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Abstract

We propose and experimentally demonstrate a scheme for conditional implementation

of a maximally entangling quantum controlled-Z gate between two qubits whose coupling

can be arbitrarily weak. We show that the weak inter-qubit coupling can be enhanced by

quantum interference. Both before and after the inter-qubit interaction, one of the qubits

is coherently coupled to an auxiliary quantum level, and finally it is projected back onto

the qubit subspace. This procedure enhances the inter-qubit interaction strength although

the coupling to auxiliary quantum level can be considered as a local bypass that allows the

qubit to partly avoid the interaction with the other qubit.

We experimentally demonstrate our scheme using a linear optical setup with weak

interferometric coupling between single-photon qubits. In our experiment, we utilize time-

correlated photon pairs generated in the process of spontaneous parametric downconversion

and we exploit their polarization and spatial degrees of freedom to implement the quantum

bypass. We characterize the performance of our scheme by measuring the Hofmann lower

bound on quantum gate fidelity for various strengths of coupling to the auxiliary mode. At

the optimal operating point where the fidelity and success probability are maximized we

perform a full quantum process tomography of the quantum control-Z gate to prove that

the control-Z process was restored.
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Abstrakt

Navrhli jsme a pomoćı lineárńı kvantové optiky experimentálně ověřili metodu pod-

mı́něné implementace kvantového maximálně entangluj́ıćıho control-Z hradla, operuj́ıćıho

na libovolně slabě vázaných kvantových bitech. Naše metoda je založena na obcházeńı

interakce slabě vázaných kvantových bit̊u pomoćı koherentńıho navázáńı a následného

vyvázáńı jednoho kvantového bitu do pomocného módu. Po interakci je pomocný mód

promı́tnut zpět do podprostoru p̊uvodńıho kvantového bitu. Takto je dosaženo ześıleńı

interakce mezi slabě vázanými kvantovými bity, přestože vazba do pomocného módu je

lokálńı operaćı.

Experiment využ́ıvá časově korelované páry foton̊u, které jsou generované pomoćı spon-

tánńı parametrické sestupné frekvenčńı konverze. Pro kódováńı jednotlivých kvantových

bit̊u se využ́ıvá prostorových a polarizačńıch mód̊u foton̊u. Slabá vazba mezi fotony, která

běžně neumožňuje vytvořeńı control-Z hradla, je zprostředkována pomoćı děliče svazku.

Metoda je charakterizována svoj́ı účinnost́ı a pomoćı měřeńı Hofmannovy dolńı meze fi-

delity procesu pro r̊uzné śıly vazby do pomocného módu. V optimálńım režimu, kde

dosahuje fidelita procesu a pravděpodobnost úspěšné operace svého maxima, je hradlo

charakterizováno úplným tomografickým měřeńım.

Kĺıčová slova

kvantové zpracováńı informace, control-Z hradlo, Hofmannova mez,

Mach-Zehnder̊uv interferometr
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1 Introduction - CNOT and CZ gates

As a gentle introduction to the topic, let us first describe classical XOR and control not

(CNOT) gate. XOR gate takes two logical inputs and returns logical 1 if and only if inputs

do not have equal values, in any other case it returns logical 0. When we copy value from

one input of the XOR gate and add it to the output we get the CNOT gate, see Figure 1.

The truth table of the classical CNOT gate is given in Table 1.

Figure 1: A circuit diagram of the CNOT gate implemented using XOR gate.

input output
control target control target
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 1: Classical CNOT truth table. If the control bit is in logical 1, then the output
target qubit changes the value. The value of the output target bit is a result of XOR
operation on the input target bit and the control bit. The output control bit is a copy of
the input control bit.

One can notice that the gate is reversible - applying the gate on the output pair of bits

will reproduce the original input. In classical computing, the CNOT gate is not enough to

implement arbitrary boolean operation on two bits and it is said, that the CNOT gate is

not an universal gate [1]. To achieve classical universal reversible gate, we need to add one

more control bit and extend CNOT to CCNOT. This is called the Toffoli gate. However,

it is known, that in quantum computing the CNOT together with single-qubit operations

is capable of implementing an universal 2-qubit gate [2].

In quantum computing, we use qubits as a quantum analogy to a classical bits. In

computation basis we denote logical 1 as |1〉 state and logical 0 as |0〉 state, regardless the
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actual physical implementation. In quantum mechanics, a superposition of two states is

also a state and a qubit can be in arbitrary superposition of both logical states. In Dirac

notation we write:

|ψ〉 = α|0〉+ β|1〉, 〈ψ|ψ〉 = 1, α, β ∈ C.

In the analogy to classical CNOT gate we can write desired operation on qubits as:

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |11〉,
|11〉 → |10〉.

(1)

One can write the relation also in the matrix form

UCNOT :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (2)

defining |0〉 :=

(
1

0

)
, |1〉 :=

(
0

1

)
and |ab〉 := |a〉⊗ |b〉, where ⊗ denotes the Kronecker

product. The matrix form suggests that the quantum CNOT gate applies Pauli σx operator

on the target qubit, if the control qubit is in state the |1〉. The common symbol for CNOT

gate used in circuit diagrams is depicted in Figure 2.

Figure 2: Symbol of a quantum CNOT gate commonly used in quantum circuit diagrams.

The CNOT gate has several interesting properties. Among belonging to set of gates

needed to create an universal 2-qubit gate, unitarity and reversibility, it is also maximally

entangling. For example, CNOT gate creates maximally entangled state from the separable

states:

UCNOT
1√
2

(|00〉+ |10〉) =
1√
2

(|00〉+ |11〉) = |Φ+〉.
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All these interesting properties form the motive of our interest in the CNOT gate.

The quantum control-Z (CZ) gate does not have a classical analogy. CZ gate applies

Pauli σz operator to the target qubit if the control qubit is in the |1〉 state. Alternatively

we can say that the CZ gate introduces π-phase shift on the target qubit if both control

and target qubits are in state |1〉. We can express CZ operation in similar way as we did

for CNOT gate:

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |10〉,
|11〉 → −|11〉,

(3)

or in the matrix form

UCZ :=


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 . (4)

The circuit diagram of CZ gate is shown in Figure 3.

Figure 3: Symbol of a quantum CZ gate we used in quantum circuit diagrams.

CZ and CNOT gates are closely related. To show the relation, we need to introduce

|±〉 states generated by the Hadamard operation UH applied on |0〉 and |1〉 states.

|0〉 → 1√
2
(|0〉+ |1〉) := |+〉,

|1〉 → 1√
2
(|0〉 − |1〉) := |−〉.

(5)

The Hadamard operation could be written also in matrix form

UH :=
1√
2

(
1 1

1 −1

)
. (6)

Now, think of applying Hadamard transform on input and output of the CZ gate, as shown
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in Figure 4. One can easily prove the identity

(I⊗ UH)UCZ(I⊗ UH) = UCNOT (7)

which shows that the CNOT gate is equivalent to CZ gate up to the Hadamard transform.

Although the topic of this thesis is the CZ gate the motivation mentioned in description

of the CNOT gate remains valid due to the equivalence (7) between CNOT and CZ gates.

Figure 4: The CNOT gate implemented using the CZ gate and Hadamard gates. Hadamard
gates are denoted by boxes with H inside.

Quantum gates are implemented on many physical systems, such as photons [3, 4, 5],

trapped ions [6], atomic ensembles [7] or nuclear spins [8]. To implement the quantum gate

that operates on more than one qubit, one or more inter-qubit interactions are required.

Sometimes the interaction is not strong enough and to provide right interaction between

qubits and the quantum gate gets difficult to realize. The motivation of this thesis is to

overcome this hurdle and increase the interaction strength.
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2 Theory

2.1 CZ gate

Here we describe the linear optical CZ gate into more detail in order to show the principle of

its operation. The underlying principle of quantum operation in linear optics is coincidence

measurement and quantum interference on a beam splitter [9]. Figure 5 shows the possible

implementation of the CZ gate. The control qubit A is encoded into spatial modes A0

and A1. The target qubit B is encoded into spatial modes B0 and B1. One can assign

computational states to creation operators:

|0〉a := a†0|vac〉, |1〉a := a†1|vac〉,
|0〉b := b†0|vac〉, |1〉b := b†1|vac〉.

(8)

Figure 5: Concept of the CZ gate implemented on linear optics platform. Qubits are
encoded into spatial modes: A0, A1 - target qubit A; B0, B1 - control qubit B. BSA and
BSB as well as BS are beam splitters.

The interaction between modes A1 and B1 is described by the Hamiltonian

Hint = i~g(a†b− ab†), (9)

where g is the coupling constant. The Heisenberg equation together with initial condition

a1(0) = a10, b1(0) = b10 yields:(
a(t)

b(t)

)
=

(
cos(gτ) sin(gτ)

− sin(gτ) cos(gτ)

)(
a1(0)

b1(0)

)
. (10)
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We define amplitude transmittance t := cos(gτ) and reflectance r := sin(gτ) to obtain the

well-known matrix of the beam splitter. We mention this to show the link between strength

of interaction between photons and the beam splitter parameters. Transformation relation

for a† and b† are obtained by Hermitian conjugation.

Beam splitters BSA and BSB serve as attenuations of mode A0 and B0, respectively. The

central beam splitter provides the interaction between modes A1 and B1 and thus between

two qubits. The whole concept operates in coincidence measurement - we accept the

outcome only if both output detectors at qubit A and qubit B are triggered simultaneously.

To explain the principle of this CZ gate implementation we discuss four input computa-

tion base states. For input |00〉 both modes A0 and B0 are attenuated with transmittance

ta and tb, respectively. The output is same as input up to reduction of the amplitude.

For input |01〉 one of the mode is attenuated and the other undergoes the splitting on

the central BS. The photon from mode B1 can be reflected on BS into the mode A1 with

amplitude reflectance r. In this case, the photon would be absent on one of detector at

the output. The coincidence measurement would not accept such case. Alternatively, the

photon can be transmitted with amplitude transmittance t and in this case the output is

again the same as input up to reduction of the amplitude. This holds for input |11〉 as

well.

When the input is |11〉, the quantum interference takes place. In coincidence measure-

ment the output state is (t2 − r2)a†1b
†
1|vac〉. When T < R with T := t2, R := r2 a π-phase

shift is introduced. We call this a strong coupling regime. Using equations (8) and (10)

one can derive
|00〉 → tatb|00〉,
|01〉 → tat|01〉,
|10〉 → tbt|10〉,
|11〉 → (T −R)|11〉.

(11)

We require same size of output amplitudes in relations (11) and a π-phase shift for the

last amplitude. These two conditions are satisfied when ta = tb = t =
√

1/3. Then the

transformation relations are
|00〉 → 1

3
|00〉,

|01〉 → 1
3
|01〉,

|10〉 → 1
3
|10〉,

|11〉 → −1
3
|11〉,

(12)

which are the same as relations (3) up to amplitude reduction. One might see, that the

CZ gate works with a limited success probability of 1/9. Detailed computation of these
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relations is in the Appendix A, point (a).

The control-Z gate has already been implemented using linear quantum optics [3, 4, 5].

However, not every platform supports arbitrary choice of t which is related to the strength

of qubit interaction. In cases where T > R, π phase shift does not occur. We say that the

interacting systems are in a weak coupling regime and the CZ gate can not be accomplished

this way.

2.2 CZ restoration in weak coupling regime

In this section we propose how to overcome the obstacle of weak coupling regime. The

prosal is depicted in Figure 6. The central beam splitter has not the suitable transmittance

and T < R is not satisfied. In comparison to Figure 5 there is an extra auxiliary bypass

mode C which is coupled to mode A1. By means of this coupling, only a fraction of original

mode A1 interacts with mode B1. After the interaction, mode C is projected back to mode

A1. This counter-intuitively leads to the restoration of the CZ operation.

Figure 6: Concept of the CZ gate with weak coupling. The concept was extended by the
bypass channel C in contrast to Figure 5. The channel C allows the restoration of CZ
operation in weak coupling regime.

Let ta, tb and t be transmission coefficient of BSA, BSB and BS. Additionally, let tx

and ty be transmission coefficient of auxiliary beam splitters BSX and BSY. After some
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algebra, one obtains transformation relations

|00〉 → tatb|00〉,
|01〉 → tat|01〉,
|10〉 → tb(ttxty + rxry)|10〉,
|11〉 → [txty(2t

2 − 1) + rxryt]|11〉.

(13)

For more details about derivation see Appendix A, point (b). From conditions on the same

output amplitude sizes and π-phase shift we obtain

tb = t,

ta = ttxty + rxry,
txty
rxry

= 2t
1−3t2 .

(14)

Success probability of the CZ operation is

PS :=
1

4

1∑
i,j=0

|〈ij|UwCZ |ij〉|2. (15)

Since sizes of all output amplitudes are the same, one obtains

PS =
1

4
t2xt

2
yR

2 (16)

which is maximized when

t2x = t2y =
2t

2t+ |1− 3t2|
, (17)

as discussed in Appendix (A), point (c).

The process matrix (Choi matrix) χ is a standard tool to describe a quantum process.

To compute the process matrix that corresponds to the unitary matrix U we introduce the

entangled state

|Φ〉 :=
1

2
(|00〉|00〉+ |01〉|01〉+ |10〉|10〉+ |11〉|11〉), (18)

where one subsystem corresponds to the input qubit space and the other to the output

qubit space. The process matrix is

χ := (I⊗ U)|Φ〉〈Φ|(I⊗ U)†. (19)
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To demonstrate the CZ restoration, we assume central beam splitter with t =
√

2
3
. In the

first step we do not use bypass, tx = 1. Then also according to conditions (14) we have

ta = tb = t and the third condition of (14) is not satisfied. The process matrix is visualized

in Figure 7 (a). One can see that the process matrix looks like an identity operation up to

mode-selective attenuation. If we use arbitrary bypass strength tx 6= 0 and with ta, tb and

ty satisfy conditions (14), then we obtain the process matrix identical to the ideal process

matrix of the CZ gate, see Figure 7 (b).

Figure 7: The CZ gate operation in the weak coupling regime. (a) No bypass - the process
matrix resembles the identity matrix, but is far from CZ matrix. (b) Arbitrary bypass -
conditions (14) are satisfied and the process matrix is identical to the process matrix of
the ideal CZ gate. Only real parts of the process matrices are plotted, because imaginary
parts are identically zero.

We define the process fidelity [10]

Fχ1,χ2 =
Tr[χ1χ2]

Tr[χ1]Tr[χ2]
(20)

in order to quantify the overlap between two process matrices. The fidelity of the process

matrix with bypass with respect to the ideal CZ process matrix is indeed Fχ = 1. The

success probability is a function of bypass coupling strength and is generally lower than

the success probability of the ideal CZ gate. The dependence of the success probability on

the bypass coupling strength is discussed in Section 4.2.
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3 Implementation of the weak CZ

3.1 Principle of operation

Our implementation utilizes a photon pair generator, bulk linear optics, polarization and

spatial encoding and a coincidence post selection. Here we describe the working principle

of the implemented CZ gate in analogy to the scheme depicted in Figure 6. To show

the analogy graphically, the CZ gate implementation is presented in Figure 8. Block-wise

explanation of the analogy follows.

Figure 8: Analogy of our implementation of CZ gate (left) to the proposed scheme (right).
Blue paths belong to control qubit, red paths to target qubit. Auxiliary bypass mode
is denoted by green colour. Violet regions represent implementation of attenuators BSA

and BSB. Green areas take role of BSX, Y. Orange area represents the central BS where
two-photon interference occurs. HWP - half-wave plate, PPBS - partially polarizing beam-
splitter, BD - beam displacer. Dark grey boxes represent beam stops.

To understand the operation principle, it is important to define the qubit encoding. The

control qubit A is encoded into spatial modes of the Mach-Zehnder (MZ) interferometer.

We assign spatial modes to computation basis states |0〉c = u†H |vac〉, |1〉c = d†V |vac〉.
Only a part of the interferometer is depicted, because the first part of the interferometer

is not used in gate itself, but it belongs to a preparation stage. The preparation stage is

described in the next section. The input target qubit B is encoded into polarization modes,

formally written |0〉t = b†H |vac〉, |1〉t = b†V |vac〉. The output control qubit is encoded into

polarization modes |0〉c = u†V |vac〉, |1〉c = u†H |vac〉 and the output target qubit is encoded

into polarization modes |0〉t = b†V |vac〉, |1〉t = b†H |vac〉.
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The core of the gate is the partially polarizing beam splitter (PPBS) which ideally

reflects only vertically polarized component and thus provides Hong-Ou-Mandel (HOM)

interference only between mode dV (analogy to A1) and bV (analogy to B1). HWPX couples

dV to dH (analogy to C) which creates the bypass channel. The coupling is described by

transformation
dH → − cos(2φx)dH + sin(2φx)dV ,

dV → cos(2φx)dV + sin(2φx)dH .
(21)

Therefore we can assign amplitude transmission of BSX to angle of HWPX, tx := cos(2φx).

In order to achieve correct signal collection after the BD2, we swap vertically and hori-

zontally polarized components using HWP rotated to 45 degrees. HWPY together with

BD2 projects bypass mode bV (bH before swapping) to bH (now analogous to A1). The

transformation is
dH

HWPY,BD2−−−−−−−→ cos(2φy)dH ,

dV
HWPY,BD2−−−−−−−→ sin(2φy)dH .

(22)

HWP rotated to 45 degrees together with PPBSB provides attenuation of mode bH ,

similarly as BSB. HWPA together with BD2 provides attenuation of mode uv and takes

the role of BSA.

The actual implementation suffers from parasitic reflectance RH at PPBS and partial

distinguishability of idler and signal photons. In our theoretical model, we take these

imperfections into account. For case of indistinguishable photons we obtain the input-

output relation UwCZ

|00〉 −→ [tat
2
Ht]|00〉,

|01〉 −→ [tat
2
Ht]|01〉,

|10〉 −→ [txtytHt
2 + rxry(t

2
H − r2H)]|10〉 − [txrytHrHr]|11〉,

|11〉 −→ [txty(t
2 − r2) + rxryt

2
Ht]|11〉 − [tyrxrHtr]|10〉,

(23)

where tx,y := cos(2φx,y), rx,y := sin(2φx,y), t = tb, ta := cos(2φa) and th, rh are amplitude

transmittance and reflectance of the central PPBS for horizontally polarized component.

We model imperfect HOM interference as a mixture of perfectly indistinguishable pho-

tons with probability q and perfectly distinguishable photons with probability (1− q). We

use the following definition of HOM visibility:

ν :=
Cmax − Cmin

Cmax + Cmin

, (24)

where Cmin denotes the coincidence count rate in the HOM dip and Cmax denotes the
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coincidence count rate far away from the dip, where photons are distinguishable. Then the

probability q is related to HOM dip visibility ν by equation

q =
2ν

1 + ν
. (25)

Assume four possible scenarios for two perfectly distinguishable photons A and B. Photon

A is reflected and photon B is transmitted, B is reflected and A is transmitted, both

are transmitted or both are reflected. First two cases would not trigger the coincidence,

because there are two photons on one output and no photon on the other one. In latter

two cases we get the unwanted operation. In the case where both photons are transmitted,

the transformation Ott is

|00〉 → tat
2
Ht|00〉,

|01〉 → tat
2
Ht|01〉,

|10〉 → tht(txtyt+ rxrytH)|10〉,
|11〉 → tht(txtyt+ rxrytH)|11〉.

(26)

Similarly for case, where both photons are reflected, the transformation Orr is

|00〉 → 0,

|01〉 → 0,

|10〉 → −r2Hrxryt|10〉 − rHtxryrtH |11〉,
|11〉 → −r2txtytH |11〉 − rrxrhtyt|10〉.

(27)

Detailed computation of relations (23),(26) and (27) can be found in Appendix A, point (d).

To obtain the overall process matrix we can add process matrix of indistinguishable

photons case weighted by factor q and process matrices of distinguishable photons weighted

by factor (1− q). The overall process matrix is

χ = q(I⊗ UwCZ)|Φ〉〈Φ|(I⊗ UwCZ)†+

(1− q)[(I⊗Orr)|Φ〉〈Φ|(I⊗Orr)
† + (I⊗Ott)|Φ〉〈Φ|(I⊗Ott)

†].
(28)

Equation (28) provides the theoretical model of our gate. To characterize the vulner-

ability of the gate to the experimental imperfections ν < 1, rH > 0, we plotted the process

fidelity, given by equation (20), as function of rH , ν. The parameters we use are R = 0.313

and φx = 20.0◦. The graph is shown in Figure 9.
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Figure 9: Vulnerability of the CZ gate fidelity to imperfections of the implementation - parasitic
reflectance rH and HOM dip visibility ν. The surface is shaded in false colours that are related
to the process fidelity value by presented colour bar. For realistic parameters of the model
rH = 0.137, ν = 0.94, the process fidelity is Fχ = 0.898.

The contour lines in the figure give information about steepness of the fidelity function

and thus about the vulnerability to experimental imperfections. At first, the fidelity is

more tolerant to parameter rH than ν. But then the rH becomes more important and the

the decrease of the fidelity is faster. For parameters rH = 0.137, ν = 0.94, R = 0.313

and φx = 20.0◦ we plotted also the process matrix, see Figure 10 (a). Comparing to the

ideal CZ process matrix in Figure 10 (b), one can observe extra non-zero elements and

disturbance of originally equal amplitude sizes.

Figure 10: (a) The process matrix of our implementation rh = 0.137 and ν = 0.94. Only real
part is plotted because the imaginary part is identically zero. Phase shifts were not taken into
account. (b) Ideal CZ process matrix.
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3.2 Experimental setup

The experimental setup is depicted in Figure 11. Time-correlated photon pairs are

generated by the process of collinear frequency-degenerate type-II spontaneous parametric

down-conversion in a 2 mm thick BBO crystal pumped by a 100 mW continuous-wave laser

diode at 405 nm wavelength.

Figure 11: Experimental setup. PBS - polarizing beam splitter, HWP - half-wave plate,
QWP - quarter-wave plate, BD - calcite beam displacer (horizontally polarized component
is displaced), PPBS - partially polarizing beam splitter, GP - glass plate, APD - avalanche
photodiode detector.

Signal and idler photons are brought from the pair generator via single mode optical

fibres and polarization controllers into the preparation stages. The control qubit is encoded

into spatial modes of the MZ interferometer - the top arm for the |0〉 state and the bottom

arm for the |1〉 state. The spatial encoding is implemented by manipulating polarization

state of the signal photon and then introducing spatial transversal offset on the calcite po-

larizing beam displacer BD1. The actual polarization state manipulation is implemented

by quarter-wave (QWP) and half-wave (HWP) plates. Horizontally polarized component

14



is spatially displaced by approximately 4 mm with respect to vertically polarized compo-

nent. The small distance between the arms of the MZ interferometer improves the phase

stability of the MZ interferometer but requires modified optical elements - details are in

Figure 12. The target qubit is encoded into polarization modes - horizontally polarized

mode for logical |0〉 and vertically polarized mode for logical |1〉.

6 mm

4 mm

Figure 12: Wave plate modification for the interferometer arm - front and top view. There
is need for controlling polarization state in both arms of the interferometer. Thanks to the
opening in the centre of the wave plate, one arm of the interferometer is not influenced.
A pair of wave-plates, placed as shown in the picture, provide the polarization control of
both arms independently. Arms of the interferometer are denoted by red colour. These
waveplates were manufactured by Toptec Turnov.

The gate itself works as described in Section 3.1. In comparison to Figure 8, beam stops

are not present because the optical signal is either blocked by components aperture or is

simply not collected. The amplitude reflectance of the central PPBS for vertically polarized

mode is R = 0.5592 = 0.313. The parasitic reflectance is RH = 0.1372 = 0.019. Spatial and

time overlap of the signal photon and the idler photon on the PPBS is important because it

is connected to distinguishability of the photons. Coupling into single mode optical fibres

in detection blocks provides spatial filtering which improves the spatial overlap. The time

overlap is adjusted using free space delay line in the source of photon pairs. The achieved

HOM visibility is ν = 0.94 which yields q = 0.97 probability of indistinguishable photons

in pair.

Glass plates (GP) are placed into both arms to control the relative phase between arms

of the MZ interferometer. We are changing optical path difference between the arms of

the MZ interferometer by tilting of the GP. This change in optical path difference results

in the phase shift.
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HWP, QWP and the polarizing beam splitter (PBS) in the detection block provide

projection to arbitrary polarization state. The photons are coupled via collimator into

the single-mode optical fibre, where spatial filtering occurs. Detection is provided by the

avalanche photodiodes (APD). The signal from the APD is processed electronically to

measure in coincidence basis - the reader can find more details in Figure 13. All relevant

coincidences - APD1&APD3, APD1&APD4, APD2&APD3 and APD2&APD4 are taken

to have information about complementary projections. To avoid the calibration of APD

detection efficiencies, we used only coincidences between APD2&APD3 for further analysis.

Figure 13: Coincidence detection - electronics part. TTL pulses from the APD modules
are converted to NIM-standard pulses and brought through the tunable delay lines to the
discriminator (disc.), where the coincidence window 2.6 ns is set. The output signal of
each discriminator is split by fan-out module. The outputs from the fan-out module are
connected directly to counter electronics as well as coincidence modules. There the AND
operation between channels is performed and the output is fed to the counter electronics.
The counter electronics is controlled via RS232 bus by the computer. This setup gives us
access to all single counts from the APD modules and coincidences between APD1&APD3,
APD1&APD4, APD2&APD3 and APD2&APD4.

Before every measurement, a maintenance procedure is done. Thermal fluctuations

and mechanical vibration in the laboratory caused slight decrease of optical fibre coupling

efficiency and change of the phase in the MZ interferometer. Also a position of HOM dip

might change very slightly.
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First step of the maintenance procedure is to adjust the spatial overlap of the signal

and the idler photons on the central PPBS. The idler input is blocked and the signal input

is prepared in the |1〉c state which represents vertically polarized photons in the bottom

arm of the MZ interferometer. At the PPBS the signal is split and propagates to both

outputs analysis blocks. HWPX and HWPY are set to be zero so they do not modify

the polarization of the vertically polarized light. They stay in this position through the

whole maintenance procedure. We set the control qubit analysis to project photons into

horizontally polarized state and therefore to APD1 detector. By changing tip and tilt of the

coupling device we maximize singles count rate on detector APD1. Similarly we maximize

the count rate on remaining detectors APD2, APD3 and APD4. At this point the optical

path of the signal photon is well spatially defined. Then we adjust the optical path of the

idler photon to match the optical path of signal photon and have a good spatial overlap

on the PPBS. We block signal photons and allow the idler photons to enter the setup.

At the target qubit preparation stage we set the input idler qubit polarization to vertical,

which is denoted as |1〉t in the computational basis. The control qubit analyser projects to

horizontally polarized states. By changing tip and tilt of the idler decoupling collimator

we achieve the maximal singles count rate on detector APD1. The optical paths of both

photons are matched and the spatial overlap of signal and idler photons is maximized on

PPBS.

The next step is to achieve a good time overlap of the signal and the idler photons.

The signal photons are again prepared in the |1〉c state and the idler photons are prepared

in vertically polarized state. By changing the length of the delay line in the photon pair

source and recording coincidence count rate between detectors APD1 and APD3 we scan

the HOM dip. We set the delay line to be in the dip and time overlap of photons is

achieved.

The last step is to set the phase of the MZ interferometer. The idler input is blocked and

the control qubit preparation stage prepares signal photons in diagonally polarized state

which results in balanced superposition of top and bottom mode of the MZ interferometer.

At the control qubit detection block we project to the diagonally polarized state as well.

By tilting the GP we are trying to find minimal count rate on detector APD2. At this

point the phase is set, we unblock the idler input and maintenance procedure ends.

Because the full tomography measurement of the gate requires 1296 measurements,

there is need for automation of the measurement. The wave plates in the qubit prepa-

ration and the qubit detection blocks are mounted in the motorized mounts, as well as

HWPX, HWPY and HWPA in the interferometer. The mounts and the counter modules

are remotely controlled via RS232 interface by the computer. We employ a Python script
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Figure 14: Main procedure (core.py). The M-table, file with projection and setup settings
(wave plates angles), is opened and parsed to be processed. The script initializes connected
devices. Then it goes through the M-table, controls wave-plates angles, counter modules
and saves the data.

to control the experiment.

The script loads the table of the wanted measurements (referred as “M-table” in our

schematics) and then performs them. Details about the main script procedure are in Figure

14. In order to make the code more comprehensible, extensible and reusable, the approach

of the simple main script with appended custom modules is chosen. These modules are

mainly facilitating serial communication with the hardware. The script structure is illus-

trated in Figure 15.
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Figure 15: Script structure. The experiment control layer is build upon a custom module
layer. The purpose of modules motor.py and counter.py is to encapsulate serial commu-
nication with connected devices into a convenient objects that can be easily used in other
scripts. The custom module layer can be extended in order to add more types of devices to
the experiment. The custom module layer provides classes and methods to the experiment
control layer. The input for the program is provided by means of M-table and settings.py
file, where serial ports to devices and other things are set. These parameters are handed
to the core.py script which provides the main procedure described in Figure 14. The script
sends commands to devices and gets feedback (with help of custom modules) from them.
The data are saved in the output file. The current measurement status is also printed into
the console window.
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4 Experimental characterisation

4.1 Stability measurement

The phase between the arms in the MZ can affect the gate output, therefore the phase

stability is an important parameter of the experimental setup and has to be characterized.

The experimental setup for the phase stability characterisation is depicted in Figure 16.

Figure 16: Phase stability characterisation setup: FC - fibre coupler, PC - polarization
controller, PBS - polarizing beam splitter, BD - calcite beam displacer, PPBS - partially
polarizing beam splitter, HWP - half-wave plate, QWP - quarter-wave plate, GP - glass
plate, D0, D1 and D2 - PIN diodes.

We use the temperature stabilized laser diode with central wavelength at 810 nm and

spectral full width at half maximum 1.8 nm as a source instead of the photon pair generator.

The coherence length is estimated to be 160µm. The laser diode is coupled into a single

mode optical fibre and guided via fibre coupler (FC) and polarization controller (PC) into

the setup. The second output from the FC is guided to reference detection part.

The |+〉 state is prepared in control qubit preparation stage. The |+〉 state represents

equal superposition of photons in top and bottom arm of the MZ interferometer. Glass

plates can be tilted to change the phase within the MZ interferometer. HWPX, HWPY and

HWPA are set to 0 degrees, where they don’t modify horizontally and vertically polarized

states. The output from the MZ interferometer is projected onto |+〉 and |−〉 states

using the control qubit detection block. The phase fluctuation within MZ interferometer

results in intensity fluctuations of projections, which we measure by PIN diodes D1, D2. In

order to discriminate between phase fluctuations and laser diode fluctuations there is also a

reference channel D0. To avoid confusion, note that we don’t use coincidence measurement.

Before the data acquisition, we set the phase the same way as we do in the maintenance

procedure described in previous section.
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A logger of our own construction is used to acquire the data. The motivation and

technical details are discussed in the Appendix B. The logger provides 17 bit resolution

within range of 0 - 2048 mV. Acquisition sampling rate is set to 0.5 SPS.

The achieved interference visibility of the MZ is V = 0.988 in fibre. The log contains 87

hours of data. Even in the raw data, see Figure 17, one can observe that phase deviation

is quasi-periodic in several areas. Closer look on the data shows that the laser diode

fluctuates approximately with same frequency as intensity fluctuations on detector D1 and

detector D2. The laser fluctuations affect signal from detectors D1 and D2 less than the

phase fluctuations. The laser intensity is fluctuating slow enough to be sampled by the

logger. This observation justifies the use of data normalization to the reference channel.

Figure 17: (a), (b), (c): Raw data. D1, D2 and D0 signals are represented as red, green and
blue lines. Multiple levels of zoom are used. Part (a) shows the overall data, part (b) highlights
the quasi-periodicity of phase fluctuations and part (c) shows the fluctuation of the laser diode.

21



We use reference signal from detector D0 to normalize signals from detectors D1 and D2

in order to compensate for laser diode intensity fluctuations. The compensated intensity

is

Ĩi =
IiI0,REF

Ii,REF

, (29)

where Ĩi is i-th intensity data point, Ii,REF is the i-th value of the reference intensity. From

the interference law we calculate the phase-shift

φi = arccos

(
Imax + Ĩmin − 2Ĩi

Imax − Ĩmin

)
, (30)

where Imax is the D1 signal at the interference maximum and Ĩmin is the minimum of all

normalized data points. We do not normalize Imax, because it was measured right before

the acquisition and therefore ratio
I0,REF

I1,REF
is close to one. The maximal phase deviation

(with respect to initial phase) in three and half days in the measured data is 60◦.

The phase stability is analysed using the Allan variance method [11]. The phase Allan

deviation of integration time τ is

A =

√√√√ 1

2(n− 1)

n∑
i=0

[y(τ)i+1 − y(τ)i]2, (31)

where n is the number of time bins of length τ and yi is the average value of phase shift

in the data time bin. The lowest possible τ is given by the sampling rate and the highest

possible time is given by the duration of the measurement. A(τ) calculated from the data is

depicted in Figure 18. First the deviation decreases as τ increases, where the A(τ) reaches

minimum, the drift starts to be significant and causes the phase Allan deviation to grow.

“Ripples” in curve for longer integration times are probably caused by quasi-periodicity in

fluctuations.

The phase Allan deviation measures deviation between two samples of some integrating

time rather than the actual phase. Therefore we present the phase histogram calculated

from all 87 hours of data, see Figure 19 (a). One can observe that the distribution is not

Gaussian probably due to drifts and periodicity in the signal. The most frequent value is

not close to zero - the phase drifted away and then fluctuated around the certain point.

The histogram in Figure 19 (b) is calculated from first six hours of data. This corresponds

to the duration of tomography measurement. With respect to this observation we expect,

that the reconstructed process will be biased by the phase.
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Figure 18: Phase standard deviation dependence on the integration time. The minimum is
0.6◦ and occurs at integration time 76 s. At the integration time of 6 hours, the standard
phase deviation is 7.7◦.

Figure 19: Normalized histograms of the absolute value of the phase. The relative frequency
of occurrence versus absolute value of phase is plotted. (a) Complete set of data. (b) Data
part of the first 6 hours, which is the typical typical time of the tomography measurement.
The mean weighted phase in (b) is φ̄ = 21◦.
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Figure 20: Relationship between phase fluctuations and laboratory temperature. Data
related to D1 signal are denoted by red lines. Temperature data are denoted by green
lines. The temperature curve have visible plateaus and jumps, but these are just artefacts
caused by closeness of temperature resolution 0.1 C◦ to the magnitude of temperature
fluctuations.

To get more insight into the origin of phase fluctuations, the detection was extended

by the temperature sensor. The temperature sensor is placed on the optical table approx-

imately in the centre of the interferometer. The rest remains the same. A new run of

the stability measurement is used to acquire more data. The Figure 20 shows that tem-

perature in the lab was changing periodically with approximately same frequency as the

phase. A part of data without significant irregularities, from t = 6000 s to t = 36000 s, is

used to further analysis. Both temperature and signal D1 data subsets are mapped to the

interval (0; 1). The mean value is subtracted in order to avoid large δ(f)-like peak in the

spectrum origin. To evaluate the frequency spectrum, the Fast Fourier transform (FFT) is

applied. Both spectra are normalized. To analyse correlations we calculated the spectral

overlap C = |FT[(ID1(t))](f)| · |FT[(T (t))(f)]|. The spectra are plotted in Figure 21 (a)

and the spectral overlap in Figure 21 (b). The spectral peaks are overlapping at frequency

f = 166µHz which corresponds to period of 1 hour and 40 minutes. This period matches

the period of the air conditioning in the laboratory.
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Figure 21: Spectra of the temperature and signal from detector D1. (a) Fourier transforms
of the D1, denoted by the red curve, and the temperature data, denoted by the green curve.
(b) Spectral overlap C. Both spectra have a significant peak at frequency f = 166µHz.

To conclude this section, the real-time phase stabilization of the MZ interferometer is

not required for this proof of principle experiment. However, the output is influenced by

phase fluctuations and therefore the gate operation can be affected.
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4.2 Hofmann bound characterisation

The standard tool for characterisation of the experimental process is the fidelity, which

measures the overlap between the actual process matrix χ and the desired process matrix

χCZ . The process fidelity and the success probability of the CZ gate with weak coupling

depend on the strength of the bypass channel, characterised by angle of HWPX φx. To

show this dependence, we need to estimate the process fidelity for many settings of angle

φx.

One way to obtain the fidelity is to perform full quantum process tomography, recon-

struct the process matrix and directly use equation (20). That would be time-consuming,

because the process tomography of the 2 qubit system requires 1296 measurements. The

efficient way to estimate the lower bound of the process fidelity is introduced in article [12].

We call this method the Hofmann bound method. Only 32 measurements are required to

estimate the lower Hofmann bound.

Assume two sets of states S1 = {|0+〉, |0−〉, |1+〉, |1−〉}, S2 = {|+0〉, |+1〉, |−0〉, |−1〉}.
First we prepare i-th input state |ψ〉ki from set Sk and measure the projection of the gate

output onto j-th state |ψ〉kj ∈ Sk. The coincidence count rate is denoted by Ckij. This

measurement is repeated for k = 1, 2 and i, j iterating over whole Sk set.

From the data set {Ckij}, the Hofmann bound is estimated as

FH = F1 + F2 − 1 =
3∑

m=0

(f1m + f2m)− 1 (32)

with

fkm =
Ckmm
3∑

i,j=0

Ckij

. (33)

The error is estimated using the law of error propagation

(δFH)2 ≈
2∑

k=1

3∑
i,j=0

(
∂FH
∂Ckij

)2

(δCkij)
2. (34)

The variance of the count rate (δCkij)
2 is same as its mean value Ckij, because the distri-

bution of the count rate is approximately Poissonian.
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The average success probability is

PS = K · 1

8

2∑
k=1

3∑
i=0

(pkii), (35)

where pkii denotes the relative frequency of projection when input state is prepared in

|ψ〉ki ∈ Sk and the output from the CZ gate is projected back to |ψ〉ki. Value of pkii is

calculated from the experimental data by relation pkii = Ckii

Cref
, where Cref is the reference

value measured as count rate of projection to |00〉 when prepared on the input |00〉 and

the bypass is not used. The factor K = 0.683 represents joint intensity transmittance of

PPBS and PPBSB.

We use again the law of error propagation to estimate the error

(δPS)2 ≈
2∑

k=1

3∑
i,j=0

(
∂PS
∂Ckij

)2

(δCkij)
2 +

(
∂PS
∂Cref

)2

(δCref)
2. (36)

Variances (δCkij)
2 are known under assumption that the count rate distribution is approx-

imately Poissonian.

To compare experimental results with the theoretical model, we need to express the

Hofmann bound from the model output χ which is determined by equation (28). The lower

bound of the fidelity is

Fχ ≥ FH = F1 + F2 − 1. (37)

The average output state fidelity Fk is

Fk =

∑
i

pkifki∑
i

pki
, (38)

where pki = Tr[(|ψ〉ki〈ψ|ki ⊗ I)χ] is the success probability and fki is fidelity of the actual

output state with respect to the ideally expected state

fki =
Tr[(|ψ〉ki〈ψ|ki ⊗ UCZ |ψ〉ki〈ψ|kiU †CZ)χ]

Tr[(|ψ〉ki〈ψ|ki ⊗ I)χ]
. (39)

The average success probability is

PS =
1

4
Tr[χ]. (40)
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Figure 22: Characterisation of CZ gate for different coupling strength. (a) Success rate
of the gate as a function of the bypass coupling strength. Red points with 3σ error-bars
represent experimental results. Solid and dashed lines stand for theoretically predicted
success probability for model with and without experimental imperfections, respectively.
(b) Dependence of the fidelity on the strength of the bypass coupling characterised by
angle of HWPX φx. Red points with 3σ error-bars show the experimental results. Solid
line represents the theoretical prediction of the Hofmann lower bound Fχ. Dashed line
shows predicted fidelity of the process Fχ. Both fidelities were calculated with respect
to the ideal CZ process and with experimental imperfection of parasitic reflectance and
partially distinguishable photons.

The price for restoring the CZ operation is the reduction of success probability. Achieved

maximal success probability is lesser than 1/9 for ideal CZ gate. The success probability

is shown in Figure 22 (a). The maximal success probability predicted by the theoretical

model without imperfections is PS = 0.91% at coupling strength φX = 20◦. This is the

optimal bypass coupling strength for the CZ restoration. The dependence is plotted by

dashed line. If we take imperfections into account, then the theoretical model predicts

maximal success probability PS = 0.99%. This is depicted by the solid line. We measured

even higher success probabilities, PS,exp = (1.17 ± 0.02)% at the optimal point. The in-

crease of the success probability is caused by detection events for which the gate does not

do the desired operation.

Figure 22 (b) includes comparison of the experimental results to the theoretical estima-

tion of the process fidelity with respect to parameter φX . Ideally we should see a constant

function Fχ = FH = 1 independent on φX . Due to experimental imperfections the fidelity

is dependent on the coupling strength to the bypass mode. Please note, that the Hofmann

bound estimation can be negative, since nothing guarantees F1 + F2 ≥ 1. The process
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fidelity is predicted by the theoretical model and plotted as the dashed line. The predicted

process fidelity reaches Fχ = 0.898 at the optimal bypass. The Hofmann lower bound is

also predicted from the model and plotted as the solid line in (b). The predicted lower

bound for optimal bypass is FH = 0.883. The experimentally obtained lower bound is

FH,exp = 0.765 ± 0.009 at the optimum and is lower is lower than the lower bound pre-

diction of the model because not every experimental imperfection is taken into account

when calculating the theoretical model. For example, phase fluctuations and imperfection

of wave plates were not take into account.
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4.3 Quantum process tomography

To illustrate the restoration of the CZ gate functionality in weak-coupling regime, we

performed the full tomography with and without using the bypass channel of optimal

strength.

Assume set of states St = {|0〉, |1〉, |+〉, |−〉, |R〉, |L〉}, where |R〉 = 1√
2

(|0〉+ i|1〉)
and |L〉 = 1√

2
(|0〉 − i|1〉). In one measurement step we prepare input |ψ〉i|ψ〉j, where

|ψ〉i,j ∈ St. The output from the CZ gate is projected to state |ψ〉k|ψ〉l, where |ψ〉k,l ∈ St.
The measurement outcome is the coincidence count rate Cijkl. We iterated each index

over all six states in St and in the end collected data of 1296 coincidences. We took also

37 additional reference measurements. The input state is prepared in |0〉|0〉 state and the

output is projected onto |0〉|0〉 state and HWPX, HWPY and HWPY are set to zero de-

grees for the reference measurement. The reference coincidence count rate is denoted as

Cref := C0000 and the measured dataset is plotted in Figure 23.

The coincidences are accumulated over 10 s long interval. The average time to change

the waveplates settings is 6.5 s. This yields approximately 6 hours for tomography consist-

ing of 1333 data points.

Figure 23: Reference coincidence count rates. Both qubits are prepared in |0〉 state and
both outputs are projected onto |0〉. The error-bars represent 3σ assuming Poissonian
distribution.

We assume that the count rate fluctuation is mainly caused by photon pair source

instability. These fluctuations are partially compensated in analysis via proper scaling
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with use of the reference and the linear interpolation. Let Cref (n) be n-th measurement

of the reference. Compensated value of original count rate Cijkl is

C̄ijkl := Cijkl
Cref (0)

C ′ref (i, j, k, l)
, (41)

where indices go from 0 to 5 and

C ′ref (i, j, k, l) :=
Cref (6i+ j + 1)− Cref (6i+ j)

36
(6k + l) + Cref (6i+ j) (42)

is the linearly interpolated reference value.

Data are used to reconstruct the process matrix using the maximum likelihood estima-

tion method [13]. Coincidences between APD2 and APD3 are used. In the reconstruction,

we interchange |+〉 and |−〉 state on the input control qubit to obtain the expected result.

The reference count rate compensation plays only a negligible role in purity and fidelity

of the reconstructed process. We achieved process purity P = 0.859 and process fidelity

Fχ = 0.814 for uncompensated data. With the compensation we achieved P = 0.859 and

fidelity Fχ = 0.814. The difference lies beyond the third decimal digit - ∆P = 0.0003,

∆Fχ = 3 · 10−8. In this case, the compensation on the reference count rate fluctuation is

not critical. The process matrix reconstructed from the compensated data is depicted in

Figure 24.

Figure 24: Reconstructed process matrix for optimal bypass. The reconstruction is calcu-
lated from compensated data.
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We use Monte-Carlo approach to estimate the error of the measurement. We generate

100 datasets using Poissonian pseudo-random number generator, where the λ-parameter

of the Poissonian distribution is taken from the original tomography data set. This can

be understood as simulating 100 tomography measurements. Each dataset is processed

using maximum likelihood reconstruction and process fidelity is calculated. From the set

of these fidelities we calculate the mean value and one standard deviation. The process

fidelity reached Fχ = 0.814± 0.002.

One can notice non-negligible elements in the imaginary part in comparison to the ideal

CZ process matrix. These elements are caused by unwanted additional phase shifts. To

compensate this we apply following post-process: we scan over additional phases ϕc and

ϕt applied on output qubits of the gate to find the maximal fidelity of such process with

respect to the ideal CZ process. The effect of phase shifts on output qubit of the gate is

described by:

χnew(ϕc, ϕt) := [Ups(ϕc)⊗ Ups(ϕt)]χ[Ups(ϕc)⊗ (Ups(ϕt)]
† (43)

with Ups(ϕ) := |0〉〈0|+ exp(iϕ)|1〉〈1|. The dependence of the process fidelity on additional

output phase shifts is plotted in Figure 25. With the optimal phase shifts we are able to

reduce the imaginary contribution in the χ matrix and increase the fidelity to Fχ = 0.846.

Figure 25: Dependence of fidelity of the reconstructed process with respect to ideal CZ
process on additional phase shift on outputs. The maximum is Fχ = 0.846 at
ϕc = 14◦, ϕt = −18◦.
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Figure 26 depicts the reconstructed process matrix of the device without bypass (a),

with optimal bypass and phase shift correction (b) and the ideal CZ process matrix (c).

In the Figure, one can compare (a) and (c) to find out, that without the bypass channel,

the CZ operation in weak-coupling regime is lost and we get an identity operation up to

unequal attenuation of modes. On the other hand, when we use the optimal bypass, the

CZ operation is restored regardless the weak coupling.

Figure 26: (a) reconstructed process matrix of the device without using bypass channel,
(b) reconstructed process matrix of the device in optimal bypass regime, which is close to
ideal CZ process (c). Only real parts are plotted.

The process fidelity Fχ is a suitable tool for comparing closeness of the implemented

operation to the ideal one within systems of the same class and dimension. The fidelity itself

does not provide much insight into the process. One can perform more observations on the

reconstructed process matrix. Here we would like to demonstrate entangling capabilities

of the implemented gate by means of data post-processing. It is known that CZ gate is

capable of preparing maximally entangled states. The input state |++〉 is transformed by

ideal CZ gate and Hadamard transform on the output target qubit, into the Bell state

|Φ+〉 :=
1√
2

(|00〉+ |11〉) . (44)

One can measure the entanglement of the state using the logarithmic negativity

N(ρ) := log2

(
Tr
√

(ρTa)†ρTa
)
, (45)

where ρ is the evaluated density matrix and symbol Ta denotes the partial transposition

over the first part of the system.
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The logarithmic negativity of the mentioned Bell state |Φ+〉 is

N
(
|Φ+〉〈Φ+|

)
= 1

and we say that the state is maximally entangled. From the reconstructed process matrix

χ, one can predict the output state for given input ρin by using relation

ρout := Trin[(ρin ⊗ I)χ], (46)

where Trin stands for the partial trace over the input part of the matrix.

Applying the |++〉 state as an input to the reconstructed CZ χ matrix and using

equation (46) we obtain the output ρout. Hadamard operation of the output target qubit

of ρout provides a new state

ρout2 := (I⊗ UH)ρout(I⊗ UH)†

which should produce the Bell state. The logarithmic negativity is N(ρout2) = 0.862. The

purity of the output state provided by our gate is estimated to be P = 0.894. To quantify

similarity of the density matrices ρ1 and ρ2 we use the state fidelity

F (ρ1, ρ2) := [Tr
√√

ρ1ρ2
√
ρ1]

2. The fidelity is F (ρout2, |Φ+〉〈Φ+|) = 0.905 . The Figure 27

shows the predicted output based on reconstructed χ matrix.

Figure 27: Prediction of the Bell state output. When the Hadamard transform and the
correct input state is applied, we should see Bell state |Φ+〉 on the output. The figure
shows the estimation of output density matrix produced by our gate.
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5 Summary

A weak coupling between two physical systems might be an obstacle for quantum gate

construction. In this thesis we overcome this limitation in the context of quantum control-

Z gate. We introduced a new method based on coupling one qubit to auxiliary mode and

thus partly avoiding interaction itself. The quantum interference, filtering and coincidence

post selection have been used to enhance the coupling between two physical systems.

We experimentally demonstrated the restoration of control-Z operation between two

weakly coupled single-photon qubits using linear quantum optics. Although the weak cou-

pling is generally not a problem in linear quantum optics we use this platform as a testbed

for our method. Target qubits were encoded into polarization mode and control qubits

were encoded into spatial modes of the Mach-Zehnder interferometer. Therefore the phase

stability of the Mach-Zehnder interferometer was measured and data from the measure-

ment were processed using Allan deviation. On time scale of tomography measurement

the phase Allan deviation is 7.7◦. We showed by means of Fourier analysis that phase fluc-

tuations were related to the temperature in the laboratory. Although the maximal phase

shift reached 40◦, the active stabilization was not required for our demonstration.

The weak coupling was implemented by convenient choice of the beam splitter param-

eters in the setup. We took experimental imperfections of parasitic reflectance rH of the

beam splitter and the partial distinguisability of the photons into account of our theoretical

model. We showed that these imperfections causes the dependence of the process fidelity

on the bypass strength. These imperfections limited the maximally achievable process

fidelity to Fχ = 0.898.

The dependence of the bypass coupling strength on the process fidelity and success

probability was characterised using the Hofmann bound method. Also a optimal bypass

strength was found with the success probability reaching 1.17%. The reduction of the

success probability was the price for the restoration of the control-Z gate in weak coupling

regime. At the point of optimal bypass we demonstrated the CZ process restoration using

the quantum process tomography. The process matrix was reconstructed using the max-

imum likelihood method and the process fidelity was Fχ = 0.814. By post-processing we

showed that the process fidelity can be increased to Fχ = 0.846 by applying phase shifts

on the gate outputs. We also showed entangling capabilities of the implemented control-Z

gate and the logarithmich negativity reached 0.862.

We hope that the presented method might be valuable for implementing gates on sys-

tems that suffer from weak coupling, decoherence or the control over the one subsystem is

limited.
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A Derivations

Used symbolic:

The symbol O1
component−−−−−−→ O2 denotes transformation of operator O1 by a component which

results in operator O2. In this section we omit † symbol in creation operators to keep the

nomenclature simple. We also often skip writing the kets of states, instead we write only

creation operators.

(a) CZ concept:

Input |00〉 is attenuated at BSA, BSB

a0b0
BSA,BSB−−−−−→ tatba0b0.

For input |01〉 the transformation reads

a0b1
BS,BSA−−−−→ ttba0b1 − rtba0b0.

Here we use fact, that coincidence measurement (CC) accepts only cases when photons are

in each qubit

ttba0b1 − rtba0a1
CC−−→ ttba0b1.

Similarly |10〉 on the input

a1b0
BS,BSB−−−−→ ttba1b0 + rtbb1b0

CC−−→ ttba1b0.

Input |11〉 is transformed by

a1b1
BS−→ (a1t+ rb1)(b1t− a1r)

CC−−→ (t2 − r2)a1b1.

The condition on same size of the output amplitudes tatb = tat = tbt is satisfied when

ta = tb = t. The condition tbt = R − T can be rewritten as 1− 2t2 = t2. These equations

are satisfied when t = ta = tb = 1√
3
.

(b) wCZ concept:

The scheme is calculated similarly as in previous case and therefore the derivation is pro-

vided without further comments.

Input |00〉
a0b0

BSA,BSB−−−−−→ tatba0b0.
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Input |01〉
a0b1

BSA,BS−−−−→ tata0b1.

Input |10〉

a1b0
BSX,BSB−−−−−→ tbb0(txa1 + rxc)

BS−→ tbb0[tx(ta1 + rb1) + rxc]
CC−−→

tbb0[txta1 + rxc]
BSY−−→ tbb0[txttya1 + ryrxc] = tb(ttxty + rxry)a1b0.

Input |11〉

a1b1
BSX−−→ (txa1 + rxc)b1

BS−→ [tx(ta1 + rb1) + rxc](tb1 − ra1)
CC−−→ (t2 − r2)txa1b1 + rxtcb1

BSY−−→ [(t2 − r2)txty + ryrxt]a1b1 = [(2t2 − 1)txty + rxryt]a1b1.

Size of amplitudes must be equal and the fourth amplitude has to have the opposite sign in

order to restore the CZ operation. Putting the first two output amplitudes equal implies

tat = tatb ⇐⇒ t = tb.

The second and the third amplitude have also to be equal

tatb = tb(ttxty + rxry) ⇐⇒ ta = ttxty + rxry.

Finally, negatively taken fourth amplitude has to be equal to the third amplitude. Together

with t = tb we have

−[(2t2 − 1)txty + rxryt] = t(ttxty + rxry),

which is divided rxry to obtain
txty
rxry

=
2t

1− 3t2
.

The first and the third amplitude have to be equal

tatb = t(ttxty + rxry).

Together with the condition on phase shift we have

t(ttxty +
1− 3t2

2t
txty) =

1

2
txty(1− t2) =

1

2
txtyR.
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Therefore the success probability is

PS =
1

4
t2xt

2
yR

2.

(c) wCZ - maximal success probability condition:

We are trying to find the maximum of probability

PS(tx, ty) =
1

4
TxTy(1− t2)2

with the constraint
txty
rxry

=
2t

1− 3t2
.

The constraint can be rewritten for purpose of the Lagrange multipliers method as

G(Tx, Ty) :=

[
1−

(
2t

1− 3t2

)2
]
TxTy +

(
2t

1− 3t2

)2

(Tx + Ty − 1) = 0,

where we defined Tx,y := t2x,y and used the fact that 1 − Tx,y = Rx,y. Now we can insert

the function Ps and constraint G into Lagrange equations

∂Ps

∂Tx
− λ ∂G

∂Tx
= 0,

∂Ps

∂Ty
− λ ∂G

∂Ty
= 0,

G = 0.

From first two equations in the system, we obtain Tx = Ty. Then we can reduce system to

two equations of two variables:

1
2
Tx(1− t2)− 2λ(1−

(
2t

1−3t2
)2

)Tx − 2λ
(

2t
1−3t2

)2
= 0

(1−
(

2t
1−3t2

)2
)T 2

x + 2
(

2t
1−3t2

)2
Tx −

(
2t

1−3t2
)2

= 0

which we solve in Wolfram Mathematica for Tx and λ to obtain two solutions Tx = 2t
2t+1−3t2

and Tx = 2t
2t−1+3t2

.

Solutions can be written as

Tx = t2x =
2t

2t+ |1− 3t2|
.

for which the probability is maximized.
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(d) wCZ implementation - function of blocks:

Figure 28: Building blocks for our implementation of CZ gate. Where possible, polarization
effects are illustrated by arrow marks.

As a step one to calculation of our implementation, it is convenient to break down the

gate into building blocks, illustrated in Figure 28, and describe each block separately. We

took coincidence logic and filtering properties of some components into account.

HWP45 together with PPBSB acts as an attenuator for horizontally polarized compo-

nent of the input field. The half-wave plate at angle 45 degrees turns horizontally polarized

component into vertically polarized component and vice versa. Light reflected from PPBSB

does not reach any detector and thus we don’t take reflected modes into account. Therefore

the transformation is
bH

BSB−−→ bV t,

bV
BSB−−→ bHtH .

(47)

Similarly, BSA attenuates mode UV by changing the angle of linear polarization and subse-

quent reflection of horizontally polarized light, which does not reach any detector. To get

the correct phase we introduce angle φa := π− φ′a, where φ′a is actual angle of the HWPA.

This substitution is also applied in case of HWPX and HWPY. This is described by

uV
BSA−−→ cos(2φa)uV := tauV . (48)

To achieve coupling into auxiliary bypass mode, BSX block is used. HWPX provides

coupling between horizontally-polarized and vertically-polarized mode of the bottom arm

of the interferometer. The transformation is

dH
BSX−−→ − cos(2φx)dH + sin(2φx)dV := −txdH + rxdV ,

dV
BSX−−→ cos(2φx)dV + sin(2φx)dH := txdV + rxdH .

(49)

BSY provides projection of auxiliary bypass mode into control qubit. The transformation
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is
dH

BSY−−→ cos(2φy)uH := tyuH ,

dV
BSY−−→ sin(2φy)uH := ryuH .

(50)

Central beam splitter (BS) is described by transformation relations

uHbH
BS−→ uV bHt

2
H ,

uHbV
BS−→ uV bV tHt,

dHbH
BS−→ dV bH(t2H − r2H),

dHbV
BS−→ dV bV tHt− dHbHrHr,

dV bH
BS−→ dHbHtHt− dV bV rHr,

dV bV
BS−→ dHbV (t2 − r2).

(51)

In the following part we will describe the transformation effect of the CZ gate on input

states: |00〉, |01〉, |10〉 and |11〉 for case of indistinguishable photons. The transforma-

tion relation mentioned before are used to perform the computation. Computations are

provided without further comments.

|00〉
uHbH

BS−→ uV bHt
2
H

BSB−−→ uV bV t
2
Ht

BSA−−→ uV bV [tAt
2
Ht].

|01〉
uHbV

BS−→ uV bV tHt
BSB−−→ uV bHt

2
Ht

BSA−−→ uV bH [tAt
2
Ht].

|10〉

dV bH
BSX−−→ tXdV bH + rXbHdH

BS−→ tXtHtdHbH − tXrHrdV bV + rX(t2 − r2)dV bH

BSB−−→ tXtHt
2dHbV − tXrHrtHdV bH + rX(t2H − r2H)tdV bV

BSY−−→ tXtY tHt
2uHbH − tXrHtHrdV bH + rX(t2H − r2H)trY uHbV

= uHbV [tXtY tHt
2 + rXrY (t2H − r2H)t]− uHbH [tXrY rHtHr].

|11〉

dV bV
BSX−−→ tXdV bV + rXdHbV

BS−→ tX(t2 − r2)dHbV + rXtHtdV bV − rXrHrdHbH

BSB−−→ tXtH(t2 − r2)dHbH + rXt
2
HtdV bH − rXrHtrdHbV

BSY−−→ tXtY tH(t2 − r2)uHbH + rXrY t
2
HtuHbH − tY rXrHtruHbV

v



= uHbH [tXtY (t2 − r2) + rXrY t
2
Ht]− uHbV [tY rXrHrt].

We will similarly write effect of the gate on distinguishable photons which undergoes

double transmission. The transformation of the central beam splitter reduces to

BStt
uHbH

BS−→ uV bHt
2
H ,

uHbV
BS−→ uV bV tHt,

dHbH
BS−→ dV bHt

2
H ,

dHbV
BS−→ dV bV tHt,

dV bH
BS−→ dHbHtHt,

dV bV
BS−→ dHbV t

2.

(52)

Again without further comments, transformation relations are:

|00〉
uHbH

BS−→ t2HuV bH
BSB−−→ t2HtuV bV

BSA−−→ uV bV [tAt
2
Ht]

|01〉
uHbV

BS−→ tHtuV bV
BSB−−→ t2HtuV bH

BSA−−→ uV bH [tAt
2
Ht].

|10〉
dV bH

BSX−−→ tXdV bH + rXdHbH
BS−→ ttXtHdHbH + rXt

2
HdV bH .

BSB−−→ tXtHt
2dHbV + rXt

2
HtdV bV

BSY−−→ tY tXtHt
2uHbV + rY rXt

2
HtuHbV

= uHbV tXtY tHt
2 + rXrY t

2
Ht

|11〉
dV bV

BSX−−→ tXdV bV + rXdHbV
BS−→ tXt

2dHbV + rXtHtdV bV

BSB−−→ tXtHt
2dHbH + rXt

2
HtdV bH

BSY−−→ tY tXtHt
2uHbH + rXrY t

2
HtuHbH

= uHbHtXtY tHt
2 + rXrY t

2
Ht.

The same calculation is done for case of two distinguishable photons that undergoes
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double reflection on the central beam splitter

uHbH
BS−→ 0,

uHbV
BS−→ 0,

dHbH
BS−→ −r2HdV bH ,

dHbV
BS−→ −rHrdHbH ,

dV bH
BS−→ −rHrdV bV ,

dV bV
BS−→ −r2dHbV .

(53)

|10〉
dV bH

BSX−−→ tXdV bH + rXdHbH
BS−→ −tXrHrdV bV − rXr2HdV bH

BSB−−→ −tXtHrHrdV bH − rXr2HtdHbH
BSY−−→ −tXrY tHrHruHbH − rXrY r2HtuHbV

= −uHbV [rXrY r
2
Ht]− uHbH [tXrY rHtHr]

|11〉
dV bV

BSX−−→ tXdV bV + rXdHbV
BS−→ −tXr2dHbV − rXrY rdHbH

BSB−−→ −tXtHr2dHbH − rXrHrtdHbV
BSY−−→ −tXtY tHr2uHbH − rXtY rHrtuHbV

= −uHbH [tXtY tHr
2]− uHbV [rXtY rHrt]

Inputs |00〉 and |01〉 do not produce any coincidences.
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B Custom USB voltmeter

The motivation for building the custom voltmeter was the equipment availability in our

laboratory. Voltmeters are typically not designed for data acquisition at higher sampling

rates. On the other hand, oscilloscopes provide very high sampling rate but they are not

suitable for logging days-long data. We tried to fill this gap by a custom device.

For the similar purposes, the TTi1906 voltmeter is used in our laboratory. The first

inconvenience was the serial-communication stability of the device. When one repeats

the measurement with sufficient frequency and for sufficiently long time, the amount of

serial-communication errors increases. This required extra error and exception-handling

code in our scripts. The other inconvenience was the port consumption. One RS232 port

per channel. The third inconvenience was the power socket usage - one power socket per

channel. The fourth problem was the speed of the device - the samples per seconds (SPS)

rate and the problem of numbers that sometimes got stuck in the serial buffer. The SPS

rate could be 0.5 SPS for short times but on longer timescale 0.25 SPS was more stable.

In order to overcome this technical hurdle, we used an analog-to-digital converter (ADC)

chip and a microcontroller. We chose the Arduino as a development platform, because it

provided good documentation and comprehensible code.

For purpose of the phase stability characterisation we used Microchip MCP3424 sigma-

delta ADC which provided 18-bit resolution at voltage range ±2048 mV. The achieved

sampling rate was 0.5 SPS which is comparable to TTi1906, but more stable. During the

the several days long measurement we did not encountered single serial communication

error.

Later, we used a pair of TI ADS1115 ADC, which provided 16-bit resolution at maximal

rate 860 SPS. The Arduino facilitated the I2C communication with the ADC chip and

serial communication with the computer. The voltage range was limited to 0-5 V by

supply voltage, but higher voltage can be measured using built-in programmable amplifier

with gain lesser than one. Similarly we could increase resolution for lower voltages. This

limit was not problem for us because we commonly use DET36A/M PIN diodes which can

reasonably operate in these boundaries. Each chip provided two differential channels, that

is four in total. The electronics is depicted in Figure 29 and the physical appearance in

Figure 30.
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Figure 29: ADC-to-Arduino connection. I2C bus connected to SCL and SDA of the Ar-
duino and both lines are connected via pull-up resistor to 5V voltage level. Power inputs
of the chip are filtered using bypass capacitors. Connection of address pin sets the address
of the ADC chip on I2C bus. ADC inputs are connected to BNC connectors in order to
make the voltmeter box compatible with our coaxial cables ended with BNC connectors.

Figure 30: Physical appearance of the voltmeter. Left: development board, right: encap-
sulated in metal chassis.
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The software kit we wrote consisted of three layers - Arduino code, Python module

and graphics user interface (GUI). The first layer, the Arduino program is basically the

communication protocol which takes the one-byte command and lets the ADC perform

reading and returns 16 bit number as 2 bytes over the serial bus. This layer is built upon

a modified library by Adafruit, where we fixed few inconsistencies and minor bugs.

The second layer, the Python module encapsulates serial communications and interpre-

tation of incoming numbers into a single object. To obtain the voltage reading, one only

has to know the serial port address and then getting numbers from ADS is as simple as

for example:

1 from ADS1115Quad import ADS1115Quad #import module

2 ADC = ADS1115Quad("/dev/ttyACM1") #create instance and connect to

the device

3 #later in code ...

4 CH1_voltage , CH3_voltage = ADC((1,0,1,0)) #read values

5 #or simply (for channel 1):

6 CH1_voltage = ADC()

The third layer is the GUI utility built on Python Qt. It used a second layer to communicate

with the device. The motivation for GUI was to have numbers on a computer screen in

large, clear and bright numbers as well as the real-time plotting values from the ADC. It

made our adjustments more convenient.

To compare the result with the commonly used TTi1906, we have 4 channels on 1

USB. We can practically achieve effectively 240 SPS (60 on each channel, the SPS rate

was limited to find a reasonable balance with the linearity of the ADC) and is stable in

long-term measurements. The box does not require any additional power supply, just USB

and fits into palm.
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