
PALACKÝ UNIVERSITY IN OLOMOUC
FACULTY OF SCIENCE

DISSERTATION THESIS

Economic applications of statistical analysis of
compositional data

Department of Mathematical Analysis and Applications of Mathemat-
ics
Supervisor: Doc. RNDr. Karel Hron, Ph.D.
Author: Mgr. Klára Hrůzová
Study program: P1104 Applied Mathematics
Field of study: Applied Mathematics
Form of study: full-time
The year of submission: 2016



BIBLIOGRAFICKÁ IDENTIFIKACE

Autor: Mgr. Klára Hrůzová

Název práce: Ekonomické aplikace statistické analýzy kompozičních dat

Typ práce: Dizertační práce

Pracoviště: Katedra matematické analýzy a aplikací matematiky

Vedoucí práce: Doc. RNDr. Karel Hron, Ph.D.

Rok obhajoby práce: 2016

Abstrakt: Logratio analýza kompozičních dat, mnohorozměrných pozorování
nesoucích relativní informaci, je již hojně využívána v přírodních vědních disci-
plínách, jako je geologie nebo chemie, avšak ve vědách společenských - ekonomie,
psychologie a další, ještě není příliš známá. Tato práce se zabývá adaptací
známých statistických metod pro kompoziční data s ekonomickými aplikacemi.
Ukazuje se, že pokud se bere v úvahu relativní charakter dat, modely poskytují
relevantní výsledky. Práce obsahuje kromě metod pro redukci dimenze (metoda
hlavních komponent, PARAFAC) zejména regresní analýzu, která je v ekonomic-
kých aplikacích velmi oblíbená. V jejím rámci se pak zabývá zejména situací, kdy
je kompoziční závisle i nezávisle proměnná, speciálně když regresi uvažujeme mezi
složkami kompozice. V takovém případě je potřeba použít pro odhady parametrů
ortogonální regresi, což je typ regrese s chybami v proměnných, namísto obvyklé
metody nejmenších čtverců. Nakonec práce popisuje funkcionální obdodu metody
hlavních komponent, která je aplikována na hustoty, neboli funkcionální kompo-
zice.

Klíčová slova: kompoziční data; metoda hlavních komponent; regresní analýza;
ortogonální regrese; funkcionální data; hustoty

Počet stran: 99

Počet příloh: 0

Jazyk: anglický

2



BIBLIOGRAPHICAL IDENTIFICATION

Author: Mgr. Klára Hrůzová

Title: Economic applications of statistical analysis of compositional data

Type of thesis: Dissertation thesis

Department: Department of Mathematical Analysis and Applications of Math-
ematics

Supervisor: Doc. RNDr. Karel Hron, Ph.D.

The year of presentation: 2016

Abstract: Logratio analysis of compositional data, multivariate observations
carrying relative information, is nowadays widely used in nature sciences, such
as geology or chemistry, however, it is not widespread in social sciences like econ-
omy, psychology, etc. The thesis deals with adaptations of known statistical
methods for compositional data with economic applications. It reveals that by
taking the relative nature of data into account the models provide relevant re-
sults. Besides the dimension reduction methods (principal component analysis,
PARAFAC), the thesis particularly includes the regression analysis which is very
popular in economic applications. Within regression analysis, the thesis mainly
deals with the situation where both the dependent and independent variables are
compositional, especially when the regression between the parts of a composition
is considered. In such a case, orthogonal regression, a kind of errors-in-variable
models, needs to be applied for parameter estimation instead of ordinary least
squares method. Finally, functional analogy to principal component analysis is
applied for the density functions, i.e. functional compositions.

Key words: compositional data; principal component analysis; linear regression;
orthogonal regression; functional data; density functions

Number of pages: 99

Number of appendices: 0

Language: English

3



Statement of originality

I hereby declare that this dissertation thesis has been completed indepen-
dently, under the supervision of Doc. RNDr. Karel Hron, Ph.D. All the materi-
als and resources are cited with regard to the scientific ethics, copyrights and the
laws protecting intellectual property. This thesis or its parts were not submitted
to obtain any other or the same academic title.

In Olomouc, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

signature

4



Contents

Introduction 8

1 Compositional data 11
1.1 Aitchison geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Coordinate representation . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Dimension reduction methods 19
2.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . 19
2.2 Compositional biplot . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Covariance structure of principal components for three-part com-

positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Variance structure of principal components . . . . . . . . . 23
2.3.2 Gross value added in Germany . . . . . . . . . . . . . . . 27

2.4 Parallel factor analysis (PARAFAC) . . . . . . . . . . . . . . . . . 30
2.5 Compositional analysis of trade flows structure . . . . . . . . . . . 31

2.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.2 Statistical analysis . . . . . . . . . . . . . . . . . . . . . . 33

3 Regression analysis 38
3.1 Linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Introduction to robust regression . . . . . . . . . . . . . . . . . . 39
3.3 Regression analysis with compositional response . . . . . . . . . . 42
3.4 Regression analysis with compositional covariates . . . . . . . . . 45
3.5 Regression analysis with compositional response and explanatory

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Regression within a composition . . . . . . . . . . . . . . . . . . . 51

3.6.1 Orthogonal regression . . . . . . . . . . . . . . . . . . . . 53
3.6.2 Nonparametric bootstrap sampling . . . . . . . . . . . . . 56
3.6.3 Robust orthogonal regression . . . . . . . . . . . . . . . . 57
3.6.4 Fast and robust bootstrap . . . . . . . . . . . . . . . . . . 58
3.6.5 Activities of gross value added . . . . . . . . . . . . . . . . 60

5



4 Functional principal component analysis for density functions 67
4.1 Functional data analysis . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Summary statistics . . . . . . . . . . . . . . . . . . . . . . 69
4.1.2 Smoothing functions . . . . . . . . . . . . . . . . . . . . . 69
4.1.3 Density functions . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Principal component analysis for functional data . . . . . . . . . . 76
4.3 Simplicial functional principal component

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Analysis of salary distributions in Austria . . . . . . . . . . . . . 81

Conclusions 88

References 91

6



Acknowledgement

I would like to thank my supervisor Doc. RNDr. Karel Hron, Ph.D. for
helpfulness, guidance and patience during the preparation of the scientific papers
and this thesis. I would also like to thank RNDr. Jitka Machalová, Ph.D. for
computing the B-spline coefficients for the final chapter. And, of course, I want to
thank my parents for their support, enthusiasm and patience during the studies.

7



Introduction

Compositional data (or compositions for short) are known as column vectors

with positive components that carry relative information, in other words, the

only relevant information is contained in ratios between components [1]. Mostly,

compositions sum to a constant, like 1 in case of proportions or 100 for per-

centages, however, it is just a proper representation in the equivalence class of

proportional vectors, forming the sample space of compositional data. Accord-

ingly, possible choice of constant sum constraint should not influence results of

statistical analysis due to scale invariance property of compositions [87, 89].

The standard Euclidean geometry defined in real space is not appropriate

for compositional data. It is caused by relative character of compositions, since

Euclidean geometry deals with absolute values of components [89]. Hence, the

Aitchison geometry with Euclidean vector space properties was developed which

captures the relative nature of compositions [6, 88].

Nevertheless, almost all statistical methods rely on the Euclidean geometry

in real space [21]. Accordingly, it is not appropriate to apply them directly to

compositions. Instead, the logratio methodology [1, 28, 89] is used to express

compositional data in real space using appropriate coordinates and, if necessary,

to transform the results back to the original sample space [80, 87]. It is of

particular importance to choose such coordinates that lead to interpretable and

meaningful results.

The analysis of compositional data is nowadays popular in fields such as geol-

ogy or chemometrics [12, 87], however, in social sciences like economy, psychology

or sociology, compositional data are not widespread yet. Up to rare applications
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of the logratio methodology in economics [5, 43], despite of compositional nature

of data [7, 19, 107], the analysis does not reflect this fact. Therefore, this thesis

is aimed to present popular statistical tools adapted to compositional data and

applied to economic data.

The thesis is divided into four chapters. The first chapter introduces the

compositional data analysis - the main definitions, geometry, coordinate repre-

sentation and descriptive statistics. The second chapter is focused on dimension

reduction methods, namely principal component analysis together with construc-

tion and interpretation of the compositional biplot, and PARAFAC method for

analysis of three-way compositional data are employed. In the first part of this

chapter, the variance structure of three-part composition is construed in order to

provide better insight into principal components [55]. Moreover, the chapter also

contains an application of dimension reduction methods in analysis of trade flows

structure [56]. The third chapter is aimed to linear regression in both classical

and robust versions. Four possible cases are contained. The first two sections,

where regression with compositional response [23] and compositional covariates

[52], respectively, is described, are introduced as a basis for other sections. The

third section contains a simple regression model for the case, when both the re-

sponse and explanatory variables are compositional, and the main part of this

chapter, the fourth section, is intended to regreesion between compositional parts

[57]. Here the orthogonal regression with statistical inferences obtained by boot-

strap sampling is applied together with the robust counterpart. The final chapter

focuses on functional data analysis, particularly on functional principal compo-

nent analysis (FPCA) applied on density functions, i.e. functional compositions

[53]. A brief introduction to functional data analysis with B-spline representation

of functions and description of density functions forms the first section. Conse-

quently, FPCA and simplicial FPCA are described and applied to data containing

salary distributions in regions of Austria.

This dissertation thesis is based on the following papers that were published,

accepted or submitted during my Ph.D. study:
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Chapter 1

Compositional data

Compositional data [1, 89] are strictly positive multivariate observations that

carry only relative information. By the relative information it is meant that

absolute values are no longer important for the analysis, instead, ratios between

parts of a composition capture the only relevant information. The sample space of

representations of compositional data within the equivalence class of proportional

vectors is the simplex [1, 87, 89], which is defined as a set of strictly positive real

numbers that sum up to a constant,

SD =

{
x = (x1, . . . , xD)′|xi > 0, i = 1, . . . , D;

D∑
i=1

xi = κ

}
, (1.1)

where κ is any positive real number, e.g. 1 in case of proportions or 100 for

percentages.

A composition is not necessarily characterized by a constant sum of its compo-

nents, e.g. every country has different gross domestic product (when its relative

structure is of interest), different population or an area, however, it is possible to

scale the data using the closure operation defined as

C(x) =

(
κ · x1∑D
i=1 xi

, . . . ,
κ · xD∑D
i=1 xi

)′
. (1.2)

Note that the relative information between components remains unchanged, this

is a consequence of scale invariance - crucial property of compositional data de-

scribed bellow.
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Since this work is focused on economic data, the basic difference between real

and compositional data will be shown on a simple example of household expen-

ditures. Every family disposes with the family budget which is distributed into

a few basic expenditure categories, e.g. housing, bank payments, food, clothes,

health, savings, etc. . The absolute values of such expenditures are different

between families and thus they are not informative if the relative structure of

expenditures is of main interest. In such a case, by expressing the expenditures

in percentages, the comparison becomes more meaningful. Another feature is the

relative scale of compositions. Suppose that housing expenditures increased from

500 EUR to 600 EUR and the savings from 100 EUR to 200 EUR. The difference

from the Euclidean (standard) perspective is the same - 100 EUR, but taking

ratios of these values into account the change in the first case is 1.2 times while

in the second case it is twice as much.

Properties of compositional data can be formalized by principles of composi-

tional data analysis [22, 89]. Among them, scale invariance property and sub-

compositional coherence seem to be the most important when analyzing composi-

tional data. The first one means that the information conveyed by a composition

does not depend on the units in which a composition is measured, i.e. charac-

teristics of compositions should be invariant under a change of scale. According

to the second one, the information contained in a composition of D parts should

not be in a conflict with that coming from a subcomposition containing d parts,

where d ≤ D. The last principle is called permutation invariance - reordering

parts of a composition does not affect the included information. Specific nature

of compositional data as described above is captured by the Aitchison geometry

on the simplex [87, 89].

1.1. Aitchison geometry

The Aitchison geometry with Euclidean vector space structure follows closely

the above stated principles of compositional data analysis [87]. Basic operations

substituting sum of two real vectors and multiplication of a vector by a scalar
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are called perturbation and power transformation, respectively. Their definition

for x ∈ SD, y ∈ SD and α ∈ R follows,

x⊕ y = C(x1 · y1, . . . , xD · yD)′, α� x = C(xα1 , . . . , xαD)′.

The triple (SD,⊕,�) forms vector space structure [89]. It means that operations

of perturbation and power transformation follow the same properties as sum and

scalar multiplication in the Euclidean geometry:

1. commutative property: x⊕ y = y ⊕ x;

2. associative property: (x⊕ y)⊕ z = x⊕ (y⊕ z); α� (β � x) = (α · β)� x;

3. distributive property 1: α� (x⊕ y) = (α� x)⊕ (α� y);

4. distributive property 2: (α + β)� x = (α� x)⊕ (β � x);

5. neutral element: n = C(1, . . . , 1)′; 1� x = x; where n is the barycenter of

the simplex, note that neutral element is unique;

To obtain Euclidean vector space, inner product and the corresponding norm

and distance are defined as well:

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
, ‖x‖a =

√
〈x,x〉a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj

)2

,

da(x,y) = ‖x⊕ (−1)� y‖a = ‖x	 y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj
− ln

yi
yj

)2

.

Note that x	 y is also called perturbation-subtraction of compositions x and y.

1.2. Coordinate representation

Since almost all standard statistical methods are defined in real space, it is

not appropriate to apply them directly to compositions. In order to perform
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statistical processing using standard multivariate tools, it is necessary to express

compositions first in proper real coordinates [89].

A challenging question is how to define coordinates. Any real vector, x ∈ RD,

can be expressed using coordinates of the canonical basis,

x = x1(1, 0, . . . , 0)′ + x2(0, 1, 0, . . . , 0)′ + · · ·+ xD(0, . . . , 0, 1)′ =
D∑
i=1

xiei.

The main problem here is that the basis ei does not respect the vector space

structure of SD. To find an appropriate orthonormal basis, which seems to

be preferable from the geometrical perspective, we can firstly find a generat-

ing system with respect to the Aitchison geometry. Taking wi = C(exp ei) =

C(1, 1, . . . , e, . . . , 1)′, i = 1, . . . , D, where e is placed in the i-th place, we can

express a composition x ∈ SD as

x =
D⊕
i=1

lnxi ⊕wi = lnx1 � (e, 1, . . . , 1)′ ⊕ · · · ⊕ lnxD � (1, . . . , 1, e)′.

Due to fact that coefficients with respect to generating system are not unique,

we can use the following expression

x =
D⊕
i=1

ln
xi
g(x)

�wi,

where g(x) =
(∏D

i=1 xi

)1/D

= exp
(

1
D

∑D
i=1 lnxi

)
is the geometric mean of a

composition. These coefficients are known as centred logratio (clr) coordinates

that are defined as

clr(x) =

(
ln

x1

g(x)
, . . . , ln

xD
g(x)

)′
. (1.3)

Although the clr coordinates are symmetric in the components, the sum of the

coefficients is zero and this leads to singular covariance matrix. Nevertheless, they

are still used in the practice because they translate operations and metrics from
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the simplex endowed with the Aitchison geometry into real space. Particularly,

for compositions x,y ∈ SD and real constants α, β it holds that

clr(α� x⊕ β � y) = α · clr(x) + α · clr(y);

〈x,y〉a = 〈clr(x), clr(y)〉 ;

‖x‖a = ‖clr(x)‖ ; da(x,y) = d(clr(x), clr(y)).

Since the Aitchison geometry has dimension one less than the number of

components (D − 1), the clr coefficients are not coordinates with respect to a

basis of the simplex. At the early stage of the logratio methodology, the additive

logratio (alr) coordinates [1] were used as well. In this case, each part of the

composition is divided by one chosen part, e.g. the last part xD, to obtain the

respective logratio. This leads to a vector of alr coordinates which is of dimension

D − 1:

alr(x) =

(
ln
x1

xD
, . . . , ln

xD−1

xD

)′
.

It is obvious that alr coordinates are not symmetrical in the components and,

unlike clr coordinates, they do not preserve distances. Thus they can be used only

for modeling purposes. The reason is that alr coordinates do not correspond to

an orthonormal basis of the simplex. To find them, the Gram-Schmidt procedure

can be used.

In general suppose ei, i = 1, . . . , D− 1, form an orthonormal basis of SD and

ψ is the (D − 1, D)-matrix whose rows are clr(ei). Orthonormal basis satisfies

condition that 〈ei, ej〉a = 1 for i = j and zero otherwise. This implies that

ψψ′ = ID−1, where ID−1 is the identity matrix of dimension D − 1.

With a particular choice of the orthonormal basis, the composition x ∈ SD

can be written as

x =
D−1⊕
i=1

x∗i � ei, x
∗
i = 〈x, ei〉a ,

where x∗ = (x∗1, . . . , x
∗
D−1)′ is the vector of coordinates of x with respect to this

basis. The resulting coordinates are called isometric logratio (ilr) coordinates
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[28]. The corresponding mapping is isometric isomorphism between SD and RD−1

and thus it preserves distances and translates operations similarly as for the clr

coordinates.

Now we introduce ilr coordinates that are used in this work [52, 57]. A set of D

orthonormal coordinate systems is considered, namely z(l) = (z
(l)
1 , . . . , z

(l)
D−1)′, l =

1, . . . , D,

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (1.4)

Here (x
(l)
1 , x

(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′ stands for such a permutation of the parts

(x1, . . . , xD)′, that always the l-th compositional part fills the first position,

(xl, x1, . . . , xl−1, xl+1, . . . , xD)′. In such a configuration first ilr variable z(l)
1 ex-

plains all the relative information (logratios) about the original compositional

part xl (it is nothing else than a scaled aggregation of all logratios with xl), the

coordinates z(l)
2 , . . . , z

(l)
D−1 then explain the remaining logratios in the composition

[39]. Note that the only important position is that of x(l)
1 (that is interpretable

through z
(l)
1 ), the other parts can be chosen arbitrarily because different ilr co-

ordinates are orthogonal rotations of each other [28]. Of course, z(l)
1 cannot be

identified with compositional part xl, as the other parts are also naturally in-

volved through the corresponding logratios. Its interpretation is thus limited due

to the specific structure of the Aitchison geometry. We can also see that this

coordinate is formed by a logratio between the part xl and an “average part”,

resulting from the geometric mean of the remaining parts in the composition.

Therefore, values of z(l)
1 represent a measure of dominance of the part xl with

respect to the other parts.

The simplest case is when a two-part composition x = (x, κ−x)′ is considered.

This type is used for the univariate data expressed in percentages or parts of a

whole. The constant κ stands either for the unit constraint (in case of proportions,

κ = 1) or, generally, for a chosen positive number, and represents just a proper

scale representation of compositions. For further details concerning the particular
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case of two-part compositions, see, e.g., [36, 54]. The ilr coordinate is then defined

as

x∗ =
1√
2

ln
x

κ− x
. (1.5)

It is easy to see that this coordinate is proportional to well-known logit transfor-

mation.

1.3. Descriptive statistics

To explore the basic characteristics of any dataset, the standard descriptive

statistics are used. However, they are not appropriate for compositional data

since they do not follow the Aitchison geometry. Instead of the arithmetic mean

and variance (covariance matrix), new measures called center, variation matrix

and total variance were introduced [89].

Center is a measure of central tendency for compositional dataset, Xn×D, with

compositions xi = (xi1, . . . , xiD)′ for i = 1, . . . , n in its rows. It is defined as

cen(X) = C(g1, . . . , gD)′, (1.6)

where gi =
(∏n

j=1 xij

)1/n

, i = 1, . . . , D is the geometric mean. The (closed)

center corresponds to barycenter of the simplex.

The dispersion is described by the variation matrix,

T =


t11 t12 . . . t1D
t21 t22 . . . t2D
...

...
. . .

...
tD1 tD2 . . . tDD

 , tij = var

(
ln
xi
xj

)
. (1.7)

It is obvious that the main diagonal is formed by zeros since tii = var
(

ln xi
xi

)
= 0.

From tij, i, j = 1, . . . , D we can conclude about proportionality of xi and xj. If

tij is zero, or nearly so, then xi and xj are proportional, or nearly so.

To measure the global dispersion, the total variance is given by

totvar(X) =
1

2D

D∑
i=1

D∑
j=1

tij. (1.8)
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It summarises elements of the variation matrix and can also be computed using

clr and ilr coordinates. For more, see the Section 2.3.
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Chapter 2

Dimension reduction methods

In economic world, one can be interested in analyzing the multivariate struc-

ture of a dataset. One of the most popular methods for this purpose is principal

component analysis. It leads to dimension reduction based on linear combina-

tion of the original data which depletes most of the variability. The results can

then be displayed in biplot [45] which is a scatterplot of the first two principal

components where scores are displayed as points and loadings as rays.

In what follows, we briefly describe the basic idea of principal component

analysis and the construction and interpretation of compositional biplot. Next,

the covariance structure of principal components for three-part composition to-

gether with an illustrative example is considered. For dimension reduction of

three-way compositional data, we also briefly introduce parallel factor analysis

and finally, all the mentioned methods are applied to real-world data on trade

flows structure.

2.1. Principal component analysis

Given the mean-centered real data matrix X(n×D), principal components (PCs)

are defined as linear combinations of original data such as U = XB, where U(n×D)

is the score matrix, whose columns (u1, . . . ,uD) are called principal components,

and matrix B(D×D) is the loading matrix [50]. For the first PC (u1 = b1x1)

we require maximal variance which is achieved by determining the vector b1
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with the condition ‖b1‖ = 1 [58]. The vector b2 is also determined by the re-

quirement of maximum variance of the second PC, in addition ‖b2‖ = 1 and

b′1b2 = 0. Generally, j-th PC is defined as uj = bjxj for 2 < j ≤ D, where

bj is chosen to maximize the variance of uj under the conditions ‖bj‖ = 1 and

b′jbk = 0 for 1 ≤ k < j. Thus the loading vectors are normalised and orthogonal

to each other (the orthogonality condition holds also for the principal compo-

nents) [61].

The question is how we can obtain such matrix B which fulfills these condi-

tions. There are several options but one of the most popular is the eigenvalue

decomposition of the covariance matrix [61]. Let’s denote the covariance matrix

of X by Σ. It can be decomposed as follows,

Σ = BΛB′ =
D∑
i=1

λibib
′
i,

where Λ = Diag{λ1, . . . , λD}, λ1 ≥ λ2 ≥ · · · ≥ λD ≥ 0 are the eigenvalues of Σ

and B = (b1, . . . ,bD) is the matrix of the orthonormal eigenvectors that form

the loading vectors in PCA. An alternative approach to PCA is developed in the

next section.

2.2. Compositional biplot

Since we are interested in relative structure of data at hand, compositional

biplot [2, 70] seems to be their appropriate graphical display, if dimension re-

duction is an inherent requirement. Below we explain how it is constructed and

interpreted. Suppose we have a compositional data matrix Xn×D. As principal

components are applied to centered data, it is necessary to center the data ma-

trix first using perturbation as xi ⊕ cen−1(X) = xi 	 cen(X) for i = 1, . . . , n.

This operation shifts the center of the data into neutral element n (we also refer

to centering in the Aitchison sense). Next step is to express the dataset in clr

coordinates, Z = clr(X) [89]. Since the clr coordinates preserve distances, we can
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apply standard singular value decomposition such as

Z = LKM′,

where L and M are the orthonormal matrices of eigenvectors of ZZ′ and Z′Z,

respectively. The matrix K = Diag(k1, . . . , ks), where ki =
√
λi are singular

values that are square roots of the s positive eigenvalues of either ZZ′ or Z′Z.

Biplot is usually formed using the first two principal components, in our case we

take the first two singular values and corresponding eigenvectors. Then Z has to

be written as a product of two matrices GH′, where Gn×2 and HD×2. The biplot

is just a representation of vectors gi, rows of G, and hj, rows of H, in a plane.

The vectors gi are termed row markers of Z and correspond to projections of the

n samples on the plane defined by the first two eigenvectors of ZZ′. Vectors hj

are called column markers and correspond to projections of D clr-coefficients on

the plane defined by the first two eigenvetors of Z′Z.

Due to construction of the biplot in clr coordinates, it is necessary to adapt

its interpretation accordingly [70, 89]. The basic terms are ray, which joins the

origin to a vertex hj, and link, which joins two vertices hj and hk. Links and

rays provide information about the relative variability in a compositional dataset:

length of a link between hj and hk approximates standard deviation of the logratio

between j-th and k-th compositional parts and length of a ray approximates

standard deviation of the respective clr coefficient. Consequently, if the vertices

coincide, then the variance of corresponding logratio is approximately zero and

this means that the corresponding two parts are proportional. Links also provide

information about correlation of two pairwise logratios: suppose two links jk and

il intersect in M , then

cos(jMi) ≈ corr

(
ln
xj
xk
, ln

xi
xl

)
.
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2.3. Covariance structure of principal components
for three-part compositions

Special attention deserve three-part compositions, x = (x1, x2, x3)′, due to

the possibility of representing them graphically in ternary diagram. Ternary

diagram [89] is an equilateral triangle consisting of vertices X1, X2 and X3, where

a composition x is plotted at a distance x1 from the opposite side of vertex X1,

at a distance x2 from the opposite side of vertex X2 and at a distance x3 from

the opposite side of X3.

There are three possible choices of the ilr coordinates according to (1.4) (up to

orientation of coordinates), that differ only in permutation of the parts x1, x2, x3,

z11 =

√
2√
3

ln
x1√
x2x3

, z12 =
1√
2

ln
x2

x3

, (2.1)

z21 =

√
2√
3

ln
x2√
x1x3

, z22 =
1√
2

ln
x1

x3

, (2.2)

z31 =

√
2√
3

ln
x3√
x1x2

, z32 =
1√
2

ln
x1

x2

. (2.3)

The interpretation of orthonormal coordinates can be obtained from their

covariance structure, expressed using variances of log-ratios [39, 40]. In case of

(2.1), the variances of z11 and z12 are given by

var(z11) =
1

3
var

(
ln

x1

x2

)
+

1

3
var

(
ln

x1

x3

)
− 1

6
var

(
ln

x2

x3

)
, var(z12) =

1

2
var

(
ln

x2

x3

)
.

(2.4)

Thus the first coordinate captures all the relative information about the

first compositional part (expressed by log-ratios between x1, x2 and x1, x3, re-

spectively). The second coordinate stands for the remaining log-ratio between

x2, x3. The variance of z11 consists of variances of the first two mentioned log-

ratios including x1 in the nominator and it is reduced by the variance of log-

ratio of remaining two compositional parts. This is a consequence of the fact

22



that each ilr variable forms a log-contrast, i.e. term of the form h′ ln x, where

h′1 = h1 + h2 + h3 = 0. Furthermore, the total variance, which represents the

sum of variances of both coordinates, results in

totvar(x) = var(z11) + var(z12) =
1

3

[
var

(
ln

x1

x2

)
+ var

(
ln

x1

x3

)
+ var

(
ln

x2

x3

)]
.

(2.5)

Analogous relations would be obtained also for (2.2) and (2.3) by permutation

of parts of the original composition.

The main goal of this section is to analyze the variance structure of the well-

known principal components as a popular tool for dimension reduction and its

impact to interpretation of these orthonormal coordinates [55]. Note that prin-

cipal components are obtained from such rotation of the original variables which

maximizes variance of the resulting coordinates. Although in case of standard

real data the covariance structure of principal components can be also expressed

using elements of the original covariance matrix [59], we will follow an alternative

way of its derivation that enables a deeper insight into covariance structure of

three-part compositional data.

2.3.1. Variance structure of principal components

At the beginning of this part we introduce a general constrained problem of

finding stationary values [48] that will be used consequently to derive the main

theorem concerning covariance structure of principal components for three-part

compositional data, denoted in the following as z∗1 , z
∗
2 . Taking the main idea

of principal component analysis into account, we search for maximal difference

between variances of both variables.

Let A be a real symmetric matrix of order D and c a given real vector that

fulfills the condition c′c = 1. The goal is to find the stationary values of h′Ah,

taking constraints h′h = 1, c′h = 0 into account. Denote

ϕ(h, ν, µ) = h′Ah− ν(h′h− 1) + 2µh′c, (2.6)

where ν, µ are Lagrange multipliers. Differentiating (2.6) with respect to h leads
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to

Ah− νh + µc = 0. (2.7)

Multiplying (2.7) from left by c′ and using the condition c′c = 1, we have

µ = −c′Ah. (2.8)

Then substituting (2.8) into (2.7) we obtain

PAh = νh, (2.9)

where P = I− cc′. Although P and A are symmetric, PA is not necessarily so.

Note that P2 = P, so that P is a projection matrix.

It is well-known that for two arbitrary square matrices E and F, the eigen-

values of EF equal the eigenvalues of FE. Thus we can write

λ(PA) = λ(P2A) = λ(PAP),

where λ corresponds to any (fixed) eigenvalue of the matrix in brackets.

The matrix PAP is symmetric and hence one can use the standard algorithms

for finding its eigenvalues. Then if we denote K = PAP and if Kzi = λizi, it

follows that hi = Pzi, where hi is the eigenvector which satisfies (2.9) and also

the initial problem. At least one eigenvalue of K will be equal to zero, and c will

be an eigenvector associated with a zero eigenvalue.

The following lemma (see [1, p. 93]) establishes a relation between log-

contrasts, corresponding to orthonormal coordinates and their covariance struc-

ture.

Lemma 1. Variances and covariances for log-contrasts h′1 ln x and h′2 ln x of a

D-part composition x are

var(h′1 ln x) = −1

2
h′1Th1, var(h′2 ln x) = −1

2
h′2Th2, (2.10)

cov(h′1 ln x,h′2 ln x) = −1

2
h′1Th2, (2.11)
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where T is the variation matrix defined by

T =

{
var

(
ln
xi
xj

)}D
i,j=1

.

Theorem 2. The covariance structure of principal components (orthonormal

coordinates) z∗1 , z
∗
2 for three-part composition x = (x1, x2, x3)′ can be expressed

as

var(z∗1) =
a+ b+ c

6
+

√
(a− b)2 + (b− c)2 + (c− a)2

3
√

2
,

var(z∗2) =
a+ b+ c

6
−
√

(a− b)2 + (b− c)2 + (c− a)2

3
√

2
, (2.12)

where a, b, c correspond to var
(

ln x1
x2

)
, var

(
ln x1

x3

)
, var

(
ln x2

x3

)
, respectively.

Proof. Taking properties of the variation matrix into account [1], the general

problem of finding stationary values can be replaced by maximizing h′Th with

respect to constraints h′c = 0, h′h = 1. Here c = 1√
3
(1, 1, 1)′ and

T = −1

2

 0 a b
a 0 c
b c 0

 .

Consequently, by solving the equation Kh = λh (K = PTP, P = I − c′c), the

resulting non-zero eigenvalues correspond to variances of principal components

and eigenvectors to their log-contrasts.

Note that in context of compositional data analysis, the matrix K represents

covariance matrix of clr coordinates of compositions [1]. It is easy to see that prin-

cipal components and their variances, resulting as log-contrasts of eigenvectors

and (non-zero) eigenvalues of the clr covariance matrix, respectively, correspond
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to those coming from ilr coordinates [34]. Log-contrasts, corresponding to coor-

dinates z∗1 , z
∗
2 , thus can be expressed as

h1 =

(
− a− c+ S

2(b− c)
√
S2 + (a− c)(a− b)S

,
a− b+ S

2(b− c)
√
S2 + (a− c)(a− b)S

,
1

2
√
S2 + (a− c)(a− b)S

)′

and

h2 =

(
− a− c− S

2(b− c)
√
S2 − (a− c)(a− b)S

,
a− b− S

2(b− c)
√
S2 − (a− c)(a− b)S

,
1

2
√
S2 − (a− c)(a− b)S

)′

,

respectively, where S =
√

1
2
[(a− b)2 + (b− c)2 + (c− a)2]. Because z∗1 , z

∗
2 are

orthonormal coordinates, h1, h2 are standard and orthogonal log-contrasts, i.e.

h′1h1 = h′2h2 = 1, h′1h2 = 0 (see [1, p. 85] for details). The latter property as

well as zero covariance between z∗1 and z∗2 results from construction of principal

components [50].

Note that big differences between variances of logratios contribute for maxi-

mization of the first principal component at the expense of the second one. This

is obvious from the second part of (2.12) - in variance of z∗1 we add square root

of the sum of squared differences of these variances while in var(z∗2) we subtract

it. Furthermore, it is not necessary to consider the covariance because princi-

pal components are uncorrelated [50]. Obviously, the interpretation of principal

components seems to be not straightforward even with the above decomposition

of the covariance structure using variance of log-ratios of compositional parts. It

will strongly depend on the analyzed problem. On the other hand, some features

of variances of these coordinates are now easily detectable. As already mentioned,

the first part of both variances is formed by half of the total variance. Particu-

larly, for higher difference between variances of both principal components high

differences between variances of logratios are crucial (see the term contained in

the square root).
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2.3.2. Gross value added in Germany

The theory described above will be shown on an example of gross value added

(GVA) in German regions (recent data are available from the year 2009), see [71]

for details.

GVA is a measure of the value of goods and services produced in an area,

industry or sector of an economy. It represents the output minus intermediate

consumption and it is linked to gross domestic product (GDP) in the following

sense:

GVA + taxes on products − subsidies on products = GDP.

GVA is used mainly for measuring gross regional domestic product and other

measures of the output of entities smaller than the whole economy.

The analyzed dataset consists of the gross value added structure (2009) [71]

which is divided into agriculture, production and services of 411 German regions.

The values are expressed in percentages, thus we have three-part composition

represented with a constant sum constraint 100%.

The three-part compositions can be displayed in ternary diagram. As we can

see in Figure 2.1 (left) the data are clustered on the side between Production

and Services; this means that the Agriculture part contains mostly small positive

values. For better visualization we centered the compositions (in the Aitchison

sense) and result is plotted in Figure 2.1 (right).

In the next step the ilr coordinates are constructed according to (2.1)–(2.3).

Their scatterplots together with the scatterplot of the first two principal com-

ponents of the ilr coordinate z1 = (z11, z12)′ are displayed in Figure 2.2. Note

that these coordinates are rotations of each other. The upper left plot corre-

sponds to coordinates resulting from (2.1). We can observe that the main data

cloud contains higher negative values of z11 and rather negative values of z12.

It means that the third part (services), which is in the denominator of z12, is

dominating in the composition, followed by production and agriculture parts. It

is also easy to see that the first coordinate captures more variability of the data
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Figure 2.1: Ternary diagrams - non-centered (left) and centered (right) GVA
structure data together with the first and second principal components (red lines).

set which is confirmed by Table 1. From this figure we can also see that the

main data cloud in the other two coordinates systems is located in the second

and fourth quadrant. This means that ratios x1/x3 and x1/x2 are mostly below

zero. This confirms the fact that the part x1 contributes at least to the GVA

structure. Analogous interpretation can be derived also for the remaining two

coordinate systems. Consequently, it is not suprising that the scatterplot for

principal components is quite close just to coordinates (2.1).

Note that different colours distinguish the federal states of Germany in this

sense (that correspond to natural geographical regions):

• yellow for Mecklenburg-Vorpommern, Sachsen and Thüringen,

• orange for Sachsen-Anhalt and Brandenburg,

• violet for Berlin, Schleswig-Holstein, Hamburg and Bremen,

• blue for Niedersachsen, Nordrhein-Westfalen, Hessen and Bayern,

• green for Rheinland-Pfalz, Baden-Württemberg and Saarland.

From the variation matrix (2.13) is evident that the largest variability is con-

tained in logratio between the first and third variable and a bit smaller between
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Figure 2.2: GVA structure data, plots of orthonormal coordinates. The upper
left plot corresponds to formula (2.1), upper right plot to (2.2), lower left plot to
(2.3) and lower right plot to principal components.

first and second variable, while the smallest variance has logratio of the second

and third part. This was evident also in Figure 2.2.

T =

 0 1.153 1.206
1.153 0 0.225
1.206 0.225 0

 (2.13)

From the variation matrix (2.13) the variances of principal components using

(2.12) can be easily computed, var(z∗1) = 0.749, var(z∗2) = 0.112, where the first

part of both variance terms, half of the total variance totvar(x), equals 0.431.

Difference between both variances results from the sum of squared differences

between variances of log-ratios. Variances of log-ratios with x1 differ substantially

from variance of ln(x2/x3) that once more confirm the exceptional role of the
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i var(zi1) var(zi2)
1 0.749 0.112
2 0.258 0.603
3 0.285 0.576

Table 2.1: Variances of ilr coordinates.

services part for the overall variability of the compositional data set.

2.4. Parallel factor analysis (PARAFAC)

By adding another mode into the analysis, bilinear PCA is no longer appro-

priate. For example, time mode is frequently considered as well, i.e. the samples

are observed for given variables in several time slots. For dimension reduction of

such data (we refer also to three-way data), the PARAFAC or CANDECOMP

method (abbreviation comes from CANonical DECOMPosition) is preferred in-

stead of standard PCA. The input data are decomposed into trilinear components

where each component consists of one score vector and unlike PCA two loading

vectors; usually we refer simply to three loading vectors. A PARAFAC model of

three-way array [11] is given by three loading matrices A,B and C with elements

aif , bjf and ckf that minimize the sum of squares of the residuals eijk,

xijk =
F∑
f=1

aifbjfckf + eijk (2.14)

for i = 1, . . . , I, j = 1, . . . , J and k = 1, . . . , K.

The advantage of the PARAFAC model is the uniqueness of the solution,

when a proper number of components is chosen. The meaning of uniqueness

is that the estimated PARAFAC model cannot be rotated without a loss of fit.

In [72] have been shown that unique solutions can be expected, if the loading

vectors are linearly independent in two of the modes and in the third mode no

two loading vectors are linearly dependent. In [68, 69] it was proved that the

PARAFAC solution is unique iff rank(A) + rank(B) + rank(C) ≥ 2F + 2, where

F is the number of components.
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The solution of the PARAFAC model (estimations of matrices A,B and C)

can be found using the alternating least squares (ALS) method by assuming the

loading vectors of two modes known and then estimating the unknown set of

parameters of the last mode [11, 66]. Let’s consider the case of F = 1 first.

If an estimate of loading vectors b and c is given, a can be determined by the

least-squares solution to the model X = a(b⊗ c) + E, where X is unfolded array

of size I × JK (i.e. with respect to the first mode), (b⊗ c) is the tensor product

of the vectors b and c and E is a matrix of errors. We can denote the tensor

product (b⊗ c) by z (or Z in case of more components). Then we can define the

model as X = AZ+E. The conditional least squares estimate of A is then given

by A = XZ′(ZZ′)−1.

General ALS algorithm [67] can be written in the following way:

1. Choose the number of components, F ;

2. Initialize B and C;

3. Estimate A from unfolded X, B and C by least squares regression;

4. Estimate B and C likewise;

5. Continue from 3 until convergence.

Accordingly, A is I × F matrix containing the fth loading vector in its fth

column. The matrices B and C are defined in the same way. The ALS algorithm

is improving the fit of the model in each iteration. If the algorithm converges

to the global minimum, then the solution is found. Although the ALS method

enables to find a solution, it is time consuming, especially for large number of

variables.

2.5. Compositional analysis of trade flows struc-
ture

The aim of this section is to apply the above introduced PCA and PARAFAC

models to real-world dataset that contains structure of export and import in
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the end-use categories. The motivation comes from the initial question, how to

compare export and import of different countries. In the standard case one would

compute simply differences between components. However, each country has

different area, different size of population, different GDP and different structure

of the economy. This means that if we would just subtract import from export

values, the results could be completely misleading. The problem can be solved

using the perturbation-subtraction (Section 1.1, [3]), i.e. by taking the ratios of

export and import for every end-use category.

The motivation for this section comes from the fact that in today’s globalised

world, export and import play an important role in the country’s economic situa-

tion. Globalisation causes growth of international trade in goods and services and

two structural changes in trade patterns: the increasing importance of emerging

economies and rapid growth of trade in intermediate goods as a result of vertical

specialisation, meaning that each country is specialised in one or more innova-

tion and production processes and thus it is common for the value chain of a

particular final product to span several countries. Trade in intermediate goods

currently represents about 56 % of total global trade in goods [82] and therefore

we intend to explore trade flows breaking down by end-use categories to better

monitor international trade patterns.

2.5.1. Dataset

The dataset called The OECD STAN Bilateral Trade by Industry and End-

use [109] was first released in 2011 to highlight the increasing influence of export

and import of intermediate goods. The values of import and export of goods

are broken down by industrial sectors and, simultaneously, by end-use categories.

Estimates are expressed in nominal terms, in current US dollars, and are collected

from more than a hundred reporters and partners, including all 34 members of

OECD and a wide range of non-members. Note here for the purpose of standard

statistical analysis, without consider the relative nature of data, we would have

to convert the current US dollars into constant US dollars in order to consider
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time. However, we are dealing with compositional data which means that we

are working only with the ratios between the parts and thus multiplication by

any constant does not affect results of the analysis. Following this idea it is not

necessary to convert the currency prior to further statistical processing using the

logratio methodology.

Breaking down trade in goods according to their end-use [86] adds a new di-

mension to the traditional commodity-based trade statistics and provides a link

to National Accounts Input-Output Tables, in which flows of goods and services

are reported according to end-users. Using the basic kinds of domestic end-use

categories from the System of National Accounts and the detailed classification

systems of trade in goods, bilateral flows of exports and imports can be classified

into intermediate goods, household consumption goods and capital goods. How-

ever, some kinds of products can be either for intermediate demand and household

consumption, or for capital goods in industry and household consumption. Thus

it was introduced mixed end-use category which contains personal computers,

passenger cars, personal phones, packed medicines and precious goods. The last

category is miscellaneous which includes commodities that don’t belong to any

other categories. To keep the presented study simple we will not consider this

category for further calculations.

2.5.2. Statistical analysis

Patterns in the relative structure of export and import of goods cannot be

revealed by applying standard multivariate techniques to the raw data as the rel-

evant information is contained exclusively in ratios between the respective com-

ponents. Nevertheless, for the sake of comparison, principal component analysis

was applied both to the original data and to clr coordinates for the year 2012,

the most recent completed one in the database.

Obviously, when dealing with economies of different size of trade (with differ-

ent population, share of trade in economy), straightforward application of PCA

(see Figure 2.3) becomes useless. From these biplots it is hard to recognize any
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Figure 2.3: Biplots of export and import, applied to the original data.

structure in the dataset, it also seems that all variables are highly correlated.
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Figure 2.4: Compositional biplot of export (on the left), dendrogram of clr coor-
dinates of export (on the right).

In contrast, when relative contributions of the components, conveyed by clr

coordinates (here of end-use categories), are considered instead, PCA and biplot

diagrams are much easier interpretable (see Figure 2.4, left). The countries ex-

porting relatively more intermediate goods (Russia, Australia, Brazil), household

(Greece, Turkey, India), mixed end-use (middle Europe countries), capital goods

(Japan, Korea, Finland) can be well distinguished, no matter of their size. These

clusters are also evident from the dendrogram of export (Figure 2.4, right), where

the well-known hierarchical clustering with complete linkage [60] was applied on
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Figure 2.5: Compositional biplot of import (on the left) and dendrogram of clr
coordinates of import (on the right).

clr coordinates.
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Figure 2.6: Compositional biplot (on the left) and dendrogram (on the right) of
clr coordinates of differences between export and import.

Similarly, in Figure 2.5 on the left, the compositional biplot of import is dis-

played. It is evident that Asian countries such as Korea, Taiwan, India and China

import mainly intermediate and capital goods. On the other hand, mixed end-

use goods are imported into large countries, namely Russia, Australia, USA and

Canada. Middle Europe countries are spread around the origin and Cyprus im-

ports mostly the household consumption goods. This corresponds well to the gen-

eral perspective of international trade structure of that year [102]. The clusters of
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countries, recognized in the biplot, can be seen again also from the dendrogram

in clr coordinates.
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Figure 2.7: Results of the PARAFAC method for differences between exports and
imports, mode A (on the left) and mode B (on the right), using clr coordinates.
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Figure 2.8: Results of the PARAFAC method for differences between exports and
imports, mode C, using clr coordinates.

The perturbation operation can be now used to capture relative differences

between export and import structure through ratios between the respective com-

ponents. Consequently, large values of the (log-)ratios will indicate discrepancy

between both international flow aspects. From the respective link in Figure 2.6

it is visible that the variance of pairwise logratio between export/import ratios

of capital goods and mixed end-use goods, respectively, are very small. Thus the
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ratios between exports and imports of these end-use categories are very similar.

The cluster of China, India, Indonesia and Turkey lies near the household goods

variable, thus these countries have the largest difference between export and im-

port for this variable. Russia and Australia have largest difference between export

and import of intermediate goods, while Korea and Japan in capital goods.

In order to include also time variable and to get a complete picture about

the development in a larger time scale, also PARAFAC modeling was applied

to the perturbed data, i.e. to the ratio of export and import components (after

expressing them in clr coordinates) for years 2003–2012. Similar results as for

the previous figures were obtained that confirms a certain stability of the ex-

port/import structure comparing to the only year 2012, considered above. In

the mode A (Figure 2.7, left), corresponding to samples, cluster of China, India,

Turkey and Indonesia can be seen, as well as cluster of Japan and Korea. In

the middle of the plot there is a group of middle European countries and it also

seems that Russia differs significantly from the other countries. Mode B (Fig-

ure 2.7, right) confirms the result that components Capital and Mixed end-use

goods are very similar, when considering ratios of export and import for the years

2003–2012. And finally, mode C displayed in Figure 2.8 shows the development

in time, where a clear time pattern with a change point in 2008 is observed,

interpretable in terms of global integration. Accordingly, this loading plot well

reflects the global crisis in 2008–2009 that has temporarily brought the long-run

trend of rising global integration through trade to a halt.
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Chapter 3

Regression analysis

Linear regression is a very popular statistical tool in economic world. When

we are dealing with compositional data, four main cases might occur. In the

latter we are going to describe these cases together with appropriate examples.

This chapter is organized as follows - firstly we briefly remind basics of lin-

ear regression analysis and introduce the robust approach to regression model-

ing. The following sections describe approaches to regression with compositional

response, compositional covariates and a special case of regression model with

compositional response and covariates, respectively, together with economic ex-

amples. Note that the first two cases are introduced since they are necessary

for development of regression models described afterwards. The final section is

aimed to the case when the relation between parts of a composition is analyzed.

3.1. Linear regression

Firstly, we briefly remind the basics of linear regression. Linear regression

or linear model, is used to model the relationship between response, dependent,

variables and explanatory, independent, variables, also called covariates [50, 60].

The relation between the response and the explanatory variables is given in matrix

form as

y = Xβ + ε, (3.1)
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where yn×1 is the response vector, Xn×p is the matrix of covariates, βp×1 is a

vector of unknown parameters and εn×1 is the error term which is assumed to

have zero expectation and variance σ2I, where I denotes identity matrix of order

n. The parameters β = (β1, . . . , βp)
′ are estimated by the least squares method,

where sum of residuals is minimized,

Se = (y − ŷ)′(y − ŷ) = (y −Xb)′(y −Xb), (3.2)

b = (X′X)−1 X′Y being the least square estimate of β [83]. In many cases,

first column of explanatory matrix contains vector of ones, then we define the

parameter β0 which is called the intercept, or the absolute term, and the number

of parameters changes to p+ 1.

To compare how well the model fits the data at hand, the adjusted coefficient

of determination, R2
adj, is computed

R2
adj = 1− n− 1

n− p− 1

Se
ST
, (3.3)

where p is the number of parameters and ST = (y−y1)′(y−y1), y = 1/n
∑n

i=1 yi

is the total sum of squares [83] and 1 is an n × 1 vector of ones. When the

coefficient is close to one, the regression fits the data well.

Assuming normal distribution of the error term, we can test whether the

response depends on the ith column of covariates. Denote vij elements of the

matrix (X′X)−1 and s2 = Se

n−p−1
, then the test statistic for the hypothesis βi = β0

i

is

Ti =
bi − β0

i√
s2vii

∼ tn−p−1, (3.4)

where tn−p−1 denotes Student’s t-distribution with n− p− 1 degrees of freedom

[83].

3.2. Introduction to robust regression

All statistical methods are based on certain assumptions on the data that

are supposed to be analyzed. These assumptions improve the efficiency of the
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methods and can lead to nice mathematical properties of the results. Among

the basic assumptions is that all observations belong to the same distribution.

However, this property is not often fulfilled in practical situations which can lead

to inappropriate results. As a way out, robust methods were designed in order

to resist to irregular or outlying observations [42]. A raw approach for obtaining

a robust estimation is the identification of irregular observations [37, 42], e.g.

using Mahalanobis distances, in case of compositional data [33], their removal

and the subsequent application of standard statistical tools to the remaining

dataset. However, it is not always possible to find the outliers or to eliminate

them from the analysis. In this case the robust estimators are used. A well chosen

robust estimator will provide a reliable fit for the whole range spanned by the

data points without being influenced by deviating points. Most robust methods

can be described as classical methods where the data are weighted, with weights

depending on the data. The majority of the data will receive a uniform weight

while the more atypical individual cases are, the lower the weight they will get.

Every robust estimator should fulfill some properties to proceed with statis-

tical analysis reasonably [42]. The first property is related to influence function

(IF). It measures the influence which a negligible amount of contamination has

to an estimator regarding its position in space. Evaluating the IF at the points of

a data set reveals how each data point changes the estimator´s behaviour. The

IF should be bounded and smooth to keep the robustness. The next property,

maxbias curve, measures the bias which an estimator has with respect to the

percentage of the worst possible type of contamination. From this curve it is pos-

sible to observe that for each estimator, there exists a point where the bias tends

to infinity. This point is called breakdown point. It indicates which percentage

of the data may be replaced with outliers before the estimator yields aberrant

results. It usually ranges from 0 % to 50 % which means that asymptotically half

of the data can be contaminated arbitrarily without obtaining completely arbi-

trary results. And the last basic property concerns statistical efficiency which

results in minimal variance. It is well-known that robust estimators have higher
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variance than classical estimators. Thus it is necessary, when designing the ro-

bust estimators, not only to investigate the robustness properties, but also the

efficiency properties.

To avoid influence of the outlying observations to regression estimates, the

classical regression should be replaced by robust one [37]. Consequently, prop-

erties of the regression model are based on properties of the particular robust

method. The linear regression model (3.1) can be rewritten as

yi = x′iβ + εi, i = 1, . . . , n,

where xi is the ith row of the covariate matrix Xn×p, yi is an element of the

response vector yn×1, βp×1 is the vector of unknown regression parameters and εi

is the error term. Denote the ith residual for a given estimator b (not necessarily

the least squares estimator) as ri = ri(b) = yi−x′ib. The estimation of regression

parameters is mostly based on minimization of the size of residuals. For the

purposes of this thesis, the least trimmed squares (LTS) method was applied

[20]. It is defined as

b = arg min
β

h∑
i=1

r2
(i)(β), (3.5)

where r(i) denotes the ordered absolute residuals, |r(1)| ≤ · · · ≤ |r(n)|, and h is

called trimming constant which has to satisfy condition n
2
< h ≤ n. This constant

determines the breakdown point of LTS estimator, since n− h observations with

the largest residuals do not affect the estimator. For h = dn/2e (rounded to the

nearest integer) the breakdown point is 50% and for h = n the ordinary least

squares estimator with breakdown point 0% is achieved. From other properties,
√
n-consistency and asymptotic normality [95] in the location-scale model can be

mentioned, however the efficiency of estimator is rather lower.
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3.3. Regression analysis with compositional re-
sponse

It frequently happens that the response variable has compositional character.

It implies that we should follow the Aitchison geometry when estimating the

regression parameters [23, 89]. Suppose that compositional response variable has

n observations and is denoted as yi = (yi1, . . . , yiD)′ ∈ SD, then the regression

model is stated as follows,

yi = β0 ⊕
p⊕
j=1

(xij � βj)⊕ εi, i = 1, . . . , n,

where xi = (x0, xi1, . . . , xip)
′ is a vector of real covariates with x0 = 1 and βj for

j = 0, . . . , p are compositional regression parameters. The least squares method

is often used for fitting the model but it is necessary to apply it in sense of the

Aitchison geometry. Thus we minimize the sum of square-norms of the error

SSE =
∑n

i=1 ‖εi‖
2
a; generalization of Se as introduced in (3.2). Due to dimension-

ality of compositions, the number of coefficients to be estimated in this model is

(p+ 1)× (D − 1).

Instead of solving this computationally difficult problem, we can express com-

positional responses in coordinates with respect to orthonormal basis of simplex

[23, 28, 89]. Let h(·) is a coordinate function for the particular orthonormal ba-

sis, denote y∗i = h(yi), ε
∗
i = h(εi) for i = 1, . . . , n and β∗j = h(βj), j = 0, . . . , p.

Taking such coordinates, the transformed model is

y∗i = β∗0 +

p∑
j=1

(xij · β∗j) + ε∗i , i = 1, . . . , n

and also SSE can be expressed as

SSE =
n∑
i=1

D−1∑
k=1

(ε∗ik)
2.

Estimation in the regression model thus reduces to D − 1 ordinary least squares

problems, in other words, we are dealing with multiple regression. After estimat-
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ing the parameters, we can use inverse ilr mapping to show the results in the

original space.

For the purpose of coordinate representation we can choose ilr coordinates

(1.4), where always the l-th part of the original composition fills the first po-

sition. Then the coordinate z
(l)
1 expresses all the relative information about

the part xl regarding the other parts. Thus the response is now denoted as

z(l) = (z
(l)
1 , . . . , z

(l)
D−1)′, l = 1, . . . , D. But we need to realize that only the co-

ordinate z(l)
1 covers the relative information about the part xl, the coordinates

z
(l)
2 , . . . , z

(l)
D−1 include information about the other parts through their logratios.

In order to find the model corresponding to each part of the original composition,

only the first coordinate is relevant. Accordingly, we obtain D regression models,

where real explanatory variables remain the same and the response changes ac-

cording to which part fills the first position in the composition to construct the

coordinate z(l)
1 .

For illustration of the described theory, the dataset consisting of household

expenditures of 27 EU countries (available on http://ec.europa.eu/eurostat or in

the package robCompositions in software R) and gross domestic product (GDP)

per capita from the year 2008 (available on http://data.worldbank.org/indicator/

NY.GDP.PCAP.CD) are analyzed. The goal is to find the relation between ex-

penditures on food as a part of composition describing the expenditures structure

and GDP per capita. The household expenditures consist of expenditures on

food, alcohol, clothing, housing, furnishings, health, transport, communications,

recreation, education, restaurants and other. It is clear that expenditures can

be considered as composition with 12 parts and to express the relative informa-

tion on food with respect to all the other parts, the coordinate z(1)
1 from (1.4)

needs to be computed. This coordinate forms the response variable and GDP

per capita is the real explanatory variable. Note that we could also analyze the

other coordinates z(l)
1 for l = 2, . . . , 12 in the same way.
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GDP log(GDP)
parameter estimate p-value estimate p-value
classical R2

adj=0.5435 R2
adj=0.765

b0 1.721 5.28e-14 7.48822 5.07e-11
b1 -1.486e-05 6.96e-06 -0.61165 1.50e-09
robust R2

adj=0.6197 R2
adj=0.812

b0 1.781 6.77e-14 7.74831 8.04e-12
b1 -1.803e-05 1.84e-06 -0.63868 2.11e-10

Table 3.1: Summary of regression outputs for compositinal response.

The regression model is then built as

z
(1)
1i = β∗0 + β∗1xi + εi, i = 1, . . . , n, (3.6)

where β∗0 , β
∗
1 are the regression parameters and xi contains value of GDP per

capita in i-th country. Results are summarized in Table 3.1 and displayed graph-

ically in Figure 3.1. Due to multiplicative scale of positive variables [79], the

logarithmic transformation of GDP was applied as well (see the right plot). Note

that using logarithmic transformation is very common for economic indicators.

From Figure 3.1 (right plot), it is evident that logarithmic transformation of GDP

leads also to better fit by the regression model (3.6) comparing to the untrans-

formed version.

We can see that all estimated parameters are significant on the level < 0.0001.

From the adjusted coefficient of determination we can observe that logarithmic

transformation of GDP fits data better and that there is only a slight difference

between the classical and robust regressions. The regression line shows decreasing

trend for relative expenditures on food with increasing value of GDP per capita.

Thus we can conclude that households in countries with higher GDP spend rela-

tively less money on food; the main reason might be higher relative expenditures

on services in these countries.
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Figure 3.1: Plots of fitted regression lines using original (left) and logarithmized
(right) GDP per capita.

3.4. Regression analysis with compositional co-
variates

Similar approach is used when the covariates are compositional, xi ∈ SD, i =

1, . . . , n, and the response is observed as a real vector [52, 89]. Then we estimate

a surface on SD × R with the equation

yi = β0 + 〈β,xi〉a + εi, i = 1, . . . , n,

where β ∈ SD is the gradient of y with respect to compositions xi and β0 is a real

intercept [89]. Because the response is a real vector, the classical least squares fit

can be applied,

SSE =
n∑
i=1

(yi − β0 − 〈β,xi〉a)
2.

To avoid computing of the Aitchison inner product, the ilr coordinates of xi can

be used instead of the original composition. The SSE becomes

SSE =
n∑
i=1

(yi − β0 − 〈β∗,x∗i 〉)2.
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Thus we can fit a linear regression to the response y as a linear function of x∗.

The parameters β∗ contain the slope coefficients. Although the clr coordinates

can be used as well as the ilr coordinates for the purpose of regression modeling,

it is not appropriate here due to singular covariance matrix.

We can again use ilr coordinates (1.4) to express the explanatory compositions

in real space. Thus the regression model has form

yi = β0 + β
(l)
1 z

(l)
1i + · · ·+ β

(l)
D−1z

(l)
D−1,i + εi, i = 1, . . . , n, l = 1, . . . , D. (3.7)

Due to orthogonality of different ilr bases, the intercept β0 remains unchanged.

Since the coordinate z(l)
1 explains all the relative information about the original

part xl, the coefficient β(l)
1 can be assigned to this part. The remaining coefficients

are not straightforward to interpret since the assigned regressor variables do not

fully represent one particular part [52]. Thus, the only way how to interpret the

role of each compositional part for explaining the response y is to consider D

different regression models and to interpret the coefficients β(l)
1 , representing the

part xl.

To show an economic application of the model, we analyze the relation be-

tween GDP per capita (available on http://data.worldbank.org/indicator/NY.

GDP.PCAP.CD) and relative structure of gross value added (GVA) from the year

2010. The GVA consists of 4 parts, namely manufacturing, agriculture, industry

and services (the dataset is described in a more detail in Section 3.6.5). As it

was mentioned earlier, only the coordinates z(l)
1 for l = 1, 2, 3, 4 contain the rel-

ative information about part xl with respect to all the other parts, accordingly,

only the corresponding parameters are important for interpretation of the model.

Following this idea, four multivariate regression models were estimated using

classical and robust methods. The results are summarized in Table 3.2. Again,

the logarithm of GDP per capita was considered as in the previous section.

The logarithmic transformation of GDP leads again to better fit of the model

- this is evident both from the adjusted coefficient of determination (Table 3.2)

and from the plots of the response vs. fitted values in Figure 3.2. From the
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Figure 3.2: Plots of the response variable (GDP per capita) vs. its predicted
values with the reference line y = x using classical (blue line) and robust (red
line) approaches for the original (upper panel) and log-transformed GDP (lower
panel) values.
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GDP log(GDP)
parameter estimate p-value estimate p-value
classical R2

adj=0.5089 R2
adj=0.7755

b0 -8803.2 0.0083 6.91786 <2e-16

b
(1)
1 -479.1 0.7889 0.13019 0.1707

b
(2)
1 -11016.3 <2e-16 -1.09364 <2e-16

b
(3)
1 -189.0 0.9050 0.19092 0.0241

b
(4)
1 11684.4 2.24e-07 0.77253 2.97e-10

robust R2
adj=0.7249 R2

adj=0.8713
b0 -924.0 0.0825 6.67117 <2e-16

b
(1)
1 -675.1 0.0192 0.19435 0.01153

b
(2)
1 -3395.8 <2e-16 -1.35128 <2e-16

b
(3)
1 479.2 0.0481 0.23173 0.00073

b
(4)
1 3413.8 1.65e-15 0.92519 <2e-16

Table 3.2: Summary of regression outputs for compositional covariates.

classically estimated parameters, summarized in Table 3.2, we can conclude that

relative contributions of manufacturing and industry within the GVA composition

do not significantly influence the GDP. However, by considering the log of GDP

as the preferable choice, industry becomes significant. Furthermore, it is easy

to see that services have the largest positive relative influence on GDP, while

higher dominance of agriculture within the GVA composition has negative relative

influence on GDP. On the other side, robust regression yields different results, all

of the parameters are significant on the usual level 0.05 (except of the intercept).

Again, the largest positive relative influence on GDP show services and the largest

negative relative influence has the agriculture sector. Different regression outputs

using the classical and robust approaches indicate that the classical (least squares)

estimation was strongly influenced by outlying observations.
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3.5. Regression analysis with compositional re-
sponse and explanatory variables

The third possibility is that both the response and explanatory variables have

compositional character. This part is motivated by the problem of modeling the

ecotoxicological experiments [30, 106], where the responses of subjects to different

stimuli (e.g. drug, poison, etc.) are observed in a quantitative way. In the typical

ecotoxicological experiment, a series of concentrations of a toxic agent x1, . . . , xr

are chosen in increasing order of magnitude, and the proportions pi of responding

subjects are recorded. In these experiments, only the proportions pi are known,

while the number of subjects tested for each concentration and corresponding

number of respondents are not given.

The general model has following form,

pi = f(xi,β) + εi, i = 1, . . . , n,

where pi is the response measured at concentration xi, the function f(xi,β)

represents the mean of the response given the concentration xi, β stands for the

vector of unknown parameters and εi is the measurement error. Standard choices

of the regression function f are logit, generalized logit, probit and weibull models

[38, 106]. Instead of working with these difficult models we can consider the

proportions pi and concentrations xi as two-part compositional data in the form

x = (x, κ− x)′ [84]. For proportions pi and the respective two-part compositions

pi the constant κ = 1, while for concentrations xi (measured in mg/l) κ = 106.

Model that takes the compositional character of variables into account is defined

as follows

pi = β0 ⊕ β1 � xi ⊕ εi, i = 1, . . . , n. (3.8)

To estimate the regression parameters we need to express the model in real space.

For this purpose, the isometric logratio coordinates (1.5) are applied, the resulting

variables are marked with an asterisk. Thus the regression line is obtained,

p∗i = β∗0 + β1x
∗
i + ε∗i , i = 1, . . . , n, (3.9)
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parameter estimate ilr−1(estimate) p-value
classical R2

adj=0.412
b0 -1.40322 12.08453 <2e-16
b1 0.58434 69.55889 4.01e-07
robust R2

adj=0.6233
b0 -1.44082 11.53089 <2e-16
b1 0.77419 74.92977 7.01e-11

Table 3.3: Summary of regression outputs.

where the parameters β∗0 , β1 are estimated using ordinary least-squares method

[84]. Fitted values for the original proportions pi are obtained using inverse ilr

mapping

p̂i = h−1(p̂∗i ) =
κ exp(

√
2p̂∗i )

1 + exp(
√

2p̂∗i )
, (3.10)

for κ = 1.

It is easy to see that here the ilr coordinates are proportional up to con-

stant 1√
2

to well-known logit transformation. Nevertheless, within the logratio

methodology it represents a coordinate that enables to apply standard methods

for statistical analysis of compositional data (including regression methods [84]).

Note that the ilr coordinates also allows a straightforward generalization of the

regression model to a multiple-compositional-response case.

The presented model was applied to real-world data that contain percentage

shares of manufacturing value added (mva) in GDP [103] and percentage shares

of import of intermediate goods [109]. Data were collected for 49 countries of

the world from the year 2009. The aim of the analysis is to analyze whether the

import of intermediate goods has an influence on the mva.

The results are summarized in Table 3.3 and it is easy to see that both re-

gression parameters are significant and with increasing percentage of imported

intermediate goods, the percentage of mva increases. This result reflects the

trend of international trade - it is cheaper to import intermediate goods than to

manufacture the whole product. Accordingly, countries can product more goods
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Figure 3.3: Plots of fitted regression in ilr space (on the left) and in original space
(on the right).

and the mva grows. Furthermore, there is only a slight difference between clas-

sical and robust approach, thus there are no influential outliers in the dataset.

In Figure 3.3 the estimated regression lines, both in real space and within the

Aitchison geometry, are plotted. The regression results obtained in ilr coordinates

are transformed back to the original space using (3.10).

3.6. Regression within a composition

Most of the economic indicators, such as gross domestic product, value added,

export, import, etc., consist of many variables. For example GDP, in the income

approach, is computed as a sum of compensation of employees, gross operating

surplus, gross mixed income and taxes less subsidies on production and imports.

Generally, we are interested in analyzing GDP but we can be also interested in

analyzing the relation between the variables that form the GDP composition.

For this purpose, orthogonal regression in proper coordinates seems to be the

preferable option [57].

A particular challenge for the choice of coordinates comes from the fact that at

least two parts in the composition are of simultaneous interest, the response part

and covariate part(s). The first idea could be to use the centered logratio (clr)
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coordinates (1.3). Because of the relation ln xl
g(x)

=
√

D−1
D
z

(l)
1 , each clr coordinate

can be interpreted analogously as the corresponding ilr coordinates with respect

to the original compositional parts. Nevertheless, their use for regression purposes

is not appropriate due to the inherent constraint

ln
x1

g(x)
+ · · ·+ ln

xD
g(x)

= 0

that leads to a singular covariance matrix of clr(x) and would thus result in

misleading conclusions from the regression model.

Consequently, the question arises, how to use coordinates (1.4) for the case

of regression of one of the compositional parts to the remaining parts. Similar

problem was analyzed in the previous sections, where the compositional response

or compositional covariates were considered in the regression model. There, in

order to analyze the influence of a single compositional part on the explanatory

variables, D multiple regression models according to the coordinate represen-

tations (1.4) were constructed. In our case, xl plays the role of the response

variable that should be represented by a coordinate as well. Since the main task

is to analyze the influence of the other parts on xl, it seems reasonable that also

the corresponding coordinate will contain information on the relation of xl to all

remaining parts in the composition. Thus, in the above notation, z(l)
1 plays the

role of such a coordinate. Consequently, we can proceed with the coordinate rep-

resentation of the explanatory subcomposition (x1, . . . , xl−1, xl+1, . . . , xD)′. For

this purpose, the coordinates z(k)
2 , . . . , z

(k)
D−1 according to the reordered subcom-

position (xk, x2, . . . , xi, . . . , xD)′, i 6= {k, l}, k = 2, . . . , D, can be used. Similarly

as before, the coordinate z(k)
2 explains all the relative information about part xk

in the resulting subcomposition. Considering the range of k, we arrive at D − 1

regression models

z
(l)
1 = β

(k)
0 + β

(k)
1 z

(k)
2 + . . .+ β

(k)
D−2z

(k)
D−1 + ε (3.11)

(in theoretical form, ε stands for an error term), assigned to single explanatory

compositional parts. The interpretation of these models is similar to the case of
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regression with compositional covariates [52], i.e. in each model just the abso-

lute term parameter and the parameter corresponding to the coordinate z(k)
2 are

used for further interpretation and to perform statistical inference (confidence

intervals, hypotheses testing).

Since both response and explanatory variables arise from one composition, it

cannot be assumed that the covariates represent errorless variables like in the

case of a real-valued response [52]. Consequently, the use of an ordinary multiple

regression model is inappropriate and can even lead to biased results. Therefore,

we apply an orthogonal regression model (or, equivalently, a total least squares

model) for this purpose, which is a specific type of errors-in-variable (EIV) model

[44].

3.6.1. Orthogonal regression

For simplification of the notation, we denote the matrix of n realizations of

the vector (z
(k)
2 , . . . , z

(k)
D−1)′, for a chosen k ∈ {1, . . . , D}, k 6= l, as X ∈ Rn×D−2

(centered data are assumed), and y ∈ Rn the observation vector of the response

coordinate z(l)
1 . The total least-squares (TLS) method was originally introduced

to solve overdetermined systems of equations Xβ ≈ y, where X and y are given

data (here compositions expressed in orthonormal coordinates), and β ∈ RD−2

is the vector of unknown parameters. There is no exact solution; particularly in

the case of n > D − 2, we are seeking for an approximation.

In the classical TLS problem [76] we are looking for the minimal errors εX , εy

(in the sense of the Frobenius norm, denoted by the subscript F in the following)

on the given data X,y that make the system of equations X̂b = ŷ, X̂ = X +

εX , ŷ = y + εy solvable, i.e.

{X̂, ŷ, εX , εy} := argminεX ,εy
‖[εX , εy]‖F , (3.12)

subject to (X + εX)β = y + εy, resulting in the estimate b of the regression

parameters. The Frobenius norm of n× p matrix A with elements aij is defined

as ‖A‖F =
√∑n

i=1

∑p
j=1 a

2
ij. The solution is a maximum likelihood estimator b
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in the optimally corrected EIV model X̂b = ŷ, X̂ = X + εX , ŷ = y + εy, if the

usual assumptions are fulfilled, namely that vec[εX , εy] (“vec” forms one vector,

composed of the columns of the matrix in the argument) has zero mean, and is a

normally distributed random vector with a covariance matrix that is a multiple

of the identity.

From the methodological point of view, the singular value decomposition is

applied to Z = [X,y] = UΛV′, where Λ = Diag(λ1, . . . , λD−1) and λ1 ≥ · · · ≥

λD−1 ≥ 0 are the singular values of Z, and U and V are the corresponding

orthonormal matrices. Let us define the partitions

V =

[
V11 v12

v21 v22

]
, Λ =

[
Λ1 0
0 λD

]
,

where the matrices V11 and Λ1 are of dimension (D− 2)× (D− 2). Then a TLS

solution exists iff v22 is non-zero; moreover, it is unique iff λD−2 6= λD−1. In this

case it is given by

b = −v12/v22 (3.13)

and the corresponding TLS error matrix equals εZ = [εX , εy] = −UDiag(0, λD−1)V′

[76], with 0 being a vector with D − 2 zeros. Thus, when a unique solution b

exists, it is computed from the scaled right singular vector corresponding to the

smallest singular value. It is important to note that as different ilr coordinate

systems are just rotation of each other [28], TLS estimates transform accordingly.

It is well-known that the matrices Λ and V from an SVD on the centered

explanatory and response variables correspond to outputs of an eigenvalue de-

composition on the (estimated) covariance matrix Σ, performed within principal

component analysis (PCA). Thus, except for the intercept term in the orthogo-

nal regression model (that is discussed in the next section), the same results as

above in (3.13) can be obtained also using the smallest eigenvalue and the cor-

responding eigenvector (loading vector) of the covariance matrix. We will follow

this approach further in the next section.
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Geometrical motivation

As mentioned in the previous section, the TLS (orthogonal regression) es-

timates of the parameters can be obtained by means of principal component

analysis. We apply the proposed procedure directly to the case of four-part com-

positional data where a geometrical illustration of the problem is still possible.

Moreover, this approach also shows how to proceed with non-centered data. For

this purpose, we assume to have a random vector z = (z1, z2, z3)′ (an orthonormal

coordinate representation of the composition) and the task is to find a relation-

ship between the response variable z1 and the covariates z2, z3, expressed in the

form z1 = β0 + β1z2 + β2z3 + ε, with the regression parameters β0, β1, β2.

From the geometrical point of view, the basic idea is to fit a plane to the data

using PCA. The loadings of the first two principal components define a basis of

the plane. As the third principal component is orthogonal to the previous ones,

its loadings define the normal vector to the plane, n = (n1, n2, n3)′, forming the

last column of the matrix V in terms of the previous section. The plane passes

through the point t, representing the location estimate of the n× 3 data matrix

Z (the arithmetic mean in the classical case), and its perpendicular distance from

the origin is t′n. The perpendicular distance from each point in Z to the plane

(the norm of the residuals) is the inner product of each centered point and the

normal vector to the plane. The fitted plane minimizes the sum of squared errors.

Consequently, the estimated regression parameters are obtained using the

elements of the normal vector, namely

b0 =
t′n

n3

, b1 = −n1

n3

, b2 = −n2

n3

.

We can also consider the general case, where a vector of orthonormal coor-

dinates has D − 1 components, z = (z1, z2, . . . , zD−1)′. As in the previous case,

the response variable is z1 and covariates z2, . . . , zD−1. Then the regression rela-

tion is expressed in the form z1 = β0 + β1z2 + β2z3 + · · · + βD−2zD−1 + ε for a

vector of regression parameters β = (β0, β1, β2, . . . , βD−2)′. Denote the loading

vector corresponding to the smallest eigenvalue as n = (n1, n2, . . . , nD−1)′. Then
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the estimated parameters b are obtained using values of the loading vector as

follows,

b0 =
t′n

nD−1

, b1 = − n1

nD−1

, b2 = − n2

nD−1

, . . . , bD−2 = −nD−2

nD−1

,

where t is the mean vector of Z.

3.6.2. Nonparametric bootstrap sampling

In order to support the interpretation of the outcome of orthogonal regression,

it is desirable to obtain confidence intervals for the regression parameters, and p-

values for tests about these parameters. This statistical inference is only possible

with strict distributional assumptions but even then it would be challenging to

derive the exact distribution of the parameters in the robust case. A better

strategy is to derive the inference by resampling methods. In order to relax

the assumptions about the distribution of the input data, the nonparametric

bootstrap [41] was chosen for this purpose.

Generally, bootstrapping is based on building a sampling distribution for a

statistic by resampling from the data at hand. Consequently, the nonparametric

bootstrap allows us to estimate the sampling distribution of a statistic empiri-

cally without making assumptions about the form of the population, and without

deriving the sampling distribution explicitly. The basic idea is that, after draw-

ing a sample of size n from S = {z1, . . . , zn} with replacement (without loss of

generality, we fix the concrete choice of orthonormal coordinates again), we are

treating the sample S as an estimate of the whole population which means that

each element zi of S is selected with probability 1/n to mimic the original se-

lection of the sample S. This procedure is repeated R times, where R is a large

number, to obtain a sufficient number of bootstrap samples.

The r-th bootstrap sample is denoted as Sr = {zr1 , . . . , zrn}, r = 1, . . . , R. In

the next step we compute the regression estimates bi for each bootstrap sample

to get br∗i , i = 1, . . . , D − 1. Then the distribution of br∗i around the original

estimate bi is analogous to the sampling distribution of the estimator bi around
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the population parameter βi. In context of orthogonal regression, the bootstrap

distribution of bi can be directly used to derive sample p-values for significance

testing of the regression parameters. For this purpose, the p-value pi for the

regression parameter βi for a two-sided alternative is derived by comparing the

values of the bootstrap parameter estimates with zero. By denoting li and hi as

the number of estimated values lower and higher than zero, respectively, we get

pi = 2 ·min{li, hi}/R [15].

Furthermore, we can proceed also to construct bootstrap confidence inter-

vals. For this purpose, several approaches are available. A natural choice is

to take bootstrap percentile intervals that are free of any distributional as-

sumptions [15, 41]. The bootstrap percentile interval uses the empirical quan-

tiles of br∗i (computed from Sr, r = 1, . . . , R) to form a confidence interval for

βi, (b∗i(l), b
∗
i(u)), i = 1, . . . , D − 1. Concretely, from the ordered bootstrap repli-

cates of the statistic bi, i.e. b∗i(1), b
∗
i(2), . . . , b

∗
i(R), and for a given α ∈ (0, 1) we set

l = d(R + 1)α/2e , u = d(R + 1)(1− α/2)e (rounded to the nearest integer).

3.6.3. Robust orthogonal regression

Regression estimators which are based on classical SVD or PCA are sensi-

tive to outliers that naturally occur in most real-world data sets. Therefore,

we also considered a robust version of the orthogonal regression. Although ro-

bust versions of SVD are available (e.g. [14]), it is simpler and computationally

more attractive to use robust PCA, which is obtained through a robust estima-

tion of the covariance matrix (e.g. [32]). Among other possibilities like those in

[13, 31, 77], MM-estimators [94] are employed for this purpose in the following.

MM-estimators

MM-estimators were chosen because they are highly efficient when the errors

have a normal distribution, their breakdown point is 0.5 and they have bounded

influence function.

Multivariate MM-estimators are extensions of S-estimators [78]. They are

57



based on two loss functions ρ0 and ρ1 that satisfy the conditions: (a) ρ is sym-

metric and twice continuously differentiable, with ρ(0) = 0; (b) ρ is strictly

increasing on an interval [0, k] and constant on [k,∞] for some finite constant k.

Given the matrix with the observations in any chosen orthonormal coordinates

(like those from the beginning of this section), Z = [X,y] = (z1, . . . , zn)′ ∈ RD−1,

the MM-estimators for location and covariance are defined in two steps:

1. Let (µ̃n, Σ̃n) be S-estimators of location and covariance, respectively, that

is (µ̃n, Σ̃n) minimize |C| subject to

1

n

n∑
i=1

ρ0

(
[(zi − t)′C−1(zi − t)]1/2

)
= b,

among all (t,C) ∈ RD−1. Denote ŝ = |Σ̃n|1/[2(D−1)].

2. The MM-estimator for location and shape (µ̂n, Γ̂n) minimizes

1

n

n∑
i=1

ρ1

([
(zi − t)′S−1(zi − t)

]1/2
/ŝ
)

among all t and all symmetric positive definite S with |S| = 1. The MM-

estimator of the covariance matrix is then Σ̂n = ŝ2Γ̂n.

The idea is to estimate the scale by means of a very robust S-estimator and

then to estimate the location and shape using different ρ functions that yields

a better efficiency. Once the location and covariance are obtained using the

MM-estimator, they can be used to compute the robust orthogonal regression

estimates as described above.

3.6.4. Fast and robust bootstrap

The available theory for robust estimators is limited to asymptotic results.

Although bootstrap is a very useful tool, in case of robust estimators there are

two problems: computational complexity of robust estimators and the instability

of the bootstrap in case of outliers. Thus we used fast and robust bootstrap
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[99, 104] which is based on the fact that the robust estimators (namely S- and

MM-estimators) can be represented by smooth fixed point equations that allow

to calculate only a fast approximation of the estimates in each bootstrap sample.

For the case of MM-estimators, the fixed point equations are as follows,

µ̂n =

(
n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di

)−1( n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di
zi

)
; (3.14)

Γ̂n = G

(
n∑
i=1

ρ′1(di/|Σ̃n|1/[2(D−1)])

di
(zi − µ̂n)(zi − µ̂n)′

)
; (3.15)

Σ̃n =
1

nb

(
n∑
i=1

(D − 1)
ρ′0(d̃i)

d̃i
(zi − µ̃n)(zi − µ̃n)′ +

(
n∑
i=1

w̃i

)
Σ̃n

)
; (3.16)

µ̃n =

(
n∑
i=1

ρ′0(d̃i)

d̃i

)−1( n∑
i=1

ρ′0(d̃i)

d̃i
zi

)
; (3.17)

where we denote G(A) = |A|−1/(D−1)A for a (D − 1) × (D − 1) matrix A,

di = [(zi − µ̂n)′Γ̂
−1

n (zi − µ̂n)]1/2, d̃i = [(zi − µ̃n)′Σ̃
−1

n (zi − µ̃n)]1/2 and w̃i =

ρ0(d̃i) − ρ′0(d̃i)d̃i. Generally, denote the equations (3.14) - (3.17) by means of

a function f : R2[(D−1)+(D−1)2] → R2[(D−1)+(D−1)2] such that f(Θ̂n) = Θ̂n, where

Θ̂n contains all estimates in the vectorized form and can be represented as a

solution of fixed-point equations. For example, for MM-estimators we have Θ̂n :=(
(µ̂n)′, vec(Γ̂n)′, vec(Σ̃n)′, (µ̃n)′

)′
. Instead of recalculating the estimates Θ̂∗n for

each bootstrap sample we can calculate its one-step approximation starting from

the initial value Θ̂n,

Θ̂1∗
n = f(Θ̂n). (3.18)

Unfortunately, this approximation underestimates the variability of Θ̂n because

the initial value in the approximation remains the same. To remedy this we
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can apply a linear correction [98] as follows. Given the smoothness of f we can

calculate a Taylor expansion about the limiting value of Θ̂n

Θ̂n = f(Θ) +∇f(Θ)(Θ̂n −Θ) +Rn, (3.19)

where Θ = (µ′, vec(Γ)′, vec(Σ)′,µ′)′ , Rn is the remainder term and ∇f(·) is the

matrix of partial derivatives. If the remainder term is sufficiently small, we can

rewrite (3.19) as

√
n(Θ̂−Θ) ≈ [I −∇f(Θ)]−1

√
n(f(Θ)−Θ). (3.20)

Since both sides of this equation are asymptotically equivalent, the distribution

of the bootstrapped statistics will also converge to the same limit. Finally, we

can define the linearly corrected version of the one-step approximation (3.18) as

Θ̂R∗
n := Θ̂n + [I −∇f(Θ̂n)]−1(Θ̂1∗

n − Θ̂n). (3.21)

Note that the estimating equations involve weighted least squares estimates and

covariances. The weights will be small or even zero for observations detected

as outliers. This guarantees that Θ̂R∗
n is as robust as Θ̂n. The idea is to draw

bootstrap samples as usual, but instead of computing the actual estimator in

each bootstrap sample, a fast approximation is computed based on the estimating

equations of the estimator.

The above theoretical developments were implemented into new R package

oreg [57, Section 6]. It provides functions for classical and robust versions of

orthogonal regression that are possible to use for both standard multivariate and

compositional data - the package also includes computation of ilr coordinates.

This package was used for all the computations and graphical outputs in the

following section.

3.6.5. Activities of gross value added

The example focuses on the relation between different activities of gross value

added. The data set comes from the World Bank database (http://data.worldbank.org)

and includes observations for 131 countries in 2010 at constant 2005 USD.
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Gross value added (GVA) is the most important measure of productivity of the

economy of a country or region, representing the difference between production

output and intermediate consumption, i.e. the monetary value of the amount of

goods and services that have been produced, less the cost of all inputs and raw

materials that are directly attributable to that production. Gross value added

is less than GDP because it excludes value-added tax (VAT) and other product

taxes.

GVA can be decomposed into the following economic activities:

• agriculture (consisting of agriculture, forestry, hunting and fishing);

• manufacturing1;

• other industry (consisting of mining and quarrying; electricity, gas, steam

and air conditioning supply; water supply; sewerage, waste management

and remediation activities; construction);

• services (consisting of education, health and other personal services; public

administration and defense).

Thus, GVA can be expressed as the sum of these four activities. The goal of

the study is to analyze the relation between manufacturing and the rest of the

activities by considering relative contributions of the mentioned activities to the

overall GVA.

Although the original data are expressed in monetary units (USD), and no

constant sum constraint is present (like it is the case of proportions or percent-

ages), from the relative structure of GVA we can conclude that these four eco-

nomic activities form a composition x = (x1, x2, x3, x4)′, where x1 corresponds to

manufacturing, x2 to agriculture, x3 to other industry and x4 to services. In such

case, using an arbitrary regression technique either for the original observations

or any constrained form of them, would lead to biased results [52]. Figure 3.4

1Manufacturing is defined as the physical or chemical transformation of materials of com-
ponents into new products.
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Figure 3.4: Ternary diagram of the explanatory variables agr (agriculture), ind
(other industry), and srv (services).

displays a ternary diagram of the explanatory variables x2, x3, x4. It can be ob-

served that the part srv (services) contains the largest relative contribution and

agr (agriculture) the smallest one in this subcomposition. This corresponds to

the fact that the points are concentrated mainly along the segment between srv

and ind (other industry), rather closer to the vertex srv.

For further statistical processing, the compositional response and the explana-

tory variables are expressed in ilr coordinates (1.4). Following the previous con-

siderations, the response coordinate is defined as z(1)
1 =

√
3
4

ln x1
3
√
x2x3x4

, i.e., it ex-

plains all the relative information about manufacturing with respect to the other

three parts in the composition through an aggregation of the corresponding lo-

gratios. Permutation of the remaining three activities results in three regression

models, where always the respective coordinate z(k)
2 for k = 2, 3, 4 includes the

most interesting information - (scaled) aggregation of logratios of xi with the re-

maining explanatory parts. The resulting regression models that favor one of the

explanatory compositional parts x2, x3, x4 thus contain the following coordinates

(in addition to z(1)
1 ),
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z
(2)
2 =

√
2
3

ln x2√
x3x4

, z
(2)
3 =

√
1
2

ln x3
x4

;

z
(3)
2 =

√
2
3

ln x3√
x2x4

, z
(3)
3 =

√
1
2

ln x2
x4

;

z
(4)
2 =

√
2
3

ln x4√
x2x3

, z
(4)
3 =

√
1
2

ln x2
x3

,

respectively.
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Figure 3.5: The plots of coordinates of explanatory variables and 3D scatterplot
of the explanatory coordinates.

In Figure 3.5, scatterplots of the explanatory coordinates are displayed, where

the part of interest corresponds to x2 (upper left), x3 (upper right) and x4 (lower

left). Particularly, it can be seen that the x-coordinates of the upper left and

upper right plots, z(2)
2 and z(3)

2 , are mainly negative which means that the relative
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Figure 3.6: The 3D plots of estimated regression plane for coordinates
z

(2)
2 , z

(2)
3 , z

(1)
1 following classical (on the left) and robust (on the right) approach.

contributions of agriculture and other industry are lower than the mean contribu-

tion of the other parts. On the other hand, the coordinate z(4)
2 clearly shows the

relative dominance of services. The 3D scatterplot in Figure 3.5 (lower right) con-

tains all three coordinates z(2)
2 , z

(2)
3 , z

(1)
1 (in this order) to see the relation between

the covariates and the response variable. Although a certain linear relationship

can be observed from this scatterplot, orthogonal regression modeling needs to

be performed in order to specify the possible influence of covariates.

par. estimate perc. CI p-value

intercept -2.151 (-4.464, -1.559) 0.002

b
(2)
1 -0.394 (-0.584, -0.115) 0.020

b
(3)
1 -0.878 (-2.745, -0.498) 0.000

b
(4)
1 1.272 (0.858, 2.978) 0.002

Table 3.4: Summary of regression outputs using classical orthogonal regression
for all defined models.

The results of classical orthogonal regression in coordinates are summarized

in Table 3.4. Note that the intercept for all regression models is identical (sim-

ilarly as for LS regression [52]), which is a consequence of the orthogonal rela-
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tion between the different ilr coordinate systems. Therefore, although the basic

model consists of three regression parameters (corresponding to intercept and two

orthonormal coordinates), for the interpretation purposes it is enough to sum-

marize just the intercept and the parameters corresponding to the coordinates

z
(2)
2 , z

(3)
2 , z

(4)
2 from all three models. Nonparametric bootstrap (with R = 1000)

was used to derive the corresponding statistical inference (confidence intervals,

p-values for significance testing). Note that it would be possible to compute the

regression estimates for all remaining models just from the estimates in one par-

ticular model using orthogonal transformations, similar as in the standard case

of LS (PLS) regression [63].

According to Table 3.4, all regression parameters are significant on the usual

level α = 0.05, although b(2)
1 is closer to zero. Moreover, the estimated parameters

b
(2)
1 and b

(3)
1 are negative which means that “agriculture” and “other industry”

have small negative relative influence on manufacturing. On the other hand,

“services” (resulting from the estimation in the last model) have strong positive

relative influence on “manufacturing”. This is explained by the fact that the

growth of the manufacturing sector is inevitably induced by the growth of the

services sector, necessary to support it. Transportation, communication, finan-

cial and business services are required by the manufacturing and thus there is no

increase in manufacturing without (relative) growth of these services. To illus-

trate the regression results geometrically (see Section 3.6.1 to recall the geometric

motivation), Figure 3.6 displays the 3D plot of the estimated regression plane for

coordinates z(1)
1 (response), and z(2)

2 , z
(2)
3 (covariates) with all the points projected

on the plane.

To restrict possible influence of outlying observations on the estimates, a

robust version of orthogonal regression using MM-estimators was applied as well.

The summary of the regression outputs (including confidence intervals and p-

values computed by fast and robust bootstrap) are displayed in Table 3.5. The

results are similar to those from Table 3.4. In contrast to the classical analysis,

here the regression parameter b(2)
1 is not significant. Consequently, the difference
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par. estimate perc. CI p-value

intercept -2.311 (-6.391, -1.666) 0.006

b
(2)
2 -0.389 (-0.605, 0.180) 0.116

b
(3)
2 -1.075 (-4.994, -0.556) 0.002

b
(4)
2 1.464 (0.996, 5.184) 0.002

Table 3.5: Summary of regression outputs using robust orthogonal regression for
all defined models.

for the inference on b
(2)
1 can be attributed to the outliers, underlining the need

for a robust analysis. Of course, there are differences among countries, and

the relation between agriculture and industry is a long debated topic, see for

example [96] and [97] for a detailed analysis of these linkages in India using the

input-output framework.
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Chapter 4

Functional principal component
analysis for density functions

Nowadays, an increasing number of studies are based on complex data, such as

curves, surfaces or images. As a direct consequence, the importance of functional

data analysis (FDA), e.g. [90], has recently strongly increased. In recent years,

a large body of literature has been developed in this field, e.g. [51, 91], however,

still little attention has been paid to the problem of dealing with functional data

that are probability density functions [17, 18, 81, 85, 108]. Even though it might

seem that density functions are just a special case of functional data – with a

constant-integral constraint equal to one – standard FDA methods appear to be

inappropriate for their statistical treatment, as they do not consider the particu-

lar constrained nature of the data. In this context, probability density functions

have recently been interpreted as functional compositional data, i.e., functional

data carrying only relative information. To handle this kind of data, the Aitchi-

son geometry has been extended to the so called Bayes spaces: a Hilbert space

structure for σ-finite measures, including probability measures, has been worked

out in [9], based on the pioneering work of [24] and the subsequent developments

of [8] and [29].

This chapter is organized as follows. Firstly we introduce functional data

analysis and B-spline smoothing. Next, we highlight the main differences between

standard functional data and density functions, functional compositions. Then
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we describe the case of functional principal component analysis (FPCA) and

simplicial FPCA. Finally, the methodological outputs are applied to a data set

with salary distributions in Austria.

4.1. Functional data analysis

Functional data [91], as the title prompts, consist of functions. The basic

philosophy is to think of observed data functions as single entities. Functional

data are usually observed and recorded discretely as n pairs (tj, yj), and yj is a

snapshot of the function x at tj. By tj we can consider time, frequency, weight, in-

terval and so on [90]. Functional data can be obtained from original observations

that are interpolated, we can also take large number of independent observa-

tions whose estimated probability densities are the functional data, or images

and curves appear as functional data.

Aspects of functional data:

• functional data are continuously defined;

• the individual datum is a whole function;

• smoothness or other regularity is a key aspect of other analysis.

As mentioned, we usually require that function x is smooth, which means that a

pair of adjacent data values yj and yj+1 are necessarily linked together to some

extent and unlikely to be too different form each other. However, the observed

data may not be at all smooth due to the presence of measurement error. Thus

in the following sections we will show one way of how to obtain smooth functions.

The aims of the analysis of functional data [91] are the same as those for con-

ventional data: to represent the data in ways that aid further analysis; to develop

ways of presenting the data that highlight interesting and important features; to

investigate variability as well as mean characteristics; to build models for the

data observed, including those that allow for dependence of one observation or

variable on another, and so on.
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4.1.1. Summary statistics

For functional data, the summary statistics [91] are similar to the discrete

data, however, it is important to note that now we obtain functions not just

constant values. The mean function is the average of functions xi(t), i = 1, . . . , N

from the sample point-wise across replications,

x(t) = N−1

N∑
i=1

xi(t), (4.1)

and the variance function follows

varX(t) = (N − 1)−1

N∑
i=1

[xi(t)− x(t)]2. (4.2)

The covariance function summarizes the dependence of records across different

argument values,

covX(t1, t2) = (N − 1)−1

N∑
i=1

[xi(t1)− x(t1)][xi(t2)− x(t2)], (4.3)

for all t1, t2 and the correlation function is then computed as

corrX(t1, t2) =
covX(t1, t2)√

varX(t1)varX(t2)
. (4.4)

The cross-covariance and cross-correlation are obtained similarly.

4.1.2. Smoothing functions

Assuming that a functional datum for replication i arrives as a set of discrete

measured values, yi1, . . . , yin, the first task is to convert these values to a function

xi with values xi(t) computable for any desired argument t. If the discrete values

are assumed to be errorless, then the process is called interpolation. However,

if they have some observational errors that need removing, then the conversion

from discrete data to functions may involve smoothing [91].
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The smoothing is based on representing the functions by basis functions. A

basis function system is a set of known functions φk that are independent and

that enable to approximate any function by taking linear combination of K of

these functions. Thus we can express a function x as

x(t) =
K∑
k=1

ckφk(t). (4.5)

The interpolation is achieved for K = n in the sense that we can choose the

coefficients ck to yield x(tj) = yj for each j. Therefore the degree of smoothing

is determined by the number of basis functions, K, which is considered as a

parameter corresponding to the characteristics of the data.

B-spline representation

Spline functions are the most common choice of approximation system for

non-periodic functional data.

The interpolation spline is a function which is a piecewise polynomial of lower

degree whose parts are smoothly joined [75, 91]. Let ∆λ is an increasing sequence

of g+2 knots, i.e. a = λ0 < λ1 < · · · < λg < b = λg+1, and sk(t) is the polynomial

spline defined on finite interval [a, b] with characteristics

• sk(t) is the polynomial of maximum degree k on each interval [λi, λi+1] for

i = 0, 1, . . . , g − 1,

• sk(t) has continuous derivatives up to order k − 1 in knots λi.

Moreover, let S∆λ
k [a, b] denotes the vector space of polynomial splines of degree

k > 0, defined on a finite interval [a, b] with the sequence of knots ∆λ. The

dimension of S∆λ
k [a, b] equals g + k + 1. Then every spline sk(t) can be uniquely

expressed as linear combination of g + k + 1 basis functions. However, when

working with B-spline basis, only g+ k− 1 linearly independent B-splines can be

constructed on ∆λ. Therefore we need to add 2k knots that fulfill condition

λ−k ≤ λ−k+1 ≤ · · · ≤ λ0, λg+1 ≤ λg+2 ≤ · · · ≤ λg+k+1.
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In the following, we work with such extended sequence of knots, where additional

knots equal λ0 and λg+1, i.e.

λ−k = λ−k+1 = · · · = λ0, λg+1 = λg+2 = · · · = λg+k+1.

Then every spline sk(t) ∈ S∆λ
k [a, b] can be expressed as

sk(t) =

g∑
i=−k

biB
k+1
i (t), (4.6)

where b = (b−k, . . . , bg)
′ is a vector of B-spline coefficients and Bk+1

i (t), i =

−k, . . . , g are B-splines of degree k and form basis in S∆λ
k [a, b]. Spline can be also

defined using collocation matrix as

sk(t) = Bk+1(t)b, (4.7)

where b is a vector of B-spline coefficients and Bk+1(t) is the mentioned col-

location matrix, which is defined for given t = (t1, . . . , tn)′ and B-spline basis

Bk+1
i (t), i = −k, . . . , g as

Bk+1(t) =

Bk+1
−k (t1) . . . Bk+1

g (t1)
...

. . .
...

Bk+1
−k (tn) . . . Bk+1

g (tn)

 ∈ Rn,g+k+1. (4.8)

For l ∈ {1. . . . , k − 1} the derivative of order l of the spline sk(t) ∈ S∆λ
k [a, b] is a

spline sk−l(t) ∈ S∆λ
k−l[a, b] with the same knots. The l-th spline derivative can be

written as

s
(l)
k (t) = Bk+1−l(t)b

(l), (4.9)

where b(l) ∈ Rg+k+1−l is given by

b(l) = DlLlb
(l−1) = DlLl . . .D1L1b = Slb

and b(0) = b. Sl ∈ Rg+k+1−l,g+k+1 is upper triangular matrix with full rank,

Dj = (k+1−j)Diag(d−k+j, . . . , dg) ∈ Rg+k+1−j,g+k+1−j with di = 1
λi+k+1−j−λi

∀i =
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−k + j, . . . , g and

Lj :=

−1 1
. . . . . .
−1 1

 ∈ Rg+k+1−j,g+k+2−j.

The spline smoothing is the methodology of data aproximation, which is a

compromise between the spline interpolation and least-squares approximation.

Given a raw datum x(ti), observed at the time points ti ∈ [a, b], i = 1, . . . , n,

we seek for the coefficients of the smoothing spline [16] that minimizes the func-

tional

Jl(sk) =
n∑
i=1

wi [x(ti)− sk(ti)]2 + ψ

∫
I

[
s

(l)
k (t)

]2

dt, (4.10)

where wi ≥ 0, i = 1, . . . , n, n ≥ g + 1, are given weights and ψ ≥ 0 a given

parameter. The parameter ψ controls the impact of the differential penalization

appearing in (4.10) and is thus associated with the smoothness of the result-

ing approximation. We set the weights as well as the value of the smoothing

parameter ψ to one, following the default setting of [75]. For possible sensible

determination of ψ using, e.g. cross-validation, we refer to [64] and [73]. In gen-

eral, for the purpose of setting the parameters all the techniques which are in use

in FDA can be employed in this case as well.

Let b∗ = (b∗−k, . . . , b
∗
g)
′ is the resulting vector of B-spline coefficients [75], then

spline

s∗k(t) =

g∑
i=−k

b∗iB
k+1
i (t) (4.11)

is the best approximation of Jl(sk) in the sense of least squares.

4.1.3. Density functions

As it was mentioned above, density functions can be considered as functional

compositional data with the integral constraint equal to one. Since compositional

data are discrete (in sense that they have just a finite number of parts), the
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generalization of the Aitchison geometry to functions led to introduce Bayes

spaces [8, 9, 24, 29].

We denote by µ an absolutely continuous measure with respect to the Lebesgue

measure on (R,B(R)), with compact support I ⊂ R and density f . To keep the

notation simple, hereafter we refer to the properties of µ through the properties of

f , even though [8, 9, 29] develop the theory of Bayes spaces in a complete general-

ity. We say that two density functions f, g are equivalent if they are proportional,

and we denote this by f =B g. As such, the integral constraint
∫
I
f(x) dx = 1

of a probability density function singles out a representative within an equiva-

lence class of functional compositions that provide the same set of information.

Indeed, any other representative f̃ within the same class (and characterized by

a constraint
∫
I
f̃(x) dx = c for c > 0) carries the same relative information on

the contribution of any Borel subset of R to the measure of the support. In this

setting – as noted by [29] – the probability of a given event has not a meaning

per se, but should be compared with the probability of the entire sample space,

which is conventionally set to 1, but could be equivalently set to another positive

constant c. This property is known as scale invariance.

A second important feature of functional compositions is the relative scale

property: the relative increase of a probability over a Borel set from 0.05 to

0.1 (2 multiple) differs from the increase 0.5 to 0.55 (1.1 multiple), although the

absolute differences are the same in both cases. This property reflects the relative

nature of functional compositions, and further motivates the use of the log-ratio

approach – already extensively employed in compositional data analysis – to deal

with density functions.

In fact, both the scale invariance and the relative scale properties are com-

pletely ignored when considering probability density functions just like uncon-

strained functional data. In particular, the usual notions of sum and product by

a constant appear inappropriate when applied to compositions, since the space

of functional compositions endowed with those operations is not a vector space

(e.g., the point-wise sum of two compositions is not necessarily a composition).
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Instead, the geometry of the Bayes Hilbert space of [9], which is described be-

low, enables one to capture and properly incorporate these properties. In the

following, we restrict our attention to density functions with compact support,

as in [18]. Both theoretical and practical reasons motivate this choice. Indeed,

when the support is the whole real line, the Lebesgue measure cannot be used

as reference probability measure, leading to highly technical issues. Moreover,

in most real datasets, finite values for the inferior and superior extremes of the

support can be determined without a substantial loss of generality.

We call B2(I) the Bayes space of (equivalence classes of) positive functional

compositions f on I with square-integrable logarithm. In particular, we here

consider continuous (hence bounded) functional compositions on the compact

support I. Hereafter, the representative of an equivalence class will be its element

integrating to 1. Moreover, the symbol I will denote an interval [a, b] but any

subset of R with finite measure could be dealt with analogously. Given two

absolutely integrable density functions f, g ∈ B2(I) and a real number α ∈ R

we indicate with f ⊕ g and α � f the perturbation and powering operations,

respectively, defined as [9, 24]:

(f ⊕ g)(t) =
f(t)g(t)∫

I
f(s)g(s) ds

, (α� f)(t) =
f(t)α∫

I
f(s)α ds

, t ∈ I.

The resulting functions are readily seen to be probability density functions. [24]

prove that B2(I) endowed with the operations (⊕,�) is a vector space. Note that

the neutral elements of perturbation and powering are e(t) = 1/η, with η = b−a

(i.e., the uniform density), and 1, respectively. Moreover, the difference between

two elements f, g ∈ B2(I), denoted by f 	 g, is obtained as perturbation of f

with the reciprocal of g, i.e., (f 	 g)(t) = (f ⊕ [(−1)� g])(t), t ∈ I.

To endow B2(I) with a Hilbert space structure, [24] define the inner product

〈f, g〉B =
1

2η

∫
I

∫
I

ln
f(t)

f(s)
ln
g(t)

g(s)
dt ds, f, g ∈ B2(I), (4.12)
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with η = b− a, which induces the following norm,

||f ||B =

[
1

2η

∫
I

∫
I

ln2 f(t)

f(s)
dt ds

]1/2

.

The space B2(I), endowed with the inner product (4.12), is proved to be a sep-

arable Hilbert space in [24]. As such, it is isomorphic to the Hilbert space L2(I)

of (equivalence classes of) square-integrable real functions on I. An isometric

isomorphism between B2(I) and L2(I) is defined by the centred log-ratio (clr)

transformation [9, 81], which is defined, for f ∈ B2(I), as

clr(f)(t) = fc(t) = ln f(t)− 1

η

∫
I

ln f(s) ds. (4.13)

We remark that such an isometry allows to compute operations and inner prod-

ucts among the elements in B2(I) in terms of their counterpart in L2(I) among

the clr-transforms, i.e.

clr(f ⊕ g)(t) = fc(t) + gc(t), clr(α� f)(t) = α · fc(t),

〈f, g〉B = 〈fc, gc〉2 =

∫
I

fc(t)gc(t) dt.

However, note that, by construction, the constraint∫
I

clr(f)(t)dt =

∫
I

ln f(t) dt−
∫
I

1

η

∫
I

ln f(s) ds dt = 0

occurs. This additional condition needs to be taken into account for computation

and analysis on clr-transformed density functions, as we shall show in Section

4.3. Accordingly, by considering this condition when smoothing discretized clr

transformed densities as described in Section 4.1.2, the optimal coefficients are

obtained as

b̄∗ = DK
[
(Bk+1(t)DK)>WBk+1(t)DK + ψ (DK)>NklDK

]+

K>D>B>k+1(t)Wy,

where W = Diag(w), A+ denotes the Moore-Penrose pseudoinverse of a matrix

A,

D = (k + 1) Diag

(
1

λ1 − λ−k
, . . . ,

1

λg+k+1 − λg

)
∈ Rg+k+1,g+k+1,
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K =


1 0 0 · · · −1
−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . . . . .

...
0 0 · · · −1 1

 ∈ Rg+k+1,g+k+1

and Nkl = S>l MklSl is a positive semidefinite matrix with

Mkl =

 〈B
k+1−l
−k+l , B

k+1−l
−k+l 〉2 . . . 〈Bk+1−l

g , Bk+1−l
−k+l 〉2

...
...

〈Bk+1−l
−k+l , B

k+1−l
g 〉2 . . . 〈Bk+1−l

g , Bk+1−l
g 〉2

 ∈ Rg+k+1−l,g+k+1−l.

4.2. Principal component analysis for functional
data

Principal component analysis (PCA) is a widely used multivariate statistical

technique aiming to capture the main modes of variability of the data by means of

a small number of linear combinations of the original variables. In the functional

context, the same aim is reached by functional principal component analysis

(FPCA). Here, we briefly recall FPCA, referring the reader, e.g. to [90, Chapter

8], [51, Chapter 3] and [100], for further details on this topic.

Let us consider a functional random sample X1, ..., XN in L2(I), and indicate

with 〈x, y〉2 =
∫
I
x(t)y(t)dt the inner product between two elements x, y in L2(I)

and with ‖x‖2 = (
∫
I
|x(t)|2dt)1/2 the induced norm. For ease of notation and

without loss of generality, we assume the samples to be centred. FPCA firstly

looks for the main mode of variability, i.e., for the element ξ1 in L2(I) – called

first functional principal component (FPC) – maximizing over ξ ∈ L2(I)

1

N

N∑
i=1

〈Xi, ξ〉22 subject to ‖ξ‖2 = 1. (4.14)

The remaining FPCs, {ξj}j≥2, capture the remaining modes of variability subject

to be mutually orthogonal, and are thus obtained by solving problem (4.14) with

the additional orthogonality constraint 〈ξk, ξ〉2 = 0, k < j.
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Analogously to the multivariate case, the FPCs {ξj}j≥1 coincide with the

eigenfunctions of the sample covariance operator V : L2(I)→ L2(I), e.g. [51, p.

26], acting on x ∈ L2(I) as

V x =
1

N

N∑
i=1

〈Xi, x〉2Xi,

or, equivalently, as

V x =

∫
I

v(·, t)x(t)dt,

the kernel v : I × I → R being the sample covariance function

v(s, t) =
1

N

N∑
i=1

xi(s)xi(t), s, t ∈ I.

Therefore, the j-th FPC ξj and the associated scores Ψij = 〈Xi, ξj〉2, i = 1, ..., N ,

are obtained by solving the eigenvalue equation

V ξj = ρjξj, (4.15)

where ρj denotes the j-th eigenvalue, with ρ1 ≥ ρ2 ≥ ... . As in multivariate

PCA, for each j, the term ρj/
∑

j ρj is associated with the proportion of total

variability explained by the FPC ξj.

Several computational methods can be utilized to solve equation (4.15), e.g.

[62, 65, 91]. [91, Chapter 8.4] suggest to express each datum Xi, i = 1, ..., N ,

as a linear combination of K known basis functions φ1, ..., φK and to solve the

eigenproblem (4.15) through an appropriate matrix coefficient. Indeed, suppose

that each datum Xi, i = 1, ..., N , admits the basis expansion

Xi(·) =
K∑
k=1

cikφk(·), (4.16)

or, in matrix notation, X(·) = Cφ(·), with C = (cik) ∈ RN,K , X(·) = (Xi(·)), and

φ(·) = (φi(·)). Then the variance-covariance function takes the form v(s, t) =
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N−1φ(s)′C′Cφ(t), s, t ∈ I. Suppose further that the eigenfunction ξj, j ≥ 1,

admits the expansion ξj(·) =
∑K

k=1 ajkφk(·), or in matrix notation ξj(·) = φ(·)′aj.

This yields V ξj(·) = φ(·)′N−1C′CMaj, where Mkl = 〈φk, φl〉2. Therefore the

eigenvalue equation (4.15) reduces to

N−1C′CMaj = ρiaj, (4.17)

and aj is obtained as solution of the linear system (4.17). Note that in case of

basis orthonormality M = I the FPCA problem reduces to standard multivariate

PCA of the coefficient matrix C. Otherwise, [91, Chapter 8.4] show that problem

(4.17) is equivalent to the eigenproblem

1

N
M1/2C′CM1/2uj = ρiuj

with uj = M1/2aj, i.e., FPCA reduces to a multivariate PCA of the transformed

coefficient matrix CM1/2 followed by the transformation a = M−1/2u.

4.3. Simplicial functional principal component
analysis

As functional compositions, probability density functions are featured by spe-

cific properties, such as the scale invariance and relative scale properties. The

latter would be neglected, if one applied the functional principal component anal-

ysis described in Section 4.2 to density functions. Aim of this Section is to derive

a simplicial version of FPCA, named SFPCA, by following the same scheme that

led to the formulation of FPCs in Section 4.2, but in agreement with the Bayes

Hilbert space geometry introduced in Section 4.1.3.

Let X̃1, ..., X̃N be a sample in B2(I), and denote by X1, ..., XN the corre-

sponding centred sample, i.e., for i = 1, ..., N , Xi = X̃i 	 X, where X stands

for the sample mean X = 1
N
�
⊕N

i=1 X̃i. We consider the problem of finding the

simplicial functional principal components (SFPCs) in B2(I), i.e. the elements
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{ζj}j≥1, ζj ∈ B2(I), maximizing the following objective function over ζ ∈ B2(I):

1

N

N∑
i=1

〈Xi, ζ〉2B subject to ‖ζ‖B = 1; 〈ζ, ζk〉B = 0, k < j, (4.18)

where the orthogonality condition 〈ζ, ζk〉B = 0, for k < j, holds only for j ≥ 2.

Because B2(I) is a separable Hilbert space, the minimization problem (4.18)

is well posed [51, Theorem 3.2, p. 38]. Thus, the solution of (4.18) exists and

is unique. Indeed, analogously to the L2(I) case previously discussed, the j-th

SFPC solves the eigenvalue equation

V ζj = δj � ζj, (4.19)

(δj, ζj) being the j-th eigenpairs of the sample covariance operator V : B2(I) →

B2(I), acting on x ∈ B2(I) as

V x =
1

N
�

N⊕
i=1

〈Xi, x〉B �Xi.

In order to proceed with (4.18) in practice, i.e. to express densities in the

standard L2 space, we apply the isometric isomorphism between B2(I) and L2(I)

defined by the clr-transform (4.13) that allows to rewrite the original problem

(4.18) as a maximization of the term

1

N

N∑
i=1

〈clr(Xi), clr(ζ)〉22 subject to ‖clr(ζ)‖2 = 1; 〈clr(ζ), clr(ζk)〉2 = 0, k < j

over ζ ∈ B2(I). Accordingly, for j ≥ 1 the maximization problem (4.18) can be

equivalently restated as finding ν ∈ L2 which maximizes

1

N

N∑
i=1

〈clr(Xi), ν〉22 subject to ‖ν‖2 = 1; 〈ν, νk〉2 = 0, k < j;

∫
I

ν = 0, (4.20)

where the orthogonality constraint is meaningful only for j ≥ 2 and the zero-

integral constraint incorporates the corresponding clr-transform property.
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We now show that (4.20) is solved by the eigenfunctions {ξj}j≥1 of the sample

covariance operator Vclr : L2(I)→ L2(I) of the transformed sample clr(X1), ...,

clr(XN), acting on x ∈ L2(I) as

Vclrx =
1

N

N∑
i=1

〈clr(Xi), x〉2 clr(Xi).

We first notice that the eigenfunctions {ξj}j≥1 would have solved problem (4.20),

if it had been stated without the zero-integral condition
∫
I
ν = 0, since in that case

(4.20) would have been equivalent to (4.14) (with the orthogonality constraints for

j ≥ 2). Therefore, to prove that ν = ξj maximizes (4.20) it suffices to show that

ξj fulfills also the constraint
∫
I
ξj = 0, for all j ≥ 1. To this end, we note that the

zero-integral property of the clr-transformed sample clr(X1), ..., clr(XN) implies

that Vclr admits a zero eigenvalue with associated eigenfunction ξ0 ≡ 1/
√
b− a:

Vclr ξ0 =
1

N

N∑
i=1

1√
b− a

[∫
I

clr(Xi)

]
clr(Xi) ≡ 0.

Since the eigenfunctions {ξj} corresponding to the remaining non-null eigenvalues

{ρj} are to be orthogonal to the eigenfunction ξ0, the ξj’s need to satisfy the zero-

integral condition
∫
I
ξj = 0, as 〈ξj, ξ0〉2 = 1/

√
b− a

∫
I
ξj. Another way to see this

is to notice that (a) the image of the sample covariance operator Vclr is the span of

the clr-transformed observations, (and the constant function ξ0 ≡ 1√
b−a belongs to

its kernel), and (b) the eigenfunctions corresponding to the non-null eigenvalues

form a basis of the image of Vclr. As such, each eigenfunction ξj can be written

as a unique linear combination of the functions clr(X1), ..., clr(XN). Therefore,

the zero-integral condition is fulfilled since it holds, by construction, for each

of the functions clr(Xi), i = 1, ..., N . Thus, problem (4.18) can be restated in

terms of clr-transforms as (4.20) and the SFPCs can be obtained by transforming

the eigenfunctions {ξj}j≥1 associated to the non-null eigenvalues {ρj}j≥1 of Vclr

through the inverse of the function clr, namely ζj = clr−1(ξj) =B exp(ξj), with

j ≥ 1. Note that, as in classical PCA, the eigenfunctions ξj are determined up
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to sign changes. Accordingly, the SFPCs are determined up to a powering by ±1

(i.e., if ζj solves problem (4.18), −1� ζj is a solution as well).

To compute the eigenfunctions ξj we resort to a method based on a B-spline

basis expansion. Following [75], we consider for clr(X1), ..., clr(XN) and ξj, j ≥ 1,

a B-spline basis fulfilling the zero-integral constraint,

clr(Xi)(·) =
K∑
k=1

cikφk(·), ξj(·) =
K∑
k=1

ajkφk(·). (4.21)

To compute the B-spline coefficients the usual parametrization of smoothing

splines applies, and the additional constraint is incorporated in the estimation

algorithm as described in [75]. Hence, with the same arguments used in Section

4.2, aj = (ajk) is obtained as solution of the eigenproblem

N−1C′CMaj = ρiaj,

with analogue orthogonality arguments as those previously introduced, the zero

integral constraint is inherently kept in the PCA algorithm, and thus does not

need to be explicitly imposed.

For the purpose of dimensionality reduction, the choice of the number of

SFPCs to be retained can follow the same strategies as those used in FPCA:

one may fix a threshold in the amount of variability explained by the retained

SFPCs, or look for an elbow in the scree plot. Even the interpretation of the

results of SFPCA may follow the main lines used in the L2(I) case, since the

SFPCs represent the main modes of variability of the observations around the

global mean function, but in the space B2(I) endowed with its own geometry.

Finally, a useful tool to visualize and interpret the results of SFPCs is also the

scores plan graph.

4.4. Analysis of salary distributions in Austria

To demonstrate usefulness of SFPCA in economic applications, an example

of hourly wages in Austria is presented. The data set is a subset of synthetically
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generated real Austrian SES (Structural Earnings Survey) data, contained in

the R-package laeken [4]. The total of 15691 data was divided into 10 salary

intervals, according to Sturges rule, for non-zero wages up to 44.5 EUR. Note that

only data below 99%-quantile were used to eliminate extreme values. The wages

were also divided according to location (eastern, southern and western Austria)

and five age intervals. In the next step, the absolute values were transformed to

proportions to obtain density functions and then the clr transformation (4.13),

in its descrete form (1.3), was applied.

The resulting values were smoothed using B-splines as described in Section

4.1.2 on the support I = [0, 44.5]. The cubic smoothing splines with knots

2.22752, 10, 20, 30 and 42.25 were used to obtain the B-spline coefficients that

were used afterwards for representing the clr transformed densities. The B-spline

cubic basis is displayed in Figure 4.1. The resulting smoothed densities are dis-

played in Figure 4.2, where clr transformed densities are on the left and the

original data on the right. Note that different colours distinguish the location

- green for western Austria, blue for eastern Austria and red for southern Aus-

tria. To simplify the notation, age intervals were denoted as 1 for 〈15, 29), 2 for

〈29, 39), 3 for 〈39, 49), 4 for 〈49, 59) and 5 for 〈59, 120).

From Figure 4.3 the covariance structure is rescaled. By considering the

original densities (Figure 4.3, right), most of the variability is captured by the

left part of densities, however the covariance structure of clr densities (Figure

4.3, left) shows that the variability is distributed between the left and right tails

of the distribution.

In the next step, functional principal component analysis was applied to clr

densities and to the original density functions. According to scree plot (Figure

4.4), two or maximum three SFPCs need to be taken. In Figure 4.5 scatter

plots of scores for the first two SFPCs and FPCs (the case of analyzing the

original data), respectively, are displayed. The left plot shows that age structure

dominates the location - cluster of younger people (15–29 years) is on the right

side and cluster of the oldest people (59 and more years) is on the lower left part
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Figure 4.1: The B-spline basis.
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Figure 4.2: Density of clr-transformed densities (left) and original densities (right)
of hourly wages in Austria.
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Figure 4.3: The covariance structure of clr-densities (left) and original densities
(right).

of the plot (except of the oldest group of people from southern Austria). In the

second quadrant of the scatter plot most of the other observations are located,

surprisingly still clustered according to age groups. By looking at data structure

in Figure 4.5 (left), it can be concluded that the first SFPC can be linked to height

of salary. Particularly, it nicely reflects the general fact that in early age salaries

are not very high and with increasing experiences (followed by increasing age) the

salary increases as well. The only exception seems to be southern Austria for the

oldest age group that might indicate some specific structure of the labour market

there. Moreover, it seems that in eastern Austria, people have in general higher

salaries - blue observations are always located in the left part of each age group.

It might correspond to the fact that in eastern Austria also Vienna, capital of

the country, is located. In the right plot of Figure 4.5, grouping according to age

is still preserved, but clusters are far not so well separated as before and also the

role of the oldest age group is no more so clear. Regional effects are completely

lost.

In Figure 4.6, the first three functional principal components (harmonics) are

visualized. In the upper panel, the SFPCs are displayed - the first component

characterizes the variability of the right tail of the distribution, the main contri-
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Figure 4.4: Scree plot SFPCA (upper plot) and FPCA (lower plot).
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Figure 4.6: Plots of harmonics of SFPCA (upper panel) and FPCA (lower panel).

bution is provided by wages higher than 30 EUR. The second SFPC highlights

lower incomes, similarly as the third SFPC. The lower panel of Figure 4.6 provides

a completely different picture. The first two harmonics display the largest vari-

ability on the left tail of the distribution, the third FPC is hardly interpretable.

Variability in higher wages is thus poorly represented by analyzing the original

densities.

In Figure 4.7 projections of densities using SFPC1 and SFPC2 (left) and

FPC1 and FPC2 (right) are displayed. We can see that projection using the

results of SFPCA comparing to the right plot of Figure 4.2 is satisfactory - the

main modes of variability are pretty captured. However, the right plot of Figure

4.7 is hardly comparable with the original functions - some curves are even below

zero, unacceptable for density functions, and the curves have also different shape.

From the results or SFPCA we can conclude that taking the relative nature

of density functions, i.e. functional compositions, into account leads to better,

more meaningful and interpretable results.
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Conclusions

The main goal of this thesis was to show how the compositional analysis can

be useful and meaningful in economic applications. Although not for all papers

that form the base of the thesis we finally succeeded to include an economic

application, it was shown in previous chapters that the logratio methodology has

a great potential also in this field.

Firstly, the definition of compositional data, together with their geometry,

coordinate representation and basic descriptive statistics, was necessary to intro-

duce. Next parts of this thesis were focused on the popular statistical methods

in compositional context.

Dimension reduction methods belong to the most favourite statistical tools

when analyzing the structure of data. Firstly, the principal component analysis

was introduced. Its results are often displayed using biplot - for the purposes

of compositional data analysis its interpretation needs to be adapted due to clr

coordinate representation. When dealing with three-part compositions, only two

principal components are obtained that enables to analyze deeply their interpreta-

tion in sense of pairwise logratios of the original parts. If the input compositional

data are enriched with a third mode, parallel factor analysis can be applied to

reveal main patterns in the data structure. The dimension reduction methods

were applied to trade flows structure data set to see the advantages of taking the

relative nature of compositional data into account for statistical processing.

In regression analysis, several possibilities when analyzing compositional data

can occur. In the basic setting, either the response or explanatory variables

are compositional. Introducing these two regression models was necessary for
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further developments presented in the thesis. Particularly, for regression with

compositional response and explanatory variables, where only a special case of

two-part compositions is considered. Using standard regression for such data

is completely inappropriate, but even for the compositional model it is always

necessary to check first, whether data follow the trend proposed by the model.

From our experience, this is very important step particularly for economic data.

A different methodological approach must be considered, when the response

and also explanatory variables come from one composition. Accordingly, in ad-

dition to proper coordinate representation they are both naturally burdened by

measurement errors which leads to errors-in-variable models, concretely to or-

thogonal regression based on principal component analysis. In order to proceed

with the corresponding statistical inference, bootstrap sampling was used to con-

struct confidence intervals for regression parameters and to test their significance.

Due to outlying observations that might occur in real compositional data sets also

robust version of the regression model was considered.

The final part of this thesis aimed to present more advanced field of statisti-

cal analysis - functional data analysis that is still not very common in economic

applications. The chapter introduces the basics of functional data analysis, de-

scriptive statistics, smoothing of functions and explains specifics of density func-

tions as functional compositions. The general methodology was presented for the

special case of functional principal component analysis, performed for clr trans-

formed densities. Finally, the resulting simplicial functional principal component

analysis was applied to synthetic data with salary distributions in Austria and

compared with the standard approach.

The most difficult part of this thesis was to present different methods and

their economic applications in a coincise form. The hope is that it could serve as

a “guide” or, better, as a list of (necessarily incomplete) options how to deal with

economic data that have compositional character. There are, of course, further

important methods in economic context, not listed here, among them for example

compositional time series. However, due to volatility of financial time series, that
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form one potential economic application, we are faced with multivariate ARCH

and GARCH models that belong to the most difficult ones even in their univariate

cases. Hence, this is one of many other possibilities how to further develop this

topic in the future.
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1. Abstract

Logratio analysis of compositional data, multivariate observations carrying relative

information, is nowadays widely used in nature sciences, such as geology or chemistry,

however, it is not widespread in social sciences like economy, psychology, etc. The

thesis deals with adaptations of known statistical methods for compositional data with

economic applications. It reveals that by taking the relative nature of data into account

the models provide relevant results. Besides the dimension reduction methods (principal

component analysis, PARAFAC), the thesis particularly includes the regression analysis

which is very popular in economic applications. Within regression analysis, the thesis

mainly deals with the situation where both the dependent and independent variables

are compositional, especially when the regression between the parts of a composition is

considered. In such a case, orthogonal regression, a kind of errors-in-variable models,

needs to be applied for parameter estimation instead of ordinary least squares method.

Finally, functional analogy to principal component analysis is applied for the density

functions, i.e. functional compositions.

Key words: compositional data; principal component analysis; linear regression; or-

thogonal regression; functional data; density functions
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2. Abstrakt v českém jazyce

Logratio analýza kompozičních dat, mnohorozměrných pozorování nesoucích relativní

informaci, je již hojně využívána v přírodních vědních disciplínách, jako je geologie nebo

chemie, avšak ve vědách společenských - ekonomie, psychologie a další, ještě není příliš

známá. Tato práce se zabývá adaptací známých statistických metod pro kompoziční data

s ekonomickými aplikacemi. Ukazuje se, že pokud se bere v úvahu relativní charakter

dat, modely poskytují relevantní výsledky. Práce obsahuje kromě metod pro redukci

dimenze (metoda hlavních komponent, PARAFAC) zejména regresní analýzu, která je

v ekonomických aplikacích velmi oblíbená. V jejím rámci se pak zabývá zejména situací,

kdy je kompoziční závisle i nezávisle proměnná, speciálně když regresi uvažujeme mezi

složkami kompozice. V takovém případě je potřeba použít pro odhady parametrů or-

togonální regresi, což je typ regrese s chybami v proměnných, namísto obvyklé metody

nejmenších čtverců. Nakonec práce popisuje funkcionální obdodu metody hlavních kom-

ponent, která je aplikována na hustoty, neboli funkcionální kompozice.

Klíčová slova: kompoziční data; metoda hlavních komponent; regresní analýza; orto-

gonální regrese; funkcionální data; hustoty
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3. Introduction

Compositional data (or compositions for short) are known as column vectors with

positive components that carry relative information, in other words, the only relevant

information is contained in ratios between components [1]. Mostly, compositions sum

to a constant, like 1 in case of proportions or 100 for percentages, however, it is just a

proper representation in the equivalence class of proportional vectors, forming the sample

space of compositional data. Accordingly, possible choice of constant sum constraint

should not influence results of statistical analysis due to scale invariance property of

compositions [46, 48].

The standard Euclidean geometry, defined in real space is not appropriate for com-

positional data. It is caused by relative character of compositions, since Euclidean ge-

ometry deals with absolute values of components [48]. Hence, the Aitchison geometry

with Euclidean vector space properties was developed which captures the relative nature

of compositions [3, 47].

Nevertheless, almost all statistical methods rely on the Euclidean geometry in real

space [15]. Accordingly, it is not appropriate to apply them directly to compositions.

Instead, the logratio methodology [1,19,48] is used to express compositional data in real

space using appropriate coordinates and, if necessary, to transform the results back to the

original sample space [42, 46]. It is of particular importance to choose such coordinates

that lead to interpretable and meaningful results.

The analysis of compositional data is nowadays popular in fields such as geology or

chemometrics [8, 46], however, in social sciences like economy, psychology or sociology,

compositional data are not widespread yet. Up to rare applications of the logratio

methodology in economics [2, 27], despite of compositional nature of data [4, 14, 55], the

analysis does not reflect this fact. Therefore, this thesis is aimed to present popular

statistical tools adapted to compositional data and applied to economic data.

6



4. Recent state summary

4.1. Compositional data

Compositional data [1, 48] are strictly positive multivariate observations that carry

only relative information. By the relative information it is meant that absolute values

are no longer important for the analysis, instead, ratios between parts of a composition

capture the only relevant information. The sample space of representations of compo-

sitional data within the equivalence class of proportional vectors is simplex [1, 46, 48],

which is defined as a set of strictly positive real numbers that sum up to a constant,

SD =

{
x = (x1, . . . , xD)

′|xi > 0, i = 1, . . . , D;
D∑
i=1

xi = κ

}
, (1)

where κ is any positive real number, e.g. 1 in case of proportions or 100 for percentages.

Properties of compositional data that distinguish compositional data from standard

multivariate observations can be formalized by principles of compositional data analysis

[16, 48]. Among them, scale invariance property and subcompositional coherence seem

to be the most important when analyzing compositional data. The first one means that

the information conveyed by a composition does not depend on the units in which a

composition is measured, i.e. characteristics of compositions should be invariant under a

change of scale. According to the second one, the information contained in a composition

of D parts should not be in a conflict with that coming from a subcomposition containing

d parts, where d ≤ D. The last principle is called permutation invariance - reordering

parts of a composition does not affect the included information.

The Aitchison geometry with Euclidean vector space structure follows closely the

above stated principles of compositional data analysis [46]. Basic operations substituting

sum of two real vectors and multiplication of a vector by a scalar are called perturbation

and power transformation, respectively. Their definition for x ∈ SD, y ∈ SD and α ∈ R

follows,

x⊕ y = C(x1 · y1, . . . , xD · yD)′, α� x = C(xα1 , . . . , xαD)′.
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The triple (SD,⊕,�) forms vector space structure [48] and to obtain Euclidean vector

space, inner product and the corresponding norm and distance are defined as well:

〈x,y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj
, ‖x‖a =

√
〈x,x〉a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj

)2

,

da(x,y) = ‖x⊕ (−1)� y‖a = ‖x	 y‖a =

√√√√ 1

2D

D∑
i=1

D∑
j=1

(
ln
xi
xj
− ln

yi
yj

)2

.

Since almost all standard statistical methods are defined in real space, it is not

appropriate to apply them directly to compositions. In order to perform statistical

processing using standard multivariate tools, it is necessary to express compositions first

in proper real coordinates [48].

One of the possibilities are centred logratio (clr) coordinates that are coordinates

with respect to generating system of simplex. They are defined as

clr(x) =

(
ln

x1
g(x)

, . . . , ln
xD
g(x)

)′
, (2)

where g(x) stands for geometric mean of x. Although the clr coordinates are symmetric

in the components, the sum of the coefficients is zero and this leads to singular covariance

matrix. Nevertheless, they are still used in the practice because they translate operations

and metrics from the simplex endowed with the Aitchison geometry into real space.

Particularly, for compositions x,y ∈ SD and real constants α, β it holds that

clr(α� x⊕ β � y) = α · clr(x) + α · clr(y);

〈x,y〉a = 〈clr(x), clr(y)〉 ;

‖x‖a = ‖clr(x)‖ ; da(x,y) = d(clr(x), clr(y)).

Since the Aitchison geometry has dimension one less than the number of components

(D − 1), the clr coefficients are not coordinates with respect to a basis of the simplex.
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At the early stage of the logratio methodology, the additive logratio (alr) coordinates [1]

were used as well. In this case, each part of the composition is divided by one chosen

part, e.g. the last part xD, to obtain the respective logratio. This leads to a vector of

alr coordinates which is of dimension D − 1:

alr(x) =

(
ln
x1
xD

, . . . , ln
xD−1
xD

)′
.

It is obvious that alr coordinates are not symmetrical in the components and, unlike clr

coordinates, they do not preserve distances. Thus they can be used only for modeling

purposes. The reason is that alr coordinates do not correspond to an orthonormal basis

of the simplex.

To avoid singular covariance matrix, coordinates with respect to an orthonormal basis

of the simplex could be another option. With a particular choice of the orthonormal basis,

the composition x ∈ SD can be written as

x =
D−1⊕
i=1

x∗i � ei, x
∗
i = 〈x, ei〉a ,

where x∗ = (x∗1, . . . , x
∗
D−1)

′ is the vector of coordinates of x with respect to this basis.

The resulting coordinates are called isometric logratio (ilr) coordinates [19]. The corre-

sponding mapping is isometric isomorphism between SD and RD−1 and thus it preserves

distances and translates operations similarly as for the clr coordinates.

The ilr coordinates that are used in the thesis [32, 35] are defined as a set of D

orthonormal coordinate systems, namely z(l) = (z
(l)
1 , . . . , z

(l)
D−1)

′, l = 1, . . . , D,

z
(l)
i =

√
D − i

D − i+ 1
ln

x
(l)
i

D−i

√∏D
j=i+1 x

(l)
j

, i = 1, . . . , D − 1. (3)

Here (x(l)1 , x
(l)
2 , . . . , x

(l)
l , x

(l)
l+1, . . . , x

(l)
D )′ stands for such a permutation of the parts (x1, . . . , xD)′,

that always the l-th compositional part fills the first position, (xl, x1, . . . , xl−1, xl+1, . . . , xD)
′.

In such a configuration, the first ilr variable z(l)1 explains all the relative information (log-
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ratios) about the original compositional part xl (it is nothing else than a scaled aggre-

gation of all logratios with xl), the coordinates z(l)2 , . . . , z
(l)
D−1 then explain the remaining

logratios in the composition [24]. Note that the only important position is that of x(l)1

(that is interpretable through z(l)1 ), the other parts can be chosen arbitrarily, because dif-

ferent ilr coordinates are orthogonal rotations of each other [19]. Of course, z(l)1 cannot

be identified with compositional part xl, as the other parts are also naturally involved

through the corresponding logratios. Its interpretation is thus limited due to the specific

structure of the Aitchison geometry. We can also see that this coordinate is formed by a

logratio between the part xl and an “average part”, resulting from the geometric mean

of the remaining parts in the composition. Therefore, values of z(l)1 represent a measure

of dominance of the part xl with respect to the other parts.

4.2. Economic applications of compositional data

Although there is a big potential in economic applications of compositional data

analysis, logratio methodology has not been widespread in this field yet. Up to now, just

few papers with an economic application are available, e.g. [2,7,26,27,39]. For example,

in [27] the application of compositional data analysis to consumer demand systems is

described. Alternative approaches are mentioned as well and possible applications of the

logratio methodology in economics are proposed there.

The compositional VARIMA time series were introduced in [2]. For an example of

expenditure shares in the UK was shown that the model does not depend on the cho-

sen logratio coordinates, however, the clr coordinates should be avoided due to singular

covariance matrix. Accordingly, the choice of coordinates depends mainly on the inter-

pretability of the resulting model.

5. Thesis objectives

The main purpose of the thesis is to adapt popular statistical tools within the log-

ratio methodology and to develop new methods that are of primary interest in economic
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applications of compositional data. When the (relative) structure of a dataset is of

main interest, dimension reduction methods need to be applied. Among them, principal

component analysis is one of the most popular one and by considering three-mode data,

parallel factor analysis (PARAFAC) as well. On the other hand, when relations between

variables are analyzed, which is very common in economics, the regression analysis is

applied. And finally, when mass data are collected, that form (approximately continuous)

density functions, functional data analysis tools are applied by considering the relative

nature of densities using the Bayes space methodology. When the interest is devoted

to dimension reduction of density functions, an adapted version of functional principal

component analysis is used.

6. Theoretical framework and applied methods

6.1. Dimension reduction methods

In economic world, one can be interested in analyzing the multivariate structure of

a dataset. One of the most popular methods for this purpose is principal component

analysis (PCA). It leads to dimension reduction based on linear combination of the

original data which depletes most of the variability (for more see, e.g. [30, 37]). For

compositional data, clr coordinates (2) are used instead of the original data [23].

The results of PCA can be displayed in biplot [29] which is a scatterplot of the first

two principal components, where scores are displayed as points and loadings as rays.

However, when the PCA is applied to centred data in clr coordinates, the interpretation

needs to be adjusted [38,48]. The basic terms are ray, which joins the origin to a vertex hj

(formed by the first two components of the respective loading vector), and link, which

joins two vertices hj and hk. Links and rays provide information about the relative

variability in a compositional dataset: length of a link between hj and hk approximates

standard deviation of the logratio between j-th and k-th compositional parts and length

of a ray approximates standard deviation of the respective clr coefficient. Consequently,

if the vertices coincide, then the variance of corresponding logratio is approximately zero
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and this means that the corresponding two parts are proportional. Links also provide

information about correlation of two pairwise logratios: suppose two links jk and il

intersect in M , then

cos(jMi) ≈ corr

(
ln
xj
xk
, ln

xi
xl

)
.

For three-part composition, x = (x1, x2, x3)
′, we can deeply analyze the variance

structure of the principal components and its impact to interpretation of the resulting

orthonormal coordinates (3). Although in case of standard real data the covariance

structure of principal components can be also expressed using elements of the original

covariance matrix [36], we will follow an alternative way of its derivation that enables a

deeper insight into covariance structure of three-part compositional data. The covariance

structure is described in the following theorem, for more information see [34].

Theorem 1. The covariance structure of principal components (orthonormal coordi-

nates) z∗1 , z
∗
2 for three-part composition x = (x1, x2, x3)

′ can be expressed as

var(z∗1) =
a+ b+ c

6
+

√
(a− b)2 + (b− c)2 + (c− a)2

3
√
2

,

var(z∗2) =
a+ b+ c

6
−
√

(a− b)2 + (b− c)2 + (c− a)2

3
√
2

, (4)

where a, b, c correspond to var
(
ln x1

x2

)
, var

(
ln x1

x3

)
, var

(
ln x2

x3

)
, respectively.

Note that big differences between variances of logratios contribute for maximization

of the first principal component at the expense of the second one. This is obvious from

the second part of (4) - in variance of z∗1 we add square root of the sum of squared

differences of these variances while in var(z∗2) we subtract it. Furthermore, it is not

necessary to consider the covariance because principal components are uncorrelated [30].

The above theorem was applied to interpret principal components of gross value added

compositions in German regions [34].

12



6.2. Linear regression analysis

Linear regression is a very popular statistical tool in economic world. When we

are dealing with compositional data, four main cases might occur. The first two deal

with either compositional response or explanatory variables; they are described, e.g.,

in [17,32,48]. The third case joins the first two together which means that we work with

both compositional response and explanatory variables [44]. The last case considers

analyzing the relation between parts of a composition [35] - this will be described in a

more detail here.

Most of the economic indicators, such as gross domestic product, value added, export,

import, etc., consist of many variables. For example GDP, in the income approach, is

computed as a sum of compensation of employees, gross operating surplus, gross mixed

income and taxes less subsidies on production and imports. Generally, we are interested

in analyzing GDP, but we can be also interested in analyzing the relation between the

variables that form the GDP composition. For this purpose, orthogonal regression in

proper coordinates seems to be the preferable option [35].

A particular challenge for the choice of coordinates comes from the fact that at least

two parts in the composition are of simultaneous interest, the response part and co-

variate part(s). Consequently, the question arises, how to use coordinates (3) for the

case of regression of one of the compositional parts to the remaining parts. In order to

analyze the influence of a single compositional part on the explanatory variables, D mul-

tiple regression models according to the coordinate representations (3) were constructed.

Let xl plays the role of the response variable that should be represented by a coordi-

nate as well. Since the main task is to analyze the influence of the other parts on xl,

it seems reasonable that also the corresponding coordinate will contain information on

the relation of xl to all remaining parts in the composition. Thus, in the notation of

(3), z(l)1 plays the role of such a coordinate. Consequently, we can proceed with the co-

ordinate representation of the explanatory subcomposition (x1, . . . , xl−1, xl+1, . . . , xD)
′.

For this purpose, the coordinates z(k)2 , . . . , z
(k)
D−1 according to the reordered subcomposi-

tion (xk, x2, . . . , xi, . . . , xD)
′, i 6= {k, l}, k = 2, . . . , D, can be used. Similarly as before,
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the coordinate z(k)2 explains all the relative information about part xk in the resulting

subcomposition. Considering the range of k, we arrive at D − 1 regression models

z
(l)
1 = β

(k)
0 + β

(k)
1 z

(k)
2 + . . .+ β

(k)
D−2z

(k)
D−1 + ε (5)

(in theoretical form, ε stands for an error term), assigned to single explanatory composi-

tional parts. The interpretation of these models is similar to the case of regression with

compositional covariates [32], i.e. in each model just the absolute term parameter and

the parameter corresponding to the coordinate z(k)2 are used for further interpretation

and to perform statistical inference (confidence intervals, hypotheses testing).

Since both response and explanatory variables arise from one composition, it cannot

be assumed that the covariates represent errorless variables like in the case of a real-

valued response [32]. Consequently, the use of an ordinary multiple regression model is

inappropriate and can even lead to biased results. Therefore, we apply an orthogonal

regression model (or, equivalently, a total least squares model) for this purpose, which

is a specific type of errors-in-variable (EIV) model [28].

The estimation of regression parameters will be described (following the geometrical

motivation) for the case of the four-part composition, x = (x1, x2, x3, x4)
′, where x1

was chosen for the response and the other parts form explanatory variables. For this

purpose, we assume to have a random vector z = (z1, z2, z3)
′ (an orthonormal coordinate

representation of the composition following (3), where z1 ≡ z
(1)
1 and zi ≡ z

(2)
i for i = 2, 3)

and the task is to find a relationship between the response variable z1 and the covariates

z2, z3, expressed in the form z1 = β0 + β1z2 + β2z3 + ε, with the regression parameters

β0, β1, β2.

From the geometrical point of view the basic idea is to fit a plane to the data using

PCA. The loadings of the first two principal components define a basis of the plane.

As the third principal component is orthogonal to the previous ones, its loadings define

the normal vector to the plane, n = (n1, n2, n3)
′. The plane passes through the point

t, representing the location estimate of the corresponding n × 3 data matrix Z (the

arithmetic mean in the classical case), and its perpendicular distance from the origin
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is t′n. The perpendicular distance from each point in Z to the plane (the norm of the

residuals) is the inner product of each centered point and the normal vector to the plane.

The fitted plane minimizes the sum of squared errors.

Consequently, the estimated regression parameters are obtained using the elements

of the normal vector, namely

b0 =
t′n

n3

, b1 = −
n1

n3

, b2 = −
n2

n3

.

We can also consider the general case, where a vector of orthonormal coordinates

has D − 1 components, z = (z1, z2, . . . , zD−1)
′. As in the previous case, the response

variable is z1 and covariates z2, . . . , zD−1. Then the regression relation is expressed in

the form z1 = β0+β1z2+β2z3+ · · ·+βD−2zD−1+ ε for a vector of regression parameters

β = (β0, β1, β2, . . . , βD−2)
′. Denote the loading vector corresponding to the smallest

eigenvalue as n = (n1, n2, . . . , nD−1)
′. Then the estimated parameters b are obtained

using values of the loading vector as follows,

b0 =
t′n

nD−1
, b1 = −

n1

nD−1
, b2 = −

n2

nD−1
, . . . , bD−2 = −

nD−2
nD−1

,

where t is the mean vector of Z.

In order to support the interpretation of the outcome of orthogonal regression, it

is desirable to obtain confidence intervals for the regression parameters, and p-values

for tests about these parameters. This statistical inference is only possible with strict

distributional assumptions, a better strategy is to derive the inference by resampling

methods. In order to relax the assumptions about the distribution of the input data, the

nonparametric bootstrap [11,25] can be applied.

Regression estimators which are based on classical SVD or PCA are sensitive to

outliers that naturally occur in most real-world data sets. Therefore, we also considered

a robust version of the orthogonal regression. Although robust versions of SVD are

available (e.g. [10]), it is simpler and computationally more attractive to use robust

PCA, which is obtained through a robust estimation of the covariance matrix (e.g. [22]).
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Among other possibilities like [9,21,41], MM-estimators [51] are employed, because they

are highly efficient when the errors have a normal distribution, their breakdown point is

0.5 and they have a bounded influence function.

The available theory for robust estimators is limited to asymptotic results. Although

bootstrap is a very useful tool, in case of robust estimators there are two problems:

computational complexity of robust estimators and the instability of the bootstrap in

case of outliers. Thus we used fast and robust bootstrap [52, 54] which is based on the

fact that the robust estimators (concretely S- and MM-estimators) can be represented

by smooth fixed point equations which allow to calculate only a fast approximation of

the estimates in each bootstrap sample.

In [35], the above model was used to analyze the relation between manufacturing and

other parts of gross value added.

6.3. Functional principal component analysis applied on density
functions

Nowadays, an increasing number of studies are based on complex data, such as curves,

surfaces or images. As a direct consequence, the importance of functional data analysis

(FDA), e.g. [49], has recently strongly increased. In recent years, a large body of lit-

erature has been developed in this field, e.g. [31, 50], however, still little attention has

been paid to the problem of dealing with functional data that are probability density

functions [12, 13, 43, 45, 56]. Even though it might seem that density functions are just

a special case of functional data – with a constant-integral constraint equal to one –

standard FDA methods appear to be inappropriate for their statistical treatment, as

they do not consider the particular constrained nature of the data. In this context,

probability density functions have recently been interpreted as functional compositional

data, i.e., functional data carrying only relative information. To handle this kind of

data, the Aitchison geometry has been extended to the so called Bayes spaces: a Hilbert

space structure for σ-finite measures, including probability measures, has been worked

out in [6], based on the pioneering work of [18] and the subsequent developments of [5]
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and [20].

We call B2(I) the Bayes space of (equivalence classes of) positive functional composi-

tions f on I with square-integrable logarithm. In particular, we here consider continuous

(hence bounded) functional compositions on the compact support I = [a, b]. Given two

absolutely integrable density functions f, g ∈ B2(I) and a real number α ∈ R we indicate

with f ⊕ g and α � f the perturbation and powering operations, respectively, defined

as [6, 18]:

(f ⊕ g)(t) = f(t)g(t)∫
I
f(s)g(s) ds

, (α� f)(t) = f(t)α∫
I
f(s)α ds

, t ∈ I.

The resulting functions are readily seen to be probability density functions. [18] prove

that B2(I) endowed with the operations (⊕,�) is a vector space. Note that the neutral

elements of perturbation and powering are e(t) = 1/η, with η = b− a (i.e., the uniform

density), and 1, respectively. Moreover, the difference between two elements f, g ∈

B2(I), denoted by f 	 g, is obtained as perturbation of f with the reciprocal of g, i.e.,

(f	g)(t) = (f⊕ [(−1)�g])(t), t ∈ I. To endow B2(I) with a Hilbert space structure, [18]

define the inner product

〈f, g〉B =
1

2η

∫
I

∫
I

ln
f(t)

f(s)
ln
g(t)

g(s)
dt ds, f, g ∈ B2(I), (6)

with η = b− a, which induces the following norm,

||f ||B =
[
1

2η

∫
I

∫
I

ln2 f(t)

f(s)
dt ds

]1/2
.

The space B2(I), endowed with the inner product (6), is proved to be a separable Hilbert

space in [18].

As functional compositions, probability density functions are featured by specific

properties, such as the scale invariance and relative scale properties. The latter would

be neglected, if one applied the functional principal component analysis (FPCA) to

density functions; for more see [49, Chapter 8], [31, Chapter 3] and [53]. The simplicial

version of FPCA, named SFPCA, is derived by following the Bayes space methodology.
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Let X̃1, ..., X̃N be a sample in B2(I), and denote by X1, ..., XN the corresponding

centred sample, i.e., for i = 1, ..., N , Xi = X̃i 	X, where X stands for the sample mean

X = 1
N
�
⊕N

i=1 X̃i. We consider the problem of finding the simplicial functional principal

components (SFPCs) in B2(I), i.e., the elements {ζj}j≥1, ζj ∈ B2(I), maximizing the

following objective function over ζ ∈ B2(I):

1

N

N∑
i=1

〈Xi, ζ〉2B subject to ‖ζ‖B = 1; 〈ζ, ζk〉B = 0, k < j, (7)

where the orthogonality condition 〈ζ, ζk〉B = 0, for k < j, holds only for j ≥ 2.

Because B2(I) is a separable Hilbert space, the minimization problem (7) is well posed

[31, Theorem 3.2, p. 38]. Thus, the solution of (7) exists and is unique. Accordingly,

the j-th SFPC solves the eigenvalue equation

V ζj = δj � ζj, (8)

(δj, ζj) being the j-th eigenpairs of the sample covariance operator V : B2(I) → B2(I),

acting on x ∈ B2(I) as

V x =
1

N
�

N⊕
i=1

〈Xi, x〉B �Xi.

In order to proceed with (7) in practice, i.e. to express densities in the standard

L2 space, we apply the isometric isomorphism between B2(I) and L2(I) defined by the

clr-transform

clr(f)(t) = fc(t) = ln f(t)− 1

η

∫
I

ln f(s) ds. (9)

However, note that, by construction, the constraint∫
I

clr(f)(t)dt =
∫
I

ln f(t) dt−
∫
I

1

η

∫
I

ln f(s) ds dt = 0

occurs. This additional condition needs to be taken into account for computation and

analysis on clr-transformed density functions.
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The clr-transform allows to rewrite the original problem (7) as a maximization of the

term

1

N

N∑
i=1

〈clr(Xi), clr(ζ)〉22 subject to ‖clr(ζ)‖2 = 1; 〈clr(ζ), clr(ζk)〉2 = 0, k < j

over ζ ∈ B2(I). Accordingly, for j ≥ 1 the maximization problem (7) can be equivalently

restated as finding ν ∈ L2 which maximizes

1

N

N∑
i=1

〈clr(Xi), ν〉22 subject to ‖ν‖2 = 1; 〈ν, νk〉2 = 0, k < j;

∫
I

ν = 0, (10)

where the orthogonality constraint is meaningful only for j ≥ 2 and the zero-integral

constraint incorporates the corresponding clr-transform property.

We now show that (10) is solved by the eigenfunctions {ξj}j≥1 of the sample covari-

ance operator Vclr : L2(I)→ L2(I) of the transformed sample clr(X1), ..., clr(XN), acting

on x ∈ L2(I) as

Vclrx =
1

N

N∑
i=1

〈clr(Xi), x〉2 clr(Xi).

We first notice that the eigenfunctions {ξj}j≥1 would have solved problem (10), if it

had been stated without the zero-integral condition
∫
I
ν = 0. Therefore, to prove that

ν = ξj maximizes (10) it suffices to show that ξj fulfills also the constraint
∫
I
ξj = 0, for

all j ≥ 1. To this end, we note that the zero-integral property of the clr-transformed

sample clr(X1), ..., clr(XN) implies that Vclr admits a zero eigenvalue with associated

eigenfunction ξ0 ≡ 1/
√
b− a:

Vclr ξ0 =
1

N

N∑
i=1

1√
b− a

[∫
I

clr(Xi)

]
clr(Xi) ≡ 0.

Since the eigenfunctions {ξj} corresponding to the remaining non-null eigenvalues {ρj}

are to be orthogonal to the eigenfunction ξ0, the ξj’s need to satisfy the zero-integral

condition
∫
I
ξj = 0, as 〈ξj, ξ0〉2 = 1/

√
b− a

∫
I
ξj. Another way to see this is to notice that
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(a) the image of the sample covariance operator Vclr is the span of the clr-transformed

observations, (and the constant function ξ0 ≡ 1√
b−a belongs to its kernel), and (b) the

eigenfunctions corresponding to the non-null eigenvalues form a basis of the image of

Vclr. As such, each eigenfunction ξj can be written as a unique linear combination of the

functions clr(X1), ..., clr(XN). Therefore, the zero-integral condition is fulfilled since it

holds, by construction, for each of the functions clr(Xi), i = 1, ..., N . Thus, problem (7)

can be restated in terms of clr-transforms as (10) and the SFPCs can be obtained by

transforming the eigenfunctions {ξj}j≥1 associated to the non-null eigenvalues {ρj}j≥1 of

Vclr through the inverse of the function clr, namely ζj = clr−1(ξj) =B exp(ξj), with j ≥ 1.

Note that, as in classical PCA, the eigenfunctions ξj are determined up to sign changes.

Accordingly, the SFPCs are determined up to a powering by ±1 (i.e., if ζj solves problem

(7), −1� ζj is a solution as well).

To compute the eigenfunctions ξj we resort to a method based on a B-spline basis

expansion. Following [40], we consider for clr(X1), ..., clr(XN) and ξj, j ≥ 1, a B-spline

basis fulfilling the zero-integral constraint,

clr(Xi)(·) =
K∑
k=1

cikφk(·), ξj(·) =
K∑
k=1

ajkφk(·). (11)

To compute the B-spline coefficients the usual parametrization of smoothing splines

applies, and the additional constraint is incorporated in the estimation algorithm as

described in [40]. Hence, aj = (ajk) is obtained as solution of the eigenproblem

N−1C′CMaj = ρiaj,

where C = cik. With analogue orthogonality arguments as those previously introduced,

the zero integral constraint is inherently kept in the PCA algorithm, and thus does not

need to be explicitly imposed.

The above introduced methodology was applied to dimension reduction of salary

distributions in Austria regions.
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7. Original results and summary

The main goal of this thesis was to show how the compositional analysis can be useful

and meaningful in economic applications. Although not for all papers that form the base

of the thesis we finally succeeded to include an economic application, it was shown that

the logratio methodology has a great potential also in this field.

The dissertation thesis contributes to three basic methods useful for the statistical

analysis of economic data. The first part consists of dimension reduction methods.

Here, the covariance structure of principal components for three-part compositions brings

a deeper insight into variance structure of orthonormal coordinates. Other extension

consists in application of principal component analysis and PARAFAC to a compositional

dataset of trade flows.

The second part of the thesis aims to regression analysis, where two basic cases (re-

gression with compositional either response or explanatory variables) are extended by

the case, where both the response and covariates are compositional [44] and by analyzing

the relation between parts of a composition [35]. In the latter regression model, the first

important task was how to define interpretable orthonormal coordinates, since one part

forms the response and other parts of the same composition form explanatory variables.

Second important task was to define such a regression model which is able to deal with

measurement errors contained also in the independent variables. Accordingly, the or-

thogonal regression based on the outputs of principal component analysis was applied.

In order to obtain statistical inference, to support the regression results, nonparametric

boots̃trap was used. Furthermore, the classical regression models are sensitive to outlying

observations, thus the robust counterpart was developed and fast and robust bootstrap

was applied to obtain the statistical inference also for the robust parameter estimates.

Both classical and robust regression models were applied to an economic example.

The final part of the thesis deals with functional compositions - density functions.

Here reformulation of the standard functional principal component analysis (FPCA) led

to development of simplicial functional principal component analysis, where the FPCA is

adapted to the space of clr transformed densities. Again, the theoretical considerations
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are applied to an economic example - salary distributions in regions of Austria.

The most difficult part of this thesis was to present different methods and their

economic applications in a coincise form. The hope is that the thesis could serve as

a list of (necessarily incomplete) options how to deal with economic data that have

compositional character. There are, of course, further important methods in economic

context, not listed here, among them for example compositional time series. However,

due to volatility of financial time series, that form one potential economic application, we

are faced with multivariate ARCH and GARCH models that belong to the most difficult

ones even in their univariate cases. Hence, this is one of many other possibilities how to

further develop this topic in the future.
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