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ABSTRACT
This thesis focuses on wearables for health status monitoring, covering applications aimed
at emergency solutions to the COVID-19 pandemic and aging society. The methods of
ambient assisted living (AAL) are presented for the neurodegenerative disease Parkin-
son’s disease (PD), facilitating ’aging in place’ thanks to machine learning and around
wearables - solutions of mHealth. Furthermore, the approaches using machine learn-
ing and wearables are discussed for early-stage COVID-19 detection, with encouraging
accuracy.
Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control
data was reused for research purposes. The solution presented in this thesis is considering
the classification problem and outperformed the state-of-the-art methods, whereas the
original paper introduced just anomaly detection and not shown the specificity of the
created models. The proposed model in the thesis for early detection of COVID-19
achieved 78 % for the k-NN classifier. Moreover, a second dataset available on request
was utilized for recognition between COVID-19 cases and two types of influenza. The
scrutinisation in the form of the classification between the COVID-19 and Influensa
groups is proposed as the extension to the research presented in the original paper [1]
illustrating the foundation for this study - statistical analysis of the dataset. Differences
between the COVID-19 and Influenza cases in duration and intensity of the disease occur
likewise manifest in heart rhythm. The accuracy of the distinction between COVID-19
cases and influenza in the middle of the pandemic (data were gathered from 03.2020
to 05.2020) was equal to 73 % thanks to the k-NN. Furthermore, the contribution as
the classification model of two aforementioned combined datasets was provided, and
COVID-19 cases were able to be distinguished from healthy controls with 73 % accuracy
thanks to XGBoost algorithm. The undeniable advantage of the illustrated approaches
is taking into consideration the incubation period and contagiousness of the disease
likewise presenting the methodologies dedicated to data gathered by the Fitbit device.
Furthermore, the parallel analysis of various types of Influensa, COVID-19, and healthy
control is novel and has not been thoroughly investigated yet.
In addition, some solutions for the detection of the aforementioned aging society phe-
nomenon are presented. This study explores the possibility of fusing computerised analy-
sis of hypomimia and hypokinetic dysarthria for the spectrum of Czech speech exercises.
The introduced dataset is unique in this field because of its diversity and myriad of
speech exercises. The aim is to introduce a new techniques of PD diagnosis that could
be easily integrated into mHealth systems. A classifier based on XGBoost was used, and
SHAP values were used to ensure interpretability. The presented interpretability allows
for the identification of clinically valuable biomarkers. Moreover, the fusion of video and
audio modalities increased the balanced accuracy to 83 %. This methodology pointed
out the most indicative speech exercise – tongue twister from the clinical point of view.
Furthermore, this work belongs to just a few studies which tackle the subject of utilising
multimodality for PD and this approach was profitable in contrast with a single modality.
Another study, presented in this thesis, investigated the possibility of detecting Parkin-
son’s disease by observing changes in emotion expression during difficult-to-pronounce
speech exercises. The obtained model with XGBoost achieved 69 % accuracy for a
tongue twister. The usage of facial features, emotion recognition, and computational
analysis of tongue twister was proved to be successful in PD detection, which is the key
novelty and contribution of this study. Additionally, the unique overview of potential
methodologies suitable for the detection of PD based on sleep disorders was depicted.

KEYWORDS
aging society; artificial intelligence; COVID-19; machine learning; Parkinson’s disease;
signal processing; wearables
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1 Introduction
The COVID-19 pandemic and the aging society are considered the biggest issues
which Europe faces [15, 16]. They are emergency problems on a large scale that
need fast taking care of them - developing methodologies destinated for diagnosis
diseases such as COVID-19 and PD. The COVID-19 pandemic has caused a plethora
of deaths and this disease has a high contagiousness rate [17]. Screening tests of
society are highly desirable and they should be easily approachable and destinated
to be used in the early stage to limit the spreading of the disease. The screening
tests are defined as the procedure used to get to know if the examined person has a
disease before it will manifest visible symptoms. Moreover, the aging society carries
neurodegenerative diseases and PD belongs to this group of diseases [15]. The
most accurate test is the positron emission tomography (PET), magnetic resonance
imaging (MRI) and computer tomography (CT), however, those methods are used in
the advanced stage of the disease and are expensive [18,19]. The usage of wearables
and solutions based on mobile health (mHealth) and Electronic Health (eHealth)
concepts seems to be justified for PD detection, but also for COVID-19 recognition.
Wearables are electronic devices which are relatively inexpensive and accessible [20,
21]. Furthermore, the utility of machine learning (ML) allows for creating the
support system methodologies which could predict the occurrence of the illness [2,
22]. Additionally, the usage of novel explainable artificial intelligence (XAI) can
provide the clinical interpretability of the created models [23].

1.1 Research Motivation
The wearable devices are electronic devices which could sense, gather and upload
the data [21]. The wearables can be classified as on-body (e.g., smartwatches),
in-body (implants [24]), and also around-body wearables (mobile phones, smart-
cards) [25,26]. It is expected that the wearable market will be growing increasingly.
This market is characterised by a high pace of progression and exponential growth is
predicted in the coming years. The price of the market was estimated at 71.91 billion
$ in 2023 [27, 28]. The interesting niche is the wearable health technology (WHT)
global market. The WHT global market achieved 16 billion $ in 2021 [29]. Never-
theless, the WHT is an atypical market because it characterises the conditions of
two markets, not just one, i.e., the healthcare and technology market. This mul-
tidisciplinarity is generating an unique opportunity for the implementation of new
approaches. Moreover, the existing neurodegenerative and chronic diseases occurring
among the elderly people are creating the need for solutions from WHT market [30].
Additionally, WHT offers a big potential in fighting with many diseases including
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COVID-19 disease. The support system methodologies trained with the usage of ML
and data gathered by the wearables could serve as an extra diagnostic/monitoring
tool to determine the occurrence of the diseases or their progress [31, 32]. Further-
more, the Universal Design File is going to be commonly used for wearables [33]
which allows using wearable technology together with artificial intelligence as sup-
port methodologies widely in society. This concept aims to facilitate the usage of
the considered item to all people of all sizes, ages, and in all health conditions, and it
is destinated to all buildings [34]. Some of the principles of Universal Design are, for
instance: flexibility in use, simple and intuitive use, and low physical effort. Those
rules are making the wearable an attractive device for the consumer. Additionally,
the low-cost and easy accessibility for the population makes wearables a potentially
valuable screening tool [24].

The data acquired by wearable devices are predominantly of the time series type
[35]. This kind of data requires appropriate architectures to extract information from
them. Based on the data, there could be created support decision methodologies
that serve in classification, forecasting, or anomaly detection problems [36, 37]. For
this purpose, ML algorithms are commonly utilised [38]. Additionally, the step of the
data pre-processing is equally important as the further steps [39]. Depending on the
data type - structured or unstructured, the approaches of ML methodologies could
be appropriately selected [40]. To use some groups of the ML algorithms for the
detection (for instance disease) purpose such as Support Vector Machines (SVM),
XGBoost, k-Nearest Neighbour (k-NN), Random Forest, Decision Tree [41–43], the
data for the input should be provided in the structured form. Moreover, the usage
of neural networks is appropriate for the raw time series, i.e., unstructured data.
They are especially suitable because of the possibility to learn and use long-term
dependencies. The examples of the neural networks which are commonly used for
the time series are one dimensional (1-D) CNN, Long-Short Term Memory Network
(LSTM), Gated Recurrent Units (GRU), Bidirectional Long Short-Term Memory
(BLSTM). Additionally, the utility of transfer learning allows for achieving the
state-of-the-art-results [44–50]. With the usage of the aforementioned solutions, it
is feasible to create support system methodologies, including those for healthcare,
that are even highly accurate. However, that is not all. To fully understand the
broader applications of umbrella terms of healthcare systems, wearables and ML,
the following existing concepts need to be introduced first: eHealth, mHealth, and
Internet of Medical Things (IoMT).

eHealth and mHealth are using wearables, multimedia (electronically distributed
mix of media containing audio, images, video, and text), and communication systems
technologies for providing health technologies [51]. The following key advantages of
eHealth and mHealth could be listed: ease of use, lifetime monitoring, cost reduction
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of the healthcare system, and data analytics. IoMT is referred to as a network of
smart things - medical devices, people, sharing healthcare data. IoMT could sense,
process the data, network, and communicate [52].

These promising methods and concepts (eHealth, mHealth, and IoMT) could
find applications for specific health problems which the population is dealing with
nowadays and probably will need solutions in the future [51].

Official confirmation of Coronavirus has been announced on 29 December 2019
by the World Health Organization (WHO) in China. This disease has a relatively
high value of the basic reproduction (𝑅0) range. It is estimated between 2.6 to
4.71, which in combination with the relatively high death rate is the reason why
the disease has become one of the most deadly pandemics in history [17]. Thereby,
screening and testing of COVID-19-positive people are nowadays considered to be
one of the most effective ways how to stop or limit the further spreading of the
infection likewise eliminate the danger of renovating the high passed so far state of
emergency. Wearables open doors to completely new ways of how the health status
can be monitored and possibly how to recognise the disease in its early stage. In the
case of COVID-19, the early detection of this illness is of high importance, since the
disease is communicable approximately two days before the first symptoms. The
development of the disease is illustrated in Fig. 1.1. Some recent works report that
wearable devices which are already available on the market, in particular the sensors
of which they are equipped, can be efficiently used for monitoring the diseases such
as influensa.

Fig. 1.1: The COVID-19 development [2].
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The question is where else the wearable together with ML could find broader and
needed applications. One of the concepts deserves extra attention. Ambient Assisted
Living (AAL) is defined as the usage of Internet of Things (IoT) and Information
and Communication Technology (ICT) for home healthcare. The idea is of high im-
portance in the view of the aging society. The standard medical practice is creating
a big burden for the economy of the healthcare system. By the same token, less
expensive and more approachable technologies need to be introduced. The usage
of wearables and digital technologies could support ‘enabling aging in place’. The
elders could live in their domestic environments, with the community to which they
are accustomed. This approach is supported by society and has a positive influence
on the elders. Additionally, the maintenance costs of the wearables-aided healthcare
systems are decreased [53]. Furthermore, wearables could prevent emergencies and
mortality rates, which will be greatly appreciated by patients, their families, and
medical staff [54]. Those aforementioned cases are regarded as highly demanded
especially in the still-developing countries because of the limited number of insti-
tutions to care for the elders and lacking financial resources [55]. The common
examples of the utilisation of ML in AAL applications are: human activity recog-
nition, monitoring and forecasting diseases, and indoor and outdoor localization of
elders [56]. The scope of the algorithms used for this purpose is really broad: from
k-NN, SVM, Naive Bayes, Random Forest, SVM, to neural networks like CNN,
LSTM, and others [56]. The special target of this thesis will be PD. This illness is
the second most common neurodegenerative disorder with a prevalence of 2 % for
people over the age of 65 years [57].

This thesis is focused on the usage of ML techniques together with the wear-
ables for COVID-19 detection, and creating methods of AAL dedicated to recognise
PD. These techniques represent a big promise for new innovative solutions in the
mHealth and eHealth areas and have the potential to form the future of health care.
To develop ML models and train them, three datasets are utilised for creating sup-
port system methodologies, mHealth and eHealth solutions. Two of them represent
the records of COVID-19 cases, Influenza and healthy control (HC) group. HC is
regarded in clinical studies as a person who does not have the illness or disorder be-
ing studied, however, this person could suffer from other diseases [58]. Those data
were collected thanks to the Fitbit device and contains records of the heart rate and
activity of the person - the number of steps taken. The third dataset represents the
records of PD patients and HC. The dataset contains video and audio records. The
symptoms of PD - hypomimia and hypokinetic dysarthria (HD) are computationally
analysed.

The conducted COVID-19 detections consider the character of the disease, i.e.,
the contagiousness of the disease and incubation period. Taking into account those
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parameters allows for the detection of the disease in the early stage. In addition, the
distinction between the diseases, i.e., COVID-19 and Influensa, is possible thanks
to the existing representation of the Influensa cases in the dataset. The target
of the practical part of the thesis is also not only to design the support system
methodologies but also to present the clinical interpretability of the models. They
are provided for COVID-19 and PD detection thanks to the statistical analysis and
usage of SHapley Additive exPlanations (SHAP) values. In addition, the creation of
several models is the scope of the thesis to identify the most accurate of them and
to determine the parameters of predictions inter alia such as accuracy, sensitivity,
and specificity.

Moreover, the aim of this work is to analyse the possibility to detect PD detec-
tion based on hypomimia and HD motor symptoms. The aforementioned dataset
contains video and audio records. 43 unique clinical speech exercises are used to
detect PD. The utility of the whole spectrum of speech exercises allows for the
identification of the most suitable task for automatic PD detection in clinical prac-
tice. Furthermore, the multimodality approach of PD detection is explored, i.e.,
the combination of audio and video modality. Additionally, the prediction models
generated thanks to the single modality are compared to those created for the multi-
modal approach to identify if the combinations of selected modalities could achieve
better results. Moreover, the possibility of PD detection is evaluated for emotion
recognition tasks between the groups. It is justified by the fact that PD patients
manifest impairments in expressing emotions. Furthermore, the thesis provides the
theoretical basements of the conducted experiments, likewise describes the transfer-
able methodologies used for a spectrum of diseases, and which are suitable for PD
recognition based on sleep disorders symptoms. Moreover, the work presents the
approaches destinated for EEG analysis. The characteristic of EEG signals and the
application of EEG in diagnosis were presented. There are illustrated approaches
with the usage of deep learning methods likewise the novelty: neural ordinary differ-
ential equation (ODE). ODEs are regarded as neural networks having big potential
and they could be applied to wearable-related data.

1.2 Research objectives and methodology

The subject of this thesis is correlated to the usage of machine learning and wearables
for the detection and monitoring diseases thanks to the usage of machine learning
and wearables. The particularly considered topics are COVID-19 detection and
neurodegenerative diseases like PD likewise EEG analysis. Thereby, the following
seven main Research Objectives (ROx) in this thesis have been identified with their
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related Research Questions (RQx). The achieved research tasks are depicted in
Section 1.3. They are the answers to the Research Objectives and Research Tasks.

RO1. Classification of COVID-19 cases thanks to the wearable-related
data: heart rate and number of steps taken

• RQ1.1. Is it possible to improve the results presented in [59] based on this
same dataset and proposed classification model instead of just anomaly detec-
tion? How accurate would be achieved the machine learning model?

• RQ1.2. What kind of features would be the most appropriate for COVID-19
detection?

• RQ1.3. How to develop a successful methodology for early COVID-19 detec-
tion concerning the nature of the disease?

RO2. Differentiation COVID-19 patients from Influensa cases based
on wearable data

• RQ2.1. What will be the accuracy of detecting COVID-19 cases and Influ-
ensa cases that happened before the main pandemic or in the middle of the
pandemic?

• RQ2.2. How accurate will be the distinction between Influensa cases before
the main pandemic versus Influensa in the middle of the pandemic?

• RQ2.3. How to design an algorithm for support methodology to detect
COVID-19?

RO3. The distinction of COVID-19 patients from Influensa cases and
HC thanks to the wearable data and two datasets

• RQ3.1. How to develop a suitable support methodology to detect COVID-19
based on two different datasets?

• RQ3.2. How accurate will the prediction of COVID-19 cases and ill cases be
based on two various datasets?

• RQ3.3. Which features will be the most beneficial to detect COVID-19 cases?
RO4. Recognition of PD hinged on facial expression impairments and

classification of emotions
• RQ4.1. Which speech exercise: tongue twister or reading poem will be more

suitable for PD detection based on hypomimia and classification of emotions?
• RQ4.2. Which features based on emotion will be the most valuable for PD

detection?
• RQ4.3. How accurate will the PD detection model be based on hypomimia

and impairments in expressing emotions?
RO5. Recognition of PD thanks to the multimodality – audio and

video
• RQ5.1. Which biomarkers are the most significant for PD detection?
• RQ5.2. Which Czech speech exercise is the most powerful for PD detection?
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• RQ5.3. What will be the highest obtained accuracy for PD detection? What
are the components of this solution?

RO6. The review of the transferable methodologies of detection of
sleep disorders thanks to the actigraphy device for Parkinson’s disease
detection

• RQ6.1. Which methodologies used for sleep disorders and other illnesses
could be applied for PD detection based on sleep abnormalities and actigraph
device?

• RQ6.2. What kind of diseases could have suitable biomarkers appropriate for
PD detection based on sleep disorders and actigraph?

• RQ6.3. What parameters could characterise sleep disorders in PD?
RO7. The review of the application of deep learning techniques in the

EEG analysis
• RQ7.1. What characterises the EEG?
• RQ7.2. Which deep learning methods are suitable for EEG analysis?
• RQ7.3. What kind of methods will be suitable for EEG analysis based on

wearable data?

1.3 Dissertation Scope and Research Tasks
Considering the discussion in subsection 1.1 the potential of the AAL solution is pro-
found. Parallelly and unexpectedly the COVID-19 pandemic became also one of the
biggest issues in the current world. Emerging technologies like ML and commonly
available wearables could serve as enablers to effectively deal with the problems with
which the world is struggling nowadays. Moreover, the combination of them could
be regarded as a paradigm shift in the field of eHealth solutions. Additionally, those
technologies open the doors for faster screening of society and creating the support
methodologies which could serve doctors as the assisting tools and facilitate the lives
of the patients and infected people thanks to the limitation of necessary appoint-
ments at physicians, and hospitals, likewise more approachable screening for the ill
person. Furthermore, the created solutions increase turnover for the sector of the
silver economy and healthcare [60].

The only way to evaluate the considered support methodologies is the training
and testing the proposed models with retaining the principles of the ML techniques.
The crucial part is also the gathering and usage of suitable datasets. Those tasks
were discussed in this thesis from theoretical as well as experimental points of view.

To emphasise, this thesis provides an overview of created support methodologies
for the ML-based detection of COVID-19, and PD. The developed models are dis-
tinguished into five subsequent studies. Furthermore, the theoretical discussion of
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the transferable methodologies of detection of sleep disorders thanks to the actigra-
phy device for PD detection likewise the application of deep learning techniques in
the EEG analysis were conducted. The following research tasks based on ML and
answers to Research Questions and Objectives from 1.3 were carried out:

• COVID-19 detection based on records of heart rate and activity –
the proposed classification models were trained on a publicly available dataset
introduced in [59]. The models were optimised to detect the differences be-
tween the healthy and ill states of the participants thanks to the analysis of
spectral, frequency, and statistic features. Moreover, the statistical analysis
of the proposed features was provided. A few ML models were tested and the
outcomes of the prediction were illustrated [2].

• COVID-19 distinction from Influensa cases – the introduced ML mod-
els classified the cases between COVID-19 cases and two types of Influensa
considering the heart rate (HR) and personal activity. The analysis was con-
ducted based on the claim from [1] about occurring differences between the
illnesses [61].

• COVID-19 differentiation from HC and Influensa based on two datasets
– the introduced models were malleable on two datasets ( [1, 59]) to obtain a
bigger cohort and to consider Influensa in the classification tasks. One of the
datasets was undersampled to combine both of them. The statistical analy-
sis is presented and several classification models were depicted to distinguish
COVID-19 cases from HC, likewise a few types of Influensa from COVID-
19, and ill cases from HC [62]. Furthermore, the multiclass classification was
considered.

• PD detection based on hypomimia and emotion recognition – Thanks
to the automatic analysis of changes in emotion during doing Czech speech ex-
ercises by participants, the ML models were developed for PD detection. The
two exercises which were analysed were difficult-to-pronounce tongue twister
likewise reading poem. A few classifiers were tested for this purpose. The in-
terpretability of the best model was illustrated by SHAP values. Additionally,
the statistical analysis of the generated features was presented [63].

• PD detection based on multimodal approach (video and audio) –
the interpretable support methodology of PD detection was created based
on hypomimia and HD symptoms. The tasks used for the evaluation of the
disease were 43 Czech speech exercises. The created facial features based
on detected facial landmarks together with the audio features were used for
the model trained by the XGBoost classifier. Additionally, both the video
and audio features were examined to check their statistical significance. The
interpretability of the model was given thanks to the usage of SHAP values.
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1.4 Dissertation Outline and Main Results

This doctoral thesis is the descriptive outcome of the study funded from Euro-
pean Union’s Horizon 2020 Research and Innovation programme under the Marie
Skłodowska Curie grant agreement No. 813278 (A-WEAR: A network for dynamic
wearable applications with privacy constraints, http://www.a-wear.eu/). The de-
scribed research was conducted between 2019 and 2022. The most important part
of the research is included in the chapters 2 - 6 based on the published conference
and journal papers.

The structure of the thesis is starting from the introduction, the theoretical back-
ground of the research, the state-of-the-art related to the topics analysed and de-
scribed in the thesis likewise the instances of the conducted research about COVID-
19 and PD with the usage of ML and wearables.

The first chapter is the introduction of the thesis (Chapter 1), whereas Chapter
2 shows the theoretical basement of the discussed problem in the thesis, such as
COVID-19 detection, PD recognition, and EEG analysis as the time series concept.

Furthermore, the Chapter 3 considers the current state-of-the-art issues dealt
within the scope of this thesis. The modern solutions for COVID-19 detection utilis-
ing wearables and ML are depicted. Moreover, PD detections based on hypomimia,
HD, and sleep disorders are presented. Additionally, the possible translations of
recognition of sleep disorders based on actigraphy records and ML for PD detection
are illustrated. Furthermore, the problem of analysis of EEG time series is broadly
described with emphasis on the deep learning methods for this aim.

Chapter 4 and Chapter 5 introduce the practical solutions for the defined issues
together with a logical presentation of the carried out research. The Chapter 4
describes three support methodologies developed for the detection of COVID-19
using data from wearables. The first of them is recognising the COVID-19 cases from
HC based on HR measurements and personal activity. While the second solution of
ML is differentiating the COVID-19 cases from two types of Influensa. The third
set of solutions is the models created thanks to the combination of two previously
utilised models.

The Chapter 5 considers the automatic detection and interpretation of the pre-
sented ML models for PD recognition. The first task is dealing with the automatic
recognition of emotions among PD patients and HC thanks to the utilised neural
network and based on the variability of their occurrence during the assigned speech
exercises, the model can detect PD disease. The second research in this area takes
under analysis the symptoms of hypomimia and HD among PD patients. The mul-
timodal solution is provided, which is analysing the facial and voice features.

The final Chapter 6 summarises the whole thesis and provides the highlights of
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the main results.
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2 Background
This chapter contains the theoretical background described in this thesis. The topics
relate to diseases such as COVID-19, PD likewise their detections. Moreover, the
EEG character and analysis, the utility of this biosignal for diseases recognitions
likewise the application of neural networks for EEG. Firstly, the nature of COVID-19
and the symptoms of this illness are mentioned. Additionally, the methods dedicated
to its recognition including wearable devices are briefly depicted. Furthermore, the
PD is similarly described, i.e., the character of this disease together with the signs of
this illness are listed. Some symptoms of PD: hypomimia, HD, and sleep disorders
in PD are broadly illustrated. Moreover, the importance of mHealth for PD is
explained.

2.1 COVID-19 Pandemic and Possibility for Detect-
ing Disease

The pandemic of COVID-19 began in December 2019 [16, 62]. On 11 March 2020,
the WHO officially announced the outbreak of the pandemic [20]. Two words are
used in the definition of pandemic, pan and demos. Demos refers to the people,
and pan refers to everyone. The world faces up to a pandemic, which causes a state
of emergency, numerous infections, and deaths likewise the occurring obstacles in
everyday life. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is the reason for this illness [61, 64]. Coronavirus belongs to the Coronavirinae and
Torovirinae subfamilies of the Coronavirinae family. It is known that Coronaviruses
are capable of infecting a wide variety of organisms, including rodents, birds, mam-
mals, and humans [2, 17].

There is a wide range of symptoms associated with COVID-19. The symptoms
range from coughing, fever, hoarseness, shortness of breath, chest pain, or abdominal
pain [65], as well as the rare loss of smell and taste [66]. Additionally, examining
the wearable records revealed that there were changes in HR around the time of
onset of symptoms [1]. According to [3], the authors have identified the three stages
of COVID-19: the early stage (stage I), the pulmonary phase (stage II), and the
hyperinflammation phase (stage III). If the disease is detected at the prodromal
stage (stage I), it will have the greatest impact since it represents a time when a
person feels healthy but is already infectious, which is resulting in social contact
and the spread of the disease to others. As mentioned by the authors [3], this phase
is characterized by fever, dry cough, and mild constitutional symptoms. Detection
in the stage I prevents further complications, and the duration of the illness is
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reduced [3]. The three stages of the disease likewise potential therapies are illustrated
in Fig. 2.1.
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Fig. 2.1: The COVID-19 stages and potential therapies [3].

Additionally, long-term complications have been identified such as cardiovascu-
lar, respiratory, as well as neurological problems, in addition to many others that
have not yet been fully described [67–69]. There are several risk factors associated
with this disease, including civilization diseases, old age, renal dysfunction, and hep-
atic dysfunction [2,70] In order to limit the spread of the disease, it is ideal to detect
the disease before the highest contagious period, which is considered to manifest 2
days prior to the visible onset of the symptoms until 1 day after the onset [71].

It is especially notable that variations in HR are present in COVID-19 cases,
and that they persist for a longer period than common influensa. The resting HR is
elevated nearly the time when symptoms have started [1]. Moreover, COVID-19 [72]
also showed variations from norms during sleep. It was reported that deep sleep
was associated with raised respiration rate (RR), while non-Rapid Eye Movement
(NREM) sleep was associated with increased HR at night. In contrast, the root
mean square of successive differences (RMSSD), as well as the Shannon entropy for
nocturnal RR series declined. An analysis of Z-values and 1257 participants wearing
Fitbit devices led to this conclusion [72].
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The virus is primarily transmitted through social contact, namely face-to-face
contact, coughing, talking, or sneezing [73]. This disease has a relatively high value
of the basic reproduction (𝑅0) range. It is estimated between 2.6 to 4.71, which
in combination with a relatively high death rate, is why the disease became one
of the most deadly pandemics in history [17]. The possible solution for controlling
social contact to limit the spreading of the virus is the usage of tracing apps, mobile
phones and wearables [20]. There are several ways in which the screening test data
can be collected. Imaging technologies offer the most accurate diagnostics, even
approaching 100 percent in some cases [74]. Furthermore, reverse transcription-
polymerase chain reaction (RT-PCR) is the most widespread diagnostic, despite
being relatively accurate, these methods are typically used after the onset of disease
in order to confirm the diagnosis. Nevertheless, wearable devices [20] appear to
be the most inexpensive and fastest method of screening a large population. They
appear in the population quite widely which makes them a good candidate to be used
as a screening test. It is essential that the COVID-19 should be detected two days
before onset. During those two days (on average), people are unaware that they are
infected, which makes it easy for them to spread the disease. Due to the difficulty of
identifying those symptoms, it is not an easy task. Wearable sensors can be used to
analyse a variety of physiological parameters, including activity levels, temperature,
cardiovascular strain, blood pressure, sleep parameters, respirations variable, sound
monitoring, coughing, SpO2 level, humidity sensors [20,75,76]. Analysing the data is
the final step in creating the support methodology - assisting technology for clinical
purposes. To sum up, ML holds great promise for the analysis of COVID-19-related
data [2, 62,76].

2.2 Parkinson’s Disease and the Methods of its De-
tection

PD is one of the most prevalent neurodegenerative diseases in society. This disease
occurs in 2-3 % of society in the European Union (EU) beyond 65 years old [57].
A major challenge that the EU will have to deal with within the next 30 years
is the aging of society. This issue is associated with neurodegenerative diseases,
and one of them is PD [15]. A distinction can be made between the motor and
non-motor symptoms of PD. The manifesting main motor symptoms depend on
the progressive loss of dopaminergic neurons in substantia nigra pars compacta
[77–79]. Among the motor symptoms could be distinguished the following signs:
hypomimia, HD, the Freezing of Gait (FOG), bradykinesia, tremor, PD dysgraphia,
dyskinesia, dysphagia [80–87]. Sleep disorders, hallucinations, depression, anxiety,
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constipation, cognitive deficits, urinary symptoms, etc. belong to the non-motor
symptoms [77,88–90]. The motor and non-motor symptoms are listed in Fig. 2.2.

Motor symptoms

• Akinesia
• Bradykinesia
• Tremor
• Rigidity
• Postural instability
• Dystonia
• Gait impairment
• Freezing of gait
• Micrographia
• Hypomimia
• Hypokinetic dysarthria
• Precision grip impairment
• Disturbed saccadic eye movements

Non-motor symptoms

• Olfactory impairment
• Stereopsis
• Sleep disturbances
• Fatigue
• Reduced contrast sensitivity
• Impaired colour discrimination
• Dry eye syndrome
• Pain
• Depression
• Anxiety
• Apathy
• Hallucinations
• Dementia
• Orthostatic hypotension
• Thermoregulatory dysfunction
• Gastrointestinal dysfunction
• Constipation
• Urinary dysfunction

Parkinson’s 
Disease symptoms

Fig. 2.2: The motor and non-motor symptoms of PD.

If the disease is detected in the early stage, the deterioration of the health is
minor because the treatment is implemented. Because of this fact, early detection
is especially desirable [91]. The aging of society forces the demand of creating new
technologies for detecting neurodegenerative diseases in their early stage. Recently,
the novelty in technology allows for utilising them for purpose of PD detection
[63,92].

Nevertheless, the serious issue is that the early symptoms of the disease are lowly
apparent. Moreover, the detection of cognitive decline is not a simple task because of
the diversity of intelligence in the population, and the variation in education length.
Furthermore, PD occurs more frequently in the male group [18, 19]. The methods
which are the most accurate, however, are thereby expensive including MRI, CT,
and PET. Those methods are rather used in more advanced stages and the hospital
environment. The limitation is also the price of the examination. Because of those
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factors, there is a need for relatively cheaper and more approachable solutions for
patients [18,19].

This disease cannot be cured, however, the process of development could be inhib-
ited. There are applied methodologies such as neurostimulation or pharmacotherapy
[93,94]. The patients visit the hospital several times per year to maintain relatively
good health, nevertheless, they could meet the Hawthorne effect or this amount of
appointments per year is not sufficient [95]. Patients with PD can experience sudden
neurodegeneration, side effects such as levodopa-induced dyskinesia, or numerous
fluctuations in motor function. To prevent the deterioration of health quality, such
incidents require immediate intervention. Telemedicine solutions, which are capable
of addressing those issues, are in the research interest of many scientists. The ap-
plication of mobile phone usage for PD detection and monitoring of the progress of
the disease seem to be especially interesting. Examples of the application of mobile
smartphones for healthcare belong among the mHealth systems [96–100]. In order to
minimise the possibility of manifested damages, the methods of PD recognition will
be targeted particularly for early detection. Early detection refers to the recognition
of a disease at an early stage of its progression [101].

PD management is challenging despite the achievements in treatment approaches
[4]. One of the most desirable targets is PD detection, especially in the early stage.
The used tools for this purpose are based on artificial intelligence. AI in the health-
care domains is a paradigm shift, to detect, predict, and manage PD. The seven
categories were distinguished and are presented in Fig. 2.3 where the AI finds appli-
cation to deal with PD. The most common analysing modalities with ML are speech,
gait, sleep pattern with actigraphs, hypomimia, handwriting, and tremor. Not only
the detection of the PD is the aim of the researchers, but also the prediction of
wearing-off state [102]. Additionally, finding the clinical interpretable biomarkers is
in the circle of researcher interest. Furthermore, the monitoring of brain lipidomics
and the monitoring of dysregulated gut microbiome status among PD patients with
the usage of AI is a captivating domain for scientists. Next, the AI is explored for
smart gait and monitoring nanorobots in treatment and diagnostic likewise boosting
the potential of telemedicine. Further, the submittal of assistance in an advanced
stage of PD is a topic where the AI solutions will aid. For instance, the metaverse
applications could support PD patients with cognitive decline. The technologies
that could also support the solutions for PD patients in advanced stages are IoT,
wearables, sensors, and mHealth. Additionally, AI could serve in neurosurgery to
strengthen for example the process of decision-making during surgery. Moreover, AI
could facilitate the drug discovery for this disease and development process [4].

One of the symptoms which could be utilised for PD detection is hypomimia. The
hypomimia manifests in an expressionless face with no or little sense of animation,
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Fig. 2.3: The domains in which AI finds application in PD [4].

the reduction of facial expression [103], the slowness and limitation of facial motion
(facial bradykinesia) [104]. Moreover, there is observed a stiffness of muscles, the
issue with orofacial movements, i.e., the slower speed of the jaw lips [105–107], de-
creased blinking rate [108], unconsciously opened mouth [109], flattened nasolabial
folds [109], occurring asymmetry in the face [110], decreased ability to raise eye-
brows [88], etc. It is considered that PD patients recollect a so-called ‘poker face’.
Furthermore, expressing emotions by them is a challenging task [88]. Additionally,
Parkinsonians have an impaired ability to recognise human emotions in comparison
to the healthy group [111].

The communication skills of PD patients are also affected because of occurring
dysarthria among them [89] likewise the impairment of cognitive skills [112]. Com-
munications serve as the way of expressing the emotions, feelings, information, and
ideas by people [113]. Social well-being is disrupted in PD because of a decrease in
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communication skills [112]. A good indicator of the level of communication skills and
progress of the disease could be regarded as the tongue twister, i.e., validated speech
exercise. Pronunciation in this speech exercise is challenging and could reveal the
PD level because of difficulty in the appropriate usage of tongue and mouth. Fur-
thermore, dysarthria affects articulators and their debility may manifest particularly
during the performance of exercises such as the tongue twister [89].

Another early motor symptom of PD is HD [114,115]. This mark occurs parallelly
with hypomimia [80]. HD manifests in 90 % of PD patients [116] and this speech
disorder occurs because of a basal ganglia control circuit pathology [80]. HD occurs
in the field of phonation, prosody, articulation, and respiration. The exact diffi-
culties are apparent in irregular pitch fluctuations, breathy and harsh voice quality,
monoloudness, reduced loudness, airflow insufficiency, unnatural speech rate, impre-
cise articulation, monopitch, improper pausing, etc. The detailed description of HD
is attached in [84,117–119].

Moreover, sleep problems are considered signs of PD. Among them could be
distinguished following symptoms: insomnia, Excessive Daytime Sleepiness (EDS),
Rapid Eye Movement Behavioral Disorder (RBD), Restless Leg Syndrome (RLS),
and breathing difficulties. Those symptoms manifest in the early stage of illness
[87,120–122].

The quality and quantity of sleep influence people’s health. The measurements
describing sleep could be indicators of illnesses. Wearable devices (including smart-
watches) can be used to evaluate sleep disorders as well as sleep diaries, WiFi-based,
bed sensors, PSG, videosomnography (VSG), radiofrequency (RF), and EEG [123].
However, the PSG is considered to be the gold standard. The records of respira-
tion, electrocardiography (ECG), EEG, electromyography (EMG), electrooculography
(EOG), oximetry, and body position are collected during conducting PSG [124,125]
(see Fig. 2.4). Unfortunately, this procedure is carried out in the hospital envi-
ronment. Moreover, there are also tests like VSG, accelerometry, and Continuous
Positive Air Pressure [123]. The drawback of the PSG is that it is often executed
in the later stage, not in the highly demanded early stage, and it is performed in
hospitals.
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Fig. 2.4: The parameters measured during PSG.

2.3 EEG, Time Series, and Methods for its Detection

The non-intrusive diagnostic technique for analysing the bioelectrical brain function
is so-called EEG. Firstly, the electrodes are situated on the head skin surface, then
the signals of variance in potential likewise the changes between the different parts
of the brain in potential are gathered. Those signals are finally amplified to generate
a record of them. This record is the so-called electroencephalogram.

The aim is to catch the flow of the waves which have characteristic forms and
typical frequency bands. 1-100 HZ is the range of frequencies, whereas amplitude is
equal to 5 to several hundred 𝜇V.

The experiments with EEG in humans date back to 1924. It was used for the
recognition of the pathologies. The analysis of emotions, brain-computer inter-
face (BCI), and mental workload represent the field where EEG found applications
recently. Mental disorders could be analysed by EEG such as Alzheimer’s disease,
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schizophrenia, attention-deficit hyperactivity (ADHD), depression, and dementia.
Moreover, the symptoms of a brain tumour or epilepsy could be found with the
usage of EEG. Furthermore, this method is useful for analysing the sleeping pat-
tern, human ability to concentrate, and profoundness of anesthesia [126, 127]. The
aforementioned applications of the EEG are depicted in Fig. 2.5.

EEG

BCI

Mental 
workload

Alzheimer’s 
disease

Emotions 
Analysis

Schizophrenia

ADHD

DepressionBrain tumours

Dementia

Epilepsy

Sleeping 
patterns

Anesthesia

Concentration

Fig. 2.5: The applications of EEG.

The main problem with EEG signals is the inferior signal-to-noise ratio (SNR).
The filters are used to reduce the influence of noise on the signal, and threshold
the outliers of the signal. The impact of the cardiac bioelectrical activity, human
movements, the motion and variance in the tension of muscles, and eye movement
are eliminated thanks to the denoising technique. Moreover, the analysis of EEG is
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challenging because of its non-stationary character. Because of this, the classification
of the EEG signal is challenging. Furthermore, the EEG signal varies interpersonally
[127].

The methods suitable for EEG analysis are the modern deep learning tech-
niques likewise transition signal into the frequency domain and extraction of the
features. The deep learning techniques serve as the pre-processing stage, feature
generation, regression, and classification. The types of neural networks, which were
used for the analysis of the EEG, are CNN [128], LSTM [129], recurrent neural
network (RNN) [130], restricted Boltzmann machines [131], generative adversarial
network (GAN) [132], autoencoder (AE), fully-connected layers (FC) [133], deep be-
lief network (DBN) [131], transfer learning [129,134]. The augmentation of the data
is feasible thanks to the usage of transfer learning and GAN. This approach has a
chance to increase the quality of classification tasks [135].

2.4 Conclusion
This chapter provided an introduction to the topics elaborated in this thesis. The
nature of the diseases analysed in this work was described, i, e. COVID-19 and
PD. Additionally, the symptoms of those illnesses were briefly illustrated. They
are crucial foundations to understand assumptions of the developed methodolo-
gies presented in Chapters 4, and 5. The prelude of the diagnostic methods of
COVID-19 and PD was provided in this chapter. The state-of-the-art methods of
diseases recognition and prediction of the pandemic are broadly described in the
next Chapter 3. That part of the thesis is focused on the presentation of the used
methods of artificial intelligence, wearables, eHealth, and mHealth. Furthermore,
the foundations of EEG analysis were presented (it is an answer to RQ7.1.). Ad-
ditionally, the instances of artificial intelligence methods - commonly used neural
networks suitable for EEG processing were portrayed which could be applied to
wearable-related data (they are the answers to RO7., RQ7.2., RQ7.3.). They
are: CNN [128], LSTM [129], RNN [130], restricted Boltzmann machines [131],
GAN [132], AE, FC [133], DBN [131], transfer learning [129, 134], likewise transfer
learning and GAN. The applications of ML for EEG and neurodegenerative diseases
are described also in the following Chapter 3.
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3 The state-of-the-art overview
This chapter presents the state-of-the-art methodology for assisting in the diagnosis
of COVID-19, PD and analysing EEG signals. The review of technology dedicated
to the recognition of COVID-19 is focused on the personal level likewise the analysis
of pandemic trends thanks to the usage of wearables and ML. Furthermore, the
illustrated methods of PD diagnosis and evaluation of the progress of the illness are
based on hypomimia, HD, and sleep disorders. Moreover, the approaches to the
detection of different diseases, which would be potentially suitable for PD detection
based on sleep disorders and actigraph records, are discussed. Moreover, the appli-
cations of deep learning for EEG analysis are depicted. Additionally, the examples
of Granger Causality for EEG are illustrated. Finally, the operational rules of neural
ODE are explained and the advantages of this neural network are presented.

3.1 COVID-19 Detection with the Usage of Wear-
ables and Machine Learning

So far, there were introduced few solutions for the detection of COVID-19 with the
usage of wearable devices together with ML approaches in the literature. A short
review of them is presented in this section. If COVID-19 is detected early, the
reproduction rate can be significantly reduced and the infection can be prevented
from spreading. Nevertheless, the symptoms do not manifest approximately two
days before the visible onset of the disease which supports the spreading of the
virus.

The authors in [59] made an analysis of changes in heart rhythm and daily activ-
ity of COVID-19 cases based on records of HR and the number of steps taken during
the day. The sampling rates were one per minute and one per day, respectively. Ad-
ditionally, the sleep patterns were monitored, however, the data were incomplete.
The records of the devices come from the Fitbit smartwatch. Standford University
performed an experiment. The target of the experiment was to detect anomalies in
the prodromal stage of the disease. They obtained 32 COVID-19 cases, 15 Influensa,
and 73 HC among 5300 participants. Three algorithms were developed: Resting
Heart Rate (RHR) Difference anomaly detection, the heart rate over steps anomaly
detection (HROS-AD), and cumulative sum (CuSum) [59]. Thanks to the CuSum
algorithm, 63 % of COVID-19 cases were recognised positively. Nevertheless, the au-
thors did not consider specificity [59]. RHR Difference (RHR-Diff) offline anomaly
detection tried to find anomaly detection in HR thanks to the residuals standard-
ization of RHR. 1 hour signal of RHR was standardised on the RHR average of 28
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days. The time window - interval is considered to be an anomalous if the window
is under the relevance of 0.05. The HROS-AD is an unsupervised learning anomaly
detection algorithm [59]. The metric the ratio of heart rate to the number of steps
taken (HROS) and Gaussian distribution analysis were used. The moving average,
undersampling to one hour, and Z-score transformation were utilised for HROS-AD
algorithm. The anomalies found by the Gaussian distribution analysis were recog-
nised as outliers. The algorithm which was working in real time was CuSum. The
deviations of residuals of RHR were summed and 28 days of records were taken into
account during performing CuSum.

In another work [1], the Fitbit - wearable device was also utilised for COVID-19
analysis. COVID-19 cases and two types of Influensa were taken into consideration.
The authors enrolled 7000 participants and gathered data for 41 COVID-19 cases,
85 Influensa during the pandemic, and 1265 Influensa before the main pandemic.
The number of steps taken by human was collected together with RHR records. A
longer median duration of COVID-19 cases (12 days) was observed than the spanning
of Influensa before the main pandemic (7 days, Pre-COVID-19 Flue) and during
the pandemic (9 days, Non-COVID-19 Flue). The self-reported illness duration is
illustrated in Fig. 3.1. Thanks to the statistical analysis, it was proved that raised
RHR manifests often nearly the onset of the disease. The authors also compared the
RHR between COVID-19 and Influensa cases, and COVID-19 records characterise
higher values of RHR. Additionally, symptoms such as shortness of breath, anosmia,
and chest pain were typical for COVID-19 cases.

The data from [59] were also analysed in [136]. The PCovNet was proposed
which is a Long Short-term Memory Variantial Autoencoder (LSTM-VAE), to de-
tect the anomalies in the early stage of the disease. This network has been trained
on 25 COVID-19 cases analyses the RHR. The 0.946 precision and 0.234 recall
was achieved in the experiment conducted by authors [136]. Furthermore, F-beta
was computed with the result of 0.918. The usage of this parameter is never-
theless untrustworthy because the true negatives are omitted. Moreover, the au-
thors outweighed the importance of precision over recall thanks to the 𝛽 parame-
ter. According to RHR and PCovNet, 100 % of the individuals with the disease
were considered ill, however, these individuals were already infected, and as such,
they should be placed in quarantine. The analysis of anomaly detection based on
this same dataset [59] was provided in [137]. The One Class-Support Vector Ma-
chine (OC-SVM) was used to detect COVID-19 cases. The authors outperformed
the results from [59]. The anomalies in RHR signal were detected 23,5 % - 40 %
earlier in comparison to [59]. Moreover, the authors of [137] provided false positive
rates. They established the optimal time window length of RHR as 300 and 350.
21 among 29 COVID-19 cases was the maximum anomalies number found by the
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Fig. 3.1: The illness duration for COVID-19, Influensa before the main pandemic
and during the pandemic [1].

OC-SVM based on RHR (RHR-OC-SVM). For HROS, the OC-SVM (HROS-OC-
SVM) detected anomalies for 24 among 29 COVID-19 patients. The number of
outliers for HC was 39.96 (maximum was 100) for the false positive rate thanks to
the RHR-OC-SVM [62].

Another modality that was used for COVID-19 evaluation thanks to the wear-
able was temperature. In [138], the Oura ring was utilised in the experiment. This
device is capable of gathering the values of temperature, respiratory rate, HR, and
Heart Rate Variability (HRV). The temperature changes were observed before other
symptoms in this research. This phenomenon was detected in 38 participants among
50. The nonparametric Kruskal Wallace test with Tukey-Kramer post hoc compar-
ison was performed. Additionally, a strong correlation between cardiac rhythm and
fever was observed in [5]. Elevation of HR was detected as 8.5 beats per minute on
average per 1 ∘C. This relation is evident for RHR. This fact could be explained by
demonstrating higher precision in gauging resting time by wearables. Unfortunately,
this dependence is not special only for COVID-19, but also for influensa. Moreover,
a rise in RHR is also characteristic of short sleep. Furthermore, the authors in [139]
used also temperature as the parameter of characterisation of COVID-19. They
proved that temperature has an influence on COVID-19 detection among physiolog-
ical signals such as temperature, HR, HRV, RR, and metabolic equivalents (MET)
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collected by the Oura Ring. For the classification task by analysing data coming
from 73 people with COVID-19 disease, the researcher in [139] obtained for all of
the modalities the Area Under the Curve (AUC) = 0.819 and after removing the
temperature modality AUC = 0.770. The scientists tested Random Forest to detect
COVID-19 patients.

The utilisation of medical device was presented in [140]. It was the smartwatch
Empatica E4. The research considered the usage of a four-layer neural network –
CovidDeep together with augmentation techniques. Several modalities were taken
into account, including the inter-beat interval (IBI), pulse oximeter, skin temper-
ature, blood pressure, and galvanic skin response (GSR). Moreover, the neural
network analysed extra collected parameters such as weight, height, gender, age,
addiction to drinking and smoking, and habits. The dataset contains records of
30 symptomatic COVID-19 cases, 27 asymptomatic COVID-19 patients, and 30
HC. The signals were portioned into 15 s windows. The CovidDeep contains data
pre-processing, synthetic data generation with the TUTOR framework, architecture
pre-training, grow-and-prune synthesis with a decision tree and random forest, and
output generation through softmax. The best result of COVID-19 detection was
98.1 % of accuracy. The modalities which were taken into account were blood pres-
sure, GSR, oxygen saturation, and a questionnaire. The use of the Empatica E4 is
still challenging as a screening test due to its limited distribution in population and
high cost.

The influence of oxygen saturation (𝑆𝑝𝑂2) and RR were taken under analysis
in [141]. 208 records of COVID-19 cases from smartwatches were selected for the
study. The statistical analysis was conducted using chi-square distributions and in-
dependent t-tests. According to the chi-square distribution, there is no significant
difference between IoT factors and gender. Range and coverage, compatibility, in-
teroperability, performance, and secure connectivity with wearables belong to the
IoT factors.

The respiration rate was used for COVID-19 detection [142]. The data were gath-
ered by the WHOOP smartwatch. The dataset contains the record of 81 COVID-19
cases and 190 HC. The median RR per minute was gathered during the night and
recognised as the respiration rate. This signal was analysed by the WHOOP strap
algorithm. The study allows recognition of 20 % of COVID-19 cases two days before
the visible onset of the disease and, 80% of COVID-19 cases were detected three days
after the onset. The gradient boosting was used as a classifier. The detection of 20
% of COVID-19 cases is much more crucial because of the need for the detection of
the disease in its early stage and the usage of it as a screening test. Nevertheless,
the percentage rate is low for this purpose.

The changes in HR, HRV, and RR were examined in [72]. The records were
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collected by Fitbit smartwatch. The number of COVID-19 cases was 1181 and HC
was 13662. The applied CNN obtained AUC = 0.77 ± 0.03, whereas the sensitivity
was equal to 47 % and specificity was equal to 95 %. The researchers computed
the following parameters: the estimated mean RR, the mean nocturnal HR during
NREM sleep, and the Shannon entropy of the nocturnal RR series. As a method
of normalization, the Z-score was applied. Moreover, during the training process,
parameters such as gender, age, and Body Mass Index (BMI) were input into the
neural network. Moreover, the elevation during disease in HR together with RR was
observed, whereas deterioration in HRV was detected.

The above-mentioned works address the issue of detecting COVID-19 on a per-
sonal level through the use of wearable devices. Moreover, the literature reports on
the studies of analysis of pandemic trends – the crowd-level analysis [2].

The analysis on the crowd level was presented in [5]. A system for alerting of
anomalies in physiological signals was developed using deviations in sleep patterns
and RHR calculation from photoplethysmography (PPG) wearable records. Thanks
to the Huami devices, the records of 1.3 million participants were collected. The
support methodology was created with the usage of the heterogeneous neural net-
work CDNet. CDNet contains CatNN and DenNN. This network consists of dense
numerical features (historically officially reported COVID-19 rates, historical phys-
iological anomaly rate, active user density) and sparse categorical features (season,
weather, and holiday activity). The schematic structure of the CDNet network is
presented in Fig. 3.2. Using Pearson’s correlation, the COVID-19 infection rate
was compared with the physiological anomaly rate. The regions of China such as
South China, Central China, and North China were taken into account together
with South-Central Europe. Foshan, a Chinese city with a correlation of 0.81, was
observed to have the highest correlation. The average value across all cities was 0.68.
However, local events might influence people’s common behavior patterns, just as
individual variability may affect the model.

Furthermore, AI was used to analyse and manage data in [143]. The dataset
consists of blood parameters collected from the laboratory in 2020. ML was applied
to detect COVID-19. There were 80 patients with COVID-19 among 600 patients.
A total of 18 features are included in the dataset. Classifiers such as Random
Forest, Naïve Bayes, and SVM were applied. The normalization and feature selection
was performed as the pre-processing step. The highest results were obtained for
SVM: 95 % accuracy, 94 % F1, 95 % precision, 95 % recall, and 95 % AUC.
Unfortunately, there is no provided information in which stage of COVID-19, the
data were gathered.

Additionally, not only the stage of COVID-19 performed with the usage of ML
but also the need for hospitalization in [144]. The authors developed the COVID-19
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Fig. 3.2: The scheme of the neural network CDNet [5].

decompensation index (CDI). Continuous monitoring was done with the wearables
situated on the chest - VitalConnect VitalPatch and finger pulse oximeter - Proac-
tive, Protekt® Finger Pulse Oximeter 20110. There were gathered records of raw 125
Hz ECG, triaxial accelerometer, skin temperature, and oxygen saturation. There
are 22 positive cases (requiring hospitalization) and 308 negative cases included in
the dataset. AUC of 0.84 was obtained by gradient boosting.

The summary of the usage of ML methods with wearable for analysing the
COVID-19-related data is presented in Table 3.1.

Furthermore, the platform for monitoring COVID-19 was introduced in [145].
It is known as the Biovitals Sentinel and the platform utilises armband biosensors
(Everion). It is possible to utilize this platform as a source of data for support-
ing system methodology. A number of signals are collected, including RR, pulse
rate, daily activity statistics, skin temperature, blood oxygen saturation, and blood
pressure.

Furthermore, the utilization of wearable for measuring physiological signals is
highly needed. There are a variety of options. In [146], the authors used the skin
sensor placed on the throat to measure the accelerometer signal and temperature.
Additionally, this wearable device could measure the cough frequency, duration,
and intensity of cough with a wireless solution. The heart measurements were also
performed. Unfortunately, this skin sensor and approach are not suitable for early-
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stage detection, but for a more developed stage when the cough is occurring. A
continuous measurement of the progression of the disease could be made using this
device. Moreover, the situation of the wearables could be various. On-body sensors
can be integrated into smart rings, headbands, camera clips, sociometric badges,
smartwatches, and embedded in clothing [20, 62]. The use of smartwatches and
smart masks was primarily used for the early detection of COVID-19 [147]. An
interesting method for measuring 𝑆𝑝𝑂2 was presented in [148]. The researchers
proposed a wearable equipped with a PPG sensor to measure oxygen saturation.
This device exhibits the same level of accuracy as finger pulse oximetry as well as the
ability to respond more quickly. This wearable could measure potential hypoxemia
state. Further, the usage of a headset wearable was proposed for coughing detection
in [149]. Nevertheless, this application is not suitable for early detection of COVID-
19, because the cough is later a symptom of the disease.

Additionally, the ability of a smartwatch, such as Apple Watch, to collect ECGs
can be used to monitor the COVID-19 disease [150].

There were presented a few solutions for the detection of COVID-19 thanks to
the usage of wearables and ML. It depends on how data are collected and which
modality is chosen to be able to be used in the early stage of the detection. There
were introduced also solutions that are atypical like wearable placed in the ear or
smart masks in comparison to common smartwatches for monitoring COVID-19.
The application of Empatica E4 is unfortunately limited, because of the cost of the
device and not spreaded widely in society, to be used as a screening test. The usage
of a Fitbit device, Apple Watch, Garmica, or Oura Ring seems to be more suitable.

A review of the methodology of COVID-19 recognition and pandemic evolution
with ML and wearable devices is presented in Table 3.1.

51



Ta
b.

3.
1:

A
n

ov
er

vi
ew

of
th

e
m

et
ho

ds
of

C
O

V
ID

-1
9

de
te

ct
io

n
an

d
pa

nd
em

ic
de

ve
lo

pm
en

t
w

ith
th

e
we

ar
ab

le
s

an
d

A
I.

[2
].

Cit
atio

n
Ma

ina
im

De
vic

e
Kin

do
fd

ata
gat

her
ed

Siz
eo

fth
ed

ata
set

Acc
ura

cy,
effi

cia
ncy

Ma
chi

ne
lea

rni
ng

me
tho

d
Co

mm
ent

s

[5]
Pre

dic
tin

gt
he

epi
dem

ict
ren

din
clu

din
g

ano
ma

lyd
ete

ctio
nw

ith
CO

VID
-19

infe
ctio

nr
ate

Hu
am

i
(AC

C,
PP

G)
HR

,sl
eep

dat
a

1.3
mln

par
tici

pan
ts

Th
eh

igh
est

Pea
rso

nc
orr

ela
tion

for
Ch

ine
ase

citi
es:

Fos
han

0.8
1,a

ver
age

0.6
8

CD
Ne

t
(Ca

tNN
,D

enN
N)

Th
esi

mu
lati

on
pro

vid
ed

for
No

rth
,C

ent
ral,

Sou
th

Ch
ina

,
and

Sou
th-

Cen
tra

lE
uro

pe.

[13
8]

Sta
tist

ica
lan

aly
sis

ofd
aily

tem
per

atu
re

for
CO

VID
-19

dis
eas

ea
nd

cre
atin

g
dig

ital
bio

ma
rke

rs
Ou

ra
rin

g
tem

per
atu

re
50

CO
VID

-19
cas

es
38/

50
pat

ien
tse

xhi
bit

ed
som

ete
mp

era
tur

ea
nom

alie
s

bef
ore

the
ons

eto
fth

ed
isea

se

Th
res

hol
db

ase
do

nm
in/

ma
x

tem
per

atu
rer

eco
rd

aft
erz

-sco
re,

Sta
tist

ica
lev

alu
atio

n:
non

par
am

etr
icK

rus
kal

Wa
llac

ete
st,

wit
hT

uke
y–K

ram
erp

ost
hoc

com
par

ison

Mo
rew

ear
abl

ess
hou

ldi
ncl

ude
tem

per
atu

res
ens

ors
.

[59
]

An
om

aly
det

ect
ion

ofC
OV

ID-
19

dis
eas

e
lim

ited
to

Fit
bit

HR
,sl

eep
dis

ord
ers

,nu
mb

ero
fst

eps
73

HC
,32

CO
VID

-19
cas

es,
15

Infl
uen

sa
63

%a
nom

aly
det

ect
ion

inC
OV

ID-
19

cas
es

De
vel

ope
da

lgo
rith

ms
:

RH
R-D

iff,
HR

OS
-AD

,C
uSu

m
An

om
aly

det
ect

ion
eva

lua
ted

on
CO

VID
-19

dis
eas

ec
ase

sw
ith

out
con

sid
erin

gc
lass

ific
atio

np
rob

lem
.

[14
1]

Co
rre

lati
on

ofw
ear

abl
esr

ela
ted

dat
a

wit
hg

end
era

nd
IoT

fac
tor

s
Lac

ko
fd

eta
iled

info
rm

atio
ns

RR
,ox

yge
ns

atu
rat

ion
208

CO
VID

-19
cas

es
no

sign
ific

ant
diff

ere
nce

sb
etw

een
IoT

fac
tor

sa
nd

gen
der

Ch
i-Sq

uar
ed

istr
ibu

tion
and

ind
epe

nde
nt

me
asu

res
t-T

est

Th
ere

sho
uld

be
ad

iffe
ren

ce
off

utu
rec

rea
ted

sup
por

t
sys

tem
me

tho
dol

ogi
esb

etw
een

the
pop

ula
tion

acc
ord

ing
to

the
ana

lys
ed

fac
tor

s.

[14
0]

Eva
lua

tion
ofC

OV
ID-

19
dis

eas
eb

ase
d

on
Em

pat
ica

dev
ice

Em
pat

ica
E4

GS
R,

IBI
,sk

int
em

per
atu

re,
pul

seo
xim

ete
r,b

loo
dp

res
sur

e
que

stio
nna

ire

30
HC

,57
CO

VID
-19

cas
es

(27
asy

mp
tom

atic
,30

sym
pto

ma
tic)

98,
1%

acc
ura

cy
Co

vid
De

ep
Th

ed
ata

con
tain

sse
lf-a

sse
me

nt
don

eb
yp

atie
nts

,
the

pre
-pr

oce
ssin

gs
tep

isn
ot

clea
r.T

he
res

ult
sa

re
obt

ain
ed

wit
ht

he
me

dic
ald

evi
ce

–E
mp

atic
a.

[14
2]

De
tec

tion
ofC

OV
ID-

19
dis

eas
e

WH
OO

PS
tra

p
Re

spi
rat

ion
rat

e
81

CO
VID

-19
cas

es,
190

HC
20

%C
OV

ID-
19

sub
jec

tsr
eco

gni
sed

bef
ore

the
ons

et,
80

%c
ase

s3
day

sa
fter

ons
et

Gr
adi

ent
Bo

ost
ing

80
%i

sw
ell

res
ult

so
fac

cur
acy

,ho
wev

er,
the

tar
get

ist
od

ete
ctd

isea
seb

efo
ret

he
clea

ro
nse

t.

[72
]

Pre
dic

tion
oft

he
CO

VID
-19

dis
eas

eb
ase

d
on

RR
,H

R,
HR

Va
nd

also
age

,ge
nde

r,
BM

I

Fit
bit

RR
,H

R,
HR

V
275

4C
OV

ID-
19

cas
es

0.7
7+

/-0
.03

AU
C,

sen
siti

vity
47

%,
spe

cifi
city

95
%

Co
mp

ute
dp

ara
me

ter
s:

Sha
nno

ne
ntr

opy
oft

he
noc

tur
alR

Rs
erie

s,
the

me
an

noc
tur

alH
Rd

uri
ng

dee
ps

leep
,

pre
-pr

oce
ssin

g:
tra

nsf
orm

atio
nin

to
z-sc

ore
,

alg
orit

hm
:C

NN

Som
ee

xtr
ap

ara
me

ter
sw

ere
pro

vid
ed

dur
ing

tra
inin

g–
am

ong
oth

ers
:ag

e,g
end

er,
BM

I.
HR

tog
eth

erw
ith

RR
isi

ncr
eas

ing
dur

ing
illn

ess
,H

RV
isd

ecr
eas

ing
.

[1]
Co

mp
aris

ion
ofC

OV
ID-

19
dis

eas
ein

the
ear

lyo
utb

rea
k,l

ate
ro

utb
rea

ka
nd

also
wit

hI
nflu

ezn
a

Fit
bit

self
-rep

ort
dat

a,R
HR

,st
ep

cou
nts

,
nig

htl
ys

leep
hou

rs

41
CO

VID
-19

cas
es,

426
85

self
-rep

ort
ed

flu,
126

5p
re-p

and
em

icC
OV

ID-
19

sta
tist

ica
ldi

ffer
enc

esi
nt

est
s

Sta
tist

ica
lev

alu
atio

ns
Th

ea
uth

ors
dem

ons
tra

tet
he

hig
her

int
ens

ity
and

var
iety

ins
ym

pto
ms

for
CO

VID
-19

cas
est

han
for

nor
ma

lflu
.

[13
6]

An
om

aly
det

ect
ion

ofC
OV

ID-
19

dis
eas

e
int

he
ear

lys
tag

e
Fit

bit
HR

,nu
mb

ero
fst

ep
tak

en
25

CO
VID

-19
cas

es,
10

Infl
uen

sa,
67

HC
0.9

46
pre

cisi
on,

0.2
34

rec
all,

F-b
eta

0.9
18

PC
ovN

et
F-b

eta
isa

nu
nre

liab
lem

etr
ic.

[13
7]

An
om

aly
det

ect
ion

ofC
OV

ID-
19

dis
eas

e
Fit

bit
HR

,nu
mb

ero
fst

ep
tak

en
32

CO
VID

-19
cas

es,
74

HC
An

om
alie

sw
ere

det
ect

ed
23.

5%
-40

%e
arli

eri
nc

om
par

ison
to

[59
]

21/
29

fou
nd

ano
ma

lies
for

RH
R-O

CS
M

24/
29

fou
nd

ano
ma

lies
for

HR
OS

-OC
-SV

M
OC

-SV
M

Th
ere

isn
oc

ons
ide

rat
ion

ofc
lass

ific
atio

np
rob

lem
.

[13
9]

Ch
eck

ing
the

infl
uen

ce
of

tem
per

atu
reo

nt
he

cla
ssifi

cat
ion

tas
k

Ou
ra

Rin
g

tem
per

atu
re,

HR
HR

V,
RR

ME
T

73
CO

VID
-19

cas
es,

app
rox

ima
tely

630
00

HC
AU

C=
0.8

19
for

all
mo

dal
itie

s,
AU

C=
0.7

70
for

all
mo

dal
itie

sw
ith

out
tem

per
atu

re
Ra

ndo
mF

ore
st

Th
ete

mp
era

tur
ew

as
con

firm
ed

to
be

val
uab

le
for

CO
VID

-19
det

ect
ion

.

[14
4]

De
ter

min
atio

no
fth

en
eed

ofh
osp

ital
iza

tion
Vit

alC
onn

ect
Vit

alP
atc

h,
Pro

act
ive

,P
rot

ekt
®F

ing
er

Pu
lse

Ox
ime

ter
201

10

raw
125

Hz
EC

G,
50

Hz
tria

xia
lac

cele
rom

ete
r,

0.2
5H

zsk
int

em
per

atu
re,

𝑆𝑝
𝑂 2

22
pos

itiv
ec

ase
s(r

equ
ired

hos
pit

aliz
atio

n),
308

neg
ativ

ec
ase

s
AU

C=
0.8

4
Gr

adi
ent

Bo
ost

ing
Th

ed
ete

rm
ina

tion
oft

he
nee

df
or

hos
pit

aliz
atio

n
wa

sd
ecid

ed
bas

ed
on

CD
I.

52



3.2 Parkinson’s Disease Detection based on Symp-
toms

MRI, PET, and CT are considered as the most accurate methods for detecting PD.
Nevertheless, those methods are expensive and for this reason, are not suitable to
serve as a screening test. Moreover, the PSG is an accurate test for recognising sleep
disorders in PD, however, it requires a hospital environment to be carried out and it
is not appropriate for early diagnosis. Because of this reason, there is a need for the
utility of more approachable techniques [77]. Methods based on video analysis [151],
wearable sensor analysis [152,153], and audio analysis [154] appear to be more cost-
effective and accessible for the detection of PD. The combination of the modalities
found also a research gap by the scientists in [155–157]. The video modality is
applied to human gait analysis [151] and hypomimia recognition in PD [7].

3.2.1 Hypomimia

There has been a limited amount of research published on PD detection based
on hypomimia. The main issue is the missing access to the dataset containing
hypomimia records. Some of the works were focused only on statistical analysis
[110,158], whereas the studies in [7,159,160] considered emotion recognition in PD.
The emotions which are taken into account are: sadness, surprise, happiness, anger,
neutrality, disgust, and fear [161,162]. The meticulous review of hypomimia analysis
in PD is presented in [161].

There were identified two groups of facial features extraction techniques for the
automatic evaluation of hypomimia, namely: statistic-based and geometry-based.
Statistics-based methods rely on measurements based on differences in illumination
between pixels [163]. Whereas, the geometry-based methodologies utilise the facial
landmarks and calculate the distances between those landmarks or compute the
areas between some of the detected facial landmarks [164].

There are a few techniques that were applied for hypomimia analysis, i.e., the af-
fectograms, facial action coding system (FACS), the automatic maximally discrimi-
native facial movement coding systems (MAX), facial electromyography (fEMG), the
Action Units (AUs), automatic facial expression recognition (FER), and techniques
with the usage of AI for emotion recognition [63,161]. There could be distinguished
two main groups of techniques utilizing video, or image, and ML. The methods be-
long to the first group are detecting pixels or facial landmarks on a face. The second
group represents the solutions that utilize neural networks to extract features from
images or videos [161].
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The facial landmarks were detected and 12 features were obtained based on them
in [165]. Areas and distances were extracted features. The performed exercise was
a one-minute monologue of native speakers in the Czech language. In this exercise,
79 HC and 91 de-novo (in the early stage) and drug-naive (untreated) patients
participated, excluding those suffering from depression. The classification task was
performed thanks to the 5 features, the leave-one-subject-out cross-validation with
binary Logistic Regression as a classifier. The metrics which were calculated were
as follows: AUC = 0.87, accuracy = 78.3 %, sensitivity = 79.1 %, and specificity
= 77.8 %. However, the computed features did not include the dynamic of facial
muscle movements and motion of the anthropomorphic distances.

The work in [162] is dealing with the separation of PD from HC thanks to the
analysis of emotions with the usage of the function. The experiment involved 8
HC and 7 PD patients. A function based on the duration, frequency, and intensity
of FACS is used to compute facial expressivity to distinguish between two groups.
Emotions were taken into consideration, particularly: fear, surprise, anger, amuse-
ment, disgust, and sadness. The task was to self-assessment of emotional state after
watching the movie, nevertheless, this evaluation could be received as a drawback
of the experiment because of the subjectiveness.

Another work was dealing with scrutinising the discrepancy in the ability to
express the emotions between the PD and HC thanks to the analysis of video in
[88]. The distinction was carried out thanks to the computed features vector of the
Euclidean face between the neutral baseline and while expressing another emotion
(happiness, anger, disgust, and sadness). The capability of expressing emotion for 17
PD patients and 17 HC was calculated this way. The statistical difference between
the groups was proved with the conducted two-tailed t-test. Moreover, the most
problematic emotions to express occur disgust and anger.

The combination of geometric and texture features was utilised in [6]. The dif-
ferentiation between neutral and expressed emotion was taken into consideration.
This was measured for geometric features by facial expression factors (FEFs) for ac-
tivated states and facial expression change factors (FECFs) for detecting the moving
trajectories of activated states. Whereas, the extended histogram of oriented gradi-
ents (HOG) was calculated for the texture features, including three dimensions, i.e.,
HOG-XY, HOG-YT, and HOG-XT. The 47 PD patients and 39 HC took part in the
experiment. The Principal Component Analysis (PCA), 5-fold cross-validation was
used as the ML methodology. The process flow of the designed approach is shown
in Fig. 3.3. The best results achieved the combination of geometric and texture
features by the Random Forest and SVM. The F1-score was equal to 0.9991 and
0.9997 for the Random Forest and SVM, respectively. However, in the opinion of
the authors, the conducted PCA was vague and could suffer from overfitting.
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Fig. 3.3: The process flow of the approach in [6].

Another study [110] investigated the changes in entropy during the smiling. The
video records were collected for 12 HC and 12 PD patients. 7 emotions were taken
into account: surprise, anger, happiness, fear, disgust, and sadness. The hypomimia
symptom was examined thanks to the shift in pixel intensity. The main point from
the experiment is that reduced facial movement and bradykinesia were observed
more often for PD patients than for HC for all feelings.

There were published also a few works with the usage of AUs. The set of AU and
facial features for PD recognition was presented in [162]. The authors proposed the
function of the frequency of AU. The statistical importance of the created function
for separating PD from HC cases were proved. Moreover, the measurements of facial
EMG were carried out to check the statistical significance between the two groups.

Furthermore, the AUs were computed in [160], and data were gathered from
three dimensional (3D) sensors. The collected dataset contains records of 15 HC
and 15 PD patients. The AU and linear regression were used to create a ML model.
The obtained accuracy was in the range of 0.90 to 0.99. Nevertheless, the dataset
is relatively small.

The evaluation of the impairment of facial movements was done by grading
AU from 0 to 5 in [166]. The 1812 video records were collected by a webpage
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tool 1 for 61 PD patients and 543 HC. The single video includes the recording of
repeated 3 times emotions with a pause for the neutral expression. Three feelings
were examined: surprise, smiling, and disgust. The tests lasted between 10 and
12 seconds. Examination of the disease was conducted using the FACS and ML.
The SVM was used as a classifier with the leave-one-out cross-validation and was
preceded by the Synthetic Minority Oversampling Technique (SMOTE) on the whole
dataset. The results of the classification were equal to 95.6 % accuracy. Moreover,
the Logistic Regression was applied to define the interpretability of made decision
and identify the valuable AU. The most significant features were AU_01 (inner brow
raiser), AU_06 (cheek raiser), AU_12 (lip corner puller) for smiling, and AU_04
(brow lowerer) for disgust. Nevertheless, because of the approach using SMOTE,
the obtained outcome suffers from overfitting.

The substitute for facial analysis by video records is the usage of facial EMG.
The fEMG was utilized in the research works [162], and [167]. The activity of the
facial muscles during expressing emotions was examined. Nevertheless, this kind of
test is disrupting and troublesome for patients. Moreover, this kind of evaluation
of hypomimia suffers from subjectivity because the patients need to determine their
emotional state, there is no, for instance, fixed speech exercise.

The extension of the work from [6] was published in [168]. The gathered dataset
contains 39 HC and 47 PD patients. The authors introduced a Semantic Feature
based Hypomimia Recognition Network (SFHR-NET). One of its components of it
is Semantic Feature Classifier (SF-C). The role of SF-C is to fit the feature salient
map. The semantic loss and classification loss were tunned thanks to the Progressive
Confidence Strategy (PCS). The neural network consists of a spatial encoder and
temporal encoder with red, green, blue (RGB) spatial representations and optical
flow, respectively. Furthermore, the Gradient-weighted Class Activation Mapping
(GRAD-CAM) was used to interpret the approximate activate area. This neural
network is an end-to-end solution and includes Visual Geometry Group (VGG) as
the backbone, segmenter, SF-C, PCS, and optical flow. The dataset was divided
into a training set of 60 %, a validation set of 10 %, and a testing set of 30 %. The
results of classification were equal to 99.39 % accuracy and
99.49 % F1-score. Unfortunately, the dataset is imbalanced in the number of cases
from each group, and the cross-validation was not conducted.

Additionally, the detection of PD was performed using transfer learning in [169].
A total of 107 records of PD were collected. The dataset was splintered into the
training and testing dataset. The testing set contains 27 HC and 27 PD patients.
The labeling of the dataset was done by the two neurologists. The CNN was trained

1https://www.parktest.net
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on the database Youtube Faces Database. This dataset is a collection of 3245 videos
from 1595 people. The used network was VGG. The result of the prediction was the
density distribution of the hypomimia score. The obtained area under the receiver
operating characteristic (AUROC) as a metric of the classification was equal to
0.75. The clinical influence of the medication was examined by the Tufts Clinical
Data based on the mean of 3639 frames per video. The evaluation of medication
was provided for 33 PD patients and among them 76 % were recognised in the off-
medication state, and 67 % were in on medication state. This methodology might
be used as an examination of the treatment’s impact on PD patients.

Furthermore, it has to be emphasised that the process of defining the kind of
emotion by the physicians is subjective. Moreover, the expressing emotions varies
among cultures and different for personalities, thereby could be biased on some
level [63].

For the unified emotion recognition by the automatic systems, a few solutions
with the neural network were introduced and trained on the FER2013 dataset. This
set consists of 35 685 images of 7 following feelings: happiness, surprise, disgust,
neutral, fear, sadness, and anger [170]. The task is FER. The human recognition
of accuracy based on the FER2013 dataset is 65.5 ± 5 % of accuracy [170, 171].
One of the proposed solutions, trained on FER2013, was a deep neural networks
(DNN) with two convolutional layers, max-pooling, and four Inception layers. The
obtained accuracy was equal to 66.4 % [171]. Furthermore, another introduced
neural network was simple CNN with the submission of activation function from
softmax to linear SVM. The result of classification of this task was equal to 71.2 %
accuracy [172]. Moreover, the potential augmentation of emotions was considered
thanks to the usage of VGG16 with a soft label constructor. The accuracy of the
obtained classification was 73.3 % [173].

Based on the results of the conducted classification on FER2013, the prediction
of the emotions by proposed automatic methodology could exceed human abilities.
Clinicians may be able to recognize PD more accurately thanks to the utilisation of
ML-based solutions to recognize emotions.

Furthermore, there were published works which were dealing with the progress of
the disease based on hypomimia symptoms. In one paper [174], the authors collected
the records of 727 PD patients. In this study, the author did not consider the
classification of PD disease, the HC class was missing. The aim of the exercise was to
describe the positive and negative memory by the participants. The measurements
of height and width of the eye, mouth, and eyebrow were computed during the
features extraction step. The Random Forest Regressor with 9-fold cross-validation
was applied for the regression task.

The methods for determining the progress of the PD were presented in [7]. In this
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approach, the Mel-frequency cepstral coefficients (MFCC) and AU were extracted
from audio and video modalities, respectively. The regression method classifies PD
patients into four categories for the development of the disease. The collected 772
records were gathered from 117 PD patients. The aim of the exercise was to talk
about their positive and negative experiences by them. A Hierarchical Bayesian
neural network (HBNN-C) was used as a ML method. The scheme of the performed
experiment is presented in Fig. 3.4. The multiclass classification was equal to 0.55
F1-score. Unfortunately, the experiment is not repeatable because the dataset is
private.

Registered
Face Sequence

Audio
waveform

MFCCs

Facial Ac�on
Units

Hierarchical Bayesian
Neural Networks

Input Video Mul�modal Feature Extrac�on

Fig. 3.4: The flow of the experiment from [7].

The detection based on the fusion of modalities for PD detection was presented
in [156]. The authors used the audio and video modality. Two types of data were
distinguished. One of them was the so-called training dataset which contained the
data of 111 HC and 112 PD patients in the ‘on’ phase. The second dataset was a
validation dataset and contained records of 74 HC and 74 PD patients in the ‘off’
phase. The device used for gathering the data was the smartphone. The task in
the experiment was to read the text by the participants. As the feature extraction
step, 20 features were computed. Among them were: gender, age, 6 key mouth- and
eye-related features, pitch variance, average pitch, pause percentage, voice volume
variance, reading time, and phonetic score. The used ML methods were 10-fold
cross-validation and nine classifiers. The 0.85 AUROC was achieved thanks to the
Logistic Regression for the training dataset. 0.90 AUROC was obtained with the
usage of the AdaBoost classifier for the validation dataset.
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Furthermore, the method with the usage of multimodality for PD detection which
was analysing changes in facial expression was introduced in [157]. This time, eye
fixation and gait were taken into consideration. The dataset contains the records
of 13 HC and 13 PD patients. The possibility to retain gazing at the defined point
was evaluated and defined as the ocular fixation. The fundamentals of using this
modality are the deviating frequency of microsaccades eye movement interval for
PD patients (5.7 Hz) from HC (1-2 Hz) [157, 175]. In this study, the two kinds of
features were computed. They were kinematic features calculated from optical flow
and deep features extracted from the convolutional neural network. As the next step,
the spatial distribution of the features was used thanks to computing the covariance
matrices. The final features were computed as the temporal mean of covariance
matrices. The final classification was achieved thanks to the cross-validation leave
one-patient-out and Random Forest. The obtained accuracy of PD detection was
equal to up to 100 %.

The overview of the studies which considered automatic analysing of the hy-
pomimia for PD detection and progress of the disease is presented in Table 3.2.

3.2.2 Dysarthia

Speech is another modality that is the subject of research about PD detection.
The representatives of the Speech and Movement Disorders Study Group proposed
recommendations for dysarthria acoustic analysis of movement disorders [176]. The
published guideline is about extracting the following acoustic features which are
expressing HD in the domain of respiration, prosody, phonation, and articulation,
i.e.: standard deviation (std) of the fundamental frequency, harmonic-to-noise ratio,
the std of intensity, mean intensity, vowel space area, shimmer, jitter, voice onset
time, diadochokinetic regularity, diadochokinetic rate, etc.

In [97], the basic features recommendation was utilised for the detection of PD.
Three groups were taken into account, namely: HC (30), PD patients (30), and
50 individuals suffering from idiopathic rapid eye movement sleep behavior disorder
(iRBD). The third group was considered because it is the early marker of PD. The
data were gathered by smartphone for speech exercises. They were the monologue,
the diadochokinetic exercise – repeating of pa-ta-ka, and the sustained phonation of
vowel [a]. PD vs. HC, and PD vs. iRBD were classified based on collected records.
The outcome of the detection of PD was equal to 0.85 AUC, 75.0 % sensitivity, and
78.6 % specificity, for Logistic Regression. Moreover, the benefit was the usage of
smartphone technology for the prodromal detection of the disease. Furthermore,
the most profitable biomarkers occurred to be decreased rate of follow-up intervals,
inappropriate silences, and the monopitch. Further, the classification of the second
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scenario, PD vs. iRBD, had an AUC of 0.78, the sensitivity of 66.7 %, and specificity
of 71.0 %.

The studies which were introduced are not dealing with the recommendation
of basic acoustic features, however, they proposed new features and solutions for
analysing HD. They are presented below.

The set of features based on the spectro-temporal sparsity was proposed in [177].
It was registered that PD has lower temporally sparse speech spectral coefficients
than HC. This fact led to the creation of the features. The introduced parameters
were: non-parametric sparsity measures (Shannon entropy, Gini-index, l1-norm)
and parametric measures (the spare parameters of a Weibull distribution and the
shape parameter of a Chi distribution). The dataset consists of records of 45 PD
patients and 45 HC of Colombian Spanish native speakers [178]. The achieved
accuracy was equal to 83.3 % with the usage of an SVM classifier with a radial
basis kernel function. The parametric sparsity measures (shape parameters of the
Chi and Weibull distribution) and the Gini index occurs to be the most valuable
features for PD detection purpose.

Another solution for PD detection based on speech analysis was introduced
in [179]. The authors proposed a forced Gaussian-based methodology that can dis-
tinguish PD from HC analysing independently various phonetic units. The dataset
was diversified and consists of 50 HC and 50 PD Colombian patients, 32 HC and 47
PD Spanish patients, 20 de-novo PD Czech individuals and 14 HC. The achieved
outcome of classification was 87 % of AUC with the usage of cross-corpora validation.

Furthermore, the novel feature for PD detection based on the biomechanical
model was introduced in [180]. The feature was named the absolute kinematic
velocity (AKV). The analysed model was about articulation and speech, whereas the
feature was computed thanks to the existing dependency between the jaw-tongue
reference position displacements and format oscillations. The considered dataset
has 16 PD individuals and gender-, age-matched 16 HC. The analysed feature AKV
characterised the increased distinguishing abilities of groups in comparison to format
centralisation ratio or vowel space area.

The interpretable features were proposed in [181]. They were in particular ar-
ticulatory kinetic biomarkers. The 50 HC and 50 PD patients were included in
the research. The diadochokinetic speech exercise was taken under analysis. The
authors made two observations. Firstly, the envelope of the speech was explored
between classes because of its indirect connections to the distribution of forces con-
trolling the articulators. Next, to evaluate the kinetics of speech PD individuals,
the velocity of the mid-term air pressure was researched. The envelope of the speech
was finally analysed in view of the dependency on the mid-term airflow pressure.
Regarding the used ML approaches, the obtained kinematic biomarkers were used
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as features, a future selection step was carried out thanks to the sequential floating
selection, and the SVM with linear kernel was chosen as the classifier. The obtained
accuracy was equal to 85 %.

There are nowadays a registered plethora of studies dealing with deep learning
for support methodologies [182, 183]. A few of the works also dealt with utilising
the DNN for PD detection based on speech modality [184–186].

The example of utilisation CNN was introduced in [184] for PD detection. The
dataset which was used in the research consists of 88 PD and 88 HC German, 50 PD
and 50 HC Columbian, and 20 PD and 15 HC Czech individuals. The CNN for the
training obtained short-time Fourier transform (STFT) and wavelet transform of
transitions between the onset and offset of phonation. The detection of the disease
for this CNN was 89 % of accuracy. Moreover, this same team used transfer learning
for this same dataset and increased the classification accuracy by up to 8% [8]. The
analysed languages were Czech, German, and Spanish. The schematic presentation
of the applied transfer learning is visible in Fig. 3.5. It could be implied that deep
learning has the potential for PD diagnosis tasks.
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Fig. 3.5: The scheme of the used transfer learning in [8].

Recent studies considered the impact of gender on PD, particularly in speech.
Generally, the low-frequency content of the speech was found for men suffering from
PD, while high-frequency content was typical for women patients [187, 188]. In
this research, into account were taken four datasets and confounding factors. Fur-
thermore, the authors of [189] discovered that women suffering from PD characterise
having more satisfactory vocal control. The analysed dataset contained the instance
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of 60 male and 40 female HC and the same amount of PD patients.
Generally speaking, speech and voice analysis found a niche in the detection of

PD disease. The described works are a good instance of this claim. More information
about the used approaches so far could be found in [84,118,119].

3.2.3 Methods for Parkinson’s Disease Detection based on Sleep
Disorders and Actigraphy

This section illustrates the transferable algorithms and methodology dedicated to
sleep disorders analysis in PD. Those methods were used earlier as different applica-
tions in various diseases and disorders such as ADHD, Alzheimer, and bradykinesia.
The analysis of sleep/awake stages was also taken into consideration. The records
which were analysed were gathered by wearable - actigraph. The suitable features
extraction was discussed and used ML were depicted. They were: SVM, Naive
Bayesian, k-NN, XGBoost, or Random Forest, Logistic Regression, GRU, LSTM,
and CNN, neural ODE, 1-D CNN, Deep-ACTINet, AdaBoost, Time-aware Toeplitz
Inverse Covariance-based Clustering (TICC) and CNN (TATC). Additionally, the
examples of actigraphs are mentioned, which signals they are collecting, as well as
the methods, how to measure the movement by this device, are described. Moreover,
this section concentrates on the sleep-related parameters which vary among PD and
HC. Furthermore, the processing and storing of data in actigraphs are explained.

Monitoring movement with sensors and actigraphs

Actigraphy is the name of the technique to monitor human activity or rest move-
ments and cycles in an unintrusive way. Actigraphy could be used for tracking
activity time, sleeping time, resting time, or the development of the illness. The
sensors such as gyroscopes, accelerometers, and magnetometers are widely used in
wearable actigraphs. The purpose is to measure the body position, movement, and
rotation of the body. Moreover, they could monitor the skin temperature, HR, skin
conductance, sound, and ambient light [190], [9]. The actigraph could be placed on
the wrists, thighs, ankles, and hips. The most valuable position of the wearable on
the body appears to be the wrist. This placement of the wearable on the body is
especially desirable for PD monitoring [191].

The market offers a few kinds of actigraphs. The most frequently occurring are
ActiGraph GT9X Link (made by ActiGraph), 9-axis IMU (mbientlab), wGT3X-BT,
GENEActiv (Activinsights), Vivoactive3 (Garmin), Versa (Fitbit), Fit2 Pro (Sam-
sung), Actiwatch Spectrum Pro (Philips Respironics), Charge 3, Vapor (Misfit),
Ticwatch E (Mobvoi) [192].
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Sleep disorders in Parkinson’s disease

The outcome of the disease prediction with the usage of actigraph and PSG could
vary. For example, an accurate prediction could be obtained for brain injury and
sleeping apnea. On the other hand, the achieved sensitivity for insomnia could be low
[190,193]. The differences between the detection of the disease imply the need for a
profound understanding of the nature of the sleep disorders in PD to be able to detect
this illness on the appropriate level. The PD patients manifest a variance comparing
the HCs in the following computed, sleep-related parameters: higher fragmentation
index (FI), sleep onset latency (SOL), longer wake after sleep onset (WASO), shorter
total sleep time, and lower sleep efficiency (SE) [194]. Moreover, the markers of sleep
disorders in PD are also: periodic limb movement, RLS, and chronic insomnia [195].
Additionally, nocturnal hypokinesia is characteristic of people suffering from PD
[196]. The factor which evokes this symptom is the lower secretion of dopamine.
Turns in bed are less frequent in the PD patients group than in the HC group. The
speed and acceleration of PD patient are lower and manifest smaller degrees. The
typical is also akinesia and often occurring a supine position, especially during the
second half of the night.

Processing and storing of data in actigraphs

The methods of the IoMT are used for the transmission of the data from the acti-
graph [52]. This concept contains the following procedure: data acquisition, commu-
nication gateway, and server/cloud. The gateway is a physical device (for example
a smartphone) or software [197]). It is considered that the gateway acts as a point
of connection between the device and the server or cloud via the field connector -
communication protocol. Cloud computing serves as the data holding, advances cal-
culations, the constraint of the exploration of the wearable device (computations are
instead performed in the cloud), likewise place for implementing support method-
ologies [198–200]. The advances in the development of the IoMT concept facilitate
the progress of the eHealth solution, silver economy including applications for PD
detection [60,201].

The telemedicine solution could be utilised by doctors for tracking the existence
and progress of marks among PD patients such as FOG, sleep, bradykinesia, hy-
pomimia, tremor, and so on [63,202]. The solution with the usage of the smartphone
was used in [203] to detect PD. The accelerometer was utilised to collect the data
related to gait which were transmitted to the cloud. The proposed application ob-
tained 81 % accuracy.

Additionally, the accuracy could depend on some factors. One of them is the
recording modes. The signal could be transmitted without changes or after modi-
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fication in mode. Three kinds of modes are distinguished: the time above thresh-
old (TAT), zero-crossing mode (ZCM), and the proportional-integral mode (PIM).
The advantage of the usage of recording mode is the reduction of the size of the sent
data. Nevertheless, the drawback could be the decreased accuracy of the following
designed model [190]. Moreover, the impact on the achieved accuracy of the support
model has the position on the body actigraph, time window (so-called epoch), and
sampling frequency. Sufficient sampling rate is considered as 20-25 Hz, the sampling
rate above that value will not add more value [204].

30 s and 1 min of the epoch is the common value chosen by manufactures as the
default value for ML model. The lower value of the epoch makes the quality of the
model worse [204,205].

An overview of transferable algorithms and methodologies for sleep disorders
recognition with the usage of Actigraphy dedicated to Parkinson’s disease de-
tection

This section is overviewing ML algorithms being frequently utilised for the detec-
tion of different diseases than PD with the assistance of wearables. Moreover, the
solutions for the recognition of PD based on various modalities besides sleep were
considered. The Table 3.3 summarises the potential techniques which could be used
for the recognition of PD based on sleep disturbances. The table contains informa-
tion about the main aim of the research, utilised features and architectures, achieved
results, what kind of disease or case is considered, and added comments about the
study.

The computed features could be in the statistics domain, time domain, and
morphology-based. Moreover, the extracted features could be in the frequency do-
main, obtained thanks to the Wavelet Transform, or Fourier Transform. Further-
more, there are many techniques for computing the features from the raw signal
or based on activity counts. The features could be derived manually or automat-
ically. The most frequently extracted features include: minimum, maximum, en-
tropy, the energy of the signal, kurtosis, skewness [206], 10th, 20th, 50th, 75th and
90th percentiles, std, mean, peak-to-peak amplitude, peak intensity, interquartile
range (IQR) [207], the sum of values, zero crossings, coefficient of variation, TAT,
signal power, root mean square (RMS)) value of signal components, the difference be-
tween maximum and minimum signal peak values, maximum frequencies, the mean
normalized frequency of the signal’s spectrum, the median normalized frequency of
the signal’s spectrum [208], band energy, crest factor, and spectral flux [209].

Algorithms can be divided into two groups based on their complexity: Shallow
Learning and Deep Learning. First of them are algorithms such as SVM, Naive
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Bayesian, k-NN, XGBoost, or Random Forest, Logistic Regression [204]. Because
the researchers are suffering from a lack of data, shallow learning obtains compara-
tive outcomes.

The potential application of ML solutions, including deep learning for PD based
on sleep records, were taken under analysis. Those solutions were applied for the
recognition of sleep/awake status, sleep-correlated illnesses, and daily activity. The
architectures which were utilised for those aims are: time-aware architectures such
as GRU, LSTM, and CNN, likewise the combinations of algorithms [47, 206, 210].
Promising usage seems to be the application of ODEs [211] or temporal CNN [212].
Moreover, the use of the spectrogram seems to be justified in view of the resemblance
of the oscillating speech signal to the accelerometry signal, whereas the spectral
representation of this signal was used together with CNN for speech recognition [206].

The common issue which is regarded in the sleep records is the sleep/awake
status. The method which is often used for sleep/awake recognition is the events
counting activity. This method is named activity counting. Nevertheless, activity
counting has not an application in the detection of PD based on sleep records because
of its simplicity [213].

The individual-related factors like biological factors, age, and lifestyle-related pa-
rameters were analysed in [207] to develop the personalised method for recognition
of sleep/awake stages with the usage of actigraph. The dataset contained 54 individ-
uals. The normalisation was performed, and 18 features were computed. Moreover,
21 actigraphy parameters were utilised. The used algorithms were Random Forest,
XGBoost, AdaBoost, Regularized logistic regression (RLR) with an L2 regulariser
and Stochastic gradient descent (SGD), and Naïve Bayes. The achieved accuracy
was equal to 86 % for XGBoost. For this same classifier, the specificity was equal
to 95 %, and the sensitivity was equal to 45 %.

Another solution for the distinction between sleep and awake stages was pre-
sented in [9]. The authors used the bidirectional version of LSTM. The scheme of
the this architecture is shown in Fig. 3.6. The visible input 𝑥𝑡 on the picture is the
feature matrix at time t, and the output 𝑦𝑡 ∈ [0, 1] is the predicted sleep probabil-
ity at time t. The data were collected for 186 individuals. They considered various
combinations of signals, however, the best occurred to be a 3-axis acceleration signal
together with skin temperature. The obtained accuracy was equal to 96.5 % accu-
racy. Additionally, the solution of LSTM dedicated to real-time applications was
tested, and it obtained lower accuracy by 0.2-1 %. By the same token, it applies
to real-time solutions. The architecture for real-time application with the usage of
LSTM is presented in Fig. 3.7.

The methodology of sleep/awake recognition was performed in [209]. The com-
bination of 1-D CNN and LSTM was proposed as Deep-ACTINet for this purpose.
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Fig. 3.6: The bidirectional LSTM [9].
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Fig. 3.7: The architecture for real-time detection of sleep with the usage of LSTM [9].

The outcome of the recognition sleep/awake stage was provided also for two com-
mon algorithms: Cole-Kripke, and Sadeh, likewise for Naive Bayes, Random Forest,
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Linear Discriminant Analysis (LDA), and feature-based CNN. The result for the
Deep-ACTINet was registered as the highest and the accuracy was equal to 89.65
%.

The common problem which is occurring is the limitation in the size of the
dataset. Moreover, the model which is trained on a small dataset could suffer
from lower-quality prediction. The answer to this issue could be the usage of the
augmentation technique. The promising method of augmentation was proposed
in [214] – 3D augmentation. The magnitude scaling, the timewise scaling, and
the random rotation belong to them inter alia. The dataset was obtained from
DREAM PD Digital Biomarker Challenge [214]. Moreover, the techniques such
as normalisation and balancing the imbalanced dataset are common procedures for
developing solid machine-learning models. The gait of the PD patients was registered
which contains the periods of an irregular cyclic pattern, variations in walking speed,
and tremors during the quiet standing interval. The obtained accuracy with the
usage of normalisation, augmentation, and CNN was equal to 87 %. This solution
outperformed the state-of-the-art methods.

The study in [192] considered the data steamed from PSG (Newcastle polysomnog-
raphy) with the records gathered from the wrist wearable accelerometer sensor. The
results of classification sleep/awake stage were equal with the usage of XGBoost to
80 %, and with the usage of XGBoost, and the SMOTE to 84 %. Furthermore,
cross-validation was performed.

Another study [206] utilised three datasets including the Daphnet FOG dataset
of PD patients. The main idea of the research was to transform the triaxial ac-
celerometer signal into the spectrogram. The proposed technique contained two
parts: the unsupervised pre-training part, and the supervised discriminative part.
The DBNs were used as architecture. The detection of the FOG was correct at 91.5
%. The key to the successful classification was the pretrained part with the feature
extractions.

The utilisation of the spectrogram was also presented in [10]. The authors de-
tect ADHD thanks to feeding CNN with the spectrogram. The used architecture
is depicted in Fig. 3.8. The lower activity was thresholded from the signal, not
to noise the signal with the informative part of manifesting ADHD. Moreover, the
aggregation of the signals was performed as the magnitude of the three-axis and
normalisation. The length of the window had also an influence on the final result
of classification, and the most desirable length was 300s - the medium size. Never-
theless, the most suitable length of the window for PD detection could vary. The
achieved accuracy was equal to 98.6 %.

Another work [215] also dealt with the recognition of ADHD. The signals from
the accelerometer and gyroscopes were taken into account. The feature selection was
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Fig. 3.8: The scheme of the CNN used in [10].

performed and 15 features were chosen. It was estimated that half of the features are
’high-resolution histograms’. Those features are considered as appropriate attributes
of early ADHD. The authors used SVM as the classifier, and the obtained accuracy
was equal to 95 %.

The analysis of the bradykinesia among PD patients was provided in [47]. The
gathered signal came from the 3-axial accelerometer, Shimmer3. The participants
of the experiment performed given motor exercises. Thanks to the usage of deep
learning (DL), the study outperformed the state-of-the-art techniques by 4.6 % ac-
curacy. The AdaBoost, SVM, and k-NN gave worse accuracy than the DL methods.
The applied CNN achieved an accuracy of 90.9 %.

The time-aware solution which could consider the circadian rhythm for the detec-
tion of Alzheimer’s disease was presented in [210]. The data were collected for this
aim by the actigraph. The architecture is named TICC and CNN (TATC). Those
two parts - first, TICC is an unsupervised technique destinated to recognizing stages
such as exercising and sleeping, and second - CNN learns temporal features from
time series. The uniqueness depends on the ability to analyse and recognise the data
collected during various periods of the day (night or day). The data gathered dur-
ing the day could be emphasized in comparison to those collected during the night,
while the GRU and LSTM are destinated to focus on long-temporal dependencies.
The obtained accuracy was equal to 86.2 %, and, a similar value was registered for
sensitivity and specificity.
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Conclusion

It has been confirmed by many discussed research studies that the wearable devices
have large potenial in early detection of PD. The need for early detection is especially
important for this disease, because then the treatment could be faster applied, and
could limit the development of the disease. Sleep appears to be a promising modality
for PD detection. The usage of wearables such as actigraph could be explored for
the eHealth sector.

This subsection is answer to RO6. which identified the possible solutions for PD
detection based on sleep disorders, including information about used architectures
and achieved accuracies. The advantage of the summary is the identification of the
potentially transferable applications detecting various diseases that could be used
for PD recognition based on sleep disorders. They are ADHD, Alzheimer’s, and
recognition of the sleep/awake stages. Additionally, the methodology detecting PD
based on different modality (bradykinesia) could be transferred. These two examples
are the reply to question RQ6.2.

The literature shows the variance in the sleep parameters between PD patients
and HC. FI, SOL, WASO, shorter total sleep time, and lower SE [194], periodic
limb movement, RLS, and chronic insomnia [195], incidents of turns in bed during
the night, speed and acceleration of person are the varying sleep parameters and are
answers to question RQ6.3.

Furthermore, the factors which could impact the final classification of PD pa-
tients were identified. They are the length of the analysed signal - time window, the
modality, and kind of the gathered signal, the augmentation of the data, the size
of the dataset, the feature extraction step, the subset of features used for classifi-
cation, balancing the dataset and applied architecture. The XGBoost appears to
be the most powerful among the classic classifier. The algorithms of deep learning
which are recommended are for instance GRU, LSTM, 1-D CNN, CNN, and usage of
the spectrogram. Moreover, TICC because of its ability to analyse circadian rhythm
seems to be worth considering. The aforementioned algorithms are the answer to
question RQ6.1. It should be emphasised that the increase in prediction could be
potentially feasible by combining the signals from various sensors.
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3.3 Deep learning and Time Series Analysis for EEG
Analysis

The primary applications of EEG are presented in this section. The seizure detec-
tion, and sleep-stages recognition likewise BCI. The ML is used for those purposes
likewise the wireless solutions are mentioned. Moreover, the Granger Causality and
its advancement Sparse Granger Causality are described together with their use
cases. Furthermore, the novelty neural ODE is illustrated. The principle of op-
eration with its advantages are depicted. Additionally, the application of Ordinal
Partition Transition Networkss (OPTNs) is presented.

3.3.1 Literature Overview

The most common issue which tackles the usage of EEG is seizure detection, sleep
stage recognition likewise BCI [216].

The detection of the seizure brings information about the potential occurrence
of epilepsy. The suitable approach for dealing with this problem is the usage of
EEG. The likely solutions utilised for this aim are the energy analysis likewise
wavelet transform. Moreover, the authors in [134] computed spectrograms to anal-
yse the data in the time-frequency domain. The considered data obtained from
the Children’s Hospital in Boston. Furthermore, the architectures which were fed
with spectrograms were stacked sparse denoising autoencoder (SSDA) and ConvA
(denoising and convolutional AE). The accuracy reached 94.37 %, and F1-score was
85.34 %.

Additionally, the detection of seizure based on raw signal EEG was proposed
in [217]. The data came from the Department of Epileptology at the University of
Bonn. The authors applied LSTM and cross-validation for this aim. The accuracy
was equal to 95.54 % and AUC to 0.9582.

The gold standard for the measurement of sleep-related parameters is the PSG.
A few tests which are typically performed during this medical examination, include:
EEG, EMG, ECG, and EOG belong to them. The unified description of sleep is
important because this human activity has impacts on memorising, dealing with
emotions, and the learning process [216].

The application of 1 channel wireless EEG (Fpz-Cz at 100 Hz) was described in
[11]. The solution utilised Bluetooth Low Energy (BLE). This technique is dedicated
to sleep stage detection because it is more comfortable for the patients than the
standard wired 22-channels EEG. The data originated from the Sleep-EDF from
Physionet-bank. The accuracy reached 85.3 %. The outcome of the classification
was ready after 30 s with the usage of a 1-D CNN. The used architecture is presented
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in Fig. 3.9. The part of it - Base-CNN contains three repeated bunch of two 1-D
convolutional (Conv1D) layers, 1-D max-pooling, and spatial dropout layers. Next,
Base-CNN consists of two Conv1D, 1-D global max-pooling, dropout, and dense
layers.

InputLayer BaseCNN
Time

Distributed
Conv1D

Spa�al
Dropout1D

Conv1D Dropout Conv1D
Mul�class
SleepLabels

Fig. 3.9: The scheme of the architecture used in [11].

Another solution for sleep stage recognition – scoring was presented in [218].
The data originated from the Sleep-EDF database, and the public dataset Montreal
Archive of Sleep Studies (MASS). The raw signal gathered by single-channel EEG
was taken under the analysis. The problem for the feature extraction appears to be
the transition between the sleep stages in the EEG signal. The combination of the
mixed CNN (to generate the time invariants features) with BLSTM (to register the
metamorphosis between the sleep states) was used as DeepSleepNet architecture.
The outcome of classification was equal to 78.9% accuracy, and 73.7 % macro F1-
score for Sleep-EDF, likewise 86.2 % accuracy, and 81.7 % macro F1-score for MASS.

The two main components are necessary to control the BCI. There are the assis-
tive signal from the records of brain waves likewise the ML model. The application
of noise-proof EEGNet was utilised in [219] to generate, at the same moment, a
myriad of features from the signal. The used architecture is a CNN network. The
best outcome was obtained for the four datasets, i.e., Feedback Error-Related Neg-
ativity, Sensory Motor Rhythm, P300 Event-Related Potential, Movement-Related
Cortical Potential. The AUC for prediction based on the P300 dataset was equal to
0.9054.

A detailed review of the usage of deep learning for analysing and creating support
methodologies could be found in [135].

3.3.2 Casual Inference from Neural Time Series Data

The method which found application in the EEG analysis is the Granger Causality.
The advancement of this algorithm – Sparse Granger Causality was proposed in
[220], so-called SC-SGA. This architecture characterises the lower complexity of
the algorithm and the potential for achieving higher accuracy of prediction. This
technique was applied to generate features. Ridge regression, SVM, and Logistic
Regression were used as classifiers together with 5-cross validation. Two types of
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datasets were investigated for this research. The first of them was Shanghai Jiao
Tong University (SJTU) Emotion EEG Dataset SEED dataset. The records of three
emotions were gathered, i.e., negative, neutral, and positive. The DEAP dataset
was the second used dataset, which includes records of 32-channel EEG signals, and
additional peripheral physiological signals.

The proposed SC-SGA technique analyses the dependency between the EEG
sensors as prior information and chooses the valuable features. This Sparse Granger
Causality uses the least absolute shrinkage, 𝐿1/2 norm, and the selection operator
(LASSO). Moreover, it takes the 𝐿2 norm for Logistic Regression and the Pearson
similarity coefficient, whereas the standard Granger Causality utilises the 𝐿2 norm.
The SC-SGA technique obtained better outcomes in contrast with the LASSO-GA,
𝐿2 Granger Analysis, and LAPPS. This method (SC-SGA) achieved better accuracy
of 2.46 % to 21.81 % on two datasets. Moreover, this algorithm reduces the noise
such as the impact of blinking, and head motion.

3.3.3 Possibility of Reducing the Number of Training Samples
and Increasing Accuracy thanks to the ODE

The paradigm shift in the area of the neural network was introduced at the end of
2018. It is named a Neural ODEs [211]. It is not a representation of the standard
sequence of the hidden layers, whereas this network characterises the continuous-
profound model. The black-box differential equation solver computes the outcome
which assesses the hidden unit dynamics 𝑓 if needed to determine the result with
the expected accuracy (Eq. 3.2). The advantage of this model is the parameter
efficiency. This solution is dedicated to the diversly sampled time series. Moreover,
the ODE network is malleable with the constant memory cost at the function of
depth. The parameters which can be under control are the profoundness of the
model likewise it can be optimised the harmony between the cost of the performed
model versus achieved accuracy.

The illustration of the ODE network could be presented as the continuous version
of the residual network. The discrete version of the ODE solver could be visualised
as the residual blocks in a neural network. This novelty introduced a vector field of
continuous smooth transformations [211]. Whereas residual network computes a dis-
crete and approximate sequence of finite transformations. The obtained calculation
by ODE is more precise.

The equations of the computations between blocks in the residual network can
be expressed mathematically as:

ℎ𝑡+1 = ℎ𝑡 + 𝑓 (ℎ𝑡, 𝜃𝑡) , (3.1)
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where ℎ𝑡 is the hidden information at time step t (𝑡𝜖 {0, ..., 𝑇}) in the current
block, ℎ𝑡+1 is the hidden information in the following block, 𝜃𝑡 is the bunch of the
parameters of the model (the weights and the biases), 𝑓 (ℎ𝑡, 𝜃𝑡) is the malleable
function of the actual hidden information.

The following equation (ODE) will be achieved, when the time step goes to zero:

𝑑ℎ(𝑡)
𝑑𝑡

= 𝑓 (ℎ (𝑡) , 𝑡, 𝜃) , (3.2)

where ℎ (𝑡) is the transition of the hidden information in the infinitely small-time,
𝑓 (ℎ𝑡, 𝑡) is the malleable function of the actual hidden information.

The utilisation of ODE was used recently for developing OPTNs in [221]. This
method was implemented to detect the casual coupling structures underlying epilep-
tic form activity from rodent brain slices. The microelectrode array was utilised for
this purpose. The signal was detected at the onset of the ictal beginning with the
usage of bipartite OPTNs.

To summarise, the ODE network could be especially used for the time series
analysis because its continuous learning of the data depended on time. The com-
plexity of the algorithm is lower and could be for instance applied to a wireless
solution of sleep analysis based on EEG.

3.4 Conclusion
The meticulous review of the methodology of COVID-19 recognition and pandemic
development with ML and wearables is depicted in this chapter. Moreover, the
approaches of PD detection are illustrated. The symptoms which were profoundly
discussed are hypomimia, HD, and sleep disorders. They are used for PD recog-
nition. The novel solutions of mHealth and eHealth are taken into consideration.
Furthermore, the benefit of this chapter is the presentation of the captivating trans-
ferable methodologies which would be appropriate for PD classification based on
sleep disorders. The spectrum of difficulties manifesting in sleep disorders among
PD patients is depicted to introduce the reader to the topic. Additionally, the tech-
niques of EEG analysis based on deep learning methods are discussed, such as SSDA,
1-D CNN, ConvA, LSTM, CNN, BLSTM, DeepSleepNet. This section addresses the
research objective RO7. and answers the research question RQ7.2. The special
attention has neural ODE which is a possible solution to RQ7.3.
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4 Wearables for COVID-19 detection - Prac-
tical Solutions

The purpose of this chapter is to investigate the use of wearable devices for the de-
tection of COVID-19. Furthermore, the ML methodology was utilized for this aim.
Chapter 2 and Chapter 3 present the state-of-the-art methods and related works,
whereas this Chapter 4 presents my research, experiments, and obtained results.
The introduced in the thesis ML approaches are built upon two papers [59] and [1]
that sought to identify COVID-19 among analysed cohorts. In the first them, 4642
volunteers were involved in the experiment by Stanford University, whereas 114 of
them were diagnosed with COVID-19 disease. Additionally, the cohorts had HC
group and Influensa. The dataset had records of the heart rate and the number of
steps. The sampling rate was 1 per minute. The personal activity was expressed
as the heart rate value divided by the number of steps. The research idea in this
thesis is the extension of this paper [59]. Nevertheless, the novelty in this thesis is
focusing on the data classification problem, not just anomaly detection like in the
original paper. The two scenarios were considered. The first of them distinguished
COVID-19 cases from HC, while the second scenario focused on the classification of
ill cases from HC. The physiological base of the assumption of the thesis was taken
inter alia from [1]. The resting time of the heart rate is higher for an ill person
than in the case of HC group. Moreover, there are differences in heart rate rhythm
between COVID-19 and Influensa cases, they last longer and begin earlier. Further-
more, the highest contagiousness period is regarded as -2 to 1 day after the onset
of COVID-19, which determines the necessity of early COVID-19 detection. This
issue was likewise considered in this thesis. The second dataset from [1] contains the
heart rate record and the number of steps but at a different sampling rate. Three
groups can be distinguished: COVID-19, Influensa prior to the main pandemic, and
Influensa during the main pandemic. The thesis also focuses thanks to the com-
bination of the two mentioned reused datasets on more diverse datasets in terms
of demographic. The experiments provided the statistical analysis of the datasets
likewise creation of support methodologies suitable for COVID-19 diagnosis in the
early stage.
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4.1 COVID-19 Diagnosis at Early Stage Based on
Smartwatches and Machine Learning Techniques

The primary objective of this study was to develop a support system methodol-
ogy for the early detection of COVID-19 [2, 59]. Furthermore, the criteria were to
focus on wearable measurements. This was accomplished by reusing the publicly
available dataset prepared by Stanford University with cases of COVID-19, Influ-
ensa, and HC. The heart rate record and the number of steps were taken into
account. Additionally, this work focused on developing a ML model suitable for use
as a screening test. Taking into consideration the contagiousness and incubation
periods of the analysing sample, the model should be able to identify which of the
analysing sample is ill or healthy during the prodromal stage. The two scenarios
were investigated, i.e., COVID-19 detection and Illness recognition when COVID-
19 and Influensa were treated as one group and the second was regarded as HC.
Developing the appropriate set of features, which captures the time and frequency
dependency in the data at various stages of the disease process, was a crucial step.
Mann-Whitney U test was used to evaluate the statistical significance of the fea-
tures. The experiment scheme is shown in Fig. 4.1. Experiments were conducted in
the following manner. First, the ratio of heart rate to steps was calculated. Next,
the time windows - selected interval taken under analysis, for two scenarios were
defined, i.e., COVID-19, Influensa, and HC likewise for COVID-19 and HC. There
are three types of windows: five-day, seven-day, and ten-day. For each window, a
set of features was computed. The difference in the windows between the later and
earlier set of features was then calculated. Maximum Relevance Minimum Redun-
dancy (mRMR) was used for feature pre-selection with 50 features. Lastly, stratified
cross-validation was performed. The following classifiers were used: Random Forest,
Decision Tree, Logistic Regression, SVM, k-NN, XGBoost, and Generalised Learn-
ing Vector Quantisation (GLVQ). Thus, the results of classification between illness
and HC were evaluated in terms of accuracy, sensitivity, specificity, and Matthews
correlation coefficient (MCC)) [2].

4.1.1 Data Characterization

Data for this study were obtained from [59]. For the research, the data were col-
lected by Stanford University using wearable devices and the MyPHD app. Data
from smartwatches - heart rate, number of steps, and stages of sleep and their du-
ration were analysed. In view of their limited numbers, the sleep data are omitted,
whereas the selected dataset contains the records of steps per minute and heart
rate per second. This study enrolled 5262 participants. The data were gathered
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Computing the ratio of heart rate to 
number of steps

Defining time windows for two scenarios

Extracting the features for the windows

Computing the difference between the 
windows separately for HC and COVID-19

Feature pre-selection mRMR

Classification with Stratified Cross-
Validation (Standardisation + Selected 

Classifier)

Results

50 features

Classifiers:
❖ XGBoost
❖ k-NN
❖ SVM
❖ Logistic 

Regression
❖ Decision Tree
❖ Random Forest
❖ GLVQ

Scenarios:
❖ (COVID-19 + 

Influenza) and HC
❖ COVID-19 and HC

Fig. 4.1: Experiment scheme.

from February 2020 until June 2020. COVID-19 disease was diagnosed in 114 of
the participants. The full records of 34 HC, 27 COVID-19 patients were taken un-
der analysis, they were collected by Fitbit device. HC and COVID-19 cases were
balanced in this study, along with 7 Influensa cases. The

4.1.2 Feature Extraction and Machine Learning

Physiological data collected from wearable devices are typically continuous time-
series records. Data amounts are often quite limited in the majority of cases. Due to
this, time-series signals require manual extraction of features [222]. The inspiration
for analysing physiological signal features was taken from the following articles:
[222–225]. These are the most frequently used features for physiological signals.
Unfortunately, there is still a limited number of samples available for measurement.
The decision was to use hand-crafted features in order to extract features from these
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samples since they span a relatively long period of time. 1-D CNN and LSTM were
also evaluated but without any significant results. Three types of features were
extracted, i.e., temporal, statistical, and spectral.

A Python package called tsfel [226] was used to extract the features. A diagram
illustrating how features are extracted is shown in Fig. 4.2.

Two windows of features were computed for the HC cohort in order to extract
the HC samples (𝑝𝐻𝐶1 - earlier window and 𝑝𝐻𝐶2 - later window). Windows were
fixed in size and separated by a specified spacing. The difference between a set of
features for each window was calculated. Where:

• Based on the earlier healthy state, the vector of features is expressed as follows:
−−→
𝑓𝐻𝐶1

• In the later healthy state, the vector of features is expressed as follows: −−→
𝑓𝐻𝐶2

• For HC, the final vector is as follows:: −→
𝑓 = −−→

𝑓𝐻𝐶2 - −−→
𝑓𝐻𝐶1

• There is an end point to the earlier healthy state window described as follows:
𝑡𝐻𝐶1

• In order to indicate when the later healthy state window begins, it was used
the following variable: 𝑡𝐻𝐶2

Fig. 4.2 shows the scheme for HC feature extraction.

Onset Diagnosis

Healthy state COVID early state

COVID infected person:
𝑙 = 1 (positive)

Feature extraction

Difference

𝑝H

𝑡C 𝑡O 𝑡D𝑡H

𝑝C

X𝑓H Feature extraction 𝑓C

റ𝑓 = 𝑓C − 𝑓H

Healthy state Healthy state

Healthy controller:
𝑙 = 0 (negative)

Feature extraction

Difference

𝑝HC1

𝑡HC2𝑡HC1

𝑝HC2

X𝑓HC1 Feature extraction 𝑓HC2

റ𝑓 = 𝑓HC2 − 𝑓HC1

𝑡

𝑡

27x

27x

Fig. 4.2: An outline of the feature extraction process for cases of HC and COVID-19.

Similarly, COVID-19 cases were extracted using the same procedure. To detect
disease in the prodromal stage, shifts in the computation of windows were defined.
Due to the contagious nature of this disease, the highest contagious peak occurs two
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days before the disease begins. Following the same steps as when extracting HC
samples, the next step was the extraction of COVID-19. As shown in Fig. 4.2, the
steps are described in a systematic manner.

Where:
• An analysis of the healthy state yields the following vector of features: −→

𝑓𝐻

• COVID-19 early state features are expressed as a vector as follows: −→
𝑓𝐶

• COVID-19’s final vector can be expressed as follows: −→
𝑓 = −→

𝑓𝐶 - −→
𝑓𝐻

• A healthy state window ends as follows: 𝑡𝐻

• COVID-19 begins at the following time: 𝑡𝐶

• Symptoms begin to appear at the following time: 𝑡0

• COVID-19 is diagnosed as follows: 𝑡𝐷

• In terms of the Onset, it is: 𝑂𝑛𝑠𝑒𝑡 = 𝑡𝐶 + 𝑝𝐶

• The shift between the diagnosis time and the Onset of the disease is expressed
as: 𝑆𝐻𝐼𝐹𝑇 = 𝑡𝐷 - 𝑡0

In order to evaluate the algorithms’ predictions, metrics such as accuracy, sensi-
tivity, and specificity were computed, as well as the MCC. In order to perform the
statistical analysis, the Mann-Whitney U test was used. SVM, Logistic Regression,
k-NN, Decision Trees, Random Forests, XGBoosts, and GLVQ were used in this
study.

4.1.3 Results

It was intended to assess the support system methodology for two cases: in the
first scenario, for cohorts containing COVID-19 cases and HC, and, in the second
scenario, for cohorts containing COVID-19 cases with Influensa and HC. A 7 day
interval between windows is used and a 2 day SHIFT is used (please, check the
designation in Fig. 4.2). There is a detailed description of the fixed parameters
for experiments in Table 4.1. The extracted features were statistically evaluated
using the Mann–Whitney U test with false discovery rate (FDR) correction. A
table showing the results for scenarios with 5-day windows can be found in Table
4.2 and Table 4.3. A total of 381 features were extracted, and their descriptions can
be found at [227].

For the cohort of individuals suffering from COVID-19 disease and HC, Mann-
Whitney’s U-test revealed the following important features: the sets of MFCC,
Fast Fourier Transform (FFT) mean coefficient, and linear prediction cepstral coef-
ficients (LPCC), spectral slope, maximum frequency, spectral roll-off, spectral kurto-
sis, fundamental frequency, spectral skewness, zero-crossing rate, slope, min, spectral
centroid, median frequency, empirical Cumulative Distribution Function (ECDF)
percentile and signal distance. For the assumed confidence level 𝛼 = 0.05, Table
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Tab. 4.1: The scenario in which the experiment was conducted.
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match weighting, the attributes can solve this problem by considering a change in386

distance metrics [40] for calculating distances between the sample and neighbours.387

One of the simplest supervised machine learning algorithms is Logistic Regression388

(LR), which is a classification algorithm. The output is interpreted as probability [41].389

Despite the non-complicated principle of working, it could achieve good results [42].390

However, it could suffer from multicollinearity [41].391

Additionally, the group of the Tree Classifiers was tested: Decision Tree, Random392

Forest, and XGBoost [40].393

There are few types of Decision Trees. The most commonly used are C4.5, ID3, and394

CART. In this study, CART was applied for the classification purposes [43] CART is a395

non-parametric algorithm. Other advantages are that can deal with missing values, can396

use pruning (post pruning). The making decision indicator is using Gini diversity index397

[44]. Decision Trees can deal with linearly inseparable data. The disadvantage of this398

algorithm is that it is difficult to manage the high dimensional data and it is vulnerable399

to overfitting [41].400

Random Forest is an extended version of the Decision Tree. This algorithm trains401

many Decision Trees and defines classes based-on voting. The main advantage is that402

it is robust to noise, does not over-fit. Hence, it can be regarded as a fast methodology.403

However, it slows down with an increase in the number of trees [41].404

XGBoost belongs to the tree gradient boosting system. This algorithm can achieve405

state-of-the-art results for structured data. Using parallel computing and optimization406

methodology, this algorithm can provide scalability [45]. This algorithm characterises407

faster computing and also uses regularization techniques. Additionally, the XGBoost408

uses shrinkage methodology and feature (column) sub-sampling to protect against409

over-fitting, thus, provides a solution to machine learning challenges.410

4. Results411

The machine learning algorithms were trained for two cases: A) for cohort con-412

taining COVID-19 cases and HC likewise B) for cohort containing COVID-19 cases +413

Influenza and HC. The size of the spacing between windows was fixed to 7 days and414

SHIFT was equal to 2 days (please, check the designation in Fig. 2). The summary of415

used parameters for experiments is presented in Tab. 2. According to the statistical416

evaluation of extracted features, the Mann–Whitney U-test with FDR correction was417

applied. The results for the two scenarios with Fig. 2 5-days windows are shown in418

Tab. 3 and Tab. 4. The distinction between those two groups is provided in the view419

of checking samples from two different distributions, i. e. with Influenza cases and420

without. The features distributions containing only people having COVID-19 disease421

versus HC should be various from the distribution of the features containing COVID-19422

cases and Influenza cases versus HC. This same dependency was compared. The number423

of extracted features was 381 their the description can be found in [46].424

Table 2: The scenario of carried out experiments.

Cases Len_window SHIFT Spacing
5 2 7
7 2 7COVID+HC+Influenza
10 2 7
5 2 7
7 2 7COVID+HC
10 2 7

The features, which passed the Mann-Whitney U-test for the cohort contains 27425

people suffering from COVID-19 disease and 27 HC are like following: sets of MFCC426

(Mel-frequency cepstral coefficients), fast Fourier transform (FFT) mean coefficient,427

Linear prediction cepstral coefficients (LPCC), spectral slope, maximum frequency,428

spectral roll-off, spectral kurtosis, fundamental frequency, spectral skewness, zero-429

Tab. 4.2: Statistical analysis of COVID-19 cases vs. HC based on Mann-Whitney
U test with FDR correction.
Features pval pval_FDR Features pval pval_FDR
MFCC_11 0.0045 0.3546 Zero crossing rate 0.0283 0.3546
FFT mean coefficient_117 0.0070 0.3546 LPCC_3 0.0297 0.3546
FFT mean coefficient_189 0.0070 0.3546 LPCC_9 0.0297 0.3546
Spectral slope 0.0102 0.3546 Slope 0.0297 0.3546
FFT mean coefficient_43 0.0134 0.3546 Min 0.0304 0.3546
FFT mean coefficient_254 0.0134 0.3546 FFT mean coefficient_21 0.0309 0.3546
FFT mean coefficient_233 0.0140 0.3546 FFT mean coefficient_243 0.0321 0.3546
Maximum frequency 0.0160 0.3546 FFT mean coefficient_175 0.0333 0.3546
Spectral roll-off 0.0160 0.3546 FFT mean coefficient_144 0.0346 0.3546
FFT mean coefficient_130 0.0174 0.3546 MFCC_7 0.0346 0.3546
MFCC_0 0.0174 0.3546 FFT mean coefficient_163 0.0374 0.3546
FFT mean coefficient_49 0.0189 0.3546 Spectral centroid 0.0374 0.3546
FFT mean coefficient_149 0.0189 0.3546 LPCC_0 0.0388 0.3546
FFT mean coefficient_0 0.0206 0.3546 FFT mean coefficient_249 0.0403 0.3546
FFT mean coefficient_202 0.0215 0.3546 Median frequency 0.0403 0.3546
MFCC_2 0.0224 0.3546 ECDF Percentile_0 0.0409 0.3546
FFT mean coefficient_37 0.0243 0.3546 FFT mean coefficient_39 0.0418 0.3546
FFT mean coefficient_247 0.0243 0.3546 FFT mean coefficient_185 0.0418 0.3546
MFCC_9 0.0243 0.3546 FFT mean coefficient_242 0.0418 0.3546
FFT mean coefficient_167 0.0263 0.3546 FFT mean coefficient_6 0.0434 0.3546
FFT mean coefficient_188 0.0263 0.3546 FFT mean coefficient_57 0.0450 0.3546
Spectral kurtosis 0.0263 0.3546 Signal distance 0.0450 0.3546
Fundamental frequency 0.0274 0.3546 FFT mean coefficient_235 0.0467 0.3546
Spectral skewness 0.0274 0.3546 FFT mean coefficient_154 0.0484 0.3546
Histogram_5 0.0283 0.3546 FFT mean coefficient_194 0.0484 0.3546

4.2 presents the features that passed the test. All of the checked features failed
the test after applying the FDR correction. However, it remains a strong criterion.
In this case, 0.3546 was the minimum value obtained. A comparison between the
two scenarios is possible by comparing the p-values with FDR corrections. For the
scenario involving COVID-19, Influensa, and HC cases, the minimum p-value was
lower than for the scenario involving COVID-19 and HC cases only, i. e. 0.2389 (see
Table 4.3).
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Tab. 4.3: Statistical analysis of COVID-19 cases, Influensa vs. HC based on Mann-
Whitney U test with FDR correction.
Features pval pval_FDR Features pval pval_FDR
FFT mean coefficient_163 0.0024 0.2389 FFT mean coefficient_56 0.0212 0.2421
FFT mean coefficient_243 0.0031 0.2389 Min 0.0216 0.2421
FFT mean coefficient_189 0.0032 0.2389 FFT mean coefficient_236 0.0225 0.2421
FFT mean coefficient_202 0.0040 0.2389 FFT mean coefficient_53 0.0238 0.2421
FFT mean coefficient_149 0.0059 0.2389 FFT mean coefficient_29 0.0245 0.2421
FFT mean coefficient_242 0.0065 0.2389 FFT mean coefficient_15 0.0252 0.2421
Spectral kurtosis 0.0065 0.2389 FFT mean coefficient_165 0.0259 0.2421
FFT mean coefficient_182 0.0070 0.2389 FFT mean coefficient_247 0.0259 0.2421
FFT mean coefficient_167 0.0075 0.2389 FFT mean coefficient_152 0.0267 0.2421
Maximum frequency 0.0094 0.2389 FFT mean coefficient_185 0.0267 0.2421
Spectral roll-off 0.0094 0.2389 Spectral centroid 0.0267 0.2421
FFT mean coefficient_254 0.0101 0.2389 FFT mean coefficient_134 0.0299 0.2586
FFT mean coefficient_117 0.0118 0.2389 Slope 0.0299 0.2586
Histogram_5 0.0122 0.2389 Median frequency 0.0316 0.2615
FFT mean coefficient_25 0.0126 0.2389 Spectral spread 0.0316 0.2615
Zero crossing rate 0.0130 0.2389 FFT mean coefficient_125 0.0333 0.2647
FFT mean coefficient_233 0.0138 0.2389 FFT mean coefficient_155 0.0333 0.2647
FFT mean coefficient_194 0.0147 0.2389 FFT mean coefficient_250 0.0352 0.2738
MFCC_11 0.0152 0.2389 FFT mean coefficient_50 0.0372 0.2832
FFT mean coefficient_43 0.0157 0.2389 FFT mean coefficient_160 0.0382 0.2851
FFT mean coefficient_39 0.0162 0.2389 FFT mean coefficient_230 0.0392 0.2872
FFT mean coefficient_150 0.0162 0.2389 FFT mean coefficient_175 0.0413 0.2874
Spectral skewness 0.0162 0.2389 FFT mean coefficient_255 0.0413 0.2874
FFT mean coefficient_143 0.0167 0.2389 FFT mean coefficient_222 0.0424 0.2874
FFT mean coefficient_0 0.0172 0.2389 FFT mean coefficient_229 0.0447 0.2874
FFT mean coefficient_130 0.0172 0.2389 FFT mean coefficient_231 0.0458 0.2874
FFT mean coefficient_251 0.0172 0.2389 FFT mean coefficient_30 0.0470 0.2874
Spectral slope 0.0177 0.2389 Signal distance 0.0470 0.2874
FFT mean coefficient_235 0.0183 0.2389 FFT mean coefficient_180 0.0483 0.2874
FFT mean coefficient_207 0.0188 0.2389 FFT mean coefficient_196 0.0483 0.2874
FFT mean coefficient_48 0.0212 0.2421 FFT mean coefficient_187 0.0495 0.2874

It is then necessary to explain how the parameters are selected. Due to the
registration of the highest contagiousness peak exactly 2 days before the patient’s
clear onset [71], the shift was set as 2 days. Regarding the incubation period, the
window interval was fixed as seven days. 2 days to up to 11 days are considered
to be the incubation period. Considering this parameter, 7 days were chosen, so
the sum of the later windows (from which the features were calculated) and spacing
is greater than the maximum period registered for incubation. A variable in this
study was the length of the window, i.e., 5-, 7-, and 10-day windows were tested.
Results were obtained with XGBoost, k-NN, SVM, Logistic Regression, Decision
Tree, Random Forest, and GLVQ classifiers.

There is a presentation of the best results of the classifications for the cohort
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that contains COVID-19 cases and HC in Table 4.4. The most accurate (0.78) with
specificity 0.77, sensitivity 0.80, and MCC 0.60, were registered for k-NN during the
5-days window (see Table 4.4). The best sensitivity was registered for GLVQ: 0.81.
Stratified cross-validation was conducted on 27 HC and 27 COVID-19 cases. A ML
models were also optimized. It was determined that the following parameters were
most optimal for the best k-NN: 11 nearest neighbors, Manhattan distance as the
distance metric. The weight function was also used (see Table 4.4).

Tab. 4.4: COVID-19 disease detection results for 5-day windows (cohorts: 27 HC,
27 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.71 0.72 0.71 0.46
k-NN 0.78 0.77 0.80 0.60
SVM 0.65 0.66 0.65 0.33
Logistic Regression 0.69 0.69 0.69 0.41
Decision Tree 0.50 0.52 0.49 0.01
Random Forest 0.62 0.59 0.66 0.27
GLVQ 0.76 0.81 0.71 0.55

There is created second sub-dataset (Subsection 4.1.1) that includes COVID-19
disease cases, Influensa patients, and HC. The COVID-19 disease and Influensa
were grouped together, while HC was grouped separately. There was also a balance
in the data this time. 34 cases of HC, 27 cases of COVID-19, and 7 cases of Influ-
ensa were included in the cohort (see Table 4.5). As a result of the case for a 5-day
window, the best accuracy (0.73) and the best specificity (0.76) were recorded for
k-NN, as well as the best MCC (0.49). With Logistic Regression, the sensitivity was
the highest (0.76). GLVQ obtained also the accuracy equal to 0.73. k-NN was opti-
mized by selecting three nearest neighbors, Euclidean distance as the best distance,
and weighing every point equally in the neighborhood. The GLVQ algorithm used
distance function squared Euclidean, activation function ’swish’, with parameter
beta = 3, solver type steepest gradient descent with parameters maximum runs =
56, and step size = 3.5. According to the results of the Logistic Regression, the L2
penalty and the ’saga’ optimization algorithm are the most appropriate parameters,
and the inverse of regularization strength is C=464 (see Table 4.5).

Additionally, there was provided the test for 7- and 10-day windows which are
presented for the scenario with COVID-19 and HC in Tables 4.6 and 4.7 likewise for
the scenario with COVID-19 and Influensa treated as one class and HC as second
class in Tables. 4.8 and 4.9.

The outcomes of the classification for the 7-day windows are shown in Table 4.6.
As compared to Table 4.4, the results obtained for classification of 7-day windows
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Tab. 4.5: Detection of COVID-19 disease and the presence of Influensa cases within
a 5-day window (cohorts: 34 HC, 27 COV, and Influensa 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.66 0.68 0.65 0.35
k-NN 0.73 0.71 0.76 0.49
SVM 0.71 0.75 0.68 0.45
Logistic Regression 0.69 0.76 0.62 0.40
Decision Tree 0.52 0.50 0.55 0.05
Random Forest 0.56 0.56 0.56 0.13
GLVQ 0.73 0.73 0.72 0.47

were lower. In terms of accuracy (0.68), k-NN and GLVQ had the highest results,
while XGBoost had the highest specificity (0.66). Additionally, the best sensitivity:
0.84 and MCC:0.38 were observed also for GLVQ.

Table 4.7 presents the results with a 10-day window. It has been found that
k-NN produced the best results in accuracy (0.71), sensitivity (0.84), and MCC
(0.46). Among the results obtained for Logistic Regression, a score of 0.68 was
obtained for specificity.

Tab. 4.6: COVID-19 detection results for 7-day windows (cohort: 26 HC, 26 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.67 0.68 0.66 0.35
k-NN 0.68 0.73 0.63 0.37
SVM 0.66 0.70 0.63 0.35
Logistic Regression 0.63 0.60 0.64 0.26
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.59 0.56 0.61 0.18
GLVQ 0.68 0.84 0.51 0.38

A Logistic Regression model (0.71) produced the best results for scenarios in-
cluding influensa cases within the 7-day window (Table 4.8). There was also a high
level of specificity (0.68) and MCC (0.45) for this classifier. k-NN had the highest
sensitivity (0.89). Lastly, k-NN provided the best performance in terms of accuracy
(0.73), sensitivity (0.82), and MCC (0.50) for the 10-day window length (see Ta-
ble 4.9). Logistic regression provided the highest specificity (0.66). Considering the
length of the window, the most beneficial analysed interval occurs to be a 5-day time
window for both scenarios, i.e. classification of COVID-19 cases likewise detection
of ill cases.
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Tab. 4.7: The results of the COVID-19 disease detection for 10-day windows (co-
horts: 24 HC, 24 COV).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.65 0.65 0.67 0.34
k-NN 0.71 0.84 0.60 0.46
SVM 0.67 0.67 0.67 0.36
Logistic Regression 0.70 0.72 0.68 0.42
Decision Tree 0.53 0.61 0.46 0.07
Random Forest 0.58 0.53 0.63 0.18
GLVQ 0.66 0.67 0.64 0.34

Tab. 4.8: Detection of COVID-19 disease as well as Influensa cases within a 7-day
window (cohort: 33 HC, 26 COV, Influensa 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 0.64 0.62 0.28
k-NN 0.70 0.89 0.51 0.44
SVM 0.68 0.80 0.57 0.39
Logistic Regression 0.71 0.74 0.68 0.45
Decision Tree 0.54 0.50 0.57 0.08
Random Forest 0.60 0.55 0.65 0.21
GLVQ 0.66 0.73 0.60 0.36

Tab. 4.9: Detection results for COVID-19 disease and Influensa cases for 10-day
windows (cohort: 31 HC, 24 COV, Influensa 7).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 0.63 0.62 0.27
k-NN 0.73 0.82 0.64 0.50
SVM 0.68 0.72 0.65 0.39
Logistic Regression 0.67 0.67 0.66 0.35
Decision Tree 0.52 0.54 0.50 0.04
Random Forest 0.59 0.58 0.59 0.18
GLVQ 0.66 0.73 0.59 0.36

4.1.4 Discussion and Summarisation

An early detection methodology for COVID-19 was presented in this section. In
this study, they were considering the data collected from wearables, i.e., heart rate
and the number of steps. Based on data gathered by Stanford University [59], the
experiment was carried out. Among them, it was selected 27 COVID-19 cases, 7
Influensa cases, and 72 HC cases. It is a limited dataset in the number of cases.
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Nevertheless, the sampling rate is satisfactory and it makes this dataset valuable.
Additionally, the advantage is that this dataset is publicly accessible. With consider-
ation of the incubation period and the highest contagiousness period, a few scenarios
were designed with changeable window sizes, fixed spacing between the windows,
and appropriate shifting of the windows. The parameters were chosen specifically
to avoid analysing people who were already on quarantine. The difference between
the features used in later and earlier stages of the disease was used to determine the
nature of the disease. The features were computed in the spectral, frequency, and
statistical domains. They were suitable for time signals. It was possible to identify
the valuable features through statistical evaluation. It was found that MFCC, FFT,
histogram, spectral-based, and LPCC could be used to distinguish between HC and
COVID-19. The MFCC are using not only for speech analysis [7], but also were
used for recognising abnormal heart rhythm based on ECG [228]. The most impor-
tant features for the scenarios COVID-19 and Influensa vs. HC were spectral-based,
FFT, and MFCC. Nevertheless, after applying stronger criteria, i.e., FDR correc-
tion, none of the features fulfilled the requirements with significance level alfa =
0.05. However, for the cohort with Influensa, the p-value after FDR correction was
lower. Among the classifiers, k-NN appeared to be the most accurate. Furthermore,
Logistic Regression and XGBoost performed well in the scenario with COVID-19
and HC. The highest results for k-NN may indicate that there are clear boundaries
between clusters in terms of dimension. It was determined that a 5-day time window
was the most suitable. Using k-NN, the classifier achieved an accuracy of 0.78, a
sensitivity of 0.77, a specificity of 0.80, and a MCC of 0.60. These results allow
for the design of a shorter in-time detection methodology for COVID-19 than those
presented in the original paper [59]. For cases with Influensa and COVID-19 treated
as one group, the accuracy was greater than 0.70 for each type of time window. In
this case, the best results were obtained for 5-day, i.e., 0.73 accuracy for k-NN and
GLVQ. It was also found that k-NN had the highest specificity (0.76), and MCC
(0.49). Based on the simple Logistic regression, it is possible to distinguish between
ill cases and HC, and HC is detected with 0.76 specificity. COVID-19 heart-related
symptoms tend to begin earlier and last longer than Influensa. Nevertheless, the
difficulties in distinguishing ill cases from HC occur [1]. Due to their ease of use
and accessibility, likewise relative affordability, wearables are ideal for serving as
screening tests. Only pedometers can provide a more accurate measurement of the
number of steps taken by a person than smartwatches, but they are not as widely
distributed and are less user-friendly.

Data were collected using a variety of devices. During the experiment, people
wore a variety of smartwatches, but only Fitbit data were analysed. The data have
been unified in relation to the user device. Additionally, it is possible to improve the
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results by increasing the number of modalities. There is potential to increase the
percentage of detection of COVID-19 in the cohort by incorporating parameters such
as skin conductance, skin temperature, acceleration, Blood Volume Pulse (BVP),
and HRV [229, 230]. Nevertheless, the device’s quality is reflected in its price. In
those modalities is equipped Empatica. It is a medical device that can be used
to collect data with greater precision, but it is intended for use with cohorts under
observation rather than in real-life standard conditions. Therefore, Empatica cannot
be used for screening tests [231]. Additionally, in contrast to the original paper
on which the research was based, the support methodology was introduced with
classification instead of simply anomaly detection, as in the original paper. While
the original paper [59] examined 32 cases of COVID-19, the carried-out research
presented in this thesis examined 27 cases of COVID-19. A total of 25 cases were
found in original paper to deviate from the norm, with 22 of them occurring at an
early stage. The metrics: accuracy, sensitivity, and specificity were calculated in this
study. Spectral, frequency, and statistical features were used to classify the state
problem. The authors developed both online and offline algorithms in their original
work. However, these methods do not have the capability of clearly distinguishing
between people with COVID-19 and those with HC. Online algorithm - CuSum -
considered 28 days of a person’s health. Using this algorithm, 62.5 % of COVID-19
cases were detected, however, the algorithm did not provide specificity.

The research presented in this thesis aims to provide support system methodol-
ogy, not only anomaly detection. The promising classification was possible through
the use of k-NN, which had an accuracy of 78 % and a sensitivity of 77 % for the
5-day window. One of the main advantages of this work is that it does not require
a long period to detect the disease. Furthermore, some obstacles to the research
should be identified. The demographic distribution of the reused cohort from [59]
was not specified. The race, ethnicity, and gender of the applicant were not provided.
A number of instances in the dataset were limited. As a result of these two factors,
ML models may be biased and overfit. The dataset should be extended in order
to improve the classification outcome. The process of collecting the data is another
obstacle to obtaining higher accuracy. The research aims to analyse data from a
specific device, i.e., Fitbit. Each smartwatch has its own preprocessing steps. Data
collected by this particular device were used to train the ML model. Therefore, it is
not learned how to differentiate correctly between ill cases gathered by Fitbit and
those collected by other devices. Furthermore, wearing the smartwatch during the
experiment is a personal responsibility, for this reason, some data may be missing.
Furthermore, data collected by smartwatches may be noisy and another sensor may
interfere with the collection of data. In addition, Fitbit is not a medical device and
does not include a wide range of functionality.
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To summarize, the methodology was developed to aid the detection of COVID-19
disease at the prodromal stage. Moreover, the character of the disease was taken into
consideration, i.e., incubation and contagiousness period. A model based on five-day
windows enables an accuracy of 78 percent in prediction. Several parameters were
tested. Realistically, the solution based on 5-day windows is likely to be the most
useful and practical. Based on [59], this study was conducted and differs from the
original. This research focuses on creating a more powerful classification algorithm
than the originally proposed model to detect anomalies. Based on the technology
used in this experiment, it may be possible to perform a screening test utilising
smartwatches. The study revealed the statistical importance of the majority of
features from the statistical and spectral domain based on the Mann-Whitney U
test. Moreover, the advantage of this research is that the model results were learned
for two different cohorts, i.e., on COVID-19 disease and HC, as well as on COVID-19
disease, Influensa, and HC. Both cases had similar results, with Influensa’s extended
cohort showing slightly worse results. Considering algorithms, k-NN and Logistic
Regression produced the best results, showing that the datasets are not complexly
dependent. XGBoost and GLVQ were also successful in some cases. In the future, it
may be possible to extend the database and utilise neural networks to handle larger
databases. It is also expected that the use of a medical device - Empatica - and the
collection of a greater variety of sensor data will enhance the results.

4.2 The Distinction between COVID-19 Cases and
Two Types of Influensa with Wearable Devices
and Machine Learning

The major objective of this study was to distinguish COVID-19 cases from Influ-
ensa cases using ML and wearable technology. The two types of Influensa cases
from various periods (before and during the pandemic) were examined. The data
were retrieved from [1]. There are records of heart rate and the number of steps.
The presented in the thesis support methodologies were developed to confirm the
conclusions and assumptions from the original paper regarding the differences in
heart rate between the types of viruses tested. Moreover, the incubation and con-
tagiousness periods were taken into consideration to create a solution suitable for
early COVID-19 detection. Fitbit was the device used to gather data for this study.
The flow of the applied algorithm is visible in Fig. 4.3. As a first step, the time
window was selected to extract features concerning the contagious period and the
incubation period. The features were also extracted from a 5-day window covering
7 to 2 days prior to the visibility of the onset. A feature pre-selection method was
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then applied to select the most valuable features. Next, a 10-fold cross-validation
method was used. The applied classifiers were Logistic Regressions, Random Forests,
k-NNs, XGBoosts, SVMs, Decision Trees, and GLVQs. Using cross-validation, the
classification results were determined.

Defining time windows from -7 to -2 
before the onset of the disease

Extraction of the features

Feature pre-selection mRMR

Classification with Stratified Cross-
Validation (Standardisation + Classifier)

Results

20 features

Classifiers:
❖ XGBoost
❖ k-NN
❖ SVM
❖ Logistic 

Regression
❖ Decision Tree
❖ Random Forest
❖ GLVQ

❖ Mean
❖ Std
❖ Rsd
❖ Max
❖ Min
❖ Slope
❖ Range
❖ Variance
❖ Skew
❖ Slope
❖ Kurtosis
❖ Shannon 

entropy
❖ Approximate 

Entropy

Fig. 4.3: The flow of the algorithm

4.2.1 Data Characterization

It is difficult to collect the data by yourself, it would have been needed cooperation
with hospitals, local authorities, and ethical approval to organise such an initiative.
Therefore, the data were retrieved from [1]. There are two types of Influensa and
COVID-19 cases in the dataset. 41 patients with COVID-19, 85 non-COVID-19 flu
patients (data collected in the middle of pandemic for Influensa cases which were
gathered 03.2020-05.2020), 1126 pre-COVID-19 flu patients (data collected before
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the main pandemic for Influensa cases and data were gathered 11.2019-03.2020) were
among them. Unfortunately, the HC group was not involved in this study. The
dataset has records of the heart rate and the number of steps likewise the lacking
records of sleep stages. It was necessary to recompute the data and resample them
at a frequency of one sample per day. Due to the lack of data, the dataset for
analysis was limited. 37 cases of non-COVID-19 flu, 37 cases of pre-COVID-19 flu,
and 21 cases of COVID-19 were included in the recalculated and filled dataset. An
overview of the demographic characteristics of the analysed cohort can be found in
the original paper [1].

4.2.2 Feature Extraction and Machine Learning

A few gradual computations were conducted in order to obtain the features ready
for teaching by ML models. In the beginning, the time window was calculated
with respect to the period of incubation and contagiousness. The length of the
window was 5 days. Generally, the window of time covers the period spanning from
seven days before the diagnosis of disease onset to two days before the diagnosis.
Several features were calculated for the isolated time window, including std, skew,
variance (var), range, minimum (min), maximum (max), mean, kurtosis, slope, and
approximate entropy. Accuracy, sensitivity, specificity, MCC, and F1-score were
computed to assess the ML algorithms.

4.2.3 Results

The purpose of this subsection is to present the results of the experiment. Below is
a description of each table in this section:

• Table 4.10: Differentiating Influensa cases during pandemics from cases caused
by COVID-19; It was checked if there are differences between diseases caused
by two different viruses during the same analysed period.

• Table 4.11: Identifying Influensa cases during the pandemic and before the
pandemic; The existing possible differences between Influensa, which cases
were registered in various periods, were taken under analysis.

• Table 4.12: Distinguishing the Influensa cases before the main pandemic and
COVID-19 cases; It was evaluated if there are discrepancies between viruses
collected in various intervals. One of the virus was COVID-19.

• Table 4.13: Multiclass classification of Influensa before the main pandemic,
Influensa during the main pandemic, and individuals with COVID-19; The
possibility to distinguish parallelly three types of diseases caused by distinct
viruses was checked.
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Tab. 4.10: Identifying Influensa cases during the middle of the pandemic and cases
of COVID-19.
Classifier ACC Bal Accuracy Sensitivity Specificity MCC
XGBoost 0.67 ± 0.20 0.71 ± 0.19 0.56 ± 0.37 0.81 ± 0.19 0.38 ± 0.42
k-NN 0.73 ± 0.19 0.77 ± 0.16 0.58 ± 0.33 0.87 ± 0.16 0.49 ± 0.39
SVM 0.64 ± 0.20 0.66 ± 0.19 0.56 ± 0.34 0.72 ± 0.23 0.29 ± 0.42
Logistic Regression 0.68 ± 0.20 0.70 ± 0.18 0.61 ± 0.35 0.75 ± 0.22 0.38 ± 0.42
Decision Tree 0.58 ± 0.20 0.62 ± 0.19 0.44 ± 0.35 0.72 ± 0.25 0.17 ±0.44
Random Forest 0.58 ± 0.20 0.61 ± 0.19 0.50 ± 0.36 0.67 ± 0.25 0.18 ± 0.42
GLVQ 0.70 ± 0.19 0.74 ± 0.17 0.57 ± 0.34 0.83 ± 0.21 0.43 ± 0.40

The outcome of the classification of COVID-19 cases and Influensa cases during
the pandemic are shown in Table 4.10. The most successful algorithm in balanced
accuracy, specificity, and MCC was k-NN. The balanced accuracy was equal to
0.73, specificity achieved 0.87 and MCC was 0.49. The sensitivity was the highest
for Logistic Regression and was equal to 0.61.

Tab. 4.11: Identifying Influensa cases before and during the pandemic.
Classifier ACC Bal Accuracy Sensitivity Specificity MCC
XGBoost 0.80 ± 0.15 0.80 ± 0.15 0.86 ± 0.18 0.74 ± 0.24 0.63 ± 0.29
k-NN 0.79 ± 0.14 0.79 ± 0.14 0.89 ± 0.15 0.69 ± 0.24 0.61 ± 0.27
SVM 0.79 ± 0.15 0.79 ± 0.15 0.91 ± 0.14 0.67 ± 0.25 0.61 ± 0.29
Logistic Regression 0.76 ± 0.16 0.76 ± 0.16 0.81 ± 0.20 0.71 ± 0.24 0.55 ± 0.32
Decision Tree 0.80 ± 0.14 0.80 ± 0.14 0.95 ± 0.13 0.66 ± 0.24 0.64 ±0.27
Random Forest 0.78 ± 0.15 0.78 ± 0.15 0.87 ± 0.18 0.69 ± 0.24 0.59 ± 0.29
GLVQ 0.82 ± 0.13 0.82 ± 0.13 0.96 ± 0.12 0.68 ± 0.23 0.68 ±0.24

In the second experiment, Influensa cases were classified before and during a
pandemic. The outcome is presented in Table 4.11. GLVQ! (GLVQ!) achieved the
best results. This classifier obtained achieved the highest balanced accuracy, i.e.,
0.82. sensitivity (0.96), MCC (0.68), while XGBoost achieved the highest specificity
(0.74).

The results of the distinction between COVID-19 cases and the Influensa cases
registered before the main pandemic are shown in Table 4.12. The most successful in
balanced accuracy among all tested classifiers was the GLVQ (0.84). This classifier
also achieved the best MCC (0.71). Moreover, the best specificity was equal to 0.77
for k-NN and the best specificity was registered for SVM.

The multiclass classification results indicate that the k-NN is capable of distin-
guishing the cases at a level of 0.64 F1-score (Table 4.13). The balanced accuracy
for this same classifier was equal to 0.69 also for k-NN and MCC was equal to 0.54
for k-NN.
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Tab. 4.12: Identifying COVID-19 cases and Influensa cases prior to the main pan-
demic.
Classifier ACC Bal Accuracy Sensitivity Specificity MCC
XGBoost 0.80 ± 0.19 0.84 ± 0.16 0.93 ± 0.14 0.68 ± 0.35 0.64 ± 0.37
k-NN 0.83 ± 0.15 0.85 ± 0.13 0.89 ± 0.15 0.77 ± 0.27 0.69 ± 0.28
SVM 0.82 ± 0.17 0.86 ± 0.14 0.96 ± 0.10 0.68 ± 0.33 0.68 ± 0.33
Logistic Regression 0.78 ± 0.17 0.79 ± 0.16 0.82 ± 0.19 0.74 ± 0.31 0.57 ± 0.34
Decision Tree 0.75 ± 0.19 0.79 ± 0.17 0.89 ± 0.21 0.61 ± 0.34 0.54 ±0.38
Random Forest 0.74 ± 0.18 0.73 ± 0.18 0.70 ± 0.25 0.79 ± 0.31 0.50 ± 0.36
GLVQ 0.84 ± 0.17 0.86 ± 0.14 0.92 ± 0.13 0.76 ± 0.31 0.71 ±0.32

Tab. 4.13: Result of multiclass classification for COVID-19, Influensa cases prior to
the main pandemic, and Influensa during the main pandemic.

Classifier F1-score ACC Bal Accuracy MCC
XGBoost 0.61 ± 0.17 0.63 ± 0.15 0.67 ± 0.14 0.50 ± 0.22
k-NN 0.64 ± 0.17 0.69 ± 0.13 0.66 ± 0.15 0.54 ± 0.22
SVM 0.62 ± 0.16 0.64 ± 0.15 0.67 ± 0.14 0.51 ± 0.21
Logistic Regression 0.56 ± 0.16 0.58 ± 0.16 0.59 ± 0.15 0.39 ± 0.24
Decision Tree 0.46 ± 0.09 0.53 ± 0.09 0.62 ± 0.10 0.42 ±0.18
Random Forest 0.48 ± 0.15 0.52 ± 0.14 0.57 ± 0.14 0.35 ± 0.22
GLVQ 0.61 ± 0.17 0.63 ± 0.15 0.66 ± 0.14 0.49 ±0.23

4.2.4 Discussion and Summarisation

The purpose of this study is to determine if it is possible to distinguish between
COVID-19 cases, Influensa cases before the main pandemic, and Influensa cases
during the pandemic. ML and wearable devices were used for this purpose. The
answer was presented through the summary of results in tables after analysing a few
combinations of the problem. Because of the fact that the data were imbalanced,
the balanced accuracy was calculated. The classification of COVID-19 cases and
Influensa cases before the main pandemic achieved the best distinction in terms
of balanced accuracy for the performed scenarios. During a pandemic, people’s
lifestyles changed and also their activities changed. Quarantine has a significant im-
pact on the lives of people. In addition, differences in heart rates between Influensa
and COVID-19 cases were reported in [1]. It is possible that these observations could
explain the good results obtained for the classification process. It could be inter-
preted that the SVM classifier was able to detect boundaries between the datasets.
Furthermore, the algorithm was able to identify Influensa cases more easily than
COVID-19 cases. There is also a good level of distinction between the two types
of Influensa: the one prior to the main pandemic and the one in the middle of the
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pandemic. It could be explained by the change in lifestyles that occurred during the
pandemic, as well as the fact that there were two types of Influensa viruses and flu
during this period. From a medical perspective, the most significant classification
was the distinction between COVID-19 and Influensa cases during the pandemic.
Based on this analysis, it is possible to distinguish the cases at a level of 0.73 bal-
anced accuracy. This finding confirms the hypothesis from the original work [1] that
there is a difference in physiological signals: heart rate and personal activity before
the onset of the disease likewise the intensity of the changes in symptoms. Logistic
regression was the most successful in identifying COVID-19 cases (0.61 sensitivity),
whereas k-NN was more successful in identifying Influensa cases (0.87 sensitivity).
It was easier for the classifier to identify Influensa cases than COVID-19 cases based
on the binary classification for COVID-19 and Influensa. A multiclass classification,
however, indicates that there is a low probability of distinguishing between cases
(0.64 F1-score). Research limitations include the inclusion of people who are per-
haps self-quarantined. Nevertheless, the research is limited due to the absence of
the HC group. Consequently, the generated models could not be used as a screening
tool. Regarding the statement in the original paper, there were statistically signifi-
cant differences between races and ages. Additionally, the cohort was gathered in the
United States of America (USA), which may have influenced the results. There was
also probably a higher rate of hospitalization in the class during the pandemic than
before it. According to the original paper [1], the RHR collected by wearables was
observed to be higher for COVID-19 cases than for Influensa cases, and the changes
lasted longer. Additionally, it should be noted that social contact restrictions in the
USA may differ from those in other countries.

To summarize, the research aimed to distinguish between each type of case, i.e.:
COVID-19 cases, Influensa before the main pandemic, and during the pandemic. To
accomplish this purpose, ML methodologies and wearable devices were used. The
analyses were performed based on the data from [1] along with heart rate records and
a number of steps. The most important of four performed classifications show that
COVID-19 cases and Influensa in the middle of the pandemic can be distinguished
with a 0.73 balanced accuracy via k-NN. Moreover, the contribution of this study
is the introduction of models differentiating two types of influensa likewise COVID-
19 cases vs. Influensa cases before the main pandemic. The achieved balanced
accuracies for GLVQ were equal to 0.82 and 0.84, respectively. Several factors could
be responsible for the differences between the analyses, including the different types
of influensa, differences in symptoms associated with heart rate and self-quarantine,
as well as changes in people’s lifestyles. The sampling rate and the size of the
dataset are the limitations of this study. In addition, the lack of a HC group makes
it impossible to create screening tests based on those models.
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4.3 Wearable Analytics and Early Diagnostic of COVID-
19 Based on Two Cohorts

The purpose of this study was to combine two datasets previously explored in chap-
ters 4.1 and 4.2. Both datasets considered COVID-19 disease. First of them with
a higher sampling rate contains COVID-19 cases, Influensa, and HC (referred to as
dataset A). The second dataset does not have HC cases, however, it has the rep-
resentatives of two types of Influensa – before the main pandemic and during the
pandemic, and COVID-19 cases (referred to as dataset B). A combination of the
datasets should result in obtaining a more diverse and flexible ML model than was
created in section 4.2 for the dataset with a lower sampling rate. Both datasets
(A and B) contain heart rate records and steps taken. They were collected by the
wearable – Fitbit device. A major difference between the datasets was the homo-
geneity of dataset B, which primarily represented overweight individuals from the
USA. The scheme of the carried-out experiment is presented in Fig. 4.4.

Tab. 4.14: The combinations of datasets and classes for each experiment.
Types of data Experiment 1a Experiment 1b Experiment 2 Experiment 3 Experiment 4 Experiment 5
COVID-19 A 1 1 1 1 1 2
COVID-19 B 1 1 1 1 2
Influensa A 1 0 1 1
Non-Covid-19 Flu 0 1 1
Pre-Covid-19 Flu 0 1 1
HC 0 0 0 0 0

In the beginning, dataset A was undersampled in order to unify both datasets.
Two modalities were sampled at a rate of one sample per day. The next step was to
merge the datasets. The 5-day time window for each time series was then provided.
According to the contagiousness of the disease and the incubation period, the time
window was extracted from -7 to -2 days before the onset of the disease. Next,
the features were calculated. They are mentioned in Fig. 4.4. Then, the ratios
of the heart rate-related features to the number of step-related were computed.
mRMR was used to select the features. Twenty features were chosen from a total
of 36. Additionally, 10-fold stratified cross-validation was conducted. Classifiers
used in this study included k-NN, SVM, Random Forest, Decision Tree, Logistic
Regression, XGBoost, and GLVQ. Experiments were conducted according to Table
4.14. There were the binary classifications as well as a multiclass classification. The
experiments vary in analysed classes, from which datasets data were taken, likewise
the number of chosen features during the features selection step. For example,
Experiment 1a treated COVID-19 cases from A and B datasets as one group and
HC as a second class. The whole set of features was used in the classification step.
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Fig. 4.4: Flow of the algorithm.

Whereas, Experiment 2 considered COVID-19 and Influensa cases from dataset A
as one class, while HC was the second group. The number of used features in
Experiment 2 was 20. To analyse the data, the Mann-Whitney U test was used
with FDR correction. The confidence level alfa = 0.05.

4.3.1 Dataset Characterization

The dataset was merged from two analysing in the previous subsection datasets
4.1.1 and 4.2.1. The two datasets vary in sampling rate. The data from 4.1.1, here
named dataset A, already mentioned before, have COVID-19, Influensa, and HC
cases. The second dataset B contains COVID-19 cases (data were collected from
03.2020 to 05.2020), and two types of Influensa: gathered before the main pandemic
(11.2019-03.2020) and during the COVID-19 pandemic (03.2020-05.2020). Both
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Tab. 4.15: Dataset mixtures and sample numbers for each experiment.
Types of data Experiment 1a Experiment 1b Experiment 2 Experiment 3 Experiment 4 Experiment 5
COVID-19 A 27 27 27 27 27 27
COVID-19 B 21 21 0 21 21 21
Influensa A 0 0 7 7 7 7
Non-Covid-19 Flu 0 0 0 19 10 20
Pre-Covid-19 Flu 0 0 0 20 9 21
HC 48 48 34 0 74 48

types of data contain the record of heart rate and the number of steps taken during
the day. For dataset A, the sampling rate for heart rate was 1 per minute and for the
number of steps taken during the 1 hour. Dataset B characterises collected samples
per day for both parameters. From the first dataset were chosen 27 COVID-19 cases,
15 Influensa, and 73 HC. 21 COVID-19 cases, 37 Non-COVID-19 Flu, and 675 Pre-
COVID-19 Flu were in dataset B. A few scenarios of experiments were performed
- classification among cases, which may be found in Table 4.15. Data balance was
taken into account.

4.3.2 Feature Extraction and Machine Learning

The features were extracted based on the [2, 59, 61]. Based on the contagiousness
period and the incubation period, the features were obtained. The highest conta-
giousness period is regarded as -2 to 1 days after the beginning of the onset of the
disease. Five days were set as the length of the windows. A time window of -7 to
-2 days prior to the onset of the disease was selected in order to detect the disease
at its prodromal stage. To unify two datasets, dataset A was undersampled. The
features were extracted according to the receipt from [61]. Fig. 4.5 illustrates the
scheme for calculating the time window with respect to the mentioned onset disease.

tB t0 tD

t

OnsetpS Diagnosis

State of the person

Feature extraction Ԧ𝑓

Fig. 4.5: Feature extraction.

The following time points are computed:
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• 𝑡𝐷 is the detection of the disease 𝑡𝐷 = 𝑡0 + 2
• 𝑡0 is the visible Onset of the illness 𝑡0 = 𝑝𝑆 + 𝑡𝐵

• 𝑝𝑆 is the duration of the time window
• 𝑡𝐵 is the beginning of the disease
Subsequently, a few parameters were calculated for the time windows of heart

rate and the number of steps for the datasets A and B. These were: max, min,
mean, std, relative standard deviation (rsd), range, Shannon entropy, approximate
entropy, skewness, kurtosis, variance, and slope. Furthermore, the ratios between
the parameters of heart rate and the number of steps were calculated. For example,
the maximum heart rate to the maximum number of steps taken to express changes
in personal activity was computed.

4.3.3 Results

The statistical analysis, as well as the binary classification and multiclass classifica-
tion, were conducted according to Tables 4.14 and 4.15.

The outcome of the Mann-Whitney U test and its variant with FDR correction
is presented in:

• Tab 4.16 for COVID-19 cases vs. HC
• Tab 4.17 for COVID-19 cases, Influensa vs. HC.
The procedure of Benjamini-Hochberg was carried out to minimise the impact

of the number of type I errors. For the first case, having analysed COVID-19 cases
vs. HC, the 13 features were statistically significant after FDR correction. For the
scenario with COVID-19 cases, Influensa vs. HC, 17 features passed the test with
FDR correction for the confidence level 𝛼 = 0.05.

The distinction of COVID-19 (cases from datasets A and B) from HC gave
0.73 accuracy for XGBoost, and this same classifier achieved 0.75 sensitivity and
0.48 MCC. The results are presented in Table 4.18. Whereas, k-NN had the best
specificity of 0.77. The balance of the dataset was taken into consideration for
all provided classifications. The details of used samples for each classification and
regarded classes could be found in Tables 4.14 and 4.15.

A second analysis was conducted using the identical sub-dataset but after feature
selection, using 20 features out of 36 (Table 4.19). XGBoost obtained 0.73 accuracy,
0.71 sensitivity, and 0.48 MCC. While GLVQ achieved a specificity of 0.91.

The outcome of distinction COVID-19, Influensa vs. HC (all from dataset A)
are visible in Table 4.20. The highest accuracy was observable for XGBoost, and
it was equal to 0.63, whereas MCC was equal to 0.28 and was the best among all
tested classifiers. SVM achieved the best sensitivity: 0.90, while Decision Tree has
the highest specificity of 0.67.
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Tab. 4.16: Analysis of COVID-19 cases,
and HC cases using the Mann-Whitney U
test and FDR correction.
Feature pval pval_FDR
activ_std 0.00001 0.00014
activ_variance 0.00001 0.00014
activ_range 0.00001 0.00015
activ_rsd 0.00003 0.00027
activ_entropy_shannon 0.00092 0.00644
heart_std 0.00184 0.00921
heart_variance 0.00184 0.00921
heart_rsd 0.00291 0.01249
heart_range 0.00321 0.01249
steps_entropy_shannon 0.00750 0.02624
steps_range 0.01214 0.03540
activ_max 0.01138 0.03540
steps_slope 0.01593 0.04288
steps_std 0.02331 0.05439
steps_variance 0.02331 0.05439
steps_max 0.03409 0.07457
heart_max 0.03736 0.07692
heart_entropy_shannon 0.04967 0.09658
steps_skew 0.05699 0.10498
activ_mean 0.06626 0.11596
steps_kurtosis 0.09272 0.15453
activ_min 0.09860 0.15687
steps_mean 0.10960 0.16224
steps_min 0.11125 0.16224
heart_mean 0.12333 0.16602
activ_slope 0.12333 0.16602
steps_rsd 0.14433 0.18709
heart_min 0.24971 0.31214
activ_kurtosis 0.27791 0.33541
heart_slope 0.38690 0.45139
heart_skew 0.42406 0.47878
heart_kurtosis 0.64317 0.70347
activ_skew 0.92736 0.98357
steps_approx_entropy 1.00000 1.00000
heart_approx_entropy 1.00000 1.00000

Tab. 4.17: Analysis of ill and HC cases
using the Mann-Whitney U test and FDR
correction.
Feature pval pval_FDR
heart_std 0.00000 0.00002
heart_range 0.00000 0.00002
heart_variance 0.00000 0.00002
activ_std 0.00000 0.00002
activ_range 0.00000 0.00002
activ_entropy_shannon 0.00000 0.00002
activ_variance 0.00000 0.00002
heart_rsd 0.00002 0.00009
activ_rsd 0.00002 0.00009
heart_max 0.00005 0.00019
heart_entropy_shannon 0.00010 0.00031
heart_mean 0.00040 0.00118
steps_entropy_shannon 0.00303 0.00815
heart_min 0.00395 0.00987
activ_max 0.00952 0.02222
activ_min 0.01776 0.03884
activ_mean 0.01951 0.04017
steps_min 0.05476 0.10648
steps_max 0.10284 0.17997
steps_skew 0.09805 0.17997
steps_mean 0.11923 0.19872
steps_slope 0.13656 0.21726
steps_range 0.21119 0.32138
steps_std 0.26776 0.36045
steps_variance 0.26776 0.36045
steps_kurtosis 0.26611 0.36045
activ_kurtosis 0.44079 0.57139
heart_skew 0.57789 0.72237
steps_rsd 0.65872 0.75941
activ_slope 0.67262 0.75941
activ_skew 0.63672 0.75941
heart_slope 0.77282 0.84528
heart_kurtosis 0.88901 0.94289
steps_approx_entropy 1.00000 1.00000
heart_approx_entropy 1.00000 1.00000
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Tab. 4.18: The outcome of distinction COVID-19 (A and B dataset) from HC (for
all 36 features).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.73 ± 0.14 0.75 ± 0.22 0.75 ± 0.20 0.48 ± 0.30
k-NN 0.68 ± 0.13 0.60 ± 0.21 0.77 ± 0.18 0.39 ± 0.27
SVM 0.68 ± 0.15 0.61 ± 0.22 0.75 ± 0.22 0.38 ± 0.20
Logistic Regression 0.66 ± 0.16 0.62 ± 0.23 0.70 ± 0.21 0.33 ± 0.32
Decision Tree 0.66 ± 0.16 0.65 ± 0.22 0.66 ± 0.22 0.32 ± 0.33
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33
GLVQ 0.64 ± 0.14 0.55 ± 0.23 0.74 ± 0.20 0.30 ± 0.29

Tab. 4.19: The outcome of distinction COVID-19 (A and B dataset) from HC (for
selected 20 features).

Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.73 ± 0.14 0.71 ± 0.22 0.75 ± 0.19 0.48 ± 0.29
k-NN 0.72 ± 0.15 0.58 ± 0.24 0.86 ± 0.16 0.47 ± 0.30
SVM 0.67 ± 0.14 0.60 ± 0.22 0.73 ± 0.19 0.35 ± 0.29
Logistic Regression 0.65 ± 0.15 0.59 ± 0.23 0.70 ± 0.20 0.31 ± 0.31
Decision Tree 0.68 ± 0.15 0.64 ± 0.23 0.71 ± 0.18 0.37 ± 0.30
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33
GLVQ 0.66 ± 0.12 0.40 ± 0.21 0.91 ± 0.12 0.36 ± 0.26

Tab. 4.20: The outcome of distinction between COVID-19, Influensa vs. HC based
on dataset A.
Classifier Accuracy Sensitivity Specificity MCC
XGBoost 0.63 ± 0.18 0.65 ± 0.26 0.62 ± 0.28 0.28 ± 0.38
k-NN 0.56 ± 0.18 0.56 ± 0.27 0.58 ± 0.26 0.14 ± 0.39
SVM 0.57 ± 0.14 0.90 ± 0.20 0.24 ± 0.22 0.18 ± 0.31
Logistic Regression 0.49 ± 0.18 0.49 ± 0.28 0.48 ± 0.26 -0.03 ± 0.40
Decision Tree 0.57 ± 0.17 0.48 ± 0.25 0.67 ± 0.30 0.16 ± 0.37
Random Forest 0.54 ± 0.17 0.51 ± 0.33 0.57 ± 0.34 0.08 ± 0.36
GLVQ 0.54 ± 0.15 0.71 ± 0.27 0.37 ± 0.32 0.09 ± 0.35

The outcome of the distinction of COVID-19 (A and B dataset) vs. Influensa
(for all analysed cases, from A and B dataset) is presented in Table 4.21. The
best accuracy (0.67) and MCC (0.36) were observable for XGBoost. The highest
sensitivity: 0.66 was obtained for Random Forest and GLVQ, whereas the best
specificity: 0.73 was achieved for SVM.
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Tab. 4.21: The outcome of distinction COVID-19 (A and B dataset) vs. Influensa
(all analysed cases, from A and B dataset)

Classifier Accuracy Sensitivity Specificty MCC
XGBoost 0.67 ± 0.13 0.63 ±0. 21 0.71 ± 0.19 0.36 ± 0.27
k-NN 0.62 ± 0.14 0.54 ± 0.22 0.70 ± 0.22 0.25 ± 0.30
SVM 0.62 ± 0.14 0.52 ± 0.22 0.73 ± 0.21 0.26 ± 0.29
Logistic Regression 0.61 ± 0.15 0.58 ± 0.22 0.64 ± 0.21 0.24 ± 0.31
Decision Tree 0.61 ± 0.15 0.62 ± 0.25 0.61 ± 0.21 0.24 ± 0.31
Random Forest 0.63 ± 0.14 0.66 ± 0.22 0.61 ± 0.21 0.28 ± 0.30
GLVQ 0.60 ± 0.14 0.66 ± 0.23 0.54 ± 0.27 0.22 ± 0.31

Tab. 4.22: The outcome of distinction of COVID-19 (A and B dataset), Influensa
(for all cases, from A and B dataset) vs. HC.

Classifier Accuracy Sensitivity Specificty MCC
XGBoost 0.68 ± 0.12 0.62 ± 0.18 0.74 ± 0.16 0.37 ± 0.25
k-NN 0.70 ± 0.12 0.65 ± 0.17 0.75 ± 0.16 0.41 ± 0.24
SVM 0.72 ±0.12 0.61 ± 0.19 0.82 ± 0.13 0.45 ± 0.25
Logistic Regression 0.67 ± 0.12 0.66 ± 0.17 0.68 ± 0.17 0.35 ± 0.25
Decision Tree 0.71 ± 0.11 0.53 ± 0.18 0.90 ± 0.11 0.47 ± 0.21
Random Forest 0.67 ± 0.11 0.57 ± 0.18 0.78 ± 0.18 0.37 ± 0.24
GLVQ 0.72 ± 0.12 0.64 ± 0.18 0.80 ± 0.16 0.45 ± 0.24

The results of the classification of COVID-19 cases (A and B dataset), Influensa
(for all three cases, from A and B dataset ) vs. HC are presented in Table 4.22.
SVM and GLVQ obtained the highest accuracy of 0.72. Logistic Regression had a
sensitivity equal to 0.66, and it was the highest, whereas the best specificity (0.90)
and MCC (0.47) were observed for the Decision Tree.

Moreover, the multiclass classification was performed. The following three classes
were considered combined for A and B dataset: COVID-19 cases and Influensa, and
HC. XGBoost gave the highest F1-score and it was equal to 0.57. Accuracy was
also the best for XGBoost: 0.58. MCC was registered the highest for XGBoost and
GLVQ.

4.3.4 Discussion and Summarisation

The purpose of this experiment was to develop support methodologies for identi-
fying COVID-19, Influensa, and HC cases in different scenarios. Three types of
Influensa were considered: Influensa from dataset A and two cases of Influensa from
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Tab. 4.23: The outcome of multiclass classification of COVID-19, Influensa and HC
for A and B datasets.

Classifier F1-score Accuracy MCC
XGBoost 0.57 ± 0.13 0.58 ± 0.13 0.38 ± 0.20
k-NN 0.56 ± 0.14 0.57 ± 0.13 0.37 ± 0.20
SVM 0.53 ± 0.13 0.55 ± 0.12 0.34 ± 0.19
Logistic Regression 0.52 ± 0.13 0.54 ± 0.13 0.32 ± 0.19
Decision Tree 0.40 ± 0.07 0.51 ± 0.09 0.31 ±0.15
Random Forest 0.53 ± 0.12 0.55 ± 0.11 0.34 ± 0.17
GLVQ 0.54 ± 0.12 0.57 ± 0.11 0.38 ± 0.18

dataset B - Influensa before and during the main pandemic. The sampling rate of
the datasets was not high, but it was necessary to undersample dataset A to conduct
the experiment with a mixture of datasets. The important factors in the experiment
were the contagiousness and incubation period. The nature of heart rate during the
illness was one of the basements of this research. Regarding the feature creation,
the parameters used in [61] were applied. Additionally, the changes in personal
activity were considered thanks to the ratio between the appropriate features, like
the range of heart rate to the range of steps taken. To reduce the type I error, the
Mann-Whitney U test was applied with FDR correction. It was checked if there was
a statistically significant difference between COVID-19 cases from HC and ill cases
(COVID-19 cases and Influensa) from HC. For the first analysis, the most valuable
features occurred to be those indicated on personal activity. Furthermore, heart
rate-related parameters have statistical significance. The most important metrics
were range, std, rsd, and variance together with Shannon entropy. As a result, the
deviations from the norm demonstrate the differences between the cases. The sta-
tistical analysis of ill cases vs. HC revealed the importance of more than half of the
prepared features. Changes in the heart confirmed the differences between cases, as
well as variations in personal activity. The Shannon entropy of the steps taken is
also important. Six versions of classification, including multiclass classification, were
performed in order to test the quality of distinction between the classes. Among the
tested classifiers, XGBoost proved to be the most successful. As a result, XGBoost
succeeded in the distinction due to the complexity of its algorithm since the data
dependencies were most likely more complex. Nevertheless, overfitting could have
a small impact on the results. XGBoost achieved the highest accuracy and also for
MCC - the metric which is suitable for imbalanced dataset. For two classifications,
the accuracy was equal to 0.73 (Tables 4.18 and 4.19), and this metric was equal
to 0.72 for one scenario (Table 4.22) thanks to the usage of XGBoost, SVM and
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GLVQ. They were differentiations of COVID-19 cases from HC (Tables 4.18 and
4.19) and distinctions of COVID-19 cases, Influensa vs. HC (Table 4.22), respec-
tively. Those models could simply be assisting in screening testing. Furthermore,
the classification with the participation of the data from dataset A, i.e., COVID-19
cases, Influensa vs. HC obtained only 0.63 accuracy. Nevertheless, the dataset is
highly undersampled in the comparison to the solution from [2] where the support
methodology for such combinations of the data and connected to its higher num-
ber of features achieved 0.73 balanced accuracy. Moreover, the separation of the
COVID-19 sample vs. Influensa was obtained at a lower level of 0.67 considering
data from the A and B datasets, than another achieved in [61] based just on dataset
B. It is a small probability of correctly identifying each of the three classes for multi-
class classification (0.57 F1-score). The case of distinction COVID-19 cases from HC
does not outperform the solution from [2]. Here, the accuracy of the classification
between COVID-19 vs. HC was equal to 0.73, whereas in [2] 0.78. Nevertheless, the
spectrum of features and sampling rate of the time series were much lower. Addi-
tionally, dataset B is biased by people with overweight and the population comes
from just on country - from the USA. The people could have specific clinical and
demographic characteristics likewise epidemiologic features [232]. The comparison
of the results from [61] (See Section 4.1) (0.73) with this solution (0.67) showed that
the proposed approach in this Section with the usage of two datasets achieved lower
accuracy for COVID-19 cases vs. Influensa. It would be beneficial to extend the
gathered signals from various measurements in order to enhance the accuracy of the
prediction. There could be temperature body signals, barometers, magnetometry,
or gyroscope.

To summarize, the support methodology of COVID-19 detection based on two
cohorts was proposed. The combined dataset is one of the largest presented in
the literature (see Subsection 3.1). The valuable features from the point of view of
distinguishing COVID-19 cases from HC cases were identified by statistical analysis.
They were derived from the heart rate and the number of steps taken records.
The proposed models are one of a kind. Among the six performed classifications,
XGBoost was found to be the most powerful algorithm. The distinction of COVID-
19 cases from HC from both datasets was possible in 0.73 balanced accuracy, whereas
differentiation of ill cases achieved 0.72 balanced accuracy for k-NN and GLVQ.

4.4 Conclusion
A few methods using ML and wearables exist for detecting COVID-19 disease. By
the same token, there is a research gap to introduce screening tests based on those
technologies. The wearables could be especially utilised because they are relatively
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inexpensive and approachable for a wider part of society. In this chapter, there
were presented several approaches to COVID-19 detection and they are related to
stated research objectives RO1., RO2., and RO3. Two datasets (A and B) were
taken into account from [59] and [1]. The benefit of the conducted research is
that all of the presented methods respect the contagiousness and incubation period.
Additionally, all of them were destinated for early disease recognition. This approach
is a big advantage because it could potentially effectively detect the disease at the
early stage, and thereby limit the number of infected people. Most of the papers
presented in the literature do not consider early detection. Furthermore, the utilised
datasets contain the records of COVID-19, two types of Influensa (before and in the
middle of the pandemic) from dataset B, and Influensa from dataset A, likewise
HC. A few types of Influensa were analysed and this diversity of the dataset makes
the methodology unique. The gathered signals were records of HR and the number
of steps taken. The foundations of the conducted and presented studies in this
chapter, were observed differences in HR between the types of Influensa and COVID-
19 likewise the longer duration of the disease. Nevertheless, the authors in [1] made
statistical analysis, whereas the solution in this thesis introduced the classification
between the healthy and ill groups. The differentiation between the COVID-19
disease and Influensa was not carried out earlier in the research. Additionally, the
combination of the datasets allows for obtaining a more demographically diverse
and numerous cohort. The main differences between the proposed approaches in
each section are the number of the datasets, representation of classes, and sampling
frequency of the used datasets.

The most advanced methodology was proposed in section 4.1. The contribution
is the identification of the most statistically significant features, they were frequency-
and spectral-related. They were: MFCC, FFT, histogram-related, spectral-based,
and LPCC. The identified valuable features are the answers to the question RQ1.2.

The advantage of this research is the proposal of the classification methodology.
The best results based on dataset A were achieved for a 5-day window and the
classification of COVID-19 cases and HC was equal to 0.78 accuracy for k-NN. The
distinction between the ill cases (COVID-19 cases or Influensa) from HC reached
0.73 accuracy for the k-NN and GLVQ classifiers and 5-day window. While just
the anomaly detection was presented in the original paper [59], reaching 63 % of
correctly detected COVID-19 cases likewise the specificity was not computed. It is
a reply to question RQ1.1.
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Furthermore, four unique classifications were carried out for dataset B, consid-
ering also two types of Influensa. It is one-of-a-kind research, not explored earlier in
the literature. This study also confirmed the existing differences between COVID-19,
and two Influensa cases occurring in various periods. The differentiation between the
COVID-19 cases from Influensa during the pandemic reached 0.73 balanced accu-
racy for k-NN, whereas the distinction between the COVID-19 cases from Influensa
before the main pandemic was equal to 0.84 for GLVQ. Those achieved accuracies
are the answers to question RQ2.1. The classification of two kinds of Influensa gave
the distinction on the level of 0.82 balanced accuracy for GLVQ. This accuracy is
the response to the question RQ2.2. The presented methodology is simpler with
lower obtained results, however, it requires less complex data in comparison to the
presented solution based on dataset A.

Additionally, the five unique scenarios were conducted based on the mixture of
datasets A and B. Those classifications were performed to evaluate if they could
surpass the results achieved based on separate dataset A or B. The distinction
between COVID-19 cases and HC was possible on the level of 0.73 accuracy for
XGBoost. This accuracy is partial answer to the question RQ3.2. The classification
of ill cases vs. HC reached 0.72 accuracy for SVM and GLVQ. This accuracy is the
fragmentary reply to the question RQ3.2. It is a similar outcome achieved on
dataset A (0.73). Moreover, the contribution is the identification of the statistically
important features extracted from a mixture of A and B datasets. They were the
parameters of the ratio between the measurements of heart rate to the measurements
of the number of steps taken. Those features are the reply to the question RQ3.3.

The summary of the obtained results in this chapter is presented in Table 4.24.
There are significant differences in how the methodologies were designed for the

detection of COVID-19 in each scenario, based on datasets A, B, and a combination
of both datasets. The developed support methodology for the detection of COVID-
19 cases hinged on dataset A needed two-time windows. The spacing between the
windows was chosen concerning the incubation period. The shift was equal to 7 days.
The placement of the interval considered the highest contagiousness of the diseases.
Subsequently, the set of features from spectral, frequency, and statistical domains
was extracted for each window. The further bunch of features was subtracted from
the earlier set of features. Next, the features selection was performed thanks to the
mRMR. The 10-fold cross-validation was done with the classification step. The
evaluated classifiers were XGBoost, SVM, k-NN, Random Forest, Decision Tree,
Logistic Regression, and GLVQ. The aforementioned methodology is the reply to
the question RQ1.3. The approach to detecting COVID-19 based on dataset B was
various from the already mentioned methodology based on dataset A. The main
limitation was the sampling rate of the dataset B. Because of that, one 5-day time
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window was chosen instead of two. Nonetheless, the character of the disease in the
calculation was maintained - the incubation period and contagiousness of the disease.
The feature extraction was performed differently. The computed features were std,
skew, var, range, min, max, mean, kurtosis, slope, and approximate entropy of
the heart rate signals and number of steps taken. The next steps were computed
similarly to the previous support methodology, i.e., the features pre-selection was
done thanks to the mRMR, and the 10-fold cross-validation was performed with
classification steps. Those same classifiers were used as in the previous example.
This approach is a response to the question RQ2.3. The procedure which was
used to create support methodologies based on datasets A and B was analogous
to this used in the case of dataset B. However, dataset A had to be undersampled
to combine both datasets. It is the answer to question RQ3.1. Additionally, the
analysed datasets were gathered by the Fitbit devices. Thereby, created solutions
are targeted at Fitbit. The device which could be used is Empatica because it
collects a wider spectrum of signals. However, it is more expensive and not so widely
distributed in society. Moreover, the COVID-19 restrictions could vary between the
countries and thereby have an influence on the collected cohort and obtained results.
To sum up, the increase in accuracy could be achieved thanks to the extension of
the dataset with a higher sampling rate likewise incorporating other modalities such
as skin temperature, BVP, RR, HRV, skin conductance, and oxygen saturation.
However, the balance would be difficult to achieve between the probably elevated
accuracy and the price of the device embedded in extra sensors.
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5 mHealth Dedicated Solutions for Parkin-
son’s Detection

This chapter is targeting the detection of PD and is dedicated to mHealth and
eHealth solutions for AAL. The undoubted advantage of mobile phones is their
broad ownership in society. Moreover, the monitoring and detection of Parkinson’s
motor and non-motor symptoms are becoming approachable for the elders and their
families. The additional clear advantage of this is the reduction of the cost of the
healthcare system. This chapter presents the automatic analysis of changes in emo-
tions to recognise PD likewise the multimodal detection of PD based on hypomimia
and HD symptoms with the usage of audio and video records. Furthermore, the
chapter discusses the used material and methods, the collected dataset, and the fea-
ture extraction methodology. Moreover, the used ML approaches with the solutions
for the interpretability of the model, the used metrics, and the discussion of the key
findings are provided. Those kinds of techniques allowed the creation of support
system methodologies for the detection of PD together with their interpretability.

5.1 Parkinson’s Disease Detection based on Changes
of Emotions during Speech

This research aims to develop a methodology which is detecting PD. Symptoms
of hypomimia manifested in the difficulty of expressing emotions were the basis of
the study. Using a numerical analysis of the changes in emotions over time, the
set of features was determined. Face expression recognition (FEC) based on neural
networks was used to detect differences frame by frame. For the evaluation of the
disease, a tongue twister and reading aloud long texts were tested. Fig. 5.1 presents
a schematic representation of the experiment. The first step was to calculate the
intensity of the emotion in each frame using a neural network. Next, scalars for
each emotion were calculated based on the time series. Using the mRMR, the
feature pre-selection process was then performed. A stratified cross-validation with
standardization and classification was conducted. k-NN, SVM, Random Forest,
Decision Tree, Logistic Regression, and XGBoost were used as classifiers.

A Mann-Whitney U test was used with FDR correction to eliminate the influence
of type I errors in the statistical evaluation. SHAP values were used to calculate
the interpretability of the classifier.
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Calculation of intensity of emotion on 
each frame thanks to NN

Creating scalar features from obtained 
data describing emotions

Feature pre-selection mRMR

Classification with Stratified Cross-
Validation (Standardisation + Classifier)

Results

20 features

Classifiers:
❖ XGBoost
❖ k-NN
❖ SVM
❖ Logistic Regression
❖ Decision Tree
❖ Random Forest

Fig. 5.1: The scheme of the experiment.

5.1.1 Dataset Characterization

For the purpose of this research, 45 HC (21 females (mean age 62 ± 9.22), 24 males
(mean age 66 ± 9.17)) and 70 PD patients (27 females (mean age 68 ± 8.04), 43
males (mean age 66 ± 7.83)) were involved.

It was found that the Unified Parkinson’s Disease Rating Scale (UPDRS) III
mean for female Parkinsonians was 21.6 ± 13.50 and the mean duration of PD in
years was 7.2 ± 4.82, but the mean UPDRS III for male Parkinsonians was 26.3 ±
11.31 and the mean duration of PD in years was 7.9 ± 4.64. HC and individuals
with Parkinson’s disease were recorded while being asked to pronounce and read
long texts.

During this experiment, a Czech sentence (Celý večer se učí sčítat)1 was pro-
1Link for the pronunciation of the sentence: https://bit.ly/2DVPJ5M
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nounced by the participants. The sentence means "He’s been learning to count all
night", however, the difficulty in pronouncing sentence matters in the case of this
experiment.

Ethical approval was granted by the Masaryk University Ethical Committee.
The data were gathered by neurologists.

The total number of video records for speech exercise is 70 PD plus 45 HC, which
equals 115. Records vary in length. During the acquisition of the video, 25 frame
per second (FPS) sampling was used.

5.1.2 Feature extraction and Machine Learning

The detection of PD was conducted in a few computational phases. The primary
objective of this study was to assign the numerical values to emotions and to clas-
sify illness based on the differences in intensity of emotional changes during the
pronunciation of the task. A FEC method was applied [233] to achieve this aim.
FER 2013 dataset [234] was used to train this publicly available neural network.
Initially, the face was detected by using Multitask Cascaded Convolutional Net-
works (MTCNN) [235]. The neural network architecture was used in the second
step to determine the intensity of seven analysed emotions. Aside from surprise and
neutral emotions, disgust, sadness, happiness, fear, and anger are considered. Re-
gression intensities were calculated for each frame, and these were then aggregated
for the seven time series for each participant. Fig. 5.2 illustrates the instances of
recognition emotion per frame. The time series for each participant is shown in
Fig. 5.3. As a next step, the scalar values were computed from seven time series
for each participant. The following features were determined: approximate entropy,
Shannon entropy, skewness, kurtosis, std, rsd, range, max, and min.

Four metrics were used to evaluate the models: sensitivity, specificity, balanced
accuracy and MCC. The used classifiers include XGBoost, k-NN, SVM, Decision
Tree, Random Forest, and Logistic Regression. XGBoost emerged as the most
promising. This classifier is among them the most powerful algorithms for struc-
tured data due to its ability to optimize specific loss functions and regularization
techniques. Due to the use of parallelization techniques, the algorithm is also exe-
cuted more rapidly.

5.1.3 Results

As can be seen in Table 5.1, a statistical analysis of the features has been con-
ducted. This table presents the top 10 features based on their p-values (pVals).
Furthermore, there is also provided the pVal after FDR correction, as well as the
median and IQR of PD and HC. P-values and P-values with FDR correction are all
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Fig. 5.3: An analysis of the changes in emotions during a speech exercise.

below the set significance level 𝛼 = 0.05. The following features are notably impor-
tant: fear_std, fear_variance, angry_mean, angry_std, angry_variance, fear_max,
fear_mean, angry_min, fear_range, sad_approx_entropy.

The outcomes of the tongue twister classification are presented in Table 5.2.
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Tab. 5.1: Statistical analysis of the created features among PD and HC.
Features pVal pVal(FDR) Median (PD) Median (HC) IQR (PD) IQR (HC)
fear_std 0.0034 0.0408 0.0564 0.0350 0.0649 0.0390
fear_variance 0.0034 0.0408 0.0032 0.0012 0.0078 0.0032
angry_mean 0.0038 0.0408 0.1762 0.1276 0.1953 0.1639
angry_std 0.0039 0.0408 0.0819 0.0562 0.0605 0.0499
angry_variance 0.0039 0.0408 0.0067 0.0032 0.0097 0.0060
fear_max 0.0040 0.0408 0.2950 0.2100 0.3050 0.1800
fear_mean 0.0045 0.0408 0.0988 0.0725 0.1711 0.0719
angry_min 0.0050 0.0408 0.0600 0.0400 0.0700 0.0600
fear_range 0.0050 0.0408 0.2500 0.1900 0.2700 0.1500
sad_approx_entropy 0.0053 0.0408 0.3624 0.4990 0.3005 0.2781

Tab. 5.2: The prediction for tongue twister based on the various classifiers.

Classifier ACC Bal Sensitivity Specificity MCC
k-NN 0.63 ± 0.13 0.69 ± 0.17 0.57 ± 0.23 0.27 ± 0.27
SVM 0.59 ± 0.13 0.70 ± 0.16 0.49 ± 0.25 0.19 ± 0.27
Decision
Tree

0.57 ± 0.13 0.41 ± 0.17 0.73 ± 0.24 0.15 ± 0.27

Random
Forest

0.62 ± 0.14 0.68 ± 0.18 0.56 ± 0.23 0.25 ± 0.29

Logistic
Regression

0.59 ± 0.13 0.73 ± 0.16 0.45 ± 0.24 0.18 ± 0.28

XGBoost 0.69 ± 0.14 0.71 ± 0.17 0.67 ± 0.22 0.39 ± 0.29

Based on balanced accuracy, XGBoost was rated as the best classifier with a score
of 0.69. MCC for this classifier was 0.39. Logistic Regression had the highest
sensitivity of 0.73, while the best specificity was observed for Decision Tree.

The SHAP values provided for the XGBoost classifier the interpretability of the
model (see Fig. 5.4). The positive correlation of the features to PD was recorded
for std, variance, range, maximum, and mean for fear (fear_std, fear_variance,
fear_range, fear_max, fear_mean) and maximum and variance for anger (angry_max,
angry_variance), as well as the mean for surprise (surprise_mean). PD was nega-
tively correlated with approximate entropy for surprise and sadness

(surprise_approx_entropy, sad_approx_entropy).
In addition, the results of the classification of PD for two different speech ex-

ercises for XGBoost are presented in Table 5.3. Not only the tongue twister was
evaluated but also the participants were asked to read long text. Prediction re-
sults for the second speech exercise are 0.60 balanced accuracy, 0.66 sensitivity, 0.54
specificity, and 0.20 MCC.
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Fig. 5.4: The values of SHAP were derived from the XGBoost tongue twister model.

Tab. 5.3: XGBoost predictions for tongue twister and reading text exercise.

Speech
exercise

ACC Bal Sensitivity Specificity MCC

Tongue
twister

0.69 ± 0.14 0.71 ± 0.17 0.67 ± 0.22 0.39 ± 0.29

Long
text

0.60 ± 0.16 0.66 ± 0.21 0.54 ± 0.27 0.20 ± 0.34

5.1.4 Discussion and Summarisation

A methodology for the automatic detection of PD based on changes in emotions
is presented. In this study, hard-to-pronounce Czech tongue twister was examined
as well as the reading of a long text by participants. Based on the detection of
seven emotions in each video frame, it occurs that fear is the most meaningful
emotion. The results indicated that the most informative variables were mean, std,
variance, maximum, mean and range of fear, mean, std, variance, min of anger,
and approximate entropy of sadness. SHAP values confirmed the importance of
fear emotion (std, var, range, max, and mean) for the classification. This may be
explained by the fear of difficulty in correctly pronouncing the speech exercise by PD
patients and laboratory conditions. The changes in entropy for surprise and sadness
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were negatively correlated with PD, which could be explained by impairment to
express emotions generally by PD patients. A tongue twister speech exercise proved
to be more predictive and robust for detecting PD than reading a lengthy text. For
this task, the XGBoost achieved a balanced accuracy of 0.69.

As a conclusion, this study was designed to provide support methods for the
detection of PD in order to assist clinicians in their diagnosis of this disease. This
research is exploring the potential of rarely analysed - hypomimia symptom for
PD detection. Moreover, the generation of scalars from the speech exercise record
appears to be appropriate for the state problem. The contribution of this study is
the identification of fear as the most statistically significant emotion based on SHAP
values for the XGBoost model. XGBoost delivered the 0.69 balanced accuracy for
a tongue twister, indicating that it is the most important speech task that has been
evaluated. Thereby, the tongue twister appeared to have clinical value. The future
direction of this research is to extend the database and test other tongue twisters
for the detection of PD.

5.2 Multimodal Detection of Parkinson Disease
The PD methodology detection based on a multimodality approach (combination
of video and audio) was set up as the goal. The 43 characteristic speech exercises
were used to evaluate the PD thanks to the video and audio analysis. The feature
extraction was designed to capture the hypomimia symptoms and changes in HD
dimension between HC and illness cases. Especially, the facial features were created
based on facial landmarks, which are valuable anthropometrically. The prediction
of the PD was conducted according to the scheme presented in Fig. 5.5. In the first
step, a previously introduced dataset in Subsection 5.1.1 was prepared for extracting
features for each speech exercise. The exact feature extraction for video and audio
modality was then provided separately. The regression out of the confounding factors
was performed. Statistical analysis was then carried out using the Mann-Whitney
U test and FDR correction. Next, the feature preselection method mRMR was
also applied. The Stratified 10-fold Cross-Validation with XGBoost was used. The
SHAP values were applied for the clinical interpretation of the model.

5.2.1 Dataset Characterization

A total of 73 people were included in the analysis, including 43 males (education
length 14.76 ± 2.97, mean age 66 ± 7.83) and 30 females (education length 13.04
± 2.70, mean age 68 ± 8.20) and 46 people with HC (24 males (mean age 66 ±
9.17), 22 females (mean age 62 ± 9.02)). The dataset was collected under the
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Fig. 5.5: Flow of the algorithm.

same conditions as those described in subsection 5.1.1. The clinical condition and
demographic information can be found in Table 5.4. Additionally, the subsection
provides the UPDRS III (Fig. 5.6) as well as the kernel density estimation of the
duration of PD (Fig. 5.7).

Individuals participated in a variety of speech exercises during the experiment.
The Czech language was considered, but pronunciation difficulties rather than the
meaning of the expression played a role. A variety of exercises were examined, in-
cluding tongue twisters, poems, free speech, diadochokinesis tasks, reading texts,
sentences, words, vowels, and others. The used devices were the camera and micro-

116



Tab. 5.4: Clinical and demographical information of the dataset.

Mean Std Min Q1 Median Q3 Max
Age 66.90 7.95 49 62.00 67.0 72.00 82
Duration of PD 7.80 4.39 1 4.00 7.0 11.00 22
UPDRS III 24.91 11.91 3 14.75 25.5 33.00 55
UPDRS IV 3.16 2.73 0 0.00 3.0 5.00 10
FOG 7.16 5.79 0 2.00 7.0 11.00 20
NMSS 38.37 23.06 2 19.00 34.5 54.00 112
RBDSQ 3.79 3.21 0 1.00 3.0 6.00 13
LED [mg] 1006.04 542.94 0 621.25 879.5 1325.50 2275
ACE-R 87.15 8.01 60 82.75 87.5 93.00 100
MMSE 28.04 2.38 16 28.00 29.0 29.00 30
BDI 10.41 6.06 0 6.00 9.0 13.50 27
DX 74.32 8.90 30 71.00 76.0 79.00 88

Fig. 5.6: Kernel Density Estimation of level of UPDRS III.

phone. For this study, a PANASONIC SDR-H20 camera was used with a sampling
frequency of 25 FPS. At a distance of 20 cm from the mouth, the cardioid micro-
phone M-AUDIO Nova was mounted on the arm, with a sampling frequency of 48
kHz, and a 16-bit resolution. The UPDRS - diagnostic assessment was also used to
assess the severity of PD illness. The data were collected at the hospital in Czechia.
The Masaryk University Ethical Committee approved the study.
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Fig. 5.7: Kernel Density Estimation of duration of PD.

5.2.2 Feature Extraction

There are two steps involved in the feature extraction process. A description of each
of the video and audio features extraction is located in this section.

Facial features

A feature extraction algorithm was developed. This proposed methodology contains
the extraction of facial landmarks and the computations of the differences between
them within a specified period. The varieties between distances and angles in time
were calculated from the facial measurements. 68 facial landmarks were detected
using an open source framework 2. Fig. 5.9 illustrates the schematic illustration.
The algorithm involves two steps: first, it detects faces using the HOG and Haar
feature-based cascade classifiers. Detection of facial landmarks was performed using
a neural network in the second step. The founded positions of x and y were used
to generate a time series. Lastly, the scalars were calculated to determine how the
characteristic points on the face differentiated over time. The measurements were
the Shannon entropy (se), the approximate entropy (ae), the max, the min, the std,
the rsd, the var, the range, the slope, and the mean. The explaination of the created
scalars is presented in Table 5.5. Fig. 5.8 illustrates the flow of the algorithm.

2https://pypi.org/project/face-recognition/
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Dataset

Face detection: HOG or Haar

feature-based cascade classifier

Facial landmarks detection: 68 
points

Calculating distances and angles 
for each frame

Calculation scalar features based 
on statistical metrics

Fig. 5.8: Flow of the facial features extraction.

Fig. 5.9: Illustration of facial features [12].
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Tab. 5.5: Features extraction explanation.
Name feature Points, angle
D1 37, 49
D2 46, 55
D3 22, 23
D4 52, 58
D5 20, 38
D6 25, 45
D7 39, 41
D8 45, 47
D9 31, 9
D10 1, 17
D11 18, 22
D12 23, 27
D13 34, 52
EYEBROW1 Angle: (22,19) vs. (40, 43)
EYEBROW2 Angle: (22, 19) vs. (23, 26)
EYEBROW3 Angle: (22, 19) vs. (23, 26)
EYEBROW4 Vertical: 19, 37
EYEBROW5 Vertical: 26, 46
EYE1 37, 38
EYE2 37, 39
EYE3 46, 45
EYE4 46, 44
EYE5 40, 39
EYE6 40, 38
EYE7 43, 44
EYE8 43, 45
EYE9 37, 42
EYE10 37, 41
EYE11 43, 48
EYE12 43, 47
EYE13 40, 41
EYE14 40, 42
EYE15 46, 48
EYE16 46, 47
EYE17 38, 42
EYE18 45, 47
EYE19 39, 41
EYE20 44, 48
EYE21 37, 40
EYE22 43, 46
M1 49, 52
M2 49, 58
M3 55, 52
M4 55, 58
M5 49, 55
M6 52, 58
M7 60, 54
M8 50, 56
RATIO_MOUTH M5/M6

MOUTH_AREA The area of the inside
of the mouth

LEYE_AREA The area of the left eye
REYE_AREA The area of the right eye
RATIO_FACE D1/D2
RATIO_MOUTH
_SKEW_UP

M3/M1

RATIO_MOUTH
_SKEW_DOWN

M4/M2
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Tab. 5.6: Description of the acoustic features. The details of the features implemen-
tation are provided in [14].

.

Code of Acoustic feature Description of the features HD dimension Specific disorder
DDK rate DDK rate articulation slow alternating motion rate
DDK reg std of DDK cycle periods articulation irregular alternating motion rate
DUV fraction of locally unvoiced frames phonation aperiodicity
MPT total speech time phonation airflow insufficiency
NSR net speech rate prosody unnatural speech rate
SPIR speech index of rhytmicity prosody inappropriate silences
jitter period perturbation quotient phonation microperturbations in frequency
mean HNR mean of harmonic-to-noise ratio phonation increased noise
relF0SD relative std of fundamental frequency prosody monopitch
relF1SD relative std of 1st formant articulation rigidity of tongue and jaw
relF2SD relative std of 2nd formant articulation rigidity of tongue and jaw
relSEOSD relative std of short-time energy prosody monoloudness
shimmer amplitude perturbation quotient phonation microperturbations in amplitude

Tab. 5.7: Meaning of the part of the exercises in Czech and English.
Code In Czech English translation

TSK19 Chcete vidět velký lov? Budu lovit v džungli slov.
Osedlám si Pegasa Chytím báseň do lasa.

Would you like to see a big hunt? I will be hunting in a jungle of words.
I will saddle the Pegasus, I will catch a poem into a lasso.

TSK20 Prostřete k obědu? Will you lay the table?
TSK21 Prostřete k obědu! Lay the table!
TSK22 Prostřete k obědu. Lay the table.
TSK23 Teď musíš být chvíli trpělivý, než to dokončíme. Now you have to be patient for a while until we finish.
TSK24 Tak dáš mi už konečně pokoj! I urge you to leave me alone.
TSK25 Už mě to nebaví, dej mi už konečně pokoj! I am fed up, I urge you to leave me alone.
TSK26 Tak co, jak to dopadlo? So, what happened?
TSK27 rychlonožka lightfoot
TSK28 marnotratný wasteful
TSK29 horolezectví mountaineering
TSK30 stříbrotepec silversmith
TSK31 železobetonový iron-concrete
TSK32 zákonodárce legislator
TSK33 horkovzdušný convection
TSK34 strastiplná tortuous
TSK35 záviděníhodný enviable
TSK36 československý Czechoslovak
TSK37 Do čtvrt hodiny tam byla smršť. In a quarter of an hour there was a whirlwind.
TSK38 Prohovořte to s ním dopodrobna. Discuss it with him in detail.
TSK39 Při ústupu pluku duní bubny. Drums are pounding during the retreat of regiment.
TSK40 Kuchařští učni nejsou jak zlatničtí. Apprentices of cookery school are not as those from goldsmith one.
TSK41 Celý večer se učí sčítat. He is learning to add the whole evening.
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Voice features

The features were extracted with respect to [84]. Parameters related to personal
impairments, phonation, articulation, and prosody were calculated. Details can be
found in Tables 5.6 and 5.8.

Tab. 5.9: Carried-out vocal tasks.
Code Vocal task Description
TSK1 expiration maximum phonation of [m] in one breath
TSK2 expiration maximum phonation of [i] in one breath
TSK3 phonation vowel [a] (sustained and normal intensity)
TSK4 phonation vowel [e] (sustained and normal intensity)
TSK5 phonation vowel [i] (sustained and normal intensity)
TSK6 phonation vowel [o] (sustained and normal intensity)
TSK7 phonation vowel [u] (sustained and normal intensity)
TSK8 phonation vowel [a] (sustained and maximum intensity)
TSK9 phonation vowel [e] (sustained and maximum intensity)
TSK10 phonation vowel [i] (sustained and maximum intensity)
TSK11 phonation vowel [o] (sustained and maximum intensity)
TSK12 phonation vowel [u] (sustained and maximum intensity)
TSK13 phonation vowel [a] (sustained and minimum intensity, but not whispering)
TSK14 phonation vowel [e] (sustained and minimum intensity, but not whispering)
TSK15 phonation vowel [i] (sustained and minimum intensity, but not whispering)
TSK16 phonation vowel [o] (sustained and minimum intensity, but not whispering)
TSK17 phonation vowel [u] (sustained and minimum intensity, but not whispering)
TSK18 diadochokinesis (DDK) DDK pa-ta-ka
TSK19 rhytmical units read poem
TSK20 main intonation pattern same sentence read as interrogative
TSK21 main intonation pattern same sentence read as imperative
TSK22 main intonation pattern same sentence read as declarative
TSK23 intonation variability monitoring prosody (declarative read sentence)
TSK24 intonation variability monitoring prosody (imperative read sentence)
TSK25 intonation variability monitoring prosody (imperative read sentence)
TSK26 intonation variability monitoring prosody (interrogative read sentence)
TSK27 intelligibility of repeated words repeated word complicated for the articulation
TSK28 intelligibility of repeated words repeated word complicated for the articulation
TSK29 intelligibility of repeated words repeated word complicated for the articulation
TSK30 intelligibility of repeated words repeated word complicated for the articulation
TSK31 intelligibility of repeated words repeated word complicated for the articulation
TSK32 intelligibility of repeated words repeated word complicated for the articulation
TSK33 intelligibility of repeated words repeated word complicated for the articulation
TSK34 intelligibility of repeated words repeated word complicated for the articulation
TSK35 intelligibility of repeated words repeated word complicated for the articulation
TSK36 intelligibility of repeated words repeated word complicated for the articulation
TSK37 intelligibility of repeated sentences repeated sentence complicated for articulation
TSK38 intelligibility of repeated sentences repeated sentence complicated for articulation
TSK39 intelligibility of repeated sentences repeated sentence complicated for articulation
TSK40 intelligibility of repeated sentences repeated sentence complicated for articulation
TSK41 intelligibility of repeated sentences repeated sentence complicated for articulation
TSK42 monitoring intelligibility and articulation long read paragraph

TSK43 interview at the beginning - monitoring prosody,
hesitations, time needed for response, etc.

free speech, usually the answer to "What are your hobbies?",
"Where do you come from?", etc.
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5.2.3 Statistical Evaluation with Machine Learning

To eliminate the influence of age and gender on the data, the regression out step
was first performed. Videos and audio recordings were exempt from the confound-
ing effect. The impact of confounding variables (gender and age) on independent
variables (extracted features) and dependent variables (the existence of PD) was
eliminated thanks to deleting the confounding effect. The confound was considered
as a predictor, whereas the linear regression model was fitted on all features. The
descriptions of the approach are illustrated in [236, 237]. Next, the statistical anal-
ysis was conducted using the Mann-Whitney U test [238] to detect the dependency
of a separate feature on PD. The FDR correction was applied to limit type I errors.
Subsequently, The set of features was chosen with the usage of mRMR to avoid the
curse of dimensionality. Next, the Stratified 10-fold cross-validation was performed.
The stratified cross-validation contains two steps: the stratified sampling when to
equal distribution of the samples of each group is guaranteed in the training and
test dataset, and the standardization of the data [239]. XGBoost was used as the
classifier. This classifier has a few benefits, for instance, the robustness for the im-
balanced dataset, a solid and effective approach for tabularised data, and the ability
to find the non-linear correlation in the data. Moreover, this algorithm used a type
of end-to-end tree ensembling model [240]. The SHAP values were used to under-
stand the decision standing beyond the models about the PD detection. They can
indicate the correlation of features to the decision model [241, 242]. Model quality
was evaluated using the following metrics: accuracy, sensitivity, specificity, balanced
accuracy, and MCC.

5.2.4 Results

Results are provided separately for statistical analysis and results of classification.
Additionally, SHAP values are presented for the best models.

Tab. 5.10: The statistical analysis of audio features.
Features pVal pVal(FDR) Median (PD) Median (HC) IQR (PD) IQR (HC)
relF0SD (TSK7) 2.7E-0.5 0.0057 -0.0408 0.0033 0.0863 0.102
shimmer (TSK15) 4.6E-0.5 0.0057 -4.2218 3.374 12.4081 11.1142
DUV (TSK7) 7.6E-0.5 0.0062 -4.6691 -1.7888 4.7326 8.6902
relF0SD (TSK24) 0.000128 0.0078 -0.0389 0.0108 0.1234 0.0828
shimmer (TSK17) 0.00035 0.0172 -3.7772 3.4596 13.5591 11.1147
shimmer (TSK13) 0.000581 0.0237 -2.7854 2.5983 11.9312 9.9691
NSR (TSK25) 0.001787 0.0487 -0.0402 -1.3382 3.7665 2.9786
DUV (TSK8) 0.001657 0.0487 -4.6784 0.8537 16.464 13.3974
shimmer (TSK16) 0.001754 0.0487 -2.9298 1.5677 12.2635 16.6985
NSR (TSK41) 0.002379 0.0571 0.3378 -0.9651 3.1651 2.2758
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Tab. 5.11: The statistical analysis of video features.
Features pVal pVal(FDR) Median (PD) Median (HC) IQR (PD) IQR (HC)
rsdD8 (TSK31) 0.000015 0.0733 -2.0961 1.2194 7.9407 7.0653
rsdEYE18 (TSK31) 0.000015 0.0733 -2.0961 1.2194 7.9407 7.0653
slopeM7 (TSK41) 0.000021 0.0733 0.0005 -0.0008 0.0024 0.0026
rsdD8 (TSK32) 0.000025 0.0733 -2.1191 1.4171 6.2564 8.0297
rsdEYE18 (TSK32) 0.000025 0.0733 -2.1191 1.4171 6.2564 8.0297
stdD6 (TSK32) 0.000028 0.0733 -0.0111 0.0083 0.0239 0.0337
aeEYE16 (TSK37) 0.000032 0.0733 -0.0446 0.0449 0.1445 0.1318
varD6 (TSK32) 0.000034 0.0733 -0.0015 0.0001 0.0014 0.0032
varM2 (TSK12) 0.000035 0.0733 -0.0013 -0.003 0.0010 0.0015
meanM5 (TSK18) 0.000044 0.0733 0.0416 0.1375 0.1433 0.0920

A regressed out dataset was taken under analysis by the Mann-Whitney U test
with an FDR correction. The statistical analysis was conducted on 13 audio features
and 550 video features for each speech exercise. The results of statistical analysis of
the video and audio features are presented in Tables 5.10 and 5.11. In addition, the
median and IQR for each group are provided.

Nine out of ten audio features were statistically significant (alpha = 0.05) when
corrected with FDR. They were: relF0SD (TSK7), shimmer (TSK15), DUV (TSK7),
relF0SD (TSK24), shimmer (TSK17), shimmer (TSK13), NSR (TSK25), DUV
(TSK8), shimmer (TSK16). In Tables 5.6 and 5.9, the features are described in
greater detail.

According to the Mann-Whitney U test, none of 10 the best-selected vide features
passed the test with FDR correction. Despite this, the test was passed for them
without FDR correction. They were: rsdD8 (TSK31), rsdEYE18 (TSK31), slopeM7
(TSK41), rsdD8 (TSK32), rsdEYE18 (TSK32), stdD6 (TSK32), aeEYE16 (TSK37),
varD6 (TSK 32), varM2 (TSK12), meanM5 (TSK18). These details can be found
in Tables 5.5, 5.9. Following this step, a ML algorithm was used to distinguish
PD cases from HC cases. The results are presented for XGBoost. 10-fold stratified
cross-validation was performed.

Tab. 5.12: Accuracy of PD detection from different modalities.

Modality Accuracy
(balanced)

Sensitivity Specificity MCC

Speech 0.77 (0.11) 0.81 (0.12) 0.73 (0.19) 0.54 (0.21)
Video 0.81 (0.13) 0.88 (0.12) 0.74 (0.23) 0.64 (0.24)
Multimodality 0.83 (0.11) 0.88 (0.13) 0.78 (0.20) 0.68 (0.22)

For the purpose of evaluating the best classification model, the models were
trained on the set of all video, audio, and multimodal features thanks to the 10-
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fold cross-validation. Table 5.12 presents the results of that classification. The
multimodalit approach achieved the highest scores for balanced accuracy (0.83),
specificity (0.78), and MCC (0.68). The sensitivity was equal to 0.88 for the video
and multimodality.

The interpretabilities of those models for video, audio, and multimodality ap-
proach are presented thanks to the SHAP values in Fig. 5.10, Fig. 5.11 and Fig.
5.12, respectively.

For the two features among 10 the best were observed the positive correlation
with PD disease for video modality. They were: the approximate entropy of the
eyelid during the pronunciation vowel ‘a’ (aeEYE12 (TSK13)) and the slope of the
time series - the skew distance of the mouth during a repeating sentence difficult
to pronounce (slope M7 (TSK41)). The negative correlation was registered for the
approximate entropy of the eyelid during the pronunciation of a repeated, hard-
to-pronounce sentence (aeEYE16 (TSK37)) and the minimum of horizontal mouth
distance during pronunciation vowel ‘e’ (minM5 (TSK4)). Additionally, negatively
correlated features were: rsdEYE18 (TSK32), maxD5 (TSK31), varD9 (TSK4),
meanD9 (TSK9), aeD9 (TSK4).
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Fig. 5.10: SHAP values for the best 10 features from the video modality.

SHAP values for audio features showed negative correlation with the PD for the
following features: relF0SD (TSK24), relF0SD (TSK7), shimmer (TSK15), jitter
(TSK14), and shimmer (TSK17). A positive correlation was recognised among the
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features based on SHAP values for NSR (TSK30) and relF1SD (TSK21). Fig. 5.11
illustrates the relationship between PD disease and audio features.
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Fig. 5.11: SHAP values for the best 10 features from the audio approach.

Multimodality analysis revealed a positive correlation between PD and slopeM7
(TSK41), aeEYE12 (TSK13), minEYE20 (TSK35) and mean HNR (TSK15). A neg-
ative correlation was observed between PD and aeEYE16 (TSK37), varD9 (TSK4),
rsdD8 (TSK32), maxM3 (TSK31), and varM6 (TSK12). Fig. 5.12 shows the SHAP
values for the multimodality approach.

As an additional step, every exercise was classified according to its video, audio,
and multimodal configuration. There are three tables presenting the results of these
tests: 5.13, 5.14, 5.15, respectively.

According to the balanced accuracy, the prediction for the TSK39 was the most
successful for the video modality and was equal to 0.73 (see Table 5.13). One of
the tongue twisters was this task. The MCC for this same task was 0.47. TSK4
(pronouncing the vowel ’e’) had the highest sensitivity of 0.81. TSK1 had the highest
specificity of 0.69. The exercise consisted of the maximum phonation of ’m’ in one
breath.

TSK7 was classified with the highest level of balanced accuracy using audio
features (see Table 5.14). This parameter was 0.68, and the task responsible for
determining it was the pronunciation of the vowel ’u’. A MCC of 0.36 was obtained,
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Fig. 5.12: SHAP values for the best 10 features from the multimodality.

Tab. 5.13: Video-based speech exercise accuracy.

Exercise Accuracy
(balanced)

Sensitivity Specificity MCC

TSK39 0.73 (0.14) 0.78 (0.17) 0.67 (0.24) 0.47 (0.29)
TSK41 0.73 (0.13) 0.79 (0.16) 0.66 (0.21) 0.47 (0.26)
TSK40 0.72 (0.15) 0.79 (0.17) 0.65 (0.26) 0.46 (0.30)
TSK4 0.72 (0.13) 0.81 (0.14) 0.63 (0.23) 0.46 (0.27)
TSK9 0.72 (0.13) 0.79 (0.15) 0.65 (0.22) 0.45 (0.26)
TSK13 0.71 (0.15) 0.79 (0.17) 0.62 (0.25) 0.43 (0.30)
TSK23 0.71 (0.15) 0.80 (0.14) 0.62 (0.25) 0.44 (0.30)
TSK8 0.71 (0.14) 0.80 (0.15) 0.62 (0.24) 0.44 (0.29)
TSK1 0.71 (0.13) 0.72 (0.18) 0.69 (0.21) 0.42 (0.26)
TSK35 0.71 (0.13) 0.78 (0.15) 0.64 (0.22) 0.42 (0.26)

while a specificity of 0.66 was achieved. A maximum sensitivity of 0.77 was registered
for TSK24 (monitoring prosody).

The results of the multimodal classification for each task are presented in Table
5.15. The most valuable exercise was TSK41, with a balanced accuracy of 0.74 and
a MCC of 0.49. It is another tongue twister. The highest sensitivity was observed
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Tab. 5.14: An assessment of the accuracy of the best speech exercises based on audio
recordings.

Exercise Accuracy
(balanced)

Sensitivity Specificity MCC

TSK7 0.68 (0.13) 0.71 (0.15) 0.66 (0.22) 0.36 (0.26)
TSK24 0.67 (0.12) 0.77 (0.13) 0.57 (0.22) 0.35 (0.25)
TSK14 0.66 (0.12) 0.70 (0.15) 0.61 (0.20) 0.31 (0.24)
TSK19 0.66 (0.11) 0.67 (0.14) 0.65 (0.21) 0.32 (0.22)
TSK15 0.64 (0.12) 0.75 (0.12) 0.53 (0.23) 0.28 (0.25)
TSK37 0.62 (0.14) 0.64 (0.14) 0.61 (0.21) 0.24 (0.27)
TSK41 0.62 (0.14) 0.65 (0.15) 0.59 (0.23) 0.23 (0.27)
TSK42 0.62 (0.13) 0.73 (0.14) 0.51 (0.22) 0.24 (0.27)
TSK11 0.61 (0.13) 0.64 (0.13) 0.58 (0.21) 0.21 (0.26)
TSK22 0.61 (0.12) 0.66 (0.16) 0.56 (0.21) 0.22 (0.24)

Tab. 5.15: Evaluation of the accuracy of multimodal speech exercises.

Exercise Accuracy
(balanced)

Sensitivity Specificity MCC

TSK41 0.74 (0.13) 0.79 (0.15) 0.68 (0.22) 0.49 (0.27)
TSK23 0.73 (0.15) 0.83 (0.14) 0.62 (0.26) 0.47 (0.32)
TSK39 0.73 (0.14) 0.78 (0.17) 0.67 (0.24) 0.47 (0.29)
TSK18 0.73 (0.13) 0.78 (0.16) 0.68 (0.23) 0.48 (0.27)
TSK40 0.72 (0.16) 0.80 (0.16) 0.64 (0.25) 0.46 (0.32)
TSK8 0.72 (0.14) 0.81 (0.15) 0.63 (0.24) 0.45 (0.28)
TSK22 0.72 (0.14) 0.75 (0.17) 0.69 (0.24) 0.44 (0.28)
TSK4 0.72 (0.13) 0.82 (0.15) 0.62 (0.24) 0.46 (0.27)
TSK9 0.72 (0.13) 0.78 (0.16) 0.65 (0.21) 0.45 (0.25)
TSK1 0.71 (0.13) 0.72 (0.18) 0.69 (0.21) 0.42 (0.26)

for TSK23 (during monitoring of prosody), which was equal to 0.83. TSK22, during
which the sentence was read in a declarative manner, displayed the highest specificity
(0.69).

The results for the multimodality and video have been compiled in Table 5.16
to compare the results of the most powerful speech exercises. Five of the 10 ex-
ercises showed an improvement in classification, and two showed no improvement.
In the multimodality approach, TSK41 (the tongue twister) demonstrated the best
accuracy of 0.74.
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Tab. 5.16: An analysis of the results obtained from multimodal and video ap-
proaches.

Exercise
Accuracy

(balanced) for
multimodality

Accuracy
(balanced) for

video
TSK41 0.74 (0.13) 0.73 (0.13)
TSK23 0.73 (0.15) 0.71 (0.15)
TSK39 0.73 (0.14) 0.73 (0.14)
TSK18 0.73 (0.13) 0.71 (0.12)
TSK40 0.72 (0.16) 0.72 (0.15)
TSK8 0.72 (0.14) 0.71 (0.14)
TSK22 0.72 (0.14) 0.70 (0.13)
TSK4 0.72 (0.13) 0.72 (0.13)
TSK9 0.72 (0.13) 0.72 (0.13)
TSK1 0.71 (0.13) 0.71 (0.13)

Figs. 5.13, 5.14, 5.15 presents the SHAP values for determined the most accurate
classification of video, audio, and multimodality, respectively.

For the tongue twister (TSK39) (see Fig. 5.13), the video features which were
positively correlated with PD are varEYEBROW3, slopeEYE13, and minEYE1.
In contrast, negative correlations were found between rangeM5, maxM5, minEYE-
BROW3, maxD6, aeREYE_AREA, aeEYEBROW5 and PD.

According to the audio results (see Fig. 5.14), the TSK7 speech exercise pro-
vided the best results. There is a negative correlation between DUV, relF0SD, and
shimmer and PD. Mean HNR and relF1SD have a positive correlation.

For the task TSK41 - the tongue twister (see Fig. 5.15), the multimodal ap-
proach shows higher values of slopeM7, slopeD4, meanD2, and meanEYE5 for
positive SHAP values. aeEYE9, aeEYE5, aeMOUNTH_AREA, slopeD7, maxRA-
TIO_FACE, and slopeEYE18 were lower for negative SHAP values.

5.2.5 Discussion and Summarisation

As part of this research, multiple scenarios were performed, including evaluating of
variety of Czech speech exercises, as well as a performing multimodality approach
for detecting PD. The carried-out experiments allow to find the best-fitted model
based on the most appropriate features for this task. As a result of the choice of
XGBoost, it is possible to train ML models capable of capturing the connection
between impairments of facial muscles and observable changes in HD. The highest
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Fig. 5.13: SHAP values for the optimal video approach (TSK39).
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Fig. 5.14: SHAP values for the optimal audio approach (TSK7).
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Fig. 5.15: SHAP values for the optimal multimodal approach (TSK41).

level of accuracy can be achieved as a result of the combination of various speech
exercises with multimodality. The multimodality outperformed the single modality-
based approach in the detection of PD. The best-achieved accuracy was equal to
0.83.

Considering the statistical analysis performed with the Mann-Whitney U test,
audio features were more significant than video features after FDR correction. The
most distinctive feature was shimmer across all of the exercises and was characteris-
tic of the pronunciation of the vowels ‘i’, ‘u’, ‘a’, and ‘o’. A further important feature
is the rsd of fundamental frequency when the vowel ’u’ is pronounced and the vari-
ability in intonation is checked. Fraction of locally unvoiced frames matters for the
pronunciation of vowels ‘u’ and ‘a’. Net speech rate also proves the importance of
checking intonation variability.

Any of the features considered in the video analysis passed the Mann-Whitney
U test with FDR correction. Nonetheless, they were close to a significant level of
alpha = 0.05 and equal to 0.0733. Most of them were recognised for performing
tongue twisters. Moreover, the diadochokinesis (DKK) task was valuable and the
pronunciation of the vowel ‘u’. The changes in blinking rate expressed in rsd and ap-
proximate entropy were recognised as a beneficial sources of information. The slope
of the records of changes in opening mouth diagonal was detected as informative,
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exactly variance and std. Additionally, the mean horizontal distance of mouth was
valuable for the diadochokinesis task.

The results of the experiments confirmed the statement that it would be better
to use both modalities than a single one. A combination of subdatasets resulted in
a higher level of specificity and accuracy. The sensitivity occurred to be the best for
video modality and 0.88 of the PD cases were positively diagnosed.

The models revealed that the most informative features are tongue twisters –
difficult-to-pronounce speech exercises. They were for video modality: TSK39,
TSK41, TSK40 (see Table 5.13). Moreover, the pronunciation of the vowel ‘e’
caused a problem for patients (TSK4, TSK9). A similar situation was observed for
the vowel ‘a’. For the audio features, the most problematic task was to pronounce
the vowel ‘u’ (see Table 5.14). The vowels ‘e’ and ‘i’ created also difficulty (TSK14,
TSK15). Furthermore, intonation variability was highly significant in distinguishing
PD cases from HC cases (TSK24). Moreover, reading a poem by patients indicates
difficulty in expression by PD patients (TSK19). Tongue twisters also worked out
for this modality (TSK37, TSK41, TSK42). The combination of the video and au-
dio modality (Table 5.15) showed that the most robust diagnosis of PD was tongue
twister (TSK41). Similarly, another tongue twister was capable of distinguishing ill-
ness at a high level (TSK39, TSK40). The intonation variability offers the valuable
distinction of PD cases from HC (TSK23). The diadochokinesis task was also suc-
cessful in this task (TSK18). Regarding multimodality, the classification analysing
the pronunciation of the vowel ’e’ achieved a relatively high result (TSK4, TSK9).
The interpretability of the models was performed thanks to the SHAP values. They
indicated a positive and negative correlation between the features of the PD.

The SHAP values for the combination of all features showed the importance of
changes in eye blinking during the pronunciation vowel ‘a’ (aeEYE12 (TSK13)) for
video modality (Fig. 5.10). The approximate entropy of the eye distance showed
a positive relationship with PD. It means that deviations from constant values of
opening eyelid were positively correlated with PD – observation of unnormal be-
haviour of eyes. During the longer activity, i.e., the pronunciation of tongue twister
was observed a negative correlation between PD and the irregular pattern of eye
behavior (aeEYE16 (TSK37)). The changes in the mouth’s ability to pronounce
were observed (slopeM7 (TSK41), minM5 (TSK4)). slopeM7 (TSK41) indicates the
highest slope of the time series of the skew distance of the mouth during the pro-
nunciation of tongue twister, which could be explained by the opening mouth longer
time by PD patients of the mouth. The minimal value of the horizontal distance of
the mouth was negatively correlated with PD during the pronunciation of the vowel
‘e’. Therefore, the HC group is able to open their mouths widely. There was also a
negative correlation between maximum movement between eyelid and eyebrow, and
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PD, which indicates higher level of ’freezing’ of the face for persons with PD. That
was observed during the pronunciation of difficult Czech word (maxD5 (TSK31)).
Furthermore, there were challenges in moving the jaw during the pronunciation of
the vowel ’e’ (varD9 (TSK4), meanD9 (TSK9), and aeD9 (TSK4)).

According to the speech analysis using SHAP values, there is a negative corre-
lation between the relative standard of fundamental frequency during monitoring
prosody and pronunciation of the vowel ’u’ (relF0SD (TSK24, TSK7)). This de-
pendency with PD was also alleged by [243]. In addition, shimmer and jitter were
negatively correlated when participants were pronouncing vowels ’e’, ’i’, and ’u’.
Nevertheless, the work [244] reports that the lower values are typical for women PD
patients and ill men characterise higher values. This situation could be explained
by the fact that the data were regressed out.

In addition, the multimodality analysis model indicates a negative correlation
between rsd of the eyelid (rsdD8 (TSK32)) and hard to pronounce words. This could
be explained by the fact that PD is associated with a lower blinking rate. For PD,
a lower value of skew of the mouth was observed (maxM3 (TSK31)) when persons
were speaking a difficult word. It was noted that the open mouth variance was
lower for PD when pronouncing ’u’ (varM6 (TSK12)). Furthermore, PD displayed
a higher harmonic-to-noise ratio during the pronunciation of vowel ’i’ (mean HNR
(TSK15)). The authors in [245,246] also confirmed it.

TSK39 was identified as the most effective speech exercise for the video (Fig.
5.13). PD was positively correlated with variation in ankle movement between eye-
brows (varEYEBROW3) and its minimal value was lower for PD (minEYEBROW3).
Additionally, HC had a higher chaotic movement of the distance between the hor-
izontal outer corner of the eye and the eyebrow (aeEYEBROW5). In addition, a
dependency of keeping the open mouth horizontally was detected for the parameter
range to HC (rangeM5) and the maximum to HC (maxM5). HC demonstrates a
greater degree of flexibility when it comes to expressing yourself. An increase in
approximate entropy was observed for the right eye area in HC (aeREYE_AREA) -
this is due to higher blinking rate of HC. The slopeEYE13 parameter was also used
to measure keeping longer eyes open.

The audio analysis of single speech exercises (Fig. 5.14) – pronunciation vowel
‘u’ (TSK7) shows the negative correlation with PD for fraction of locally unvoiced
frames (DUV), relative std of fundamental frequency (relF0SD), and shimmer. The
negative relationship of relF0SD was reported in [243]. The reverse phenomenon was
registered for DUV and shimmer [246], most probably because of regression data out
and gender issues. Whereas, the positive dependency was observable for the mean
of harmonic-to-noise ratio (mean HNR) and relative std of 1st format (relF1SD).
Those relations were reported in [245,246].
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The TSK41 was considered to be the most informative task for the multimodal
approach (Fig. 5.15). The closer the opening mouth value to the constant value, the
greater the chance that the model will identify the sample as PD. The symptoms
of PD were also manifested in the pattern of eye blinking this time. HC showed a
higher entropy in the movement of the eyelids (aeEYE9, aeEYE5). HC displayed a
more chaotic pattern of open mouth during the pronunciation tongue twister (ae-
MOUTH_AREA). The parameter slopeD4 indicates longer staying open the mouth
for PD with limited movability. This conclusion is also supported by the parameter
meanD2 behaviour.

The limitation of this research is the size of the dataset: 46 HC and 73 PD
patients. However, the amount of participants in the experiment is quite big consid-
ering another dataset used for automatic hypomimia analysis and PD recognition
(see Table 3.2). If the proposed approach is used for clinical purposes, it should
be malleable on a larger dataset. Furthermore, the individuals were using glasses
during the test. They were needed for the reading task of the text. Nevertheless,
the outcome of the classification could have been improved if the individuals had
taken them off.

To summarise, the SHAP values illustrate the changes in eye-blinking for PD
patients, and the impairments for PD. There was a slower pace of movement and
patients kept their eyes open for a longer period of time. Comparatively to HC, the
mouth movements were limited. Patients with PD used to keep their eyes open. The
stacked movement of the jaw is also characteristic for PD. During the pronunciation
tongue twister, the changes in facial muscles were most evident, whereas a variety
of audio patterns were observed for the pronunciation of vowels. It is typical for PD
to have a lower value of relF0SD. There was a positive correlation between mean
HNR and PD.

To summarize this section, the support methodology for PD detection based on
multimodality, i.e., video and audio was presented. The proposed dataset is excep-
tional and contains 73 PD patients and 46 HC. When comparing other datasets
introduced by scientists, this dataset is quite large and it uses a multimodal ap-
proach, which is a significant benefit (see Table 3.2). A total of 43 unique speech
exercises were evaluated in order to identify the most reliable ones. The strength of
this research is the identification of the most effective and clinically valuable speech
exercise - tongue twister. Moreover, the results obtained by the XGBoost classifier
were satisfactory. The multimodal approach showed that it outstands the solutions
based on a single modality. There is so far a limited number of works dealing with
multimodal solutions for PD detection. With the usage of a multimodal approach,
the detection of PD was possible on the level 0.83 balanced accuracy. Several facial
and audio features were prepared and the most significant features were selected
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during the feature selection procedure, which allows models to achieve higher ac-
curacy of PD detection. The desirable clinical interpretability was obtained thanks
to the statistical analysing and SHAP values. The performed statistical analysis
revealed the statistical importance of the features. The SHAP values explain the
value of parameters measuring the eye blinking, the openness of the mouth, and
asymmetry of the face. Those founded dependencies are confirmed by the litera-
ture [88,105,108,110]. The most important features occurred to be parameters such
as variance, approximate entropy, and slope of computed biomarkers. This work
explored the clinical value and various speech exercises power in the prediction of
PD with the potential to be applied as a mHealth solution. The accuracy of PD
detection based on the most powerful speech exercise – tongue twister and multi-
modality achieved 0.74 balanced accuracy. By extending the dataset and using AUs
for PD diagnosis, the accuracy and robustness of the model could be improved.

5.3 Conclusion
The need for the creation of more approachable and inexpensive solutions for PD
detection than PET, CT, MRI, and PSG exists [63, 92]. There is still a lack of
techniques dedicated for mHealth and AAL. The methodologies presented in this
chapter are the answer for the occurring niche and two approaches to the detection of
PD were presented. The common denominator of them was the analysed symptom
of PD – hypomimia. The aim was to create not only the support methodologies for
PD recognition but also to identify the computational biomarkers which could be
clinically interpretable.

The first methodology analysed computationally the difficulties in expressing
emotions (section 5.1), whereas the second approach thanks to the created facial
features explored the challenges of moving facial muscles and mimic of the partic-
ipants of the experiments (section 5.2). The advantage of this research is that the
anthropometric characteristics were taken into consideration during facial features
design. The database used for research in sections 5.1 and 5.2 was the same. The
second approach, in section 5.2, also used the audio modality and HD symptom,
combined moreover with the video modality. Subsequently, here, the existing re-
search gap was explored where there is still a lack of multimodal solutions of PD
detection. Moreover, a limited number of works about hypomimia analysis for PD
are already published. Furthermore, the dataset which was used for the research is
unique, and it is relatively large in comparison to those presented in the literature.
This dataset allows for identifying the most powerful speech exercise. Furthermore,
the proposed methodologies are as objective as possible and not troublesome for
patients.
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In the section 5.1 and 5.2, both studies reported the difficulties in performing
the tongue twister and the highest usefulness of this speech exercise for the clinical
purpose of detecting PD. This speech exercise - tongue twister is the answer to the
questions RQ4.1. and RQ5.2. Considering the research in which the recognition
of emotion was utilised (section 5.1), the most informative emotions were identified
thanks to the statistical analysis and they were fear and anger.

Furthermore, the identification of the correlation between the parameters based
on emotions and PD was not earlier provided in the literature, considering SHAP
values. The approximate entropy of sadness showed its importance as a feature.
Additionally, the interpretability of SHAP values depicted also the positive cor-
relation between PD and fear likewise anger (fear_std, fear_variance, fear_range,
fear_max, fear_mean, angry_max). Whereas, the negative correlation was reported
for approximate entropy of surprise and sadness for a checked tongue twister. Those
identified features are the reply to the question RQ4.2. The prediction of PD was
achieved with the XGBoost algorithm and was equal to 0.69 balanced accuracy.
This accuracy is the answer to question RQ4.3. The other tongue twisters have the
potential to increase the accuracy, according to the section 5.2.

In the second scenario 5.2, the model, which was presented for the multimodal
approach, and all speech exercises could serve as a support methodology system. The
best prediction was obtained for this version of the model thanks to the XGBoost
and was equal to 0.83 balanced accuracy. This approach and accuracy are the answer
to question RQ5.3. While the result for the multimodal approach for single exercise
TSK41 was equal to 0.74 balanced accuracy. The multimodal solutions proved to
be outperforming in contrast to single-modality approaches.

The interpretability of the models illustrated thanks to the SHAP values showed
that PD manifests in blinking rate during the pronunciation of vowel ‘a’ likewise
during the pronunciation of tongue twister. Mouth ability to move is higher for
HC, whereas PD patients tend to keep their mouths open longer. Freezing of the
eyebrow was also visible which could indicate the stiffness in facial muscles. The
video features based on the combination of slope, approximate entropy, and variance
occurred to be the most valuable.

Furthermore, the HC displays a more chaotic movement of the mouth during
pronunciation tongue twister (TSK41). On the top of that, the stacked movement
of the jaw is also characteristic of PD. The audio analysis presented also the neg-
ative relationship of relF0SD during monitoring pronunciation of the vowel ‘u’ and
prosody to PD. To sum up, the audio features reveal the disease during the pronun-
ciation of vowels, whereas the video features detect PD thanks to tongue twisters.
What’s more, the biomarkers were identified and could serve clinicians. Those two
above-mentioned paragraphs are the answer to the question RQ5.1.
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In conclusion, the introduced multimodal model could be used as the solution
for mHealth (section 5.2). In the case of the first scenario (section 5.1), other tongue
twisters have to be tested, if there are more suitable and could obtain higher accuracy
in prediction PD based on difficulties in expressing the emotions.

138



6 Final Conclusion
First and foremost, the thesis considers developing the application of wearables
and ML technologies for healthcare solutions. The WHT is still expanding type
of technology on the market and will consume and adapt new solutions based on
wearable technology. Because of this reason, the developed technologies in this thesis
are appropriate, considering the still progressing field. Additionally, the desirable
solutions are those with provided interpretability. The main focus of this thesis is
concentrated on used ML methods likewise also the applicability of the presented
support system methodologies - i.e., their performance and interpretability.

Two main thematic issues were discussed in this thesis, i.e., the wearable solutions
for COVID-19 detection likewise the application of AAL for PD. The introduced
research in this thesis is focused on finding solutions to prevent and minimize the
effects of those emergency problems. The common denominator in this work is the
usage of ML to generate support methodologies.

The section Introduction is guiding the readers into the topic. The background
about COVID-19 and its diagnosis likewise PD and its recognition, EEG analysis
are presented in Chapter 2. Additionally, the thesis presents the state-of-the-art of
the discussed scientific problems in Chapter 3. The summarisation of the existing
approaches for the detection of COVID-19 and pandemic models with the usage of
wearable and ML is described. Next, a description of how PD symptoms hypomimia,
HD, and sleep disorders can be used to diagnose PD is illustrated. Moreover, the
detailed representations of the recognition of other diseases based on actigraphy
records and ML are presented in subsection 3.2.3. Those methods were identified
because of their potential applications for PD detection based on sleep records. Fur-
thermore, the readers could familiarise themselves with the deep learning techniques
for EEG analysis, especially the potential of the novelty - ODE network.

The practical solutions for COVID-19 detection based on ML and wearables for
three scenarios are presented in Chapter 4. The thesis tried to find the answer to the
emergency need for screening tests in the early stage of the disease. Two datasets
are the basement of those presented solutions [1,59]. The kinds of analysing signals
were heart rate and the number of steps taken. The data were gathered by the
Fitbit device and presented solutions are destinated for this device. Moreover, the
biggest contribution of the illustrated approaches is the consideration of the nature
of the disease, i.e., the contagiousness of the disease and incubation period. To
reduce the increase in the number of sick people, those two parameters were taken
into account. Additionally, the amount of presented solutions based on ML and
wearables dedicated to COVID-19 detection is limited. By the same token, there is
still room for exploring this area.

139



As the outcome of the first experiment, the support system methodology for the
emergency issue - COVID-19 detection in the early stage of illness, was presented.
The best-identified model based on 5-day windows allows obtaining the prediction of
78 % accuracy for differentiating the COVID-19 cases from HC. The two time 5-day
windows were chosen for each sample – time series and from them were extracted
bunches of features. To emphasise, this outcome is significantly better than the one
presented in the original paper [59]. Furthermore, the model treated the COVID-19
cases and Influenza as one group-identified illness with 73 % of accuracy, also for 5-
day windows. The used classifier for both scenarios was k-NN. The same results for
the scenario with Influensa were also achieved thanks to the GLVQ. The consensus
is that this solution could serve as a screening test. An additional benefit is that
the most relevant features based on statistical evaluations were identified and they
were frequency- and spectral-related. Furthermore, the unquestionable advantage
is that the solution could be introduced as one of eHealth approach. Smartwatches
are commonly available and can be used as a helpful diagnostic tool when dealing
with outbreaks of pandemics.

The second set of support methodologies aimed to distinguish COVID-19 cases
from the two different types of Influensa in the early stage. Two types of Influensa
were distinguished before the main pandemic and in the middle of the pandemic.
The dataset intrinsically is unique because have instances of different viruses. This
thesis extended the original research in [1] because it introduced the classifications,
not only statistical analysis like in the [1] paper. The developed support methodolo-
gies allow distinguishing the COVID-19 cases between the Influensa in the middle of
the pandemic on the level of 0.73 balanced accuracy thanks to the k-NN. Moreover,
the distinction between the two types of Influensa was achieved with 0.82 balanced
accuracy thanks to the GLVQ. What’s more, this study proved the existing dif-
ferences between COVID-19 cases and Influensa being able to recognise cases by
wearable and ML for the first time.

The last support methodologies presented in this chapter are the models mal-
leable on combinations of the two previously used datasets. The data contained the
representations of the COVID-19 cases, HC, and Influenza. The introduced dataset
is relatively big to those limited and presented in the literature having COVID-19
examples. The advantage of this study is the presented methodologies to differ-
entiate cases from various classes. The COVID-19 cases were distinguished from
HC on the level of 0.73 accuracy by XGBoost. Whereas, the COVID-19 cases and
Influensa were differentiated from HC with 0.72 accuracy by SVM and GLVQ. The
statistical analysis revealed that the highest statistical importance was registered
for the features generated as the parameters of the ratio of heart rate to the variable
of the number of steps.
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The next presented subject in this thesis concerned computerised automatic PD
detection. The outcomes of the research were described in Chapter 5. The presented
methods in the thesis could be potentially applied as still lacking the mHealth meth-
ods for PD recognition. They are more inexpensive and more accessible alternatives
to the common tests: PET, MRI, CT, and PSG. In addition, there still exists a
research niche about hypomimia analysis for PD detection (Tab. 3.2). Moreover,
not only the support methodologies are desirable but also clinical interpretability is
well perceived together with recommending valid biomarkers.

The first method of PD detection used the automatic analysis of changes in ex-
pression emotion by participants. The symptom which was the foundation of this
research was hypomimia. The automatic analysis with speech exercises: reading
the poem and tongue twister was especially valuable because could be as much
nonsubjective and not bothersome as possible (Tab. 3.2). Neural network - FER
was utilised to recognise the intensity of seven emotions in each frame. To train
the model, parameters expressing changes in those emotions were used. The best-
obtained prediction of PD was equal to 0.69 balanced accuracy for the XGBoost
classifier and tongue twister. The tongue twister was identified as a clinically valu-
able speech exercise. As the most informative emotion occurred to be fear and it was
registered as positively correlated with PD based on SHAP values. The found cap-
tivating biomarkers were fear-related. To emphasise, such analysis was not earlier
provided in the literature.

The second example of PD detection used the computerised multimodal ap-
proach analysing hypomimia and HD. There are just few papers that treated the
multimodal detection of PD, especially with the participation of hypomimia symp-
tom. The choice of the audio and video modality and combined ML methodology
allowed for obtaining 0.83 balanced accuracy for the fusion of biomarkers generated
for all studied speech exercises. The used classifier was XGBoost. As the most
predictive and powerful speech exercise was recognised the tongue twister for the
multimodal approach Furthermore, the assumption of this study was confirmed by
the results, the usage of multimodal approaches displayed to be better than those
based on a single modality. By the same token, it makes sense to merge the modal-
ities for PD detection. The tongue twister - speech exercise was identified as the
most appropriate for the utility in clinical practice. A plethora of them was tested
and such exploration of the suitable tasks has not been earlier made. What’s more,
the dataset is unique and fairly large vis-a-vis other related datasets (Tab. 3.2).

Moreover, the SHAP values were used to provide interpretability. The under-
standable solutions of the ML allowed identifying the features which are the most
informative for the models and also were compared with the literature. The most
valuable were those which capture the relation to different distances of eyelid, mouth,
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likewise angles between eyebrows and others. To summarise, this approach provided
a support system methodology that will be valued by clinicians because of its pre-
sented interpretability. It could broadly serve as a screening tool for PD detection
and it is dedicated to mHealth solutions.

The future directions are targeting the usage of ML methodologies for PD detec-
tion based on multimodal approaches and extending databases. Furthermore, there
is still space for researching COVID-19 detection thanks to the wearables, increasing
databases, and extending the number of types of analysing signals.

To sum up, there were introduced ML-aided monitoring and prediction of respi-
ratory and neurodegenerative diseases using wearables in the thesis. The first topic
considered COVID-19 detection. The solutions were destinated for early recogni-
tion thanks to taking into account contagiousness and incubation period. It is an
incredible asset. There is still a research gap for COVID-19 detection, and the
obtained outcomes in this thesis outperformed those already presented in the litera-
ture. Thereby, they introduced new solutions for diagnosis of COVID-19. Moreover,
a longer discussion together with illustrating the classification between a few types
of viruses, including COVID-19 was presented. Such distinctions have not been pre-
viously published. The merging of two datasets allows for having the largest such
dataset. Moreover, the second topic presented the methods of PD detection. The
symptom of hypomimia was the basement of the presented classification problem.
The research on this topic filled the existing scientific demand. Furthermore, the
HD was also evaluated. The multimodal methodology was proposed and approved
as better than the single modality. The tongue twister arose as the best speech ex-
ercise which has special clinical value. The extra interpretability of the experiment
was provided thanks to the statistical analysis and SHAP values. Furthermore, the
computational analysis of emotion demonstrated to have potential in recognition of
PD and could replace the other uncomfortable or fair subjective tests. Additionally,
the transfer of probable methodology of detection PD based on discrepant sleep
disorders was explored and depicted.
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