Hluboké posilované učení s modelem prostředí a spojitými akcemi – Bc. Karol Kuna
Bc. Karol Kuna
Master's thesis
Hluboké posilované učení s modelem prostředí a spojitými akcemi
Model-Based Deep Reinforcement Learning with Continuous Actions
Abstract:
Táto práca študuje využitie modelu prostredia v oblasti hlbokého učenia posilňovaním so spojitými akciami, kde tradičné metódy model prostredia nepoužívajú. Súčasťou práce je teoretický popis nového algoritmu, nazvaného „Deep Model Learning Actor-Critic“, ktorý porovnávame s existujúcou metódou „Deep Deterministic Policy Gradient“. Tieto metódy porovnávame z hľadiska schopnosti riešiť nové úlohy a …moreAbstract:
In this thesis, we study the application of an environment model to deep reinforcement learning with continuous actions, where contemporary methods are typically model-free. We give a theoretical description of a novel model-based actor-critic deep reinforcement learning technique that we developed, called Deep Model Learning Actor-Critic. We compare it with a model-free method, Deep Deterministic …more
Language used: English
Date on which the thesis was submitted / produced: 22. 5. 2017
Identifier:
https://is.muni.cz/th/n9pwa/
Thesis defence
- Date of defence: 19. 6. 2017
- Supervisor: doc. RNDr. Tomáš Brázdil, Ph.D.
- Reader: RNDr. Vojtěch Řehák, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Informatics / Artificial Intelligence and Natural Language Processing
Theses on a related topic
-
Monte Carlo Tree Search in Deep Reinforcement Learning Algorithms
Richard Schwarz -
Monte Carlo Tree Search in Deep Reinforcement Learning Algorithms
Richard Schwarz -
Deep Risk-Constrained Reinforcement Learning with Safety Critics
Martin Gendiar -
Navigace v neznámém a pevně daném prostředí pomocí deep reinforcement learning algoritmu
Gabriela HRUBÁ -
Deep Reinforcement Learning for Decision Neuroscience
Faizanshaikh Abdulkhalil SHAIKH -
Grammatikfehlerkorrektur mit Deep Reinforcement Learning
Raj Kumar RANA