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Abstract
This thesis explores the use of Geometric algebras in Quantum computing. It begins by defining
the general Cli�ord algebra and then derives a specific Complex Geometric algebra that is well-
suited for representing quantum computing systems. This approach is compared to the traditional
method of using a classical matrix representation. By analyzing and comparing these two methods,
the thesis aims to provide insights into the potential advantages of using geometric algebras for
quantum computing applications.

Abstrakt
Tato práce se zab∫vá vyu�itím geometrick∫ch algeber v oblasti kvantového po ítání. Nejprve je
definována obecná Cli�ordova algebra a následnÿ je odvozena specifická komplexní geometrická
algebra, která je vhodná pro reprezentaci kvantov∫ch v∫po t�. Tento p�ístup je porovnán s
tradi ní metodou pou�ití klasické maticové reprezentace. Cílem práce je poskytnout poznatky o
potenciálních v∫hodách pou�ití geometrick∫ch algeber pro kvantové v∫po ty.
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Roz�í�en∫ abstrakt
Tato práce popisuje mo�né vyu�ití geometrick∫ch algeber (GA) v problematice kvantového po ítání
(QC). Je popsáno odvození reprezentace kvantového po ítání v GA a následnÿ je tento p�ístup
porovnán s klasickou maticovou reprezentací, která je v sou asnoti pou�ívána.

V první kapitole jsou definovány klí ové pojmy z algebry a jsou zasazeny do kontextu. Zvlá��
pozornost je vÿnována bilineárním a kvadratick∫m formám a také jednotliv∫m algebraick∫m
produkt�m. Je uvedena obecná definice tenzorového sou inu a tenzorov∫ch prostor�, a následnÿ
je ukázána na p�íkladech. Poté je odvozena Cli�ordova algebra. Tato algebramá nÿkolik d�le�it∫ch
vlastností, které jsou diskutovány.

Druhá kapitola se vÿnuje kvantové fyzice, nebo� je d�le�ité správnÿ uchopit a popsat koncept
qubitu. Je ukázán matematick∫ popis elektromagnetické vlny. Vlna je reprezentována pomocí
vektoru napsaného v bázi, která je tvo�ena slo�kou elektrického pole a magnetického pole.
Následnÿ je uvedena rovnice pro v∫po et energie vlny a je popsáno, jak rozlo�it vlnu do jejích
slo�ek a jak mÿ�it mno�ství energie v tÿchto slo�kách. V krátkosti je popsán rozpor mezi klasickou
vlnovou teorií a pohledem kvantové mechaniky.

V�echny tyto informace jsou vyu�ity pro definici qubitu. V∫znam qubitu a vztah s klasick∫m
bitem je rozebrán. Qubit jako takov∫ si není jednoduché p�edstavit, u� jen vzhledem k tomu,
kolik má stup�� volnosti. Pomocí druhého axiomu pravdÿpodobnosti a zanedbáním globální fáze
qubitu je v�ak mo�né sní�it po et stup�� volnosti na dva. Definice qubitu je následnÿ p�evedena
do sférick∫ch sou�adnic. Pro � el vizualizace je zavedena tzv. Blochova sféra. Na této sfé�e se
dají jednodu�e vizualizovat konkrétní qubity i jejich transformace. Pomocí Kroneckerova sou inu
je definice qubitu roz�í�ena na p�ípad multi qubit�. V jednoduchosti je následnÿ ukázáno, jak
provést mÿ�ení qubitu  i multi qubit�.

Dal�í kapitola ukazuje jak odvodit obecnou kvantovou bránu a jaké vlastnosti musí spl�ovat.
Definovány jsou základní brány v etnÿ demonstrovace na p�íkladech. Pro lep�í ilustraci fungování
kvantov∫ch bran je pou�it software Qiskit. Pomocí Kroneckerova sou inu je definice kvantové
brány pro jeden qubit roz�í�ena na bránu pro více qubit�. V∫po ty na nÿkolika paralelních branách
jsou popsány tensorov∫m sou inem. Na konci kapitoly je vytvo�en a popsán jednoduch∫ kvantov∫
obvod se v�emi nále�itostmi.

V hlavní  ást práce jsou vyu�ity ve�keré získané poznatky pro konstrukci aparátu geometrické
algebry (GA) vhodného pro kvantové v∫po ty. Za ínáme definicí GA nad reáln∫mi  ísly. Poté
je detailnÿ popsán geometrick∫ sou in, kter∫m je tato algebra vybavena. Jeliko� tento sou in
hraje klí ovou roli po celou práci je pe livÿ odvozen z vnit�ního a vnÿj�ího sou inu a také jsou
zd�raznÿny jeho d�le�ité vlastnosti. Pro správnou reprezentaci qubit� v GA je pot�eba vnést do
na�í definice komplexní  ísla. Pole nad kter∫m je algebra zkonstruována je zmÿnÿno na komplexní
 ísla, co� ov�em není dostate né, proto�e komplexní strukturu je t�eba dostat p�ímo do algebry.
Proto je zavedena ortogonální lineární transformace. Báze algebry je následnÿ zapsaná s vyu�itím
této transformace. Takto definovaná báze se naz∫vá tzv. Wittova báze a má nÿkolik vlastností,
které jsou popsány. Tyto vlastnosti jsou poté hojnÿ vyu�ívány p�i zjednodu�ování v∫po t�.

S vhodnÿ zadefinovan∫m aparatem GA lze p�ejít k definici qubitu a multi qubit� v GA. Klí ovou
my�lenkou je identifikovat jak qubity tak kvantové brány s prvky v GA. To nám umo��uje provádÿt
v∫po ty v rámci jedné algebraické struktury. Detialnÿ je ukázán vztah mezi maticovou a GA
reprezentací a je popsáno, jak se dostat z jedné reprezentace do druhé. S pomocí tensorového
sou inu jsme ukázali, jak provádÿt v∫po et na nÿkolika paralelních branách. V�e v této kapitole je
doprovázeno p�íklady pro intuitivní pochopení v∫po t� v GA. Ve stru nosti je také popsánou jak v
GA provádÿt mÿ�ení. Zde je vyu�ita skalární projekce.

V závÿre né  ásti je ukázáno, jak zapsat jednoduch∫ obvod v maticové a v GA reprezentaci.
První p�íklad ukazuje kvantové brány v sériorvém po�adí. Druh∫ p�íklad ukazuje kvantové brány
v paralelním nastavení. Správnost GA reprezentace je potvrzena porovnáním v∫sledk� mÿ�ení s



v∫sledky mÿ�ení získan∫mi v maticové reprezentaci. V∫sledky jsou v�dy stejné a pouze potvrzují
správnost GA reprezentace.

Povedlo se nám vytvo�it aparát GA, kter∫ umo��uje intuitivní a jednoduché kvantové v∫po ty.
Elegantní definice báze umo��uje mnoho zjednodu�ení, co� v∫po ty zrychluje a potenciálnÿ také
m��e sní�it nároky na pamÿ�. Problém maticové reprezentace je zejména s nár�stem dimenze
matic. Tento nár�st je exponenciální a i pro mal∫ po et vstupních qubit� se v∫po ty mohou stát
náro né. Dimenze v∫raz� reprezentujících kvantové brány v GA sice také roste, ale nár�st není
tak dramatick∫ a v∫raz m��e b∫t  asto zjednodu�en. Nejvÿt�ím problémem GA p ístupu je jeho
implementace. Komplexní  ísla jsou obtí�ná na reprezentaci a v sou asnosti neexistuje vhodn∫
software pro v∫po ty v GA. GAALOPWeb nabízí alternativu, p�i které pou�ívá mírnÿ odli�n∫
p�ístup a pracuje s GA nad reáln∫mi  ísly.
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12 1 Introduction

1 Introduction
Quantum computing is a relatively new, although very dynamic field in a computer science. Solid
mathematical background is essential for further development. Currently the most common way
to represent quantum states and operations with them is via Dirac´s formalism. It is an elegant
tool, which helps us handle all the complications quantum computing is bringing to us. It leads
to a matrix representation, where the qubits are seen as vectors and quantum gates as matrices.
However, the dimension of the matrices rises with higher number of input qubits and it becomes
computationally more demanding.

This thesis will try to provide an alternative. It will be shown that the apparatus of geometric
algebras can be equally suitable for quantum computing and even more powerful in some particular
applications. General Cli�ord algebra will be introduced and a special Geometric algebra will be
derived. Quantum states will be then associated with elements of the Geometric algebra. Quantum
gates are also associated with elements of this algebra and it allows for a direct application within
one algebraic structure. This approach will be compared with matrix representation on simple
examples.
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2 Underlying Algebra
This chapter provides a comprehensive algebraic background that defines key concepts necessary
for understanding future material and places them into the context.

This thesis focuses on geometric algebras and in order to properly introduce them, it is essential
to define other related concepts such as vector spaces and tensor spaces. Although many of these
algebraic concepts may be intuitively understood, they can be abstract and challenging to define.
This thesis assumes that the reader has a fundamental understanding of the following concepts:
vectors, vector spaces, basis, linear independence, groups, commutative groups, rings or di�erent
types of morphism. Other concepts will be defined in detail to ensure a complete understanding
of the subject matter.

2.1 Forms
An important tool in algebra is called the forms. We will be especially interested in bilinear and
quadratic forms.

Definition 2.1 (Bilinear form). Let + be a vector space over the ground field  . Then the map
⌫ : + ⇥+ !  is called a bilinear form if the linearity in both arguments is satisfied, meaning

⌫(u + v,w) = ⌫(u,w) + ⌫(v,w) and ⌫(Uu,F) = U⌫(u, v)
⌫(u, v + w) = ⌫(u, v) + ⌫(u,w) and ⌫(u,Uw) = U⌫(u, v)

for all u, v, w 2 + and all U 2  .
Once a basis of + is chosen, every bilinear form is associated with a matrix " and the form

can be then written as
⌫(u,v) = u)"v.

Definition 2.2 (Quadratic form). Let + be a vector space over the ground field  . Then the map
& : + !  is called a quadratic form with associated symmetric matrix �. Quadratic form of
u 2 + can be then written as

& (u) = u)�u.

Every quadratic form has its associated bilinear form, which is defined as

⌫(u, v) = 1
2
(& (u + v) �& (u) �& (v)). (2.1)

Quadratic forms can be seen as a special case of bilinear forms. When the matrix associated to
the bilinear form is symmetric, than this bilinear form defines a quadratic form

⌫(u, u) = & (u) . (2.2)

Definition 2.3 (Orthogonal matrix). Matrix * is called orthogonal if *)* = **) = � , where � is
the identity matrix. In other words can be said that, *) = * �1.

Definition 2.4 (Diagonal matrix). Square matrix

⇡ = ©≠
´
311 . . . 31=
...

. . .
...

3=1 . . . 3==

™Æ
¨

is called diagonal if all the elements except, of the elements on the main diagonal, are zero, ie.,
88, 9 2 {1, 2, . . . ,=} , 8 < 9 ) 38 9 = 0.
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Definition 2.5 (Orthogonally diagonalizable matrix). Matrix� is called orhogonally diagonalizable
if there exists an orthogonal matrix * and diagonal matrix ⇡ such that � = *⇡*) .

Theorem 2.1. Every symmetric matrix is orthogonally diagonalizable. The inverse is also true,
every orthogonally diagonalizable matrix is symmetric since the transpose of the diagonal matrix
is the matrix itself. Then can be written (*⇡*) )) = (*) ))⇡)*) = *⇡*) .

2.2 Algebraic products
Throughout this thesis, we will encounter several types of algebraic products. Therefore it is
important to distinguish properly between them. These products are usually just specific types of
the forms, that were defined previously.

Definition 2.6 (Inner product). Let us have a ground field  and a vector space + over this field.
Then by inner product we understand the map:

h·, ·i : + ⇥+ !  

which satisfies the following axioms:
(A1) Conjugate symmetry:

hu, vi = hv, ui
(A2) Linearity in the first argument:

hu + v,wi = hu,wi + hv,wi
hUu,wi = U hu, vi

(A3) Positive-definiteness: if u < 0 than hu, ui > 0

for all vectors u, v, w 2 + and all scalars U 2  .
The axiom (A3) is not always required and so it will be in this thesis. When talking about

inner product, it will be required to hold just the axioms (A1) and (A2).
Notice that the inner product is actually a bilinear form. It takes two vectors and maps them

to an element in a ground field. Elements in the ground field are usually called scalars. That is
where the name scalar product comes from. And although these terms are very similar, they are
not to be confused. The scalar product is just a special case of inner product.

Next important product to be defined is the outer product. As the name outer product suggests
it creates something out of the original space. It takes two vectors as an input and creates a new
object with a higher dimension. This object can be seen as a tensor. We will define tensors and
tensor products in more details later. For now it will be su�cient to understand the outer product
as a special case of the tensor product. They are even denoted in the same way.

Definition 2.7 (Outer product). Let us have a ground field  and a vector space + over this field.
Vectors u, v 2 + have a form u =

�
D1 D2 . . . D<

�
, v =

�
E1 E2 . . . E=

�) . Than their outer
product, u ⌦ v, is a matrix � of the following form:

u ⌦ v = � = ©≠
´
D1E1 . . . D1E=
...

. . .
...

D<E1 . . . D<E=

™Æ
¨
.

The outer product should not be confused with an exterior product. The exterior product or a
wedge product will be a crucial element in the study of Geometric algebras, because it enables us
to work with planes, volumes and higher-dimensional analogues. This product will be defined
later together with the exterior algebra.
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2.3 Tensor spaces
We have already encountered tensors, when speaking about the outer product. Tensors are abstract
objects that can be defined in several ways. We will first introduce the universal property, which
gives a constraint, that all tensor products must satisfy. However, this definition is not constructive.
Therefore, we will also provide an alternative definition of tensor and show some examples.

Definition 2.8 (Universal property). Tensor product of two vector spaces + and, , which are
over the same field K, is a vector space + ⌦, together with bilinear map ⌦ : (v,w) 7! v ⌦ w,
⌦ : + ⇥, ! + ⌦, , so that for every bilinear map ⌘ : + ⇥, ! / exists unique linear map
⌘ : + ⌦, ! / , which satisfies ⌘ = ⌘ � ⌦ (the following diagram commutes).

+ ⇥, ⌦ //

⌘

&&

+ ⌦,

⌘

✏✏
/

The universal property should serve us as a check whether a particular construction of a tensor
product is valid. As long as the universal property holds, the constructed tensor product is correct.

Definition 2.9 (Tensor product). Let us have two vector spaces V and W over the same field K.
Tensor product + ⌦, is a vector space together with associated bilinear map + ⇥, ! + ⌦,
which takes elements v 2 + and w 2, and maps them to an element of the vector space + ⌦, ,
(v,w) 7! v ⌦ w.

Example 2.1. Let us have two vector spaces + and, with basis B+ = {e1, e2, e3} , B, = {e1, e2}
and two vectors x 2 + , y 2,

x = ©≠
´
1
2
3

™Æ
¨

y =
✓
4
5

◆
x ⌦ y =

©≠≠≠≠≠≠≠
´

1 ⇤ 4
1 ⇤ 5
2 ⇤ 4
2 ⇤ 5
3 ⇤ 4
3 ⇤ 5

™ÆÆÆÆÆÆÆ
¨

=

©≠≠≠≠≠≠≠
´

4
5
8
10
12
15

™ÆÆÆÆÆÆÆ
¨

,

where the * symbol is just an element multiplication.
The element x ⌦ y is an element of a tensor space, a tensor. The basis of the tensor space is

B+⌦, = {e1 ⌦ e1, e1 ⌦ e2, e2 ⌦ e1, e2 ⌦ e2, e3 ⌦ e1, e3 ⌦ e2}. Now let us express this element in
basis.

x ⌦ y = 4e1 ⌦ e1 + 5e1 ⌦ e2 + 8e2 ⌦ e1 + 10e2 ⌦ e2 + 12e3 ⌦ e1 + 15e3 ⌦ e2

However, this is not the only possible construction of the tensor product. Let us take a look at
another example with the same input vectors.

Example 2.2.

x = ©≠
´
1
2
3

™Æ
¨

y =
✓
4
5

◆
x ⌦ y = ©≠

´
1 ⇤ 4 1 ⇤ 5
2 ⇤ 4 2 ⇤ 5
3 ⇤ 4 3 ⇤ 5

™Æ
¨
= ©≠

´
4 5
8 10
12 15

™Æ
¨
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This particular tensor product is nothing else than the outer product defined previously, see
Definition 2.7. The general definition of the tensor product does not give a constructive definition
and we can see on the examples, that many di�erent products can be constructed up to an
isomorphism.

It is also worth noticing, that in both cases the dimension of vector x and y is 2 and 3,
respectively, and their tensor product has dimension 6. It is not a coincidence, tensor space truly
has the dimension, which is obtained by multiplying dimension of two original vector spaces.

Definition 2.10 (Tensor space dimension). let us have two vector spaces+ and, with dim+ = =
and dim, =<. Than the tensor space + ⌦, has a dimension dim+ ⌦, =< ⇤ =.

One particularly interesting example of a tensor product is a Kronecker product, sometimes
called a direct sum. It is widely used in quantum computing. The Kronecker product takes two
matrices as an input and produces another matrix with a higher dimension as an output.

Definition 2.11 (Kronecker product). Take two matrices �,⌫ of the form

� = ©≠
´
011 . . . 01=
...

. . .
...

0<1 . . . 0<=

™Æ
¨
, ⌫ = ©≠

´
111 . . . 11@
...

. . .
...

1?1 . . . 1?@

™Æ
¨
.

Then their Kronecker product, denoted ⇠ = � ⌦ ⌫ is in the form

⇠ = � ⌦ ⌫ = ©≠
´
011 ⇤ ⌫ . . . 01= ⇤ ⌫

...
. . .

...
0<1 ⇤ ⌫ . . . 0<= ⇤ ⌫

™Æ
¨
. (2.3)

2.4 Tensor algebra
Since we have introduced tensor spaces, we can now contruct a tensor algebra.

Definition 2.12 (Tensor power). Let V be a vector space over a field K. For every : 2 N is defined
the k-th tensor power of V to be the tensor product of V with itself k-times:

):+ = + ⌦: = + ⌦ + ⌦ · · · ⌦ + . (2.4)

Definition 2.13 (Tensor algebra). Tensor algebra ) (+ ) is constructed as a direct sum of ):+ for
: = 0, 1, 2...

) (+ ) =
1 
:=0

):+ =  � + � (+ ⌦ + ) � (+ ⌦ + ⌦ + ) . . . (2.5)

By ) 0+ is understood the ground field K.

Definition 2.14 (Graded algebra). An algebra � over a field  is said to be graded if it can be
written as a direct sum � = �1

:=0�
: of vector spaces over  such that the multiplication map

satisfies �: ⇥�; ! �:+; .

From the definition of tensor algebra can be clearly seen, that this algebra is graded. For
example, a scalar () 0+ ) is a rank-0 tensor and has grade 0, a vector () 1+ ) is a rank-1 tensor and
has grade 1 and so on. This property of tensor algebra enables manipulation with objects with
di�erent grades within one algebraic structure.



2 Underlying Algebra 17

2.5 Clifford algebra
A Cli�ord algebra is denoted⇠; (+ ,&), where+ is a vector space and& is a quadratic form defined
on the vector space + . The precise definition can be then written in the following form.

Definition 2.15 (Cli�ord algebra). Let + be an n-dimensional vector space over a ground field  
and let & be the quadratic form on + . By Cli�ord algebra is then understood:

) (+ )/� (&) = ) (+ )/(v ⌦ v �& (v)1) (2.6)

where ) (+ ) is a tensor algebra of the vector space + , � (&) is a two-sided ideal generated by the
quadratic form & and 1 is the multiplicative identity in + . [6]

We will be especially interested in the cases, where the ground field  is R or C. The Cli�ord
algebra has also some interesting properties. The algebra is free, unitary, associative and also
graded.

The alternative for describing Cli�ord algebra is using the universal property. This approach is
not constructive but gives a nice context for a deeper understanding.

Definition 2.16 (Universal property in Cli�ord algebra). Let+ be a vector space over a field  , let
� be an unitary associative algebra with operation �. Then let⇠; (+ ,&) be a Cli�ord algebra with
operation ⇤. Then let i be a linear map 8 : + ! ⇠; (+ ,&) satisfying 8 (v)⇤8 (v) = & (v)1 for all E 2 + .
It is defined by the universal property: given any unitary associative algebra � over  and any
linear map 9 : + ! � satisfying 9 (v) � 9 (v) = & (v)1�, where by 1� is understood a multiplicative
identity in �, for all v 2 + , there is a unique algebra homomorphism 5 : ⇠; (+ ,&) ! � such that
the following diagram commutes.

+ 8 //

9

%%

⇠; (+ ,&)

5

✏✏
�

By commuting is meant that, 5 � 8 = 9 .

The vector space + is endowed with a quadratic form & and therefore an orthognal basis can
be constructed. With use of symmetric bilinear form associated to the quadratic form & we can
write:
he8, e 9i = 0 for 8 < 9 and he8, e8i = & (e8).

We are often encountered with Cli�ord algebras written in the form, ⇠;?,@ (+ ,&). These are
called ?,@ Cli�ord algebras. We will provide a general example explaining the meaning of the
coe�cients ?,@, properly called a signature of the Cli�ord algebra.

Let  = R be the ground field for the vector space + = span {v1, . . . , v=} endowed with a
quadratic form & (U1v1 + . . . U=v=), where U 2 R. The form can be written in the following way:

�
U1, . . . ,U=

�
�
©≠
´
U1
...
U=

™Æ
¨

where we think about U8 as coe�cients of vector v written in basis and by� is understood a matrix
corresponding to the particular quadratic form.
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Since we know that � is a symmetric matrix, � = �) , from the definition of the quadratic
form, than � is orthogonally diagonizeable:

*)�* = ⇤ = ©≠
´
_1

. . .
_=

™Æ
¨
.

Now the base is changed with respect to the diagonalization,+ = span {x1, . . . , x=}. The quadratic
form is now rewritten in the form:

& (V1x1 + · · · + V=x=) = _1V21 + · · · + _=V2= , V8 2 R.

Meaning that we can simply write & (x8) = _8 , whence we can derive x28 = _8 .
Now we can further examine what _8 can be equal to. It actually splits in three non-isomorphic

cases:

_8 =

8>>><
>>>:

1
0

�1
It can be shown, that other cases, such as 2 for example, are isomorphic to either 1 or -1.

Let us summarize all information. Let � be a Cli�ord algebra � � ⇠; (+ ,&) with = generators,
then the vector space + and the quadratic form & can be written in the following form (quadratic
form is already orthogonalized with nonzero elements just on the diagonal):

+ = span
�
x1, . . . , x?, y1, . . . , y@, z1, . . . , zA

 
, ? + @ + A = =,

& (U1x1 + · · · + U?x? + V1y1 + · · · + V@y@ + W1z1 + · · · + WAzA ), U8, V8,W8 2 R.

For each x, y, z is now a special case, already described previously:

x28 = 1, y28 = �1, z28 = 0.

In this thesis we will be interested in algebras where A = 0. The coe�cients ?,@ can be now
easily explained. Number of basis elements, which square to 1 is coe�cient ? and number of
basis elements, which square to -1 is coe�cient @. The particular algebra is then written with it’s
signature:

⇠;?,@ (+ ,&).

2.6 Exterior algebra
The exterior algebra, also known as Grassman algebra, is used especially in geometry to study
areas, volumes and higher dimension objects. It uses the exterior product, which was already
mentioned.

Definition 2.17 (Exterior algebra). Let + be an n-dimensional vector space over a ground field  
and let � be the ideal generated by (u ⌦ u). By exterior algebra is then understood:

) (+ )/(u ⌦ u), (2.7)

which is usually denoted as
”(+ ).
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The product defined on this algebra is the so called exterior product, also known as the wedge
product. [6]

Definition 2.18 (Exterior product). Let + be a vector space over a ground field  . Then the map”
: + ⇥+ ! + ⌦ + is called an exterior product with the following properties:

(A1) Antisymmetry:
u ^ v = �u ^ v

(A2) Scaling:
(Uu) ^ v = U (u ^ v)

(A3) Distributivity:
u ^ (v + w) = (u ^ v) + (u ^ w)

for all u, v, w 2 + and U 2  .

This definition can be extended
”

: + ^ · · · ^+ ! + ⌦: and an associativity is added. The
linear combination of the products of two vectors u ^ v is called a bivector, similarly the linear
combination of the products of three vectors is called a trivector and a linear combination of
products of : vectors is called a k-vector. A linear combination of mixed :-vectors is called a
multivector. We will be also using a term called blade. Blade of :-grade cosists of wedge product
of : vectors. Bivector can be understand as an oriented plane and trivector as an oriented volume.

Definition 2.19 (Exterior power). The :th exterior power,
”: (+ ), is defined as a vector subspace

of
”(+ ) generated by elements in the form x1 ^ x2 ^ · · · ^ x: , where x8 2 + .

2.7 Bra-Ket notation
When working with vectors, the bra-ket notation wil be used. This notation is widely used in
quantum computing to describe quantum states. It gives a way to describe a vector v in a complex
vector space. A ket is denoted as |0i, and a bra is denoted as h0 |.

Using bra-ket notation is more e�cient than writing vectors in columns or rows, and it allows
for easier manipulation of vectors. Let’s take a closer look at the relationship between bras and
kets. A bra represents a column vector, and a ket represents its conjugate transpose:

|0i =
©≠≠≠
´

01
02
...
0=

™ÆÆÆ
¨
, h0 | =

�
01⇤ 02⇤ . . . 0=⇤

�
. (2.8)

Generally can be stated: h0 |† = |0i, |0i† = h0 |, where the symbol † is used for marking
conjugate transpose.

Inner product of two vectors is then written in the form h0 | |1i, which is shortened to h0 |1i.

3 Quantum Physics
Everything comes down to the nature of light. Many physicist tried to understand, whether the
light is a particle or a wave. The tricky thing about light is, that it exhibits both particle and wave
characteristics. Phenomena such as di�raction, polarization or interference suggest, that it should
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be a wave. The famous double-slit experiment also supports this presupposition. On the other
hand, in order to explain for example the photoelectric e�ect, we must suppose that there are
particles with given state and momentum. This leads to the conlusion, that light has a particle
character. The previous examples are just one of many and try to demonstrate, how complicated
the light is. General answer to the basic question, whether the light is a wave or particle, would
have been, that it is both and simultaneously neither. Light is much more complex and shouldn´t
be so simply categorized.

3.1 Electromagnetic waves
Electromagnetic waves, just EM waves from now on, are a fundamental aspect of the physical
universe and play a crucial role in the behaviour and interaction of matter and energy. They are a
type of wave that consists of oscillating electric and magnetic fields, which are perpendicular to
each other and to the direction of wave propagation. EM waves travel at the speed of light in a
vacuum. When travelling through di�erent materials their properties are impacted. One of the
most remarkable aspects of electromagnetic waves is their ability to transport energy through
space without requiring a physical medium[10]. This property is what allows us to use cell phones,
receive radio waves or watch television.

EM waves can be described using various parameters including frequency, wavelength, ampli-
tude, phase shift or polarization. Based on their frequency, waves can be classified into various
regions. Starting with the waves with a very low frequency we can describe radio waves, mi-
crowaves, infrared radiation, visible light, ultraviolet radiation, X-rays and come to waves with
extremely high frequency, usually called gamma waves [1].

An important phenomen related to EM waves is polarization. EM waves oscillate in an
electromagnetic field and can be described using two orthogonal vectors oscillating in electric
and magnetic fields. In an unpolarized wave, the directions of the vectors are random. However,
polarized EM waves have only one direction and all others are canceled out. This can be achieved
using various filters.

3.2 Mathematical description of electromagnetic waves
EM waves oscillate in an electromagnetic field, with the electric field represented by the x-axis and
the magnetic field represented by the y-axis. The basis for this field consists of unit vectors denoted
|!i and |"i. These vectors are then multiplied by the respective amplitude and cosine function,
which takes into consideration the wave’s frequency, time, and phase shift. This representation
allows us to describe waves as vectors in the x-y plane, which is perpendicular to the direction of
wave propagation. The wave propagation itself is represented by the z-axis.

We will start with the example of a polarized wave. Just a quick recall, that by polarization we
understand canceling out one particular direction of wave oscillation. By horizontally polarized
wave we then understand a wave with a following form:

E =
✓
�G2>B (2c 5GC + \ )

0

◆
= �G2>B (2c 5GC + \ ) | !i + 0 | "i, (3.1)

where �G is amplitude, 5G is frequency, C is time and \ is a phase shift. |!i and |"i are unit
vectors representing particular direction.

Similarly the vertically polarized wave has just its vertically oriented component

E =
✓

0
�~2>B (2c 5~C + \ )

◆
= 0 |!i +�~2>B (2c 5~C + \ ) |"i . (3.2)
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General description of a wave can be easily obtained. It will be just a sum of the examples given
above. Sum of these two vectors representing horizontally and vertically polarized waves will
create a new vector. This general vector will provide us a way to describe any given wave at any
moment in time.

E =
✓
�G2>B (2c 5GC + \ )
�~2>B (2c 5~C + \ )

◆
= �G2>B (2c 5GC + \ ) |!i +�~2>B (2c 5~C + \ ) |"i (3.3)

General vector can be then written in this simple form:

|k i = U |!i + V |"i . (3.4)

Alternative way to describe a wave is with complex numbers. Following example is showing,
how to rewrite the expression using complex numbers:

� cos(2c 5 C + \ ) = �48 (2c 5 C+\ ),

E = �G48 (2c 5 C+\ ) |!i +�~48 (2c 5 C+\ ) |"i ,
(3.5)

where 5 is the frequency of the wave.

3.3 Energy of the wave
When describing waves, the key attribute, which is measured is wave’s energy. The following
formula describes energy of the wave.

Definition 3.1 (Energy of the wave). The energy of the wave is given by

⇢ = =\5 , (3.6)

where = 2 N, \ is Planck’s constant and 5 is a frequency of the wave.

It is important to note, that in the formula is an integer =, which belongs to the natural
numbers. When = = 1 is plugged into the previous equation we get the smallest possible amount
of energy a wave can have. It corresponds to the particle called photon. This minimum amount
of energy is no further divisible. The fact that = 2 N also leads to an important insight. Wave’s
energy is a discrete variable. In other words, changes in energy comes in fixed small quantum
and energy of any given wave is then just a multiple of the photon’s energy. This indivisibility is
where all the quantum magic comes from.

From the mathematical description, which was defined previously, is evident, that, knowing all
the parameters, we can decompose a wave into basis vectors and then obtain the value of energy
in these directions. Square root of parameter U , respectively V, really gives us the component of
the energy in | !i, respectively | "i state.

We will now decompose the following unit vector into basis vectors.

⇢

⌫
|k i

Figure 3.1: Unit vector
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Knowing that the vector |k i is a unit vector we obtain U =
p
1/2 and V =

p
1/2. Now we can

use the equation (3.6) and get

E = (\5 ) (1)2

= \5 (
p
1/2)2 |!i + \5 (

p
1/2)2 |"i

= \5 1/2 |!i + \5 1/2 |"i .
We made decomposition into basis vectors. However, what is important to notice is, that

energy in these directions are fractions. This can be explained in quantum physics, where the
whole paradigm of the waves is shifted.

3.4 Classical versus quantum understanding
Classical wave theory teaches us, that EMwaves are oscillating in two directions, mutually inducing
each other. In every moment we can decompose vector representing our electromagnetic wave
into two components and measure them.

Quantum understanding is a bit more complicated [7]. There must be defined the concept of
superposition in this context. Proper and precise description of quantum superposition would
require a deep dive in quantum mechanics and this thesis is not discussing quantum mechanics as
the main topic. So for our purpose superposition state means, that a particle is in more states until
the measurement is carried out. In our case is the energy of the wave in both directions representing
electric and magnetic fields. But after the measurement is done, all energy is measured just in
one direction.

Now come back to the general form of vector in (3.4). We will demonstrate the di�erence in
understanding the nature of waves. Just reminder what |U |2 means in classical understanding. It
is an amount of energy in direction corresponding to U . However, in quantum understanding |U |2
is a probability, that all energy will be measured in the direction corresponding to U .

To further illustrate the di�erence in understanding, consider wave transformation. In classical
theory, Euclidean distances must be preserved during wave transformation, and thus special
orthogonal matrices are used. However, in quantum mechanics, the focus is on probabilities,
and therefore Hermitian unitary matrices are used to preserve these probabilities, see Definition
5.1 and Definition 5.2 for more details. These matrices are particularly useful for describing the
transformation of quantum states, and they play an essential role in quantum computing and
information processing. In essence, the use of these matrices reflects the probabilistic nature of
quantum mechanics and highlights the di�erence between classical and quantum understanding
of waves.

4 Quantum computing
Every computing mechanism is a physical process. One physical state is identified with one
information and another physical state with another information. Computing is nothing else than
transforming one state to another. Di�erent states can also interact with each other and create
new unique states associated with new information [13] .

Classical computing has building block in a bit (shortcut from binary digit). It is the smallest
unit of data. A bit can acquire two values, usually 0 and 1. Computer science works with bits in a
general way and it does not take into consideration the actual physical implementation of bit. The
advantage of this approach is, that it can develop the concept of bit in abstract and general way
and do not worry about problems with implementation. Mathematical logic behind computing
with bits ignore e�ects of real world, that always influence the process.
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Implementation into the real world causes problems and we almost certainly lose some amount
of precision in computing. Take for example one of the most common way to store data using a
hard drive or other similarly working storage media. Hard drive usually has an aluminium disk
covered with a thin magnetic layer. One bit is then stored in a concrete area on a disk platter.
Electromagnetic radiation or excessive heat can enter the storing process and partially destroy the
information. When observing this mechanism from a microscopic point of view, a huge amount of
atoms or molecules are used to store just one bit. Knowing that a bit can acquire just two values,
the whole concept seems to be a bit ine�cient.

It seems obvious to try diminishing the amount of atoms needed for storing one bit. The ideal
would be to represent one bit with one atom or photon. The solution occurs almost instantly.
We can polarize photons in horizontal or vertical direction and identify this direction with 1 or
0 value. However, as it was shown previously, our universe behaves di�erently on atomic and
subatomic level. Quantum mechanics steps into the game and the whole paradigm must be shifted.
A completely new area of computing arises.

Quantum computing tries to exploit quantum mechanics phenomena and use it for advantage
rather than stressing out about uncertainties. It acknowledges the fact that a physical system
usually is not in just a state A or a state B and lays somewhere between. Bits are no more useful
and a new concept must be defined to represent data.

4.1 Qubit
A qubit is the basic unit of quantum information and it di�ers from a classical bit which has only
two possible states - 0 or 1. A qubit, on the other hand, can exist in a superposition of both states.
This means that a qubit can store not just 0 or 1, but all possible combinations of these states at
the same time. This opens up a vast number of possibilities for processing and storing information
in ways that are impossible with classical bits. However, this increased flexibility comes at a cost.
The main challenge of quantum computing is to find ways, how to represent and manipulate these
superposition states mathematically, as well as designing and building a real world hardware that
can e�ectively implement these computations.

For representing the qubit, two orthonormal basis states will be defined. They will be denoted

in the following way: |0i =
✓
1
0

◆
and |1i =

✓
0
1

◆
. These two states are often called the computational

basis.
General quantum state is identified with a normalized vector, generated from the orthonormal

computational basis, in two dimensional space. As we have mentioned earlier, qubit is a combi-
nation, in our case linear combination, of the basis state and therefore could be written in the
following form:

|k i = U |0i + V |1i =
✓
U
V

◆
(4.1)

where the coe�cients U and V are complex numbers. Notice that the equation is almost identical
to the equation (3.4). The only di�erence is, that in the first case the basis are directions of
polarized light written in a form of arrows. In the second case the basis are two orthonormal
vectors written in the form of bra-ket notation. This is the first example, how to implement our
abstract concept of qubit into the real world.

The coe�cients U and V are correctly called the probability amplitudes. If we measure any
given qubit, than |U |2 and |V |2 is the probability of |0i and |1i, respectively, outcome. The second
axiom of probability gives us the following constraint |U |2 + |V |2 = 1 , which always has to be
satisfied. The coeficcients U and V are complex numbers, therefore the qubit has four degrees of
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freedom. There are many ways, how to handle the fact, that we are working with something with
four degrees of freedom and how to easily visualise any given qubit.

4.2 Bloch sphere
An elegant way to represent qubit is via a Bloch sphere.

Coming back to the Definition 4.1 we can see, that to describe a single qubit, a combination of
two basis states is needed. We also know that the coe�cients U and V are complex numbers. So
any given state can be described by four real numbers. It would be very di�cult to visualise a
system with four degrees of freedom.

However, since we identified quantum states with complex vectors, where the coe�cients
are probability amplitudes, we can now introduce a phase. A phase is an angle between the real
and imaginary components of the complex vector. There are actually two types of phases. A
relative phase refers to the phase di�erence between two probability amplitudes. It is a measure
how the amplitudes interfere with each other. A global phase refers to the overall phase in a
quantum state. It is a common phase factor that a�ects all the probability amplitudes in the state.
It is important to emphasize, that the global phase does not impact probabilities of measuring
a particular outcome. And what is more, the global phase has no physical significance, because
it cancels out, when the probabilities are calculated. It means, that one degree of freedom can
be removed. When taking into the consideration the constraint given by the second probability
axiom, another degree of freedom is taken away. This leads to the system with two degrees of
freedom.

As the name suggests, a sphere will be used to represent a qubit. And since we have two
degrees of freedom, spherical coordinates can be e�ciently used. Then the general qubit can be
written in the following form

|k i = cos(\/2) |0i + 48q sin(\/2) |1i = cos(\/2) |0i + (cosq + 8 sinq) sin(q/2) |1i, (4.2)

where 0  \  c and 0  q  2c .

i

\

x

y

z = |0i

�z = |1i

|k i

Figure 4.1: Bloch sphere
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With the appropriate choice of parameters \ and q any state can be uniquely described, see
Figure 4.1. More precisely, there will be a one to one correspondence between quantum states
(represented by qubits) and points on the sphere. It is important to notice that the qubit has a
form of a two dimensional vector. The choice of the basis is arbitrary. From the beginning we have
worked with |0i and |1i. These states can be identified with the north and the south pole of our
sphere. However, every pair of two antipodal points is orthogonal, its inner product is zero. They
can therefore serve us as the orthogonal base. For practical reasons we will stick to the |0i and
|1i choice.

States |0i and |1i are put on z-axis. Let us now look closely on x-axis and y-axis. They have
their own pair of antipodal points. On x-axis we usually talk about |+i, |�i and on y-axis about
|8i, | � 8i. These pairs can also form a basis, as we have stated earlier. Since the |0i, |1i basis was
chosen, now express these pairs of points in the basis vectors. These points are then visualised on
the sphere, see Figure 4.2.

|+i = 1p
2
( |0i + |1i) |�i = 1p

2
( |0i � |1i)

|8i = 1p
2
( |0i + 8 |1i) | � 8i = 1p

2
( |0i � 8 |1i)

(4.3)

|0i

|1i

|+i

|�i

|ii|�ii

Figure 4.2: Bloch sphere axes

To put the classical bit into this new perspective. It was stated, that a bit can acquire just
two values, 0 and 1. So it can be either on the north pole or on the south pole on our sphere
and nowhere else. Quantum bit can acquire any position on the sphere, classical bit must choose
between two antipodal points chosen as the basis. There should be clearly seen an immense
variability, which is provided by qubit.



26 4 Quantum computing

4.3 Multiple Qubits
Qubits were associated with state vectors and a state vector of dimension 2 was used to represent
a single qubit. To represent multiple qubits we just need to increase the vector’s dimension. One
qubit is represented with 2-dimensional vector, two qubits are represented with 4-dimensional
vector and =-qubit is represented with 2=-dimensional vector. The dimension also determines,
how many basis vectors are needed. Let us see on an example of two qubits, how the state vector
is constructed.

|0i = 000 |00i + 001 |01i + 010 |10i + 011 |11i =
©≠≠≠
´

000
001
010
011

™ÆÆÆ
¨
. (4.4)

Let us just remind, that the coe�cients 08 9 are the probabilistic amplitudes. The square of the
coe�cient |08 9 |2 is the probability of measuring the state |8 9i.

The second axiom of probability must hold, therefore we come to the following normalisation
condition:

|000 |2 + |001 |2 + |010 |2 + |011 |2 = 1. (4.5)

Same construction will be used for n-qubits. The normalisation condition must always hold.
For two separated qubits we define a collective state using the Kronecker product, see Definition

2.3. For representing the collective state we will also use the state vector. The dimension of the
state vector is 2=, where = is the number of qubits we are describing. Let us see on an example
how the collective state of two qubits is obtained

|0i =
✓
00
01

◆
, |1i =

✓
10
01

◆
,

|10i = |1i ⌦ |0i =
©≠≠≠
´

10 ⇤
✓
00
01

◆

11 ⇤
✓
00
01

◆™ÆÆÆ
¨
=

©≠≠≠
´

1000
1001
1100
1101

™ÆÆÆ
¨
. (4.6)

We took two qubits as an input and used the Kronecker product to construct the state vector
representing the collective state. The final statevector has the dimension 4. It was stated, that a
state vector describing a collective state has a dimension 2=. We took two qubits, so 22, which is
truly 4.

4.4 Measurement
It was said, that a qubit can acquire not just 0 and 1 values, but all their combinations. However,
when the measurement is carried out, the qubit is measured either in a position corresponding to
|0i or in a position corresponding to |1i. It is importatnt to clarify in which basis the measurement
is performed. We can measure the same qubit in di�erent basis and get di�erent results. Measuring
in the |0i, |1i basis, gives the possible outcomes |0i and |1i. But if the basis is changed to |+i, |�i
for example, then the possible outcomes are |+i and |�i. It is clear, that the choice of the basis is
crucial for the right interpretation of the measurement. We will stick to the |0i, |1i basis.

It is actually quite simple to calculate the probability of the outcomes for any given qubit.
Computing the inner product of a basis state and a state vector, representing the qubit, gives
the probability of a qubit ending in the particular basis state. To be precise, the square of this
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value is the desired probability. Take a general vector |k i for example and see how to obtain the
probabilities of ending in the basis states |0i, |1i,

? ( |0i) = |h0|k i |2 ? ( |1i) = |h1|k i |2. (4.7)

5 Quantum gates
Having associated qubit with a state vector we can now transform it. The transformation of a qubit
is nothing more than just rotating around the Bloch sphere. Classical computation works with
logical gates. These gates take as an input single or multiple bit, perform an operation defined by
mathematical logic and give another bit or multiple bit as an output.

For meaningful quantum computing, logical gates must be also introduced. Bloch sphere is
very usefull for visualising, how single qubit gates work. For multiple qubit gates a tensor product
will be used.

For visualisation will be used Qiskit [11].

5.1 Single qubit gates
Single qubit gates take as input one qubit represented via state vector, apply operator and give
another state vector as output

" |k i ! |k 0i. (5.1)

We can see, that the operator M changes our state vector to another. From linear algebra is well
known, that matrices are used to transform vectors. So matrices will represent qubit gates.

These matrices must satisfy two important properties. They must be Hermitian and unitary.

Definition 5.1 (Hermitian matrix). A matrix is called Hermitian when the matrix is equal to it’s
conjugate transpose, � = �) = �⇤. Or equivalently, a matrix is Hermitian when the element in
the i-th row and j-th column is equal to the complex cojugate of the element in the j-th row and
i-th column, 0ij = 0ji.

Definition 5.2 (Unitary matrix). An invertible square matrix is called unitary when its conjugate
transpose A⇤ is also its inverse, ��⇤ = �⇤� = � , where � is an identity matrix.

These properties are crucial, because we need state vectors to stay on the Bloch sphere. The
only way to provide this, is to keep the norm of the vector, even after multiplying it with the
matrix. The great advantage of unitary matrices is, that they preserve the norm of the vector.

There are indefinitely many ways, how to write a general form of operator " . One of possible
is following:

" (q, \ , _) =
✓

cos(\/2) 4�8_ sin(\/2)
48q sin(\/2) 4 (q�_) cos(\/2)

◆
. (5.2)

This form is however really impractical and not needed. Basic matrices will be defined. The
demanded operator is then obtained by combining these matrices. With just small set of matrices,
any requested matrix can be obtained. Plus, the product of two unitary matrices is also an unitary
matrix. Chosen matrices will be multiplied, create a new matrix, which will represent the operator.
The state vector is then multiplied by the final matrix and the transformation is performed.

Since we have introduced the Bloch sphere for representing qubits, we can imagine the
transformations as rotations on the Bloch sphere. If unitarity of the matrix is satisfied, the state
vector stays on the sphere and just rotates around. It will be demonstrated how di�erent gates
perform di�erent rotations.
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5.1.1 NOT gates

Basic logic gate in classical computing is the NOT gate. It flips bit’s value to other possible. Bit
with value 0 resp. 1 is flipped to 1 resp. 0. The situation with qubit is a bit more complicated.
Since qubit can acquire any value on the Bloch sphere, NOT gate cannot be so easily defined.

We start with the simplest example. If a qubit is on the north pole of the Bloch sphere, it has
value |0i, than the NOT gate should change its value to |1i. That could be achieved by rotating
the state vector around x-axis or around y-axis. When NOT gate is applied to a state vector, its
value is changed to the value associated with the antipodal state vector. Matrices which provide
this transformation are not always easy to find. For now it will be enough to define just rotations
around x,y,z-axes, respectively:

- =
✓
0 1
1 0

◆
, . =

✓
0 �8
8 0

◆
, / =

✓
1 0
0 �1

◆
. (5.3)

Example 5.1. Let us take |0i and apply the - matrix. It should change to |1i.

- |0i =
✓
0 1
1 0

◆ ✓
1
0

◆
=

✓
0
1

◆
= |1i.

Here is a visualisation using Qiskit [11]. The first Figure 5.1 is the base state |0i. Than the
- -gate acts on it and we can see the result on the Figure 5.2.

Figure 5.1: State vector in |0i state Figure 5.2: After applying X-gate

The e�ect of the . -gate would be the same on this particular state vector. Le us see on example
how / -gate would work. On the Figure 5.3 we can see a state vector |+i and on Figure 5.4 we can
see that after the / -gate acts on the qubit, the state is truly |�i. This corresponds to the rotation
around the I-axis.
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Figure 5.3: State vector in |+i state Figure 5.4: After applying Z-gate

5.1.2 Hadamard gate

Maybe the most important gate in quantum computng is called the Hadamard gate. It occupies
special position in the set of elementary matrices. It may not be obvious at first glance, why is this
matrix so essential. The importance will be explained later, now just the definition wil be provided.
When the Hadamard gate acts on a state vector, it rotates the vector around the (G � I)-axis. The
form of the matrix representing the Hadamard gate is following:

� =
1p
2

✓
1 1
1 �1

◆
. (5.4)

It is obvious, that this matrix is Hermitian. Unitarity is satisfied by the 1p
2
in front of the matrix.

Let us demonstrate, how this matrix acts on basis state vectors

� |0i = |+i, � |1i = |�i.

This can be easily visualised on the Bloch sphere. We will start with the qubit in state |0i,
Figure 5.5. Then the Hadamard gate is applied and the result is truly the qubit in |+i state, Figure
5.6.
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Figure 5.5: State vector in |0i state Figure 5.6: After applying Hadamard gate

5.1.3 Phase gate

Phase gate is used to rotate the state vector around the z-axis. It takes a real number q as a
parameter, which specifies the rotation. The form of the matrix is following:

% =
✓
1 0
0 48q

◆
. (5.5)

We now explore this gate more closely. We can change the parameter q and we obtain a so
called phase gate family tree. Most important members of this family are these matrices:

q = ±c, % =
✓
1 0
0 �1

◆
= / ,

q =
c

2
, % =

✓
1 0
0 48

c
2

◆
= (,

q =
c

4
, % =

✓
1 0
0 48

c
4

◆
= ) ,

q = 0, % =
✓
1 0
0 1

◆
= � .

When specific input of paremeter q is plugged in, special gates arise. The first gate turns out
to be a known Z-gate.

The second one is called S-gate or (†. It performs a quarter turn around the z-axis. Two
consecutive S-gates has same e�ect as the Z-gate

(( =
✓
1 0
0 48

c
2

◆ ✓
1 0
0 48

c
2

◆
=

✓
1 0
0 48c

◆
=

✓
1 0
0 �1

◆
= / .

The third gate, called T-gate, performs the eighth turn around the z-axis. It can be similarly
shown that four consecutive T-gates have the same e�ect as Z-gate. The last mentioned gate,
called I-gate, is in the form of an identity matrix. Therefore it has no e�ect on any given state
vector.
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5.1.4 Gates tensor product

One additional thing, that needs to be defined, in order to be able to perform a meaningful
computation, is how a single qubit gate acts on a multiple qubit vector. Or more specifically, how
will two single qubit gates act simultaneously on a multiple qubit vector. The Kronecker product
will become a handy tool. Take a look on the example. Let us consider two single qubit gates �,⌫
and a vector @ representing the state of two qubits @1,@2.

� |@2i ⌦ ⌫ |@1i = (� ⌦ ⌫) |@2@1i , (5.6)

� ⌦ ⌫ =
✓
011 012
021 022

◆
⌦

✓
111 112
121 122

◆
=

©≠≠≠
´

011 ⇤
✓
111 112
121 122

◆
012 ⇤

✓
111 112
121 122

◆

021 ⇤
✓
111 112
121 122

◆
022 ⇤

✓
111 112
121 122

◆™ÆÆÆ
¨

(5.7)

=
©≠≠≠
´

011111 011112 012111 012112
011121 011122 012121 012122
021111 021112 022111 022112
021121 021122 022121 022122

™ÆÆÆ
¨
.

5.2 Multiple qubit gates
Multiple qubit gates are a critical component of quantum computing, just QC from now on, as they
enable operations on multiple qubits simultaneously. Just like with single qubit gates, multiple
qubit gates also rely on matrix operations to transform the state vectors that describe the quantum
system. However, the matrices used for multiple qubit gates are much larger, with dimensions that
depend on the number of input qubits. The dimension of a multiple qubit gate matrix equals to
2= ⇥ 2=, where = is the number of input qubits. These matrices must satisfy the same properties
as single qubit gates, and their construction requires careful consideration of how the gate acts on
basis states.

To illustrate this concept, we can consider some common examples of multi-qubit gates. For
instance, there are 2-qubit gates such as the CNOT (Controlled NOT) gate, the SWAP gate, and
the CZ gate (controlled phase gate). Additionally, there are 3-qubit gates like the To�oli gate
(also known as the CCNOT gate). It’s important to note that these gates are just a few examples
of many possible multi-qubit gates, and the selection of a specific gate will depend on the desired
computational outcome. However, understanding the basics of how these gates operate and their
e�ect on state vectors is a crucial step in designing e�ective quantum circuits.

5.2.1 CNOT gate

Often called Controlled-NOT gate is the most used multi-qubit gate. It takes two qubits as an
input, checks the value of the first qubit, called controlled qubit, and if it is 1, then it flips the
second qubit, called target qubit. Let us see how the gate acts on basis states.

CNOT|00i = |00i CNOT|01i = |01i CNOT|10i = |11i CNOT|11i = |10i

The matrix representing the CNOT gate has the following form:

CNOT =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨
. (5.8)
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The first two rows correspond to the cases, where the controlled qubit is in a state |0i and
therefore nothing is changed. The third and fourth row corresponds to the situation, when the
controlled qubit is in a state |1i and therefore the value of the target qubit is swapped.

Example 5.2.

CNOT · |10i =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨
·
©≠≠≠
´

0
0
1
0

™ÆÆÆ
¨
=

©≠≠≠
´

0
0
0
1

™ÆÆÆ
¨
= |11i

5.2.2 SWAP gate

The SWAP gate is really simple. It just swaps the state of the two qubits. It has no e�ects on states
|00i , |11i, but it a�ects the states |10i , |01i. The matrix representation is following:

SWAP =
©≠≠≠
´

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

™ÆÆÆ
¨

(5.9)

Example 5.3.

SWAP|01i =
©≠≠≠
´

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

™ÆÆÆ
¨

©≠≠≠
´

0
1
0
0

™ÆÆÆ
¨
=

©≠≠≠
´

0
0
1
0

™ÆÆÆ
¨
= |10i

5.2.3 CZ gate

Also called Controlled-Z gate, performs a rotation around the I-axis, if the first qubit (controlled
qubit) is 1. It has e�ect for example on |11i state, which is then changed to � |11i. General form
is following:

CZ =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

™ÆÆÆ
¨

(5.10)

Example 5.4.

CZ|11i =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

™ÆÆÆ
¨

©≠≠≠
´

0
0
0
1

™ÆÆÆ
¨
=

©≠≠≠
´

0
0
0
�1

™ÆÆÆ
¨
= �|11i

5.2.4 Toffoli gate

Also know as Controlled-Controlled-NOT gate. It works similarly as the CNOT gate, however
it checks two controlled qubits and only if both are 1, then it flips the third one. It can be
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implemented using single qubit gates and CNOT gate. The matrix representation is following:

To�oli =

©≠≠≠≠≠≠≠≠≠≠
´

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

™ÆÆÆÆÆÆÆÆÆÆ
¨

(5.11)

5.3 Quantum circuits

We can now start drawing circuits. Qiskit [11] will be used for that. let us take a look on an
example, Figure 5.7.

Figure 5.7: Basic single qubit gates Figure 5.8: Hadamard gate and C-NOT gate

This circuit takes three qubits as an input. Each of them is stored in the separate wire. These
wires will be noted with @08 and will be used to store qubits. We are interested just in the lower
case index 8 and the 0 in the qubit expressions has no special meaning for us. Classical bits are
also used in circuits. We use them to store the value acquired from the measurement of the qubit.
They are denoted 20 and merged to one wire in order to save space and to make circuits more
understandable. We can see, that on the quantum wires are already the quantum gates, namely
- -gate, . -gate and / -gate. These gates act on particular qubits. Other gates can be added now,
such as a Hadamard gate and C-NOT gate, see Figure 5.8. Notice, that the C-NOT gate is a 2-qubit
gate, meaning it takes two qubit as an input. The last piece to a meaningful and functional
circuit is a measurement. That is where the classical wires come in use. Measurement is put on a
quantum wire and the result is stored into a classical bit, because since there are only two options,
how the measurment can end up, we can store this value into a classical bit. On the Figure 5.9
can be seen, how the measuremnt is performed and where the results are stored.
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Figure 5.9: Measurement

This circuit has no purpose, but can serve us as an example. In the next chapter will be shown,
how we can represent these circuits using GA.

6 Geometric algebras in Quantum computing
In more advanced circuits the amount of input qubits increase rapidly and so does the matrices
dimension. The computation becomes more and more complicated, since the dimension of the
matrix increase exponentially. The idea of implementing GA in QC lays in the special representation
of qubits. Every quantum state of a qubit is associated with an element of the GA and even quantum
gates are associated with elements of GA. It allows us for direct application. Action of a quantum
gate on a qubit is just a product of the elements associated with the particular gate and quantum
state.

6.1 Geometric algebra
We will now define an appropriate apparatus of GA for the purpose of QC. In the first chapter
were discussed and defined basic algebraic concepts in a general way. These definitions will be
now modified to desired forms. We will start with a real GA. In order to define GA a new concept
called geometric product needs to be introduced [3] [4]. The geometric product is a combination
of the inner and exterior product. Let us have a real vector space R=. The vector space has an
orthonormal basis (e1, . . . , e=). It is also equipped with a bilinear form ⌫ with signature (?,@).

⌫(e8, e 9 ) =
8>>><
>>>:

1 if 8 = 9 = 1, . . . , ?
�1 if 8 = 9 = ? + 1, . . . ,<
0 if 8 < 9

(6.1)

Notice that the bilinear form ⌫ is symmetric. Therefore the quadratic form & , which is associated
to this bilinear form can be defined. The relation is following:

⌫(a, b) = 1
2
(& (a + b) �& (a) �& (b)). (6.2)

Definition 6.1. In the case of vector space R= with bilinear form ⌫ the inner product is defined as

e8 · e 9 = ⌫(e8, e 9 ). (6.3)

For the definition of exterior product we will use the definition from exterior algebra, Definition
2.18. Adding these two products together gives rise to the so called geometric product [8].
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Definition 6.2 (Geometric product). Geometric product, denoted e8e 9 , of two basis vectors is a
combination of inner and outer product

e8e 9 = e8 · e 9 + e8 ^ e 9 . (6.4)

It is important to notice all the useful properties, that the geometric product has. These
properties will be widely used, because they allow us to simplify the calculation.

Remark 6.1. Since the inner product of two orthonormal elements is equal to zero, see (6.1),
than the geometric product of two orthonormal elements reduces to their exterior product,

e8e 9 = e8 ^ e 9 . (6.5)

Similar behaviour has also the wedge product. When acting on a basis elements we know, that
the wedge product of the element withitself is equal to zero. Therefore can be derived, that the
geometric product of two orthonormal basis elements reduces to the inner product which is eiher
positive or negative one,

e8e8 = e8 · e8 =
(
1 if 8 = 9 = 1, . . . , ?
�1 if 8 = 9 = ? + 1, . . . ,<

(6.6)

These definitions are now extended to the general grade A blade. For the inner product we get
the form

e 9 · e� =
A’
:=1

(�1):⌫(e 9 , e8: )e�\{8: } . (6.7)

For the outer product we obtain

e 9 ^ e� =
⇢
e 9 ^ e81 ^ · · · ^ e8A if 9 8 �
0 if 9 2 �. (6.8)

And for the geometric product we simply define

e8e� = e 9 · e� + e 9 ^ e� . (6.9)

The algebra created is called real geometric algebra with associated geometric product, also
called a Cli�ord product. It is usually denoted as G?,@. This algebra is actually a well known
Cli�ord algebra, Definition 2.15. The quadratic form generating the ideal is the one associated
with the bilinear form, (6.2). Knowing, that the constructed Geometric algebra is in fact a Cli�ord
algebra gives an access to all the properties the Cli�ord algebra has. This algebra is associative
and also free, meaning it can be generated from the basis elements using the geometric product.

The inner and exterior product can be viewed as a symmetric and antisymmetric product,
a · b = 1

2 (ab + ba) and a ^ b = 1
2 (ab � ba). These properties can be derived directly from the

definition of these products, and then are just written in the form of a geometric product.

6.2 Complexification
This chapter uses many definitions from the [5]. It expands the concepts, relates them with the
ones already defined and gives many examples for a good understanding.

In order to represent the complex nature of qubits it is necessary to introduce complex numbers.
We set the ground field to C, but that is not enough because we need to bring the complex
behaviour directly into the algebra. That can be achieved by defining a specific orthogonal linear
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transformation and also setting the basis of the vector space to the even number. Consider the
linear orthogonal transformation � : R2= ! R2= such that � 2 = �1, where 1 is the identity map.
The action of � on the orthonormal basis (e1, . . . , e2=) is following [5]:

� (e 9 ) = �e 9+=, � (e 9+=) = e 9 , (6.10)

where 9 = 1, . . .=. With the use of � , we will now introduce new transformed basis, which will
become very elegant in the context of QC [5].

Definition 6.3. Witt basis

59 =
1
2
(1 + 8 � ) (e 9 ) =

1
2
(e 9 � 8e 9+=), 9 = 1, . . . ,=

5 †9 =
1
2
(1 � 8 � ) (e 9 ) =

1
2
(e 9 + 8e 9+=), 9 = 1, . . . ,=

This definition is especially elegant because we can verify that for each 9 = 1, . . . ,= is satisfied
5 29 = 0 and 5 †29 = 0. Indeed,

5 2 =
1
2
(e 9 � 8e 9+=)

1
2
(e 9 � 8e 9+=)

=
1
4
(e29 � 8e 9e 9+= � 8e 9+=e 9 + 82e29+=)

=
1
4
(1 � 8e 9e 9+= + 8e 9e 9+= � 1) = 1

4
(0) = 0.

(6.11)

The choice of this particular 5 , 5 † is also motivated by the fact, that it satisfies the Grassman
and duality identities:

5 5 † + 5 †5 = 1,

59 5: + 5: 59 = 5 †9 5
†
: + 5 †: 5

†
9 , 9,: = 1, . . . ,=,

59 5
†
: + 5 †: 59 = X 9:, 9,: = 1, . . . ,=,

(6.12)

where the symbol X 9: is the Kronecker delta.
An easy way, how to construct the basis of the whole Cli�ord algebra C2= is with the use of

geometric product. we can use the Grassmann blades of the Witt elements. The construction is
following;

59 5: = 59 · 5: + 59 ^ 5: = 59 ^ 5:

5 †9 5
†
: = 5 †9 · 5 †: + 59† ^ 5 †: = 5 †9 ^ 5 †:

59 5
†
: = 59 · 5 †: + 59 ^ 5 †: =

1
2
X 9: + 59 ^ 5 †:

(6.13)

To extend the Witt basis to the whole algebra C2= we just take 22= possible geometric products of

(51)81 (5 †1 )
91 . . . (5=)8= (5 †= ) 9= , 8:, 9: 2 {0, 1} for : = 1, . . . ,=. (6.14)

6.3 Qubit in GA
As we have mentioned earlier, a qubit will be represented by an element lieing in the complex
Cli�ord albegra C2. We can use the Witt basis vectors (5 , 5 †) to induce a basis for the complex
Cliford algebra. The basis can be then written in the form (1, 5 , 5 †, 5 5 †). Before associating qubit
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with a particular element we will discuss the properties of the algebra in more details. The choice
of the basis leads us to two primitive idempotents in this algebra, namely � = 5 5 † and  = 5 †5 .
Conventions in physics, which won’t be discussed in details, tells us to use the idempotent � for
the construction. With this choice we come to the following representation of |0i and |1i state of
qubit.

|0i = � = 5 5 †

|1i = 5 †� = 5 †5 5 † = (1 � 5 5 †) 5 † = 5 †
(6.15)

We can now come to our definition of qubit Defintion 4.1 and plug in our representation of
|0i and |1i states:

|k i = U |0i + V |1i = U 5 5 † + V 5 † = (U + V 5 †)� . (6.16)

6.4 Gates in GA
For the rest of this thesis we will stick to this representation of |0i and |1i states. We can
now consider the construction of gates. The basic gates can be obtained easily by taking into
consideration their action on basis states. To distinguish between matrix and GA representation
we will use di�erent notation [5].

- � 60C4 : _- = 5 † + 5
. � 60C4 : _. = 8 5 † � 8 5
/ � 60C4 : _/ = 5 5 † � 5 †5

(6.17)

Following example should show, that the construction is correct and when acting on basis states
the results are correct.

Example 6.1.

_- |0i = (5 † + 5 ) 5 5 † = 5 †5 5 † = (1 � 5 5 †) 5 † = 5 † = |1i
_- |1i = (5 † + 5 ) 5 † = 5 5 † = |0i

_. |0i = (8 5 † � 8 5 ) 5 †5 = �8 5 †5 5 † = �8 (1 � 5 5 †) 5 † = �8 5 † = |1i
_. |1i = (8 5 † � 8 5 ) 5 † = 8 5 5 † = |0i

The form of the / -gate in GA was given. But we know that, the / -gate is just a special case of
the more general phase gate. In the language of GA, this gate has the following form [5]:

%⌘0B4 60C4 : _% = 5 5 † � 48q 5 †5 . (6.18)

Concrete phase gates, that we have discussed earlier are obtained similarly. Parameterq is changed
and di�erent gates arise. And for q = c we get the / -gate. The last important gate, we have not
discussed yet is the Hadamard gate. The construction is not intuitive, that is why we go straight
to the final form [5].

_� =
1p
2
(5 5 † � 5 †5 + 5 + 5 †) (6.19)

All the basic gates are defined and we can come to the conlusion, that every gate can be written
as
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_ = 05 5 † + 15 + 2 5 † + 3 5 †5 , (6.20)

where 0,1, 2,3 2 C such that 02 + 22 = 12 + 32 = 1, 10 + 32 = 0 is satisfied.
These constraints noticeably resemble the conditions we specified, when defining general

matrix for gate representation. It is no coincidence and it also shows the equivalence between
these two types of representation. We can even express the relation

05 5 † + 15 + 2 5 † + 3 5 †5  !
✓
0 1
2 3

◆
. (6.21)

This relation is now examined on examples. The matrix representation of all NOT gates is
written down. The coe�cients are obtained and then the GA representation derived.

Example 6.2.

- =
✓
0 1
1 0

◆
0 = 0, 1 = 1, 2 = 1, 3 = 0

Now using the formula (6.21) we can write the GA representation

_- = 05 5 † + 15 + 15 † + 05 †5 = 5 † + 5

which is truly the form we have obtained previously. For other NOT gates the process is analogical.

. =
✓
0 �8
8 0

◆
0 = 0, 1 = �8, 2 = 8, 3 = 0

_. = 05 5 † � 8 5 + 8 5 † + 05 †5 = 8 5 † � 8 5

/ =
✓
1 0
0 �1

◆
0 = 1, 1 = 0, 2 = 0, 3 = �1

_/ = 15 5 † + 05 † + 05 � 15 †5 = 5 5 † � 5 †5

The general phase gate will be constructed in the same way. The last important single qubit
gate is the Hadamard gate. The construction will not di�er, but we just have to be carefull with
the 1p

2
factor.

Example 6.3.

� =
1p
2

✓
1 1
1 �1

◆
0 =

1p
2
, 1 =

1p
2
, 2 =

1p
2
, 3 = � 1p

2

_� =
1p
2
5 5 † + 1p

2
5 + 1p

2
5 † � 1p

2
5 †5 =

1p
2
(5 5 † + 5 + 5 † � 5 †5 )

Which is again the form we have already obtained. This mechanism for transforming matrix
representation into GA representation can be used for any given gate. And it of course works
both ways. We have simplified matrix multiplication to normal multiplication, where we can use
Grassman or duality identities to even further simplify the computation.
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6.5 Multiple qubits and gates in GA

Let us just recall, that for the basis of C2= complex algbera we use the elements (51, 5 †1 , . . . , 5=, 5
†
= )

and construct 22= combinations of their geometric product. This leads to two primitive idempotents
� and  . The idempotent � will be again used

� = �1 . . . �= = 515
†
1 . . . 5= 5

†
= , (6.22)

where �8 = 58 5
†
8 .

The definition of =-qubit state will be now introduced. The realisation is done in the space of
dimension # = 22= with the orthonormal basis

|81 . . . 8=i = (5 †1 )
81 . . . (5 †= )8=� , (6.23)

where 81, . . . , 8= 2 {0, 1}.

Example 6.4. Consider the case of 3-qubit state, meaning we work in the algebra C6 with
dimension 26 = 64. Primitive idempotent � = 515

†
1 525

†
2 535

†
3 is defined. Basis states can be then

written in the form

|000i = � , |100i = 5 †1 � , |010i = 5 †2 � , |001i = 5 †3 � ,
|110i = 5 †1 5

†
2 � , |101i = 5 †1 5

†
3 � , |011i = 5 †2 5

†
3 � , |111i = 5 †1 5

†
2 5

†
3 � .

Multiple qubit gates will be now constructed. Basic gates will be written in the matrix form.
The C-NOT gate will serve as an example. The matrices representing gates are usually sparse.
Therefore it is not di�cult to write the matrix in the form of sum, where every matrix has just one
nonzero element.

CNOT =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨
=
©≠≠≠
´

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

™ÆÆÆ
¨
+
©≠≠≠
´

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

™ÆÆÆ
¨
+
©≠≠≠
´

0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

™ÆÆÆ
¨
+
©≠≠≠
´

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

™ÆÆÆ
¨

Every matrix in the sum is now written in the form of outer products. And outer products can be
translated to GA very simply. We also know that the state h8182 | is just a Hermitian cojugation of
state |8182i. Hence we can derive

|00i h00| + |01i h01| + |11i h10| + |10i h11| = � �† + 5 †2 � �
†52 + 5 †1 5

†
2 � � 51 + 5

†
1 � �

†5251 =

= � + 5 †2 � 52 + 5
†
1 5

†
2 � 51 + 5

†
1 � 5251 =

= 515
†
1 525

†
2 + 515 †1 5

†
2 52 � 5

†
1 515

†
2 � 5

†
1 5152 =

= 515
†
1 � 5

†
1 51(5

†
2 + 52)

The form of other multiple qubit gates is obtained in the same way.

_⇠�#$) = 515
†
1 � 5

†
1 51(5

†
2 + 52)

_⇠/ = 515
†
1 + 5 †1 51(525

†
2 � 5

†
2 52)

_(,�% = 515
†
1 525

†
2 + 5 †1 515

†
2 52 + 5

†
1 52 � 515

†
2

(6.24)

This construction can be used for any given gate. Matrix representation is written in the form
of outer products and then translated into GA.
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6.6 Parallel gates
Similarly to the matrix representation, also in the GA representation needs to be discussed how
to represent parallel gates acting on the multiple qubit. Tensor product will be used.

Definition 6.4 (Gates tensor product). A tensor product_1⌦· · ·⌦_=, where _: 2
n
5: 5

†
: , 5

†
: 5:, 5:, 5

†
:

o
for each : = 1, . . . ,=, is represented by a gemotric product (�1)B_1 . . . _=, where the sign is deter-
mined by the cardinality of the sets (8 , such that B =

Õ
8 |(8 |, where

(8 =
n
; < 8 : _; = 5; or _; = 5

†
; 5;

o
in the case if _8 = 58 or _8 = 5

†
8 .

Although this definition might seem a bit complicated at the first glance. Examples are provided
for a proper understanding.

Example 6.5.
51 ⌦ 5 †2 = (�1)B 515 †2 B =

’
8

|(8 |

(1 = ;, (2 = {1} , (3 = ;; (8 is empty for all 8 > 2

B = 1; leading to: 51 ⌦ 5 †2 = (�1)1515 †2 = �515 †2
This definition of a tensor product is not commutative. For _: 2

n
5: 5

†
: , 5

†
: 5:, 5:, 5

†
:

o
is _8 ⌦ _9

not necessarily equal to _9 ⌦ _8 .
Example 6.6.

5 †1 ⌦ 52 = (�1)B 5 †1 52 B =
’
8

|(8 |

(1 = ;, (2 = ;, (3 = ;; (8 is empty for all 8 > 2

B = 1; leading to: 5 †1 ⌦ 52 = (�1)05 †1 52 = 5
†
1 52

Now consider two parallel gates. Knowing the rules of the tensor product, it is easy to calculate
a particular example. It is important to keep in mind, that the tensor product is not commutative
and the order of the gates matter.

Example 6.7.
_- ⌦ _. = (5 †1 + 51) ⌦ (8 5 †2 + 8 52)

= 8 ((5 †1 ⌦ 5
†
2 � 5

†
1 ⌦ 52 + 51 ⌦ 5

†
2 � 51 ⌦ 52)

= 8 (5 †1 5
†
2 � 5

†
1 52 � 515

†
2 + 5152)

The elegance of this approach lays in the fact, that the multiple qubit gates can be obtained via
tensor product and they do not have to be derived from their matrix representation. The CNOT
gate was derived from the matrix representation. Now will be shown, how the same result can be
deduced from the tensor product. The idempotent � does not change the sign in contrast to the
idempotent  . Their proper combination leads to the following example.

Example 6.8.
_⇠#$) = �1 ⌦ 1 +  1 ⌦ -2

= 515
†
1 ⌦ 1 + 5 †1 51 ⌦ (5 †2 + 52)

= 515
†
1 + 5 †1 51 ⌦ 5

†
2 + 5 †1 51 ⌦ 52

= 515
†
1 � 5

†
1 515

†
2 � 5

†
1 5152

= 515
†
1 � 5

†
1 51(5

†
2 + 52)
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Which after some modification truly is the desired form of CNOT gate. In this case we supposed,
that the first qubit is the control qubit. The construction for the case, when the control qubit is
the second one is analogical. Other gates can be obtained in the same manner.

Example 6.9.
_(,�% = �1 ⌦ 1 +  1 ⌦ /2

= 515
†
1 ⌦ 1 + 5 †1 51 ⌦ (525 †2 + 5 †2 52)

= 515
†
1 + 5 †1 51 ⌦ 525

†
2 + 5 †1 51 ⌦ 5

†
2 52

= 515
†
1 � 5

†
1 51525

†
2 � 5

†
1 515

†
2 52

= 515
†
1 � 5

†
1 51(525

†
2 � 5

†
2 52)

6.7 Measurement
The last thing, that needs to be introduced is the measurement. For calculating the probability of
certain outcome in matrix representation we just took the inner product of the outcome with the
transformed qubit. And the square root of the product was the particular probability. In the GA
will be used a so called scalar projection, denoted [ ]0 . The scalar projection takes just the scalar
part of a multivector. We can than use the following formula

hd |k i = 2=
⇥
d†k

⇤
0 (6.25)

where = is the number of qubits. This factor needs to be introduced due to our choice of basis and
due to the spinorial nature of the representation, which will not be discussed in more details. Let
us see on an example how this scalar projection works.

h0|1i = 21
⇥
5 5 †5 †

⇤
0 = 0

h0|0i = 21
⇥
5 5 †

⇤
0 = 1

(6.26)

The outcomes are as expected. And just a quick recall that 5 5 † = 1
2 + 5 ^ 5 † and therefore⇥

5 5 †
⇤
0 = 1

2 .

6.8 Circuit example
In this chapter will be given some simple examples how to represent the circuits in GA. We will
start with the serial setup, where we do not encounter the tensor product. We will always compare
the matrix representation and GA representation.

Example 6.10 (Serial gates). The first example shows the circuit with all gates on one wire, see
Figure 6.1.

Figure 6.1: Serial gates
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We will start with the matrix representation. All matrices are multiplied and we obtain a
matrix representing the circuit.

" = /�- =
✓
1 0
0 �1

◆
1p
2

✓
1 1
1 �1

◆ ✓
0 1
1 0

◆
=

1p
2

✓
�1 1
1 1

◆
(6.27)

For any given qubit can be now calculated the probability of the qubit ending in the basis state.
The qubit is multiplied by the final matrix and then is taken the inner product with each basis
state. We will use the basis qubits |k i = |0i and |di = |1i . We compute the transformed qubit
and then take the inner product with basis states to obtain the probabilites

|k 0i = " |k i = 1p
2

✓
�1 1
1 1

◆ ✓
1
0

◆
=

1p
2

✓
�1
1

◆
(6.28)

|d0i = " |di = 1p
2

✓
�1 1
1 1

◆ ✓
0
1

◆
=

1p
2

✓
1
1

◆
(6.29)

? ( |0i) = |h0|k 0i |2 =
���� 1p2

�
1 0

� ✓�1
1

◆ ����
2

=
���� � 1p

2

����
2

=
1
2

(6.30)

? ( |1i) = |h1|k 0i |2 =
���� 1p2

�
0 1

� ✓�1
1

◆ ����
2

=
���� 1p2

����
2

=
1
2

(6.31)

? ( |0i) = |h0|d0i |2 =
���� 1p2

�
1 0

� ✓1
1

◆ ����
2

=
���� 1p2

����
2

=
1
2

(6.32)

? ( |1i) = |h1|d0i |2 =
���� 1p2

�
0 1

� ✓1
1

◆ ����
2

=
���� 1p2

����
2

=
1
2

(6.33)

For both vectors the sum of probabilities is 1. The constraint given by the second axiom of
probability is satisfied and we can come to the conclusion, that our computation is correct.

? ( |0i) + ? ( |1i) = 1
2
+ 1
2
= 1

Now the alternative is shown. The circuit is represented in the apparatus of geometric algebra.

_" = _/_�_- = (5 5 † � 5 †5 ) 1p
2
(5 5 † � 5 †5 + 5 + 5 †)(5 † + 5 )

=
1p
2
(5 5 †5 5 † � 5 5 †5 †5 + 5 5 †5 + 5 5 †5 †)(5 † + 5 )

=
1p
2
(5 5 † + 5 + 5 †5 � 5 †)(5 † + 5 )

=
1p
2
(5 5 †5 † + 5 5 †5 + 5 5 † + 5 5 = 5 †5 5 † + 5 †5 5 � 5 †5 † � 5 †5 )

=
1p
2
(5 † � 5 †5 + 5 + 5 5 †)

(6.34)
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This expression can be thought as an equivalent to the final matrix obtained in the matrix
representation. Now will be calculated the transformed qubits of |k i = |0i and |di = |1i.

|k 0i = _" |k i = 1p
2
(5 † � 5 †5 + 5 + 5 5 †)(5 5 †)

=
1p
2
(5 †5 5 † � 5 †5 5 5 † + 5 5 5 † + 5 5 †5 5 †)

=
1p
2
(5 † + 5 5 †)

|d0i = _" |di = 1p
2
(5 † � 5 †5 + 5 + 5 5 †) 5 †

=
1p
2
(5 †5 † � 5 †5 5 † + 5 5 † + 5 5 †5 †)

=
1p
2
(5 5 † � 5 †)

(6.35)

The probabilities of the qubit ending in particular basis state are yet to be calculated.

? ( |0i) = |h0|k 0i |2 =
����2


5 5 †

1p
2
(5 † + 5 5 †)

�
0

����
2

=
���� 2p2

⇥
5 5 †5 † + 5 5 †5 5 †

⇤
0

����
2

=
���� 2p2

⇥
5 5 †

⇤
0

����
2

=
���� 2p2

1
2

����
2

=
���� 1p2

����
2

=
1
2

(6.36)

Other probabilities are calculated in the same way, therefore only a short version will be shown.

? ( |1i) = |h1|k 0i |2 =
����2


5

1p
2
(5 † + 5 5 †)

�
0

����
2

=
1
2

(6.37)

? ( |0i) = |h0|d0i |2 =
����2


5 5 †

1p
2
(5 5 † � 5 †)

�
0

����
2

=
1
2

(6.38)

? ( |1i) = |h1|d0i |2 =
����2


5

1p
2
(5 5 † � 5 †)

�
0

����
2

=
1
2

(6.39)

Now can be verified, that the sum of probabilities is 1 for both vectors. Probabilities calculated
vie GA representation are same as the probabilities calculated via matrix representation. GA
representation proves to be correct.

Example 6.11 (Parellel gates). In this example is examined the behaviour of parallel gates. On
one wire is Hadamard gate and on second wire is the X-gate. The CNOT gate is then applied with
the first qubit being a control qubit, see Figure 6.2.
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Figure 6.2: CNOT gate circuit

The matrix representation will be shown first. The tensor product of Hadamard gate and
X-gate is taken. The form of CNOT gate is known, 6.24.

CNOT =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨

(6.40)

� ⌦ - =
1p
2

✓
1 1
1 �1

◆
⌦
✓
0 1
1 0

◆
=

1p
2

©≠≠≠
´

1 ⇤
✓
0 1
1 0

◆
1 ⇤

✓
0 1
1 0

◆

1 ⇤
✓
0 1
1 0

◆
�1 ⇤

✓
0 1
1 0

◆™ÆÆÆ
¨

(6.41)

=
1p
2

©≠≠≠
´

0 1 0 1
1 0 1 0
0 1 0 �1
1 0 �1 0

™ÆÆÆ
¨

The final matrix is obtained by multiplying CNOT gate with � ⌦ - .

" = ⇠#$) (� ⌦ - )· = 1p
2

©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨

©≠≠≠
´

0 1 0 1
1 0 1 0
0 1 0 �1
1 0 �1 0

™ÆÆÆ
¨
=

1p
2

©≠≠≠
´

0 1 0 1
1 0 1 0
1 0 �1 0
0 1 0 �1

™ÆÆÆ
¨

(6.42)

We will demonstrate the action of the circuit on two example multiple qubits, namely k = |00i
and d = |01i.

|k 0i = " |k i = 1p
2

©≠≠≠
´

0 1 0 1
1 0 1 0
1 0 �1 0
0 1 0 �1

™ÆÆÆ
¨

©≠≠≠
´

1
0
0
0

™ÆÆÆ
¨
=
©≠≠≠
´

0
1
1
0

™ÆÆÆ
¨

(6.43)

|d0i = " |di = 1p
2

©≠≠≠
´

0 1 0 1
1 0 1 0
1 0 �1 0
0 1 0 �1

™ÆÆÆ
¨

©≠≠≠
´

0
1
0
0

™ÆÆÆ
¨
=
©≠≠≠
´

1
0
0
1

™ÆÆÆ
¨

(6.44)



6 Geometric algebras in Quantum computing 45

We obtained the transformed qubits and the measurement can be carried out.

? ( |00i) = |h00|k 0i |2 =
���� 1p2

�
1 0 0 0

� ©≠≠≠
´

0
1
1
0

™ÆÆÆ
¨

����
2

= 0

? ( |01i) = |h01|k 0i |2 =
���� 1p2

�
0 1 0 0

� ©≠≠≠
´

0
1
1
0

™ÆÆÆ
¨

����
2

=
���� 1p2

����
2

=
1
2

? ( |10i) = |h01|k 0i |2 =
���� 1p2

�
0 0 1 0

� ©≠≠≠
´

0
1
1
0

™ÆÆÆ
¨

����
2

=
���� 1p2

����
2

=
1
2

? ( |11i) = |h11|k 0i |2 =
���� 1p2

�
0 0 0 1

� ©≠≠≠
´

0
1
1
0

™ÆÆÆ
¨

����
2

= 0

(6.45)

The measuremant for the second qubit will be shorten

? ( |00i) = |h00|d0i |2 = 1
2
, ? ( |01i) = |h01|d0i |2 = 0,

? ( |10i) = |h10|d0i |2 = 0, ? ( |11i) = |h11|d0i |2 = 1
2
.

(6.46)

We can easily verify that the sum of probabilities is equal to 1 for both multiple qubits.
The same circuit is now realized in the language of GA. The tensor product of the Hadamard

gate and X-gate is taken. The form of the CNOT gate is known, (6.24).

_�- = _� ⌦ _- =
1p
2
(515 †1 � 5

†
1 51 + 51 + 5

†
1 ) (5

†
2 + 52)

=
1p
2
(515 †1 5

†
2 + 515 †1 52 + 5

†
1 515

†
2 + 5 †1 5152 � 515

†
2 � 5152 + 5

†
1 5

†
2 + 5 †1 52)

_⇠#$) = 515
†
1 � 5

†
1 515

†
2 � 5

†
1 5152

(6.47)

The final circuit representation is obtained simply by multiplying the _�- and _⇠#$) . Using the
rules mentioned in (6.11), (6.12) and (6.13) we can simplify to the final form

_" = _⇠#$)_�-

=
1p
2
(515 †1 5

†
2 + 515 †1 52 � 515

†
2 � 5152 � 5

†
1 515

†
2 52 + 5

†
1 5

†
2 52 + 5

†
1 51525

†
2 + 5 †1 525

†
2 ) .

(6.48)
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Note that in the matrix representation the final matrix has 8 nonzero elements. The GA
representation has also 8 elements. To verify the correctness we will calculate the probabilities of
same qubits k = |00i and d = |01i.
|k 0i = _" |k i

=
1p
2
(515 †1 5

†
2 + 515 †1 52 � 515

†
2 � 5152 � 5

†
1 515

†
2 52 + 5

†
1 5

†
2 52 + 5

†
1 51525

†
2 + 5 †1 525

†
2 ) (515

†
1 525

†
2 )

=
1p
2
(515 †1 5

†
2 + 5 †1 525

†
2 )

|d0i = _" |di

=
1p
2
(515 †1 5

†
2 + 515 †1 52 � 515

†
2 � 5152 � 5

†
1 515

†
2 52 + 5

†
1 5

†
2 52 + 5

†
1 51525

†
2 + 5 †1 525

†
2 ) (515

†
1 525

†
2 )

=
1p
2
(515 †1 525

†
2 + 5 †1 5

†
2 )

(6.49)
To calculate the probabilities of particular outcomes we use the scalar projection. It is important
to change the factor before the scalar projection. This example works with two qubits, therefore
we know 2= = 22 = 4.

? ( |00i) = |h00|k 0i |2 =
����4


515

†
1 525

†
2

1p
2
(515 †1 5

†
2 + 5 †1 525

†
2 )

�
0

����
2

=
���� 4p2 [ 0]0

����
2

= 0

? ( |01i) = |h00|k 0i |2 =
����4


515

†
1 52

1p
2
(515 †1 5

†
2 + 5 †1 525

†2)
�
0

����
2

=
���� 4p2

h
515

†
1 525

†
2

i
0

����
2

=
���� 4p2

1
4

����
2

=
���� 1p2

����
2

=
1
2

? ( |10i) = |h10|k 0i |2 = 1
2

? ( |11i) = |h11|k 0i |2 = 0

(6.50)

The sum of all probabilities is 1, which is correct. We can now compare the results to the one
obtained by matrix representation. All probabilities are same. For the second mulitple qubit is the
process analogical and just the final probabilities are shown.

? ( |00i) = |h00|d0i |2 = 1
2

? ( |01i) = |h01|d0i |2 = 0

? ( |10i) = |h10|d0i |2 = 0

? ( |11i) = |h11|d0i |2 = 1
2

(6.51)

In the case of the second multiple qubit the probabilities also ad up to 1. They are equal to
the matrix representation a we can come to the conclusion, that the GA representation works
correctly.
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It can be clearly seen, that with the higher number of input qubits the dimension of the matrices
incresaes exponentially. The computation becomes very demanding, because we are dealing with
huge matrices. Representation in GA is very intuitive and allows for many simplification during
the calculation. The number of elements representing quantum states or quantum gates also
increase, but they usually cancel out during the calculation and simplify the expression. It is also
worth noticing, that the geometric product of many elements in GA is equal to 0. This property
simplifies the calculation and also saves a lot of memory.

The biggest problem with GA representation is, that there is no software for a direct im-
plementation. GAALOPWeb o�ers some opportunities but with many limitations. With proper
implementation can be QC realised in the language of GA very e�ciently. The equivalence of the
matrix and GA representation also allows for using more suitable representation for particular
problem.
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7 Conclusion
The first chapter of this thesis defines key concepts from algebra and places them into context.
Special attention is given to bilinear and quadratic forms and also to algebraic products. General
description of tensor product and tensor spaces is given and then shown on examples. Cli�ord
algebra is derived and all important properties are discussed, [6].

In order to understand the concept of qubit properly, the second chapter focuses on quantum
physics. Mathematical description of the electromagnetic wave is given and is shown how to
decompose the vector representing the wave. The contradiction between classical wave theory
and quantum understanding is discussed. The chapter is mostly theoretical and works with the
following sources mainly, [1, 10].

All the information is then used to define a qubit. The di�erence between a classical bit and a
qubit is emphasized. In order to address the problem with a qubit visualisation, the number of
degrees of freedom is reduced to two and then the definition of qubit is transformed to spherical
coordinates. We then define so called Bloch sphere, which is used to visualise di�erent qubits and
their transformations. The definition of qubit is extended to multiple qubits using the Kronecker
product. In a simple manner is also described how the measurement is carried out. This chapter
is based on the knowledge acquired from [2, 7, 13].

Next chapter shows how to derive a general quantum gate andwhat properties must be satisfied.
Basic gates are defined and their action is demonstrated on examples. To further illustrate how
quantum gates work, the software Qiskit [11] is used for the visualisation. The definition of
a single qubit gate is extended to a multiple qubits gate using the Kronecker product. Simple
quantum circuit is then constructed and described with all necessities.

The main part applies the knowledge and constructs an apparatus of geometric algebra (GA)
suitable for quantum computing. We start with the definition of GA over the real numbers. Special
attention is paid to geometric product this algebra is equipped with. This product plays a crucial
role throughout the thesis and therefore is carefully derived from the inner and exterior product.
Important properties of geometric product are highlighted. However, in order to properly represent
qubits in GA we need to bring complex numbers to our definition. Setting the ground field to
the complex numbers is not enough, because the complex behaviour needs to be brought directly
into the algebra. Therefore an orthogonal linear transformation is introduced. Basis written with
the use of this transformation is called a Witt basis and plays very important role. We examine
interesting properties of the Witt basis for the purpose of further computing. More information
about this approach to the construction of GA can be found in [5].

With the suitable apparatus of GA we can come down to the definition of a qubit. The key
idea is to identify qubits with the elements of GA. General definition of a qubit is given and then
extended to multiple qubits. Quantum gates are also identified with the elements of GA and that
allows for a computation within one algebraic structure. The relation between matrix and GA
representation is highlighted. We then carefully derive the form of quantum gates written in GA.
The universal way to construct any multiple qubit gate is shown. Everything in this chapter is
accompanied with examples to provide an intuitive understanding of computing in GA. We also
briefly discuss, how to perform the measurement in GA.

In the final part it is shown how to write a simple circuit in matrix and GA representation. The
first example shows a serial gate circuit and the second one shows a parallel gate circuit. We also
confirm the correctness of GA representation by comparing the results of measurement with the
results obtained in the matrix representation.

We were able to construct an apparatus of GA, which allows for an intuitive and straightforward
computing. All obtained results confirmed the correctness of the approach. An elegant definition
of the basis allows many simplifications during the computing, making it faster and potentially
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also less memory consuming. The matrix representation has a problem with the increase of the
dimension of the matrices. This increase is exponential and even for a small number of qubits the
computing can become very demanding. The dimension of the expressions representing quantum
gates in GA also increases, but it is not so dramatic and can often be simplified. The biggest
problem is the implementation. Complex numbers are di�cult to represent and there is currently
no software suitable for the computing in GA. GAALOPWeb o�ers an alternative, while using a
slightly di�erent approach and working with the GA over real numbers.
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