𝐽 ⊃ 𝐼. The vector field 𝑋 ∈ Vec (𝑀) from the problem 1.4 is called
complete if ∀𝑞0 ∈ 𝑀 , the maximal solution 𝛾(𝑡; 𝑞0) is defined on 𝐼 = R.

With complete vector fields we are able to study following family of maps called
the flow of the vector field.

Definition 1.1.6. Let 𝑋 ∈ Vec (𝑀) be a complete vector field and let 𝛾(𝑡; 𝑞) be
the integral curve of 𝑋, starting at 𝑞 for 𝑡 = 0. The family of maps

𝜑𝑡: 𝑀 → 𝑀, 𝜑𝑡(𝑞) = 𝛾(𝑡; 𝑞), ∀𝑡 ∈ R, (1.5)

is called the flow generated by 𝑋.

From theorem 1.1.5 it follows, that the map 𝜑: R × 𝑀 → 𝑀 is smooth in both
variables. The flow satisfies following identities:

𝜑0 = Id,
𝜑𝑠 ∘ 𝜑𝑟 = 𝜑𝑟 ∘ 𝜑𝑠 = 𝜑𝑟+𝑠, ∀𝑟, 𝑠 ∈ R,

(𝜑𝑡)−1 = 𝜑−𝑡, ∀𝑡 ∈ R.

(1.6)

An essential outcome arising from our construction of the flow is

𝜕𝜑𝑡(𝑞)
𝜕𝑡

= 𝑋(𝜑𝑡(𝑞)), 𝜑𝑜(𝑞) = 𝑞, ∀𝑞 ∈ 𝑀. (1.7)
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In addition, the exponential notation is frequently employed, which naturally follows
as a corollary of equation 1.7

𝜑𝑡 = exp{𝑡𝑋}, ∀𝑡 ∈ R.

The identities 1.6 and 1.7 then take the form, ∀𝑡, 𝑟, 𝑠 ∈ R,∀𝑞 ∈ 𝑀,

𝑒0𝑋 = Id,
𝑒𝑠𝑋 ∘ 𝑒𝑟𝑋 = 𝑒𝑟𝑋 ∘ 𝑒𝑠𝑋 = 𝑒(𝑠+𝑟)𝑋 ,(︁
𝑒𝑡𝑋

)︁−1
= 𝑒−𝑡𝑋 ,

d
d𝑡𝑒

𝑡𝑋(𝑞) = 𝑋
(︁
𝑒𝑡𝑋𝑞

)︁
.

Another essential property of the vector fields is that they differentiate smooth
functions on 𝑀 along the integral curves. Specifically, for any 𝑋 ∈ Vec (𝑀) and
𝑎 ∈ 𝐶∞(𝑀), 𝑋 induces action of 𝑎 on 𝐶∞(𝑀) defined as

𝑋: 𝐶∞(𝑀) → 𝐶∞(𝑀), 𝑎 ↦→ 𝑋𝑎,

where
(𝑋𝑎)(𝑞) = d

d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝑎
(︁
𝑒𝑡𝑋(𝑞)

)︁
, ∀𝑞 ∈ 𝑀. (1.8)

It might be beneficial to show what does the function 𝑎𝑡 = 𝑎 ∘ 𝑒𝑡𝑋 look like more
precisely. As the map 𝑡 ↦→ 𝑎𝑡 is smooth, we can expand this function as a sum in
terms of the parameter 𝑡. The first element in this expansion is obviously just 𝑎.
From 1.8 we immediately get the first-order element, 𝑋𝑎. Thus

𝑎𝑡 = 𝑎+ 𝑡𝑋𝑎+𝑂
(︁
𝑡2
)︁
,

where 𝑂(𝑡2) represents the term of order 𝑡2 or higher-order terms in the expansion.
In the next theorem, an expression of form 𝑋𝑛, 𝑋 ∈ Vec (𝑀), 𝑛 ∈ N is used. For
function 𝑎 ∈ 𝐶∞(𝑀), the term 𝑋𝑛𝑎 signifies repeated action of 𝑋 on 𝑎. We will
give a precise depiction of 𝑋2 in the proof of the following theorem.

Theorem 1.1.7. Let 𝑎 ∈ 𝐶∞(𝑀), 𝑋 ∈ Vec (𝑀). Denote 𝑎𝑡 = 𝑎 ∘ 𝑒𝑡𝑋 . Then
the formulas

d
d𝑡𝑎𝑡 = 𝑋𝑎𝑡, (1.9)

𝑎𝑡 = 𝑎+ 𝑡𝑋𝑎+ 𝑡2

2!𝑋
2𝑎+ 𝑡3

3!𝑋
3𝑎+ · · · + 𝑡𝑘

𝑘!𝑋
𝑘𝑎+𝑂

(︁
𝑡𝑘+1

)︁
(1.10)

hold.
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Proof. The second formula can be derived as an extension of 1.8. Consider function
𝑏 = 𝑋𝑎, where 𝑎 ∈ 𝐶∞(𝑀) then ∀𝑞 ∈ 𝑀 by 1.8

(𝑋2𝑎)(𝑞) = (𝑋𝑏)(𝑞) = d
d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝑏
(︁
𝑒𝑡𝑋(𝑞)

)︁
= d

d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

𝑋𝑎
(︁
𝑒𝑡𝑋(𝑞)

)︁
= d

d𝑡

⃒⃒⃒⃒
⃒
𝑡=0

d
d𝑠

⃒⃒⃒⃒
⃒
𝑠=0

𝑎
(︁
𝑒𝑠𝑋

(︁
𝑒𝑡𝑋(𝑞)

)︁)︁
= d2

d𝑟2

⃒⃒⃒⃒
⃒
𝑟=0

𝑎
(︁
𝑒𝑟𝑋(𝑞)

)︁
In the last step, we use substitution 𝑟 = 𝑠 + 𝑡. Thus we have obtained the second-
order element of the expansion, 𝑡2

2!𝑋
2𝑎. And the form so far

𝑎𝑡 = 𝑎+ 𝑡𝑋𝑎+ 𝑡2

2!𝑋
2𝑎+𝑂

(︁
𝑡3
)︁
.

By induction we would get the full expression. The formula 1.9 immediately arises
from 1.10.

d
d𝑡𝑎𝑡 = 𝑋𝑎+ 𝑡𝑋2𝑎+ 𝑡2

2!𝑋
3𝑎+ · · · + 𝑡𝑘

𝑘!𝑋
𝑘+1𝑎+𝑂

(︁
𝑡𝑘+1

)︁
= 𝑋𝑎𝑡

Thus the vector fields act as derivation of the smooth functions on 𝑀 . As
a corollary, we obtain another notation for the exponential

𝑒𝑡𝑋 = Id + 𝑡𝑋 + 𝑡2

2!𝑋
2 + 𝑡3

3!𝑋
3 + . . .

It could be beneficial to illustrate the key concepts of this section on an example.
For this purpose, we have selected the 𝑆2 sphere.

Example 1.1.8. The 𝑆2 sphere is defined as follows:

𝑆2 =
{︁
𝑥 ∈ R3: ‖𝑥‖ = 1

}︁
,

where ‖·‖ is the Euclidean metric. To show that this is a manifold, more precisely
a 2-manifold, we construct 2 charts. Let us denote

𝑈1 = 𝑆2 ∖ (0, 0, 1) , 𝑈2 = 𝑆2 ∖ (0, 0,−1) ,

spheres without a pole. The exact choice of this excluded point is not relevant.
Those open sets endowed with a stereographic projection are indeed charts covering
the whole sphere. The map between the charts from definition 1.1.1 is smooth, thus
𝑆2 sphere is a smooth manifold, which isn’t that surprising. The tangent plane at
point 𝑃 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is defined by the equation

𝑥𝑝𝑥+ 𝑦𝑝𝑦 + 𝑧𝑝𝑧 = ‖𝑃‖ = 1, ∀𝑥, 𝑦, 𝑧 ∈ R.

A plane is evidently a two-dimensional vector space. The construction of the tangent
plane in this particular example is highly intuitive. By utilizing the definitions
provided earlier, we can take, for instance, an equator and the main meridian, and
generate two linearly independent vectors at their intersection. Subsequently, we
can form the tangent space as the linear combinations of these vectors.
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1.1.2 Lie Bracket

The notion of Lie bracket of two vector fields 𝑋 and 𝑌 holds significant importance
for us. Essentially, the Lie bracket of two vector field represents the infinitesimal
motion of the vector field 𝑌 along the flow of 𝑋. In another words, Lie bracket
measures how much is 𝑌 changed by the flow of 𝑋 and vice versa.

Definition 1.1.9. Let 𝑋, 𝑌 ∈ Vec (𝑀). The Lie bracket of vector fields 𝑋 and 𝑌

is the vector field [𝑋, 𝑌 ] ∈ Vec (𝑀) such that ∀𝑞 ∈ 𝑀

𝛾(𝑡) = Id + 𝑡2 [𝑋, 𝑌 ] (𝑞) +𝑂(𝑡3) (1.11)

where the curve 𝛾 is defined as

𝛾(𝑡) = 𝑒−𝑡𝑌 ∘ 𝑒−𝑡𝑋 ∘ 𝑒𝑡𝑌 ∘ 𝑒𝑡𝑋(𝑞).

There exists an alternative, more convenient representation for the Lie bracket.
As previously mentioned, we interpret the product of two vector fields as a derivation
of functions. In the specific context of matrix Lie groups and algebras (which will be
introduced in detail later), this interpretation aligns with the matrix commutator,
and the exponential notation corresponds to the matrix exponentiation.

Theorem 1.1.10. Let 𝑋, 𝑌 ∈ Vec (𝑀). The Lie bracket of vector fields X and Y
can be equivalently expressed as follows:

[𝑋, 𝑌 ] = 𝑋𝑌 − 𝑌 𝑋. (1.12)

Proof. First, let us expand the exponential notation of the curve 𝛾(𝑡).

𝛾(𝑡) =
(︃

Id + 𝑡𝑋 + 𝑡2

2!𝑋
2 +𝑂(𝑡3)

)︃(︃
Id + 𝑡𝑌 + 𝑡2

2!𝑌
2 +𝑂(𝑡3)

)︃
(︃

Id − 𝑡𝑋 + 𝑡2

2!𝑋
2 +𝑂(𝑡3)

)︃(︃
Id − 𝑡𝑌 + 𝑡2

2!𝑌
2 +𝑂(𝑡3)

)︃
(𝑞)

=
(︃

Id + 𝑡(𝑋 + 𝑌 ) + 𝑡2

2!
(︁
𝑋2 + 2𝑋𝑌 + 𝑌 2

)︁
+𝑂(𝑡3)

)︃
(︃

Id − 𝑡(𝑋 + 𝑌 ) + 𝑡2

2!
(︁
𝑋2 + 2𝑋𝑌 + 𝑌 2

)︁
+𝑂(𝑡3)

)︃
(𝑞)

=
(︁
Id + 𝑡2(𝑋𝑌 − 𝑌 𝑋) +𝑂(𝑡3)

)︁
(𝑞)

Another important properties of Lie bracket of vector fields are
• bilinearity:

[𝑎𝑋 + 𝑏𝑌, 𝑍] = 𝑎 [𝑋,𝑍] + 𝑏 [𝑌, 𝑍] ,
[𝑍, 𝑎𝑋 + 𝑏𝑌 ] = 𝑎 [𝑍,𝑋] + 𝑏 [𝑍, 𝑌 ] ,
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• skew-symmetry: [𝑋, 𝑌 ] = − [𝑌,𝑋],
• satisfies the Jacobi identity:

[𝑋, [𝑌, 𝑍]] + [𝑌, [𝑍,𝑋]] + [𝑍, [𝑋, 𝑌 ]] = 0.

In fact, the general Lie bracket is defined by those properties and our definition of
Lie bracket of vector fields is subsequently derived as a theorem.

Theorem 1.1.11. Let 𝑋, 𝑌 ∈ Vec (𝑀), 𝑎 ∈ 𝐶∞(𝑀). The Lie bracket satisfies
the Leibniz rule

[𝑋, 𝑎𝑌 ] = 𝑎 [𝑋, 𝑌 ] + (𝑋𝑎)𝑌. (1.13)

Proof. For any function 𝑎 ∈ 𝐶∞(𝑀) and for any point 𝑞 ∈ 𝑀 we use 1.12 to obtain

[𝑋, 𝑎𝑌 ] (𝑞) = (𝑋(𝑎𝑌 ))(𝑞) − ((𝑎𝑌 )𝑋)(𝑞).

Let us recall that 𝑋 acts as a derivation (1.9), and applying the product rule to
the first composition, we obtain

(𝑋(𝑎𝑌 ))(𝑞) = 𝑋(𝑎𝑌 (𝑞)) = 𝑋(𝑎)𝑌 (𝑞) + 𝑎(𝑋𝑌 (𝑞)).

For the second composition, we can derive the following expression:

((𝑎𝑌 )𝑋)(𝑞) = 𝑎(𝑌 𝑋(𝑞)).

Now it remains to combine these two results.

[𝑋, 𝑎𝑌 ] (𝑞) = (𝑋(𝑎𝑌 ))(𝑞) − ((𝑎𝑌 )𝑋)(𝑞)
= 𝑋(𝑎)𝑌 (𝑔) + 𝑎(𝑋𝑌 (𝑞)) − 𝑎(𝑌 𝑋(𝑞))
= 𝑎 [𝑋, 𝑌 ] (𝑞) +𝑋(𝑎)𝑌 (𝑞)

Since 𝑞 was arbitrary, the proposition 1.1.11 holds.

We will show an explicit example of Lie bracket later after definition of Lie
algebra (ex. 1.3.8).

1.2 Hamiltonian Vector Field
Hamiltonian vector field is a vector field associated with a function, more precisely
with a derivation of a function. Our objective here is clear: the solution to Hamilto-
nian equations corresponds to an integral curve, where the derivative at each point
is equal to the value of a certain vector field at that point. Unsurprisingly, this
vector field is known as the Hamiltonian vector field.
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The conventional approach to constructing such vector fields involves defining
canonical and symplectic forms, which can be found, for example, in references such
as [5] or [1]. However, there exists an alternative definition that is more straight-
forward in our approach and is often obtained as a corollary of the aforementioned
theory: the notion of the Poisson bracket. The Poisson bracket is an operator on
functions on cotangent bundle, so we give its definition first.

Let us introduce the covectors, the linear functionals on the tangent space.
The space of all covectors at a point 𝑞 ∈ 𝑀 , the cotangent space, is just the usual
dual space formed by one-forms on the tangent space.

Definition 1.2.1. Let 𝑀 be a smooth manifold, 𝑞 ∈ 𝑀 . By the cotangent space at
𝑞 we understand the set

𝑇 *
𝑞 𝑀 = (𝑇𝑞𝑀)* = {𝜆: 𝑇𝑞𝑀 → R, 𝜆 linear} .

By 𝑇 *𝑀 = ⋃︀
𝑞∈𝑀 𝑇 *

𝑞 𝑀 we denote the cotangent bundle of 𝑀 . Let 𝜆 ∈ 𝑇 *
𝑞 𝑀 and

let 𝑣 ∈ 𝑇𝑞𝑀 . We denote the evaluation of the covector 𝜆 on the vector 𝑣 by
⟨𝜆, 𝑣⟩ = 𝜆(𝑣).

Remark 1.2.2. The cotangent bundle 𝑇 *𝑀 is locally isomorphic to 𝑀 × 𝑇 *
𝑞 𝑀 .

1.2.1 Poisson Bracket

The Lie bracket was defined as an operation on the Vec (𝑀). The Poisson bracket
is an analogous operation on the space of smooth functions on 𝑇 *𝑀 . We start with
definition of the operation on the smooth linear functions, 𝐶∞

𝑙𝑖𝑛(𝑇 *𝑀), and then we
continue with an extension to the whole space 𝐶∞(𝑇 *𝑀).

We will make use of functions on the cotangent bundle associated with a vector
field. Let 𝑋 ∈ Vec (𝑀) and let 𝜙 ∈ 𝑇 *𝑀 be arbitrary. Then, by 𝑎𝑋 : 𝑇 *𝑀 → R we
denote function given by the assignment 𝜙 ↦→ 𝜙(𝑋).

Definition 1.2.3. Let 𝑎𝑋 , 𝑎𝑌 ∈ 𝐶∞
𝑙𝑖𝑛(𝑇 *𝑀) be two linear functions associated with

vector fields 𝑋, 𝑌 ∈ Vec (𝑀). Their Poisson bracket is defined by

{𝑎𝑋 , 𝑎𝑌 } = 𝑎[𝑋,𝑌 ], (1.14)

where 𝑎[𝑋,𝑌 ] is the function in 𝐶∞
𝑙𝑖𝑛(𝑇 *𝑀) associated with the vector field [𝑋, 𝑌 ].

Since the Lie bracket is bilinear, skew-symmetric and satisfies the Leibniz rule,
as consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies

{𝑎𝑋 , 𝛼𝑎𝑌 } = {𝑎𝑋 , 𝑎𝛼𝑌 } = 𝑎[𝑋,𝛼𝑌 ] = 𝛼𝑎[𝑋,𝑌 ] + (𝑋𝛼)𝑎𝑌 , ∀𝛼 ∈ 𝐶∞(𝑀). (1.15)

Now to the extension.
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Theorem 1.2.4. There exists a unique bilinear and skew-symmetric map

{·, ·}: 𝐶∞(𝑇 *𝑀) × 𝐶∞(𝑇 *𝑀) → 𝐶∞(𝑇 *𝑀),

that extends 1.2.3 to 𝐶∞(𝑇 *𝑀) and that is a derivation in each argument. i.e., it
satisfies

{𝑎, 𝑏𝑐} = {𝑎, 𝑏} 𝑐+ {𝑎, 𝑐} 𝑏, ∀𝑎, 𝑏, 𝑐 ∈ 𝐶∞(𝑇 *𝑀). (1.16)

We call this operation the Poisson bracket on 𝐶∞(𝑇 *𝑀).

Proof. The proof of this proposition consists of two steps. First we extend the Pois-
son bracket to all smooth affine functions on 𝑇 *𝑀 , 𝐶∞

𝑎𝑓𝑓 (𝑇 *𝑀). Using that structure
we show the extension to 𝐶∞(𝑇 *𝑀) in canonical coordinates on 𝑇 *𝑀 . The proof
is rather technical, for the full formulation we recommend [1]. Among other, during
the proof we obtain an explicit way to compute the Poisson bracket in canonical
coordinates (𝑥1, . . . , 𝑥𝑛, 𝑝1, . . . , 𝑝𝑛). Let 𝑎, 𝑏 ∈ 𝐶∞(𝑇 *𝑀), then

{𝑎, 𝑏} =
𝑛∑︁

𝑖=1

𝜕𝑎

𝜕𝑝𝑖

𝜕𝑏

𝜕𝑥𝑖

− 𝜕𝑎

𝜕𝑥𝑖

𝜕𝑏

𝜕𝑝𝑖

. (1.17)

The identity 1.16 provides the expression for the Poisson bracket of a product
of smooth functions and another function. Similarly, in the forthcoming statement
we will show how the Poisson bracket acts on a composition of functions and an-
other function. This will prove significant later in simplification of the Hamiltonian
equations.

Theorem 1.2.5. Let ℎ𝑖: 𝑇 *𝑀 → R, 𝑔: 𝑇 *𝑀 → R and 𝜙: R → R be smooth
functions. Denote by 𝜙ℎ𝑖

= 𝜙 ∘ ℎ𝑖. Then

{𝜙ℎ𝑖
, 𝑔} = 𝜕𝜙

𝜕ℎ𝑖

{ℎ𝑖, 𝑔} . (1.18)

Proof. The proof is very simple. It is sufficient to use 1.17.

{𝜙ℎ𝑖
, 𝑔} =

𝑛∑︁
𝑗=1

𝜕𝜙ℎ𝑖

𝜕𝑝𝑗

𝜕𝑔

𝜕𝑥𝑗

− 𝜕𝜙ℎ𝑖

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑝𝑗

=
𝑛∑︁

𝑗=1

𝜕𝜙

𝜕ℎ𝑖

𝜕ℎ𝑖

𝜕𝑝𝑗

𝜕𝑔

𝜕𝑥𝑗

− 𝜕𝜙

𝜕ℎ𝑖

𝜕ℎ𝑖

𝜕𝑥𝑗

𝜕𝑔

𝜕𝑝𝑗

= 𝜕𝜙

𝜕ℎ𝑖

{ℎ𝑖, 𝑔} .

1.2.2 Definition of Hamiltonian Vector Fields

With the aid Poisson bracket, we can finally begin with the construction of Hamil-
tonian vector field. In general, Hamiltonian vector field 𝐻⃗ is a vector field on
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the cotangent bundle 𝑇 *𝑀 associated with a smooth function 𝐻 on 𝑇 *𝑀 . Let us
introduce the following operator:

𝐻⃗: 𝐶∞(𝑇 *𝑀) → 𝐶∞(𝑇 *𝑀), 𝐻⃗(𝑏) = {𝐻, 𝑏} . (1.19)

This operator is linear and acts as a derivation on the space of smooth functions
𝐶∞(𝑇 *𝑀). Therefore 𝐻⃗ can be identified with an element of Vec (𝑇 *𝑀). We
continue with the precise definition.

Definition 1.2.6. The vector field 𝐻⃗ defined by 1.19 is called the Hamiltonian
vector field associated with the smooth function 𝐻 ∈ 𝐶∞(𝑇 *𝑀).

1.3 Lie Group and Algebra
Having introduced the concepts of manifolds, tangent and cotangent bundles, we
now possess sufficient theoretical groundwork to delve into control theory. However,
one challenge we would encounter in this endeavor is that the tangent bundle 𝑇𝑀
and 𝑀 × 𝑇𝑞𝑀 are only locally isomorphic. Similarly, the cotangent bundle 𝑇 *𝑀 is
only locally isomorphic to 𝑀 ×𝑇 *

𝑞 𝑀 as well. By narrowing our focus to Lie groups,
we can simplify the problem and transform the aforementioned isomorphisms into
a global property. This leads to a particularly intriguing outcome: we can solve
the problem at the identity element of the Lie group and subsequently, with the aid
of the isomorphism, compute the evolution of the system which greatly enhances
numerical stability during the computation process.

1.3.1 Lie Group

Definition 1.3.1. A set 𝐺 is called a Lie group, if
1. 𝐺 is a smooth manifold,
2. 𝐺 is a group,
3. the group operations in 𝐺 are smooth.

In our forthcoming examples, we will primarily focus on Lie groups that are
matrix groups. Let us denote the linear space of all real 𝑛× 𝑛 matrices by

M(𝑛,R) = {𝑋 = (𝑥𝑖𝑗) | 𝑥𝑖𝑗 ∈ R, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}} .

Now, we can proceed with the introduction of general linear group, i.e., the most
general group.

Example 1.3.2. The general linear group consists of all 𝑛× 𝑛 invertible matrices.

GL(𝑛,R) = GL(𝑛) = {𝑋 ∈ M(𝑛) | det𝑋 ̸= 0} .
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We will show that the general linear group GL(𝑛) is a Lie group. By the conti-
nuity of the determinant det: M(𝑛) → R, the set GL(𝑛) is an open domain. Thus,
GL(𝑛) is a smooth submanifold in the linear space M(𝑛). From introductory courses
of linear algebra it is known that GL(𝑛) is a group with respect to the matrix prod-
uct. Since the matrix product at every element are polynomials of elements and
inverse are rational functions of elements, the group operations are smooth.

In the following, we will present several significant Lie groups. We highly rec-
ommend referring to [5] or [6] for detailed proofs confirming their classification as
Lie groups.

Example 1.3.3. The special orthogonal group SO(𝑛) consists of all unimodular
orthogonal 𝑛× 𝑛 matrices, that is

SO(𝑛) =
{︁
𝑋 ∈ M(𝑛) | 𝑋𝑋⊤ = Id, det𝑋 = 1

}︁
.

Example 1.3.4. The Euclidean group SE(𝑛) consists of matrices of the following
form:

SE(𝑛) =
⎧⎨⎩𝑋 =

⎛⎝𝑌 𝑏

0 1

⎞⎠ ∈ M(𝑛+ 1) | 𝑌 ∈ SO(𝑛), 𝑏 ∈ R𝑛

⎫⎬⎭ .
The extension of our discussion to complex matrices is indeed possible, but for

the current context, it is not crucial. Therefore, we will omit delving into that topic.
For further details, refer to [5].

1.3.2 Lie Algebra

There are many ways to define the Lie algebra. In some cases the definition intro-
duces the Lie bracket, but we are going to define those notions separately.

Definition 1.3.5. The tangent space 𝐿 to a Lie group 𝐺 at the identity element is
called the Lie algebra of the Lie group G:

𝐿 = 𝑇Id𝐺.

Furthermore, let 𝐴, 𝐵 ∈ 𝐿. The Lie bracket [𝐴,𝐵], given by [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴, is
meant in the sense of Lie bracket of vector fields.

It is evident that the Lie bracket, as we have defined it, is bilinear and skew-
symmetric. Moreover, the Jacobi identity also holds, thus Lie bracket on Lie algebra
satisfies the axioms of a general Lie bracket.

Now, let us show the Lie algebras of the groups above.

15



Example 1.3.6. The Lie algebra of the general linear group we denote by gl(𝑛). In
fact, it is possible to show that

gl(𝑛) = M(𝑛). (1.20)

By definition gl(𝑛) =
{︁
𝑋̇(0) | 𝑋(𝑡) ∈ GL(𝑛), 𝑋(0) = Id

}︁
. Since 𝑋̇(𝑡) is an 𝑛 × 𝑛

matrix, gl(𝑛) ⊂ M(𝑛). Now, for small 𝜀 > 0 and |𝑡| < 𝜀 and for any 𝐴 ∈ M(𝑛),
the curve 𝑋(𝑡) = Id + 𝑡𝐴 ∈ GL(𝑛). Because 𝑋̇(0) = 𝐴 and 𝑋(0) = Id, we obtain
the equality from above.

Example 1.3.7. The Lie algebra of SO(𝑛) we denote by so(𝑛). By definition of
the group, ∀𝑋(𝑡) ∈ SO(𝑛), 𝑋(𝑡)𝑋⊤(𝑡) = Id. Now we apply the definition of the al-
gebra to get

0 = 𝑋̇(0)𝑋⊤(0) +𝑋(0)𝑋̇⊤(0) = 𝑋̇(0) + 𝑋̇⊤(0).

And we obtain the shape of the algebra

so(𝑛) =
{︁
𝐴 ∈ M(𝑛) | 𝐴+ 𝐴⊤ = 0

}︁
, (1.21)

the skew-symmetric matrices.

Exercise 1.3.8 (Lie bracket on so(3)). Consider 𝐴,𝐵 ∈ so(3). Let us write out
the elements explicitly as

𝐴 =

⎛⎜⎜⎝
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

⎞⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎝
0 −𝑏3 𝑏2

𝑏3 0 −𝑏1

−𝑏2 𝑏1 0

⎞⎟⎟⎠ .
Let us show that [𝐴,𝐵] ∈ so(3). To accomplish this, we are going to use 1.12.

[𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴 =

⎛⎜⎜⎝
−𝑎3𝑏3 − 𝑎2𝑏2 𝑎2𝑏1 𝑎3𝑏1

𝑎1𝑏2 −𝑎3𝑏3 − 𝑎1𝑏1 𝑎3𝑏2

𝑎1𝑏3 𝑎2𝑏3 −𝑎2𝑏2 − 𝑎1𝑏1

⎞⎟⎟⎠

−

⎛⎜⎜⎝
−𝑎3𝑏3 − 𝑎2𝑏2 𝑎1𝑏2 𝑎1𝑏3

𝑎2𝑏1 −𝑎3𝑏3 − 𝑎1𝑏1 𝑎2𝑏3

𝑎3𝑏1 𝑎3𝑏2 −𝑎2𝑏2 − 𝑎1𝑏1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
0 𝑎2𝑏1 − 𝑎1𝑏2 𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1 0 𝑎3𝑏2 − 𝑎2𝑏3

𝑎1𝑏3 − 𝑎3𝑏1 𝑎3𝑏2 − 𝑎3𝑏2 0

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 −𝑐3 𝑐2

𝑐3 0 −𝑐1

−𝑐2 𝑐1 0

⎞⎟⎟⎠ ∈ so(3)

Example 1.3.9. The Lie algebra of Euclidean group is denoted by se(𝑛). Since
we know the structure of SE(𝑛) and the Lie algebra of SO(𝑛), the Lie algebra of
Euclidean group is rather easy to find:

se(𝑛) =
⎧⎨⎩𝐴 =

⎛⎝𝐴 𝑏

0 0

⎞⎠ ∈ M(𝑛+ 1) | 𝐴 ∈ so(𝑛), 𝑏 ∈ R𝑛

⎫⎬⎭ . (1.22)
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1.4 Left-Invariant Hamiltonian Systems on Lie Groups
In our formulation of control theory, the concept of left-invariance plays a central
role. As mentioned earlier, the presence of left-invariant tangent spaces enables
us to solve problems at the identity element of the group. This is facilitated by
the global isomorphism between the cotangent bundle 𝑇 *𝐺 and 𝐺 × 𝐿*. Addition-
ally, the utilization of left-invariant Hamiltonians provides further simplification of
the problems.

1.4.1 Left-Invariant Vector Fields

Definition 1.4.1. By 𝐿𝑔 : 𝐺 → 𝐺 we denote left translation,

𝐿𝑔(ℎ) = 𝑔ℎ, 𝑔, ℎ ∈ 𝐺.

Theorem 1.4.2. Let 𝐺 be a linear Lie group (𝐺 ⊂ GL(𝑛)), 𝐿 its Lie algebra and
let 𝑔 ∈ 𝐺 be arbitrary. Then

𝑇𝑔𝐺 = 𝑔𝑇Id𝐺 = 𝑔𝐿 = {𝑔𝐴 | 𝐴 ∈ 𝐿} .

Proof. First, let us clearify, what do we mean by the multiplication 𝑔𝐴, where 𝑔 ∈ 𝐺,
𝐴 ∈ 𝐿. It is a vector field and ∀ℎ ∈ 𝐺, 𝑔𝐴(ℎ) = 𝐴(𝑔ℎ). In fact, this is a tangent
map to the left translation. The tangent space 𝑇𝑔𝐺 has the following form.

𝑇𝑔𝐺 = {𝑔̇(0) | 𝑔(𝑡) ∈ 𝐺, 𝑔(0) = 𝑔}

If 𝑔(𝑡) is a smooth curve, we can easily construct curve from the identity

𝑌 (𝑡) = 𝑔−1𝑔(𝑡), 𝑌 (0) = 𝑔−1𝑔 = Id.

Thus 𝑌̇ (0) = 𝑔−1𝑔̇(0) ∈ 𝐿. In conclusion, 𝑇𝑔𝐺 ⊂ 𝑔𝐿. Since both linear spaces have
the same finite dimension, we obtain

𝑇𝑔𝐺 = 𝑔𝐿.

Thus we have translation of the tangent space 𝐿 from the identity to a tangent
space 𝑔𝐿 at an arbitrary point 𝑔 of the group 𝐺. This translation we denote by
𝐿𝑔* : 𝐿 → 𝑔𝐿, where 𝑔 ∈ 𝐺. Moreover, 𝐿𝑔−1* (resp. 𝐿*

𝑔) trivializes 𝑇𝐺 (resp. 𝑇 *𝐺)
to 𝐺× 𝐿 (resp. 𝐺× 𝐿*).

Remark 1.4.3. We’ve proved the theorem 1.4.2 for a linear Lie group, it is possible
to extend this to an arbitrary Lie group (see [1]).
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Definition 1.4.4. Let 𝐺 be a Lie group and let 𝑋 ∈ Vec (𝐺). We say that 𝑋 is
left-invariant on a Lie group 𝐺, if ∀𝑔, ℎ ∈ 𝐺

𝐿𝑔*𝑋(ℎ) = 𝑔𝑋(ℎ) = 𝑋(𝑔ℎ).

Using the notion of the left-invariant vector fields, we can equivalently define Lie
algebra as the algebra of the left-invariant vector fields on G endowed with the Lie
bracket of vector fields.

1.4.2 Coordinates on 𝑇𝐺 and 𝑇 *𝐺

We introduce vertical and horizontal coordinates on 𝑇𝐺 and 𝑇 *𝐺. Though this
terminology is somewhat misleading, it is widely recognized, thus we will comply.
Indeed, every element of 𝑇𝐺 can be represented as a pair

(𝑔, 𝑣), 𝑔 ∈ 𝐺, 𝑣 ∈ 𝑇𝑔𝐺. (1.23)

Since we have just established the notion of the left-invariant vector field and we
know that the vector fields of the Lie algebra are left-invariant, we may simplify
the coordinates 1.23. Consider a basis {𝑒1, . . . , 𝑒𝑛} in 𝐿. This basis induces global
coordinates on 𝑇𝐺 as the induced basis in 𝑇𝑔𝐺 is {𝐿𝑔*𝑒1, . . . , 𝐿𝑔*𝑒𝑛} and thus the el-
ement (𝑔, 𝑣) ∈ 𝑇𝐺 can be represented as

(𝑔, 𝑣) =
(︃
𝑔,

𝑛∑︁
𝑖=1

𝑣𝑖𝐿𝑔*𝑒𝑖

)︃
. (1.24)

The coordinates 𝑣1, . . . , 𝑣𝑛 are called the vertical coordinates in 𝑇𝐺. The misleading
part about this is, that 𝑔 is then referred to as the horizontal coordinate even though
it is not a coordinate at all, it is an element of the group 𝐺.

Furthermore, the element (𝑔, 𝑣) ∈ 𝑇𝐺 given by 1.24 may be identified with
an element in 𝐺× 𝐿:

(𝑔, 𝜁) =
(︃
𝑔,

𝑛∑︁
𝑖=1

𝑣𝑖𝑒𝑖

)︃
∈ 𝐺× 𝐿.

Thus we have an isomorphism between 𝑇𝐺 and 𝐺× 𝐿 given by

𝐿−1
𝑔* : 𝑇𝐺 ∋ (𝑔, 𝑣) ↦→ (𝑔, 𝜁) ∈ 𝐺× 𝐿, (1.25)

with 𝜁 = 𝐿−1
𝑔* 𝑣. So any point in both 𝑇𝐺 and 𝐺 × 𝑇Id𝐺 can be represented by

coordinates
(𝑔, 𝑣1, . . . , 𝑣𝑛) .

As this isomorphism extends to the cotangent bundle, the isomorphism between
𝑇 *𝐺 and 𝐺× 𝐿* is given by 𝐿*

𝑔,

𝑇 *𝐺 ∋ (𝑔, 𝑝) ↦→ (𝑔, 𝜉) ∈ 𝐺× 𝐿*,
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with 𝜉 = 𝐿*
𝑔𝑝. Let us denote the basis on 𝐿* dual to the basis {𝑒1, . . . , 𝑒𝑛} on 𝐿 by

{𝑒*
1, . . . , 𝑒

*
𝑛}. The duality here is meant in the usual sense,

𝑒*
𝑖 (𝑒𝑗) = 𝛿𝑖𝑗.

We introduce the vertical coordinates on the dual of Lie algebra 𝜉1, . . . , 𝜉𝑛. Any
point then can be represented by coordinates

(𝑔, 𝜉1, . . . , 𝜉𝑛)

both in 𝑇 *𝐺 and 𝐺× 𝐿*. The reasoning of this is identical to the one above.

1.4.3 Left-Invariant Hamiltonians

Consider a smooth function 𝐻 : 𝑇 *𝐺 → R. We shall refer to such a function as
a Hamiltonian function. As discussed in subsection 1.4.2, the isomorphism between
𝑇 *𝐺 and 𝐺 × 𝐿* allows us to interpret this function as a function on 𝐺 × 𝐿*. Let
ℋ: 𝐺× 𝐿* → R be defined by

ℋ(𝑔, 𝜉) = 𝐻(𝑔, 𝐿*
𝑔−1𝜉).

If ℋ is independent on 𝑔, then 𝐻 is said to be left-invariant and ℋ is then called its
trivialized Hamiltonian. But we can define those terms equivalently as follows.

Definition 1.4.5. Let 𝐻 : 𝑇 *𝐺 → R be a Hamiltonian function. 𝐻 is said to be
left-invariant if there is a function ℋ: 𝐿* → R such that

𝐻(𝑔, 𝑝) = ℋ(𝐿*
𝑔𝑝).

The function ℋ is called its trivialized Hamiltonian.

Now, let 𝑝 = ∑︀𝑛
𝑖=1 𝜉𝑖𝐿

*
𝑔−1𝑒*

𝑖 , then

𝐻(𝑔, 𝑝) = 𝐻
(︁
𝑔,
∑︁

𝜉𝑖𝐿
*
𝑔−1𝑒*

𝑖

)︁
= ℋ

(︁
𝐿*

𝑔

∑︁
𝜉𝑖𝐿

*
𝑔−1𝑒*

𝑖

)︁
= ℋ

(︁∑︁
𝜉𝑖𝑒

*
𝑖

)︁
.

Thus, for left-invariant Hamiltonian we have

𝐻(𝑔, 𝜉1, . . . , 𝜉𝑛) = ℋ(𝜉1, . . . , 𝜉𝑛). (1.26)
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2 Control Theory on Lie Groups

2.1 Hamiltonian Formalism
The objective of this thesis is to demonstrate the application of the Hamiltonian
formalism to Lie groups. In order to provide the necessary background and context
for the extended statements, it is relevant to present the formulation of the original
problem. While the theory is widely recognized, we will provide a concise overview
of the fundamental concepts and propositions. For comprehensive details, we rec-
ommend referring to [1].

2.1.1 Hamiltonian Formalism on R𝑛

The optimal control problem is an optimization problem of the following form

𝑥̇ = 𝑓(𝑥, 𝑢), 𝑢 ∈ 𝑈 ⊂ R𝑚,

𝑥(0) = 𝑥0, 𝑥(𝑡𝑓 ) = 𝑥𝑓 ,

𝐽(𝑢) =
∫︁ 𝑡𝑓

0
𝑓0(𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 → min .

(2.1)

By 𝑈 we denote the control region, the function 𝑢(𝑡) is the control and the functions
𝑓(𝑥, 𝑢) and 𝑓0(𝑥, 𝑢) are smooth. Moreover, we define the adjoint system for variables
𝜆(𝑡) = (𝜆1(𝑡), . . . , 𝜆𝑛(𝑡))⊤ and finally the Hamiltonian function

𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝜆0) = 𝜆0𝑓0(𝑥(𝑡), 𝑢(𝑡)) + ⟨𝜆(𝑡); 𝑓(𝑥(𝑡), 𝑢(𝑡))⟩,

where ⟨·; ·⟩ is the Euclidean inner product. Using the Hamiltonian function we can
rewrite the differential system from 2.1 and the adjoint system into the form

𝑥̇𝑖(𝑡) = 𝜕𝐻

𝜕𝜆𝑖

(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝜆0), 𝑖 ∈ {1, . . . , 𝑛},

𝜆̇𝑖(𝑡) = −𝜕𝐻

𝜕𝑥𝑖

(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝜆0), 𝑖 ∈ {1, . . . , 𝑛}.
(2.2)

Necessary conditions for optimality of a solution of this system of ODEs is given by
the Pontryagin Maximum Principle (PMP).

Theorem 2.1.1 (Pontryagin Maximum Principle). Let 𝑢̂(𝑡), 𝑡 ∈ ⟨0, 𝑡𝑓⟩, be a solu-
tion of the problem 2.1 and let 𝑥̂(𝑡), 𝑡 ∈ ⟨0, 𝑡𝑓⟩, be the corresponding optimal trajec-
tory. Then there exists non-positive constant 𝜆0 and non-zero continuous solution
𝜆(𝑡) of the adjoint system

𝜆̇𝑖(𝑡) = −𝜕𝐻

𝜕𝑥𝑖

(𝑥̂(𝑡), 𝑢̂(𝑡), 𝜆(𝑡), 𝜆0) , ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑡 ∈ ⟨0, 𝑡𝑓⟩,
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such that the Hamiltonian function satisfies the maximum condition

max
𝑢∈𝑈

𝐻 (𝑥̂(𝑡), 𝑢, 𝜆(𝑡), 𝜆0) = 𝐻 (𝑥̂(𝑡), 𝑢̂(𝑡), 𝜆(𝑡), 𝜆0) , ∀𝑡 ∈ ⟨0, 𝑡𝑓⟩.

Moreover, 𝐻 (𝑥̂(𝑡), 𝑢̂(𝑡), 𝜆(𝑡), 𝜆0) ≡ 0, ∀𝑡 ∈ ⟨0, 𝑡𝑓⟩.

Theorem 2.1.1 is applicable to problems with free time, where the right endpoint
of the interval ⟨0, 𝑡𝑓⟩ is considered as part of the solution. Nevertheless, there exists
a version of this theorem for problems with fixed time. This version is structurally
similar, with the main distinction being that the Hamiltonian is generally constant
along the optimal trajectory and the optimal control rather than zero.

2.1.2 Hamiltonian Formalism on Smooth Manifolds

In [1], the reformulation of the original problem 2.1 on general smooth manifold
𝑀 is presented. For the sake of completeness, we will also state it here. Consider
the following optimal control problem

𝑞 = 𝑓(𝑞, 𝑢), 𝑞 ∈ 𝑀, 𝑢 ∈ 𝑈 ⊂ R𝑚,

𝑞(0) = 𝑞0, 𝑞(𝑡𝑓 ) = 𝑞𝑓 ,

𝐽(𝑢) =
∫︁ 𝑡𝑓

0
𝜙(𝑞(𝑡), 𝑢(𝑡))𝑑𝑡 → min .

(2.3)

Here 𝜙 : 𝑀 ×𝑈 → R, 𝑓 : 𝑀 ×𝑈 → 𝑇𝑀 . Furthermore, let 𝜆 ∈ 𝑇 *𝑀 be a covector,
𝜈 ∈ R a parameter and 𝑢 ∈ 𝑈 a control parameter. The Hamiltonian ℎ𝜈

𝑢 : 𝑇 *𝑀 → R
is defined as follows

ℎ𝜈
𝑢(𝜆) = ⟨𝜆; 𝑓(𝑞, 𝑢)⟩ + 𝜈𝜙(𝑞, 𝑢). (2.4)

Since the Hamiltonian is a smooth function on 𝑇 *𝑀 , we can associate a vector field
ℎ⃗𝜈

𝑢̂(𝑡) ∈ Vec (𝑇 *𝑀) given by the Poisson bracket, as we have shown in 1.19. The
PMP for this problem is stated next, its proof can be found in [1].

Theorem 2.1.2 (PMP on smooth manifolds). Let 𝑢̂(𝑡), 𝑡 ∈ ⟨0, 𝑡𝑓⟩, be a solution of
the problem 2.3. Then there exists non-positive constant 𝜈 and a Lipschitzian curve
𝜆𝑡 ∈ 𝑇 *

𝑞(𝑡)𝑀, 𝑡 ∈ ⟨0, 𝑡𝑓⟩ such that ∀𝑡 ∈ ⟨0, 𝑡𝑓⟩

𝜆̇𝑡 = ℎ⃗𝜈
𝑢̂(𝑡)(𝜆𝑡), (2.5)

max
𝑢∈𝑈

ℎ𝜈
𝑢(𝜆𝑡) = ℎ𝜈

𝑢̂(𝑡)(𝜆𝑡),

(𝜆𝑡, 𝜈) ̸= (0, 0).

Moreover, ℎ𝜈
𝑢̂(𝑡)(𝜆𝑡) ≡ 0, ∀𝑡 ∈ ⟨0, 𝑡𝑓⟩.
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From there directly follow the Hamiltonian equations on smooth manifold. Since
the cotangent bundle 𝑇 *𝑀 is isomorphic to 𝑀×𝑇 *

𝑥𝑀 in some neighborhood of point
𝑥, we have

d
d𝑡 (𝑥, 𝑝) = 𝐻⃗ (𝑥, 𝑝) , (2.6)

where 𝑥 ∈ 𝑀 is position in the manifold, 𝑝 = (𝑝1, . . . , 𝑝𝑛) ∈ 𝑇 *
𝑥𝑀 and the vector field

𝐻⃗ ∈ Vec (𝑇 *𝑀) is the Hamiltonian vector field associated with some Hamiltonian
function 𝐻. For the case of canonical coordinates (𝑥1, . . . , 𝑥𝑛, 𝑝1, . . . , 𝑝𝑛) on 𝑀 , we
obtain the Hamiltonian equations described in 2.2:

𝑥̇𝑖 = 𝜕𝑝𝑖
𝐻,

𝑝̇𝑖 = −𝜕𝑥𝑖
𝐻.

2.1.3 Hamiltonian Equations on Lie Group

As was said in 1.1, we could solve problems of control theory using 2.6. But the im-
portant thing why we want to study Hamiltonian formalism on Lie groups is, that
for general smooth manifold 𝑀 , the isomorphism 𝑇 *𝑀 ∼= 𝑀 × 𝑇 *

𝑞 𝑀 holds only
locally, but 𝑇 *𝐺 ∼= 𝐺 × 𝐿* is a global property in the case of Lie group 𝐺 and its
Lie algebra 𝐿. That is very useful simplification. Finally, we present the theorem
showing the form of Hamiltonian equations on Lie groups.

Theorem 2.1.3. Let 𝐻 : 𝑇 *𝐺 → R be a left-invariant Hamiltonian on a Lie
group 𝐺, ℋ : 𝐿* → R its triavialized Hamiltonian and (𝑔, 𝜉) ∈ 𝑇 *𝐺 = 𝐺 × 𝐿*.
Moreover, let dℋ be the differential of ℋ seen as an element of 𝐿. Then the Hamil-
tonian equations 2.6, with 𝑝 = 𝐿*

𝑔−1𝜉, may be expressed in the following form

𝑔̇ = 𝐿𝑔* dℋ, (2.7)
𝜉 = (ad dℋ)*𝜉. (2.8)

As a reminder, 𝐿*
𝑔 is the left translation on the cotangent bundle, 𝐿𝑔* is the left

translation on the tangent bundle. In the following subsection we will prove the equa-
tions 2.8 and 2.7 respectively.

2.1.4 Proof of Hamiltonian Equations

We begin with the proof of the vertical part, 2.8. We have 𝜉 = ∑︀𝑛
𝑖=1 𝜉𝑖𝑒

*
𝑖 . Utilizing

the equation 2.6, left-invariance of the cotangent bundle and definition of the Hamil-
tonian vector field, we obtain

𝜉𝑖 = {𝐻, 𝜉𝑖} , 𝑖 ∈ {1, . . . , 𝑛} , (2.9)
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where {·, ·} is the Poisson bracket. However, it is possible to further manipulate this
equation. We employ 1.2.5, the Poisson bracket of composition of functions, and
the relationship between Poisson and Lie brackets (1.14) for 𝑖 ∈ {1, . . . , 𝑛}:

𝜉𝑖 =
𝑛∑︁

𝑗=1

𝜕𝐻

𝜕𝜉𝑗

{𝜉𝑗, 𝜉𝑖} =
𝑛∑︁

𝑗=1

𝜕𝐻

𝜕𝜉𝑗

⟨𝜉, [𝑒𝑗, 𝑒𝑖]⟩ =
⟨
𝜉,

⎡⎣ 𝑛∑︁
𝑗=1

𝜕𝐻

𝜕𝜉𝑗

𝑒𝑗, 𝑒𝑖

⎤⎦⟩ . (2.10)

Consider the trivialized Hamiltonian ℋ. Since it is a function on the linear space
𝐿*, then dℋ(𝜉1, . . . , 𝜉𝑛) is an element of (𝐿*)* = 𝐿 thanks to the linear structure.
For an element 𝜉1𝑒

*
1 + · · ·+𝜉𝑛𝑒

*
𝑛 ∈ 𝐿*, the element of its tangent space at (𝜉1, . . . , 𝜉𝑛)

is 𝑣1𝜕𝜉1 + · · ·+𝑣𝑛𝜕𝜉𝑛 , with 𝜕𝜉𝑖
= 𝑒*

𝑖 thanks to the linear structure. The element of its
cotangent space (𝐿*)* at (𝜉1, . . . , 𝜉𝑛) is 𝜔1 d𝜉1 + · · · + 𝜔𝑛 d𝜉𝑛, with d𝜉𝑖 = (𝑒*

𝑖 )* = 𝑒𝑖

once more thanks to the linear structure. Then we obtain

dℋ(𝜉1, . . . , 𝜉𝑛) =
𝑛∑︁

𝑗=1

𝜕ℋ
𝜕𝜉𝑗

d𝜉𝑗 =
𝑛∑︁

𝑗=1

𝜕ℋ
𝜕𝜉𝑗

𝑒𝑗 =
𝑛∑︁

𝑗=1

𝜕𝐻

𝜕𝜉𝑗

𝑒𝑗. (2.11)

If we apply 2.11 to 2.10, we obtain

ℎ̇𝑖 = ⟨𝜉, [dℋ, 𝑒𝑖]⟩
= ⟨𝜉, (ad dℋ)𝑒𝑖⟩
= ⟨(ad dℋ)*𝜉, 𝑒𝑖⟩

(2.12)

or equivalently
𝜉 = (ad dℋ)*𝜉, (2.13)

which is exactly 2.8.
The proof of 2.7 is simpler. Consider function 𝛽 ∈ 𝒞∞(𝑇 *𝐺) that is constant on

the vertical fibers. This basically means that 𝛽 ∈ 𝒞∞(𝐺). Now, for every solution
of the horizontal part of the system associated with 𝐻, represented by curves 𝑔(·),
we obtain (by 1.2.5)

d
d𝑡𝛽(𝑔(𝑡)) = {𝐻, 𝛽}(𝑝(𝑡),𝑔(𝑡)) =

𝑛∑︁
𝑗=1

𝜕𝐻

𝜕𝜉𝑗

{𝜉𝑗, 𝛽}(𝑝(𝑡),𝑔(𝑡)) .

Denote by 𝑋𝑗 = 𝐿𝑔*𝑒𝑗 the translation of 𝑗-th base vector of 𝐿. Moreover, utilizing
an identity for affine functions on 𝐿, {𝑎𝑋 + 𝛼, 𝑎𝑦 + 𝛽} = 𝑎[𝑋,𝑌 ]+𝑋𝛽−𝑌 𝛼, we obtain
{⟨𝑝,𝑋𝑗⟩, 𝛽} = 𝑋𝑗𝛽. But we have {𝜉𝑗, 𝛽} = {⟨𝑝,𝑋𝑗⟩, 𝛽} = 𝑋𝑗𝛽 = (𝐿𝑔*𝑒𝑗)𝛽. Thus

d
d𝑡𝛽(𝑔(𝑡)) =

𝑛∑︁
𝑗=1

𝜕𝐻

𝜕𝜉𝑗

(𝐿𝑔*𝑒𝑗)𝛽
⃒⃒⃒⃒
⃒⃒
𝑔(𝑡)

=
⎛⎝𝐿𝑔*

𝑛∑︁
𝑗=1

𝜕𝐻

𝜕𝜉𝑗

𝑒𝑗

⎞⎠ 𝛽
⃒⃒⃒⃒
⃒⃒
𝑔(𝑡)

= (𝐿𝑔* dℋ)𝛽|𝑔(𝑡).

Since 𝛽 is arbitrary function, we get

𝑔̇ = 𝐿𝑔* dℋ. (2.14)

Thus, the theorem 2.1.3 has been proved.
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2.1.5 The Case of Compact Lie Groups

The system 2.7, 2.8 can be further simplified in the case of a compact Lie group
𝐺. This is mentioned in [5] and derived for SO(𝑛) (which is compact), we will
paraphrase. In the case of compact Lie group, there is an invariant inner product 𝑔
on R𝑛, i.e.,

𝑔(𝑋𝑢,𝑋𝑣) = 𝑔(𝑢, 𝑣), ∀𝑋 ∈ 𝐺, ∀𝑢, 𝑣 ∈ R𝑛.

For example, the invariant inner product ⟨·, ·⟩ on the Lie algebra so(𝑛) has form

⟨𝐴,𝐵⟩ = − tr (𝐴𝐵)

and the invariance is meant in the following way:

⟨𝑒𝑡 ad 𝐶𝐴, 𝑒𝑡 ad 𝐶𝐵⟩ = ⟨𝐴,𝐵⟩, ∀𝐴, 𝐵, 𝐶 ∈ so(𝑛), ∀𝑡 ∈ R. (2.15)

That is, the operator 𝑒𝑡 ad 𝐶 is orthogonal and can be expressed as 𝑒𝑡 ad 𝐶 = 𝑒𝑡𝐶𝐴𝑒−𝑡𝐶 .

The infinitesimal version of 2.15 is obtained by differentiation with respect to 𝑡 at
𝑡 = 0:

⟨ad𝐶(𝐴), 𝐵⟩ + ⟨𝐴, ad𝐶(𝐵)⟩ = 0, ∀𝐴,𝐵,𝐶 ∈ so(𝑛).

Thus, the operator ad𝐶 is skew-symmetric. As a consequence, the Lie algebra is
endowed with invariant scalar product which allows us to construct the canonical
map between the algebra 𝐿 and its dual 𝐿*:

𝐴 ↔ 𝐴 = ⟨𝐴, ·⟩, 𝐴 ∈ 𝐿,𝐴 ∈ 𝐿*.

Thus we have a way of representing the coadjoint operator in equation 2.8 by an el-
ement from the Lie algebra itself. By direct computation it can be shown that
(ad𝐴)* : 𝐿* → 𝐿* is identified with (− ad𝐴) : 𝐿 → 𝐿.(︁

(ad𝐴)*𝐵̃
)︁

(𝐶) = 𝐵̃ ((ad𝐴)𝐶) = ⟨𝐵, (ad𝐴)𝐶⟩ = −⟨(ad𝐴)𝐵,𝐶⟩

= − ˜((ad𝐴)𝐵)(𝐶)

Thus, in case of compact Lie group the system 2.7, 2.8 can be expressed in the fol-
lowing form:

𝑔̇ = 𝑔 dℋ,
𝜉 = −(𝑎𝑑 dℋ)𝜉 = [𝜉, dℋ] .

(2.16)
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3 Matrix Lie Group SO(4, 1) and CGA
In this chapter, we will utilize two distinct representations of the Lie group SO(4, 1):
the matrix representation and the Conformal Geometric Algebra (CGA), as defined
in [7]. Our approach involves presenting the matrix representation and subsequently
demonstrating the isomorphism between the Lie algebra and bivectors of the geo-
metric algebra.

3.1 Indefinite Special Orthogonal Group and its Lie
Algebra

In next chapter will follow solved problems on groups SO(3), SE(3) and SO(4, 1). We
have introduced the groups SO(3), SE(3) in 1.3.3 and 1.3.4 respectively. The general
group SO(𝑝, 𝑞) is called indefinite special orthogonal group. And as a matter of fact
SO(4, 1) contains both SO(3) and SE(3) as its subgroups.

3.1.1 Definitions of the Structures

Definition 3.1.1. Let 𝐵 ∈ 𝑀(𝑝 + 𝑞) with 𝑝, 𝑞 ∈ N be a matrix of symmetric
non-degenerate bilinear form of signature (𝑝, 𝑞). Then the set

SO(𝑝, 𝑞) = {𝐴 ∈ 𝑀(𝑝+ 𝑞)| 𝐴⊤𝐵𝐴 = 𝐵, det𝐴 = 1} (3.1)

is called indefinite special orthogonal group.

Theorem 3.1.2. The indefinite special ortogonal group (endowed with matrix mul-
tiplication and inverse) is a Lie group.

Proof. The proof is a corollary of the Cartan’s closed subgroup theorem ([3]) which
states that if 𝐻 is a closed subgroup of a Lie group 𝐺 then 𝐻 is a Lie group as well.
Since elements of SO(𝑝, 𝑞) are regular matrices, i.e., SO(𝑝, 𝑞) ⊆ GL(𝑝+ 𝑞), it suffices
to show, that SO(𝑝, 𝑞) is closed under matrix multiplication and inversion.

𝑋, 𝑌 ∈ SO(𝑝, 𝑞) ⇒ 𝐵 = 𝑌 ⊤𝑋⊤𝐵𝑋𝑌 = (𝑋𝑌 )⊤ 𝐵𝑋𝑌 ⇒ 𝑋𝑌 ∈ SO(𝑝, 𝑞),

𝑋 ∈ SO(𝑝, 𝑞) ⇒ 𝑋⊤𝐵𝑋 = 𝐵 ⇒ 𝐵 =
(︁
𝑋−1

)︁⊤
𝐵𝑋−1 ⇒ 𝑋−1 ∈ SO(𝑝, 𝑞).

Let us show a property of SO(𝑝, 𝑞) that can serve as an alternative definition of
SO(𝑝, 𝑞). Consider the inner product ℬ : R(𝑝+𝑞) × R(𝑝+𝑞) → R, given by a bilinear
form ℬ(𝑥, 𝑦) = 𝑥⊤𝐵𝑦, then

∀𝐴 ∈ SO(𝑝, 𝑞) : ℬ(𝑥, 𝑦) = ℬ(𝐴𝑥,𝐴𝑦).
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In other words, the inner product ℬ remains invariant under the transformation
of the vectors 𝑥 and 𝑦 by 𝐴. This reinforces the concept of an invariant inner
product and its preservation under transformations by elements of the indefinite
special orthogonal group SO(𝑝, 𝑞). Now, let us turn our attention to the Lie algebra
of this group. We can construct the algebra directly using definition 1.3.5,

∀𝑋 ∈ SO(𝑝, 𝑞): 0 = 𝑋̇⊤(0)𝐵𝑋(0) +𝑋⊤(0)𝐵𝑋̇(0) = 𝑋̇⊤(0)𝐵 +𝐵𝑋̇(0).

Thus, the Lie algebra of SO(𝑝, 𝑞) is the following matrix algebra.

so(𝑝, 𝑞) = {𝐴 ∈ 𝑀(𝑝+ 𝑞)| 𝐴⊤𝐵 = −𝐵𝐴} (3.2)

3.1.2 Lie Group SO(4, 1)

At the outset of this section, we expressed our intention to investigate the Hamilto-
nian formalism within the group SO(4, 1). There are a couple of important consid-
erations to be made. Given the definition, the most common and widely used form
that naturally arises is

SO(4, 1) = {𝐴 ∈ 𝑀(5)| 𝐴⊤𝐵𝐴 = 𝐵, det𝐴 = 1, 𝐵 = diag(1, 1, 1, 1,−1)}. (3.3)

Solving the equation 3.2 for this bilinear form, we obtain Lie algebra of the following
structure

so(4, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑎 𝑏 𝑑 𝑔

−𝑎 0 𝑐 𝑒 ℎ

−𝑏 −𝑐 0 𝑓 𝑖

−𝑑 −𝑒 −𝑓 0 𝑗

𝑔 ℎ 𝑖 𝑗 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.4)

But for reasons we will discuss later on, we are going to choose the matrix 𝐵 as
follows.

𝐵 =

⎛⎜⎜⎝
0 −1

13

−1 0

⎞⎟⎟⎠ (3.5)

The Lie algebra is then a matrix algebra of the following form:

so(4, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
10∑︁

𝑖=1
𝑎𝑖𝐸𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎10 𝑎7 𝑎8 𝑎9 0
𝑎4 0 −𝑎3 𝑎2 𝑎7

𝑎5 𝑎3 0 −𝑎1 𝑎8

𝑎6 −𝑎2 𝑎1 0 𝑎9

0 𝑎4 𝑎5 𝑎6 −𝑎10

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑎𝑖 ∈ R

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.6)

The indices in the matrix show the base we will assume in the sequel.
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3.2 Introduction to CGA
We wish to express the Hamiltonian equations in the language of CGA. The mo-
tivation for that we will explain in due time. As a quick introduction, CGA is
graded space of outer products over basis of vectors. There are two usual choices in
the terms of the vector basis. The first one would be {𝑒1, 𝑒2, 𝑒3, 𝑒+, 𝑒−} which cor-
responds to the matrix 𝐵 given by 3.3. The second one, and the one we will assume,
corresponds to the matrix 𝐵 from 3.5. We denote the basis by {𝑒1, 𝑒2, 𝑒3, 𝑒0, 𝑒∞}.
The outer product of 𝑘 vectors 𝑒1 ∧ · · · ∧ 𝑒𝑘 is called 𝑘-blade, linear combinations of
𝑘-blades are called 𝑘-vectors (we will frequently use terms bivectors for 𝑘 = 2 and
trivectors for 𝑘 = 3). The linear space of 𝑘-vectors of CGA we denote by ⋀︀𝑘 R5.
Linear combinations of general 𝑘-vectors and 𝑙-vectors we call multivectors.

The essential operation on CGA is the geometric product (usually denoted by
juxtaposition). Mathematically, geometric product of two vectors 𝑎 and 𝑏 is sum of
their inner product and outer product

𝑎𝑏 = 𝑎 · 𝑏+ 𝑎 ∧ 𝑏, (3.7)

thus it is a map from R5 × R5 to R ∪ ⋀︀2 R5 – multivectors. Geometric product of
the general blades can be defined in similar way, but the role of inner product is
played by contractions. For complete definitions we advise to consult [7] or [8].

We will also make use of Projective Geometric Algebra. Its basis for 3D space
is {𝑒0, 𝑒1, 𝑒2, 𝑒3} and thus PGA can be seen as part of CGA.

3.3 Dual Space of Vectors of CGA
The bivectors of CGA are isomorphic to the Lie algebra so(4, 1). However, before
we approach the isomorphism itself, we have to mention dual space of vectors of
CGA.

The basis of one forms of CGA are determined by a bilinear form:

𝑒*
𝑖 (𝑒𝑗) = 𝑏𝑖𝑗,

where 𝑒𝑗 is a basis vector, 𝑒*
𝑖 is a basis one form and 𝑏𝑖𝑗 are elements of the matrix 𝐵

from the definition 3.1.1. There comes in play our choice of the form of the matrix
𝐵. With that said, we can express the isomorphism between base vectors and their
duals.

𝑒*
0 ↦→ −𝑒∞ 𝑒*

𝑖 ↦→ 𝑒𝑖 𝑒*
∞ ↦→ −𝑒0, 𝑖 ∈ {1, 2, 3} (3.8)

For the case of PGA, recall that we have basis {𝑒0, 𝑒1, 𝑒2, 𝑒3}. From the isomor-
phism we have described above we obtain, that the dual space of vectors of PGA
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has basis {𝑒1, 𝑒2, 𝑒3, 𝑒∞}. But this space is isomorphic to the trivectors of PGA.
The isomorphism of vectors of PGA to trivectors of PGA is called Poincaré duality
and in this case can be defined as 𝑒𝑖 ∧ 𝑒*

𝑖 = 𝑒0123.

3.4 Isomorphism between Bivectors of CGA and so(4, 1)
Since both bivectors of CGA and the Lie algebra so(4, 1) are vector spaces of
the same finite dimension (dim so(4, 1) = 10), there has to be an isomorphism of
vector spaces. However, it turns out that there is even an isomorphism of algebras
between the Lie group so(4, 1) endowed with matrix commutator and bivectors of
CGA endowed with a version of the commutator for CGA. We construct this iso-
morphism in the following way. An element of so(4, 1) is a linear map on R5, i.e.,
∀𝐴 ∈ so(4, 1), 𝐴 : R5 → R5. Obviously, R5 is a vector space of finite dimension
and thus we can associate 𝐴 with an element of the space (R5)* ⊗ R5, where ⊗ is
a tensor product. Since R5 is a subspace of CGA, the tensor product coincides with
the geometric product of the algebra which can be expressed as the outer product.
The isomorphism is defined by the following map for the base matrix 𝑒𝑖𝑗 of M(5)
that has all elements zero apart from the element at 𝑖-th row and 𝑗-th column which
is equal to one:

𝑒𝑖𝑗 ↦→ −1
2𝑒

*
𝑗 ⊗ 𝑒𝑖. (3.9)

As a final touch, we will express this map for the basis matrices 𝐸𝑖 of so(4, 1), which
were introduced in 3.6, using the isomorphism between dual space of vectors and
vectors of CGA given by 3.8.

𝐸1 ↦→ −1
2𝑒

*
2 ∧ 𝑒3 ↦→ −1

2𝑒2 ∧ 𝑒3

𝐸2 ↦→ −1
2𝑒

*
3 ∧ 𝑒1 ↦→ −1

2𝑒3 ∧ 𝑒1

𝐸3 ↦→ −1
2𝑒

*
1 ∧ 𝑒2 ↦→ −1

2𝑒1 ∧ 𝑒2

𝐸𝑖+3 ↦→ −1
2𝑒

*
0 ∧ 𝑒𝑖 ↦→ −1

2𝑒𝑖 ∧ 𝑒∞, 𝑖 ∈ {1, 2, 3}

𝐸𝑖+6 ↦→ −1
2𝑒

*
𝑖 ∧ 𝑒0 ↦→ 1

2𝑒0 ∧ 𝑒𝑖, 𝑖 ∈ {1, 2, 3}

𝐸10 ↦→ −1
2𝑒

*
0 ∧ 𝑒0 ↦→ −1

2𝑒0 ∧ 𝑒∞

(3.10)
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4 Examples of Hamiltonian Formalism Prob-
lems

In this chapter, we will explore several problems related to left-invariant systems
on Lie groups. We have set out with the following vision: the equations of rigid
body motion have been extensively studied and are widely understood. The mod-
ern approach is to solve them employing Hamilton’s principle of least action which
leads to the Lagrangian formulation, formulation of the problem as an optimiza-
tion problem on R3 in the context of control theory. The Lagrangian formulation
then can be transformed into the Hamiltonian formulation as an optimal control
problem on Lie group SE(3) and further analyzed using the Pontryagin Maximum
Principle. Indeed, in our study, we have focused on the examination of left-invariant
problems with left-invariant Hamiltonian functions on Lie groups. By adopting this
perspective, we can simplify the equations of the Hamiltonian formalism on smooth
manifolds. This approach allows us to exploit the inherent structure of Lie groups,
leading to a more streamlined analysis and understanding of the underlying dynam-
ics. The aim of this subsection is to establish connection between this mathematical
formulation and the real world problems studied in physics. Moreover, we will try
to answer what applications have the simplified equations for various choices of Lie
group and Hamiltonian function.

As mentioned previously, the Hamiltonian formalism and the Lagrangian for-
malism are closely interconnected. Many texts in this field often begin by defining
the Lagrangian function and then deriving the Hamiltonian function from it. This
preference might be attributed to the fact that the Lagrangian serves as the inte-
grand of the minimized of the problem 2.3. Consequently, the solution of the Hamil-
tonian equations minimizes the Lagrangian function. However, in our approach, we
start with the concepts of the Hamiltonian formalism. Nevertheless, we recognize
the significance of the Lagrangian function and will provide its expression whenever
possible. For a Lagrangian function denoted as 𝐿(𝑔, 𝜔) and a Hamiltonian function
denoted as 𝐻(𝑔, 𝑝), the following identities generally hold true:

𝐿(𝑔, 𝜔) = 𝜔𝑝−𝐻(𝑔, 𝑝),

𝜔 = 𝜕𝐻

𝜕𝑝
.

However, in the case of a left-invariant system and left-invariant Hamiltonian func-
tion, they take the following form:

𝐿(𝜔) =
∑︁

𝜔𝑖𝜉𝑖 − ℋ(𝜉), (4.1)

𝜔𝑖 = 𝜕ℋ
𝜕𝜉𝑖

. (4.2)
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This form is precisely derived in [9], let us outline the idea. Essentially, the trivialized
Hamiltonian corresponds to the reduced Lagrangian 𝐿(𝜔). The function 𝜔 may be
obtained by the means of inverted Legendre transformation. The Lagrangian may
be then expressed directly from the equation 2.4.

In the subsequent sections, we will discuss problems on SO(3), SE(3) and SO(4, 1).
For each group, we will initially present the general structure of the coadjoint op-
erator, followed by the presentation of three specific problems. We will express
the Hamiltonian function in the form of a quadratic form, a linear form, or a com-
bination thereof. The general form of the coadjoint operator will be particularly
useful in the second and third subsections, enabling us to represent the equations in
a more concise manner.

4.1 The Coadjoint Operator

Let us regard the expression of the coadjoint operator. Now, consider a Lie group
𝐺, its Lie algebra 𝐿, 𝜉 ∈ 𝑇 *

Id𝐺, 𝐴, 𝐵 ∈ 𝐿. Then,

⟨𝜉, [𝐴,𝐵]⟩ = ⟨𝜉, (ad𝐴)𝐵⟩ = ⟨(ad𝐴)* 𝜉, 𝐵⟩.

Expressing the operators ad𝐴 and (ad𝐴)* as 𝑛×𝑛 matrices can be achieved through
straightforward manipulation of the elements. This is facilitated by representing 𝜉
as a row vector in basis {𝑒,

1 . . . , 𝑒
*
𝑛}, and representing 𝐵 as a column vector in basis

{𝑒1, . . . , 𝑒𝑛}. Thus,

𝜉⊤ (ad𝐴)𝐵 =
(︁
(ad𝐴)⊤ 𝜉

)︁⊤
𝐵 = ((ad𝐴)* 𝜉)⊤

𝐵 ⇒ (ad𝐴)* = (ad𝐴)⊤ . (4.3)

4.2 Hamiltonian Formalism on SO(3)

The general form of the coadjoint operator on SO(3) is rather easy to find. Let
𝐴 = ∑︀3

𝑖=1 𝑎𝑖𝑒𝑖, 𝐵 = ∑︀3
𝑖=1 𝑏𝑖𝑒𝑖. In exercise 1.3.8 we have obtained

[𝐴,𝐵] =

⎛⎜⎜⎝
𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0

⎞⎟⎟⎠
⎛⎜⎜⎝
𝑏1

𝑏2

𝑏3

⎞⎟⎟⎠ ,

thus the coadjoint operator (ad𝐴)* has the form

(ad𝐴)* =

⎛⎜⎜⎝
0 𝑎3 −𝑎2

−𝑎3 0 𝑎1

𝑎2 −𝑎1 0

⎞⎟⎟⎠ . (4.4)
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4.2.1 Hamiltonian as a Quadratic Form on so* (3)
Let us begin by presenting the form of the Hamiltonian function under consideration,
denoted as 𝐻(𝑅, 𝑝). Our objective is to utilize the trivialized form of Hamiltonian
functions, so it’s important to clarify how we represent them. By definition, the triv-
ialized Hamiltonian function is expressed as ℋ(𝜉) = 𝐻(𝑅, 𝑝), where ∀𝑅 ∈ SO(3)
and 𝜉 = 𝑅𝑝. Furthermore, since 𝜉 = 𝜉1𝑒

*
1 + 𝜉2𝑒

*
2 + 𝜉3𝑒

*
3, we can restate the trivialized

Hamiltonian function as a function of its coordinates, ℋ(𝜉) = ℋ(𝜉1, 𝜉2, 𝜉3). Hence,
we obtain the final form of the Hamiltonian function for this subsection:

ℋ(𝜉1, 𝜉2, 𝜉3) = 𝑐1𝜉
2
1 + 𝑐2𝜉

2
2 + 𝑐3𝜉

2
3 , (4.5)

where 𝜉1, 𝜉2, 𝜉3 are the coordinate functions. Taking 𝜉 = (𝜉1, 𝜉2, 𝜉3)⊤, we can rewrite
the Hamiltonian in the following form.

ℋ(𝜉) = 𝜉⊤𝐶𝜉 (4.6)

The matrix of this quadratic form

𝐶 =

⎛⎜⎜⎝
𝑐1 0 0
0 𝑐2 0
0 0 𝑐3

⎞⎟⎟⎠
is for simplicity’s sake considered as a diagonal matrix, obviously, for choice of
arbitrary symmetric and regular matrix, we could transform the basis of so*(3), so
that the matrix of quadratic form would be diagonal.

As for the Lagrangian function 𝐿(𝜔), it can be derived from the Hamiltonian
function using the identity 4.2:

𝜔 = 𝜕ℋ
𝜕𝜉

= 2𝐶𝜉.

Thus using 4.1 and symmetry of the matrix of the quadratic form,

𝐿(𝜔) = 𝜔⊤ 1
2𝐶

−1𝜔 − 1
2𝜔

⊤ 1
2𝐶

−1𝜔 = 1
4𝜔

⊤𝐶−1𝜔.

Let us present couple of applications arising from the specific choice of the matrix
𝐶.

• For 𝑐𝑖 ̸= 0, 𝑖 ∈ {1, 2, 3}, the Lagrangian has form 𝐿(𝜔) = 1
4
∑︀3

𝑖=1 𝑐𝑖𝜔
2
𝑖 ,

which is exactly Lagrangian for geodesics on SO(3), thus the solution relates
to minimization of length of a curve and we obtain equations for geodesics.

• If some coefficients are zero, e.g., 𝐿(𝜔) = 𝑐1𝜔
2
1, the problem relates to sub-

Riemannian geodesics. That is, we minimize length of the curve on a sub-
structure of SO(3). Since sub-Riemannian theory is yet another challenging
field of mathematical theory, we will not pursue further exploration in this
direction.
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• For the specific choice 𝑐𝑖 = 1
2𝐼𝑖

, the Lagrangian 𝐿(𝜔) = 1
2
∑︀3

𝑖=1
𝜔2

𝑖

𝐼𝑖
is related

to free rigid body rotations, i.e., rotation of rigid body without influence of
forces. The matrix 𝐽 = 1

2 diag(𝐼1, 𝐼2, 𝐼3) is the inertia matrix of the rigid
body.

And now, let us formulate the equations of Hamiltonian formalism 2.7, 2.8 for
the case of rigid body rotations. First, we need to find the differential of the Hamil-
tonian function dℋ.

dℋ(𝜉1, 𝜉2, 𝜉3) = 𝜉1

𝐼1
𝑒1 + 𝜉2

𝐼2
𝑒2 + 𝜉3

𝐼3
𝑒3

This implies that the adjoint operator in 2.8 has the form

(ad dℋ)* =

⎛⎜⎜⎝
0 𝜉3/𝐼3 −𝜉2/𝐼2

−𝜉3/𝐼3 0 𝜉1/𝐼1

𝜉2/𝐼2 −𝜉1/𝐼1 0

⎞⎟⎟⎠ . (4.7)

The horizontal equation is of form

𝑔̇ = 𝑔 dℋ = 𝑔

(︃
𝜉1

𝐼1
𝑒1 + 𝜉2

𝐼2
𝑒2 + 𝜉3

𝐼3
𝑒3

)︃
. (4.8)

The vertical equation we will list using coordinates, as it is a bit clearer for a human
reader.

𝜉1 = 𝜉 ([dℋ, 𝑒1]) = 𝜉

(︃
−𝜉2

𝐼2
𝑒3 + 𝜉3

𝐼3
𝑒2

)︃
=
(︂ 1
𝐼3

− 1
𝐼2

)︂
𝜉2𝜉3 (4.9)

𝜉2 = 𝜉 ([dℋ, 𝑒2]) = 𝜉

(︃
−𝜉3

𝐼3
𝑒1 + 𝜉1

𝐼1
𝑒3

)︃
=
(︂ 1
𝐼1

− 1
𝐼3

)︂
𝜉1𝜉3 (4.10)

𝜉3 = 𝜉 ([dℋ, 𝑒3]) = 𝜉

(︃
−𝜉1

𝐼1
𝑒2 + 𝜉2

𝐼2
𝑒1

)︃
=
(︂ 1
𝐼2

− 1
𝐼1

)︂
𝜉1𝜉2 (4.11)

As can be observed, the vertical part of the equations are decoupled from the hori-
zontal part. The evolution on the cotangent bundle is independent on the position
in the Lie group. Moreover, the horizontal part can be very easily solved. As
dℋ ∈ so(3), the solution of this equation can be written as follows.

𝑔 = 𝐴 · exp
{︃
𝑡

(︃
𝜉1

𝐼1
𝑒1 + 𝜉2

𝐼2
𝑒2 + 𝜉3

𝐼3
𝑒3

)︃}︃
, 𝐴 ∈ so(3), (4.12)

on some open interval 𝑡 ∈ (0, 𝑡𝑓 ).

4.2.2 Hamiltonian as a Linear Form on so*(3)
As in the previous subsection we start with definition of the Hamiltonian function.
This time however, we consider

ℋ(𝜉) = ℋ(𝜉1, 𝜉2, 𝜉3) = 𝑎1𝜉1 + 𝑎2𝜉2 + 𝑎3𝜉3, 𝑎1, 𝑎2, 𝑎3 ∈ R. (4.13)
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The differential of the Hamiltonian function is constant. Intuitively this does not
seem very useful. The first complication arises as we try to formulate the Lagrangian.
As

𝜔 = 𝜕ℋ
𝜕𝜉

= 𝑎⃗, 𝑎⃗ = (𝑎1, 𝑎2, 𝑎3)⊤

is also constant, we cannot express 𝜔 as a function of 𝜉 and vice versa. Thus we
cannot find the Lagrangian.

The adjoint operator has the form

(ad dℋ)* =

⎛⎜⎜⎝
0 𝑎3 −𝑎2

−𝑎3 0 𝑎1

𝑎2 −𝑎1 0

⎞⎟⎟⎠ . (4.14)

We can construct the Hamiltonian equations, but they don’t yield any relevant
results.

𝑔̇ = 𝑔 · dℋ,

𝜉 =

⎛⎜⎜⎝
0 𝑎3 −𝑎2

−𝑎3 0 𝑎1

𝑎2 −𝑎1 0

⎞⎟⎟⎠ 𝜉

4.2.3 Hamiltonian as a Quadratic Function on so*(3)

Lastly, we combine the two previous cases. The trivialized Hamiltonian is of form

ℋ (𝜉1, 𝜉2, 𝜉3) = 𝜉2
1

2𝐼1
+ 𝑎1𝜉1 + 𝜉2

2
2𝐼2

+ 𝑎2𝜉2 + 𝜉2
3

2𝐼3
+ 𝑎3𝜉3. (4.15)

It is worth mentioning that this is not only the most general case so far but it also
yields the most natural applications. But now, let us do the same derivations as in
the case 4.2.1. Again, let us denote by 𝐽 = diag(𝐼1, 𝐼2, 𝐼3) the matrix as before
and moreover let us denote by 𝑎⃗ = (𝑎1, 𝑎2, 𝑎3)⊤ the vector of the linear form. Using
this notation, we are able to rewrite the Hamiltonian as follows.

ℋ(𝜉) = 1
2𝜉

⊤𝐽−1𝜉 + 𝑎⃗⊤𝜉, (4.16)

Now, we focus on the Lagrangian of this case. Using 4.2,

𝜔 = 𝜕ℋ
𝜕𝜉

= 𝐽−1𝜉 + 𝑎⃗.

Thus, in this case we are able to express 𝜉 in terms of 𝜔:

𝜉 = 𝐽(𝜔 − 𝑎⃗).
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Using 4.1:

𝐿(𝜔) = 𝜔⊤𝜉 − 1
2𝜉

⊤𝐽−1𝜉 − 𝑎⃗⊤𝜉

= 𝜔⊤𝐽(𝜔 − 𝑎⃗) − 1
2(𝜔 − 𝑎⃗)⊤𝐽(𝜔 − 𝑎⃗) − 𝑎⃗⊤𝐽(𝜔 − 𝑎⃗)

= (𝜔 − 𝑎⃗)⊤𝐽(𝜔 − 𝑎⃗) − 1
2(𝜔 − 𝑎⃗)⊤𝐽(𝜔 − 𝑎⃗)

= 1
2(𝜔 − 𝑎⃗)⊤𝐽(𝜔 − 𝑎⃗)

(4.17)

This is once again a quadratic Lagrangian corresponding to a minimization of length
of some curve. Now, let us turn our attention to the equations of Hamiltonian
formalism. First, we need to find the differential of the Hamiltonian and the adjoint
operator.

dℋ(𝜉1, 𝜉2, 𝜉3) =
(︃
𝜉1

𝐼1
+ 𝑎1

)︃
𝑒1 +

(︃
𝜉2

𝐼2
+ 𝑎2

)︃
𝑒2 +

(︃
𝜉3

𝐼3
+ 𝑎3

)︃
𝑒3 (4.18)

(ad dℋ)* =

⎛⎜⎜⎝
0 𝜉3/𝐼3 + 𝑎3 −𝜉2/𝐼2 − 𝑎2

−𝜉3/𝐼3 − 𝑎3 0 𝜉1/𝐼1 + 𝑎1

𝜉2/𝐼2 + 𝑎2 −𝜉1/𝐼1 − 𝑎1 0

⎞⎟⎟⎠ (4.19)

Substituting into the vertical equation 2.8 and expressing the result in coordinates
we obtain

𝜉1 = 𝜉 ([dℋ, 𝑒1]) = 𝜉

(︃
−
(︃
𝜉2

𝐼2
+ 𝑎2

)︃
𝑒3 +

(︃
𝜉3

𝐼3
+ 𝑎3

)︃
𝑒2

)︃

=
(︂ 1
𝐼3

− 1
𝐼2

)︂
𝜉2𝜉3 + 𝑎3𝜉2 + 𝑎2𝜉3

𝜉2 = 𝜉 ([dℋ, 𝑒2]) = 𝜉

(︃
−
(︃
𝜉3

𝐼3
+ 𝑎3

)︃
𝑒1 +

(︃
𝜉1

𝐼1
+ 𝑎1

)︃
𝑒3

)︃

=
(︂ 1
𝐼1

− 1
𝐼3

)︂
𝜉1𝜉3 + 𝑎3𝜉1 + 𝑎1𝜉3

𝜉3 = 𝜉 ([dℋ, 𝑒3]) = 𝜉

(︃
−
(︃
𝜉1

𝐼1
+ 𝑎1

)︃
𝑒2 +

(︃
𝜉2

𝐼2
+ 𝑎2

)︃
𝑒1

)︃

=
(︂ 1
𝐼2

− 1
𝐼1

)︂
𝜉1𝜉2 + 𝑎2𝜉1 + 𝑎1𝜉2

(4.20)

Substituting into the horizontal equation 2.7 we obtain very similar result as in 4.2.1.

𝑔̇ = 𝑔 dℋ = 𝑔

[︃(︃
𝜉1

𝐼1
+ 𝑎1

)︃
𝑒1 +

(︃
𝜉2

𝐼2
+ 𝑎2

)︃
𝑒2 +

(︃
𝜉3

𝐼3
+ 𝑎3

)︃
𝑒3

]︃
(4.21)

Again, the equations on vertical coordinates are decoupled from the horizontal equa-
tion. The solution of the horizontal equation is an exponential. As a matter of fact,
it can be written in the same form as 4.12.

36



4.3 Hamiltonian Formalism on SE(3)

Analogously to the previous section we will present three problems of Hamiltonian
formalism, this time on the group SE(3). Refer to examples 1.3.4 and 1.3.9 for
introduction of the matrix structures. These structures are used to describe the full
motion of rigid body, meaning not only rotational motion (which is inherited from
the SO(3) group) but also translations. Let us mention the form of the base of
the algebra se(3). As said, the algebra is 6-dimensional space. For arbitrary element
𝐴 ∈ se(3):

𝐴 =
6∑︁

𝑖=1
𝑎𝑖𝑒𝑖 =

⎛⎜⎜⎜⎜⎜⎝
0 −𝑎3 𝑎2 𝑎4

𝑎3 0 −𝑎1 𝑎5

−𝑎2 𝑎1 0 𝑎6

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Alternatively, the group SO(4, 1) we have introduced in subsection 3.1.2 contains
SE(3) as its subgroup. Thus se(3) ⊂ so(4, 1) and we could represent an element
𝐴 ∈ se(3) as

𝐴 =
6∑︁

𝑖=1
𝑎𝑖𝐸𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
𝑎4 0 −𝑎3 𝑎2 0
𝑎5 𝑎3 0 −𝑎1 0
𝑎6 −𝑎2 𝑎1 0 0
0 𝑎4 𝑎5 𝑎6 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑎𝑖 ∈ R. (4.22)

Last step before we continue to the individual problems, let us show the form of
the coadjoint function on se(3). Since

(ad𝐴)𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎2𝑏3 − 𝑎3𝑏2

𝑎3𝑏1 − 𝑎1𝑏3

𝑎1𝑏2 − 𝑎2𝑏1

𝑎2𝑏6 − 𝑎3𝑏5 + 𝑎5𝑏3 − 𝑎6𝑏2

𝑎3𝑏4 − 𝑎1𝑏6 − 𝑎4𝑏3 + 𝑎6𝑏1

𝑎1𝑏5 − 𝑎2𝑏4 + 𝑎4𝑏2 − 𝑎5𝑏1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −𝑎3 𝑎2 0 0 0
𝑎3 0 −𝑎1 0 0 0

−𝑎2 𝑎1 0 0 0 0
0 −𝑎6 𝑎5 0 −𝑎3 𝑎2

𝑎6 0 −𝑎4 𝑎3 0 −𝑎1

−𝑎5 𝑎4 0 −𝑎2 𝑎1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.23)
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the coadjoint operator on se(3) has the following form.

(ad𝐴)* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑎3 −𝑎2 0 𝑎6 −𝑎5

−𝑎3 0 𝑎1 −𝑎6 0 𝑎4

𝑎2 −𝑎1 0 𝑎5 −𝑎4 0
0 0 0 0 𝑎3 −𝑎2

0 0 0 −𝑎3 0 𝑎1

0 0 0 𝑎2 −𝑎1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.24)

4.3.1 Hamiltonian as a Quadratic Form on se*(3)
Again, we begin with the specification of the considered Hamiltonian. Let 𝑔 ∈ SE(3),
𝜉 ∈ se*(3), 𝑝 = 𝐿*

𝑔−1𝜉 ∈ 𝑇 *
𝑔 SE(3).

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉6) = 1
2

3∑︁
𝑖=1

𝜉2
𝑖

𝐼𝑖

+ 1
2

3∑︁
𝑖=1

𝜉2
𝑖+3
𝑚

(4.25)

Using the matrix of this quadratic form, we may represent the Hamiltonian as

ℋ (𝜉) = 1
2𝜉

⊤𝐽−1𝜉, (4.26)

where

𝐽 = diag (𝐼1, 𝐼2, 𝐼3, 𝑚, 𝑚, 𝑚) , 𝐼1, 𝐼2, 𝐼3 ∈ R∖{0}, 𝑚 > 0. (4.27)

This form of Hamiltonian was chosen because this example is a model of the free
rigid body motion in space, i. e., translations and rotations of a rigid body without
influence of forces.

The Lagrangian of this problem has the following form.

𝜔 = 𝜕ℋ
𝜕𝜉

= 𝐽−1𝜉,

𝐿(𝜔) = 1
2𝜔

⊤𝐽𝜔

Now, to form the equations, we need the differential of the Hamiltonian, which is

dℋ(𝜉1, . . . , 𝜉6) =
3∑︁

𝑖=1

𝜉𝑖

𝐼𝑖

𝑒𝑖 +
3∑︁

𝑖=1

𝜉𝑖+3

𝑚
𝑒𝑖+3. (4.28)

Thus the coadjoint operator associated with the differential has the following form.

(ad dℋ)* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝜉3/𝐼3 −𝜉2/𝐼2 0 𝜉6/𝑚 −𝜉5/𝑚

−𝜉3/𝐼3 0 𝜉1/𝐼1 −𝜉6/𝑚 0 𝜉4/𝑚

𝜉2/𝐼2 −𝜉1/𝐼1 0 𝜉5/𝑚 −𝜉4/𝑚 0
0 0 0 0 𝜉3/𝐼3 −𝜉2/𝐼2

0 0 0 −𝜉3/𝐼3 0 𝜉1/𝐼1

0 0 0 𝜉2/𝐼2 −𝜉1/𝐼1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.29)
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From there all that remains is formulate the equations of Hamiltonian formalism.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜉1

𝜉2

𝜉3

𝜉4

𝜉5

𝜉6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝜉3/𝐼3 −𝜉2/𝐼2 0 𝜉6/𝑚 −𝜉5/𝑚

−𝜉3/𝐼3 0 𝜉1/𝐼1 −𝜉6/𝑚 0 𝜉4/𝑚

𝜉2/𝐼2 −𝜉1/𝐼1 0 𝜉5/𝑚 −𝜉4/𝑚 0
0 0 0 0 𝜉3/𝐼3 −𝜉2/𝐼2

0 0 0 −𝜉3/𝐼3 0 𝜉1/𝐼1

0 0 0 𝜉2/𝐼2 −𝜉1/𝐼1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜉1

𝜉2

𝜉3

𝜉4

𝜉5

𝜉6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4.30)

𝑔̇ = 𝑔 dℋ = 𝑔

(︃ 3∑︁
𝑖=1

𝜉𝑖

𝐼𝑖

𝑒𝑖 +
3∑︁

𝑖=1

𝜉𝑖+3

𝑚
𝑒𝑖+3

)︃
(4.31)

The solution itself is very similar to the previous cases. We would solved the vertical
part 4.30 numerically, the horizontal part 4.31 has an analytical solution, an expo-
nential. At this point it is rather obvious that this is no coincidence but a property
of this class of problems.

4.3.2 Hamiltonian as a Linear Form on se*(3)

We want to show this example as it is an extension of subsection 4.2.2. Let 𝑔 ∈ SE(3),
𝜉 ∈ se*(3), 𝑝 = 𝐿*

𝑔−1𝜉 ∈ 𝑇 *
𝑔 SE(3). We take the Hamiltonian

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉6) =
6∑︁

𝑖=1
𝑎𝑖𝜉𝑖, 𝑎1, . . . , 𝑎6 ∈ R, (4.32)

ℋ(𝜉) = 𝑎⃗⊤𝜉, 𝑎⃗ = (𝑎1, . . . , 𝑎6)⊤ . (4.33)

Once again it is not possible to formulate the Lagrangian function of this problem
because

𝜔 = 𝜕ℋ
𝜕𝜉

= 𝑎⃗⊤

is not a function of 𝜉.
The differential of the Hamiltonian is dℋ (𝜉1, . . . , 𝜉2) = ∑︀6

𝑖=1 𝑎𝑖𝑒𝑖 = 𝑐𝑜𝑛𝑠𝑡., thus
the coadjoint operator has the form

(ad dℋ)* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑎3 −𝑎2 0 𝑎6 −𝑎5

−𝑎3 0 𝑎1 −𝑎6 0 𝑎4

𝑎2 −𝑎1 0 𝑎5 −𝑎4 0
0 0 0 0 𝑎3 −𝑎2

0 0 0 −𝑎3 0 𝑎1

0 0 0 𝑎2 −𝑎1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.34)
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Then the Hamiltonian equations have the from

𝑔̇ = 𝑔 · dℋ = 𝑔 ·
(︃ 6∑︁

𝑖=1
𝑎𝑖𝑒𝑖

)︃
,

𝜉 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 𝑎3 −𝑎2 0 𝑎6 −𝑎5

−𝑎3 0 𝑎1 −𝑎6 0 𝑎4

𝑎2 −𝑎1 0 𝑎5 −𝑎4 0
0 0 0 0 𝑎3 −𝑎2

0 0 0 −𝑎3 0 𝑎1

0 0 0 𝑎2 −𝑎1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝜉.

This example again doesn’t seem to resemble any real world problem. The vertical
part models the change in momentum, the horizontal part models the change in
position. In this particular example the momentum is being rotated but the change
in position is constant, which is not what we would expect in any real world appli-
cation.

4.3.3 Hamiltonian as a Quadratic Function on se*(3)
In the last example in this section we combine 4.3.1 and 4.3.2. Let 𝑔 ∈ SE(3),
𝜉 ∈ se*(3), 𝑝 = 𝐿*

𝑔−1𝜉 ∈ 𝑇 *
𝑔 SE(3) and 𝑎1, . . . , 𝑎6 ∈ R. The Hamiltonian therefore is

of form

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉6) = 1
2

3∑︁
𝑖=1

𝜉2
𝑖

𝐼𝑖

+ 1
2

3∑︁
𝑖=1

𝜉2
𝑖+3
𝑚

+
6∑︁

𝑖=1
𝑎𝑖𝜉𝑖, (4.35)

ℋ (𝜉) = 1
2𝜉

⊤𝐽−1𝜉 + 𝑎⃗⊤𝜉. (4.36)

The matrix of the quadratic form is the same as the one given in 4.27. As the quadratic
part models the free rigid body motion and the linear part rotates the vertical part
of the cotangent bundle, this can be seen as a example of rigid body that is acted
upon by some kind of forces that are constant in the body frame.

The Lagrangian of this problem is, to no surprise, very similar to its counterpart
from 4.17.

𝐿(𝜔) = 1
2 (𝜔 − 𝑎⃗)⊤ 𝐽 (𝜔 − 𝑎⃗)

Now, let us state the Hamiltonian equations associated with this problem. The dif-
ferential of the Hamiltonian has the form

dℋ(𝜉1, . . . , 𝜉6) =
3∑︁

𝑖=1

𝜉𝑖

𝐼𝑖

𝑒𝑖 +
3∑︁

𝑖=1

𝜉𝑖+3

𝑚
𝑒𝑖+3 +

6∑︁
𝑖=1

𝑎𝑖𝑒𝑖 (4.37)

and the coadjoint operator has the form of block matrix

(ad dℋ)* =
⎛⎝A B
0 A

⎞⎠ , (4.38)
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where 0 is zero matrix and

A =

⎛⎜⎜⎝
0 𝜉3/𝐼3 + 𝑎3 −𝜉2/𝐼2 − 𝑎2

−𝜉3/𝐼3 − 𝑎3 0 𝜉1/𝐼1 + 𝑎1

𝜉2/𝐼2 + 𝑎2 −𝜉1/𝐼1 − 𝑎1 0

⎞⎟⎟⎠ , (4.39)

B =

⎛⎜⎜⎝
0 𝜉6/𝑚+ 𝑎6 −𝜉5/𝑚− 𝑎5

−𝜉6/𝑚− 𝑎6 0 𝜉4/𝑚+ 𝑎4

𝜉5/𝑚+ 𝑎5 −𝜉4/𝑚− 𝑎4 0

⎞⎟⎟⎠ . (4.40)

Considering the increasing size of the matrices involved, we will now incorporate
their block structure whenever feasible. The equations corresponding to this problem
are

𝜉 = (ad dℋ)* 𝜉 =
⎛⎝A B
0 A

⎞⎠ 𝜉, (4.41)

𝑔̇ = 𝑔 · dℋ = 𝑔 ·
(︃ 3∑︁

𝑖=1

𝜉𝑖

𝐼𝑖

𝑒𝑖 +
3∑︁

𝑖=1

𝜉𝑖+3

𝑚
𝑒𝑖+3 +

6∑︁
𝑖=1

𝑎𝑖𝑒𝑖

)︃
. (4.42)

The solution of the horizontal part is again an exponential, the vertical part we
would solve numerically.

4.4 Hamiltonian Formalism on SO(4, 1)

For this final section, we will focus on the most general group. As mentioned earlier,
both SO(3) and SE(3) are subgroups of SO(4,1). In Chapter 3, we introduced this
group and its associated Lie algebra. Namely, recall 3.6, the structure of the Lie alge-
bra we will assume. Before we explore individual problems we will show the structure
of general coadjoint operator on this Lie algebra.

(ad𝐴)𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎2𝑏3 − 𝑎3𝑏2 − 𝑎5𝑏9 + 𝑎6𝑏8 − 𝑎8𝑏6 + 𝑎9𝑏5

𝑎3𝑏1 − 𝑎1𝑏3 + 𝑎4𝑏9 − 𝑎6𝑏7 + 𝑎7𝑏6 − 𝑎9𝑏4

𝑎1𝑏2 − 𝑎2𝑏1 − 𝑎4𝑏8 + 𝑎5𝑏7 − 𝑎7𝑏5 + 𝑎8𝑏4

𝑎2𝑏6 − 𝑎3𝑏5 + 𝑎5𝑏3 − 𝑎6𝑏2 + 𝑎4𝑏10 − 𝑎10𝑏4

𝑎3𝑏4 − 𝑎1𝑏6 − 𝑎4𝑏3 + 𝑎6𝑏1 + 𝑎5𝑏10 − 𝑎10𝑏5

𝑎1𝑏5 − 𝑎2𝑏4 + 𝑎4𝑏2 − 𝑎5𝑏1 + 𝑎6𝑏10 − 𝑎10𝑏6

𝑎2𝑏9 − 𝑎3𝑏8 + 𝑎8𝑏3 − 𝑎9𝑏2 − 𝑎7𝑏10 + 𝑎10𝑏7

𝑎3𝑏7 − 𝑎1𝑏9 − 𝑎7𝑏3 + 𝑎9𝑏1 − 𝑎8𝑏10 + 𝑎10𝑏8

𝑎1𝑏8 − 𝑎2𝑏7 + 𝑎7𝑏2 − 𝑎8𝑏1 − 𝑎9𝑏10 + 𝑎10𝑏9

𝑎7𝑏4 − 𝑎4𝑏7 − 𝑎5𝑏8 + 𝑎8𝑏5 − 𝑎6𝑏9 + 𝑎9𝑏6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(ad𝐴)* =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ (4.43)

A =

⎛⎜⎜⎝
0 𝑎3 −𝑎2

−𝑎3 0 𝑎1

𝑎2 −𝑎1 0

⎞⎟⎟⎠ B =

⎛⎜⎜⎝
0 𝑎6 −𝑎5

−𝑎6 0 𝑎4

𝑎5 −𝑎4 0

⎞⎟⎟⎠

C =

⎛⎜⎜⎝
0 𝑎9 −𝑎8

−𝑎9 0 𝑎7

𝑎8 −𝑎7 0

⎞⎟⎟⎠ D =

⎛⎜⎜⎝
−𝑎10 𝑎3 −𝑎2

−𝑎3 −𝑎10 𝑎1

𝑎2 −𝑎1 −𝑎10

⎞⎟⎟⎠

E =

⎛⎜⎜⎝
𝑎10 𝑎3 −𝑎2

−𝑎3 𝑎10 𝑎1

𝑎2 −𝑎1 𝑎10

⎞⎟⎟⎠
𝑥⃗ = (𝑎4, 𝑎5, 𝑎6)⊤ 𝑤⃗ = (𝑎7, 𝑎8, 𝑎9)⊤

The coadjoint operator can be represented by a 10×10 matrix, it would be challeng-
ing to incorporate it directly into the text without the block structure. Consequently,
we will solely utilize the block structure approach to present the coadjoint operator.

4.4.1 Hamiltonian as a Quadratic Form on so*(4, 1)
Once again, we begin with the definition of the Hamiltonian. Let 𝑔 ∈ SO(4, 1),
𝜉 ∈ so*(4, 1), 𝑝 = 𝐿*

𝑔−1𝜉 ∈ 𝑇 *
𝑔 SO(4, 1).

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉10) = 1
2

10∑︁
𝑖=1

𝜉2
𝑖

𝑗𝑖

(4.44)

We can reformulate the Hamiltonian using matrix notation. Take

𝐽 = diag (𝑗1, . . . , 𝑗10) , 𝑗1, . . . , 𝑗10 ∈ R∖{0},

then
ℋ (𝜉) = 1

2𝜉
⊤𝐽−1𝜉. (4.45)

The Lagrangian function associated with this problem can be formulated in the same
manner as in the previous examples.

𝐿(𝜔) = 1
2𝜔

⊤𝐽𝜔

The form is symbolically the same as in the case of quadratic form on SE(3), the dif-
ference is that 𝜔 has the dimension of 10 instead of 6 and the matrix 𝐽 is also
different.

42



Finding a real world example is trickier than in the previous cases. The reason
for that is that the tenth dimension of the Lie algebra (in the definition we use) is
responsible for scaling. Therefore it is really no longer appropriate to talk about mo-
tion of a rigid body, because we expect that the body would deform. But it turns out
that the group SO(4, 1) models more complicated physics, which is not that surpris-
ing given that it is an extension of SE(3). For instance, in [10], the group SO(4, 1) (in
the sense of 3.3) is employed to express the equations of general relativity in a dimen-
sionless formulation. Similarly, all computations behind the animations featured in
[11] (scientifically accurate visualizations of Schwarzschild and Reissner–Nordström
black hole models) are conducted using the SO(4, 1) Lie group. Considering that
this case is a generalization of 4.2.1 and 4.3.1, it can be assumed that a real-world
application of this scenario would involve free motion in close proximity to a black
hole.

Let us finish up this example by formulation of the Hamiltonian equations.
The differential of the Hamiltonian in this case has the following form.

dℋ (𝜉1, . . . , 𝜉10) =
10∑︁

𝑖=1

𝜉𝑖

𝑗𝑖

𝑒𝑖 (4.46)

Thus, the coadjoint operator has the form

(ad𝐴)* =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ (4.47)

A =

⎛⎜⎜⎝
0 𝜉3/𝑗3 −𝜉2/𝑗2

−𝜉3/𝑗3 0 𝜉1/𝑗1

𝜉2/𝑗2 −𝜉1/𝑗1 0

⎞⎟⎟⎠ B =

⎛⎜⎜⎝
0 𝜉6/𝑗6 −𝜉5/𝑗5

−𝜉6/𝑗6 0 𝜉4/𝑗4

𝜉5/𝑗5 −𝜉4/𝑗4 0

⎞⎟⎟⎠

C =

⎛⎜⎜⎝
0 𝜉9/𝑗9 −𝜉8/𝑗8

−𝜉9/𝑗9 0 𝜉7/𝑗7

𝜉8/𝑗8 −𝜉7/𝑗7 0

⎞⎟⎟⎠ D =

⎛⎜⎜⎝
−𝜉10/𝑗10 𝜉3/𝑗3 −𝜉2/𝑗2

−𝜉3/𝑗3 −𝜉10/𝑗10 𝜉1/𝑗1

𝜉2/𝑗2 −𝜉1/𝑗1 −𝜉10/𝑗10

⎞⎟⎟⎠

E =

⎛⎜⎜⎝
𝜉10/𝑗10 𝜉3/𝑗3 −𝜉2/𝑗2

−𝜉3/𝑗3 𝜉10/𝑗10 𝜉1/𝑗1

𝜉2/𝑗2 −𝜉1/𝑗1 𝜉10/𝑗10

⎞⎟⎟⎠
𝑥⃗ = (𝜉4/𝑗4, 𝜉5/𝑗5, 𝜉6/𝑗6)⊤ 𝑤⃗ = (𝜉7/𝑗7, 𝜉8/𝑗8, 𝜉9/𝑗9)⊤
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The equations then are

𝑔̇ = 𝑔 ·
(︃ 10∑︁

𝑖=1

𝜉𝑖

𝑗𝑖

𝑒𝑖

)︃
,

𝜉 =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ 𝜉.
(4.48)

4.4.2 Hamiltonian as a Linear Form on so*(4, 1)
Take the Hamiltonian

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉10) =
10∑︁

𝑖=1
𝑎𝑖𝜉𝑖, (4.49)

where 𝑔 ∈ SO(4, 1), 𝜉 ∈ so*(4, 1), 𝑝 = 𝐿*
𝑔−1𝜉 ∈ 𝑇 *

𝑔 SO(4, 1). We can reformulate
the Hamiltonian using vector notation. Take

𝑎⃗ = (𝑎1, . . . , 𝑎10)⊤ , 𝑎1, . . . , 𝑎10 ∈ R,

then
ℋ (𝜉) = 𝑎⃗⊤𝜉. (4.50)

The Lagrangian once again cannot be obtained, since 𝜕ℋ
𝜕𝜉

is a constant vector.
The differential of Hamiltonian is

dℋ(𝜉1, . . . , 𝜉10) =
10∑︁

𝑖=1
𝑎𝑖𝑒𝑖, (4.51)

thus,

(ad𝐴)* =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ (4.52)

A =

⎛⎜⎜⎝
0 𝑎3 −𝑎2

−𝑎3 0 𝑎1

𝑎2 −𝑎1 0

⎞⎟⎟⎠ B =

⎛⎜⎜⎝
0 𝑎6 −𝑎5

−𝑎6 0 𝑎4

𝑎5 −𝑎4 0

⎞⎟⎟⎠

C =

⎛⎜⎜⎝
0 𝑎9 −𝑎8

−𝑎9 0 𝑎7

𝑎8 −𝑎7 0

⎞⎟⎟⎠ D =

⎛⎜⎜⎝
−𝑎10 𝑎3 −𝑎2

−𝑎3 −𝑎10 𝑎1

𝑎2 −𝑎1 −𝑎10

⎞⎟⎟⎠

E =

⎛⎜⎜⎝
𝑎10 𝑎3 −𝑎2

−𝑎3 𝑎10 𝑎1

𝑎2 −𝑎1 𝑎10

⎞⎟⎟⎠
𝑥⃗ = (𝑎4, 𝑎5, 𝑎6)⊤ 𝑤⃗ = (𝑎7, 𝑎8, 𝑎9)⊤
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This implies the equations

𝑔̇ = 𝑔 ·
(︃ 10∑︁

𝑖=1
𝑎𝑖𝑒𝑖

)︃
,

𝜉 =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ 𝜉.
(4.53)

But, once again, there is no real application to be found that could be modeled by
these equations.

4.4.3 Hamiltonian as a Quadratic Function on so*(4, 1)

This last example combines 4.4.1 and 4.4.2 and it is the most general example we
will show. Let 𝑔 ∈ SO(4, 1), 𝜉 ∈ so*(4, 1), 𝑝 = 𝐿*

𝑔−1𝜉 ∈ 𝑇 *
𝑔 SO(4, 1). The Hamiltonian

we assume is

𝐻(𝑔, 𝑝) = ℋ(𝜉), ℋ (𝜉1, . . . , 𝜉10) = 1
2

10∑︁
𝑖=1

𝜉2
𝑖

𝑗𝑖

+
10∑︁

𝑖=1
𝑎𝑖𝜉𝑖. (4.54)

We can reformulate the Hamiltonian using matrix notation. Take

𝐽 = diag (𝑗1, . . . , 𝑗10) , 𝑗1, . . . , 𝑗10 ∈ R∖{0},
𝑎⃗ = (𝑎1, . . . , 𝑎10) , 𝑎1, . . . , 𝑎10 ∈ R

then
ℋ (𝜉) = 1

2𝜉
⊤𝐽−1𝜉 + 𝑎⃗⊤𝜉. (4.55)

The Lagrangian corresponding to this problem can be derived as

𝐿(𝜔) = 1
2 (𝜔 − 𝑎⃗)⊤ 𝐽 (𝜔 − 𝑎⃗) .

The differential of this Hamiltonian is

dℋ(𝜉1, . . . , 𝜉10) =
10∑︁

𝑖=1

(︃
𝜉𝑖

𝑗𝑖

+ 𝑎𝑖

)︃
𝑒𝑖, (4.56)

thus the coadjoint operator has the form

(ad𝐴)* =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ , (4.57)
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where

A =

⎛⎜⎜⎝
0 𝜉3/𝑗3 + 𝑎3 −𝜉2/𝑗2 − 𝑎2

−𝜉3/𝑗3 − 𝑎3 0 𝜉1/𝑗1 + 𝑎1

𝜉2/𝑗2 + 𝑎2 −𝜉1/𝑗1 − 𝑎1 0

⎞⎟⎟⎠ ,

B =

⎛⎜⎜⎝
0 𝜉6/𝑗6 + 𝑎6 −𝜉5/𝑗5 − 𝑎5

−𝜉6/𝑗6 − 𝑎6 0 𝜉4/𝑗4 + 𝑎4

𝜉5/𝑗5 + 𝑎5 −𝜉4/𝑗4 − 𝑎4 0

⎞⎟⎟⎠ ,

C =

⎛⎜⎜⎝
0 𝜉9/𝑗9 + 𝑎9 −𝜉8/𝑗8 − 𝑎8

−𝜉9/𝑗9 − 𝑎9 0 𝜉7/𝑗7 + 𝑎7

𝜉8/𝑗8 + 𝑎8 −𝜉7/𝑗7 − 𝑎7 0

⎞⎟⎟⎠ ,

D =

⎛⎜⎜⎝
−𝜉10/𝑗10 − 𝑎10 𝜉3/𝑗3 + 𝑎3 −𝜉2/𝑗2 − 𝑎2

−𝜉3/𝑗3 − 𝑎3 −𝜉10/𝑗10 − 𝑎10 𝜉1/𝑗1 + 𝑎1

𝜉2/𝑗2 + 𝑎2 −𝜉1/𝑗1 − 𝑎1 −𝜉10/𝑗10 − 𝑎10

⎞⎟⎟⎠ ,

E =

⎛⎜⎜⎝
𝜉10/𝑗10 + 𝑎10 𝜉3/𝑗3 + 𝑎3 −𝜉2/𝑗2 − 𝑎2

−𝜉3/𝑗3 − 𝑎3 𝜉10/𝑗10 + 𝑎10 𝜉1/𝑗1 + 𝑎1

𝜉2/𝑗2 + 𝑎2 −𝜉1/𝑗1 − 𝑎1 𝜉10/𝑗10 + 𝑎10

⎞⎟⎟⎠ ,
𝑥⃗ = (𝜉4/𝑗4 + 𝑎4, 𝜉5/𝑗5 + 𝑎5, 𝜉6/𝑗6 + 𝑎6)⊤ ,

𝑤⃗ = (𝜉7/𝑗7 + 𝑎7, 𝜉8/𝑗8 + 𝑎8, 𝜉9/𝑗9 + 𝑎9)⊤ .

The equations have the following form.

𝑔̇ = 𝑔 ·
(︃ 10∑︁

𝑖=1

(︃
𝜉𝑖

𝑗𝑖

+ 𝑎𝑖

)︃
𝑒𝑖

)︃
,

𝜉 =

⎛⎜⎜⎜⎜⎜⎝
A B C 0

C⊤ D 0 𝑤⃗

B⊤ 0 E −𝑥⃗
0 𝑥⃗⊤ −𝑤⃗⊤ 0

⎞⎟⎟⎟⎟⎟⎠ 𝜉.
(4.58)

The application of this particular case are even more complicated than in the case
4.4.1. But seeing this as a generalization of 4.4.1, one might try to model motion of
a soft body with forces acting upon it using these equations.
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5 Programmed Solutions
We have chosen two main approaches in programmed examples for this thesis.
The first are scripts coded in JavaScript for a visualization tool [12] written in
JavaScript. The JavaScript scripts can be run locally if one installs the package,
but they can be run online at [13]. It was created as a database of free examples
for [12] and as an easy way for users to experiment with their own ideas. The sec-
ond approach is a script in Matlab solving the general problem 4.4.3. In following
sections we will visit each of them, describe them, present the results and explain,
why is the approach of Lie groups and algebras useful.

5.1 Dimensionless Rigid Body Motion

The first example was chosen as it very clearly demonstrates property of problems
described using Lie algebra, that seems almost absurd from the point of view of
vector–matrix notation which currently the usual way of computing motion. That
is, the form of equations does not depend on the dimension of space the body is
in. As we will demonstrate, the same code works for motion of a rectangle in 2D
space and a block in 3D space. In some sense, this is similar solution to the Garticle
Engine which we have discussed in [14]. However, since we assume left-invariant
Hamiltonian functions, this is somewhat simpler case.

5.1.1 Code Description

The dimension is chosen beforehand and defined in the variable called dimension.
The computations take place in either 2D or 3D Projective Geometric Algebra
(PGA). Thorough introduction to PGA can be found in [8]. The reason, why we
use PGA and instead of CGA is that it is easier, from programming standpoint, to
handle the different number of dimensions. It could be obviously done in CGA as
well but it would make the code unnecessarily complicated and that is why we have
chosen PGA. Needless to say, that this is caused by default base in [12], which is
the base associated with 3.3. If there were by default base vectors 𝑒0 and 𝑒∞ we
could write the example as efficiently in CGA.

Following definition of the algebra we define couple of functions. Namely, func-
tion

var point = x => !(e0 + x * [e1 , e2 , e3 ]);

which takes an array of coordinates of point in 2D or 3D and returns the representa-
tion of this point in PGA (which is a trivector). Keywords e0, e1, e2, e3 represent
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the base vectors and the exclamation mark is the duality operator. The fourth-order
Runge–Kutta algorithm (RK4, [15]) follows.

var RK4 = (f,y,h) => {
var k1=f(y),

k2=f(y+0.5*h*k1),
k3=f(y+0.5*h*k2),
k4=f(y+h*k3);

return y+(h/3) *(k2+k3+(k1+k4)*0.5);
}

As we mentioned very often, the horizontal part of Hamiltonian equations can be
solved analytically, so we will solve only the vertical part using the RK4 and use
the exponentiation to find the solution of the horizontal part. But more on that
later. Next, we define the commutator for PGA:

var commutator = (a, b) => 0.5 * (a * b - b * a);

The definition of the body (a rectangle or a block) follows. We choose its phys-
ical properties – mass and length of edges – and use this information to calculate
the inertia matrix. Then we compute its vertices and edges, we have used an algo-
rithm that can be found in [16] which utilizes the fact you can represent coordinates
of vertices of a cube with edge of length one as a binary number and vice versa,
then we use binary operations to calculate whether or not there should be an edge
between two vertices given their indices. An edge is always between to points whose
coordinates differ only in one dimension. Thus we check whether two points satisfy
this condition and if it is so, connect them with an edge.

Next step is definition of initial position and momentum of the body. The po-
sition is given by a PGA motor (multivector on even blades), momentum is repre-
sented by a bivector. As mentioned above, the initialState, as we have called
the variable, is an array with two elements. For example

var initialState = [1-1e01 , -0.1 e12 +0.1 e01 +0.5 e02 +0.1 e23 ];

is a valid option. Furthermore, variables momentum and position will be used to
store current values.

At last we define the differential of Hamiltonian function.

var linearPart = 0,
dH = h => h.Dual.map ((x, i) => x / ( inertia [i]||1)) +

linearPart .Dual;

The constant part of dℋ is always taken as a bivector in 3D PGA, that ensures that
correct bivectors are used in algebras with fewer dimensions, since for example 𝑒03

is evaluated as zero in 2D PGA. The vertical equation is not exactly the same as it
was shown in previous chapter. Recall 2.1.5. For a compact Lie group we may use
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the commutator in the vertical equation. But the velocity is dual to momentum,
thus we need to first take its dual (this is done directly in dH) and after we compute
the commutator we have, so to say, "undual" the result.

var undual = h => h.map ((x, i) => x * inertia [i]).Dual -
linearPart ,
verticalEquation = h => commutator (h, dH(h));

Then we just run the animation – in each time step we update the state by
t += dt; // we usually choose dt = 1/60
velocity = RK4( verticalEquation , velocity , dt). Grade (2);
position = ( initialState [0]*(( t* velocity ).Exp ())). Normalized ;

and draw edges of the body.

5.1.2 Results

In this subsection we will choose some initial data and present the reader with
obtained results. However, the code described above is meant as a visualization
tool, i.e., it creates animation of the motion, which isn’t very useful for display-
ing on paper. But with slight modification of the script we have created a script
that computes the motion beforehand and user can then choose which positions
to display. Specifically, the algorithm computing edges leaves zeros in the array if
there shouldn’t be an edge between points. This doesn’t matter in the animation
script but it introduces some problems here so we have to clean the edges array.
The motion is computed in a for loop and the motors are stored in an array.
for (var i = 0; i < timeSteps ; i++) {

t += dt;
velocity = RK4( verticalEquation , velocity , dt). Grade (2);
positions [i] = ( initialState [0]*(( t*( undual (dH( velocity )))).Exp ()

)). Normalized ;
}

Then we compute the transformation of cube
var movedEdges = positions .map ((x,i) => trueEdges .map ((y,j) => x

>>> y));

and draw a couple of cubes on screen (the cubes at zero, one and two seconds).
document .body. appendChild (this.graph ([

0x5f3110 , ... movedEdges [0], "t=0s",
0x9D86CF , ... movedEdges [59] , "t=1s",
0xCC8ADC , ... movedEdges [119] , "t=2s"

]));

With that out of our hands, let us turn attention to the examples themselves. We
begin with simple examples mainly to show, that the system works the way we would
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expect it to. By simple we mean that we take cube with length of an edge equal to
one and mass 12. Furthermore, we take Hamiltonian function that is a quadratic
form. We will present the results in figures of the cube at three moments.

Rotation around one axis

First example is rotation around the z axis. Keep in mind that we start in premise
that the same code should work in all dimensions, but we will show only 2D and 3D
versions of the same problem, because 1D isn’t particularly exciting and anything
above 3D isn’t very useful anyway. The initial velocity was chosen 𝜉 = −1𝑒12, thus
we would expect counter-clockwise rotation around z axis, as we already mentioned.
As you can see in figures 5.1 and 5.2, this is exactly what we have obtained.

Rotation around all axes

Since there is no axis of rotation in 1D and only one in 2D, this example is interesting
for the case of 3D space. We have chosen the velocity as 𝜉 = −0.3𝑒23+0.1𝑒31−0.2𝑒12.
The result is in figure 5.3. Obviously we could run this in 2D (or even 1D) but it
would reduce itself to a rotation with velocity 𝜉 = −0.2𝑒12 since the other two
bivectors don’t exist in 2D PGA (because 𝑒3 does not exist there), which we have
demonstrated above.

Translation in one direction

In the two following examples we take look at translations. First, let us take simple
translation in one direction. We take the velocity 𝜉 = 𝑒01, thus we expect the cube
to reverse along the x axis. The results for 2D and 3D space can be found in figures
5.4 and 5.5. The results confirm our expectations.

Translation in all directions

In figures 5.6, 5.7 can the reader find translational motion in all directions. We
have chosen the bivector of velocity as 𝜉 = 𝑒01 − 0.7𝑒02 − 0.2𝑒03. Thus the motion
should be in the direction of y and z axes (in the case of 3D space), and against
the direction of x axis. This is the case, our assumptions were correct.

Free Rigid Body Motion

Last of the simple motions is combination of the above. This time we take the ve-
locity 𝜉 = 0.1𝑒02 − 0.7𝑒03 − 0.1𝑒12. The results can be found in figures 5.8 and 5.9.
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You may notice, that the cube drifts in the direction of the x axis. Since the ve-
locity is in the body frame that makes perfect sense, the rotational motion causes
the translational movement to rotate with the cube and thus the movement in x axis.

Non-zero Linear Part in Hamiltonian Function

Now we will experiment with the linear part of the Hamiltonian function. The free
motion is described by the quadratic form, thus this term might correspond to
a force acting on the body. By definition, left-invariant Hamiltonian cannot depend
on the position of the body in space, thus this force would have to be constant in
the body frame. With this concept in mind, let us denote by 𝑓 = ∑︀

𝑎𝑖𝑒𝑖 the constant
part of the differential of Hamiltonian function.

Let us begin from simple translational motion given by 𝜉 = −0.1𝑒02. It turns out,
that our assumptions were correct, or at least to some extent. Taking 𝑓 = −0.25𝑒02

we obtain results that are in figures 5.10a and 5.10b. As you can clearly see, that
is just the effect we would expect a force would have. Taking 𝑓 = 0.1𝑒12 we obtain
5.11a and 5.11b, which again do align with the idea of 𝑓 playing the role of torque
in this case. When we combine torque, forces and non-zero initial velocity we obtain
what we would expect, but keep in mind that the forces are in body frame and if
the body rotates, the forces rotate with it and the resulting motion copies that. In
5.12a and 5.12b is result obtained for 𝑓 = 0.1𝑒12 + 0.2𝑒01.

5.2 Soft Body Motion
Our next script is very similar to the previous one. However, this time we will use
CGA and try to demonstrate what is there in addition to the previous case. We have
chosen a sphere as the body that we will use in this example rather than a block,
because it is for one, very nicely embedded in CGA and for two, due to the changes
in relative position of points it might be difficult to see exactly what is happening.

5.2.1 Code Description

This time the algebra is set, we mentioned that we wish to use CGA, thus the (4, 1)
metric is chosen. Since the default base vectors correspond to 3.3, we define the base
vectors 𝑒0 = 1

2 (𝑒− − 𝑒+) and 𝑒∞ = 𝑒+ + 𝑒−. Using this new basis we can define
the usual point representation in CGA:

var point = x => eo + x + 0.5*x*x*einf;

For our convenience we define function sphere which takes an array of four points
and takes their outer product to create a sphere.
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var sphere = x => x. reduce ((a, b) => a ^ b);

The commutator follows and it is exactly the same as in previous example. We
will again employ fourth order Runge–Kutta algorithm for the vertical part and
exponentiation for the horizontal part. The initial positions of the four sphere’s
points were chosen as follows:

𝑃1 = [0, 0, 1/2] , 𝑃2 = [−1/2, 0, 0] ,
𝑃3 = [1/2, 0, 0] , 𝑃4 = [0, 1/2, 0] .

We continue with definition of initial motor, velocity and the linear part of the Hamil-
tonian function. Since we assume the body to be a sphere, we take the matrix of
the quadratic part of the Hamiltonian function as an identity matrix. The reasoning
behind this is following. Since sphere is obviously symmetric in every basis, it is
clear that its inertia is the same in every direction. Then we choose such mass, that
there are ones on the diagonal. The last two elements are defined as bivectors of
CGA, since it allows very simple formulation of the differential of the Hamiltonian
function, which follows next.

var dH = h => (h + linearPart ).Dual ,
undual = h => h.Dual - linearPart ;

The final step is to define the Hamiltonian equations, since the matrix of quadratic
form is an identity matrix, if the linear part would be zero, we could just take dual
of dℋ, compute the commutator and then take dual of the result. But this is not
the general case, thus we formulate the vertical equation as follows.

var verticalEquation = h => -2* undual ( commutator (h, dH(h)));

In the end we just run the simulation. At each step we update the velocity and
position, and then graph the points and sphere.

t += dt;
velocity = RK4( verticalEquation , velocity , 1/60).Grade (2);
position = ( initialState [0]*(( t*( velocity )).Exp ())). Normalized ;
var newPoints = points .map(p => position >>> p);

5.2.2 Results

Similarly to the previous case, the animation script was not very appropriate for
presenting results here. Thus we made very much the same modifications to create
script that better suits needs of this subsection. Positions are computed beforehand
and then we pick three of them (at zero, one and two seconds) and display them.
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Free Rigid Body Motion

Since SE(3) is a subgroup of SO(4, 1), we could go through all the translational and
rotational motions separately, but we will show directly the free rigid body motion.
Actually, we will take exactly the same velocity bivector 𝜉 = 0.1𝑒2∞−0.7𝑒3∞−0.1𝑒12,
only this time expressed in CGA. The results we have obtained are in figure 5.13.
To no surprise it is the same motion as in previous section.

Free Soft Body Motion

Bivectors 𝑒𝑖𝑗 and 𝑒𝑖∞, where 𝑖, 𝑗 ∈ {1, 2, 3} describe, in our application, the rigid
body motion, bivectors 𝑒0𝑖 correspond to transversions, inversion followed by trans-
lation followed by inversion. Those are not very interesting for us, since we wish to
study real bodies and inversion often doesn’t bode too well for them. That leaves
the bivector 𝑒0∞. As mentioned earlier, this bivector handles scaling. For our next
example we have chosen velocity 𝜉 = −0.6𝑒1∞ − 0.2𝑒0∞. The translation is there
only that the effect of dialation is visible in the result, which can be found in 5.14.
We see that the sphere is shrinking. If we take positive multiple of 𝑒0∞, it will
expand, see 5.15 (𝜉 = −0.6𝑒1∞ + 0.1𝑒0∞).

Forces and Torques

Analogously to the previous section, non-zero coefficients in the linear part of Hamil-
tonian function play role of forces and torques. It is very much the same as in the the
previous case apart from the dialation effect of 𝑒0∞ which wasn’t present in the case
of PGA. Thus we will give an example of it. We have chosen the bivector of velocity
𝑣 = −0.1𝑒1∞ and bivector of forces 𝑓 = −0.1𝑒1∞ − 0.15𝑒0∞, the result can be found
in figure 5.16.

5.3 Matlab Solution of 4.4.3

In this section we take one more look at the example from previous section. However,
we will solve it in its matrix formulation in Matlab. The result this time will be
a curve (𝑔, 𝜉) : ⟨0, 𝑡𝑓⟩ → SO(4, 1) × so*(4, 1), that is curve in 5×5 matrices, which is
not particularly easy to visualize. Thus we will plot velocities which is rather simple
and check whether the properties

• 𝐴⊤𝐵𝐴 = 𝐵, where 𝐴 ∈ SO(4, 1) and 𝐵 is given by 3.5,
• det𝐴 = 1, 𝐴 ∈ SO(4, 1)

of the group are satisfied for all matrices on the integral curve.
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5.3.1 Code Description

For user’s convenience and simplification of the script itself, two functions were
written:

• lieAlgebra takes an array of length 10 and converts it into corresponding
element of so(4, 1)

• coadjointOperator takes an array a of length 10 and converts it into (ad A)*,
where A:=lieAlgebra(a).

Both are very simple, they basically programmed form of 3.6 and 4.43 respectively.
The script begins with initialization of data for this problem. We keep the nota-

tion introduced in 4.4.3. We choose the diagonal of matrix 𝐽 , the vector of the lin-
ear part 𝑎, initial values of 𝜉 and 𝑔(0). We will always start from the identity,
𝑔(0) = I5×5. Next we define the coadjoint operator of dℋ and the equation on
so*(4, 1).

addHStar = @(xi) coadjointOperator (xi./J) + coadjointOperator (a);
xiDot = @(t, xi) addHStar (xi) * xi;

Since the vertical equation is decoupled from the horizontal, we can solve it on
the whole interval ⟨0, 𝑡𝑓⟩. To do so, we use the Matlab function ode45.

[t, h] = ode45 (xiDot , tSpan , xiInitial );

Now, we use the solution 𝜉(𝑡) to obtain the curve on the group 𝑔(𝑡).
g = zeros ([5, 5, length (t)]);
for i=1: length (t)

g(:, :, i) = gInitial *expm(t(i) * lieAlgebra (h(i, :)./J+a));
end

Next we check the properties of SO(4, 1) as we have mentioned at the beginning of
this section. To check the first property, we compute the difference

g(:, :, i) ’*B*g(:, :, i)-B

and compare it to zero with chosen tolerance. This creates 5×5 matrix of boolean
values and if its sum is 25, the property holds. If it doesn’t sum to 25, there has been
significantly different value and the property is not satisfied. The second condition is
very straight-forward as well. We compute determinant of every matrix on the curve
and compare it to one with the chosen tolerance. This is done in one for loop that
is shown below.
for i=1: length (t)

leftSide = g(:, :, i) ’*B*g(:, :, i);
checkOrthogonality (i) = sum(abs( leftSide - B) < tol , ’all ’)/25;
checkDeterminant (i) = abs(det(g(:, :, i)) - 1) < tol;

end

The final step is plotting xi.
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5.3.2 Results

We will compute examples with same initial data as in 5.2.2.

Free Rigid Body Motion

We have chosen bivector 𝜉 = 0.1𝑒2∞ − 0.7𝑒3∞ − 0.1𝑒12, this corresponds to initial
vector xiInitial = [0 0 0.2 0 -0.2 1.4 0 0 0 0] thanks to the isomorphism
we have established in section 3.4. Both properties were maintained along the curve
in SO(4, 1) and the velocities can be found in 5.17. As you can see, the rotational
velocity is constant and the translational velocities are being rotated, which is what
we have obtained earlier.

Free Soft Body Motion

For case of shrinking motion was chosen velocity 𝜉 = −0.6𝑒1∞ − 0.2𝑒0∞. This corre-
spond to initial data xiInitial = [0 0 0 1.2 0 0 0 0 0 0.4]. Group proper-
ties were again satisfied and resulting plot is in 5.18. This again confirms our earlier
results. The case of expansion can be found in 5.19 and it is affirmative as well.

Forces and Torques

Finally, the case of non-zero linear part of Hamiltonian function results in 5.20 under
the same initial conditions as in the case that we have studied in SO(4, 1). The initial
velocity was taken 𝑣 = −0.1𝑒1∞ and bivector of forces 𝑓 = −0.1𝑒1∞ − 0.15𝑒0∞. We
have used the isomorphism from the section 3.4 to convert them to basis of so(4, 1).
Again, the properties were satisfied along the curve and the plot corresponds to
the animation obtained earlier.
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Conclusion
The aim of this thesis was to unite and generalize the notions of left-invariant Hamil-
tonian systems on Lie groups with left-invariant Hamiltonian functions and explore
their applications. Throughout this research, we have formulated Hamiltonian equa-
tions for general Lie groups and investigated the potential uses based on specific
choices of Lie groups and Hamiltonian functions. Additionally, we have developed
a computational tool for simulating rigid and soft body motion using the concepts
of CGA. In this concluding chapter, we will reflect on the key findings and contri-
butions of our work, discuss their implications, and propose potential avenues for
future research.

As previously discussed, we have successfully derived the simplified form of
the left-invariant Hamiltonian system. However, since Lie groups already encompass
a wide range of underlying sets, it is natural to consider extending this theory to
incorporate non-left-invariant Hamiltonian functions. Those arise immediately even
in the theory of rigid body motion as they represent potential energy and forces
associated with them such as gravity or Hooke’s Law. Thus we would have different
type of forces than those that are constant in the body frame.

Another highly intuitive approach to further this research would be to explore
different Hamiltonian functions, including those that are left-invariant. Given that
a Hamiltonian function is any smooth function on the cotangent bundle 𝑇 *𝐺, there
are numerous options to consider, and our examples merely scratched the surface of
the possibilities. By investigating a broader range of Hamiltonian functions, we can
gain deeper insights into the behavior and dynamics of left-invariant systems on Lie
groups.

While the JavaScript scripts serve their purpose effectively, in hindsight, opt-
ing for the Python library Clifford ([17]) might have been a more favorable choice.
Python is widely regarded as a more intuitive programming language, and the Clif-
ford package itself is extensively documented, providing comprehensive resources for
even beginners in code development and science researches.
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Figures

Fig. 5.1: Rotation around one axis in 2D
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Fig. 5.2: Rotation around one axis in 3D

Fig. 5.3: Rotation around all axes
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Fig. 5.4: Translation in one direction in 2D

Fig. 5.5: Translation in one direction in 3D

Fig. 5.6: Translation in all directions in 2D
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Fig. 5.7: Translation in all directions in 3D
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Fig. 5.8: Full motion in 2D
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Fig. 5.9: Full motion in 3D
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(a) Force in 2D space (b) Force in 3D space

Fig. 5.10: Body frame forces
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(a) Torque in 2D space

(b) Torque in 3D space

Fig. 5.11: Body frame torques
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(a) Force and torque in 2D space

(b) Force and torque in 3D space

Fig. 5.12: Body frame forces and torques
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Fig. 5.13: Free rigid body motion in SO(4, 1)
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Fig. 5.14: Shrinking of soft body
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Fig. 5.15: Expansion of soft body
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Fig. 5.16: Forces acting on soft body
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Fig. 5.17: Velocities of free rigid body motion

Fig. 5.18: Velocities during shrinking motion
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Fig. 5.19: Velocities during expansion

Fig. 5.20: Forces acting upon soft body
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