
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

FILTERING AND A G G R E G A T I O N OF NETWORK TRAFFIC
FILTROVÁNÍ A A G R E G A C E SÍŤOVÉHO P R O V O Z U

M A S T E R S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR
AUTOR PRÁCE

SUPERVISOR
VEDOUCÍPRÁCE

Be. Artem Zubov

Ing. Zdeněk Martinásek, Ph.D.

B R N O 2017

n - r ^ l MKUITA •LIICTBOTICHHKY |
m * h d m u h k a C h í c h I

TECHiDLOBlf I

Dip lomová práce

magisterský navazuj ici studijn i obor Telekomunikační a informační technika
Ústav telekomunikaci

Szjdent: 6c. Artem Zubov
fíacrúk: 2

ID: 171433

flKäďe.-nŕcKýfoÄ:2Cia--1"

NÁZEV TÉMATU:

Filtrování a agregace síťového provozu
POKYNY PRO VYPRACOVANÍ:

Cílem diplomové práce je nalézt a porovnat dostupné knihovny a softwarové nástroje pro filtraci sitového
provozu. Sitový provoz bude cílen na protokoly HTTP a H U P S . Dílčím cílem práce je také tento sírový provoz
agregovat pomocí dostupných protokolů (napr. LACPj. Z analýzy současného stavu proHerratiky budou vybrány
nejvhodnéjší nástroje, které budou implementovány a otestovány na experimentálním pracovišti. Experimenty
budou předpokládat legitimní provoz HTTP{5) a nelegitimní vybrané útoky DDoS. Výstupem diplomové práce
bude softwarová rnplementace schopná filtrovat a agregovat síťový provoz HTTP a HTTPS de stanovených
pravidel, tak aby byl DDoS útok potlačen. Dosazené výsledky přehledné zhodnoťte.

DOPORUČENÁ LITERATURA:

[1] PERLOFF. RonakJ 5.: FREDERIK. Anderson H.; CHRISTIAN. Thrysoee J. Murtí-devioe link aggregaťon. U.S.

Patent No aj910.H9.2Du5-.

[2] Debian - Documentaťon. Debian - Dooumentation [online]. 2016 [ort. 2D16-D6-121 Dostupné z:
litlps:frHwwjdebian.orgiyocirndei(jen.hrrnl

Termín zadání: 1.2.2017/ Termín odevzdání: 24.5 JD17

Vedoucí prace.- Ing. Zdenek Marthisek, Pti.D.
KonzuJranL-

AUtír dt^pmpYE prtĽE riHml pfl •rjftůTcn I dlpfcrwE prarCE pmuSH ar irniU pron tfettcri owň, zctmtfia nE5f~l UMhuraK nsila v p i s u j
způsobem fa chdch autorech pfav osobnusnikri d misi sj být plno vadám následků r>xuE<ril uícra^ciil í 11 a následnicích Butofskjŕho
zakina t. 1 2 1 . 2 H J 0 Bfc., v í e o i S n c Ď r c h prstoiprc-HniĽh důi-HltJ mUr/fljKlifi z ustarpvEnl CasU fanŕ. hlarŕf VI. PIK TŤEKn ho za Koninu
•Lt íuansab.

•tec. Ing. J f i Mis urec, CSc.
předseda oborově

UPOZORNĚNI:

- i " . U E lEMolt ľT t; a >.:•'••• _n tatrlch tec h no led I. '.Vsát* meni techifcfc* H i t * : TechnlcU 306B/IDŕ SIS m í Brno

http://aj910.H9.2Du5-

ABSTRACT
Purpose of this work is to find, describe and test existing tools and features

available in linux-based solution for filtering malicious traffic. As source of
malicious traffic taken most widly-used Ddos attacks targeting Web servers. SYN,
UDP and ICMP Flood attacks are described and different variants of they
mitigation are explained. Available tools for manipulating with traffic, like ebtables
and iptables tools are compared, based on each type of attack. Specially created
experimental network was used for testing purposes, configured filters servers
and bridge. Inspected packets flow through linux kernel network stack along with
tuning options serving for increasing filter server traffic throughput. As a result,
ebtables tool appears to be most productive, due to less resources it needed to
process each packet (frame). Pointed out that separate detecting system is needed
for this tool, in order to provide further filtering methods with data. As main
conclusion, linux-based solutions provide full functionality for filtering traffic
either in stand-alone state or combined with detecting systems.

KEYWORDS
Ddos, Netfilter, Ebtables, SYN Flood, UDP Flood, RPS_cpus, Irqbalance.

ABSTRAKT
V této práci jsou zkoumaní základní principy odporů servisních útoků,

nejběžnějších typů a účelu použití. Popsané dostupné techniky zmírnění různých
typu útoků, nástrojů a přístupů v operačních systémech postavených na Linuxu.
Nakonfigurován filtrcni server a pro účely testování simulován SYN Flood, UDP
Flood a ICMP Flood útoky. Bylo zjištěno, vhodne techniky vyrovnání tehto druhu
útoku a realizované příslušná konfigurace filtrování.

KLICOVA SLOVA
Ddos, Netfilter, Ebtables, SYN Flood, UDP Flood, RPS_cpus, Irqbalance.

ZUBOV, A. Filtrování a agregace síťového provozu. Brno: Vysoké učení technické v
Brně, Fakulta elektrotechniky a komunikačních technologií, 2017. XY s. Vedoucí
diplomové práce Ing. Zdeněk Martinásek, Ph.D.

DECLARATION
I declare that my master thesis on the topic of filtering and aggregation of

network traffic, I developed independently under the leadership of my supervisor,
using literature and other information sources, all of which are cited in the work
and listed in the bibliography at the end of work.

As the author mentioned master thesis further declare that, in relation with
the creation of this master thesis, I did not violate the copyrights of third parties, in
particular, I did not intervened illegally in foreign copyrights of personal data and /
or properly, and I am fully aware of the consequences of violation of § 11 et seq Act
no. 121/2000 Coll., on copyright, rights related to copyright and amending some
laws (copyright Act), as amended, including possible criminal consequences
arising from the provisions of part II, Title VI. Part 4 of the Penal Code no. 40/2009
Coll.

In Brno
(author signature)

CONTENT
List of figures i

Preface 8

1 Introduction 9
1.1 Ddos. Mitigation methods 9

1.1.1 UDP Flood Attack 9
1.1.2 SYN Flood Attack 10
1.1.3 ICMP Flood Attack 12

1.2 Linux-based firewall 13
1.2.1 Netfilter. Packetflow 13
1.2.2 Ebtables 14
1.2.3 Iptables 16

1.3 Aggregation 18

2 Preparaton 20

2.1 Experimental network 20
2.2 Tunning 24

3 Implementation 25

3.1.1 S Y N Flood 26
3.1.2 UDP Flood 30

3.1.3 ICMP Flood 34

4 Conclusions 38

REFERENCES 39

LIST OF SYMBOLS, VALUES AND GLOSSARY 40

LIST OF FIGURES
Figure 1.1 Establishing TCP connection 10
Figure 1.2 Principle of SYN Flood attack 11
Figure 1.3 Packets flow through netfilter 13
Figure 1.4 Link aggregation 18
Figure 2.1 Testing network infrastructure 20
Figure 2.2 Links aggregation and interface bonding 23
Figure 2.3 Increasing number of rx_queues example 24
Figure 2.4 Ring buffers size 24
Figure 3.1 Response time for HTTP request 25
Figure 3.2 Legitimate traffic generation 26
Figure 3.3 Legitimate traffic under SYN Flood 26
Figure 3.4 SYN Flood Filtering by ebtables 27
Figure 3.5 Iptables filtering 28
Figure 3.6 Response time under SYN flood 28
Figure 3.7 CPU utilization 28
Figure 3.8 SYN flood with smp_affinnity 29
Figure 3.9 Web server response time under UDP Flood 30
Figure 3.10 CPU utilization by user traffic 30
Figure 3.11 Web server response time with filter 31
Figure 3.12 Filtering UDP with eb tables 31
Figure 3.13 User traffic response time 32
Figure 3.14 CPU load under UDP Flood with iptables 32
Figure 3.15 Response time under UDP Flood with iptables 33
Figure 3.16 Maximum udp traffic throughput 33
Figure 3.17 Web server load under ICMP Flood 34
Figure 3.18 HTTP traffic response time 34
Figure 3.19 ICMP Flood filtering using ebtables 35
Figure 3.20 CPU load under UDP filtering 35
Figure 3.21 Response time under iptables filtering 36
Figure 3.22 ICMP Flood filtering with iptables 36

7

List of Tables

Table 2.1 Filters specifications 20
Table 2.2 User traffic 25
Table 3.1 SYN Flood filtering 29
Table 3.2 UDP Flood filtering 33
Table 3.3 ICMP Flood results 36

8

PREFACE

According to Akamai State of the Internet / Security Report the frequency of ddos
attacks has increased by 71% worldwide in 2016. Along with recent event,
involving WannaCrypt malicious software spreading, security and protection
questions for internet users, becoming more important than ever before. Purpose
of this diploma work to find out and test most efficient and reliable tools existing in
Linux based systems for filtering and aggregation ddos attacks. Linux based
solutions are considered as chip and easy to configured systems among available
competitor. Most common Web servers focused ddos attacks will be taken into
consideration such as SYN/UDP Flood and ICMP Flood. By configuring filter
servers and applying suitable setup, most efficient and reliable solution will be
chosen. Aggregation of traffic will be considered from a point of impact on filtering
productivity.

Master thesis consist of three parts. Ddos attacks overview, most common
types and methods of mitigations, available Linux based solutions for traffic
filtering and aggregation will be represented in part 1. Next part will describe
experimental network components and kernel tuning. Last part will include
implementation of selected solution on filter servers, differentiated by installed
hardware.

9

1 INTRODUCTION

1.1 DDOS. MITIGATION METHODS.

A distributed denial-of-service (DDoS) attack [1] is malicious attempt to make
an online service unavailable to users, usually by temporarily interrupting or
suspending the services of its hosting server. Originally based on target service
resources limitation, ddos attacks can be done by either spoofing attacker ip
address or using so called 'botnet'. Botnet is a network of hacked devices,
connected to global network which control is gained by third party. Compromise
devices can send traffic to a target services which makes ddos mitigation complex,
as it's hard to distinguish legitimate traffic from malicious.

According to 2016-2017 Global Application & Network Security Report by
Radware [2], most wildly used types of attack in 2016 were SYN Flood, UDP and
ICMP Flood.

1.1.1 UDP Flood

User datagram Protocol (UDP) is a connectionless networking protocol,
providing checksums for data integrity and port numbers for addressing functions
[1]. In the absence of an initial handshake, to establish a valid connection, there is
no guarantee of data delivery, ordering or duplicate protection. Thus high volume
of "best effort" traffic can be sent over UDP channels to any host, with no built-in
protection to limit the rate of the UDP DDoS flood. This means that not only are
UDP flood attacks highly-effective, but also that they could be executed with a help
of relatively few resources.

In UDP Flood attack attacker sends large number of UDP packets to a victim
system, which leads to network saturation and the depletion of available
bandwidth for legitimate service requests to the victim system [1]. When the
victim system receives a UDP packet, it will determine what application is waiting
on the destination port. When server determines that there is no application
listening on the port, it will generate an ICMP packet of "destination unreachable"
to the forged source address. If enough UDP packets are delivered to ports of the
victim, system will go down.

Another way to perform an attack is to send huge amount of UDP packet on
certain (opened) ports, leading to link bandwidth exhaustion.

10

Among known option of mitigating is to close all unused port on server and
filter all incoming traffic destined to target server, except DNS.

1.1.2 SYN Flood

SYN Flood attack aiming on TCP three-way handshake mechanism, by sending
connection requests faster than target machine can process them, causing network
saturation [1]. Under normal conditions clients system begins by sending a SYN
message to the server. The server then acknowledges the SYN message by sending
SYN-ACK message to the client. The client then finishes establishing the connection
by responding with an ACK message. The connection between the client and the
server is then open, and the service-specific data can be exchanged between the
client and the server. Fig. 1.1 shows the view of this message flow:

Server

1

Figure 1.1 Three-way handshake mechanism

The potential weak point is where the server system has sent an
acknowledgment (SYN-ACK) back to client but has not yet received the ACK
message. This is known as half-open connection.

The server has built in its system memory a data structure (SYN queue)
describing all pending connections [3]. This data structure is of limit size, and it
can be overflowed by intentionally creating too many partially-open connections.
Creating half-open connections is easily accomplished with IP spoofing. The
attacking system sends SYN messages to the victim server system; these appear to

User

11

be legitimate but in fact reference a client system that is unable to respond to the
SYN-ACK messages. This means that the final ACK message will never be sent to
the victim server system, as shown in Fig.1.2:

Attacker Server SYN

SYN

Figure 1.2 Principle of SYN Flood attack

Among possible solutions for mitigation this kind of attacks are using
firewalls with SYN cookie feature enabled, filtering by limitation of possible SYN
packets per second passing accepted by server and blocking attacker source IP
addresses.

SYN cookies is technique how initial TCP sequence numbers will be chosen
by TCP servers, developed for mitigating SYN flood attacks [3]. Basic differences in
initial sequence number created by server and client are [4]:

• Top 5 bits: t mod 32, where t is a 32-bit time counter that increases
every 64 seconds;

• Next 3 bits: an encoding of an MSS selected by the server in response
to the client's MSS;

• Bottom 24 bits: a server-selected secret function of the client IP
address and port number, the server IP address and port number,
and t.

Thus server which uses SYN cookies doesn't have to drop connections when
its SYN queue is filled. It will send back a SYN+ACK, exactly as if the SYN queue

12

was larger. When the server receives ACK, it checks that the secret function works
for a recent value of t, and then rebuilds the SYN queue from the encoded MSS.

Limitation can be done based on exact server statistics, including average
traffic rate, connections per second during specific time.

1.1.3 ICMP Flood

Internet control message protocol (ICMP) is used by devices, includes router,
to send operational information messages for maintaining networks, such as
diagnostic or control purposes [4]. ICMP Flood attack can be performed in "ping of
dead" way, by sending large volumes of ICMP_ECHO_ REQUEST messages to the
victim, which force target server to reply and thus results in saturation of victim
bandwidth network connection. During an ICMP flood attack the source IP address
maybe spoofed.

Possible solutions for mitigations are limit size of ping requests as well as
the rate at which they can be accepted and denying all Icmp_Echo_Requests from
all source ip addresses, except local network.

13

1.2 LINUX-BASED FIREWALL

While deciding which best solution to choose for traffic filtering and ddos
attacks mitigations, Linux kernel based products can become more preferable
considering price tag and user friendly environment. There are a lot of tools and
tuning options for working with traffic, on which we need to have a closer look.

Linux distributions are operating systems made from software collection
[5], based on Linux kernel and package management system. Linux kernel is a
computer program and is the core of an operating system, with complete control
over everything in the system.

Base for all manipulating with network stack in linux kernel, is netfilter. To
be able to apply suitable techniques for filtering traffic, it's crucial to know, how
incoming and outgoing packet to linux network stack are being handled by
netfilter.

1.2.1 Netfilter. Packetflow

Netfilter is a framework provided by the Linux kernel and represents a set
of hooks inside it, to allow specific kernel modules to register callback functions
with the kernel's networking stack [5]. General packets flow path through
netfilter's hooks is shown on pic.1.3:

Picture 1.3 Packets flow through netfilter
Let's have a closer look on most essential functions for our testing purposes:

• Qdisc - scheduler and major building block in Linux traffic control process. It
queues all packets based on appropriate queuing discipline and transmits
packet as soon as it can. There are ingress (inbound traffic) and egress

1 4

(outbound traffic) qdiscs. The default queuing discipline for all interfaces under
Linux is pflfo_fast. It based on a conventional FIFO qdisc and provides
prioritization. There are three different bands for separating traffic. The
highest priority traffic are placed into band 0 and are always serviced first.

• Bridge check - simply check, if interface, from which packet was received,
belongs to bridge or not. If so, frame will not be processed at this point and will
be send to bridging decision function.

• Conntrack - connection tracking subsystem. It stores information about the
state of a connection, including source and destination IP addresses, port
number pairs, protocol types, state, and timeout in structured memory [5].

• Bridging decision - at this point frame is being investigated whether it's
destination is local process or its destination MAC address is located on
another side of the bridge. It can do with frame 4 thing:

1. Bridge it
2. Flood it over, if the destination MAC address is unknown to the bridge.
3. Pass it to the higher protocol code (IP code)
4. Ignore it, if a destination MAC address is on the same side of the bridge.

• Routing decision - based on IP address it decides if packet destination is local
process or it should be forwarded. Packet will be send through bridge interface
at this point, if forwarded.

1.2.2 Ebtables

Linux kernel built-in filtering tool, since kernel version 2.2 [7], which
allows to set up and maintain tables of rules that inspect Ethernet frames. It's
similar to iptables tools but with less functions due to fact that Ethernet frame
header is less complex than IP packet header. Ebtables rules are working only with
bridged frames and compare to iptables , frame is processed earlier in the stack,
consuming less resources.

There are three tables named filter, nat and broute [7]. Syntax for managing
with ebtables rules is the same as with iptables rules.
• Filter is the default table and contains three built-in chains: INPUT (for frames

destined for the bridge itself), OUTPUT (for locally-generated or (b)routed
frames) and FORWARD (for frames being forwarded by the bridge).

• Nat is mostly used for changing the mac addresses and contains three built-in

15

chains: PREROUTING (for altering frames as soon as they come
in), OUTPUT (for altering locally generated or (b) routed frames before they
are bridged) and POSTROUTING (for altering frames as they are about to go
out).

• Broute table has one built-in chain: BROUTING. The
targets DROP and ACCEPT have a special meaning in the broute table.
DROP actually means the frame has to be routed, while ACCEPT means the
frame has to be bridged. The BROUTING chain is traversed very early.
However, it is only traversed by frames entering on a bridge port that is in
forwarding state.

Now let's have a closer look on command line arguments [7], which will be used in
this work.
• -p, -protocol - The protocol which is responsible for creating frame. It can be

hexadecimal number, above 0x0600, name (arp) or LENGHT. When the value of
protocol field is below or equal 0x0600, the value equal the size of the header
and shouldn't be used as protocol number. Readable names with
corresponding hexadecimal numbers can be find under /etc/ethertypes. For
example, 0x0800 wil l be represented by ipv4 (not case sensitive).

• -i , -in-interface - The interface (bridge port) via which a frame is received.
• -ip-source/-ip-destination - The source and destination ip addresses.
• -ip-sorce-port/-ip-destination-port - The source port or port range for the

IP protocols 6 (TCP), 17 (UDP) or 132 (SCTP). The -ip-protocol option must
be specified as TCP, UDP, DCCP or SCTP.

• —limit - Maximum average matching rate: specified as a number, with an
optional /second, /minute, /hour, or /day suffix; the default is 3/hour.

• -limit-burst - Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not reached, up to this
number; the default is 5.

• -log-ip - Will log the ip information when a frame made by the ip protocol
matches the rule. The default is no ip information logging.

1 6

1.2.3 Iptables

Netfilter iptables is a user-space command line utility to configure packet
filtering rules [7]. It's the default firewall management utility on Linux systems.
Iptables is used to set up, maintain, and inspect the tables of IPv4 packet filter
rules in the Linux kernel. There are four tables filter, not, mangle and raw. Each
table contains a number of built-in chains and may also contain user-defined
chains. Each chain is a list of rules which can match a set of packets. Each rule
specifies target [7], meaning what action to do with a packet that matches.
• Filter - default table. It contains the built-in chains INPUT (for packets destined

to local sockets), FORWARD (for packets being routed through the box), and
OUTPUT (for locally-generated packets)

• Nat - table is consulted when a packet that creates a new connection is
encountered. It consists of three built-ins: PREROUTING (for altering packets as
soon as they come in), OUTPUT(for altering locally-generated packets before
routing), and POSTROUTING (for altering packets as they are about to go out)

• Mangle - table is used for specialized packet alteration. Since kernel 2.4.18,
three other built-in chains are also supported: INPUT (for packets coming into
the box itself), FORWARD (for altering packets being routed through the box),
and POSTROUTING (for altering packets as they are about to go out),
PREROUTING (for altering incoming packets before routing) and OUTPUT (for
altering locally-generated packets before routing)

• Raw - This table is used mainly for configuring exemptions from connection
tracking in combination with the NOTRACK target. It registers at the netfilter
hooks with higher priority and is thus called before ip_conntrack, or any other
IP tables. It provides the following built-in chains: PREROUTING (for packets
arriving via any network interface) OUTPUT (for packets generated by local
processes).

Now let's have a closer look on most widely used arguments [7], which were
used in this work.
• -p, -protocol - Protocol of the rule or of the packet to check. The specified

protocol can be one of tcp, udp, udplite, icmp or the special keyword "all". Also
it can be a numeric value, representing one of these protocols or a different
one. A protocol name from /etc/protocols is also allowed. A "!" argument
before the protocol inverts the test. "All" will match with all protocols and is
taken as default when this option is omitted.

1 7

-s, --source - Source specification. Address can be either a network name, a
hostname, a network IP address (with /mask), or a plain IP address. Hostnames
will be resolved once only, before the rule is submitted to the kernel.
The mask can be either a network mask or a plain number, specifying the
number of l's at the left side of the network mask. A "!" argument before the
address specification inverts the sense of the address.
-m, -match - Specifies a match to use, that is, an extension module which tests
for a specific properly. The set of matches make up the condition under which a
target is invoked. Matches are evaluated first to last as specified on the
command line and work in short-circuit fashion, i.e. if one extension yields
false, evaluation will stop.
-src-range - Match source IP in the specified range.
-limit - Maximum average matching rate: specified as a number, with an
optional '/second', yminute' etc.
-limit-burst - Maximum initial number of packets to match: this number gets
recharged by one every time the limit specified above is not reached, up to this
number; the default is 5.
-destination-ports,-dports - Match if the destination port is one of the given
ports. Multiple ports or port ranges are separated using a comma, and a port
range is specified using a colon
-m recent -hitcount - This option must be used in conjunction with one of -
rcheck or -update. When used, this will narrow the match to only happen
when the address is in the list and packets had been received greater than or
equal to the given value. This option may be used along with -seconds to
create a match requiring a certain number of hits within a specific time frame.
The maximum value for the hitcount parameter is given by the "ip_pkt_list_tot"
parameter of the xt_recent kernel module. Exceeding this value on the
command line will cause the rule to be rejected.
-set - This will add the source address of the packet to the list. If the source
address is already in the list, this will update the existing entry. This wil l always
return success (or failure i f ! is passed in).
-state - Where state is a comma separated list of the connection states to
match. Only a subset of the states understood by "conntrack" are
recognized: INVALID, ESTABLISHED, NEW, RELATED or UNTRACKED.
-syn - Only match TCP packets with the SYN bit set and the ACK,RST and FIN

bits cleared. Such packets are used to request TCP connection initiation; for
example, blocking such packets coming in an interface will prevent incoming

1 8

TCP connections, but outgoing TCP connections will be unaffected. It is
equivalent to -tcp-flags SYN, RST, ACK, FIN SYN.

• --destination-port,--dport - Destination port or port range specification.

1.3 LINK AGGREGATION

Link aggregation include various methods of combining multiple network
connections in parallel in order to increase throughput beyond what a single
connection could sustain, and to provide redundancy in case one of the links
should fail [13]. A LAG (Link Aggregation Group) combines a number of physical
ports together to make a single high-bandwidth data path, so as to implement the
traffic load sharing among the member ports in the group and to enhance the
connection reliability. Principle of link aggregation is shown in fig. 1.4:

Link
Aggregation

, , Switch
port-1 NIG-1 , ,
Switch NIC 1

Figure 1.4 Link aggregation

Most important benefits from link aggregation:
1. Multiple Connections With Little Speed Loss.

Single file transfers or one-at-a-time transfers do not benefit much from link
aggregation, but multiple connections and file transfers do. Some transfer
rate increase might be apparent, but link aggregation perfectly works with
multiple simultaneous transfers where several clients connect and
download concurrently. Having more network lanes available allows all
clients to encouter faster download speeds. Examples include a personal
media server or network attached storage where multiple devices or users
connect.

2. Redundancy
The physical links can be spread across multiple switches. If one switch fails
or a cable is torn or disconnected, the transfer continues but at slower
speeds until the issue is resolved.

1 9

3. Load Balancing
This balances the network load across multiple network cards for more
even performance and better throughput. Rather than making one card do
most of the work, let the other cards distribute the workload among them.

Linux bonding provides a method for aggregating multiple network interfaces
[slaves) into a single logical bonded interface [bond]. Linux supports two bonding
methods[17]:

The IEEE 802.3ad link aggregation mode, which allows one or more links to
be aggregated together to form a link aggregation group (LAG), such that a
media access control (MAC) client can treat the link aggregation group as if
it were a single link.
The balance-xor mode, where the bonding of slave interfaces are static and
all slave interfaces are active for load balancing and fault tolerance
purposes.

20

2 PREPARATON

2.1 Experimental network
All tests and measurements carried out on a specifically design and built

network, equipped with network tester "Spirent Avalanche 3100B", which allows
generating traffic by lGbit/s links. General view of network is shown on pic.2.1.

Picture 2.1 - Testing network infrastructure
Filter is presented in a form of three separated server machines which are

connected in parallel. Same filtering tools will be used on all machines to compare
hardware influence and link aggregation on filtering process. Hardware
specifications for filters show in tab.2.1:

2 1

Filter V I Filter V2 Filter V3
Aggregation

Number of cores 4 16 2
Clock

speed(min/max)
2800/3600 1600/2200 3400

Network Interface
Controller

2x NC7782 Gigabit
Server Adapter

2x 10-Gigabit
X540-AT2

4x 82546EB
Gigabit

Ethernet
NIC drivers E1000 Ixgbe E1000

Bus PCI-X(66-MHz) PCIe(16) PCI-X

Table 2.1 - Filters specifications
PCI-X - 64-bit parallel computer bus with theoretical maximum of 1.06 GB/s

data exchange speed between computer processor and peripherals.
PCIe is a serial point-to-point connection bus with possible 4 GB/s bandwidth

in each direction.
Ixgbe - NIC driver with abilities to reduces the number of queues per

interface-direction to the number of logical CPUs. The reasoning for this reduction
is that each queue entails some overhead, and there is no advantage in maintaining
more queues than there are CPUs

As a filter machines software was used one of linux based distributions,
Debian OS, as it is composed entirely of free software most of which is under GNU
General Public License.

In order to have traffic passing through filtering server, first bridge needed to
be configured. Configuration file for all interfaces is located at
/etc/network/interfaces. There are 3 network interfaces on current filtering server.
One is serving for VPN connection (remote control), other two services for
carrying traffic.

Needed bridge configuration for filter V I should be as follows:
The primary network interface
auto ethO
iface ethO inet static

address 12.12.13.26
netmask 255.255.0.0
gateway 12.12.12.254

#auto ethl

2 2

iface ethl inet manual

#auto eth3
iface eth3 inet manual

#Bridge setup
auto brO
iface brO inet static

bridge_ports ethl eth3
address 192.168.2.120
broadcast 192.168.2.255
netmask 255.255.255.0
gateway 192.168.1.121

Configuring Filter V2:
auto ethl

iface ethl inet static

address 147.229.7.213

netmask 255.255.255.248

gateway 147.229.7.209

dns-nameservers 147.229.71.10

#auto eth2

iface eth2 inet manual

#auto eth3

iface eth3 inet manual

auto brO

iface brO inet static

bridge_ports eth2 eth3

address 192.168.2.110

broadcast 192.168.2.255

netmask 255.255.255.0

gateway 192.168.2.111
Filter V3 setup:
source /etc/network/interfaces.d/*

The loopback network interface

auto lo

iface lo inet loopback

2 3

The primary network interface

auto enp3slf0

allow-hotplug enp3slf0

iface enp3slf0 inet static

address 12.12.13.24

netmask 255.255.0.0

network 12.12.0.0

broadcast 12.12.255.255

gateway 12.12.12.254

auto ethl

iface ethl inet static

address 192.168.2.117

netmask 255.255.255.0

auto eth3

iface eth3 inet static

address 192.168.2.116

netmask 255.255.255.0

Bonding interface setup, as follows:
Bridge BondO-Bondl

Picture 2.2 - Links aggregation and interface bonding
To be able to affect bridged frames, we needed to install ebtables tool and

briedge-netfilter infrastructure. Also for tracking bandwidth and cpu utilization,
tools such as "nload" and"htop" will be installed on all servers.

#apt-get install bridge-utils

#apt-get install ebtables

#apt-get install htop

#apt-get install nload

2 4

2.2 Tunning
In order to increased traffic throughput of NIC and linux kernel, we need to

improve packet reception process and all filters.
First check multiqueue mode and enable, if it's possible on receiving network

devices:
|root@det>ian: ~# ethtoal —X eth3
Channel parameters f o r eth3 :
Pre —set nLaximum? : : 3 : x : D Other: 1
Conkt-ine d : 63
Current hardware settings:

: D TX : D Other: 1
Combine i : 1 6

rüGtßdebian: • / ethtaoX —I. eth3 combined fa3| |

Picture 2.3 - Increasing number of rx_queues example
Incoming frames on eth3 will be processed in 63 queues, which increase

possible amount of filtering traffic.
Increasing NIC ring buffers size:

|ro Q t @ defc>i an: ~# e t h t Q Q l -g eth3
R i n g p a r a m e t e r s f o r eth3:
Pre —Set m H T i n n i T n q • 5X: 4096
RX M i n i : 3
RX Jumbo : 3
TX: 4096
C u r r e n t hardware s e t t i n g s :
5X: 512
RX M i n i : 3
RX Jumbo : 3
7>: : 512

r Q G t @ d e b i a n : ~# e t h t a o l —G eth3 i s 4036 t x 4096

Table 2.4 Ring buffers size
Thus will help prevent network data drops at the NIC during periods, when

large numbers of data frames are received.
Enabling Receive Packet Steering:
#echo 1 > /sys/class/net/eth3/queues/rx-0/rps_cpus

Prevents the hardware queue of a single network interface card from
becoming a bottleneck by creating hash from the IP addresses and port
numbers, which it then uses to determine to which CPU to send the packet.

The use of the hash ensures that packets for the same stream of data are sent
to the same CPU, which helps to increase performance.

2 5

3 IMPLEMENTATION
To make testing consistent, we will start tests from layer 2 OSI model,

meaning frames filtering with using only bridge code in linux and then go up to
network layer with filtering packets. For all ddos types we will use ebtables rules
to filter Ethernet frames and iptables rules to filter IP packets as they are well-
known and reliable.

Legitimate traffic will be represented as 500 simulated users are sending "http
get" request to web server port 80 each second for 3 minutes. The output of such
request and working preconfigured bridge is shown on table.3.1, pic.3.3 and 3.2:

Transactions Time (ms) TCP Connections

Total
Rate Per
Second

Page
Response

URL
Response

To TCP
SYN/ACK

To First
Data Byte

Est. Server
Response Total

Attempted 91879 491 Minimum 0.0 0.0 0.094 0.225 0.0 Attempted 91879

Successful 86031 460 Maximum 6017.0 6017.0 13999.418 6017.389 1996.095 Established 87494

Unsuccessful 5848 31 Average 14.329 14.329 210.003 14.594 3.928

Aborted 0 0

Table 3.1 - User traffic
P r o t o c o l / H T T P R e s p o n s e T i m e

ÜÜ:Ü1 :OÜ 00 :02 :00 00 :03 :00 0 0 : 0 ^ : 0 0 00 :05 :00 00 :00 :00 00 :07 :00 0 0 : 0 8 : 0 0

Picture 3.1 - Response time for HTTP request
First big spike corresponding to unsuccessful transactions tab which are

related with Avalanche Commander specific functioning. Amount of traffic
generated by legitimate users on WEB server is show on pic.3.2:

2 6

D e v i c e e t h l [1 9 2 . 1 6 8 . 2 . 1 4 0] (1 / 1) :

I n c o m i n g :

I I * * I
################################
O U T T C T Q X I i g I

C u r r 1 . 9 1 H E i t / s
A v r j : 2 8 7 . 5 3 k B i t / s
M i n : OO E ± t / s

111 1 1 1 11 M a x : l f i . 1 5 M E i C / s

#*###### T e l : 7 6 4 . 6 4 G E y t e

#*##*###
####*###
#*##*###
#*##*###
#*###### C u r r 4 3 . 0 6 M E i t / s

######## A v g : 5 . 6 4 M E i t / s

#*##*### H i n : • . O O B ± t / s

####*### M.3.H.: 2 6 4 . 4 3 H B i t / s

#*##*### T t l : 7 4 6 . 2 6 G E y t e []

Picture 3.2 Legitimate traffic generation
3.1 SYN Flood

In this test Avalanche Commander is sending packets with SYN flags set from ip
addresses range 192.168.2.163-192.168.2.167. By generating a big amount of SYN
Flood packets along with legitimate traffic it able to increased server response
time, which is shown on pic.3.3 and:

Protocol/HTTP Response Time

• 0 : 0 - 1 : 0 0 0 0 : 0 2 : 0 0 0 0 : 0 3 : 0 0 0 0 : 0 * 4 : 0 0 0 0 : 0 5 : 0 0 0 0 : 0 6 : 0 0 0 0 : 0 7 : 0 0 0 0 : 0 3 : 0 0

Picture 3.3 - Legitimate traffic under S Y N Flood
Basically, there is no way to distinguish malicious packets trafic with S Y N flag set on
the Ethernet layer, so for filtering needed detections system which will provide us with
malicious IP addresses:
#ebatables -F
#ebtables - N syn_flood
#ebtables -A F O R W A R D -p ipv4 -ip-proto tcp -ip-dport 80 -j syn_flood
#ebtables -A F O R W A R D -p ipv4 -ip-proto tcp -ip-dport 443 -j syn_flood
#ebtables -A F O R W A R D -p ipv4 -ip-proto tcp -j DROP
#ebtables -A syn_flood -p ipv4 —among-sre-file data -j DROP
#ebtables —atomic-file syn_flood -t filter —atomic-save

In the file "data" we specified the range of MAC/IP addresses. To test applied rule
we will generate maximum available SYN flood speed and see how much of it is
coming on filter server and how much is dropped. Pic.3.4 is showing desired:

2 7

ffi toor©filter-pkj-2p: ~ - • X
| D e v i c e e t h l (1 / 2) :

I n c o m i n g :
C u r r : 1 7 0 . 2 6 M B i t / s
A v g : 3 . 8 9 M E i t / s
M i n : 0 . 0 0 E i t / s
M a x : 1 7 1 . 8 0 M E i t / s
T t l : 1 5 . 6 2 G E y t e

O u t g o i n g :
C u r r : 0 . 0 0 E i t / s
A v g : 3 2 . 0 0 E i t / s
M i n : 0 . 0 0 E i t / s
M a x : 1 . 9 2 k E i t / s
T t l : 2 3 6 . 0 1 k E y t e

D e v i c e e t h 3 [2 / 2) :

I n. c o r u i n g " :
C u r r : 0 . 0 0 E i t / s
A v g : 3 2 . 0 0 E i t / s
M i n : 0 . 0 0 E i t / s
M a x : 1 . 9 2 k E i t / s
T t l : 2 3 5 . 1 6 t E y t e

O u t g o i n g :
C u r r : 1 . 9 3 M B i t / s
A v g : 3 4 6 . 8 4 k E i t / s
M i n : 0 . 0 0 E i t / s
M a x : 1 2 . 3 2 M E i t / s
T t l : 4 . 5 8 G E y t e

Picture 3.4 SYN Flood Filtering by ebtables
As we see only user traffic is passed through the server. There was no big
additional CPU usage, corresponding to frame blocking. The maximum speed of
incoming frames which kernel was able to filter is 170-180Mbit/s (~400000pps),
including users and malicious traffic, which corresponds to maximum throughput
of NIC. Another way to filter syn flood is limiting passing traffic based on packets/s,
to decrease some load from target server. This solution is affecting user traffic also
and is not preferable.
By default, only ebtables code is able to process bridged frames, so to let iptables
rules receive traffic from bridged ports, we need to enable bhdgen-nf-call-iptables
feature.

To compare filtering with iptables rules based on ip addresses:
#iptables - F
#iptables - P FORWARD ACCEPT
#iptables -N syn_flood
#iptables -A FORWARD -p tcp - m tcp —syn -j syn_flood
#iptables -A syn_flood -m iprange —src-range 192.168.2.163-
162.168.2.167-j DROP

The result is shown on pic.3.5:

2 8

j tf» t c c r ^ f i l t e r - p b - Z p : -
D e v i c e e t h l (1 / 2 } :

lii (j -uiii_Liiy : O u t g o i n g :
C u r r : 9 9 . 6 0 M E i t / s C u r r : 0 . 0 0 B i t / s
J L v g : 1 2 . 2 7 M E i c / s flvg: 0 . 0 0 B i t / s
M - in : 0 . 0 0 B ± t / S M i n : 0 . 0 0 B i t / s
M a x : 1 0 0 . 1 6 M E i t / s H a s : 0 . 0 0 B i t / s
T t l : 4 0 . 8 8 G B y c e T e l : 1 6 3 . 1 1 M B y t e

D e v i c e e t t i 3 { 2 / 2 J :

I n c o m i n g : O u t g o i n g :
C u r r : O . OO B i t / a C u r r : 1 . 9 Q M B i t / s
A v g : 0 . 0 0 B i t / s A v g : 5 2 3 . 0 1 I c B i t / s

M i n • o . 0 0 B i t / s U i n : 0 . 0 0 B i t / s
M a x : O . O Q B i t / s H a s : 8 . 7 5 M B i t / s
T t l : 3 4 1 . 4 8 k B w t e T t l : 1 1 . 8 7 G B v t e

D

Picture 3.5 SYN Flood with Iptables filtering
Although we are able to filter traffic on speed 90-100Mbit/s, the web server
response time is still greatly increased due to CPU overloading, which is made by
ksoftirqd - per-cpu kernel thread that runs when the machine is under heavy soft-
interrupt load. Increased response time and CPU utilization is shown on pic.3.7 and
3.8:

Protocol/HTTP Response Time

00:00:30 00:01:00 00:01:30 00:02:00 00:02:30 00:03:00 00:03:30 00:04:00

Picture 3.6 Response time under SYN flood
& toor©filter-pb-2p: ~ - • X

1 CI
2 [
3 : i i
'S C 1
M e m [| 1
S « P [

2 . 4%
• . o%

1 | 1 0 D . D %
• . 5%

1 1 5 2 / 3 8 9 9 M B
0 / 8 0 6 0 H B

T a s k s : 2 8 , 3
L o a d a v e r a g e
U p t i m e : 2 3 : 3 1

t h r , 63 k Iir." 2 n i n n i i
4 0 0 . 2 1 0 . 2 1

: -.5

F I D U S E R P R I H I V I R T R E S S H R S C P U ^ MEM% T I M E * - C o m m a n d
1 8 E Q o r 2 0 0 0 0 0 K 9 3 . 6 • . • : 1 : 2 0 . 5 7 t s o E t i r q t l / 2

1 6 3 9 r-o
4 0 r-o

• t 2 0 0 0 0
• t 2 0 0 0 0

0 3 1 . 9 0 . 0
O S 1 . 0 0 . 0

1 : 5 8 . 2 6 k w Q r k e r / 2 : D
1 : 1 8 . 3 4 h i o r i e r / 3 : 1

1 2 0 0 8 ro
2 3 r o

• C 2 0 0 2 4 2 4 4 3 4 6 4
• t 2 0 0 0 0
• t 2 0 0 2 3 2 8 8 4 4 6 4

2 9 4 0 R 0 . 5 0 . 1
O S 0 . 0 0 . 0

2 S 7 2 S 0 . 0 0.1

0 : 0 0 . 0 2 h n o p
4 : 0 4 . 5 3 k s o f t i T q d / 3
0 : 0 1 . 4 9 / s b i i i / i n i t

2 r o
3 m

7 r o
8 r o
9 I Q

1 0 r-o

• t 2 0 0 0 0
• t 2 0 0 0 0
• t 0 - 2 D 0 0
• t 2 0 0 0 0
Q t 2 0 0 0 0
• t 2 0 0 0 0
• t R1 0 0 0
Q t R T 0 0 O

O S 0 . 0 0 . 0
O S 0 . 0 0 . 0
O S 0 . 0 0 . 0
O S 0 . 0 0 . 0
• S 0 . 0 0 . 0
O S 0 . 0 0 . 0
O S 0 . 0 0 . 0
O S 0 . 0 0 . 0

• : D 0 . 0 1 r t t i r - e a d d
8 : 1 1 . 4 4 t s o f t i r q d / O
0 : 0 0 . 0 0 k w a r k e r / 0 : O H
• : 0 0 . 3 2 I t u o r k e r / u l f i : 0
3 : 4 6 . 7 4 l a i s c l i e d
0 : 0 0 . 0 0 I C H M i
• : D O . 0 2 raigidCian/a
0 : 1 0 . 7 5 w a t d i d a g / O

Q-.pr.-j-: I3a.= -̂=! -•- -i --iSiF - ' T-.R-"[33T~
- i a a w i c e ->atii" ' • heT:

Picture 3.7 CPU utilization
Previously we disabled rpc_cpus feature to test cpu utilization. Now we

enable it back an run same test again. The result is shown on pic.3.8:

2 9

http://Q-.pr.-j-

Protocol/HTTP Response Time

Picture 3.8 - SYN flood with smp_affinnity
Only 3 out of 4 cores are loaded with processing packets, which decreasing
response time to acceptable range. However maximum amount of possible filtered
traffic is increased from 90Mbit/s to 130Mbit/s. Assuming using more complex
iptables rules with same user traffic will lead to denial of service.

More complex rule with using conntracktool inside linux kernel, as follows:
#iptables -F
#iptables -N syn_flood
#iptables -A FORWARD -p tcp -m state --state NEW -j syn_flood
#iptables -A syn_flood -m connlimit —connlimit-above 500 -j DROP

Rule sets limit on amount connections per second coming from one ip address,
assuming all 500 users will start simultaneously sending connection requests. The
traffic filtering speed in this case is around lOOMbit/s with enabled load spread.
Same tests were conducted on all filter servers and compared result are shown in
tab.3.1:

SYN Flood Mbit/s Filter V I Filter V2 Filter V3
Ebtables 182 178 174

Iptables V I 130 177 102
Iptables V2 100 184 83

Table 3.1 - SYN Flood filtering
As we can see, ebtables successfully allows filtering traffic on desired load.
However, using ebtables can only be related with existence of any kind of detection
system, which supplies filter with needed data. Using iptables rulse we are able to
filter in more stand-alone way but it requires more hardware resources to use in
order to filter same amount of traffic per second. Filter with aggregated links can
benefit from having lGbps links instead of one, since the bottleneck is not in

30

filtering. More of that due to less computing resources it show lower filtering
throughput.

3.2 UDP Flood

UDP Flood testing in our network based on sending as much packets as possible on
web server port 80 with spoofed source ip addresses. Main goal is to utilize all
filter server CPU usage. Effect from generating UDP Flood can be seen on pic.3.9
and pic.3.10:

Pro toco l /HTTP R e s p o n s e T ime

Picture 3.9 - Web server response time under UDP Flood
1 [I I I 1 1 11 1 M M l O O .D%] 2 8 , 3 t l i r , 68 J t t t i i ; 6 r u n n i n g
2 [I I 1 1 • i M i l l 1 1 1 1 II M l o o - o i] L o a d a"^ -•= - -3. cr -Ez : 3 . 8 7 1 4 9 • . & 8
3 [1 1 1 11 M i l l 1 1 1 1 1 1 1 1 1 9 B . B %] U p t i m e 1 d a y , 0 2 : 3 1 OB
4 [|| 1 1 11 M i l l 1 1 1 1 1 1 1 1 1 9 9 . 4 %]
M e m [| | 1 2 4 4 / 3 3 9 9 M B]
S w p [0 / 8 0 6 0 H E]

F I D U S E E P R I H I V I R T R E S S H R S C P Ü 4 T I M E + C orrxr.a r_ d
1 3 r o o t 2Ci O D O 0 H 9 2 . 6 • . • 1 1 : 4 2 . 1 6 k r s o f t ± i q c l / l

3 r o o L 2 3 D 0 R 7 7 . C :•. • 1 4 : 2 2 . 1 4 t ü o L L j _ [q d / U
2 3 r o o t ; 2 0 0 • R 5 3 . 4 o . • 1 2 : 3 2 . 4 7 Ics o f t ; i r q d / 3
1 8 r o o t ; 2 0 0 • R 2 4 . 3 o . • 2 1 : 5 1 . 6 0 o f t ; i r q d / 2
3 7 r o o t 2 a D D 0 R 2 4 . 3 D . 0 3 : 2 1 . 7 4 k w a r k e r / O : 1
4 0 c o o t 2 a D 0 R 1 8 . 2 D . 0 2 : 1 6 . 7 0 l w Q r k : e r / 3 : 1

7 r o o t ; 2 0 0 • R 9 . 5 0 . • 5 : 2 4 . 1 2 r c n s d i e d.
1 3 4 4 0 r o o t ; 2 0

2J2
0 •
a a

S 8 . P 0 . •
a o _

• : 0 3 . 5 2 k w ü r f c e r / l : O

Picture 3.10 - CPU utilization by UDP Flood
On link layer to filter UDP flood we able to set following rules:
#ebtbales - F
#ebtables - N udp_flood
#ebtables - P udp_flood DROP
#ebtables - A FORWARD -p ipv4 —ip-proto udp ! —ip-dport 53 -j udp_flood
Udp packets which are destined to DNS server on port 53 will pass, all others udp
packet should be dropped.
Results are shown on pic.3.11 and 3.12:

31

d e v i c e e t h l [1 9 2 . 1 6 8 . 2 . 1 4 0] (1 / 1) :

[n c o m i n g :

C u i r 2 6 0 . 5 4 fcBit/s
A v g : 2 9 7 . 2 7 fcBit/s
H i n : 2 4 3 . 3 8 fcBit/s
M a x : 5 9 9 . 3 3 t B i t / s
T t l : 7 7 9 . 2 5 G B ^ t e

o u t g o i n g :

1
= f t

**
*# ##
*# 1 1 1 1 -#• C u r r 8 . 1 1 J M B i C / s
= = 4 . 8 6 H B i t / a

** M i n : 2 . 4 5 H B i t / a
M a x : 3 . 7 2 H B i t / a

---=- = _ T t l : 7 9 1 . 3 5 G E v t e f l

Picture 3.11- Web server user load
P r o t o c o l / H T T P R e s p o n s e T i m e

. . . :

§ 2.500

£ 2.000

00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:08:00

Picture 3.12 - Web server response time with filter
As can be seen on WEB server traffic still struggling to pass through filter. All 4
filter server cores are loaded with ksoftirqd program and filtering is possible but
web server has still big response delay.

To reduce cpu utilization on filter, it's possible to apply dropping packets even
before they being processed by kernel. Among ebtables hooks there is nat table
with PREROUTING chain which is logically located between kernel network stack
and NIC.

Applying same rules in table nat PREROUTING chain results in better
performance, which can be seen on pic. 3.13 and 3.14:

3 2

Picture 3.13 - Filtering UDP with ebtables
Protoco l /HTTP R e s p o n s e T ime

0 0 : 0 1 : 0 0 0 0 : 0 2 : 0 0 0 0 : 0 3 : 0 0 0 0 : 0 4 : 0 0 0 0 : 0 5 : 0 0 0 0 : 0 6 : 0 0 0 0 : 0 7 : 0 0 0 0 : 0 3 : 0 0

Picture 3.14 - User traffic response time
Part of UDP Flood was decreased along with http response time. Although it

stays in acceptable range under 1 second further countermeasures in network are
required.

Considering ebtables experience, iptables rules have to be applied on
corresponding netfilter hook to have better result. So iptables table raw with
PREROUTING chain should be configured as follows:

#iptables - F
#iptables -t raw -A PREROUTING -p udp - d p o r t 53 -d 192.168.2.145 -j
ACCEPT
#iptables -t raw -A PREROUTING -p udp -d 192.168.2.145 -j DROP
All passing udp packets going to web server should be dropped, except destined

to DNS.
Results output is shown on pic.3.15 and 3.16:

3 3

Protocol /HTTP R e s p o n s e T ime

Picture 3.16 - Maximum udp traffic throughput
How can be seen both ebtables and iptables are able to filter UDP flood attack.

However, using iptables gives us litter bigger delay while communicating with web
server. That is consequences of that iptables uses more code to process each
packet, so it need more calculating time.

For the rest of servers same tests were conducted and result is combined in tab.
3.2:

UDP Flood(Mbit/s) Filter V I Filter v2 Filter V3
Ebtables 67 67 67
Iptables 68 64 65

Table 3.2 - UDP Flood filtering
As this attack doesn't consume much resources, each server was able to

completely filter UDP flood on maximum available througput.

3 4

3.3 ICMP Flood
ICMP attack relies on constantly sending echo_request to force our web server

to respond and consume additional resources.
Generating attack along with sending user traffic also consumes, as shown on

followed pic.3.17 and pic.3.28 show:
1 tccr f f iv t -asOl : ~

D e v i c e e c t i l [1 9 2 . 1 6 8 . 2 . 1 4 0] (1 / 1) :

I n c o m i n g :

1 * C u r r 6 6 . z 1 H B i t / s

* • • ********************* A v g : 2 . 64 M B i t / s

**** ** ********************* M i n : z . Z>Z B i t / s

M M I M I 1 * M a x : i 4 6 . 5 1 M E i t / s

** T t l : E 5 . 12 G B y t e
O u t g o i n g :

**
**
**
**
** C u r r 4-5 . 9 = M B i t / s

** A v g : . = 4 M B i t / s

** M i n : z . DO B i t / 3

** M a x : 5 2 5 . 1'6 H B i t / s

T - - r T - T - - r T - - r T - T - - r T - T - - r T - - r T - T - - r T - T - T - T - - r T - T - - r T - T - - r T t l : E :>5. 5 E G B y t e []

Picture 3.17 - Web server load under ICMP Flood
1.800

1.700

1.600

1.500

1.400

1.300

1.200

<f> 1.100

§ 1.000

| 900

= 800

^ 700

600

500

400

300

200

1mm

Picture 3.18 - HTTP traffic response time
ICMP traffic is crucial for network control and it can't be dropped at all. Best

way to filter on link layer is to set limit:
#ebtables -F
#ebtables -N icmp_flood
#ebtables -A FORWARD -p ipv4 --ip-proto icmp -j icmp_flood
#ebtables -A icmp_flood -p ipv4 --limit 2/s - l imit-burst 10 -j ACCEPT
#ebtables -A icmp_flood -j DROP
As a standard icmp_echo request rate is 12 packet per 10 second, our limit is

letting users to ping server. Pic.3.19 and pic.3.20 describing filtering process:

35

fif toort&hlter-pLj-tlp: -

D e v i c e e t h l [1 / 2) :

I n c o m i n g : O u t g o i n g :
C u m : 6 8 . 2 9 H B i t / a C u r r : 0 . 0 0 B i t / 3
A v g : 6 8 . 0 5 H B i t / a A v g : 0 . 0 0 E i t / s
M i n : 6 7 . 5 8 H B i t / a M i n : 0 . 0 0 E i t / s
M a x : 6 8 . 2 9 H E i t / s M a s : 0 . 0 0 B i t / s
T e l : 6 7 . 3 1 G E y t e T t l : 1 6 3 . 5 0 M B y t e

D e v i c e e t h 3 [2 / 2) :

I n c o m i n g : O u t g o i n g :
C u r r : 0 . 0 0 B i t / s C u r r : 3 . 3 2 M B i t / 3
A v g : 0 . 0 0 B i t / s A v g : 2 . 8 4 M B i t / s
H i n : 0 . 0 0 B i t / s M i n : 2 . 4 2 M B i t / s
M a x : 0 . 0 0 B i t / s Mas. : 3 . 3 2 M B i t / s
T t l : 7 7 0 . 6 4 K B y t e

n
T t l : 1 9 . 9 9 G B y t e

Picture 3.19 - ICMP Flood filtering using ebtables
toor©fi l tcr-pb-2p: ~ • X

1 [I I I 12.8%] T a s k s : 2 8 , 3 t h r , 68 Icthr; 1 r u n n i n g
2 [M I M 1 1 1 25.4%] lined a- -e~ace : 0 . 0 5 0 07 0 . 0 5
3 [M 1 1 1 24.8%] Uptime 2 d a y s , 1 4 : 5 4 : 0 0
4 [I N I 1 13.6%]

[129/3899ME]
Swp[0/ 5060MB]

PID USER PKI h i VIELT EES SHE S CPU% MEM% TIME + Coirir.ar.d
13 r o o t 20 •:• 0 0 0 5 4 . 3 0 . 0 3 1 : 0 3 . 0 0 l e s o f t i i q d / 1
18 r o o t 2 3 3 3 3 3 3 9 . 5 3. : 1 5 : 5 4 . 7 0 J c s a f t i r q d / 2

3 r o o t 2 3 3 3 3 3 S 2 .2 3. 3 l h 0 3 : 1 5 k s a f t i r q d / 0
23 r o o t 2'J 3 3 3 3 2 .2 3. 3 2 9 : 3 9 . 2 5 k s a f t i r q d / 3

7 r o o t 2'J 3 3 3 3 s 1.9 3. 3 1 7 : 0 9 . 3 9 r c u s o i l e d
30338 r o o t 2'J 3 24244 3380 2864 3.^ 3. 1 0 : 0 0 . 0 6 h t o p

1639 r o o t 2'J 3 3 3 3 s 3.3 3. 3 9 : 5 9 . 7 5 k w o r k e r / 2 : 0

26736 r o o t
20 0 0 0 0 0 . 0 0 . 0 0 : 3 1 . 9 4 k w a r k e r / 3 : 2

Picture 3.20 - CPU load under UDP filtering
As can be seen there is no restriction from hardware on filtering side, but still

there is a small delay related with packets processing.
On network layer it's possible to deny any echo_request packets from outside of

our network, since we want to leave troubleshooting options for network
administrator.

Needed rule as follows:
#iptables -N icmp_flood
#iptables -A FORWARD -p icmp -j icmp_flood
#iptables -A icmp_flood -p icmp —icmp-type echo-request -s 192.168.2.0/24 -j ACCEPT
iptables -A icmp_flood -j DROP
Desired result are described in pic.3.21 and pic.3.22:

36

Protoco l /HTTP R e s p o n s e T ime

00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:03:00

Picture 3.21 - Response time under iptables filtering

gg* toor©filter-pb-2p: ~ — C

Picture 3.22 - ICMP Flood filtering with iptables

As expected all malicious ICMP traffic was filtered with adding a small delay to
response time.

The result for rest of the servers are described in tab.3.3:
Filter V I Filter V2 Filter V3

ebtables 68 70 69
iptables 68 68 68

Table 3.3 - ICMP Flood results
A tiny part of computing resources is required for processing icmp flood,

which, makes this type of attack filtering less complex and available across
networks worlwide.

3 7

4 CONCLUSION
Main goal of master thesis, was to test appropriate tools for filtering traffic.

Maximum achieved traffic throughput while filtering SYN Flood attack is 187
Mbit/s, UDP Flood max. throughput is 67 Mbit/s and ICMP Flood was filtered in
max. 71 Mbit/s.

Considering received data, in this master thesis, it can be said that linux-based
solution provide full scale of tools needed for filtering traffic. For example, SYN
Flood ddos attack can be mitigated by using packet filtering with iptables without
need of using any additional hardware or software. However, by installing
additional detecting systems in network, better filtering performance can be
achieved by using ebtables tool. The difference lies in packets flow inside the
kernel network stack. UDP Flood ddos attacks can be mitigated using any available
tool, but requirements for additional kernel tuning exists. Opportunity for links
aggregation using linux software can be used in cases, where highly loaded
network is being used. Additional speed can be achieved for user experience with
using so called "bonding".

In real-time environment proposed ddos mitigation techniques should be
consider as a temporarily measurements, due to limit resources capacity in
provided systems. Recent average ddos rates in world are far beyond capabilities
of any single filtering hardware or software. Thus to successfully filter malicious
traffic is needed great cooperation among all parties, involved in global WEB work.

3 8

REFERENCES

[I] F. Lau, S. H. Rubin, M . H . Smith and L. Trajkovic, "Distributed Denial of Service
Attacks" IEEE International Conference on Systems, Man, and Cybernetics, Nashville, 8-
11 October 2000, pp. 2275-2280.

[2] Portál radware.com.[online].2016[cit.2017-05-20]. Available on:
https ://www.radw are.com/newsevents/pressreleases/2017/ert2016-201II

[3] Portál incapsula.com. [online]. 2013 [cit.2017-05-20]. Available on:
https://www.incapsula.com/ddos.

[4] Felix Lau, Rubin H. Stuart, Smith H. Michael, and et al., "Distributed Denial of Service
Attacks" in Proceedings of 2000 IEEE International Conference on Systems, Man, and
Cybernetics, Nashville, TN, Vol.3, pp.2275-2280

[5] Portál linuxaria.com [online]. 2014 [cit. 2016-11-29]. Available on:
https://linuxaria.com/article/mitigating-ddos-attacks.

[6] J. Markovic, J. Martin, and L. Reiher, " ATaxonomy of DDoS Attack and DDoS
Defense Mechanisms" A C M SigComm Computer Communication Review, Vol . 34, No. 2,
2004, pp. 39-53.

[7] Portál ebtables.netfilter.org [online]. 2006 [cit. 2016-11-29]. Available on:
http://ebtables.netfilter.org/misc/ebtables-man.html.

[8] CERT advisory CA-1998-01 "Smurf IP Denial-of-Service Attacks". Available at
http://www.cert.org/advisories/CA-1998-01.html, Jan. 1998

[9] Portál people.netfilter.org [online]. 2006 [cit. 2016-11-29]. Available on:
https://people.netfilter.org/pablo/docs/login.pdf.

[10] Portál cr.yp.to. [online]. 2013 [cit. 2016-11-29]. Available on:
https://cr.yp.to/syncookies.html.

[II] Portál researchgate.net [online]. 2012 [cit. 2016-11-29]. Available on:
https://www.researchgate.net/publication/265181297_Mitigating_DoSDDoS_attacks_usin
g_iptables.

[12] Hayoung Oh, Inshil Doh, Kijoon Chae, " Attack Classification Based on Data Mining
Technique and its Application for Reliable Medical Sensor Communication"
International Journal of Computer Science and Applications, Volume 6, No. 3, pp.20-32,
2009.

[13] Portál wikipedia.org [online]. 2016 [cit. 2016-11-29]. Available on
https://en.wikipedia.org/wiki/Link_aggregation.

[14] Portál linux.com [online]. 2015 [cit. 2016-11-29]. Available on
https://www.linux.com/what-is-linux

3 9

http://www.radw
http://are.com/newsevents/pressreleases/201
http://incapsula.com
https://www.incapsula.com/ddos
http://linuxaria.com
https://linuxaria.com/article/mitigating-ddos-attacks
http://ebtables.netfilter.org
http://ebtables.netfilter.org/misc/ebtables-man.html
http://www.cert.org/advisories/CA-1998-01.html
http://people.netfilter.org
https://people.netfilter.org/pablo/docs/login.pdf
https://cr.yp.to/syncookies.html
http://researchgate.net
https://www.researchgate.net/publication/265181297_Mitigating_DoSDDoS_attacks_usin
http://wikipedia.org
https://en.wikipedia.org/wiki/Link_aggregation
http://linux.com
https://www.linux.com/what-is-linux

LIST OF SYMBOLS, VALUES AND
GLOSSARY

CPU Central Processing Unit
DDOS Distributed Denial of Service
HTTP Hypertext Transfer Protocol, protokol HTTP
S Y N Synchronize sequence numbers
ICMP Internet Control Message Protocol, protokol ICMP
RPS Receive Packet steering.
L A G Link aggregation group
MSS Maximum segment size
OSI Open Systems Interconnection
UDP User Datagram Protocol

4 0

LIST OF ANNEXES

A Ebtables rules
B Iptables rule

A Ebtables rules

##SYN Flood mitigation
#ebatables -F
#ebtables -N syn_flood
#ebtables -A FORWARD -p ipv4 --ip-proto tcp -ip-dport 80 -j syn_flood
#ebtables -A FORWARD -p ipv4 -ip-proto tcp -ip-dport 443 -j syn_flood
#ebtables -A FORWARD -p ipv4 -ip-proto tcp -j DROP
#ebtables -A syn_flood -p ipv4 —among-src-file data -j DROP
##UDP Flood mitigation
#ebtables - N udp_flood
#ebtables - P udp_flood DROP
#ebtables - A F O R W A R D -p ipv4 -ip-proto udp ! --ip-dport 53 -j udp_flood
##ICMP Flood mitigation
#ebtables -N icmp_flood
#ebtables -A FORWARD -p ipv4 -ip-proto icmp -j icmp_flood
#ebtables -A icmp_flood -p ipv4 - l imit 2/s -limit-burst 10 -j ACCEPT
#ebtables -A icmp_flood -j DROP
#ebtables —atomic-file syn_flood -t filter -atomic-save

4 2

B Iptables rules

##SYN Flood protection
#iptables -F
#iptables - P FORWARD ACCEPT
#iptables -N syn_flood
#iptables -A F O R W A R D -p tcp -m tcp — syn -j syn_flood
#iptables -A syn_flood -m iprange — src-range 192.168.2.163-
162.168.2.167 -j DROP

##Connection limit
#iptables -N syn_flood
#iptables -A FORWARD -p tcp -m state -state N E W -j syn_flood
#iptables -A syn_flood -m connlimit -connlimit-above 500 -j DROP
//UDP Flood protection
#iptables -t raw -A PREROUTFNG -p udp -dport 53 -d 192.168.2.145 -j
ACCEPT
#iptables -t raw -A PREROUTING -p udp -d 192.168.2.145 -j DROP
##ICMP Flood
#iptables -N icmp_flood
#iptables -A FORWARD -p icmp -j icmp_flood
#iptables -A icmp_flood -p icmp — icmp-type echo-request -s 192.168.2.0/24 -j
ACCEPT
iptables -A icmp_flood -j DROP

4 3

