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ABSTRACT 
The main objective of this thesis is to derive the Hamiltonian equations for left-invariant 

problems on Lie groups. Our motivation is as follows. The motion of a 3D rigid body 

can be formulated as an optimal control problem in M3. The Pontryagin's Maximum 

Principle (PMP) can be applied to solve such a problem. However, the motion of a rigid 

body can also be viewed as a problem on the Lie group SE(3). This problem belongs to 

the class of left-invariant problems. To further simplify the problem, we assume a left-

invariant Hamiltonian function. The usual approach in studying such problems involves 

first defining the Lagrangian function, then obtaining the Hamiltonian function, and 

finally formulating the Hamiltonian equations. However, we take a different approach. 

We derive the Hamiltonian equations for a general Lie group and a general left-invariant 

Hamiltonian, and then explore the types of problems that can be described by choosing 

specific Lie groups and Hamiltonian functions. The theoretical results obtained are then 

applied in the development of simulation scripts for both rigid body motion and soft 

body motion which utilizes CGA as its computational core. We have opted for CGA 

due to its remarkable computational capabilities in this context. By utilizing CGA, we 

naturally obtain dimension independence without any additional effort. 

KEYWORDS 
Lie group, Lie algebra, left-invariant systems, left-invariant Hamiltonian, control theory 

on Lie groups, rigid body motion, soft body motion, conformal geometric algebra, CGA 

ABSTRAKT 
Cílem této práce je odvodit rovnice levo-invariantních Hamiltonovských systémů na Lie-

ových grupách. Naše motivace je následující. Pohyb tuhého tělesa v 3D prostoru lze 

formulovat jako úlohu optimálního řízení na M3. Pro takto formulovanou úlohu lze vyu

žít Pontryaginův princip maxima (PMP). Nicméně pohyb tuhého tělesa lze také chápat 

jako úlohu na Lieově grupě SE(3). Tato úloha patří do skupiny tzv. levo-invariantních 
úloh. Jako další zjednodušení volíme také levo-invaríantní Hamiltoniány. Běžný postup 

při studiu takových úloh je, že formulujeme Lagrangián této úlohy, odvodíme Hamil-

tonián a následně formulujeme Hamiltonovy rovnice. Náš postup je opačný. Odvodíme 

Hamiltonovy rovnice pro obecnou Lieovu grupu a obecný levo-invariantní Hamiltonián 

a následně zkoumáme, jaké typy úloh můžeme popsat volbou konkrétní Lieovy grupy 

a konkrétního Hamiltoniánu. Teoretické výsledky poté využijeme k vytvoření simulač

ního skriptu pohybu tuhého a pružného tělesa, který využije konformní geometrickou 

algebru (CGA) jako své výpočetní jádro. CGA je totiž nesmírně silný nástroj pro popis 

této problematiky, jelikož využitím CGA lze vyvinout kód, který je nezávislý na dimenzi 

uvažovaného prostoru bez větší námahy. 

KLÍČOVÁ SLOVA 
Lieova grupa, Lieova algebra, levo-invariantní systémy, levo-invariantní Hamiltonián, te

orie řízení na Lieových grupách, pohyb tuhého tělesa, pohyb pružného tělesa, konformní 

geometrická algebra, CGA 





ROZŠÍŘENÝ ABSTRAKT 
Cílem této práce je odvodit rovnice levo-invariantních Hamiltonovských systémů na 
Lieových grupách. Naše motivace je následující. Pohyb tuhého tělesa v 3D prostoru 
lze formulovat jako úlohu optimálního řízení na M 3 . Pro takto formulovanou úlohu 
lze využít Pontryaginův princip maxima (PMP). Nicméně pohyb tuhého tělesa lze 
také chápat jako úlohu na Lieově grupě SE(3). Tato úloha patří do skupiny tzv. 
levo-invariantních úloh. Jako další zjednodušení volíme také levo-invariantní Hamil-
toniány. Běžný postup při studiu takových úloh je, že formulujeme Lagrangián 
této úlohy, odvodíme Hamiltonián a následně formulujeme Hamiltonovy rovnice. 
Náš postup je opačný. Odvodíme Hamiltonovy rovnice pro obecnou Lieovu grupu 
a obecný levo-invariantní Hamiltonián a následně zkoumáme, jaké typy úloh můžeme 
popsat volbou konkrétní Lieovy grupy a konkrétního Hamiltoniánu. Teoretické 
výsledky poté využijeme k vytvoření simulačního skriptu pohybu tuhého a pružného 
tělesa, který využije konformní geometrickou algebru (CGA) jako své výpočetní já
dro. C G A je totiž nesmírně silný nástroj pro popis této problematiky. Tento fakt 
můžeme velmi jednoduše ilustrovat. Uvažujme grupy SE(2) a SE(3). Jejich prvky 
jsou pochopitelně velmi rozdílné matice a vývoj kódu, který by byl nezávislý na 
tom, kterou z nich zvolíme by byl velmi složitý. Ve velmi ostrém kontrastu pak 
máme 2D C G A a 3D C G A . Báze vektorů v 3D C G A obsahuje oproti 2D C G A jeden 
prvek navíc. Ostatní blady (včetně bivektorů, které jsou pro náš zvlášť podstatné) 
jsou generovány touto bází. Ve výsledku je tedy popis využívající C G A naprosto 
nezávislý na dimenzi a můžeme využít stejné výpočetní jádro pro 2D C G A i 3D 
C G A . 

Jak vyplývá z předchozího odstavce, tato práce využívá teorii z několika různých 
oblastí matematické teorie, které jsou v práci popsány. V první kapitole se věnu
jeme zavedení pojmů potřebných algebraických struktur a funkcí na nich. Vycházíme 
z pojmů diferenciální geometrie. Připomene definici n-dimenzionální hladké variety 
M, jejího tečného prostoru v bodě TqM a tečného bandlu TM. Dále definujeme 
hladká vektorová pole na hladké varietě, což jsou hladká zobrazení X : q \-> TqM. 
Definujeme tento pojem (a relevantní pojmy s ním spojené) také pro hladkou vari
etu, protože řešení úlohy levo-invariantních Hamiltonovských systémů na Lieových 
grupách je integrální křivka v Lieově grupě. Zavedené pojmy následně demonstru
jeme na 2-dimenzionální sféře S2. Následuje zavedení Lieovy závorky vektorových 
polí. V této práci nevycházíme z axiomatického zavedení obecné Lieovy závorky 
ale využíváme její vlastnosti na vektorových polích a axiomy poté ukazujeme jako 
její vlastnosti. Tento alternativní postup je běžnější při zavádění pro účely teorie 
Lieových grup, proto jsme jej zvolili též. Dalším krokem je definice Poissonovy 
závorky, to je bilineární a antisymetrický operátor na C°°(T*M) - hladkých funkcích 
na tzv. kotečném bandlu. Začneme tedy s definicí T*M a poté uvádíme definici Pois-



sonovy závorky jako takové. Definice Poissonovy závorky je pro nás důležitá, pro
tože nám umožňuje zavést pojem Hamiltonovského vektorového pole přidruženého 
Hamiltoniánu. 

S využitím těchto pojmů můžeme přistoupit k definici Lieovy grupy a Lieovy 
algebry. Uvádíme jednak přesné definice a jednak příklady maticových Lieových 
grup (obecnou lineární grupu GL(n), speciální ortogonální grupu SO(n) a Euk
lidovskou grupu SE(n)) a jejich příslušných Lieových algeber (gl(n), so(n), se(ra)). 
Tyto příklady ukazujeme, protože na nich budeme zkoumat Hamiltonovské systémy. 
Dále ukážeme, že tečné prostory (resp. kotečné prostory) Lieovy grupy jsou levo-
invariantní. Díky tomu máme globální trivializaci tečného bandlu (resp. kotečného 
bandlu): TG = G x L (resp. T*G = G x L*), kde G je Lieova grupa, L její Lieova 
algebra a L* duál Lieovy algebry. Tato vlastnost, která pro obecnou hladkou varietu 
platí jen lokálně, nám umožní zjednodušit Hamiltonovy rovnice. 

V druhé kapitole se věnujeme teorii optimálního řízení. Nejprve připomeneme 
úlohu optimálního řízení a P M P na M™ a poté ukážeme, jak tuto úlohu a P M P 
formulujeme pro případ obecné hladké variety. Následně uvádíme, jak vypadají 
Hamiltonovy rovnice pro zjednodušený případ levo-invariantního systému a levo-
invariantního Hamiltoniánu. Tvrzení o tom, jak rovnice můžeme zjednodušit také 
dokazujeme, jelikož je klíčové pro tuto práci. 

V třetí kapitole zavádíme indefinitní speciální ortogonální grupu SO(p, q), která 
je Lieovou grupou, její Lieovu algebru a konformní geometrickou algebru (CGA). 
Jak čtenář jistě tuší, v následujících kapitolách budeme volit SO(3), SE(3) a také 
SO(4,1) jako Lieovy grupy, na kterých budeme pozorovat výsledky ze sekce 2.1. 
Protože bivektory v C G A jsou izomorfní Lieově algebře so(4,1), můžeme úlohu také 
zformulovat na C G A . Toho využijeme v kapitole 5. 

Ve čtvrté kapitole začínáme komentářem ohledně koadjungovaného operátoru, 
který se vyskytuje v rovnici 2.8. Dále se již věnujeme příkladům Hamiltonovského 
formalismu. Jak jsme již zmínili, volíme postupně grupy SO(3), SE(3) a SO(4,1). 
Ve všech třech případech volíme Hamiltoniány ve formě kvadratické formy, lineární 
formy a kvadratické funkce bez absolutního členu na dané Lieově algebře. 

Ne příliš překvapivě jsme zjistili, že kvadratická forma na SO(3) modeluje rotační 
pohyb tuhého tělesa, nicméně volbou koeficientů kvadratické formy lze také získat 
vyjádření rovnic geodetiky, případně sub-Riemannovské geodetiky. Ukazuje se, že 
lineární Hamiltonián nemá nijak zvlášť hezké aplikace, což plyne z toho, že pro 
něj nelze zformulovat Lagrangián. Hamiltonián v podobě kvadratické funkce bez 
absolutního členu lze využít jako model modelu pohybu tuhého tělesa, na které 
působí síly konstantní v referenční soustavě tělesa. Jelikož Lagrangián této úlohy 
je také kvadratická forma, lze takto modelovat geodetiky. Volba SE(3) přidává 
navíc tři dimenze v Lieově algebře. Pomocí nich lze nyní modelovat nejen rotační, 



ale i translační pohyb tuhého tělesa. Jelikož zbylé aplikace jsou podobné těm na 
SO(3), věnujeme se blíže především pohybu tuhého tělesa. Přidáním lineárního členu 
získáme navíc působení sil, ale opět jen těch, které jsou konstatní v body framu. 
V opačném případě by Hamiltonián nemohl být levo-invariantní. Zvolením SO(4,1) 
získáme navíc k translačnímu a rotačnímu pohybu involuce, inverze, škálování a další 
operace. Pro nás je především zajímavé škálování. V aplikacích tohoto případu 
už nemůžeme mluvit o tuhém tělese, jelikož dochází k jeho deformaci. V oblasti 
výpočetní grafiky a modelů je toto těleso nazýváno „soft body" (srov. s „rigid 
body"). Český ekvivalent tohoto pojmu je pružné těleso. Hamiltonián ve formě 
kvadratické formy modeluje pohyb pružného tělesa bez působení sil, které lze přidat 
pomocí lineárního členu v Hamiltoniánu. 

V poslední kapitole jsou popsány tři skripty, které byly naprogramovány k této 
práci. V prvním ukazujeme pohyb tuhého tělesa (popsaný v projektivní geometrické 
algebře), nicméně tento příklad je koncipován tak, že můžeme demonstrovat jednu 
vlastnost popisu levo-invariantních systémů pomocí Lieovy algebry a to, že tento 
popis nezávisí na dimenzi prostoru, který uvažujeme. Každý příklad tedy ukazujeme 
pro 2D i 3D prostor v tom smyslu, že tuto dimenzi volíme jako proměnnou skriptu, 
veškerý ostatní kód zůstává stejný. Byly vyvinuty dvě verze toho skriptu, jedna 
generující animace pohybu a druhá, která pohyb vygeneruje na nějakém časovém 
intervalu a poté zobrazí několik řezů v čase, abychom mohli výsledky prezentovat 
v této práci. Výsledky simulací se shodovaly s výsledky kapitoly 4. 

Následující skript ukazuje výpočty v C G A , modelujeme tedy pohyb pružného 
tělesa s i bez působení sil. V první řadě demonstrujeme, že C G A (a tedy i so(4,1)) 
opravdu obsahuje translace a rotace, následně ukazujeme efekty smršťování a roz
tahování při volbě nenulového koeficientu u bivektoru e0oo, který toto chování způ
sobuje. Podobně jako v předchozím případě byly vytvořeny dvě verze tohoto skriptu, 
jeden tvořící animace a jeden tvořící časové řezy pohybu. Výsledky opět reflektovaly 
ty z kapitoly 4. 

Výše popsané skripty byly napsány v jazyce JavaScript, poslední je napsaný 
v Matlabu, ukazuje řešení úloh na SO(4,1), tedy v maticové formulaci. K řešení 
rovnice 2.8 využíváme funkci ode45, vývoj na grupě počítáme pomocí analytick
ého řešení. Jelikož nemáme zvlášť vhodnou možnost prezentace výsledné křivky 
na maticové grupě, vykreslujeme graf rychlostí v čase a kontrolujeme, že mat
ice na křivce opravdu patří do grupy SO(4,1), tedy jestli ve výpočtu nedochází 
k velkým numerickým chybám. Výpočty jsme prováděli na datech ekvivalentních 
datům z předchozího skriptu. Výsledné rychlosti reflektovaly výsledky animací, 
křivka také zůstala na grupě. Celkově tedy máme pozitivní výsledek. 
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Introduction 

This thesis seeks to unify and generalize the concept of left-invariant Hamiltonian 
systems on Lie groups which is currently regarded as state of art theory for the area 
of simulation of rigid body motion in computer science ([1]). The following objectives 
have been identified: 

• Formulate Hamiltonian equations for general Lie groups and arbitrary left-
invariant Hamiltonian functions. 

• Explore potential applications by selecting specific Lie groups and Hamiltonian 
functions. 

• Develop a computational tool for simulating rigid body motion using the the
oretical findings. 

While the concept of rigid body motion is widely recognized, its formulation as 
an optimal control problem on the Lie group SE(3), particularly the simplification 
of the Hamiltonian equations resulting from the group structure, is not as well-
known. Furthermore, the representation of this problem in geometric algebra is 
a relatively novel research outcome from recent years. 

The thesis will begin by defining the concepts of differential geometry, which 
serve as the building blocks for more complex structures. This will be followed by 
the definitions of Lie groups, Lie algebras, and left-invariant Hamiltonian systems, 
which are crucial for the main statement and its proof. The subsequent chapter will 
recall notions of control theory on M™ and extend it to smooth manifolds. We will 
then demonstrate the simplifications that arise when focusing on Lie groups and 
left-invariant Hamiltonian functions, substantiating this claim with a proof. 

To illustrate the practical implications of the research, we will apply the devel
oped framework to real-world problems. In addition to well-established Lie groups 
such as SO(3) and SE(3), we will introduce the Lie group SO(4,l), which encom
passes both SO(3) and SE(3) as subgroups. Furthermore, we will introduce the Con-
formal Geometric Algebra (CGA). With these concepts established, our investigation 
will delve into each of the three Lie groups, presenting the Hamiltonian equations 
resulting from different choices of left-invariant Hamiltonian functions. 

Finally, to visualize the outcomes in the context of rigid body motion, we will 
develop an animation tool that leverages C G A as its computational core. We have 
opted for C G A due to its remarkable computational capabilities in this context. Let 
us consider the cases of SE(2) and SE(3) as illustrative examples. Those are funda
mentally different matrix groups and it would be extremely challenging to develop 
a unified code that accommodates both groups. In stark contrast, the utilization of 
2D C G A and 3D C G A demonstrates the converse situation. The basis of vectors of 
3D C G A has one more element in addition to the basis of vectors of 2D C G A . Since 
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all other blades, including bivectors which are crucial in our approach, are generated 
by base vectors, we naturally obtain dimension independence as a valuable attribute, 
without any additional effort. 

4 



1 Mathematical Background 

In this chapter, our objective is to present a set of concepts that will aid in stream
lining the formulations of control theory. We will begin by providing an overview 
of fundamental notions in differential geometry. Subsequently, we will employ these 
concepts to construct the Lie group, Lie algebra, and other relevant entities. The pri
mary references utilized for this chapter are [2] and [3]. 

1.1 Introduction to Differential Geometry 

In this section, our focus will be on introducing the fundamental concepts of differ
ential geometry. Specifically, we will cover topics such as smooth manifolds, tangent 
bundles, vector fields, and the flow of vector fields. It is assumed that the reader 
has prior knowledge of basic notions in topology and analysis, chiefly the notion of 
manifold. 

Recall that on any manifold M there are charts (V,ip), with V G M and home-
omorphism ip : V —> M.n, and the coordinate functions Xj : V —>• M. Thus, a point p 
can be identified with an n-tuple: 

Now, a smooth manifold is, roughly speaking, a manifold endowed with smooth 
maps between its charts. What exactly we mean by these smooth maps is shown in 
the precise definition below. 

Definition 1.1.1. Let M be an n-dimensional manifold and let there be a collection 
of charts {(Va, ipa)}aei, where J is a set of indices. Suppose that 

UaeIVa = M, 

and that Va, /3 G / , Va D Vp ^ 0, the map 

= ijao ^j- 1: fa (Va H Vp) ->• (Va U Vp) 

is smooth. Then M is called smooth (differentiable) manifold. 

By our construction, the map is map from MP to itself and thus the smooth
ness is meant in the usual way. 

1.1.1 Tangent Bundle and Vector Field 

We now shift our focus to tangent bundles and vector fields. To begin, we explore 
the concept of curves on smooth manifolds, which allows us to construct tangent 
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vectors at points. Within the domain of differential geometry, smooth curves are 
defined as smooth maps from an interval to a smooth manifold. However, it's im
portant to note that this parametrization is not unique. We say that two smooth 
curves, denoted as 71 and 72, both mapping from the interval I to the manifold 
M and based at the point q = 71 (0) = 72(0) G M, are considered equivalent if 
they share the same 1st order Taylor polynomial within some coordinate chart. It 
becomes evident that this notion of equivalence satisfies the properties of an equiv
alence relation, namely, reflexivity, symmetry, and transitivity. By utilizing these 
equivalent curves, we can define the tangent space at a point on a smooth manifold. 

Definition 1.1.2. Let M be an n-dimensional smooth manifold and let 7 be a smooth 
curve, s.t. 7(0) = q G M. Its tangent vector at q, denoted by 

is the equivalence class in the space of all smooth curves in M such that 7(0) = q. 
Moreover, the set of all tangent vectors at point q is called the tangent space, and 
we denote it by TqM. 

The tangent space has a structure of an n-dimensional vector space. Moreover, by 
TM = UpeM TPM we denote the tangent bundle. 

Remark 1.1.3. The tangent bungle TM of a smooth manifold M is locally isomorphic 
to M x TqM. 

Definition 1.1.4. Let M be a smooth manifold, q G M. Then a smooth map 
X'. q 1—y X(q) G TqM is called a smooth vector field. The set of all smooth vector 
fields on M we denote by Vec (M). 

Now, let us shift our attention towards a few properties of the vector field. 
Drawing an analogy from physics, we can envision the vector field as guiding us 
along a path of least resistance. In classical calculus, we achieve this by solving 
certain types of differential equations, be they ordinary or partial. Building upon 
this intuitive notion, we aim to formalize these concepts based on the principles of 
classical calculus. 

A n ordinary differential equation (ODE) on a smooth manifold M given by 
a vector field X G Vec (M) is the following equation. 

_d 
dt t=o 

or 7(0) (1.1) 

q = X(q) q e M (1.2) 
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A solution of 1.2 is every smooth curve 7: J —>• M , where J C 1 is an open interval, 
s.t. 

7(t) = A( 7 ( t ) ) , Vt G J. (1.3) 

We also call 7 the integral curve of the vector field X. The standard theorem on 
ODEs guarantees the existence of a unique solution to the equation 1.2 for any 
initial condition within an open interval I. For full statements, proofs and results 
of classical ODE, we advise to see [4]. Hence, we can formulate the Cauchy problem 
on a smooth manifold. 

Theorem 1.1.5. Let X G Vec (M) and consider following problem 

q(t) = X(q(t)), 

q(0) =qo-

Then Wqo G M, 35 > 0 and there is an unique solution 7: (S,S) —> M of 1.4, de
noted by 7(t; qo). Moreover, the map (t, q) )->• 7(̂ 5 q) is smooth on some neighborhood 
o/(0, %). 

The uniqueness of the solution is meant in following sense. Let 71: I\ —> M, 72: 

I2 —>• M be two solutions of 1.4 on two intervals J i , I2 containing zero G hC\l2, 

7i (0 — 72 (0- Thus definition of a maximal solution is sensible. The definition is 
very natural. It is such a solution 7: / —> M of 1.4 that it is not extendable to 
any interval J D J . The vector field X G Vec (M) from the problem 1.4 is called 
complete if Vgo G M , the maximal solution jit; qo) is defined on / = IBL 

With complete vector fields we are able to study following family of maps called 
the flow of the vector field. 

Definition 1.1.6. Let X G Vec (M) be a complete vector field and let ^y(t;q) be 
the integral curve of X, starting at q for t = 0. The family of maps 

or. u ^ .u. <t>t{q) = i(t;q), V t e R , (1.5) 

is called the /low generated by X. 

From theorem 1.1.5 it follows, that the map <fi: M. x M —>• M is smooth in both 
variables. The flow satisfies following identities: 

O (A, 

Id. 

kT1 = <t>-u 

V r , s e l , (1.6) 

Vt G R. 

A n essential outcome arising from our construction of the flow is 

D^=X(Mq)), MQ) = Q, Vg G M. (1.7) 
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In addition, the exponential notation is frequently employed, which naturally follows 
corollary of equation 1.7 

4>t = exp{£X}, Vt G R. 

The identities 1.6 and 1.7 then take the form, Vt,r, s G M., Vg G M , 

= Id, 

= e r I o e 

Another essential property of the vector fields is that they differentiate smooth 
functions on M along the integral curves. Specifically, for any X G Vec (M) and 
a G C°°(M), X induces action of a on C°°(M) defined as 

X : C°°(M) - ) • C°°(M), a K l o ; 

where 

(*«)<«) = | ft 
t=0 

(e< X(g)) , Vg G M . ( l . i 

It might be beneficial to show what does the function at = a o etx look like more 
precisely. As the map t )->• at is smooth, we can expand this function as a sum in 
terms of the parameter t. The first element in this expansion is obviously just a. 
From 1.8 we immediately get the first-order element, Xa. Thus 

at = a + tXa + O (t 2) 

where 0(t2) represents the term of order t2 or higher-order terms in the expansion. 
In the next theorem, an expression of form Xn, X G Vec (M), n G N is used. For 
function a G C°°(M), the term Xna signifies repeated action of X on a. We will 
give a precise depiction of X2 in the proof of the following theorem. 

Theorem 1.1.7. Let a G C°°(M), X G Vec(M) . Denote at = a o e ' x . T/ten 
£/ie formulas 

-^at = Xat, (1.9) 

a4 = a + t X a + - X 2 a + - X 3 a + • • • + - X f c a + O ( t f c + 1 ) (1.10) 
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Proof. The second formula can be derived as an extension of 1.8. Consider function 
b = Xa, where a e C°°(M) then Vg e M by 1.8 

{X2a){q) = (X6)(g) 

_d 
dt 

t=o 

A 
ds 

d 
dt 

s=0 

b(etx(q) 
t=o 

d 
dt 

a e sX ( tx (?) 
d^ 
dr 2 

Xa (etx(q)) 

a e 

In the last step, we use substitution r — s + t. Thus we have obtained the second-
order element of the expansion, ^X2a. And the form so far 

a + tXa + ^X2a + O (t 3) at 2! 
By induction we would get the full expression. The formula 1.9 immediately arises 
from 1.10. 

_d 
dt 

Xa + tX2a + -Xza + ••• + ^-Xk+1a + O (tk+1) = Xat 2! fci ^ ' k\ 
• 

Thus the vector fields act as derivation of the smooth functions on M. As 
a corollary, we obtain another notation for the exponential 

„tx id + tx + t^x2 + t^x3 + ... 

It could be beneficial to illustrate the key concepts of this section on an example. 
For this purpose, we have selected the S2 sphere. 

Example 1.1.8. The S2 sphere is defined as follows: 

S2 = {xe M3: \\x\\ = l } , 

where ||-|| is the Euclidean metric. To show that this is a manifold, more precisely 
a 2-manifold, we construct 2 charts. Let us denote 

[/1 = S 2 \ ( 0 , 0 , 1 ) , f/2 = S 2 \ ( 0 , 0 , - 1 ) , 

spheres without a pole. The exact choice of this excluded point is not relevant. 
Those open sets endowed with a stereographic projection are indeed charts covering 
the whole sphere. The map between the charts from definition 1.1.1 is smooth, thus 
S2 sphere is a smooth manifold, which isn't that surprising. The tangent plane at 
point P = (xp, yp, zp) is defined by the equation 

xpx + ypy + zpz — \\P\\ — 1, Vx, y, z G M. 

A plane is evidently a two-dimensional vector space. The construction of the tangent 
plane in this particular example is highly intuitive. By utilizing the definitions 
provided earlier, we can take, for instance, an equator and the main meridian, and 
generate two linearly independent vectors at their intersection. Subsequently, we 
can form the tangent space as the linear combinations of these vectors. 
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1.1.2 Lie Bracket 

The notion of Lie bracket of two vector fields X and Y holds significant importance 
for us. Essentially, the Lie bracket of two vector field represents the infinitesimal 
motion of the vector field Y along the flow of X . In another words, Lie bracket 
measures how much is Y changed by the flow of X and vice versa. 

Definition 1.1.9. Let X , Y G Vec(M). The Lie bracket of vector fields X and Y 
is the vector field [X, Y] e Vec (Af) such that Vg e M 

1(t) = ld + t2[X,Y](q) + 0(t3) (1.11) 

where the curve 7 is defined as 

1(t) = e~tY oe~tx oetY oetx{q). 

There exists an alternative, more convenient representation for the Lie bracket. 
As previously mentioned, we interpret the product of two vector fields as a derivation 
of functions. In the specific context of matrix Lie groups and algebras (which will be 
introduced in detail later), this interpretation aligns with the matrix commutator, 
and the exponential notation corresponds to the matrix exponentiation. 

Theorem 1.1.10. Let X , Y e Vec(M) . The Lie bracket of vector fields X and Y 
can be equivalently expressed as follows: 

[X,Y] = XY -YX. (1.12) 

Proof First, let us expand the exponential notation of the curve jit). 

lit) = (id + tx + |jx2 + o(t3)^ (id + tY + |jr2 + o(t3)j 

(id -tx + |x 2 + o(t3)) ( i d -tY + ^Y2 + 0(t3)) (q) 

= (id + t(X + Y) + U ( X 2 + 2XY + Y2) + 0(t3)j 

(id -t(X + Y) + ^ ( X 2 + 2XY + Y2) + Oif^j (q) 

Id + t2(XY - YX) + 0(t3)) (q) 

• 
Another important properties of Lie bracket of vector fields are 
• bilinearity: 

[aX + bY, Z] = a [X, Z] + b [Y, Z], 

[Z, aX + bY] = a [Z, X] + b [Z, Y], 
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• skew-symmetry: [X, Y] — — [Y, X], 
• satisfies the Jacobi identity: 

[X, [Y,Z]} + [Y,[Z,X]} + [Z, [X,Y]] = 0. 

In fact, the general Lie bracket is defined by those properties and our definition of 
Lie bracket of vector fields is subsequently derived as a theorem. 

Theorem 1.1.11. Let X, Y G Vec(M) , a G C°°(M). The Lie bracket satisfies 
the Leibniz rule 

[X, aY] = a [X, Y] + (Xa)Y. (1.13) 

Proof. For any function a G C°°(M) and for any point q G M we use 1.12 to obtain 

[X,aY] (q) = (X(aY))(q) - ((aY)X)(q). 

Let us recall that X acts as a derivation (1.9), and applying the product rule to 
the first composition, we obtain 

(X(aY))(q) = X(aY(q)) = X(a)Y(q) + a(XY(q)). 

For the second composition, we can derive the following expression: 

((aY)X)(q) = a(YX(q)). 

Now it remains to combine these two results. 

[X,aY] (q) = (X(aY))(q) - ((aY)X)(q) 

= X(a)Y(g) + a(XY(q)) - a(YX(q)) 

= a[X,Y] (q)+X(a)Y(q) 

Since q was arbitrary, the proposition 1.1.11 holds. • 

We will show an explicit example of Lie bracket later after definition of Lie 
algebra (ex. 1.3.8). 

1.2 Hamiltonian Vector Field 

Hamiltonian vector field is a vector field associated with a function, more precisely 
with a derivation of a function. Our objective here is clear: the solution to Hamilto
nian equations corresponds to an integral curve, where the derivative at each point 
is equal to the value of a certain vector field at that point. Unsurprisingly, this 
vector field is known as the Hamiltonian vector field. 
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The conventional approach to constructing such vector fields involves defining 
canonical and symplectic forms, which can be found, for example, in references such 
as [5] or [1]. However, there exists an alternative definition that is more straight
forward in our approach and is often obtained as a corollary of the aforementioned 
theory: the notion of the Poisson bracket. The Poisson bracket is an operator on 
functions on cotangent bundle, so we give its definition first. 

Let us introduce the covectors, the linear functionals on the tangent space. 
The space of all covectors at a point q G M, the cotangent space, is just the usual 
dual space formed by one-forms on the tangent space. 

Definition 1.2.1. Let M be a smooth manifold, q G M. By the cotangent space at 
q we understand the set 

T*M = (TqM)* = {A: TqM ->• M, A linear} . 

By T*M = \JqeMT*M we denote the cotangent bundle of M. Let A G T*M and 
let v G TqM. We denote the evaluation of the covector A on the vector v by 
( A , T ; ) = A ( T ; ) . 

Remark 1.2.2. The cotangent bundle T*M is locally isomorphic to M x T*M. 

1.2.1 Poisson Bracket 

The Lie bracket was defined as an operation on the Vec (M). The Poisson bracket 
is an analogous operation on the space of smooth functions on T*M. We start with 
definition of the operation on the smooth linear functions, Cf°n(T*M), and then we 
continue with an extension to the whole space C°°(T*M). 

We will make use of functions on the cotangent bundle associated with a vector 
field. Let X G Vec (Af) and let Lp G T*M be arbitrary. Then, by ax • T*M ->• R we 
denote function given by the assignment (p \-> <p(X). 

Definition 1.2.3. Let ax, ay G Cjfn(T*M) be two linear functions associated with 
vector fields X, Y G Vec (M). Their Poisson bracket is defined by 

{ax,aY} = a[X,Y], (1-14) 

where Q>[xy\ is the function in Cjfn{T*M) associated with the vector field [X, Y}. 

Since the Lie bracket is bilinear, skew-symmetric and satisfies the Leibniz rule, 
as consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies 

{ax,aaY} = {ax,aaY} = a[X,aY] = ota[x,Y] + (Xa)aY, Va G C°°(M). (1.15) 

Now to the extension. 
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Theorem 1.2.4. There exists a unique bilinear and skew-symmetric map 

{•, •}: C°°(T*M) x C°°(T*M) - ) • C°°(T*M), 

£/ja£ extends 1.2.3 to C°°(T*M) and that is a derivation in each argument, i.e., it 
satisfies 

{a,be} = {a,b}c+ {a,c}b, Va,b,c e C°°(T*M). (1.16) 

We call this operation the Poisson bracket on C°°(T*M). 

Proof. The proof of this proposition consists of two steps. First we extend the Pois
son bracket to all smooth affme functions on T*M, C ^ j ( T * M ) . Using that structure 
we show the extension to C°°(T*M) in canonical coordinates on T*M. The proof 
is rather technical, for the full formulation we recommend [1]. Among other, during 
the proof we obtain an explicit way to compute the Poisson bracket in canonical 
coordinates {x\,..., xn,P\, • • • ,pn)- Let a, b G C°°(T*M), then 

<9a (96 da db 
fr[ dpi dxi dxi dpi' 

• 

The identity 1.16 provides the expression for the Poisson bracket of a product 
of smooth functions and another function. Similarly, in the forthcoming statement 
we will show how the Poisson bracket acts on a composition of functions and an
other function. This will prove significant later in simplification of the Hamiltonian 
equations. 

Theorem 1.2.5. Let hf T*M ->• R, g: T*M ->• R and <p: R ->• R be smooth 
functions. Denote by ipht = <p ° hi. Then 

Whl,g} = ^{ht,g}. (1.18) 

Proof. The proof is very simple. It is sufficient to use 1.17. 

= diphi dg diphi dg = " dip dhj dg dip dhj dg = dip 
Ph^g 2.^ QP. QX. QX. QP. 2^ Qfo. QP. Qx. dhi dxj dpj dhi 11 ® 

• 

1.2.2 Definition of Hamiltonian Vector Fields 

With the aid Poisson bracket, we can finally begin with the construction of Hamil
tonian vector field. In general, Hamiltonian vector field i f is a vector field on 
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the cotangent bundle T*M associated with a smooth function H on T*M. Let us 
introduce the following operator: 

H:Cco{T*M)^Cco{T*M), H(b) = {H,b}. (1.19) 

This operator is linear and acts as a derivation on the space of smooth functions 
C°°(T*M). Therefore H can be identified with an element of Vec(T*M). We 
continue with the precise definition. 

Definition 1.2.6. The vector field H defined by 1.19 is called the Hamiltonian 
vector field associated with the smooth function H e C°°(T*M). 

1.3 Lie Group and Algebra 

Having introduced the concepts of manifolds, tangent and cotangent bundles, we 
now possess sufficient theoretical groundwork to delve into control theory. However, 
one challenge we would encounter in this endeavor is that the tangent bundle TM 
and M x TqM are only locally isomorphic. Similarly, the cotangent bundle T*M is 
only locally isomorphic to M x T*M as well. By narrowing our focus to Lie groups, 
we can simplify the problem and transform the aforementioned isomorphisms into 
a global property. This leads to a particularly intriguing outcome: we can solve 
the problem at the identity element of the Lie group and subsequently, with the aid 
of the isomorphism, compute the evolution of the system which greatly enhances 
numerical stability during the computation process. 

1.3.1 Lie Group 

Definition 1.3.1. A set G is called a Lie group, if 
1. G is a smooth manifold, 
2. G is a group, 
3. the group operations in G are smooth. 

In our forthcoming examples, we will primarily focus on Lie groups that are 
matrix groups. Let us denote the linear space of all real n x n matrices by 

M ( n , R) = {X = (xij) | xi:j e R, i,j G {1 , . . . , n}} . 

Now, we can proceed with the introduction of general linear group, i.e., the most 
general group. 

Example 1.3.2. The general linear group consists of all n x n invertible matrices. 

GL(n, R) = GL(n) = {X e M(n) | det X ^ 0} . 
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We will show that the general linear group GL(n) is a Lie group. By the conti
nuity of the determinant det: M(n) —> R, the set GL(ra) is an open domain. Thus. 
GL(n) is a smooth submanifold in the linear space M(n). From introductory courses 
of linear algebra it is known that GL(n) is a group with respect to the matrix prod
uct. Since the matrix product at every element are polynomials of elements and 
inverse are rational functions of elements, the group operations are smooth. 

In the following, we will present several significant Lie groups. We highly rec
ommend referring to [5] or [6] for detailed proofs confirming their classification as 
Lie groups. 

Example 1.3.3. The special orthogonal group SO(n) consists of all unimodular 
orthogonal n x n matrices, that is 

SO(n) = {X e M(n) | XXT = Id, d e t X = l } . 

Example 1.3.4. The Euclidean group SE(n) consists of matrices of the following 
form: 

SE(n) = j x = ^ e M(n + 1) | Y e SO(n), b e M n | . 

The extension of our discussion to complex matrices is indeed possible, but for 
the current context, it is not crucial. Therefore, we will omit delving into that topic. 
For further details, refer to [5]. 

1.3.2 Lie Algebra 

There are many ways to define the Lie algebra. In some cases the definition intro
duces the Lie bracket, but we are going to define those notions separately. 

Definition 1.3.5. The tangent space L to a Lie group G at the identity element is 
called the Lie algebra of the Lie group G: 

L = TldG. 

Furthermore, let A, B e L. The Lie bracket [A, B], given by [A, B] = AB — BA, is 
meant in the sense of Lie bracket of vector fields. 

It is evident that the Lie bracket, as we have defined it, is bilinear and skew-
symmetric. Moreover, the Jacobi identity also holds, thus Lie bracket on Lie algebra 
satisfies the axioms of a general Lie bracket. 

Now, let us show the Lie algebras of the groups above. 
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Example 1.3.6. The Lie algebra of the general linear group we denote by gl(n). In 
fact, it is possible to show that 

gl(n) = M(n). (1.20) 

By definition gl(n) = {x(0) | X(t) G GL(n) ,X(0) = Id} . Since X(t) is an n x n 
matrix, gl(n) C M(n) . Now, for small e > 0 and \t\ < e and for any A G M(n), 
the curve X(t) = Id + tA G GL(n). Because X(0) = A and X(0) = Id, we obtain 
the equality from above. 

Example 1.3.7. The Lie algebra of SO(n) we denote by so(n). By definition of 
the group, VX(t) G SO(n), X(t)XT(t) = Id. Now we apply the definition of the al
gebra to get 

0 = X ( 0 ) X T ( 0 ) + X ( 0 ) X T ( 0 ) = X(0) + X T ( 0 ) . 

And we obtain the shape of the algebra 

so(ra) = {A G M(n) | A + AT = o} , (1.21) 

the skew-symmetric matrices. 

Exercise 1.3.8 (Lie bracket on so(3)). Consider A,B G so(3). Let us write out 
the elements explicitly as 

/ 0 -a3 a2 \ ( 0 - 6 3 h \ 
B = A «3 

\-a2 

0 -a-i 

0 J \-b2 

-63 
0 

61 

-61 

0 J 

Let us show that [A, B] G so(3). To accomplish this, we are going to use 1.12. 

[A, B] — AB — BA 
^-a 3 6 3 - a2b2 a2bj 

axb2 - a 3 6 3 - axb\ 
\ axbz a2b3 

^ - a 3 6 3 - a2b2 axb2 a i6 3 

a2bi - a 3 6 3 - a-i&i a2b3 

\ a3bi a3b2 -a2b2-a\b\) 

\ a3bx 

a3b2 

-a2b2 - axbx) 

\ 

- c 3 

0 
Cl 

c2\ 
- C l 

0 / 

G so(3) 
/ 0 a2b\ — a\b2 a3bi — aib3\ ( 0 

= a\b2 - a2b\ 0 a3b2 - a2b3 = c3 

\a163 - a 3 6i a3b2 - a3b2 0 / \-c2 

Example 1.3.9. The Lie algebra of Euclidean group is denoted by se(n). Since 
we know the structure of SE(n) and the Lie algebra of SO(ra), the Lie algebra of 
Euclidean group is rather easy to find: 

sen) A G M(n + 1) I A G so(n),6 G [1.22) 
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1.4 Left-Invariant Hamiltonian Systems on Lie Groups 

In our formulation of control theory, the concept of left-invariance plays a central 
role. As mentioned earlier, the presence of left-invariant tangent spaces enables 
us to solve problems at the identity element of the group. This is facilitated by 
the global isomorphism between the cotangent bundle T*G and G x L*. Addition
ally, the utilization of left-invariant Hamiltonians provides further simplification of 
the problems. 

1.4.1 Left-Invariant Vector Fields 

Definition 1.4.1. By Lg : G —>• G we denote left translation. 

Lg(h) = gh, g, heG. 

Theorem 1.4.2. Let G be a linear Lie group (G C GL(n)), L its Lie algebra and 
let g G G be arbitrary. Then 

TgG = gTldG = gL = {gA | A e L} . 

Proof. First, let us clearify, what do we mean by the multiplication gA, where g G G, 
A G L. It is a vector field and \/h G G, gA{h) = A(gh). In fact, this is a tangent 
map to the left translation. The tangent space TgG has the following form. 

TgG = {g(0) | g(t) G G,g(0) = g) 

If g(t) is a smooth curve, we can easily construct curve from the identity 

Y(t)=g-1g(t), Y(0) = g-1g = ld. 

Thus Y(0) = g~lg{$) G L. In conclusion, TgG C gL. Since both linear spaces have 
the same finite dimension, we obtain 

TgG = gL. 

• 

Thus we have translation of the tangent space L from the identity to a tangent 
space gL at an arbitrary point g of the group G. This translation we denote by 
Lg* : L —> gL, where g G G. Moreover, (resp. L*) trivializes TG (resp. T*G) 
to G x L (resp. G x L*). 

Remark 1.4.3. We've proved the theorem 1.4.2 for a linear Lie group, it is possible 
to extend this to an arbitrary Lie group (see [1]). 
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Definition 1.4.4. Let G be a Lie group and let X G Vec(G). We say that X is 
left-invariant on a Lie group G, if Vg, h E G 

Lg*X(h) = gX(h) = X(gh). 

Using the notion of the left-invariant vector fields, we can equivalently define Lie 
algebra as the algebra of the left-invariant vector fields on G endowed with the Lie 
bracket of vector fields. 

1.4.2 Coordinates on TG and T*G 

We introduce vertical and horizontal coordinates on TG and T*G. Though this 
terminology is somewhat misleading, it is widely recognized, thus we will comply. 
Indeed, every element of TG can be represented as a pair 

(g,v), geG, v G TgG. (1.23) 

Since we have just established the notion of the left-invariant vector field and we 
know that the vector fields of the Lie algebra are left-invariant, we may simplify 
the coordinates 1.23. Consider a basis { e i , . . . , e„} in L. This basis induces global 
coordinates on TG as the induced basis in TgG is { L f l * e i , . . . , Lg*en} and thus the el
ement (g, v) G TG can be represented as 

(g,v) = (g,^2viL^e^j . (1.24) 

The coordinates vi,... ,vn are called the vertical coordinates in TG. The misleading 
part about this is, that g is then referred to as the horizontal coordinate even though 
it is not a coordinate at all, it is an element of the group G. 

Furthermore, the element (g,v) G TG given by 1.24 may be identified with 
an element in G x L: 

(9,0 = (#,X>ie / j G G x L. 

Thus we have an isomorphism between TG and G x L given by 

L " 1 : TG 3 (g,v) ^ G G x L, (1.25) 

with ( = L~}v. So any point in both TG and G x T^G can be represented by 
coordinates 

(g,vl:.. .,vn). 

As this isomorphism extends to the cotangent bundle, the isomorphism between 
T*G and G x L* is given by L*. 

T*G3(g,p)^(g,ti)eGxL*, 
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with £ = L*p. Let us denote the basis on L* dual to the basis { e i , . . . , e„} on L by 
{e*,. . . , e*}. The duality here is meant in the usual sense. 

e*( ej) = 

We introduce the vertical coordinates on the dual of Lie algebra £ 1 , . . . , £ n- Any 
point then can be represented by coordinates 

{9,^1, •• - ,6») 

both in T*G and G x L*. The reasoning of this is identical to the one above. 

1.4.3 Left-Invariant Hamiltonians 

Consider a smooth function H: T*G —> M.. We shall refer to such a function as 

a Hamiltonian function. As discussed in subsection 1.4.2, the isomorphism between 

T*G and G x L* allows us to interpret this function as a function on G x I*. Let 

H: G x L* -)• R be defined by 

If "H is independent on g, then H is said to be left-invariant and Ti is then called its 
trivialized Hamiltonian. But we can define those terms equivalently as follows. 

Definition 1.4.5. Let H: T*G —>• M. be a Hamiltonian function. H is said to be 
left-invariant if there is a function %: L* —>• K. such that 

H(g,p)=n(L*gp). 

The function "H is called its trivialized Hamiltonian. 

Now, let p = Er=i C i ^ - i e * , then 

HG/,p) = J f f ( i / , 5 ; 6 ^ - i e O = ^ ( ^ E ^ - i e * ) = f t ( £ & e * ) . 

Thus, for left-invariant Hamiltonian we have 

H(g,^,...^n) = H{£u •••,&). (1-26) 
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2 Control Theory on Lie Groups 

2.1 Hamiltonian Formalism 

The objective of this thesis is to demonstrate the application of the Hamiltonian 
formalism to Lie groups. In order to provide the necessary background and context 
for the extended statements, it is relevant to present the formulation of the original 
problem. While the theory is widely recognized, we will provide a concise overview 
of the fundamental concepts and propositions. For comprehensive details, we rec
ommend referring to [1]. 

2.1.1 Hamiltonian Formalism on Rn 

The optimal control problem is an optimization problem of the following form 

x = f(x,u), ueUcM™, 

x(0) = xo, x(tf) = xf, (2.1) 

J(M) = / fQ{X{t), u{t))dt ^ mm.. 
Jo 

By U we denote the control region, the function u(t) is the control and the functions 
f(x, u) and fo(x, u) are smooth. Moreover, we define the adjoint system for variables 
X(t) = (Ai ( t ) , . . . , A„(£))T and finally the Hamiltonian function 

H(x(t),u(t),X(t),XQ) = XQfQ(x(t),u(t)) + (X(t);f(x(t),u(t))), 

where (•; •) is the Euclidean inner product. Using the Hamiltonian function we can 
rewrite the differential system from 2.1 and the adjoint system into the form 

OH 
= ^ " ( ^ W A W > A ° ) , ie{i,...,n}, 

OH ( 2 - 2 ) 

Xi(t) = -—(x(t),u(t),X(t),X0), i e { l , - . . , n } . 

Necessary conditions for optimality of a solution of this system of ODEs is given by 
the Pontryagin Maximum Principle (PMP). 

Theorem 2.1.1 (Pontryagin Maximum Principle). Let u(t), t G (0 , t / ) , be a solu
tion of the problem 2.1 and let x(t), t G (0, tf), be the corresponding optimal trajec
tory. Then there exists non-positive constant Ao and non-zero continuous solution 
X(t) of the adjoint system 

OH 
Ht) = (x(t)Mt), Kt), Ao), Vz G { 1 , . . . , n}, V* G (0, tf), 
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such that the Hamiltonian function satisfies the maximum condition 

max.H(x(t),u, X(t), A 0) = H (x(t), u(t), X(t), A 0 ) , Vt G (0,t/). 

Moreover, # u(t), A(£), A 0) =0, V* G (0, if). 

Theorem 2.1.1 is applicable to problems with free time, where the right endpoint 
of the interval (0,tf) is considered as part of the solution. Nevertheless, there exists 
a version of this theorem for problems with fixed time. This version is structurally 
similar, with the main distinction being that the Hamiltonian is generally constant 
along the optimal trajectory and the optimal control rather than zero. 

2.1.2 Hamiltonian Formalism on Smooth Manifolds 

In [1], the reformulation of the original problem 2.1 on general smooth manifold 
M is presented. For the sake of completeness, we will also state it here. Consider 
the following optimal control problem 

q = f(q,u), qeM, u G U C Rm, 

9(0) = 9o, q(tf) = 9/, (2.3) 

J{u)= I ip(q(t), u(t))dt —> min . 
Jo 

Here Lp : M x U ^ R, f : M x U ^ TM. Furthermore, let A e T*M be a covector, 
v G R a parameter and u G U a control parameter. The Hamiltonian hv

u : T*M —>• M 
is defined as follows 

fcS(A) = (A;/(?,«)>+1/^(9,«). (2.4) 

Since the Hamiltonian is a smooth function on T*M, we can associate a vector field 
f̂i(t) e Vec (T*M) given by the Poisson bracket, as we have shown in 1.19. The 

P M P for this problem is stated next, its proof can be found in [1]. 

Theorem 2.1.2 (PMP on smooth manifolds). Letu(t), t G (0, tf), be a solution of 
the problem 2.3. Then there exists non-positive constant v and a Lipschitzian curve 
A4 G T*(t)M, t G (0,t/) such thatVt G (0,t/) 

= (At), (2.5) 

max K (A t) = /4(t)(At), 

(At,z/)^(0,0). 

Moreover, ^ ( t ) ( A t ) = 0, Vt G (0 ,*» . 
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From there directly follow the Hamiltonian equations on smooth manifold. Since 
the cotangent bundle T*M is isomorphic to M x T*M in some neighborhood of point 
x, we have 

£t(x,p) = H(x,p), (2.6) 

where x G M is position in the manifold, p — ( p i , . . . ,p n) G T*M and the vector field 
H G Vec (T*M) is the Hamiltonian vector field associated with some Hamiltonian 
function H. For the case of canonical coordinates (xi,... ,xn,pi,... ,pn) on M, we 
obtain the Hamiltonian equations described in 2.2: 

Xi dpiH. 

Pi = -dXiH. 

2.1.3 Hamiltonian Equations on Lie Group 

As was said in 1.1, we could solve problems of control theory using 2.6. But the im
portant thing why we want to study Hamiltonian formalism on Lie groups is, that 
for general smooth manifold M, the isomorphism T*M = M x T*M holds only 
locally, but T*G = G x L* is a global property in the case of Lie group G and its 
Lie algebra L. That is very useful simplification. Finally, we present the theorem 
showing the form of Hamiltonian equations on Lie groups. 

Theorem 2.1.3. Let H : T*G —>• K. be a left-invariant Hamiltonian on a Lie 
group G, % : L* —>• K. its triavialized Hamiltonian and (g,£) G T*G = G x L*. 
Moreover, let dH be the differential ofH seen as an element of L. Then the Hamil
tonian equations 2.6, with p = L*-i£, may be expressed in the following form 

g = Lg*dH, (2.7) 
£ = (ad dn)T (2.8) 

As a reminder, L* is the left translation on the cotangent bundle, Lg* is the left 
translation on the tangent bundle. In the following subsection we will prove the equa
tions 2.8 and 2.7 respectively. 

2.1.4 Proof of Hamiltonian Equations 

We begin with the proof of the vertical part, 2.8. We have £ = YH=I &ei- Utilizing 
the equation 2.6, left-invariance of the cotangent bundle and definition of the Hamil
tonian vector field, we obtain 

& = ie{l,...,n}, (2.9) 
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where {•, •} is the Poisson bracket. However, it is possible to further manipulate this 
equation. We employ 1.2.5, the Poisson bracket of composition of functions, and 
the relationship between Poisson and Lie brackets (1.14) for % G { l , . . . , n } : 

& = E {&> &} = Z) or > tei'e*]) (2.10) 

Consider the trivialized Hamiltonian "H. Since it is a function on the linear space 
L*, then d%(£ i , . . . , £„) is an element of (L*)* = L thanks to the linear structure. 

For an element ^ie\ H \-£nen
 e L*, the element of its tangent space at . . . , £ n ) 

is H l - ^ n ^ , with <9̂  = e* thanks to the linear structure. The element of its 
cotangent space (L*)* at ( £ i , . . . , £ n ) is o>i d£i + • • • + ujn d£„, with d£j = (e*)* = e, 
once more thanks to the linear structure. Then we obtain 

E 0iJ 
1 ^ 

(2.11) d^(6, 

If we apply 2.11 to 2.10, we obtain 

hi = (Z, [dH,*]) 

= (£, (ad d^)e,) 

= ((ad dUy^e,) 

or equivalent ly 

e = (ad <m)% 
which is exactly 2.8. 

The proof of 2.7 is simpler. Consider function (3 G C°°(T*G) that is constant on 
the vertical fibers. This basically means that (3 G C°°(G). Now, for every solution 
of the horizontal part of the system associated with H, represented by curves g(-), 
we obtain (by 1.2.5) 

(2.12) 

(2.13) 

d n dH 

-P(g(t)) = {H,(3}ip(t)Mt)) = g ^ - {Zj,P}m,g(t)) • dt 

Denote by X3- = Lg*e3 the translation of j - t h base vector of L. Moreover, utilizing 
an identity for affine functions on L, {ax + a,ay + (3} = a[x,Y\ +X(3 — Ya, we obtain 
{{p,X3),/3} = X3f3. But we have {^,0} = {{p,X3),/3} = X3f3 = (Lg*e3)f3. Thus 

dt 

n a n 

W)) = Ear(^-)/3 
j=l Glij 

L9* E 
<?(*) 3 = ^ 

(Lg*dn)p\g{t). 
<?(*) 

Since j3 is arbitrary function, we get 

g = Lg* dH. 

Thus, the theorem 2.1.3 has been proved. 

(2.14) 
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2.1.5 The Case of Compact Lie Groups 

The system 2.7, 2.8 can be further simplified in the case of a compact Lie group 
G. This is mentioned in [5] and derived for SO(n) (which is compact), we will 
paraphrase. In the case of compact Lie group, there is an invariant inner product g 
on M.n, i.e., 

g(Xu, Xv) = g(u, v), V i e G, Vu, v G Rn. 

For example, the invariant inner product (•, •) on the Lie algebra so(n) has form 

(A, B) = - t r ( A B ) 

and the invariance is meant in the following way: 

( e ' a d C A , e ' a d C B ) = (A, B), VA, B, C G so(n), Vt G R. (2.15) 

That is, the operator etadC is orthogonal and can be expressed as etadC = etcAe~tc. 
The infinitesimal version of 2.15 is obtained by differentiation with respect to t at 
t = 0: 

(adC(A),B) + {A,adC(B)) = 0, VA,B,Ce so(n). 

Thus, the operator a d C is skew-symmetric. As a consequence, the Lie algebra is 
endowed with invariant scalar product which allows us to construct the canonical 
map between the algebra L and its dual L*: 

A++ A = (A, •), AeL,AeL*. 

Thus we have a way of representing the coadjoint operator in equation 2.8 by an el
ement from the Lie algebra itself. By direct computation it can be shown that 
(ad A)* : L* ->• L* is identified with ( - ad A) : L ->• L. 

sAA)*B) (C) = B((adA) C) = (B, (ad A) C) = - ( (ad A) B, C) 

= -{{ZLA)B){C) 

Thus, in case of compact Lie group the system 2.7, 2.8 can be expressed in the fol
lowing form: 

g = g dH, 
(2.16) 

Z = -(addH)S = [S,dH]. 
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3 Matr ix Lie Group SO(4,1) and CGA 

In this chapter, we will utilize two distinct representations of the Lie group SO(4,1): 
the matrix representation and the Conformal Geometric Algebra (CGA), as defined 
in [7]. Our approach involves presenting the matrix representation and subsequently 
demonstrating the isomorphism between the Lie algebra and bivectors of the geo
metric algebra. 

3.1 Indefinite Special Orthogonal Group and its Lie 

Algebra 

In next chapter will follow solved problems on groups SO(3), SE(3) and SO(4,1). We 
have introduced the groups SO(3), SE(3) in 1.3.3 and 1.3.4 respectively. The general 
group SO(p, q) is called indefinite special orthogonal group. And as a matter of fact 
SO(4,1) contains both SO(3) and SE(3) as its subgroups. 

3.1.1 Definitions of the Structures 

Definition 3.1.1. Let B e M(p + q) with p,q e N be a matrix of symmetric 
non-degenerate bilinear form of signature (p,q). Then the set 

SO(p,g) = {A e M(p + q)\ ATBA = B, detA= 1} (3.1) 

is called indefinite special orthogonal group. 

Theorem 3.1.2. The indefinite special ortogonal group (endowed with matrix mul
tiplication and inverse) is a Lie group. 

Proof. The proof is a corollary of the Cartan's closed subgroup theorem ([3]) which 
states that if i f is a closed subgroup of a Lie group G then H is a Lie group as well. 
Since elements of SO(p, q) are regular matrices, i.e., SO(p, q) C GL(p + q), it suffices 
to show, that SO(p, q) is closed under matrix multiplication and inversion. 

X , Y e SO(p, q)^B = YTXTBXY = (XY)T BXY XY e SO(p, q), 

X e SO(p,q) XTBX = B^B = (x~l)T BX~l X " 1 e SO(p,g). 

• 
Let us show a property of SO(p, q) that can serve as an alternative definition of 

SO(p,q). Consider the inner product B : M.(p+q) x —>• M, given by a bilinear 
form B(x,y) = xTBy, then 

VA e SO(p,q) : B(x,y) = B(Ax, Ay). 

27 



In other words, the inner product B remains invariant under the transformation 
of the vectors x and y by A. This reinforces the concept of an invariant inner 
product and its preservation under transformations by elements of the indefinite 
special orthogonal group SO(p, q). Now, let us turn our attention to the Lie algebra 
of this group. We can construct the algebra directly using definition 1.3.5, 

V X e SO(p, q): 0 = XT(0)BX(0) + XT(0)BX(0) = XT(0)B + BX(0). 

Thus, the Lie algebra of SO(p, q) is the following matrix algebra. 

so(p,g) = {A e M(p + q)\ ATB = -BA} (3.2) 

3.1.2 Lie Group SO(4, 1) 

At the outset of this section, we expressed our intention to investigate the Hamilto-
nian formalism within the group SO(4,1). There are a couple of important consid
erations to be made. Given the definition, the most common and widely used form 
that naturally arises is 

SO(4,1) = {A e M(5) | ATBA = B, detA = 1, B = diag(l, 1,1,1,-1)}. (3.3) 

Solving the equation 3.2 for this bilinear form, we obtain Lie algebra of the following 
structure 

/ 0 a b d g\ 
—a 0 c e h 

so(4,1) = < -b -c 0 f i 
-d -e -f 0 j 

A 9 h i j 0/ 

,a,b,c,d,e,f,g,h,i,j E (3.4) 

But for reasons we will discuss later on, we are going to choose the matrix B as 
follows. 

( ° _ 1 \ 

B= 1 3 (3.5) 

V-l 0 / 

The Lie algebra is then a matrix algebra of the following form: 

80(4,1) 

«7 a8 «9 0 \ 

10 0 -a3 «2 a7 
a5 «3 0 — Oi a 8 , a; e M > 

i=l a 6 -a2 ai 0 a 9 

Ü4 a5 «6 -o io / > 

(3.6) 

The indices in the matrix show the base we will assume in the sequel. 
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3.2 Introduction to CGA 

We wish to express the Hamiltonian equations in the language of C G A . The mo
tivation for that we will explain in due time. As a quick introduction, C G A is 
graded space of outer products over basis of vectors. There are two usual choices in 
the terms of the vector basis. The first one would be {e\, 62, e^, e+, e_} which cor
responds to the matrix B given by 3.3. The second one, and the one we will assume, 
corresponds to the matrix B from 3.5. We denote the basis by {e i , e 2, e 3, e 0, e^}. 
The outer product of k vectors e\ A • • • A is called k-blade, linear combinations of 
/c-blades are called /c-vectors (we will frequently use terms bivectors for k = 2 and 
trivectors for k — 3). The linear space of k-vectors of C G A we denote by /\kM.5. 
Linear combinations of general /c-vectors and /-vectors we call multivectors. 

The essential operation on C G A is the geometric product (usually denoted by 
juxtaposition). Mathematically, geometric product of two vectors a and b is sum of 
their inner product and outer product 

ab = a • b + a Ab, (3.7) 

thus it is a map from M 5 x R 5 to 1 U A 2 ^ 5 ~~ multivectors. Geometric product of 
the general blades can be defined in similar way, but the role of inner product is 
played by contractions. For complete definitions we advise to consult [7] or [8]. 

We will also make use of Projective Geometric Algebra. Its basis for 3D space 
is {eo, e i , 62, e^} and thus P G A can be seen as part of C G A . 

3.3 Dual Space of Vectors of CGA 

The bivectors of C G A are isomorphic to the Lie algebra so(4,1). However, before 
we approach the isomorphism itself, we have to mention dual space of vectors of 
C G A . 

The basis of one forms of C G A are determined by a bilinear form: 

where Sj is a basis vector, e* is a basis one form and 6^ are elements of the matrix B 
from the definition 3.1.1. There comes in play our choice of the form of the matrix 
B. With that said, we can express the isomorphism between base vectors and their 
duals. 

e*0 !->• - e ^ e* ̂  e» - e 0 , i G {1,2,3} (3.8) 

For the case of P G A , recall that we have basis {e 0 , e i , e 2, e 3 }. From the isomor
phism we have described above we obtain, that the dual space of vectors of P G A 
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has basis {e\, 62, e^, eoo}. But this space is isomorphic to the trivectors of P G A . 
The isomorphism of vectors of P G A to trivectors of P G A is called Poincare duality 
and in this case can be defined as A e* = e0i23-

3.4 Isomorphism between Bivectors of CGA and so(4,1) 

Since both bivectors of C G A and the Lie algebra so(4,1) are vector spaces of 
the same finite dimension (dimso(4,1) = 10), there has to be an isomorphism of 
vector spaces. However, it turns out that there is even an isomorphism of algebras 
between the Lie group so(4,1) endowed with matrix commutator and bivectors of 
C G A endowed with a version of the commutator for C G A . We construct this iso
morphism in the following way. A n element of so(4,1) is a linear map on M 5 , i.e., 
W l G so(4,1),A : M 5 —> M 5 . Obviously, M 5 is a vector space of finite dimension 
and thus we can associate A with an element of the space (M5)* <g> M5, where ® is 
a tensor product. Since M5 is a subspace of C G A , the tensor product coincides with 
the geometric product of the algebra which can be expressed as the outer product. 
The isomorphism is defined by the following map for the base matrix of M(5) 
that has all elements zero apart from the element at i-th row and j - t h column which 
is equal to one: 

As a final touch, we will express this map for the basis matrices Ei of so(4,1), which 
were introduced in 3.6, using the isomorphism between dual space of vectors and 
vectors of C G A given by 3.8. 

- - e * ® e{. (3.9) 

ie {1,2,3} 

ie {1,2,3} 

(3.10) 
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4 Examples of Hamiltonian Formalism Prob

lems 

In this chapter, we will explore several problems related to left-invariant systems 
on Lie groups. We have set out with the following vision: the equations of rigid 
body motion have been extensively studied and are widely understood. The mod
ern approach is to solve them employing Hamilton's principle of least action which 
leads to the Lagrangian formulation, formulation of the problem as an optimiza
tion problem on M 3 in the context of control theory. The Lagrangian formulation 
then can be transformed into the Hamiltonian formulation as an optimal control 
problem on Lie group SE(3) and further analyzed using the Pontryagin Maximum 
Principle. Indeed, in our study, we have focused on the examination of left-invariant 
problems with left-invariant Hamiltonian functions on Lie groups. By adopting this 
perspective, we can simplify the equations of the Hamiltonian formalism on smooth 
manifolds. This approach allows us to exploit the inherent structure of Lie groups, 
leading to a more streamlined analysis and understanding of the underlying dynam
ics. The aim of this subsection is to establish connection between this mathematical 
formulation and the real world problems studied in physics. Moreover, we will try 
to answer what applications have the simplified equations for various choices of Lie 
group and Hamiltonian function. 

As mentioned previously, the Hamiltonian formalism and the Lagrangian for
malism are closely interconnected. Many texts in this field often begin by defining 
the Lagrangian function and then deriving the Hamiltonian function from it. This 
preference might be attributed to the fact that the Lagrangian serves as the inte
grand of the minimized of the problem 2.3. Consequently, the solution of the Hamil
tonian equations minimizes the Lagrangian function. However, in our approach, we 
start with the concepts of the Hamiltonian formalism. Nevertheless, we recognize 
the significance of the Lagrangian function and will provide its expression whenever 
possible. For a Lagrangian function denoted as L(g,u) and a Hamiltonian function 
denoted as H(g,p), the following identities generally hold true: 

However, in the case of a left-invariant system and left-invariant Hamiltonian func
tion, they take the following form: 

L(g,u) =up- H(g,p) 
dH 

&H 
(4.2) 
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This form is precisely derived in [9], let us outline the idea. Essentially, the trivialized 
Hamiltonian corresponds to the reduced Lagrangian L(oo). The function u may be 
obtained by the means of inverted Legendre transformation. The Lagrangian may 
be then expressed directly from the equation 2.4. 

In the subsequent sections, we will discuss problems on SO(3), SE(3) and SO(4,1). 
For each group, we will initially present the general structure of the coadjoint op
erator, followed by the presentation of three specific problems. We will express 
the Hamiltonian function in the form of a quadratic form, a linear form, or a com
bination thereof. The general form of the coadjoint operator will be particularly 
useful in the second and third subsections, enabling us to represent the equations in 
a more concise manner. 

4.1 The Coadjoint Operator 

Let us regard the expression of the coadjoint operator. Now, consider a Lie group 
G, its Lie algebra L, £ e T?dG, A, B e L. Then, 

(£, [A,B]) = <£, (acM)fl) = ((adA)*£,B). 

Expressing the operators ad A and (ad A)* as n x n matrices can be achieved through 
straightforward manipulation of the elements. This is facilitated by representing £ 
as a row vector in basis {e\..., e*}, and representing B as a column vector in basis 
{ e i , . . . , e „ } . Thus, 

C(&dA)B = ( ( a d A ) T e ) T 5 = ((adA)*0TB => (ad A)* = (ad A)T . (4.3) 

4.2 Hamiltonian Formalism on SO(3) 

The general form of the coadjoint operator on SO(3) is rather easy to find. Let 

A = Yli=i aieii B = Yli=i biei- m exercise 1.3.8 we have obtained 

[AB] 

/a2b3 - a3b2\ 
( ° 

-a3 0 2 \ 

a3bj - aih = a 3 0 

\ a i&2 - a 2 &i/ \-a2 
ai o / w 

thus the coadjoint operator (ad A)* has the form 

(ad A)* 
( 0 a 3 -a2\ 

—a3 0 ai 
\ a2 - a i 0 / 

(4.4) 
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4.2.1 Hamiltonian as a Quadratic Form on so* (3) 

Let us begin by presenting the form of the Hamiltonian function under consideration, 
denoted as H(R,p). Our objective is to utilize the trivialized form of Hamiltonian 
functions, so it's important to clarify how we represent them. By definition, the triv
ialized Hamiltonian function is expressed as = H(R,p), where Vi? G SO(3) 
and £ = Rp. Furthermore, since £ = ^\e\ + £ 2 e 2 + £3e3> w e c a n restate the trivialized 
Hamiltonian function as a function of its coordinates, %(£) = "%(£i, £2, £3)- Hence, 
we obtain the final form of the Hamiltonian function for this subsection: 

H ( £ 1 ; £ 2 , £ 3) = C l £ 2 + c 2£ 2

2 + c 3£ 3

2, (4.5) 

where £ i , £ 2 , £ 3 are the coordinate functions. Taking £ = ( £ i , £ 2 , £ s ) T , we can rewrite 
the Hamiltonian in the following form. 

H(0 = £ T C £ (4.6) 

The matrix of this quadratic form 

fci 0 0 \ 
C= 0 c 2 0 

\ 0 0 cj 

is for simplicity's sake considered as a diagonal matrix, obviously, for choice of 
arbitrary symmetric and regular matrix, we could transform the basis of so* (3), so 
that the matrix of quadratic form would be diagonal. 

As for the Lagrangian function L(u), it can be derived from the Hamiltonian 
function using the identity 4.2: 

<9£ 

Thus using 4.1 and symmetry of the matrix of the quadratic form, 

y ' 2 2 2 4 
Let us present couple of applications arising from the specific choice of the matrix 
C. 

• For Cj 7̂  0, % G {1, 2, 3}, the Lagrangian has form L(u) = \ YH=I Ciuf, 

which is exactly Lagrangian for geodesies on SO(3), thus the solution relates 
to minimization of length of a curve and we obtain equations for geodesies. 

• If some coefficients are zero, e.g., L(UJ) = c\u2, the problem relates to sub-
Riemannian geodesies. That is, we minimize length of the curve on a sub
structure of SO(3). Since sub-Riemannian theory is yet another challenging 
field of mathematical theory, we will not pursue further exploration in this 
direction. 
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2 • For the specific choice Cj = the Lagrangian L(u) = \ YH=I ~J~ is related 
to free rigid body rotations, i.e., rotation of rigid body without influence of 
forces. The matrix J = |d iag(J i , I2, I3) is the inertia matrix of the rigid 
body. 

And now, let us formulate the equations of Hamiltonian formalism 2.7, 2.8 for 
the case of rigid body rotations. First, we need to find the differential of the Hamil
tonian function d"H. 

6 6 6 d%(6,6,6) = 7-ei + Te2 + — e3 J-l J-2 -<3 
This implies that the adjoint operator in 2.8 has the form 

/ 0 £3/j3 -6 / / 2 \ 
(add^)* 

The horizontal equation is of form 

-&/h 0 fr/h 
0 J 

(4.7) 

66 (4.9) 

66 (4.10) 

66 (4.11) 

9 = 9 d-H = g ( | e i + | e 2 + | e 3 ) . (4.8) 

The vertical equation we will list using coordinates, as it is a bit clearer for a human 
reader. 

6 = { ( [ d « , e j ) = { ( - ^ + ^ ) = ( ! - ! ) 

6 ^ ( | d « , e 2 ] ) ^ ( - | e 1 + | e 3 ) ^ i - i ) 

4 ^ ( [ d w , e 3 ] ) ^ ( _ | e 2 + | e i ) . ( | _ J . ) 

As can be observed, the vertical part of the equations are decoupled from the hori
zontal part. The evolution on the cotangent bundle is independent on the position 
in the Lie group. Moreover, the horizontal part can be very easily solved. As 
dH G so(3), the solution of this equation can be written as follows. 

^ A . e x p { t ( | e 1 + | e 2 + | e 3 ) } , A G so(3), (4.12) 

on some open interval t G (0,tf). 

4.2.2 Hamiltonian as a Linear Form on so*(3) 

As in the previous subsection we start with definition of the Hamiltonian function. 
This time however, we consider 

H(0 = ̂ (6,6,6) = «16 + «26 + «36, 0 1 , 0 2 , 0 3 6 » . (4.13) 
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The differential of the Hamiltonian function is constant. Intuitively this does not 
seem very useful. The first complication arises as we try to formulate the Lagrangian. 
As 

u = — = a, a = {ai,a2,a3) 

is also constant, we cannot express u as a function of £ and vice versa. Thus we 
cannot find the Lagrangian. 

The adjoint operator has the form 

(addft)* 
' 0 a3 -a2\ 
—a3 0 a\ 

\ a2 —a-y 0 / 

(4.14) 

We can construct the Hamiltonian equations, but they don't yield any relevant 
results. 

g = g-&U. 

' 0 a3 -a2\ 
£ = -a3 0 ai 

\ a2 - a i 0 / 

4.2.3 Hamiltonian as a Quadratic Function on so*(3) 

Lastly, we combine the two previous cases. The trivialized Hamiltonian is of form 

^(6,6,6 ^ + a ^ + 2 T 2

+ a ^ + 2 f 3

+ a ^ -
(4.15) 

It is worth mentioning that this is not only the most general case so far but it also 
yields the most natural applications. But now, let us do the same derivations as in 
the case 4.2.1. Again, let us denote by J = diag(Ji, I2, I3) the matrix as before 
and moreover let us denote by a = (ai, a2, a3)T the vector of the linear form. Using 
this notation, we are able to rewrite the Hamiltonian as follows. 

(4.16) 

Now, we focus on the Lagrangian of this case. Using 4.2, 

Thus, in this case we are able to express £ in terms of 00: 

£ = J(u-a) 
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Using 4.1: 

L ( W ) = u ; T £ - - £ T J - 1 £ - a T £ 

= uT J(u — a) — -(UJ — a)TJ(u — a) — a T J(u — a) 
I 

— (UJ — a)T J(u — a) — -(UJ — a)T J(u — a) 
(4.17) 

— -(UJ — a)T J(u — a) 

This is once again a quadratic Lagrangian corresponding to a minimization of length 
of some curve. Now, let us turn our attention to the equations of Hamiltonian 
formalism. First, we need to find the differential of the Hamiltonian and the adjoint 
operator. 

d^(6,6,6 '6 6 + oi ei + — + a2 e2 + I — + a3 ) e3 
(4.18) 

0 &/h + a3 -tv/h-a-^ 
(MUT= -&/h-a3 0 + (4.19) 

V 6/̂ 2 + «2 -6/A - «i 0 J 

Substituting into the vertical equation 2.8 and expressing the result in coordinates 
we obtain 

6 = £ ([dH, e i ] ) = £ ( - ( | + a 2 ) e3 + ( | + a 3 ) e 2 ) 

66 + a 3 ^ 2 + «26 

6 = f ([d^, e2]) = £ f- f I + a3̂ l e1+(^ + a,) e3) 

1 1 
— - — ) 66 + «36 + ai6 

6 = £ ( [ d ^ , e 3 ] ) = £ '6 

/ l 

6 

(4.20) 

+ «i e 2 + - + o 2 ej 

- ^ 66 + «26 + «i6 

Substituting into the horizontal equation 2.7 we obtain very similar result as in 4.2.1. 

g = gdU = g 6 
/1 

+ ai ei + — + a 2 e2 + — + a3 e3 
(4.21) 

Again, the equations on vertical coordinates are decoupled from the horizontal equa
tion. The solution of the horizontal equation is an exponential. As a matter of fact, 
it can be written in the same form as 4.12. 
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4.3 Hamiltonian Formalism on SE(3) 

Analogously to the previous section we will present three problems of Hamiltonian 
formalism, this time on the group SE(3). Refer to examples 1.3.4 and 1.3.9 for 
introduction of the matrix structures. These structures are used to describe the full 
motion of rigid body, meaning not only rotational motion (which is inherited from 
the SO(3) group) but also translations. Let us mention the form of the base of 
the algebra se(3). As said, the algebra is 6-dimensional space. For arbitrary element 
A G se(3): 

/ 0 

A 
1=1 

«3 
-a2 

V o 

-a3 

0 
a\ 
0 

a2 

— CL\ 
0 
0 

Alternatively, the group SO(4,1) we have introduced in subsection 3.1.2 contains 
SE(3) as its subgroup. Thus se(3) C so(4,1) and we could represent an element 
A G se(3) as 

A 
6 

i=l 

/o 
CL4 

« 5 

0 
0 

«3 

0-6 — a2 
\0 a 4 

0 
-a3 

0 
ai 

« 5 

o o\ 
a2 0 

—ai 0 
0 0 
a 6 0/ 

, a,- G (4.22) 

Last step before we continue to the individual problems, let us show the form of 
the coadjoint function on se(3). Since 

(ad A) B 

f a2b3 - a3b2 \ 

a3bj - aih 
aib2 - a2bi 

a2b6 - a3b5 + a5b3 - a6 b2 

a 36 4 
- ai6 6 - a4b3 + a6 h 
- a2b4 + a4b2 - a^h) 

( ° -a3 a2 0 0 0 \ (bA 
a 3 0 — CL\ 0 0 0 b2 

-a2 ai 0 0 0 0 b3 

0 - a 6 a 5 0 — r'3 a2 W 
a 6 0 —a4 «3 0 —CL\ h 

\ - « 5 a4 0 -a2 o ) 

(4.23) 
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the coadjoint operator on se(3) has the following form. 

(ad A)* 

0 «3 —a2 0 a 6 

-03 0 ai - a 6 0 
a2 — d\ 0 a 5 —a4 0 
0 0 0 0 «3 -a2 

0 0 0 - a 3 0 

I 0 0 0 a 2 —CL\ o J 

(4.24) 

4.3.1 Hamiltonian as a Quadratic Form on se*(3) 

Again, we begin with the specification of the considered Hamiltonian. Let g G SE(3), 
eGse*(3),p = L ; _ 1 e G T ; S E ( 3 ) . 

e, 2 
i+3 (4.25) 

i=i " i=i 

Using the matrix of this quadratic form, we may represent the Hamiltonian as 

1 

where 

n(Z) = -eJ-% (4-26) 

J = diag(/i , h, h, m, m, m), Iu J 2 , I3 G M\{0}, m > 0. (4.27) 

This form of Hamiltonian was chosen because this example is a model of the free 
rigid body motion in space, i . e., translations and rotations of a rigid body without 
influence of forces. 

The Lagrangian of this problem has the following form. 

m 

Liu) LUT Jul 

Now, to form the equations, we need the differential of the Hamiltonian, which is 

3 t 3 £ 
(4.28) tri h tri m i=i i=i 

Thus the coadjoint operator associated with the differential has the following form. 

(addft)* 

( 0 
- 6 / / 2 

0 -€5/™) 
0 0 

0 -U/m 0 

0 0 0 0 

0 0 0 -&lh 0 

V 0 0 0 6// 2 0 y 

(4.29) 
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From there all that remains is formulate the equations of Hamiltonian formalism. 

(L) ( 0 
0 

- 6 / / 3 
0 0 6 

-iilh 0 &/m -Ci/m 0 
0 0 0 0 &lh 

4 0 0 0 -&/h 0 
0 0 o J w 

(4.30) 

<? = </dW = s (E f e, + J2 ^ e l + 3 ) (4.31) 
\ i = l 1i i=l m / 

The solution itself is very similar to the previous cases. We would solved the vertical 
part 4.30 numerically, the horizontal part 4.31 has an analytical solution, an expo
nential. At this point it is rather obvious that this is no coincidence but a property 
of this class of problems. 

4.3.2 Hamiltonian as a Linear Form on se*(3) 

We want to show this example as it is an extension of subsection 4.2.2. Let g G SE(3), 
f G se*(3), p = L*_x£ G Tfl*SE(3). We take the Hamiltonian 

H(g,p) = H(0, U (6, ...,&) = E « 4 ai,... ,a,6 G M, (4.32) 
i=l 

%(£) = a T £ , a = (a1:..., a 6 ) T . (4.33) 

Once again it is not possible to formulate the Lagrangian function of this problem 
because 

on ^T 

is not a function of £. 

The differential of the Hamiltonian is &% (£i, • • •, £ 2 ) = YH=\ aiei — const., thus 
the coadjoint operator has the form 

(addft)* 

/ 0 a3 —a2 0 a 6 

-a3 0 0\ - a 6 0 a.4 

a2 —a\ 0 a 5 —a.4 0 

0 0 0 0 a3 - a 2 

0 0 0 -a3 0 ai 

V 0 0 0 a 2 —0\ 0 J 

(4.34) 
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Then the Hamiltonian equations have the from 

g = g-dn = g 

( 0 « 3 —a2 0 a 6 - a 5 ^ 
-a3 0 a\ - a 6 0 a4 
«2 — CL\ 0 a5 —a4 0 
0 0 0 0 a 3 - a 2 

0 0 0 - a 3 0 ai 

\ 0 0 0 a 2 - a i 0 y 

This example again doesn't seem to resemble any real world problem. The vertical 
part models the change in momentum, the horizontal part models the change in 
position. In this particular example the momentum is being rotated but the change 
in position is constant, which is not what we would expect in any real world appli
cation. 

4.3.3 Hamiltonian as a Quadratic Function on se*(3) 

In the last example in this section we combine 4.3.1 and 4.3.2. Let g G SE(3), 
£ G se*(3), p = G TS*SE(3) and a1,... ,a6 e R. The Hamiltonian therefore is 
of form 

H(9, P) = no, n (6, • • • , & ) = ^ E y + ^ E — + E (4-35) 
Z i=l 1i Z i=l m i=l 

n(0 = \CJ-^ + aTC (4.36) 

The matrix of the quadratic form is the same as the one given in 4.27. As the quadratic 
part models the free rigid body motion and the linear part rotates the vertical part 
of the cotangent bundle, this can be seen as a example of rigid body that is acted 
upon by some kind of forces that are constant in the body frame. 

The Lagrangian of this problem is, to no surprise, very similar to its counterpart 
from 4.17. 

L(UJ) — -(UJ — a)T J (UJ — a) 

Now, let us state the Hamiltonian equations associated with this problem. The dif
ferential of the Hamiltonian has the form 

dW(Ci,... = E 7* + E — e , + 3 + X > e ; (4.37) 
i=i 1i i=i m i=i 

and the coadjoint operator has the form of block matrix 

(addft)*= | A ""1, (4.38) 
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where 0 is zero matrix and 

/ 0 &/I3 + CL3 -£2/I2-a2\ 
-&/h-a3 0 ix/h + ax 

V &//2 + a2 -iy/h - ai 0 ) 

I 0 £ 6 / m + a 6 - £ 5 / m - a 5 \ 
—£ 6/m — a 6 0 £4/777.-1-04 

\ £ 5 / ^ + 0 5 - £ 4 / m - a 4 0 / 

(4.39) 

(4.40) 

Considering the increasing size of the matrices involved, we will now incorporate 
their block structure whenever feasible. The equations corresponding to this problem 
are 

(4.41) 

atCi) . (4.42) g = g • dU = g • \J2 TGi + £ ~ e * + s + J2 

The solution of the horizontal part is again an exponential, the vertical part we 
would solve numerically. 

4.4 Hamiltonian Formalism on SO(4,1) 

For this final section, we will focus on the most general group. As mentioned earlier, 
both SO(3) and SE(3) are subgroups of SO(4,l). In Chapter 3, we introduced this 
group and its associated Lie algebra. Namely, recall 3.6, the structure of the Lie alge
bra we will assume. Before we explore individual problems we will show the structure 
of general coadjoint operator on this Lie algebra. 

f a2b3 - a3b2 - a5b9 + a6b8 - a8b6 + a9b5 \ 
a3bi — a\b3 + a46g — a^b7 + a7b^ — « 9 ^ 4 

aib2 — a2bi — a4b8 + a5b7 — a7b5 + a 86 4 

a2b6 — a3b5 + a5b3 — a6b2 + a 4 6i 0 — a i 0 &4 

a 36 4 — ai&6 — a 46 3 + a6bi + a5bw — awb5 

a-ih — «2&4 + «4&2 — a5bi + a66io — ai0b6 

a2b9 - a3b8 + a8b3 - a9b2 - a7b10 + a10b7 

a3b7 - ayb9 - a7b3 + a9by - a8b10 + a10b8 

aib8 — a2b7 + a7b2 — a8b\ — agbw + awb9 

y a7b± — a^b-r — a5b8 + a8b5 — a6b9 + a9b6 J 

(ad A) B 
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C 0 \ 

(ad A)* 
•<T 

ST 

X 

E —a; 

0 J 

(4.43) 

A 

E 

x 

( ° 
- a 3 

\ « 2 

/ 0 

- a g 

\ «8 

'a10 

—a3 aio 
\ « 2 

ai 

0 / 

- a 8

N 

07 
0 / 

ai 

—ai aio / 

« 3 

0 
—a\ 

a g 

0 
—07 

« 3 

a 6 - a 5 \ 
0 a 4 

- a 4 0 / 

- a 2 \ 

( ° 
\ « 5 

^-aio a 3 

—a3 —aio °i 
\ a 2 - a i - a i o / 

(07, a 8 , a9J 

The coadjoint operator can be represented by a 10 x 10 matrix, it would be challeng
ing to incorporate it directly into the text without the block structure. Consequently, 
we will solely utilize the block structure approach to present the coadjoint operator. 

4.4.1 Hamiltonian as a Quadratic Form on so* (4,1) 

Once again, we begin with the definition of the Hamiltonian. Let g G SO(4,1), 

e e s o * ( 4 , i ) , P = L ; _ 1 e e r ; s o ( 4 , i ) . 

10 £2 

H(g,p)=U(0, H 10 
2 3i 

(4.44) 

We can reformulate the Hamiltonian using matrix notation. Take 

J = diag ( j i , . . . , j io) , ji, • • •, jw G M\{0}, 

then 

^(0 = k T j - 1 £ - (4.45) 

The Lagrangian function associated with this problem can be formulated in the same 
manner as in the previous examples. 

1 
Lou) u)1Jui 

The form is symbolically the same as in the case of quadratic form on SE(3), the dif
ference is that u) has the dimension of 10 instead of 6 and the matrix J is also 
different. 
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Finding a real world example is trickier than in the previous cases. The reason 
for that is that the tenth dimension of the Lie algebra (in the definition we use) is 
responsible for scaling. Therefore it is really no longer appropriate to talk about mo
tion of a rigid body, because we expect that the body would deform. But it turns out 
that the group SO(4,1) models more complicated physics, which is not that surpris
ing given that it is an extension of SE(3). For instance, in [10], the group SO(4,1) (in 
the sense of 3.3) is employed to express the equations of general relativity in a dimen-
sionless formulation. Similarly, all computations behind the animations featured in 
[11] (scientifically accurate visualizations of Schwarzschild and Reissner-Nordstrom 
black hole models) are conducted using the SO(4,1) Lie group. Considering that 
this case is a generalization of 4.2.1 and 4.3.1, it can be assumed that a real-world 
application of this scenario would involve free motion in close proximity to a black 
hole. 

Let us finish up this example by formulation of the Hamiltonian equations. 
The differential of the Hamiltonian in this case has the following form. 

10 £. 
dU (U,---,Uo) = J2~ei 

i=i 3i 
(4.46) 

Thus, the coadjoint operator has the form 

(ad A)* 

(A M C 0 \ 
C T D C T D 0 w 
1 T 0 E —x 

V 0 xT —wT o ) 

(4.47) 

( ° U /J3 -Ulh\ ( 0 U/h ~U/h\ 
A = ~U /h 0 U/h B = -U/h o U/h 

\ U/h -U/h o ) -U/h o J 

( 0 U/h -Ulh^ f-Uo/ho U/h -U/h 
C = ~U/h 0 U/h D = ~U/h -Uo/jw U/h 

V U /J8 ~U/h o ) V U/h -U/h ~Uo /ho 
{Uo/jio U Ih -U/h) 

E = ~U /h Uo/ho U/h 
\ U/h -U/h Uo/ho) 

x = {U/h, U/h, U/h) w = {U/h, U/h, U/h) 
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The equations then are 

IA 1 C 0 \ 
C T D 0 w 
B T 0 E —x 

\ 0 xT —wT o / 

(4-

4.4.2 Hamiltonian as a Linear Form on so*(4,1) 

Take the Hamiltonian 
10 

H(g,p)=H(0, W(£ i , . . . , £ io ) = I>& (4.49) 

where o G SO(4,1), £ G so*(4,l), p = L*_x£ G T*SO(4,l). We can reformulate 
the Hamiltonian using vector notation. Take 

then 

a = (ai,... ,aw) , ai,...,awe R, 

U (0 = aT£. (4.50) 

The Lagrangian once again cannot be obtained, since ^ is a constant vector. 
The differential of Hamiltonian is 

10 

d%(£i , . . . ,£io) =J2aiei (4.51) 
i=\ 

thus, 

A 

(ad A)* = 

( 0 a 3 - o 2 \ 
—a3 0 Oi 

- a i 0 ) 

/ A B C 

0 E 
w 

—* 
— X 

(4.52) 

\ 0 f T - w T 0 / 

c 

E 

\ «2 

^ 0 ag — 
—ag 0 a7 

\ as — a,7 0 / 

^ «10 «3 - « 2 \ 
—a3 aio o,\ 

\ a2 - a i aio / 

x = (a 4, a 5 , a 6 ) T 

' 0 a 6 - a 5 \ 
—OQ 0 a 4 

\ (25 — <24 0 / 

' '-aio a 3 - a 2 ^ 
—a3 —aio ai 

\ a2 - a i - a i o / 

VJ = (07, as, ag. 
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This implies the equations 

9 = 9 • ^E Oifkj 

(A M C 0 \ 
C T D C T D 0 w 
1 T 0 E —x 

V 0 xT —wT o ) 

(4.53) 

But, once again, there is no real application to be found that could be modeled by 
these equations. 

4.4.3 Hamiltonian as a Quadratic Function on so* (4,1) 

This last example combines 4.4.1 and 4.4.2 and it is the most general example we 
will show. Let g G SO(4,1), f G so*(4,1), p = L * _ ^ G T;SO(4,1). The Hamiltonian 
we assume is 

i 10 c2 10 

H(g,v) = H(0, H (6, • • •, 6o) = -0 E - + E 
z «=1 J« i=i 

We can reformulate the Hamiltonian using matrix notation. Take 

J = diag ( j i , . . . , j io) , ji, • • •, jw G R\{0}, 

o = ( a i , . . . , aio) , a i , . . . , aio G R 

(4.54) 

then 

The Lagrangian corresponding to this problem can be derived as 

L(ou) — - (u — a)T J (u — a). 

The differential of this Hamiltonian is 

10 
d"H(£i,. . . , ^io) = E ( -r + ai )eii 

i=l \Ji } 

thus the coadjoint operator has the form 

(4.55) 

(4.56) 

(ad A)* 

( A 1 C 0 \ 
C T D C T D 0 w 
1 T 0 E —x 

V 0 xT —wT o ) 

(4.57) 
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where 

A 

E 

x 

w 

( 0 

~ A3 

V 6/J2 + a2 

0 

V + a5 

0 

- 6 / J 9 - a9 

V fs/js + «8 
'-WJ10 _ °10 6 / J 3 + « 3 -6/J2 - «2 \ 

- & / J 3 - « 3 -60/jio - Oio f l / j l + «1 
\ 6/J2 + «2 - «1 -6o/iio - «10/ 

^10/jl0 + Oio 6 / J 3 + « 3 -6/J2 - «2 \ 
- 6 / J 3 - « 3 6o/jlO + «10 + «1 

\ 6/J2 + a2 -ii/ji - ai fio/jio + aio/ 

( £ 4 / j 4 + « 4 , & / J 5 + « 5 , £e/J6 + ae)T , 

6 / J3 + « 3 

0 

Ce/je + «6 
0 

- £ 4 / J 4 - aA 

0 

-ill31 ~ «7 

-6/J2 - a 2 \ 
ii/ji + ai 

0 

-65/J5 - «5^ 

£ 4 / J 4 + «4 

0 

- £ s / J 8 - a 8 \ 

0 / 

(6 /J7 + a7, £ 8 / j 8 + a 8 , £ 9 / j 9 + a g) 

The equations have the following form. 

"(1(1 + a* 

/ A B C 0 \ 
C T D 0 w 
B T 0 E —x 

\ 0 xT —-uJT 0 ) 

(4.58) 

The application of this particular case are even more complicated than in the case 
4.4.1. But seeing this as a generalization of 4.4.1, one might try to model motion of 
a soft body with forces acting upon it using these equations. 
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5 Programmed Solutions 

We have chosen two main approaches in programmed examples for this thesis. 
The first are scripts coded in JavaScript for a visualization tool [12] written in 
JavaScript. The JavaScript scripts can be run locally if one installs the package, 
but they can be run online at [13]. It was created as a database of free examples 
for [12] and as an easy way for users to experiment with their own ideas. The sec
ond approach is a script in Matlab solving the general problem 4.4.3. In following 
sections we will visit each of them, describe them, present the results and explain, 
why is the approach of Lie groups and algebras useful. 

5.1 Dimensionless Rigid Body Mot ion 

The first example was chosen as it very clearly demonstrates property of problems 
described using Lie algebra, that seems almost absurd from the point of view of 
vector-matrix notation which currently the usual way of computing motion. That 
is, the form of equations does not depend on the dimension of space the body is 
in. As we will demonstrate, the same code works for motion of a rectangle in 2D 
space and a block in 3D space. In some sense, this is similar solution to the Garticle 
Engine which we have discussed in [14]. However, since we assume left-invariant 
Hamiltonian functions, this is somewhat simpler case. 

5.1.1 Code Description 

The dimension is chosen beforehand and defined in the variable called dimension. 
The computations take place in either 2D or 3D Projective Geometric Algebra 
(PGA). Thorough introduction to P G A can be found in [8]. The reason, why we 
use P G A and instead of C G A is that it is easier, from programming standpoint, to 
handle the different number of dimensions. It could be obviously done in C G A as 
well but it would make the code unnecessarily complicated and that is why we have 
chosen P G A . Needless to say, that this is caused by default base in [12], which is 
the base associated with 3.3. If there were by default base vectors e 0 and we 
could write the example as efficiently in C G A . 

Following definition of the algebra we define couple of functions. Namely, func
tion 

var point = x => !(e0 + x * [ e l , e2 , e3]); 

which takes an array of coordinates of point in 2D or 3D and returns the representa
tion of this point in P G A (which is a trivector). Keywords eO, e l , e2, e3 represent 
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the base vectors and the exclamation mark is the duality operator. The fourth-order 
Runge-Kutta algorithm (RK4, [15]) follows. 

var RK4 = (f,y,h) => { 

var kl = f(y ) , 

k2 = f(y+0.5*h*kl), 

k3=f(y+0.5*h*k2), 

k4=f(y+h*k3); 

return y+(h/3)*(k2+k3+(kl+k4)*0.5); 

} 

As we mentioned very often, the horizontal part of Hamiltonian equations can be 
solved analytically, so we will solve only the vertical part using the RK4 and use 
the exponentiation to find the solution of the horizontal part. But more on that 
later. Next, we define the commutator for P G A : 

var commutator = (a, b) => 0.5 * (a * b - b * a); 

The definition of the body (a rectangle or a block) follows. We choose its phys
ical properties - mass and length of edges - and use this information to calculate 
the inertia matrix. Then we compute its vertices and edges, we have used an algo
rithm that can be found in [16] which utilizes the fact you can represent coordinates 
of vertices of a cube with edge of length one as a binary number and vice versa, 
then we use binary operations to calculate whether or not there should be an edge 
between two vertices given their indices. A n edge is always between to points whose 
coordinates differ only in one dimension. Thus we check whether two points satisfy 
this condition and if it is so, connect them with an edge. 

Next step is definition of initial position and momentum of the body. The po
sition is given by a P G A motor (multivector on even blades), momentum is repre
sented by a bivector. As mentioned above, the i n i t i a l S t a t e , as we have called 
the variable, is an array with two elements. For example 

var i n i t i a l S t a t e = [ 1 - l e O l , -0.1e12+0.1eOl+0.5e02+0.1e23]; 

is a valid option. Furthermore, variables momentum and p o s i t i o n will be used to 
store current values. 

At last we define the differential of Hamiltonian function. 

var l i n e a r P a r t = 0, 

dH = h => h . Dual . map ( (x , i ) => x / ( i n e r t i a [ i ] | | 1) ) + 

l i n e a r P a r t . D u a l ; 

The constant part of d"H is always taken as a bivector in 3D P G A , that ensures that 
correct bivectors are used in algebras with fewer dimensions, since for example eo3 
is evaluated as zero in 2D P G A . The vertical equation is not exactly the same as it 
was shown in previous chapter. Recall 2.1.5. For a compact Lie group we may use 
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the commutator in the vertical equation. But the velocity is dual to momentum, 
thus we need to first take its dual (this is done directly in dH) and after we compute 
the commutator we have, so to say, "undual" the result. 

var undual = h => h.map((x, i ) => x * i n e r t i a [ i ] ) . D u a l -

li n e a r P a r t , 

v e r t i c a l E q u a t i o n = h => commutator(h, dH(h)); 

Then we just run the animation - in each time step we update the state by 

t += dt ; // we usu a l l y choose dt = 1/60 

v e l o c i t y = RK 4 ( v e r t i c a l E q u a t i o n , v e l o c i t y , dt).Grade(2); 

p o s i t i o n = ( i n i t i a l S t a t e [ 0 ] * ( ( t * v e l o c i t y ) .Exp())).Normalized; 

and draw edges of the body. 

5.1.2 Results 

In this subsection we will choose some initial data and present the reader with 
obtained results. However, the code described above is meant as a visualization 
tool, i.e., it creates animation of the motion, which isn't very useful for display
ing on paper. But with slight modification of the script we have created a script 
that computes the motion beforehand and user can then choose which positions 
to display. Specifically, the algorithm computing edges leaves zeros in the array if 
there shouldn't be an edge between points. This doesn't matter in the animation 
script but it introduces some problems here so we have to clean the edges array. 
The motion is computed in a for loop and the motors are stored in an array. 

for (var i = 0; i < timeSteps; i++) { 

t += dt ; 

v e l o c i t y = RK 4 ( v e r t i c a l E q u a t i o n , v e l o c i t y , dt).Grade(2); 

p o s i t i o n s [i] = ( i n i t i a l S t a t e [ 0 ] * ( ( t * ( u n d u a l ( d H ( v e l o c i t y ) ) ) ) .Exp() 

)).Normalized; 

} 

Then we compute the transformation of cube 

var movedEdges = positions.map((x,i) => trueEdges.map((y,j) => x 

>>> y ) ) ; 

and draw a couple of cubes on screen (the cubes at zero, one and two seconds). 

document.body.appendChild(this.graph([ 

0x5f3110, ...movedEdges [0] , "t = 0s", 

0x9D86CF, ...movedEdges[59], " t = l s " , 

0xCC8ADC, ...movedEdges [119] , "t = 2s" 

])) ; 

With that out of our hands, let us turn attention to the examples themselves. We 
begin with simple examples mainly to show, that the system works the way we would 
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expect it to. By simple we mean that we take cube with length of an edge equal to 
one and mass 12. Furthermore, we take Hamiltonian function that is a quadratic 
form. We will present the results in figures of the cube at three moments. 

Rotation around one axis 

First example is rotation around the z axis. Keep in mind that we start in premise 
that the same code should work in all dimensions, but we will show only 2D and 3D 
versions of the same problem, because ID isn't particularly exciting and anything 
above 3D isn't very useful anyway. The initial velocity was chosen £ = — l e i 2 , thus 
we would expect counter-clockwise rotation around z axis, as we already mentioned. 
As you can see in figures 5.1 and 5.2, this is exactly what we have obtained. 

Rotation around all axes 

Since there is no axis of rotation in ID and only one in 2D, this example is interesting 
for the case of 3D space. We have chosen the velocity as £ = —0.3e23 + 0.1e3i —0.2ei2. 
The result is in figure 5.3. Obviously we could run this in 2D (or even ID) but it 
would reduce itself to a rotation with velocity £ = —0.2ei2 since the other two 
bivectors don't exist in 2D P G A (because e3 does not exist there), which we have 
demonstrated above. 

Translation in one direction 

In the two following examples we take look at translations. First, let us take simple 
translation in one direction. We take the velocity £ = e 0 i , thus we expect the cube 
to reverse along the x axis. The results for 2D and 3D space can be found in figures 
5.4 and 5.5. The results confirm our expectations. 

Translation in all directions 

In figures 5.6, 5.7 can the reader find translational motion in all directions. We 
have chosen the bivector of velocity as £ = e 0 i — 0.7e02 — 0.2e03. Thus the motion 
should be in the direction of y and z axes (in the case of 3D space), and against 
the direction of x axis. This is the case, our assumptions were correct. 

Free Rigid Body Motion 

Last of the simple motions is combination of the above. This time we take the ve
locity £ = 0.1eo2 — 0.7eo3 — 0.1ei2. The results can be found in figures 5.8 and 5.9. 
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You may notice, that the cube drifts in the direction of the x axis. Since the ve
locity is in the body frame that makes perfect sense, the rotational motion causes 
the translational movement to rotate with the cube and thus the movement in x axis. 

Non-zero Linear Part in Hamiltonian Function 

Now we will experiment with the linear part of the Hamiltonian function. The free 
motion is described by the quadratic form, thus this term might correspond to 
a force acting on the body. By definition, left-invariant Hamiltonian cannot depend 
on the position of the body in space, thus this force would have to be constant in 
the body frame. With this concept in mind, let us denote by / = J2 a i e i the constant 
part of the differential of Hamiltonian function. 

Let us begin from simple translational motion given by £ = — 0.1erj2- It turns out, 
that our assumptions were correct, or at least to some extent. Taking / = —0.25eo2 

we obtain results that are in figures 5.10a and 5.10b. As you can clearly see, that 
is just the effect we would expect a force would have. Taking / = 0.1ei2 we obtain 
5.11a and 5.11b, which again do align with the idea of / playing the role of torque 
in this case. When we combine torque, forces and non-zero initial velocity we obtain 
what we would expect, but keep in mind that the forces are in body frame and if 
the body rotates, the forces rotate with it and the resulting motion copies that. In 
5.12a and 5.12b is result obtained for / = 0.1ei2 + 0.2eni. 

5.2 Soft Body Mot ion 

Our next script is very similar to the previous one. However, this time we will use 
C G A and try to demonstrate what is there in addition to the previous case. We have 
chosen a sphere as the body that we will use in this example rather than a block, 
because it is for one, very nicely embedded in C G A and for two, due to the changes 
in relative position of points it might be difficult to see exactly what is happening. 

5.2.1 Code Description 

This time the algebra is set, we mentioned that we wish to use C G A , thus the (4,1) 
metric is chosen. Since the default base vectors correspond to 3.3, we define the base 
vectors eo = \ (e_ — e+) and = e+ + e_. Using this new basis we can define 
the usual point representation in C G A : 

var point = x => eo + x + 0.5*x*x*einf; 

For our convenience we define function sphere which takes an array of four points 
and takes their outer product to create a sphere. 
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var sphere = x => x.reduce((a, b) => a ~ b); 

The commutator follows and it is exactly the same as in previous example. We 
will again employ fourth order Runge-Kutta algorithm for the vertical part and 
exponentiation for the horizontal part. The initial positions of the four sphere's 
points were chosen as follows: 

We continue with definition of initial motor, velocity and the linear part of the Hamil-
tonian function. Since we assume the body to be a sphere, we take the matrix of 
the quadratic part of the Hamiltonian function as an identity matrix. The reasoning 
behind this is following. Since sphere is obviously symmetric in every basis, it is 
clear that its inertia is the same in every direction. Then we choose such mass, that 
there are ones on the diagonal. The last two elements are defined as bivectors of 
C G A , since it allows very simple formulation of the differential of the Hamiltonian 
function, which follows next. 

var dH = h => (h + l i n e a r P a r t ) . D u a l , 

undual = h => h.Dual - l i n e a r P a r t ; 

The final step is to define the Hamiltonian equations, since the matrix of quadratic 
form is an identity matrix, if the linear part would be zero, we could just take dual 
of dH, compute the commutator and then take dual of the result. But this is not 
the general case, thus we formulate the vertical equation as follows. 

var v e r t i c a l E q u a t i o n = h => -2*undual(commutator(h, dH(h))); 

In the end we just run the simulation. At each step we update the velocity and 
position, and then graph the points and sphere. 

t += dt ; 

v e l o c i t y = R K 4 ( v e r t i c a l E q u a t i o n , v e l o c i t y , 1/60).Grade(2); 

p o s i t i o n = ( i n i t i a l S t a t e [ 0 ] * ( ( t * ( v e l o c i t y ) ) . E x p ( ) ) ) . N o r m a l i z e d ; 

var newPoints = points.map(p => p o s i t i o n >>> p); 

Similarly to the previous case, the animation script was not very appropriate for 
presenting results here. Thus we made very much the same modifications to create 
script that better suits needs of this subsection. Positions are computed beforehand 
and then we pick three of them (at zero, one and two seconds) and display them. 

Pi = [0,0,1/2], 

P 3 = [1/2,0,0], 

P2 = [-1/2,0,0], 

P 4 = [0,1/2,0]. 

5.2.2 Results 
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Free Rigid Body Motion 

Since SE(3) is a subgroup of SO(4,1), we could go through all the translational and 
rotational motions separately, but we will show directly the free rigid body motion. 
Actually, we will take exactly the same velocity bivector £ = 0.1e 2 o o —0.7e3 o o —0.1ei 2, 
only this time expressed in C G A . The results we have obtained are in figure 5.13. 
To no surprise it is the same motion as in previous section. 

Free Soft Body Motion 

Bivectors and eioo, where i,j G {1, 2, 3} describe, in our application, the rigid 
body motion, bivectors eo« correspond to transversions, inversion followed by trans
lation followed by inversion. Those are not very interesting for us, since we wish to 
study real bodies and inversion often doesn't bode too well for them. That leaves 
the bivector eooo- As mentioned earlier, this bivector handles scaling. For our next 
example we have chosen velocity £ = —0.6eioo — 0.2e0oo- The translation is there 
only that the effect of dialation is visible in the result, which can be found in 5.14. 
We see that the sphere is shrinking. If we take positive multiple of eooo, it will 
expand, see 5.15 (£ = —0.6eioo + O.leooo)-

Forces and Torques 

Analogously to the previous section, non-zero coefficients in the linear part of Hamil-
tonian function play role of forces and torques. It is very much the same as in the the 
previous case apart from the dialation effect of e0oo which wasn't present in the case 
of P G A . Thus we will give an example of it. We have chosen the bivector of velocity 
v = —O.leioo and bivector of forces / = — O.leioo — 0.15eooo, the result can be found 
in figure 5.16. 

5.3 Mat lab Solution of 4.4.3 

In this section we take one more look at the example from previous section. However, 
we will solve it in its matrix formulation in Matlab. The result this time will be 
a curve (g,£) : (0, tf) —> SO(4,1) x so*(4,1), that is curve in 5 x 5 matrices, which is 
not particularly easy to visualize. Thus we will plot velocities which is rather simple 
and check whether the properties 

• ATBA = B, where A G SO(4,1) and B is given by 3.5, 
. det A — 1, A e SO(4,1) 

of the group are satisfied for all matrices on the integral curve. 
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5.3.1 Code Description 

For user's convenience and simplification of the script itself, two functions were 
written: 

• l i eA lgeb ra takes an array of length 10 and converts it into corresponding 
element of so(4,1) 

• coadjointOperator takes an array a of length 10 and converts it into (ad A)*, 
where A:=lieAlgebra(a) . 

Both are very simple, they basically programmed form of 3.6 and 4.43 respectively. 
The script begins with initialization of data for this problem. We keep the nota

tion introduced in 4.4.3. We choose the diagonal of matrix J , the vector of the lin
ear part a, initial values of £ and g(0). We will always start from the identity, 
g(0) = 15x5- Next we define the coadjoint operator of dM and the equation on 
so*(4,l). 

addHStar = @(xi) coadjointOperator(xi./J) + coadjointOperator(a); 

xiDot = Q(t, x i ) addHStar(xi) * x i ; 

Since the vertical equation is decoupled from the horizontal, we can solve it on 
the whole interval (0,tf). To do so, we use the Matlab function ode45. 

[ t , h] = ode45(xiDot, tSpan, x i l n i t i a l ) ; 

Now, we use the solution £(£) to obtain the curve on the group g(t). 

g = z e r o s ( [ 5 , 5, l e n g t h ( t ) ] ) ; 

for i = l : l e n g t h ( t ) 

g(:, :, i ) = g l n i t i a l * e x p m ( t ( i ) * l i e A l g e b r a ( h ( i , :)./J+a)); 

end 

Next we check the properties of SO(4,1) as we have mentioned at the beginning of 
this section. To check the first property, we compute the difference 

g(:, :, i ) ' * B * g ( : , :, i ) - B 

and compare it to zero with chosen tolerance. This creates 5x5 matrix of boolean 
values and if its sum is 25, the property holds. If it doesn't sum to 25, there has been 
significantly different value and the property is not satisfied. The second condition is 
very straight-forward as well. We compute determinant of every matrix on the curve 
and compare it to one with the chosen tolerance. This is done in one for loop that 
is shown below. 

for i = l : l e n g t h ( t ) 

l e f t S i d e = g ( : , :, i ) ' * B * g ( : , :, i ) ; 

checkOrthogonality(i) = sum(abs(leftSide - B) < t o l , ' a l l ' ) / 2 5 ; 

checkDeterminant(i) = abs(det(g(:, :, i ) ) - 1) < t o l ; 

end 

The final step is plotting x i . 
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5.3.2 Results 

We will compute examples with same initial data as in 5.2.2. 

Free Rigid Body Motion 

We have chosen bivector £ = 0.1e 2 o o — 0.7e 3 o o — 0.1ei 2 , this corresponds to initial 
vector x i l n i t i a l = [0 0 0 . 2 0 - 0 . 2 1 . 4 0 0 0 0] thanks to the isomorphism 
we have established in section 3.4. Both properties were maintained along the curve 
in SO(4,1) and the velocities can be found in 5.17. As you can see, the rotational 
velocity is constant and the translational velocities are being rotated, which is what 
we have obtained earlier. 

Free Soft Body Motion 

For case of shrinking motion was chosen velocity £ = —0.6eioo — 0.2eooo- This corre
spond to initial data x i l n i t i a l = [0 0 0 1 . 2 0 0 0 0 0 0 . 4 ] . Group proper
ties were again satisfied and resulting plot is in 5.18. This again confirms our earlier 
results. The case of expansion can be found in 5.19 and it is affirmative as well. 

Forces and Torques 

Finally, the case of non-zero linear part of Hamiltonian function results in 5.20 under 
the same initial conditions as in the case that we have studied in SO(4,1) . The initial 
velocity was taken v = — O.leioo and bivector of forces / = — O.leioo — 0.15eooo- We 
have used the isomorphism from the section 3.4 to convert them to basis of so(4,1). 
Again, the properties were satisfied along the curve and the plot corresponds to 
the animation obtained earlier. 
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Conclusion 

The aim of this thesis was to unite and generalize the notions of left-invariant Hamil-
tonian systems on Lie groups with left-invariant Hamiltonian functions and explore 
their applications. Throughout this research, we have formulated Hamiltonian equa
tions for general Lie groups and investigated the potential uses based on specific 
choices of Lie groups and Hamiltonian functions. Additionally, we have developed 
a computational tool for simulating rigid and soft body motion using the concepts 
of C G A . In this concluding chapter, we will reflect on the key findings and contri
butions of our work, discuss their implications, and propose potential avenues for 
future research. 

As previously discussed, we have successfully derived the simplified form of 
the left-invariant Hamiltonian system. However, since Lie groups already encompass 
a wide range of underlying sets, it is natural to consider extending this theory to 
incorporate non-left-invariant Hamiltonian functions. Those arise immediately even 
in the theory of rigid body motion as they represent potential energy and forces 
associated with them such as gravity or Hooke's Law. Thus we would have different 
type of forces than those that are constant in the body frame. 

Another highly intuitive approach to further this research would be to explore 
different Hamiltonian functions, including those that are left-invariant. Given that 
a Hamiltonian function is any smooth function on the cotangent bundle T*G, there 
are numerous options to consider, and our examples merely scratched the surface of 
the possibilities. By investigating a broader range of Hamiltonian functions, we can 
gain deeper insights into the behavior and dynamics of left-invariant systems on Lie 
groups. 

While the JavaScript scripts serve their purpose effectively, in hindsight, opt
ing for the Python library Clifford ([17]) might have been a more favorable choice. 
Python is widely regarded as a more intuitive programming language, and the Clif
ford package itself is extensively documented, providing comprehensive resources for 
even beginners in code development and science researches. 
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Figures 
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Fig. 5.1: Rotation around one axis in 2D 
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Fig. 5.2: Rotation around one axis in 3D 

Fig. 5.3: Rotation around all axes 
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Fig. 5.4: Translation in one direction in 2D 

Fig. 5.5: Translation in one direction in 3D 

Fig. 5.6: Translation in all directions in 2D 
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Fig. 5.8: Full motion in 2D 
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(a) Torque in 2D space 

(b) Torque in 3D space 

Fig. 5.11: Body frame torques 
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(a) Force and torque in 2D space 

t = ? s . 

it-— 1 

(b) Force and torque in 3D space 

Fig. 5.12: Body frame forces and torques 
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Fig. 5.13: Free rigid body motion in SO(4,1) 
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Fig. 5.14: Shrinking of soft body 
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£ in time 
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Fig. 5.17: Velocities of free rigid body motion 

f in time 
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Fig. 5.18: Velocities during shrinking motion 
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£ in time 
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Fig. 5.19: Velocities during expansion 
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time 

Fig. 5.20: Forces acting upon soft body 
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