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ABSTRACT 
This thesis focuses on wearables for health status monitoring, covering applications aimed 
at emergency solutions to the COVID-19 pandemic and aging society. The methods of 
ambient assisted living (AAL) are presented for the neurodegenerative disease Parkin­
son's disease (PD), facilitating 'aging in place' thanks to machine learning and around 
wearables - solutions of mHealth. Furthermore, the approaches using machine learn­
ing and wearables are discussed for early-stage COVID-19 detection, with encouraging 
accuracy. 
Firstly, a publicly available dataset containing COVID-19, influenza, and healthy control 
data was reused for research purposes. The solution presented in this thesis is considering 
the classification problem and outperformed the state-of-the-art methods, whereas the 
original paper introduced just anomaly detection and not shown the specificity of the 
created models. The proposed model in the thesis for early detection of COVID-19 
achieved 78 % for the k-NN classifier. Moreover, a second dataset available on request 
was utilized for recognition between COVID-19 cases and two types of influenza. The 
scrutinisation in the form of the classification between the COVID-19 and Influensa 
groups is proposed as the extension to the research presented in the original paper [1] 
illustrating the foundation for this study - statistical analysis of the dataset. Differences 
between the COVID-19 and Influenza cases in duration and intensity of the disease occur 
likewise manifest in heart rhythm. The accuracy of the distinction between COVID-19 
cases and influenza in the middle of the pandemic (data were gathered from 03.2020 
to 05.2020) was equal to 73 % thanks to the k-NN. Furthermore, the contribution as 
the classification model of two aforementioned combined datasets was provided, and 
COVID-19 cases were able to be distinguished from healthy controls with 73 % accuracy 
thanks to XGBoost algorithm. The undeniable advantage of the illustrated approaches 
is taking into consideration the incubation period and contagiousness of the disease 
likewise presenting the methodologies dedicated to data gathered by the Fitbit device. 
Furthermore, the parallel analysis of various types of Influensa, COVID-19, and healthy 
control is novel and has not been thoroughly investigated yet. 
In addition, some solutions for the detection of the aforementioned aging society phe­
nomenon are presented. This study explores the possibility of fusing computerised analy­
sis of hypomimia and hypokinetic dysarthria for the spectrum of Czech speech exercises. 
The introduced dataset is unique in this field because of its diversity and myriad of 
speech exercises. The aim is to introduce a new techniques of PD diagnosis that could 
be easily integrated into mHealth systems. A classifier based on XGBoost was used, and 
SHAP values were used to ensure interpretability. The presented interpretability allows 
for the identification of clinically valuable biomarkers. Moreover, the fusion of video and 
audio modalities increased the balanced accuracy to 83 %. This methodology pointed 
out the most indicative speech exercise - tongue twister from the clinical point of view. 
Furthermore, this work belongs to just a few studies which tackle the subject of utilising 
multimodality for PD and this approach was profitable in contrast with a single modality. 
Another study, presented in this thesis, investigated the possibility of detecting Parkin­
son's disease by observing changes in emotion expression during difficult-to-pronounce 
speech exercises. The obtained model with XGBoost achieved 69 % accuracy for a 
tongue twister. The usage of facial features, emotion recognition, and computational 
analysis of tongue twister was proved to be successful in PD detection, which is the key 
novelty and contribution of this study. Additionally, the unique overview of potential 
methodologies suitable for the detection of PD based on sleep disorders was depicted. 
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1 Introduction 
The COVID-19 pandemic and the aging society are considered the biggest issues 
which Europe faces [15,16]. They are emergency problems on a large scale that 
need fast taking care of them - developing methodologies destinated for diagnosis 
diseases such as COVID-19 and PD. The COVID-19 pandemic has caused a plethora 
of deaths and this disease has a high contagiousness rate [17]. Screening tests of 
society are highly desirable and they should be easily approachable and destinated 
to be used in the early stage to limit the spreading of the disease. The screening 
tests are defined as the procedure used to get to know if the examined person has a 
disease before it will manifest visible symptoms. Moreover, the aging society carries 
neurodegenerative diseases and P D belongs to this group of diseases [15]. The 
most accurate test is the positron emission tomography (PET), magnetic resonance 
imaging (MRI) and computer tomography (CT), however, those methods are used in 
the advanced stage of the disease and are expensive [18,19]. The usage of wearables 
and solutions based on mobile health (mHealth) and Electronic Health (eHealth) 
concepts seems to be justified for P D detection, but also for COVID-19 recognition. 
Wearables are electronic devices which are relatively inexpensive and accessible [20, 
21]. Furthermore, the utility of machine learning (ML) allows for creating the 
support system methodologies which could predict the occurrence of the illness [2, 
22]. Additionally, the usage of novel explainable artificial intelligence (XAI) can 
provide the clinical interpretability of the created models [23]. 

1.1 Research Motivation 

The wearable devices are electronic devices which could sense, gather and upload 
the data [21]. The wearables can be classified as on-body (e.g., smartwatches), 
in-body (implants [24]), and also around-body wearables (mobile phones, smart-
cards) [25,26]. It is expected that the wearable market will be growing increasingly. 
This market is characterised by a high pace of progression and exponential growth is 
predicted in the coming years. The price of the market was estimated at 71.91 billion 
$ in 2023 [27,28]. The interesting niche is the wearable health technology (WHT) 
global market. The W H T global market achieved 16 billion $ in 2021 [29]. Never­
theless, the W H T is an atypical market because it characterises the conditions of 
two markets, not just one, i.e., the healthcare and technology market. This mul-
tidisciplinarity is generating an unique opportunity for the implementation of new 
approaches. Moreover, the existing neurodegenerative and chronic diseases occurring 
among the elderly people are creating the need for solutions from W H T market [30]. 
Additionally, W H T offers a big potential in fighting with many diseases including 
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COVID-19 disease. The support system methodologies trained with the usage of M L 
and data gathered by the wearables could serve as an extra diagnostic/monitoring 
tool to determine the occurrence of the diseases or their progress [31,32]. Further­
more, the Universal Design File is going to be commonly used for wearables [33] 
which allows using wearable technology together with artificial intelligence as sup­
port methodologies widely in society. This concept aims to facilitate the usage of 
the considered item to all people of all sizes, ages, and in all health conditions, and it 
is destinated to all buildings [34]. Some of the principles of Universal Design are, for 
instance: flexibility in use, simple and intuitive use, and low physical effort. Those 
rules are making the wearable an attractive device for the consumer. Additionally, 
the low-cost and easy accessibility for the population makes wearables a potentially 
valuable screening tool [24]. 

The data acquired by wearable devices are predominantly of the time series type 
[35]. This kind of data requires appropriate architectures to extract information from 
them. Based on the data, there could be created support decision methodologies 
that serve in classification, forecasting, or anomaly detection problems [36,37]. For 
this purpose, M L algorithms are commonly utilised [38]. Additionally, the step of the 
data pre-processing is equally important as the further steps [39]. Depending on the 
data type - structured or unstructured, the approaches of M L methodologies could 
be appropriately selected [40]. To use some groups of the M L algorithms for the 
detection (for instance disease) purpose such as Support Vector Machines (SVM), 
XGBoost, k-Nearest Neighbour (k-NN), Random Forest, Decision Tree [41-43], the 
data for the input should be provided in the structured form. Moreover, the usage 
of neural networks is appropriate for the raw time series, i.e., unstructured data. 
They are especially suitable because of the possibility to learn and use long-term 
dependencies. The examples of the neural networks which are commonly used for 
the time series are one dimensional (1-D) C N N , Long-Short Term Memory Network 
(LSTM), Gated Recurrent Units (GRU), Bidirectional Long Short-Term Memory 
(BLSTM). Additionally, the utility of transfer learning allows for achieving the 
state-of-the-art-results [44-50]. With the usage of the aforementioned solutions, it 
is feasible to create support system methodologies, including those for healthcare, 
that are even highly accurate. However, that is not all. To fully understand the 
broader applications of umbrella terms of healthcare systems, wearables and M L , 
the following existing concepts need to be introduced first: eHealth, mHealth, and 
Internet of Medical Things (IoMT). 

eHealth and mHealth are using wearables, multimedia (electronically distributed 
mix of media containing audio, images, video, and text), and communication systems 
technologies for providing health technologies [51]. The following key advantages of 
eHealth and mHealth could be listed: ease of use, lifetime monitoring, cost reduction 
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of the healthcare system, and data analytics. IoMT is referred to as a network of 
smart things - medical devices, people, sharing healthcare data. IoMT could sense, 
process the data, network, and communicate [52]. 

These promising methods and concepts (eHealth, mHealth, and IoMT) could 
find applications for specific health problems which the population is dealing with 
nowadays and probably will need solutions in the future [51]. 

Official confirmation of Coronavirus has been announced on 29 December 2019 
by the World Health Organization (WHO) in China. This disease has a relatively 
high value of the basic reproduction (i?0) range. It is estimated between 2.6 to 
4.71, which in combination with the relatively high death rate is the reason why 
the disease has become one of the most deadly pandemics in history [17]. Thereby, 
screening and testing of COVID-19-positive people are nowadays considered to be 
one of the most effective ways how to stop or limit the further spreading of the 
infection likewise eliminate the danger of renovating the high passed so far state of 
emergency. Wearables open doors to completely new ways of how the health status 
can be monitored and possibly how to recognise the disease in its early stage. In the 
case of COVID-19, the early detection of this illness is of high importance, since the 
disease is communicable approximately two days before the first symptoms. The 
development of the disease is illustrated in Fig. 1.1. Some recent works report that 
wearable devices which are already available on the market, in particular the sensors 
of which they are equipped, can be efficiently used for monitoring the diseases such 
as influensa. 

Fig. 1.1: The COVID-19 development [2]. 

27 



The question is where else the wearable together with M L could find broader and 
needed applications. One of the concepts deserves extra attention. Ambient Assisted 
Living (AAL) is defined as the usage of Internet of Things (IoT) and Information 
and Communication Technology (ICT) for home healthcare. The idea is of high im­
portance in the view of the aging society. The standard medical practice is creating 
a big burden for the economy of the healthcare system. By the same token, less 
expensive and more approachable technologies need to be introduced. The usage 
of wearables and digital technologies could support 'enabling aging in place'. The 
elders could live in their domestic environments, with the community to which they 
are accustomed. This approach is supported by society and has a positive influence 
on the elders. Additionally, the maintenance costs of the wearables-aided healthcare 
systems are decreased [53]. Furthermore, wearables could prevent emergencies and 
mortality rates, which will be greatly appreciated by patients, their families, and 
medical staff [54]. Those aforementioned cases are regarded as highly demanded 
especially in the still-developing countries because of the limited number of insti­
tutions to care for the elders and lacking financial resources [55]. The common 
examples of the utilisation of M L in A A L applications are: human activity recog­
nition, monitoring and forecasting diseases, and indoor and outdoor localization of 
elders [56]. The scope of the algorithms used for this purpose is really broad: from 
k-NN, S V M , Naive Bayes, Random Forest, S V M , to neural networks like C N N , 
L S T M , and others [56]. The special target of this thesis will be PD. This illness is 
the second most common neurodegenerative disorder with a prevalence of 2 % for 
people over the age of 65 years [57]. 

This thesis is focused on the usage of M L techniques together with the wear­
ables for COVID-19 detection, and creating methods of A A L dedicated to recognise 
PD. These techniques represent a big promise for new innovative solutions in the 
mHealth and eHealth areas and have the potential to form the future of health care. 
To develop M L models and train them, three datasets are utilised for creating sup­
port system methodologies, mHealth and eHealth solutions. Two of them represent 
the records of COVID-19 cases, Influenza and healthy control (HC) group. HC is 
regarded in clinical studies as a person who does not have the illness or disorder be­
ing studied, however, this person could suffer from other diseases [58]. Those data 
were collected thanks to the Fitbit device and contains records of the heart rate and 
activity of the person - the number of steps taken. The third dataset represents the 
records of P D patients and HC. The dataset contains video and audio records. The 
symptoms of P D - hypomimia and hypokinetic dysarthria (HD) are computationally 
analysed. 

The conducted COVID-19 detections consider the character of the disease, i.e., 
the contagiousness of the disease and incubation period. Taking into account those 
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parameters allows for the detection of the disease in the early stage. In addition, the 
distinction between the diseases, i.e., COVID-19 and Influensa, is possible thanks 
to the existing representation of the Infruensa cases in the dataset. The target 
of the practical part of the thesis is also not only to design the support system 
methodologies but also to present the clinical interpretability of the models. They 
are provided for COVID-19 and P D detection thanks to the statistical analysis and 
usage of SHapley Additive explanations (SHAP) values. In addition, the creation of 
several models is the scope of the thesis to identify the most accurate of them and 
to determine the parameters of predictions inter alia such as accuracy, sensitivity, 
and specificity. 

Moreover, the aim of this work is to analyse the possibility to detect P D detec­
tion based on hypomimia and HD motor symptoms. The aforementioned dataset 
contains video and audio records. 43 unique clinical speech exercises are used to 
detect PD. The utility of the whole spectrum of speech exercises allows for the 
identification of the most suitable task for automatic P D detection in clinical prac­
tice. Furthermore, the multimodality approach of P D detection is explored, i.e., 
the combination of audio and video modality. Additionally, the prediction models 
generated thanks to the single modality are compared to those created for the multi­
modal approach to identify if the combinations of selected modalities could achieve 
better results. Moreover, the possibility of P D detection is evaluated for emotion 
recognition tasks between the groups. It is justified by the fact that P D patients 
manifest impairments in expressing emotions. Furthermore, the thesis provides the 
theoretical basements of the conducted experiments, likewise describes the transfer­
able methodologies used for a spectrum of diseases, and which are suitable for P D 
recognition based on sleep disorders symptoms. Moreover, the work presents the 
approaches destinated for E E G analysis. The characteristic of E E G signals and the 
application of E E G in diagnosis were presented. There are illustrated approaches 
with the usage of deep learning methods likewise the novelty: neural ordinary differ­
ential equation (ODE). ODEs are regarded as neural networks having big potential 
and they could be applied to wearable-related data. 

1.2 Research objectives and methodology 

The subject of this thesis is correlated to the usage of machine learning and wearables 
for the detection and monitoring diseases thanks to the usage of machine learning 
and wearables. The particularly considered topics are COVID-19 detection and 
neurodegenerative diseases like P D likewise E E G analysis. Thereby, the following 
seven main Research Objectives (ROx) in this thesis have been identified with their 
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related Research Questions (RQx). The achieved research tasks are depicted in 
Section 1.3. They are the answers to the Research Objectives and Research Tasks. 

R O l . Classification of C O V I D - 1 9 cases thanks to the wearable-related 
data: heart rate and number of steps taken 

• R Q 1 . 1 . Is it possible to improve the results presented in [59] based on this 
same dataset and proposed classification model instead of just anomaly detec­
tion? How accurate would be achieved the machine learning model? 

• R Q 1 . 2 . What kind of features would be the most appropriate for COVID-19 
detection? 

• R Q 1 . 3 . How to develop a successful methodology for early COVID-19 detec­
tion concerning the nature of the disease? 

R 0 2 . Differentiation C O V I D - 1 9 patients from Influensa cases based 
on wearable data 

• R Q 2 . 1 . What will be the accuracy of detecting COVID-19 cases and Influ­
ensa cases that happened before the main pandemic or in the middle of the 
pandemic? 

• R Q 2 . 2 . How accurate will be the distinction between Influensa cases before 
the main pandemic versus Influensa in the middle of the pandemic? 

• R Q 2 . 3 . How to design an algorithm for support methodology to detect 
COVID-19? 

R 0 3 . The dis t inct ion of C O V I D - 1 9 patients from Influensa cases and 
H C thanks to the wearable data and two datasets 

• R Q 3 . 1 . How to develop a suitable support methodology to detect COVID-19 
based on two different datasets? 

• R Q 3 . 2 . How accurate will the prediction of COVID-19 cases and ill cases be 
based on two various datasets? 

• R Q 3 . 3 . Which features will be the most beneficial to detect COVID-19 cases? 
R 0 4 . Recogni t ion of P D hinged on facial expression impairments and 

classification of emotions 
• R Q 4 . 1 . Which speech exercise: tongue twister or reading poem will be more 

suitable for P D detection based on hypomimia and classification of emotions? 
• R Q 4 . 2 . Which features based on emotion will be the most valuable for P D 

detection? 
• R Q 4 . 3 . How accurate will the P D detection model be based on hypomimia 

and impairments in expressing emotions? 
R 0 5 . Recogni t ion of P D thanks to the mul t imodal i ty — audio and 

video 
• R Q 5 . 1 . Which biomarkers are the most significant for P D detection? 
• R Q 5 . 2 . Which Czech speech exercise is the most powerful for P D detection? 
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• R Q 5 . 3 . What will be the highest obtained accuracy for P D detection? What 
are the components of this solution? 

R 0 6 . The review of the transferable methodologies of detection of 
sleep disorders thanks to the actigraphy device for Parkinson's disease 
detection 

• R Q 6 . 1 . Which methodologies used for sleep disorders and other illnesses 
could be applied for P D detection based on sleep abnormalities and actigraph 
device? 

• R Q 6 . 2 . What kind of diseases could have suitable biomarkers appropriate for 
P D detection based on sleep disorders and actigraph? 

• R Q 6 . 3 . What parameters could characterise sleep disorders in PD? 
R 0 7 . The review of the appl icat ion of deep learning techniques in the 

E E G analysis 
• R Q 7 . 1 . What characterises the EEG? 
• R Q 7 . 2 . Which deep learning methods are suitable for E E G analysis? 
• R Q 7 . 3 . What kind of methods will be suitable for E E G analysis based on 

wearable data? 

1.3 Dissertation Scope and Research Tasks 

Considering the discussion in subsection 1.1 the potential of the A A L solution is pro­
found. Parallelly and unexpectedly the COVID-19 pandemic became also one of the 
biggest issues in the current world. Emerging technologies like M L and commonly 
available wearables could serve as enablers to effectively deal with the problems with 
which the world is struggling nowadays. Moreover, the combination of them could 
be regarded as a paradigm shift in the field of eHealth solutions. Additionally, those 
technologies open the doors for faster screening of society and creating the support 
methodologies which could serve doctors as the assisting tools and facilitate the lives 
of the patients and infected people thanks to the limitation of necessary appoint­
ments at physicians, and hospitals, likewise more approachable screening for the ill 
person. Furthermore, the created solutions increase turnover for the sector of the 
silver economy and healthcare [60]. 

The only way to evaluate the considered support methodologies is the training 
and testing the proposed models with retaining the principles of the M L techniques. 
The crucial part is also the gathering and usage of suitable datasets. Those tasks 
were discussed in this thesis from theoretical as well as experimental points of view. 

To emphasise, this thesis provides an overview of created support methodologies 
for the ML-based detection of COVID-19, and PD. The developed models are dis­
tinguished into five subsequent studies. Furthermore, the theoretical discussion of 
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the transferable methodologies of detection of sleep disorders thanks to the actigra-
phy device for P D detection likewise the application of deep learning techniques in 
the E E G analysis were conducted. The following research tasks based on M L and 
answers to Research Questions and Objectives from 1.3 were carried out: 

• C O V I D - 1 9 detection based on records of heart rate and act ivi ty 
the proposed classification models were trained on a publicly available dataset 
introduced in [59]. The models were optimised to detect the differences be­
tween the healthy and ill states of the participants thanks to the analysis of 
spectral, frequency, and statistic features. Moreover, the statistical analysis 
of the proposed features was provided. A few M L models were tested and the 
outcomes of the prediction were illustrated [2]. 

• C O V I D - 1 9 dis t inct ion from Influensa cases the introduced M L mod­
els classified the cases between COVID-19 cases and two types of Influensa 
considering the heart rate (HR) and personal activity. The analysis was con­
ducted based on the claim from [1] about occurring differences between the 
illnesses [61]. 

• C O V I D - 1 9 differentiation from H C and Influensa based on two datasets 
- the introduced models were malleable on two datasets ( [1,59]) to obtain a 
bigger cohort and to consider Influensa in the classification tasks. One of the 
datasets was undersampled to combine both of them. The statistical analy­
sis is presented and several classification models were depicted to distinguish 
COVID-19 cases from HC, likewise a few types of Influensa from COVID-
19, and ill cases from HC [62]. Furthermore, the multiclass classification was 
considered. 

• P D detection based on hypomimia and emotion recognition Thanks 
to the automatic analysis of changes in emotion during doing Czech speech ex­
ercises by participants, the M L models were developed for P D detection. The 
two exercises which were analysed were diflicult-to-pronounce tongue twister 
likewise reading poem. A few classifiers were tested for this purpose. The in-
terpretability of the best model was illustrated by SHAP values. Additionally, 
the statistical analysis of the generated features was presented [63]. 

• P D detection based on mul t imoda l approach (video and audio) -
the interpretable support methodology of P D detection was created based 
on hypomimia and HD symptoms. The tasks used for the evaluation of the 
disease were 43 Czech speech exercises. The created facial features based 
on detected facial landmarks together with the audio features were used for 
the model trained by the XGBoost classifier. Additionally, both the video 
and audio features were examined to check their statistical significance. The 
interpretability of the model was given thanks to the usage of SHAP values. 
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1.4 Dissertation Outline and Main Results 

This doctoral thesis is the descriptive outcome of the study funded from Euro­
pean Union's Horizon 2020 Research and Innovation programme under the Marie 
Sklodowska Curie grant agreement No. 813278 (A-WEAR: A network for dynamic 
wearable applications with privacy constraints, http://www.a-wear.eu/). The de­
scribed research was conducted between 2019 and 2022. The most important part 
of the research is included in the chapters 2 - 6 based on the published conference 
and journal papers. 

The structure of the thesis is starting from the introduction, the theoretical back­
ground of the research, the state-of-the-art related to the topics analysed and de­
scribed in the thesis likewise the instances of the conducted research about COVID-
19 and P D with the usage of M L and wearables. 

The first chapter is the introduction of the thesis (Chapter 1), whereas Chapter 
2 shows the theoretical basement of the discussed problem in the thesis, such as 
COVID-19 detection, P D recognition, and E E G analysis as the time series concept. 

Furthermore, the Chapter 3 considers the current state-of-the-art issues dealt 
within the scope of this thesis. The modern solutions for COVID-19 detection utilis­
ing wearables and M L are depicted. Moreover, P D detections based on hypomimia, 
HD, and sleep disorders are presented. Additionally, the possible translations of 
recognition of sleep disorders based on actigraphy records and M L for P D detection 
are illustrated. Furthermore, the problem of analysis of E E G time series is broadly 
described with emphasis on the deep learning methods for this aim. 

Chapter 4 and Chapter 5 introduce the practical solutions for the defined issues 
together with a logical presentation of the carried out research. The Chapter 4 
describes three support methodologies developed for the detection of COVID-19 
using data from wearables. The first of them is recognising the COVID-19 cases from 
HC based on H R measurements and personal activity. While the second solution of 
M L is differentiating the COVID-19 cases from two types of Influensa. The third 
set of solutions is the models created thanks to the combination of two previously 
utilised models. 

The Chapter 5 considers the automatic detection and interpretation of the pre­
sented M L models for P D recognition. The first task is dealing with the automatic 
recognition of emotions among P D patients and HC thanks to the utilised neural 
network and based on the variability of their occurrence during the assigned speech 
exercises, the model can detect P D disease. The second research in this area takes 
under analysis the symptoms of hypomimia and HD among P D patients. The mul­
timodal solution is provided, which is analysing the facial and voice features. 

The final Chapter 6 summarises the whole thesis and provides the highlights of 
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the main results. 



2 Background 
This chapter contains the theoretical background described in this thesis. The topics 
relate to diseases such as COVID-19, P D likewise their detections. Moreover, the 
E E G character and analysis, the utility of this biosignal for diseases recognitions 
likewise the application of neural networks for E E G . Firstly, the nature of COVID-19 
and the symptoms of this illness are mentioned. Additionally, the methods dedicated 
to its recognition including wearable devices are briefly depicted. Furthermore, the 
P D is similarly described, i.e., the character of this disease together with the signs of 
this illness are listed. Some symptoms of PD: hypomimia, HD, and sleep disorders 
in P D are broadly illustrated. Moreover, the importance of mHealth for P D is 
explained. 

2.1 COVID-19 Pandemic and Possibility for Detect­
ing Disease 

The pandemic of COVID-19 began in December 2019 [16,62]. On 11 March 2020, 
the W H O officially announced the outbreak of the pandemic [20]. Two words are 
used in the definition of pandemic, pan and demos. Demos refers to the people, 
and pan refers to everyone. The world faces up to a pandemic, which causes a state 
of emergency, numerous infections, and deaths likewise the occurring obstacles in 
everyday life. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
is the reason for this illness [61,64]. Coronavirus belongs to the Coronavirinae and 
Torovirinae subfamilies of the Coronavirinae family. It is known that Coronaviruses 
are capable of infecting a wide variety of organisms, including rodents, birds, mam­
mals, and humans [2,17]. 

There is a wide range of symptoms associated with COVID-19. The symptoms 
range from coughing, fever, hoarseness, shortness of breath, chest pain, or abdominal 
pain [65], as well as the rare loss of smell and taste [66]. Additionally, examining 
the wearable records revealed that there were changes in H R around the time of 
onset of symptoms [1]. According to [3], the authors have identified the three stages 
of COVID-19: the early stage (stage I), the pulmonary phase (stage II), and the 
hyperinflammation phase (stage III). If the disease is detected at the prodromal 
stage (stage I), it will have the greatest impact since it represents a time when a 
person feels healthy but is already infectious, which is resulting in social contact 
and the spread of the disease to others. As mentioned by the authors [3], this phase 
is characterized by fever, dry cough, and mild constitutional symptoms. Detection 
in the stage I prevents further complications, and the duration of the illness is 
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reduced [3]. The three stages of the disease likewise potential therapies are illustrated 
in Fig. 2.1. 
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Dry Cough 
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Time course 
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Cardiac Failure 
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educe immunosuppresion 
(avoid excess steroids) 

Careful use of Corticosteroids; stains; human immunoglobulin, 
IL-1/IL-2/IL-6/JAK inhibitors/GM-CSF inhibitors  

Fig. 2.1: The COVID-19 stages and potential therapies [3]. 

Additionally, long-term complications have been identified such as cardiovascu­
lar, respiratory, as well as neurological problems, in addition to many others that 
have not yet been fully described [67-69]. There are several risk factors associated 
with this disease, including civilization diseases, old age, renal dysfunction, and hep­
atic dysfunction [2,70] In order to limit the spread of the disease, it is ideal to detect 
the disease before the highest contagious period, which is considered to manifest 2 
days prior to the visible onset of the symptoms until 1 day after the onset [71]. 

It is especially notable that variations in H R are present in COVID-19 cases, 
and that they persist for a longer period than common influensa. The resting HR is 
elevated nearly the time when symptoms have started [1]. Moreover, COVID-19 [72] 
also showed variations from norms during sleep. It was reported that deep sleep 
was associated with raised respiration rate (RR), while non-Rapid Eye Movement 
(NREM) sleep was associated with increased HR at night. In contrast, the root 
mean square of successive differences (RMSSD), as well as the Shannon entropy for 
nocturnal R R series declined. A n analysis of Z-values and 1257 participants wearing 
Fitbit devices led to this conclusion [72]. 
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The virus is primarily transmitted through social contact, namely face-to-face 
contact, coughing, talking, or sneezing [73]. This disease has a relatively high value 
of the basic reproduction (i?0) range. It is estimated between 2.6 to 4.71, which 
in combination with a relatively high death rate, is why the disease became one 
of the most deadly pandemics in history [17]. The possible solution for controlling 
social contact to limit the spreading of the virus is the usage of tracing apps, mobile 
phones and wearables [20]. There are several ways in which the screening test data 
can be collected. Imaging technologies offer the most accurate diagnostics, even 
approaching 100 percent in some cases [74]. Furthermore, reverse trans cription-
polymerase chain reaction (RT-PCR) is the most widespread diagnostic, despite 
being relatively accurate, these methods are typically used after the onset of disease 
in order to confirm the diagnosis. Nevertheless, wearable devices [20] appear to 
be the most inexpensive and fastest method of screening a large population. They 
appear in the population quite widely which makes them a good candidate to be used 
as a screening test. It is essential that the COVID-19 should be detected two days 
before onset. During those two days (on average), people are unaware that they are 
infected, which makes it easy for them to spread the disease. Due to the difficulty of 
identifying those symptoms, it is not an easy task. Wearable sensors can be used to 
analyse a variety of physiological parameters, including activity levels, temperature, 
cardiovascular strain, blood pressure, sleep parameters, respirations variable, sound 
monitoring, coughing, Sp02 level, humidity sensors [20,75,76]. Analysing the data is 
the final step in creating the support methodology - assisting technology for clinical 
purposes. To sum up, M L holds great promise for the analysis of COVID-19-related 
data [2,62,76]. 

2.2 Parkinson's Disease and the Methods of its De­
tection 

P D is one of the most prevalent neurodegenerative diseases in society. This disease 
occurs in 2-3 % of society in the European Union (EU) beyond 65 years old [57]. 
A major challenge that the E U will have to deal with within the next 30 years 
is the aging of society. This issue is associated with neurodegenerative diseases, 
and one of them is P D [15]. A distinction can be made between the motor and 
non-motor symptoms of PD. The manifesting main motor symptoms depend on 
the progressive loss of dopaminergic neurons in substantia nigra pars compacta 
[77-79]. Among the motor symptoms could be distinguished the following signs: 
hypomimia, HD, the Freezing of Gait (FOG), bradykinesia, tremor, P D dysgraphia, 
dyskinesia, dysphagia [80-87]. Sleep disorders, hallucinations, depression, anxiety, 
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constipation, cognitive deficits, urinary symptoms, etc. belong to the non-motor 
symptoms [77,88-90]. The motor and non-motor symptoms are listed in Fig. 2.2. 
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Motor symptoms 
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Bradykinesia 
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Rigidity 
Postural instability 
Dystonia 
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Freezing of gait 
Micrographia 
Hypomimia 
Hypokinetic dysarthria 
Precision grip impairment 
Disturbed saccadic eye movements 

Non-motor symptoms 
Olfactory impairment 
Stereopsis 
Sleep disturbances 
Fatigue 
Reduced contrast sensitivity 
Impaired colour discrimination 
Dry eye syndrome 
Pain 
Depression 
Anxiety 
Apathy 
Hallucinations 
Dementia 
Orthostatic hypotension 
Thermoregulatory dysfunction 
Gastrointestinal dysfunction 
Constipation 
Urinary dysfunction 

Fig. 2.2: The motor and non-motor symptoms of PD. 

If the disease is detected in the early stage, the deterioration of the health is 
minor because the treatment is implemented. Because of this fact, early detection 
is especially desirable [91]. The aging of society forces the demand of creating new 
technologies for detecting neurodegenerative diseases in their early stage. Recently, 
the novelty in technology allows for utilising them for purpose of P D detection 
[63,92]. 

Nevertheless, the serious issue is that the early symptoms of the disease are lowly 
apparent. Moreover, the detection of cognitive decline is not a simple task because of 
the diversity of intelligence in the population, and the variation in education length. 
Furthermore, P D occurs more frequently in the male group [18,19]. The methods 
which are the most accurate, however, are thereby expensive including MRI , CT, 
and P E T . Those methods are rather used in more advanced stages and the hospital 
environment. The limitation is also the price of the examination. Because of those 
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factors, there is a need for relatively cheaper and more approachable solutions for 
patients [18,19]. 

This disease cannot be cured, however, the process of development could be inhib­
ited. There are applied methodologies such as neurostimulation or pharmacotherapy 
[93,94]. The patients visit the hospital several times per year to maintain relatively 
good health, nevertheless, they could meet the Hawthorne effect or this amount of 
appointments per year is not sufficient [95]. Patients with P D can experience sudden 
neurodegeneration, side effects such as levodopa-induced dyskinesia, or numerous 
fluctuations in motor function. To prevent the deterioration of health quality, such 
incidents require immediate intervention. Telemedicine solutions, which are capable 
of addressing those issues, are in the research interest of many scientists. The ap­
plication of mobile phone usage for P D detection and monitoring of the progress of 
the disease seem to be especially interesting. Examples of the application of mobile 
smartphones for healthcare belong among the mHealth systems [96-100]. In order to 
minimise the possibility of manifested damages, the methods of P D recognition will 
be targeted particularly for early detection. Early detection refers to the recognition 
of a disease at an early stage of its progression [101]. 

P D management is challenging despite the achievements in treatment approaches 
[4]. One of the most desirable targets is P D detection, especially in the early stage. 
The used tools for this purpose are based on artificial intelligence. AI in the health­
care domains is a paradigm shift, to detect, predict, and manage PD. The seven 
categories were distinguished and are presented in Fig. 2.3 where the AI finds appli­
cation to deal with PD. The most common analysing modalities with M L are speech, 
gait, sleep pattern with actigraphs, hypomimia, handwriting, and tremor. Not only 
the detection of the P D is the aim of the researchers, but also the prediction of 
wearing-off state [102]. Additionally, finding the clinical interpretable biomarkers is 
in the circle of researcher interest. Furthermore, the monitoring of brain lipidomics 
and the monitoring of dysregulated gut microbiome status among P D patients with 
the usage of AI is a captivating domain for scientists. Next, the AI is explored for 
smart gait and monitoring nanorobots in treatment and diagnostic likewise boosting 
the potential of telemedicine. Further, the submittal of assistance in an advanced 
stage of P D is a topic where the AI solutions will aid. For instance, the metaverse 
applications could support P D patients with cognitive decline. The technologies 
that could also support the solutions for P D patients in advanced stages are IoT, 
wearables, sensors, and mHealth. Additionally, AI could serve in neurosurgery to 
strengthen for example the process of decision-making during surgery. Moreover, AI 
could facilitate the drug discovery for this disease and development process [4]. 

One of the symptoms which could be utilised for P D detection is hypomimia. The 
hypomimia manifests in an expressionless face with no or little sense of animation, 
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Fig. 2.3: The domains in which AI finds application in P D [4]. 

the reduction of facial expression [103], the slowness and limitation of facial motion 
(facial bradykinesia) [104]. Moreover, there is observed a stiffness of muscles, the 
issue with orofacial movements, i.e., the slower speed of the jaw lips [105-107], de­
creased blinking rate [108], unconsciously opened mouth [109], flattened nasolabial 
folds [109], occurring asymmetry in the face [110], decreased ability to raise eye­
brows [88], etc. It is considered that P D patients recollect a so-called 'poker face'. 
Furthermore, expressing emotions by them is a challenging task [88]. Additionally, 
Parkinsonians have an impaired ability to recognise human emotions in comparison 
to the healthy group [111]. 

The communication skills of P D patients are also affected because of occurring 
dysarthria among them [89] likewise the impairment of cognitive skills [112]. Com­
munications serve as the way of expressing the emotions, feelings, information, and 
ideas by people [113]. Social well-being is disrupted in P D because of a decrease in 
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communication skills [112]. A good indicator of the level of communication skills and 
progress of the disease could be regarded as the tongue twister, i.e., validated speech 
exercise. Pronunciation in this speech exercise is challenging and could reveal the 
P D level because of difficulty in the appropriate usage of tongue and mouth. Fur­
thermore, dysarthria affects articulators and their debility may manifest particularly 
during the performance of exercises such as the tongue twister [89]. 

Another early motor symptom of P D is HD [114,115]. This mark occurs parallelly 
with hypomimia [80]. HD manifests in 90 % of P D patients [116] and this speech 
disorder occurs because of a basal ganglia control circuit pathology [80]. HD occurs 
in the field of phonation, prosody, articulation, and respiration. The exact diffi­
culties are apparent in irregular pitch fluctuations, breathy and harsh voice quality, 
monoloudness, reduced loudness, airflow insufficiency, unnatural speech rate, impre­
cise articulation, monopitch, improper pausing, etc. The detailed description of HD 
is attached in [84,117-119]. 

Moreover, sleep problems are considered signs of PD. Among them could be 
distinguished following symptoms: insomnia, Excessive Daytime Sleepiness (EDS), 
Rapid Eye Movement Behavioral Disorder (RBD), Restless Leg Syndrome (RLS), 
and breathing difficulties. Those symptoms manifest in the early stage of illness 
[87,120-122]. 

The quality and quantity of sleep influence people's health. The measurements 
describing sleep could be indicators of illnesses. Wearable devices (including smart-
watches) can be used to evaluate sleep disorders as well as sleep diaries, WiFi-based, 
bed sensors, PSG, videosomnography (VSG), radiofrequency (RF), and E E G [123]. 
However, the PSG is considered to be the gold standard. The records of respira­
tion, electrocardiography (ECG), E E G , electromyography (EMG), electrooculography 
(EOG), oximetry, and body position are collected during conducting PSG [124,125] 
(see Fig. 2.4). Unfortunately, this procedure is carried out in the hospital envi­
ronment. Moreover, there are also tests like V S G , accelerometry, and Continuous 
Positive Air Pressure [123]. The drawback of the PSG is that it is often executed 
in the later stage, not in the highly demanded early stage, and it is performed in 
hospitals. 
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Fig. 2.4: The parameters measured during PSG. 

2.3 EEG, Time Series, and Methods for its Detection 

The non-intrusive diagnostic technique for analysing the bioelectrical brain function 
is so-called E E G . Firstly, the electrodes are situated on the head skin surface, then 
the signals of variance in potential likewise the changes between the different parts 
of the brain in potential are gathered. Those signals are finally amplified to generate 
a record of them. This record is the so-called electroencephalogram. 

The aim is to catch the flow of the waves which have characteristic forms and 
typical frequency bands. 1-100 HZ is the range of frequencies, whereas amplitude is 
equal to 5 to several hundred fj,V. 

The experiments with E E G in humans date back to 1924. It was used for the 
recognition of the pathologies. The analysis of emotions, brain-computer inter­
face (BCI), and mental workload represent the field where E E G found applications 
recently. Mental disorders could be analysed by E E G such as Alzheimer's disease, 
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schizophrenia, attention-deficit hyperactivity (ADHD), depression, and dementia. 
Moreover, the symptoms of a brain tumour or epilepsy could be found with the 
usage of E E C Furthermore, this method is useful for analysing the sleeping pat­
tern, human ability to concentrate, and profoundness of anesthesia [126,127]. The 
aforementioned applications of the E E G are depicted in Fig. 2.5. 

Fig. 2.5: The applications of E E G . 

The main problem with E E G signals is the inferior signal-to-noise ratio (SNR). 
The filters are used to reduce the influence of noise on the signal, and threshold 
the outliers of the signal. The impact of the cardiac bioelectrical activity, human 
movements, the motion and variance in the tension of muscles, and eye movement 
are eliminated thanks to the denoising technique. Moreover, the analysis of E E G is 
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challenging because of its non-stationary character. Because of this, the classification 
of the E E G signal is challenging. Furthermore, the E E G signal varies interpersonally 
[127]. 

The methods suitable for E E G analysis are the modern deep learning tech­
niques likewise transition signal into the frequency domain and extraction of the 
features. The deep learning techniques serve as the pre-processing stage, feature 
generation, regression, and classification. The types of neural networks, which were 
used for the analysis of the E E G , are C N N [128], L S T M [129], recurrent neural 
network (RNN) [130], restricted Boltzmann machines [131], generative adversarial 
network (GAN) [132], autoencoder (AE), fully-connected layers (FC) [133], deep be­
lief network (DBN) [131], transfer learning [129,134]. The augmentation of the data 
is feasible thanks to the usage of transfer learning and G A N . This approach has a 
chance to increase the quality of classification tasks [135]. 

2.4 Conclusion 

This chapter provided an introduction to the topics elaborated in this thesis. The 
nature of the diseases analysed in this work was described, i , e. COVID-19 and 
PD. Additionally, the symptoms of those illnesses were briefly illustrated. They 
are crucial foundations to understand assumptions of the developed methodolo­
gies presented in Chapters 4, and 5. The prelude of the diagnostic methods of 
COVID-19 and P D was provided in this chapter. The state-of-the-art methods of 
diseases recognition and prediction of the pandemic are broadly described in the 
next Chapter 3. That part of the thesis is focused on the presentation of the used 
methods of artificial intelligence, wearables, eHealth, and mHealth. Furthermore, 
the foundations of E E G analysis were presented (it is an answer to RQ7.1.) . Ad­
ditionally, the instances of artificial intelligence methods - commonly used neural 
networks suitable for E E G processing were portrayed which could be applied to 
wearable-related data (they are the answers to R 0 7 . , RQ7.2 . , RQ7.3.) . They 
are: C N N [128], L S T M [129], R N N [130], restricted Boltzmann machines [131], 
G A N [132], A E , FC [133], D B N [131], transfer learning [129,134], likewise transfer 
learning and G A N . The applications of M L for E E G and neurodegenerative diseases 
are described also in the following Chapter 3. 
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3 The state-of-the-art overview 
This chapter presents the state-of-the-art methodology for assisting in the diagnosis 
of COVID-19, P D and analysing E E G signals. The review of technology dedicated 
to the recognition of COVID-19 is focused on the personal level likewise the analysis 
of pandemic trends thanks to the usage of wearables and M L . Furthermore, the 
illustrated methods of P D diagnosis and evaluation of the progress of the illness are 
based on hypomimia, HD, and sleep disorders. Moreover, the approaches to the 
detection of different diseases, which would be potentially suitable for P D detection 
based on sleep disorders and actigraph records, are discussed. Moreover, the appli­
cations of deep learning for E E G analysis are depicted. Additionally, the examples 
of Granger Causality for E E G are illustrated. Finally, the operational rules of neural 
O D E are explained and the advantages of this neural network are presented. 

3.1 COVID-19 Detection with the Usage of Wear­
ables and Machine Learning 

So far, there were introduced few solutions for the detection of COVID-19 with the 
usage of wearable devices together with M L approaches in the literature. A short 
review of them is presented in this section. If COVID-19 is detected early, the 
reproduction rate can be significantly reduced and the infection can be prevented 
from spreading. Nevertheless, the symptoms do not manifest approximately two 
days before the visible onset of the disease which supports the spreading of the 
virus. 

The authors in [59] made an analysis of changes in heart rhythm and daily activ­
ity of COVID-19 cases based on records of HR and the number of steps taken during 
the day. The sampling rates were one per minute and one per day, respectively. Ad­
ditionally, the sleep patterns were monitored, however, the data were incomplete. 
The records of the devices come from the Fitbit smartwatch. Standford University 
performed an experiment. The target of the experiment was to detect anomalies in 
the prodromal stage of the disease. They obtained 32 COVID-19 cases, 15 Influensa, 
and 73 HC among 5300 participants. Three algorithms were developed: Resting 
Heart Rate (RHR) Difference anomaly detection, the heart rate over steps anomaly 
detection (HROS-AD), and cumulative sum (CuSum) [59]. Thanks to the CuSum 
algorithm, 63 % of COVID-19 cases were recognised positively. Nevertheless, the au­
thors did not consider specificity [59]. RHR Difference (RHR-Diff) offline anomaly 
detection tried to find anomaly detection in HR thanks to the residuals standard­
ization of RHR. 1 hour signal of R H R was standardised on the R H R average of 28 
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days. The time window - interval is considered to be an anomalous if the window 
is under the relevance of 0.05. The HROS-AD is an unsupervised learning anomaly 
detection algorithm [59]. The metric the ratio of heart rate to the number of steps 
taken (HROS) and Gaussian distribution analysis were used. The moving average, 
undersampling to one hour, and Z-score transformation were utilised for HROS-AD 
algorithm. The anomalies found by the Gaussian distribution analysis were recog­
nised as outliers. The algorithm which was working in real time was CuSum. The 
deviations of residuals of R H R were summed and 28 days of records were taken into 
account during performing CuSum. 

In another work [1], the Fitbit - wearable device was also utilised for COVID-19 
analysis. COVID-19 cases and two types of Infiuensa were taken into consideration. 
The authors enrolled 7000 participants and gathered data for 41 COVID-19 cases, 
85 Infiuensa during the pandemic, and 1265 Infiuensa before the main pandemic. 
The number of steps taken by human was collected together with R H R records. A 
longer median duration of COVID-19 cases (12 days) was observed than the spanning 
of Infiuensa before the main pandemic (7 days, Pre-COVID-19 Flue) and during 
the pandemic (9 days, Non-COVID-19 Flue). The self-reported illness duration is 
illustrated in Fig. 3.1. Thanks to the statistical analysis, it was proved that raised 
R H R manifests often nearly the onset of the disease. The authors also compared the 
R H R between COVID-19 and Infiuensa cases, and COVID-19 records characterise 
higher values of RHR. Additionally, symptoms such as shortness of breath, anosmia, 
and chest pain were typical for COVID-19 cases. 

The data from [59] were also analysed in [136]. The PCovNet was proposed 
which is a Long Short-term Memory Variantial Autoencoder (LSTM-VAE) , to de­
tect the anomalies in the early stage of the disease. This network has been trained 
on 25 COVID-19 cases analyses the RHR. The 0.946 precision and 0.234 recall 
was achieved in the experiment conducted by authors [136]. Furthermore, F-beta 
was computed with the result of 0.918. The usage of this parameter is never­
theless untrustworthy because the true negatives are omitted. Moreover, the au­
thors outweighed the importance of precision over recall thanks to the (3 parame­
ter. According to R H R and PCovNet, 100 % of the individuals with the disease 
were considered il l , however, these individuals were already infected, and as such, 
they should be placed in quarantine. The analysis of anomaly detection based on 
this same dataset [59] was provided in [137]. The One Class-Support Vector Ma­
chine (OC-SVM) was used to detect COVID-19 cases. The authors outperformed 
the results from [59]. The anomalies in R H R signal were detected 23,5 % - 40 % 
earlier in comparison to [59]. Moreover, the authors of [137] provided false positive 
rates. They established the optimal time window length of R H R as 300 and 350. 
21 among 29 COVID-19 cases was the maximum anomalies number found by the 
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Self-Reported Duration of ILI Event (Days) 

Fig. 3.1: The illness duration for COVID-19, Influensa before the main pandemic 
and during the pandemic [1]. 

O C - S V M based on R H R (RHR-OC-SVM). For HROS, the O C - S V M (HROS-OC-
SVM) detected anomalies for 24 among 29 COVID-19 patients. The number of 
outliers for HC was 39.96 (maximum was 100) for the false positive rate thanks to 
the R H R - O C - S V M [62]. 

Another modality that was used for COVID-19 evaluation thanks to the wear­
able was temperature. In [138], the Oura ring was utilised in the experiment. This 
device is capable of gathering the values of temperature, respiratory rate, HR, and 
Heart Rate Variability (HRV). The temperature changes were observed before other 
symptoms in this research. This phenomenon was detected in 38 participants among 
50. The nonparametric Kruskal Wallace test with Tukey-Kramer post hoc compar­
ison was performed. Additionally, a strong correlation between cardiac rhythm and 
fever was observed in [5]. Elevation of HR was detected as 8.5 beats per minute on 
average per 1 °C. This relation is evident for RHR. This fact could be explained by 
demonstrating higher precision in gauging resting time by wearables. Unfortunately, 
this dependence is not special only for COVID-19, but also for influensa. Moreover, 
a rise in R H R is also characteristic of short sleep. Furthermore, the authors in [139] 
used also temperature as the parameter of characterisation of COVID-19. They 
proved that temperature has an influence on COVID-19 detection among physiolog­
ical signals such as temperature, HR, HRV, RR, and metabolic equivalents (MET) 
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collected by the Oura Ring. For the classification task by analysing data coming 
from 73 people with COVID-19 disease, the researcher in [139] obtained for all of 
the modalities the Area Under the Curve (AUC) = 0.819 and after removing the 
temperature modality A U C = 0.770. The scientists tested Random Forest to detect 
COVID-19 patients. 

The utilisation of medical device was presented in [140]. It was the smartwatch 
Empatica E4. The research considered the usage of a four-layer neural network -
CovidDeep together with augmentation techniques. Several modalities were taken 
into account, including the inter-beat interval (IBI), pulse oximeter, skin temper­
ature, blood pressure, and galvanic skin response (GSR). Moreover, the neural 
network analysed extra collected parameters such as weight, height, gender, age, 
addiction to drinking and smoking, and habits. The dataset contains records of 
30 symptomatic COVID-19 cases, 27 asymptomatic COVID-19 patients, and 30 
HC. The signals were portioned into 15 s windows. The CovidDeep contains data 
pre-processing, synthetic data generation with the T U T O R framework, architecture 
pre-training, grow-and-prune synthesis with a decision tree and random forest, and 
output generation through softmax. The best result of COVID-19 detection was 
98.1 % of accuracy. The modalities which were taken into account were blood pres­
sure, GSR, oxygen saturation, and a questionnaire. The use of the Empatica E4 is 
still challenging as a screening test due to its limited distribution in population and 
high cost. 

The influence of oxygen saturation (SpC^) and R R were taken under analysis 
in [141]. 208 records of COVID-19 cases from smartwatches were selected for the 
study. The statistical analysis was conducted using chi-square distributions and in­
dependent t-tests. According to the chi-square distribution, there is no significant 
difference between IoT factors and gender. Range and coverage, compatibility, in­
teroperability, performance, and secure connectivity with wearables belong to the 
IoT factors. 

The respiration rate was used for COVID-19 detection [142]. The data were gath­
ered by the W H O O P smartwatch. The dataset contains the record of 81 COVID-19 
cases and 190 HC. The median R R per minute was gathered during the night and 
recognised as the respiration rate. This signal was analysed by the W H O O P strap 
algorithm. The study allows recognition of 20 % of COVID-19 cases two days before 
the visible onset of the disease and, 80% of COVID-19 cases were detected three days 
after the onset. The gradient boosting was used as a classifier. The detection of 20 
% of COVID-19 cases is much more crucial because of the need for the detection of 
the disease in its early stage and the usage of it as a screening test. Nevertheless, 
the percentage rate is low for this purpose. 

The changes in HR, HRV, and R R were examined in [72]. The records were 
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collected by Fitbit smartwatch. The number of COVID-19 cases was 1181 and HC 
was 13662. The applied C N N obtained A U C = 0.77 ± 0.03, whereas the sensitivity 
was equal to 47 % and specificity was equal to 95 %. The researchers computed 
the following parameters: the estimated mean RR, the mean nocturnal H R during 
N R E M sleep, and the Shannon entropy of the nocturnal R R series. As a method 
of normalization, the Z-score was applied. Moreover, during the training process, 
parameters such as gender, age, and Body Mass Index (BMI) were input into the 
neural network. Moreover, the elevation during disease in H R together with R R was 
observed, whereas deterioration in HRV was detected. 

The above-mentioned works address the issue of detecting COVID-19 on a per­
sonal level through the use of wearable devices. Moreover, the literature reports on 
the studies of analysis of pandemic trends - the crowd-level analysis [2]. 

The analysis on the crowd level was presented in [5]. A system for alerting of 
anomalies in physiological signals was developed using deviations in sleep patterns 
and R H R calculation from photoplethysmography (PPG) wearable records. Thanks 
to the Huami devices, the records of 1.3 million participants were collected. The 
support methodology was created with the usage of the heterogeneous neural net­
work CDNet. CDNet contains CatNN and DenNN. This network consists of dense 
numerical features (historically officially reported COVID-19 rates, historical phys­
iological anomaly rate, active user density) and sparse categorical features (season, 
weather, and holiday activity). The schematic structure of the CDNet network is 
presented in Fig. 3.2. Using Pearson's correlation, the COVID-19 infection rate 
was compared with the physiological anomaly rate. The regions of China such as 
South China, Central China, and North China were taken into account together 
with South-Central Europe. Foshan, a Chinese city with a correlation of 0.81, was 
observed to have the highest correlation. The average value across all cities was 0.68. 
However, local events might influence people's common behavior patterns, just as 
individual variability may affect the model. 

Furthermore, AI was used to analyse and manage data in [143]. The dataset 
consists of blood parameters collected from the laboratory in 2020. M L was applied 
to detect COVID-19. There were 80 patients with COVID-19 among 600 patients. 
A total of 18 features are included in the dataset. Classifiers such as Random 
Forest, Naive Bayes, and S V M were applied. The normalization and feature selection 
was performed as the pre-processing step. The highest results were obtained for 
S V M : 95 % accuracy, 94 % F l , 95 % precision, 95 % recall, and 95 % A U C . 
Unfortunately, there is no provided information in which stage of COVID-19, the 
data were gathered. 

Additionally, not only the stage of COVID-19 performed with the usage of M L 
but also the need for hospitalization in [144]. The authors developed the COVID-19 
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Fig. 3.2: The scheme of the neural network CDNet [5]. 

decompensation index (CDI). Continuous monitoring was done with the wearables 
situated on the chest - VitalConnect VitalPatch and finger pulse oximeter - Proac­
tive, Protekt® Finger Pulse Oximeter 20110. There were gathered records of raw 125 
Hz E C G , triaxial accelerometer, skin temperature, and oxygen saturation. There 
are 22 positive cases (requiring hospitalization) and 308 negative cases included in 
the dataset. A U C of 0.84 was obtained by gradient boosting. 

The summary of the usage of M L methods with wearable for analysing the 
COVID-19-related data is presented in Table 3.1. 

Furthermore, the platform for monitoring COVID-19 was introduced in [145]. 
It is known as the Biovitals Sentinel and the platform utilises armband biosensors 
(Everion). It is possible to utilize this platform as a source of data for support­
ing system methodology. A number of signals are collected, including RR, pulse 
rate, daily activity statistics, skin temperature, blood oxygen saturation, and blood 
pressure. 

Furthermore, the utilization of wearable for measuring physiological signals is 
highly needed. There are a variety of options. In [146], the authors used the skin 
sensor placed on the throat to measure the accelerometer signal and temperature. 
Additionally, this wearable device could measure the cough frequency, duration, 
and intensity of cough with a wireless solution. The heart measurements were also 
performed. Unfortunately, this skin sensor and approach are not suitable for early-
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stage detection, but for a more developed stage when the cough is occurring. A 
continuous measurement of the progression of the disease could be made using this 
device. Moreover, the situation of the wearables could be various. On-body sensors 
can be integrated into smart rings, headbands, camera clips, sociometric badges, 
smartwatches, and embedded in clothing [20,62]. The use of smartwatches and 
smart masks was primarily used for the early detection of COVID-19 [147]. A n 
interesting method for measuring Sp02 was presented in [148]. The researchers 
proposed a wearable equipped with a P P G sensor to measure oxygen saturation. 
This device exhibits the same level of accuracy as finger pulse oximetry as well as the 
ability to respond more quickly. This wearable could measure potential hypoxemia 
state. Further, the usage of a headset wearable was proposed for coughing detection 
in [149]. Nevertheless, this application is not suitable for early detection of COVID-
19, because the cough is later a symptom of the disease. 

Additionally, the ability of a smartwatch, such as Apple Watch, to collect ECGs 
can be used to monitor the COVID-19 disease [150]. 

There were presented a few solutions for the detection of COVID-19 thanks to 
the usage of wearables and M L . It depends on how data are collected and which 
modality is chosen to be able to be used in the early stage of the detection. There 
were introduced also solutions that are atypical like wearable placed in the ear or 
smart masks in comparison to common smartwatches for monitoring COVID-19. 
The application of Empatica E4 is unfortunately limited, because of the cost of the 
device and not spreaded widely in society, to be used as a screening test. The usage 
of a Fitbit device, Apple Watch, Garmica, or Oura Ring seems to be more suitable. 

A review of the methodology of COVID-19 recognition and pandemic evolution 
with M L and wearable devices is presented in Table 3.1. 
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Tab. 3.1: A n overview of the methods of COVID-19 detection and pandemic development with the wearables and AI . [2]. 

O l 

to 

Citation Main aim Device Kind of data gathered Size of the dataset Accuracy, efliciancy Machine learning method Comments 

[5] 

Predicting the epidemic trend including 
anomaly detection with COVID-19 
infection rate 

Huami 
(ACC,PPG) 

HR, sleep data 1.3 mln participants 
The highest Pearson correlation for Chinease cities: 
Foshan 0.81, average 0.68 

CDNet 
(CatNN, DenNN) 

The simulation provided for North, Central, South China, 
and South-Central Europe. 

[i3s; 

Statistical analysis of daily temperature 
for COVID-19 disease and creating 
digital biomarkers 

Oura ring temperature 50 COVID-19 cases 
38/50 patients exhibited some temperature anomalies 
before the onset of the disease 

Threshold based on min/max 
temperature record after z-score. 
Statistical evaluation: 
nonparametric Kruskal Wallace test, 
with Tukey-Kramer post hoc comparison 

More wearables should include temperature sensors. 

[59] 
Anomaly detection of COVID-19 
disease 

limited to Fitbit HR, sleep disorders, number of steps 
73 HC, 32 COVID-19 cases, 
15 Influensa 

63 % anomaly detection in COVID-19 cases 
Developed algorithms: 
RHR-Diff, HROS-AD, CuSum 

Anomaly detection evaluated on COVID-19 
disease cases without considering classification problem. 

[14T 
Correlation of wearables related data 
with gender and IoT factors 

Lack of detailed informations RR, oxygen saturation 208 COVID-19 cases no significant differences between IoT factors and gender 
Chi-Square distribution and 
independent measures t-Test 

There should be a difference of future created support 
system methodologies between the population 
according to the analysed factors. 

[140] 
Evaluation of COVID-19 disease based 
on Empatica device 

Empatica E4 
GSR, IBI, skin temperature, 
pulse oximeter, blood pressure 
questionnaire 

30 HC, 57 COVID-19 cases 
(27 asymptomatic, 30 symptomatic) 

98,1 % accuracy CovidDeep 
The data contains self-assement done by patients, 
the pre-processing step is not clear. The results are 
obtained with the medical device - Empatica. 

[142; Detection of COVID-19 disease WHOOP Strap Respiration rate 81 COVID-19 cases, 190 HC 
20 % COVID-19 subjects recognised before the onset, 
80 % cases 3 days after onset 

Gradient Boosting 
80 % is well results of accuracy, however, 
the target is to detect disease before the clear onset. 

[72] 

Prediction of the COVID-19 disease based 
onRR, HR, 
HRV and also age, gender, 
B M 

Fitbit RR, HR, HRV 2754 COVID-19 cases 0.77 +/- 0.03 AUC, sensitivity 47 %, specificity 95 % 

Computed parameters: 
Shannon entropy of the noctural RR. series, 
the mean noctural HR. during deep sleep, 
pre-processing: 
transformation into z-score, 
algorithm CNN 

Some extra parameters were provided during training -
among others:age, gender, BMI. 
HR. together with RR is increasing 
during illness, HRV is decreasing. 

[i; 

Comparison of COVID-19 disease in 
the early outbreak, later outbreak and 
also with Influezna 

Fitbit 
self-report data, RHR, step counts, 
nightly sleep hours 

41 COVID-19 cases, 
42685 self-reported flu, 
1265 pre-pandemic COVID-19 

statistical differences in tests Statistical evaluations 
The authors demonstrate the higher intensity and variety 
in symptoms for COVID-19 cases than for normal flu. 

[136] 
Anomaly detection of COVID-19 disease 
in the early stage 

Fitbit HR, number of step taken 
25 COVID-19 cases, 10 Influensa, 
67 HC 

0.946 precision, 0.234 recall, F-beta 0.918 PCovNet F-beta is an unreliable metric. 

[137; Anomaly detection of COVID-19 disease Fitbit HR, number of step taken 32 COVID-19 cases, 74 HC 
Anomalies were detected 23.5%-40 % earlier in comparison to [59] 
21/29 found anomalies for RHR-OCSM 
24/29 found anomalies for HROS-OC-SVM 

OC-SVM There is no consideration of classification problem. 

[139] 
Checking the influence of 
temperature on the classification task 

Oura Ring temperatme,HRHRV,RRMET 
73 COVID-19 cases, 
approximately 63000 HC 

AUC = 0.819 for all modalities, 
AUC = 0.770 for all modalities without temperature 

Random Forest 
The temperature was confirmed to be valuable 
for COVID-19 detection. 

[IM Determination of the need of hospitalization 
VitalConnect VitalPatch. 
Proactive, Protekt© Finger 
Pulse Oximeter 20110 

raw 125 Hz EGG, 50 Hz triaxial accelerometer, 
0.25 Hz skin temperature, $]0<i 

22 positive cases (required hospitalization), 
308 negative cases 

AUC = 0.84 Gradient Boosting 
The determination of the need for hospitalization 
was decided based on GDI. 



3.2 Parkinson's Disease Detection based on Symp­
toms 

MRI, P E T , and CT are considered as the most accurate methods for detecting PD. 
Nevertheless, those methods are expensive and for this reason, are not suitable to 
serve as a screening test. Moreover, the PSG is an accurate test for recognising sleep 
disorders in PD, however, it requires a hospital environment to be carried out and it 
is not appropriate for early diagnosis. Because of this reason, there is a need for the 
utility of more approachable techniques [77]. Methods based on video analysis [151], 
wearable sensor analysis [152,153], and audio analysis [154] appear to be more cost-
effective and accessible for the detection of PD. The combination of the modalities 
found also a research gap by the scientists in [155-157]. The video modality is 
applied to human gait analysis [151] and hypomimia recognition in P D [7]. 

3.2.1 Hypomimia 

There has been a limited amount of research published on P D detection based 
on hypomimia. The main issue is the missing access to the dataset containing 
hypomimia records. Some of the works were focused only on statistical analysis 
[110,158], whereas the studies in [7,159,160] considered emotion recognition in PD. 
The emotions which are taken into account are: sadness, surprise, happiness, anger, 
neutrality, disgust, and fear [161,162]. The meticulous review of hypomimia analysis 
in P D is presented in [161]. 

There were identified two groups of facial features extraction techniques for the 
automatic evaluation of hypomimia, namely: statistic-based and geometry-based. 
Statistics-based methods rely on measurements based on differences in illumination 
between pixels [163]. Whereas, the geometry-based methodologies utilise the facial 
landmarks and calculate the distances between those landmarks or compute the 

between some of the detected facial landmarks [164]. 

There are a few techniques that were applied for hypomimia analysis, i.e., the af-
fectograms, facial action coding system (FACS), the automatic maximally discrimi­
native facial movement coding systems (MAX) , facial electromyography (fEMG), the 
Action Units (AUs), automatic facial expression recognition (FER), and techniques 
with the usage of AI for emotion recognition [63,161]. There could be distinguished 
two main groups of techniques utilizing video, or image, and M L . The methods be­
long to the first group are detecting pixels or facial landmarks on a face. The second 
group represents the solutions that utilize neural networks to extract features from 
images or videos [161]. 
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The facial landmarks were detected and 12 features were obtained based on them 
in [165]. Areas and distances were extracted features. The performed exercise was 
a one-minute monologue of native speakers in the Czech language. In this exercise. 
79 HC and 91 de-novo (in the early stage) and drug-naive (untreated) patients 
participated, excluding those suffering from depression. The classification task was 
performed thanks to the 5 features, the leave-one-subject-out cross-validation with 
binary Logistic Regression as a classifier. The metrics which were calculated were 
as follows: A U C = 0.87, accuracy = 78.3 %, sensitivity = 79.1 %, and specificity 
= 77.8 %. However, the computed features did not include the dynamic of facial 
muscle movements and motion of the anthropomorphic distances. 

The work in [162] is dealing with the separation of P D from HC thanks to the 
analysis of emotions with the usage of the function. The experiment involved 8 
HC and 7 P D patients. A function based on the duration, frequency, and intensity 
of FACS is used to compute facial expressivity to distinguish between two groups. 
Emotions were taken into consideration, particularly: fear, surprise, anger, amuse­
ment, disgust, and sadness. The task was to self-assessment of emotional state after 
watching the movie, nevertheless, this evaluation could be received as a drawback 
of the experiment because of the subjectiveness. 

Another work was dealing with scrutinising the discrepancy in the ability to 
express the emotions between the P D and HC thanks to the analysis of video in 
[88]. The distinction was carried out thanks to the computed features vector of the 
Euclidean face between the neutral baseline and while expressing another emotion 
(happiness, anger, disgust, and sadness). The capability of expressing emotion for 17 
P D patients and 17 HC was calculated this way. The statistical difference between 
the groups was proved with the conducted two-tailed t-test. Moreover, the most 
problematic emotions to express occur disgust and anger. 

The combination of geometric and texture features was utilised in [6]. The dif­
ferentiation between neutral and expressed emotion was taken into consideration. 
This was measured for geometric features by facial expression factors (FEFs) for ac­
tivated states and facial expression change factors (FECFs) for detecting the moving 
trajectories of activated states. Whereas, the extended histogram of oriented gradi­
ents (HOG) was calculated for the texture features, including three dimensions, i.e., 
H O G - X Y , H O G - Y T , and H O G - X T . The 47 P D patients and 39 HC took part in the 
experiment. The Principal Component Analysis (PCA), 5-fold cross-validation was 
used as the M L methodology. The process flow of the designed approach is shown 
in Fig. 3.3. The best results achieved the combination of geometric and texture 
features by the Random Forest and S V M . The Fl-score was equal to 0.9991 and 
0.9997 for the Random Forest and S V M , respectively. However, in the opinion of 
the authors, the conducted P C A was vague and could suffer from overfitting. 
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Fig. 3.3: The process flow of the approach in [6]. 

Another study [110] investigated the changes in entropy during the smiling. The 
video records were collected for 12 HC and 12 P D patients. 7 emotions were taken 
into account: surprise, anger, happiness, fear, disgust, and sadness. The hypomimia 
symptom was examined thanks to the shift in pixel intensity. The main point from 
the experiment is that reduced facial movement and bradykinesia were observed 
more often for P D patients than for HC for all feelings. 

There were published also a few works with the usage of AUs. The set of A U and 
facial features for P D recognition was presented in [162]. The authors proposed the 
function of the frequency of A U . The statistical importance of the created function 
for separating P D from HC cases were proved. Moreover, the measurements of facial 
E M G were carried out to check the statistical significance between the two groups. 

Furthermore, the AUs were computed in [160], and data were gathered from 
three dimensional (3D) sensors. The collected dataset contains records of 15 HC 
and 15 P D patients. The A U and linear regression were used to create a M L model. 
The obtained accuracy was in the range of 0.90 to 0.99. Nevertheless, the dataset 
is relatively small. 

The evaluation of the impairment of facial movements was done by grading 
A U from 0 to 5 in [166]. The 1812 video records were collected by a webpage 
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tool 1 for 61 P D patients and 543 HC. The single video includes the recording of 
repeated 3 times emotions with a pause for the neutral expression. Three feelings 
were examined: surprise, smiling, and disgust. The tests lasted between 10 and 
12 seconds. Examination of the disease was conducted using the FACS and M L . 
The S V M was used as a classifier with the leave-one-out cross-validation and was 
preceded by the Synthetic Minority Oversampling Technique (SMOTE) on the whole 
dataset. The results of the classification were equal to 95.6 % accuracy. Moreover, 
the Logistic Regression was applied to define the interpretability of made decision 
and identify the valuable A U . The most significant features were A U 01 (inner brow 
raiser), A U 06 (cheek raiser), A U 12 (lip corner puller) for smiling, and AU_04 
(brow lowerer) for disgust. Nevertheless, because of the approach using SMOTE, 
the obtained outcome suffers from overfitting. 

The substitute for facial analysis by video records is the usage of facial E M G . 
The f E M G was utilized in the research works [162], and [167]. The activity of the 
facial muscles during expressing emotions was examined. Nevertheless, this kind of 
test is disrupting and troublesome for patients. Moreover, this kind of evaluation 
of hypomimia suffers from subjectivity because the patients need to determine their 
emotional state, there is no, for instance, fixed speech exercise. 

The extension of the work from [6] was published in [168]. The gathered dataset 
contains 39 HC and 47 P D patients. The authors introduced a Semantic Feature 
based Hypomimia Recognition Network (SFHR-NET). One of its components of it 
is Semantic Feature Classifier (SF-C). The role of SF-C is to fit the feature salient 
map. The semantic loss and classification loss were tunned thanks to the Progressive 
Confidence Strategy (PCS). The neural network consists of a spatial encoder and 
temporal encoder with red, green, blue (RGB) spatial representations and optical 
flow, respectively. Furthermore, the Gradient-weighted Class Activation Mapping 
( G R A D - C A M ) was used to interpret the approximate activate area. This neural 
network is an end-to-end solution and includes Visual Geometry Group (VGG) as 
the backbone, segmenter, SF-C, PCS, and optical flow. The dataset was divided 
into a training set of 60 %, a validation set of 10 %, and a testing set of 30 %. The 
results of classification were equal to 99.39 % accuracy and 
99.49 % Fl-score. Unfortunately, the dataset is imbalanced in the number of cases 
from each group, and the cross-validation was not conducted. 

Additionally, the detection of P D was performed using transfer learning in [169]. 
A total of 107 records of P D were collected. The dataset was splintered into the 
training and testing dataset. The testing set contains 27 HC and 27 P D patients. 
The labeling of the dataset was done by the two neurologists. The C N N was trained 
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on the database Youtube Faces Database. This dataset is a collection of 3245 videos 
from 1595 people. The used network was V G G . The result of the prediction was the 
density distribution of the hypomimia score. The obtained area under the receiver 
operating characteristic (AUROC) as a metric of the classification was equal to 
0.75. The clinical influence of the medication was examined by the Tufts Clinical 
Data based on the mean of 3639 frames per video. The evaluation of medication 
was provided for 33 P D patients and among them 76 % were recognised in the off-
medication state, and 67 % were in on medication state. This methodology might 
be used as an examination of the treatment's impact on P D patients. 

Furthermore, it has to be emphasised that the process of defining the kind of 
emotion by the physicians is subjective. Moreover, the expressing emotions varies 
among cultures and different for personalities, thereby could be biased on some 
level [63]. 

For the unified emotion recognition by the automatic systems, a few solutions 
with the neural network were introduced and trained on the FER2013 dataset. This 
set consists of 35 685 images of 7 following feelings: happiness, surprise, disgust, 
neutral, fear, sadness, and anger [170]. The task is F E R . The human recognition 
of accuracy based on the FER2013 dataset is 65.5 ± 5 % of accuracy [170,171]. 
One of the proposed solutions, trained on FER2013, was a deep neural networks 
(DNN) with two convolutional layers, max-pooling, and four Inception layers. The 
obtained accuracy was equal to 66.4 % [171]. Furthermore, another introduced 
neural network was simple C N N with the submission of activation function from 
softmax to linear S V M . The result of classification of this task was equal to 71.2 % 
accuracy [172]. Moreover, the potential augmentation of emotions was considered 
thanks to the usage of V G G 16 with a soft label constructor. The accuracy of the 
obtained classification was 73.3 % [173]. 

Based on the results of the conducted classification on FER2013, the prediction 
of the emotions by proposed automatic methodology could exceed human abilities. 
Clinicians may be able to recognize P D more accurately thanks to the utilisation of 
ML-based solutions to recognize emotions. 

Furthermore, there were published works which were dealing with the progress of 
the disease based on hypomimia symptoms. In one paper [174], the authors collected 
the records of 727 P D patients. In this study, the author did not consider the 
classification of P D disease, the HC class was missing. The aim of the exercise was to 
describe the positive and negative memory by the participants. The measurements 
of height and width of the eye, mouth, and eyebrow were computed during the 
features extraction step. The Random Forest Regressor with 9-fold cross-validation 
was applied for the regression task. 

The methods for determining the progress of the P D were presented in [7]. In this 
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approach, the Mel-frequency cepstral coefficients (MFCC) and A U were extracted 
from audio and video modalities, respectively. The regression method classifies P D 
patients into four categories for the development of the disease. The collected 772 
records were gathered from 117 P D patients. The aim of the exercise was to talk 
about their positive and negative experiences by them. A Hierarchical Bayesian 
neural network (HBNN-C) was used as a M L method. The scheme of the performed 
experiment is presented in Fig. 3.4. The multiclass classification was equal to 0.55 
Fl-score. Unfortunately, the experiment is not repeatable because the dataset is 
private. 

Registered Facial Action 
Face Sequence Units 

Audio 
MFCCs 

waveform 
MFCCs 

Hierarchical Bayesian 
Neural Networks 

Input Video Multimodal Feature Extraction 

Fig. 3.4: The flow of the experiment from [7]. 

The detection based on the fusion of modalities for P D detection was presented 
in [156]. The authors used the audio and video modality. Two types of data were 
distinguished. One of them was the so-called training dataset which contained the 
data of 111 HC and 112 P D patients in the 'on' phase. The second dataset was a 
validation dataset and contained records of 74 HC and 74 P D patients in the 'off' 
phase. The device used for gathering the data was the smartphone. The task in 
the experiment was to read the text by the participants. As the feature extraction 
step, 20 features were computed. Among them were: gender, age, 6 key mouth- and 
eye-related features, pitch variance, average pitch, pause percentage, voice volume 
variance, reading time, and phonetic score. The used M L methods were 10-fold 
cross-validation and nine classifiers. The 0.85 A U R O C was achieved thanks to the 
Logistic Regression for the training dataset. 0.90 A U R O C was obtained with the 
usage of the AdaBoost classifier for the validation dataset. 
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Tab. 3.2: Overview of the works analysing hypomimia in patients suffering from PD. 

Reference No. ofHC No. of PD patients Task Access Modality Comment Metrics 
[162] 8 7 Expressing 6 emotions Private Video Detection Differences in group for the worked-out functions 
[88] 17 17 Expressing emotions: anger, disgust, happiness, sadness Private Video Detection p-value <0.05 
160 15 15 Watching funny movies and answering 5 questions Private Video Detection 0,90-0,99 A U C 
[110] 12 12 Posing with different emotional expressions Private Video Detection p-value <0.05 

[109] 23 11 Selfie photos Private Image Detection 
p <0.05,0.79 specificity/0.82 sensitivity, 
0.58/0.54 sensitivity/specificity 

[104] 50 50 Photo Private Image Detection 67% accuracy 
[158] 15 - Watching cartoon Private Image Detecion p-value <0.05 
[162] 8 7 Watching movie clip Private E M G Detection p-value <0.05 
166 543 61 Expressing 3 emotions Private Video Detecion 95.6% 

[6] 39 47 Expressing neutral mimic and emotion On request Video Detection 0.9991 Fl-score, 0,9997 Fl-score 
[174] 0 727 Describing patients' negative or positive experience Private Video Regression 0,560 Mean Absolute Error (MAE) 

[7] 0 772 Describing patients' negative or positive experience Private Video, Audio 
Regression, 
Multiclassification 

0,48 M A E , 0,55 Fl 

[169] 27 27 
Assessment of hypomimia and checking the influence of 
the medication on this symptom 

Public/Private Video Detection 
for class detection: 0.75 AUROC, 
for comparison of the differences in state between medications: 
76% off, 67% on 

[168] 39 47 Neutral mimic and smiling On request Video Detection 99,39% accuracy, 99,49 Fl-score 

[165] 75 91 Assessment of hypomimia and indication on valuable features On request Video Detection 
0,87 A U C , 78,3 % accuracy, 
sensitivity 79.1%, 77.8% specificity 

[156] 
112 'on', 
74 'off' 

111, 
74 

Assessment of video and audio records Private Video, Audio Detection 
0.85 A U R O C for 'on' state, 
0.90 A U R O C for 'off' state 

[157] 13 13 Assessment of eye fixation and gait patterns Private Video Detection Accuracy, sensitivity and specificity up to 100 % 



Furthermore, the method with the usage of multimodality for P D detection which 
was analysing changes in facial expression was introduced in [157]. This time, eye 
fixation and gait were taken into consideration. The dataset contains the records 
of 13 HC and 13 P D patients. The possibility to retain gazing at the defined point 
was evaluated and defined as the ocular fixation. The fundamentals of using this 
modality are the deviating frequency of microsaccades eye movement interval for 
P D patients (5.7 Hz) from HC (1-2 Hz) [157,175]. In this study, the two kinds of 
features were computed. They were kinematic features calculated from optical flow 
and deep features extracted from the convolutional neural network. As the next step, 
the spatial distribution of the features was used thanks to computing the covariance 
matrices. The final features were computed as the temporal mean of covariance 
matrices. The final classification was achieved thanks to the cross-validation leave 
one-patient-out and Random Forest. The obtained accuracy of P D detection was 
equal to up to 100 %. 

The overview of the studies which considered automatic analysing of the hy-
pomimia for P D detection and progress of the disease is presented in Table 3.2. 

3.2.2 Dysarthia 

Speech is another modality that is the subject of research about P D detection. 
The representatives of the Speech and Movement Disorders Study Group proposed 
recommendations for dysarthria acoustic analysis of movement disorders [176]. The 
published guideline is about extracting the following acoustic features which are 
expressing HD in the domain of respiration, prosody, phonation, and articulation, 
i.e.: standard deviation (std) of the fundamental frequency, harmonic-to-noise ratio, 
the std of intensity, mean intensity, vowel space area, shimmer, jitter, voice onset 
time, diadochokinetic regularity, diadochokinetic rate, etc. 

In [97], the basic features recommendation was utilised for the detection of PD. 
Three groups were taken into account, namely: HC (30), P D patients (30), and 
50 individuals suffering from idiopathic rapid eye movement sleep behavior disorder 
(iRBD). The third group was considered because it is the early marker of PD. The 
data were gathered by smartphone for speech exercises. They were the monologue, 
the diadochokinetic exercise - repeating of pa-ta-ka, and the sustained phonation of 
vowel [a]. P D vs. HC, and P D vs. i R B D were classified based on collected records. 
The outcome of the detection of P D was equal to 0.85 A U C , 75.0 % sensitivity, and 
78.6 % specificity, for Logistic Regression. Moreover, the benefit was the usage of 
smartphone technology for the prodromal detection of the disease. Furthermore, 
the most profitable biomarkers occurred to be decreased rate of follow-up intervals, 
inappropriate silences, and the monopitch. Further, the classification of the second 
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scenario, P D vs. iRBD, had an A U C of 0.78, the sensitivity of 66.7 %, and specificity 
of 71.0 %. 

The studies which were introduced are not dealing with the recommendation 
of basic acoustic features, however, they proposed new features and solutions for 
analysing HD. They are presented below. 

The set of features based on the spectro-temporal sparsity was proposed in [177]. 
It was registered that P D has lower temporally sparse speech spectral coefficients 
than HC. This fact led to the creation of the features. The introduced parameters 
were: non-parametric sparsity measures (Shannon entropy, Gini-index, 11-norm) 
and parametric measures (the spare parameters of a Weibull distribution and the 
shape parameter of a Chi distribution). The dataset consists of records of 45 P D 
patients and 45 HC of Colombian Spanish native speakers [178]. The achieved 
accuracy was equal to 83.3 % with the usage of an S V M classifier with a radial 
basis kernel function. The parametric sparsity measures (shape parameters of the 
Chi and Weibull distribution) and the Gini index occurs to be the most valuable 
features for P D detection purpose. 

Another solution for P D detection based on speech analysis was introduced 
in [179]. The authors proposed a forced Gaussian-based methodology that can dis­
tinguish P D from HC analysing independently various phonetic units. The dataset 
was diversified and consists of 50 HC and 50 P D Colombian patients, 32 HC and 47 
P D Spanish patients, 20 de-novo P D Czech individuals and 14 HC. The achieved 
outcome of classification was 87 % of A U C with the usage of cross-corpora validation. 

Furthermore, the novel feature for P D detection based on the biomechanical 
model was introduced in [180]. The feature was named the absolute kinematic 
velocity (AKV) . The analysed model was about articulation and speech, whereas the 
feature was computed thanks to the existing dependency between the jaw-tongue 
reference position displacements and format oscillations. The considered dataset 
has 16 P D individuals and gender-, age-matched 16 HC. The analysed feature A K V 
characterised the increased distinguishing abilities of groups in comparison to format 
centralisation ratio or vowel space area. 

The interpretable features were proposed in [181]. They were in particular ar-
ticulatory kinetic biomarkers. The 50 HC and 50 P D patients were included in 
the research. The diadochokinetic speech exercise was taken under analysis. The 
authors made two observations. Firstly, the envelope of the speech was explored 
between classes because of its indirect connections to the distribution of forces con­
trolling the articulators. Next, to evaluate the kinetics of speech P D individuals, 
the velocity of the mid-term air pressure was researched. The envelope of the speech 
was finally analysed in view of the dependency on the mid-term airflow pressure. 
Regarding the used M L approaches, the obtained kinematic biomarkers were used 
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as features, a future selection step was carried out thanks to the sequential floating 
selection, and the S V M with linear kernel was chosen as the classifier. The obtained 
accuracy was equal to 85 %. 

There are nowadays a registered plethora of studies dealing with deep learning 
for support methodologies [182,183]. A few of the works also dealt with utilising 
the D N N for P D detection based on speech modality [184-186]. 

The example of utilisation C N N was introduced in [184] for P D detection. The 
dataset which was used in the research consists of 88 P D and 88 HC German, 50 P D 
and 50 HC Columbian, and 20 P D and 15 HC Czech individuals. The C N N for the 
training obtained short-time Fourier transform (STFT) and wavelet transform of 
transitions between the onset and offset of phonation. The detection of the disease 
for this C N N was 89 % of accuracy. Moreover, this same team used transfer learning 
for this same dataset and increased the classification accuracy by up to 8% [8]. The 
analysed languages were Czech, German, and Spanish. The schematic presentation 
of the applied transfer learning is visible in Fig. 3.5. It could be implied that deep 
learning has the potential for P D diagnosis tasks. 
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Fig. 3.5: The scheme of the used transfer learning in [8]. 

Recent studies considered the impact of gender on PD, particularly in speech. 
Generally, the low-frequency content of the speech was found for men suffering from 
PD, while high-frequency content was typical for women patients [187, 188]. In 
this research, into account were taken four datasets and confounding factors. Fur­
thermore, the authors of [189] discovered that women suffering from P D characterise 
having more satisfactory vocal control. The analysed dataset contained the instance 
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of 60 male and 40 female HC and the same amount of P D patients. 
Generally speaking, speech and voice analysis found a niche in the detection of 

P D disease. The described works are a good instance of this claim. More information 
about the used approaches so far could be found in [84,118,119]. 

3.2.3 Methods for Parkinson's Disease Detection based on Sleep 
Disorders and Actigraphy 

This section illustrates the transferable algorithms and methodology dedicated to 
sleep disorders analysis in PD. Those methods were used earlier as different applica­
tions in various diseases and disorders such as A D H D , Alzheimer, and bradykinesia. 
The analysis of sleep/awake stages was also taken into consideration. The records 
which were analysed were gathered by wearable - actigraph. The suitable features 
extraction was discussed and used M L were depicted. They were: S V M , Naive 
Bayesian, k-NN, XGBoost, or Random Forest, Logistic Regression, G R U , L S T M , 
and C N N , neural ODE, 1-D C N N , Deep-ACTINet, AdaBoost, Time-aware Toeplitz 
Inverse Covariance-based Clustering (TICC) and C N N (TATC). Additionally, the 
examples of actigraphs are mentioned, which signals they are collecting, as well as 
the methods, how to measure the movement by this device, are described. Moreover, 
this section concentrates on the sleep-related parameters which vary among P D and 
HC. Furthermore, the processing and storing of data in actigraphs are explained. 

Monitoring movement with sensors and actigraphs 

Actigraphy is the name of the technique to monitor human activity or rest move­
ments and cycles in an unintrusive way. Actigraphy could be used for tracking 
activity time, sleeping time, resting time, or the development of the illness. The 
sensors such as gyroscopes, accelerometers, and magnetometers are widely used in 
wearable actigraphs. The purpose is to measure the body position, movement, and 
rotation of the body. Moreover, they could monitor the skin temperature, HR, skin 
conductance, sound, and ambient light [190], [9]. The actigraph could be placed on 
the wrists, thighs, ankles, and hips. The most valuable position of the wearable on 
the body appears to be the wrist. This placement of the wearable on the body is 
especially desirable for P D monitoring [191]. 

The market offers a few kinds of actigraphs. The most frequently occurring are 
ActiGraph GT9X Link (made by ActiGraph), 9-axis I M U (mbientlab), wGT3X-BT, 
GENEAct iv (Activinsights), Vivoactive3 (Garmin), Versa (Fitbit), Fit2 Pro (Sam­
sung), Actiwatch Spectrum Pro (Philips Respironics), Charge 3, Vapor (Misfit), 
Ticwatch E (Mobvoi) [192]. 
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Sleep disorders in Parkinson's disease 

The outcome of the disease prediction with the usage of actigraph and PSG could 
vary. For example, an accurate prediction could be obtained for brain injury and 
sleeping apnea. On the other hand, the achieved sensitivity for insomnia could be low 
[190,193]. The differences between the detection of the disease imply the need for a 
profound understanding of the nature of the sleep disorders in P D to be able to detect 
this illness on the appropriate level. The P D patients manifest a variance comparing 
the HCs in the following computed, sleep-related parameters: higher fragmentation 
index (FT), sleep onset latency (SOL), longer wake after sleep onset (WASO), shorter 
total sleep time, and lower sleep efficiency (SE) [194]. Moreover, the markers of sleep 
disorders in P D are also: periodic limb movement, RLS, and chronic insomnia [195]. 
Additionally, nocturnal hypokinesia is characteristic of people suffering from P D 
[196]. The factor which evokes this symptom is the lower secretion of dopamine. 
Turns in bed are less frequent in the P D patients group than in the HC group. The 
speed and acceleration of P D patient are lower and manifest smaller degrees. The 
typical is also akinesia and often occurring a supine position, especially during the 
second half of the night. 

Processing and storing of data in actigraphs 

The methods of the IoMT are used for the transmission of the data from the acti­
graph [52]. This concept contains the following procedure: data acquisition, commu­
nication gateway, and server/cloud. The gateway is a physical device (for example 
a smartphone) or software [197]). It is considered that the gateway acts as a point 
of connection between the device and the server or cloud via the field connector -
communication protocol. Cloud computing serves as the data holding, advances cal­
culations, the constraint of the exploration of the wearable device (computations are 
instead performed in the cloud), likewise place for implementing support method­
ologies [198-200]. The advances in the development of the IoMT concept facilitate 
the progress of the eHealth solution, silver economy including applications for P D 
detection [60,201]. 

The telemedicine solution could be utilised by doctors for tracking the existence 
and progress of marks among P D patients such as FOG, sleep, bradykinesia, hy-
pomimia, tremor, and so on [63,202]. The solution with the usage of the smartphone 
was used in [203] to detect PD. The accelerometer was utilised to collect the data 
related to gait which were transmitted to the cloud. The proposed application ob­
tained 81 % accuracy. 

Additionally, the accuracy could depend on some factors. One of them is the 
recording modes. The signal could be transmitted without changes or after modi-
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fication in mode. Three kinds of modes are distinguished: the time above thresh­
old (TAT), zero-crossing mode (ZCM), and the proportional-integral mode (PIM). 
The advantage of the usage of recording mode is the reduction of the size of the sent 
data. Nevertheless, the drawback could be the decreased accuracy of the following 
designed model [190]. Moreover, the impact on the achieved accuracy of the support 
model has the position on the body actigraph, time window (so-called epoch), and 
sampling frequency. Sufficient sampling rate is considered as 20-25 Hz, the sampling 
rate above that value will not add more value [204]. 

30 s and 1 min of the epoch is the common value chosen by manufactures as the 
default value for M L model. The lower value of the epoch makes the quality of the 
model worse [204,205]. 

An overview of transferable algorithms and methodologies for sleep disorders 
recognition with the usage of Actigraphy dedicated to Parkinson's disease de­
tection 

This section is overviewing M L algorithms being frequently utilised for the detec­
tion of different diseases than P D with the assistance of wearables. Moreover, the 
solutions for the recognition of P D based on various modalities besides sleep were 
considered. The Table 3.3 summarises the potential techniques which could be used 
for the recognition of P D based on sleep disturbances. The table contains informa­
tion about the main aim of the research, utilised features and architectures, achieved 
results, what kind of disease or case is considered, and added comments about the 
study. 

The computed features could be in the statistics domain, time domain, and 
morphology-based. Moreover, the extracted features could be in the frequency do­
main, obtained thanks to the Wavelet Transform, or Fourier Transform. Further­
more, there are many techniques for computing the features from the raw signal 
or based on activity counts. The features could be derived manually or automat­
ically. The most frequently extracted features include: minimum, maximum, en­
tropy, the energy of the signal, kurtosis, skewness [206], 10th, 20th, 50th, 75th and 
90th percentiles, std, mean, peak-to-peak amplitude, peak intensity, interquartile 
range (IQR) [207], the sum of values, zero crossings, coefficient of variation, TAT, 
signal power, root mean square (RMS)) value of signal components, the difference be­
tween maximum and minimum signal peak values, maximum frequencies, the mean 
normalized frequency of the signal's spectrum, the median normalized frequency of 
the signal's spectrum [208], band energy, crest factor, and spectral flux [209]. 

Algorithms can be divided into two groups based on their complexity: Shallow 
Learning and Deep Learning. First of them are algorithms such as S V M , Naive 
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Bayesian, k-NN, XGBoost, or Random Forest, Logistic Regression [204]. Because 
the researchers are suffering from a lack of data, shallow learning obtains compara­
tive outcomes. 

The potential application of M L solutions, including deep learning for P D based 
on sleep records, were taken under analysis. Those solutions were applied for the 
recognition of sleep/awake status, sleep-correlated illnesses, and daily activity. The 
architectures which were utilised for those aims are: time-aware architectures such 
as G R U , L S T M , and C N N , likewise the combinations of algorithms [47,206,210]. 
Promising usage seems to be the application of ODEs [211] or temporal C N N [212]. 
Moreover, the use of the spectrogram seems to be justified in view of the resemblance 
of the oscillating speech signal to the accelerometry signal, whereas the spectral 
representation of this signal was used together with C N N for speech recognition [206]. 

The common issue which is regarded in the sleep records is the sleep/awake 
status. The method which is often used for sleep/awake recognition is the events 
counting activity. This method is named activity counting. Nevertheless, activity 
counting has not an application in the detection of P D based on sleep records because 
of its simplicity [213]. 

The individual-related factors like biological factors, age, and lifestyle-related pa­
rameters were analysed in [207] to develop the personalised method for recognition 
of sleep/awake stages with the usage of actigraph. The dataset contained 54 individ­
uals. The normalisation was performed, and 18 features were computed. Moreover, 
21 actigraphy parameters were utilised. The used algorithms were Random Forest, 
XGBoost, AdaBoost, Regularized logistic regression (RLR) with an L2 regulariser 
and Stochastic gradient descent (SGD), and Naive Bayes. The achieved accuracy 
was equal to 86 % for XGBoost. For this same classifier, the specificity was equal 
to 95 %, and the sensitivity was equal to 45 %. 

Another solution for the distinction between sleep and awake stages was pre­
sented in [9]. The authors used the bidirectional version of L S T M . The scheme of 
the this architecture is shown in Fig. 3.6. The visible input xt on the picture is the 
feature matrix at time t, and the output yt G [0,1] is the predicted sleep probabil­
ity at time t. The data were collected for 186 individuals. They considered various 
combinations of signals, however, the best occurred to be acceleration signal 
together with skin temperature. The obtained accuracy was equal to 96.5 % accu­
racy. Additionally, the solution of L S T M dedicated to real-time applications was 
tested, and it obtained lower accuracy by 0.2-1 %. By the same token, it applies 
to real-time solutions. The architecture for real-time application with the usage of 
L S T M is presented in Fig. 3.7. 

The methodology of sleep/awake recognition was performed in [209]. The com­
bination of 1-D C N N and L S T M was proposed as Deep-ACTINet for this purpose. 

66 



[ Fully-connected 
1 ^ 

[ 

0.2 Droput 

LSTM 
32 

T 

LSTM LSTM 
32 32 

T 
X,-i 

Concatenation 

LSTM LSTM 
32 32 

LSTM 
32 

T 

Fig. 3.6: The bidirectional L S T M [9]. 

T 

y, 

Sigmoid 

Fully-connected 
1 

0.2 Droput 

Concatenation z 
LSTM LSTM 

32 32 

T 
x, 

Fig. 3.7: The architecture for real-time detection of sleep with the usage of L S T M [9]. 

The outcome of the recognition sleep/awake stage was provided also for two com­
mon algorithms: Cole-Kripke, and Sadeh, likewise for Naive Bayes, Random Forest, 
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Linear Discriminant Analysis (LDA), and feature-based C N N . The result for the 
Deep-ACTINet was registered as the highest and the accuracy was equal to 89.65 
%. 

The common problem which is occurring is the limitation in the size of the 
dataset. Moreover, the model which is trained on a small dataset could suffer 
from lower-quality prediction. The answer to this issue could be the usage of the 
augmentation technique. The promising method of augmentation was proposed 
in [214] - 3D augmentation. The magnitude scaling, the timewise scaling, and 
the random rotation belong to them inter alia. The dataset was obtained from 
D R E A M P D Digital Biomarker Challenge [214]. Moreover, the techniques such 
as normalisation and balancing the imbalanced dataset are common procedures for 
developing solid machine-learning models. The gait of the P D patients was registered 
which contains the periods of an irregular cyclic pattern, variations in walking speed, 
and tremors during the quiet standing interval. The obtained accuracy with the 
usage of normalisation, augmentation, and C N N was equal to 87 %. This solution 
outperformed the state-of-the-art methods. 

The study in [192] considered the data steamed from PSG (Newcastle polysomnog­
raphy) with the records gathered from the wrist wearable accelerometer sensor. The 
results of classification sleep/awake stage were equal with the usage of XGBoost to 
80 %, and with the usage of XGBoost, and the S M O T E to 84 %. Furthermore, 
cross-validation was performed. 

Another study [206] utilised three datasets including the Daphnet F O G dataset 
of P D patients. The main idea of the research was to transform the triaxial ac­
celerometer signal into the spectrogram. The proposed technique contained two 
parts: the unsupervised pre-training part, and the supervised discriminative part. 
The DBNs were used as architecture. The detection of the F O G was correct at 91.5 
%. The key to the successful classification was the pretrained part with the feature 
extractions. 

The utilisation of the spectrogram was also presented in [10]. The authors de­
tect A D H D thanks to feeding C N N with the spectrogram. The used architecture 
is depicted in Fig. 3.8. The lower activity was thresholded from the signal, not 
to noise the signal with the informative part of manifesting A D H D . Moreover, the 
aggregation of the signals was performed as the magnitude of the three-axis and 
normalisation. The length of the window had also an influence on the final result 
of classification, and the most desirable length was 300s - the medium size. Never­
theless, the most suitable length of the window for P D detection could vary. The 
achieved accuracy was equal to 98.6 %. 

Another work [215] also dealt with the recognition of A D H D . The signals from 
the accelerometer and gyroscopes were taken into account. The feature selection was 
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Fig. 3.8: The scheme of the C N N used in [10]. 

performed and 15 features were chosen. It was estimated that half of the features are 
'high-resolution histograms'. Those features are considered as appropriate attributes 
of early A D H D . The authors used S V M as the classifier, and the obtained accuracy 
was equal to 95 %. 

The analysis of the bradykinesia among P D patients was provided in [47]. The 
gathered signal came from the 3-axial accelerometer, Shimmer3. The participants 
of the experiment performed given motor exercises. Thanks to the usage of deep 
learning (DL), the study outperformed the state-of-the-art techniques by 4.6 % ac­
curacy. The AdaBoost, S V M , and k-NN gave worse accuracy than the DL methods. 
The applied C N N achieved an accuracy of 90.9 %. 

The time-aware solution which could consider the circadian rhythm for the detec­
tion of Alzheimer's disease was presented in [210]. The data were collected for this 
aim by the actigraph. The architecture is named TICC and C N N (TATC). Those 
two parts - first, T ICC is an unsupervised technique destinated to recognizing stages 
such as exercising and sleeping, and second - C N N learns temporal features from 
time series. The uniqueness depends on the ability to analyse and recognise the data 
collected during various periods of the day (night or day). The data gathered dur­
ing the day could be emphasized in comparison to those collected during the night, 
while the G R U and L S T M are destinated to focus on long-temporal dependencies. 
The obtained accuracy was equal to 86.2 %, and, a similar value was registered for 
sensitivity and specificity. 

69 



Conclusion 

It has been confirmed by many discussed research studies that the wearable devices 
have large potenial in early detection of PD. The need for early detection is especially 
important for this disease, because then the treatment could be faster applied, and 
could limit the development of the disease. Sleep appears to be a promising modality 
for P D detection. The usage of wearables such as actigraph could be explored for 
the eHealth sector. 

This subsection is answer to R 0 6 . which identified the possible solutions for P D 
detection based on sleep disorders, including information about used architectures 
and achieved accuracies. The advantage of the summary is the identification of the 
potentially transferable applications detecting various diseases that could be used 
for P D recognition based on sleep disorders. They are A D H D , Alzheimer's, and 
recognition of the sleep/awake stages. Additionally, the methodology detecting P D 
based on different modality (bradykinesia) could be transferred. These two examples 
are the reply to question R Q 6 . 2 . 

The literature shows the variance in the sleep parameters between P D patients 
and HC. FI, SOL, WASO, shorter total sleep time, and lower SE [194], periodic 
limb movement, RLS, and chronic insomnia [195], incidents of turns in bed during 
the night, speed and acceleration of person are the varying sleep parameters and are 
answers to question R Q 6 . 3 . 

Furthermore, the factors which could impact the final classification of P D pa­
tients were identified. They are the length of the analysed signal - time window, the 
modality, and kind of the gathered signal, the augmentation of the data, the size 
of the dataset, the feature extraction step, the subset of features used for classifi­
cation, balancing the dataset and applied architecture. The XGBoost appears to 
be the most powerful among the classic classifier. The algorithms of deep learning 
which are recommended are for instance G R U , L S T M , 1-D C N N , C N N , and usage of 
the spectrogram. Moreover, TICC because of its ability to analyse circadian rhythm 
seems to be worth considering. The aforementioned algorithms are the answer to 
question R Q 6 . 1 . It should be emphasised that the increase in prediction could be 
potentially feasible by combining the signals from various sensors. 
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Tab. 3.3: Potential methodologies for detecting PD based on sleep disorders [13]. 
M a i n A i m Features /Archi tectures Results Disease/Case Comments 
Evaluation of temporal and spatial augmentation [214] Deep C N N 0.87 A U C The gait of P D patients Data augmentation improved the prediction 
Testing XGBoost and SMOTE 
for sleep/awake stages detection [192] 

XGBoost 
80 % accuracy, 
84 % with SMOTE 

Sleep/awake stages 
Using SMOTE improved accuracy, 
XGBoost was a good choice of algorithm 

Evaluation of the performance of personalised factors, 
Testing various algorithms [207] 

Features: 
10th, 20th, 50th, 75th, and 90th percentiles, 
mean, sum of values, coefficient of variation, 
peak-to-peak amplitude, skewness, kurtosis, 
signal power, peak intensity, zero crossings, std 
time above threshold, and maximum value. IQR 
Algor i thms: 
XGBoost. Naive Bayes, 
R L R with L2 regularizer, SGD, AdaBoost 

86 % accuracy, 
95 % specificity, 
45 % sensitivity 

Sleep/awake stages 
Personalised sleep/awake prediction is better, 
the best observable results are for XGBoost 

Detection of A D H D [215] 
Features extracted from accelerometer 
and gyroscope records, 
S V M 

95 % accuracy A D H D in children 
It is possible to recognise A D H D in children. 
It is needed extension of the database 

Usage of C N N and spectrograms for 
detection of ADHD based on 1-day record [10] 

C N N + spectograms 
97.62% sensitivity, 
99.52% specificity, 
A U C values over 99% 

A D H D 
Deep learning together with actimetry records 
allows for the detection of the A D H D 

Converting triaxial accelerometer signals into 
spectrograms [206] 

Unsupervised pre-training step, 
supervised discriminative step. 
DBNs. hybrid approach of deep learning 
and Hidden Markov Models 

91,5 % accuracy Freezing of Parkinson's gait 
Pre-training with feature extractions allows 
achieving better prediction 

Detection of Alzheimer disease in the early stage 
with time-aware N N [210] 

TICC 
Clustering TICC and C N N (TATC) 

86.2 A U C Alzheimer disease 
The great potential of using TICC for predicting 
Alzheimer disease 

Comparison of the proposed method with 
different solutions [209] 

Deep-ACTINet (1-D C N N and LSTM) 89.65 % accuracy Sleep/awake 
Achieved detection of sleep/awake stages with 
the end-to-end deep learning model 

Testing bidirectional version of L S T M 
for sleep/awake stages [9] 

Bidirectional L S T M 96.5 % accuracy Sleep/awake 
The solution adequate for real-time application 
obtained good results 

Comparing algorithms according to the detection 
of bradykinesia [47] 

C N N 90,9 % accuracy Bradykinesia C N N outperformed other algorithms about 4.6 % 

Checking if it possible to automatically detect 
periodic limb movements and actigraphy 
analysis could give results as PSG [208] 

Time-based, frequency-based 
and signal morphology-based features. 
L D A 

74,2 % accuracy Periodic limb movements 
Actigraphy records with support system methodology 
could serve as a method for recognising periodic 
limb movements 

Personalised detection of sleep/awake stages [207] 

10th, 20th, 50th, 75th, and 90th percentiles, 
mean, sum of values, std, coefficient of 
variation, peak-to-peak amplitude, IQR, 
skewness, kurtosis, signal power, peak intensity, 
zero crossings, time above threshold, and 
max value with normalized actigraphy records, 
Naive Bayes, RLR, SGD, Random Forest, 
AdaBoost, XGBoost 

Up to 91% accuracy Sleep/awake 
The differences in sleep patterns were confirmed 
between the groups, the highest results were 
registered for AdaBoost and XGBoost 



3.3 Deep learning and Time Series Analysis for EEG 
Analysis 

The primary applications of E E G are presented in this section. The seizure detec­
tion, and sleep-stages recognition likewise BCI. The M L is used for those purposes 
likewise the wireless solutions are mentioned. Moreover, the Granger Causality and 
its advancement Sparse Granger Causality are described together with their use 
cases. Furthermore, the novelty neural O D E is illustrated. The principle of op­
eration with its advantages are depicted. Additionally, the application of Ordinal 
Partition Transition Networkss (OPTNs) is presented. 

3.3.1 Literature Overview 

The most common issue which tackles the usage of E E G is seizure detection, sleep 
stage recognition likewise BCI [216]. 

The detection of the seizure brings information about the potential occurrence 
of epilepsy. The suitable approach for dealing with this problem is the usage of 
E E G . The likely solutions utilised for this aim are the energy analysis likewise 
wavelet transform. Moreover, the authors in [134] computed spectrograms to anal­
yse the data in the time-frequency domain. The considered data obtained from 
the Children's Hospital in Boston. Furthermore, the architectures which were fed 
with spectrograms were stacked sparse denoising autoencoder (SSDA) and ConvA 
(denoising and convolutional A E ) . The accuracy reached 94.37 %, and Fl-score was 
85.34 %. 

Additionally, the detection of seizure based on raw signal E E G was proposed 
in [217]. The data came from the Department of Epileptology at the University of 
Bonn. The authors applied L S T M and cross-validation for this aim. The accuracy 
was equal to 95.54 % and A U C to 0.9582. 

The gold standard for the measurement of sleep-related parameters is the PSG. 
A few tests which are typically performed during this medical examination, include: 
E E G , E M G , E C G , and E O G belong to them. The unified description of sleep is 
important because this human activity has impacts on memorising, dealing with 
emotions, and the learning process [216]. 

The application of 1 channel wireless E E G (Fpz-Cz at 100 Hz) was described in 
[11]. The solution utilised Bluetooth Low Energy (BLE). This technique is dedicated 
to sleep stage detection because it is more comfortable for the patients than the 
standard wired 22-channels E E G . The data originated from the Sleep-EDF from 
Physionet-bank. The accuracy reached 85.3 %. The outcome of the classification 
was ready after 30 s with the usage of a 1-D C N N . The used architecture is presented 
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in Fig. 3.9. The part of it - Base-CNN contains three repeated bunch of two 1-D 
convolutional (ConvlD) layers, 1-D max-pooling, and spatial dropout layers. Next, 
Base-CNN consists of two ConvlD, 1-D global max-pooling, dropout, and dense 
layers. 

InputLayer Time Spatial Dropout 
Multiclass 

InputLayer BaseCNN 
Time 

ConvlD 
Spatial 

ConvlD -• Dropout 
•» ConvlD -• SleepLabels 

InputLayer 
Distributed DropoutlD 

Dropout 
SleepLabels 

Fig. 3.9: The scheme of the architecture used in [11]. 

Another solution for sleep stage recognition - scoring was presented in [218]. 
The data originated from the Sleep-EDF database, and the public dataset Montreal 
Archive of Sleep Studies (MASS). The raw signal gathered by single-channel E E G 
was taken under the analysis. The problem for the feature extraction appears to be 
the transition between the sleep stages in the E E G signal. The combination of the 
mixed C N N (to generate the time invariants features) with B L S T M (to register the 
metamorphosis between the sleep states) was used as DeepSleepNet architecture. 
The outcome of classification was equal to 78.9% accuracy, and 73.7 % macro F l -
score for Sleep-EDF, likewise 86.2 % accuracy, and 81.7 % macro Fl-score for MASS. 

The two main components are necessary to control the BCI. There are the assis­
tive signal from the records of brain waves likewise the M L model. The application 
of noise-proof EEGNet was utilised in [219] to generate, at the same moment, a 
myriad of features from the signal. The used architecture is a C N N network. The 
best outcome was obtained for the four datasets, i.e., Feedback Error-Related Neg­
ativity, Sensory Motor Rhythm, P300 Event-Related Potential, Movement-Related 
Cortical Potential. The A U C for prediction based on the P300 dataset was equal to 
0.9054. 

A detailed review of the usage of deep learning for analysing and creating support 
methodologies could be found in [135]. 

3.3.2 Casual Inference from Neural Time Series Data 

The method which found application in the E E G analysis is the Granger Causality. 
The advancement of this algorithm - Sparse Granger Causality was proposed in 
[220], so-called SC-SGA. This architecture characterises the lower complexity of 
the algorithm and the potential for achieving higher accuracy of prediction. This 
technique was applied to generate features. Ridge regression, S V M , and Logistic 
Regression were used as classifiers together with 5-cross validation. Two types of 
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datasets were investigated for this research. The first of them was Shanghai Jiao 
Tong University (SJTU) Emotion E E G Dataset SEED dataset. The records of three 
emotions were gathered, i.e., negative, neutral, and positive. The D E A P dataset 
was the second used dataset, which includes records of 32-channel E E G signals, and 
additional peripheral physiological signals. 

The proposed SC-SGA technique analyses the dependency between the E E G 
sensors as prior information and chooses the valuable features. This Sparse Granger 
Causality uses the least absolute shrinkage, L i / 2 norm, and the selection operator 
(LASSO). Moreover, it takes the L2 norm for Logistic Regression and the Pearson 
similarity coefficient, whereas the standard Granger Causality utilises the L2 norm. 
The SC-SGA technique obtained better outcomes in contrast with the LASSO-GA, 
L2 Granger Analysis, and L A P P S . This method (SC-SGA) achieved better accuracy 
of 2.46 % to 21.81 % on two datasets. Moreover, this algorithm reduces the noise 
such as the impact of blinking, and head motion. 

3.3.3 Possibility of Reducing the Number of Training Samples 
and Increasing Accuracy thanks to the ODE 

The paradigm shift in the area of the neural network was introduced at the end of 
2018. It is named a Neural ODEs [211]. It is not a representation of the standard 
sequence of the hidden layers, whereas this network characterises the continuous-
profound model. The black-box differential equation solver computes the outcome 
which assesses the hidden unit dynamics / if needed to determine the result with 
the expected accuracy (Eq. 3.2). The advantage of this model is the parameter 
efficiency. This solution is dedicated to the diversly sampled time series. Moreover, 
the O D E network is malleable with the constant memory cost at the function of 
depth. The parameters which can be under control are the profoundness of the 
model likewise it can be optimised the harmony between the cost of the performed 
model versus achieved accuracy. 

The illustration of the O D E network could be presented as the continuous version 
of the residual network. The discrete version of the O D E solver could be visualised 
as the residual blocks in a neural network. This novelty introduced a vector field of 
continuous smooth transformations [211]. Whereas residual network computes a dis­
crete and approximate sequence of finite transformations. The obtained calculation 
by O D E is more precise. 

The equations of the computations between blocks in the residual network can 
be expressed mathematically as: 

ht+l = ht + f{ht,0t), (3.1) 
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where ht is the hidden information at time step t (te { 0 , T } ) in the current 
block, ht+i is the hidden information in the following block, 9t is the bunch of the 
parameters of the model (the weights and the biases), f(ht,9t) is the malleable 
function of the actual hidden information. 

The following equation (ODE) will be achieved, when the time step goes to zero: 

d-^ = f(h(t),t,e), (3.2) 

where h (t) is the transition of the hidden information in the infinitely small-time, 
/ (ht,t) is the malleable function of the actual hidden information. 

The utilisation of O D E was used recently for developing OPTNs in [221]. This 
method was implemented to detect the casual coupling structures underlying epilep­
tic form activity from rodent brain slices. The microelectrode array was utilised for 
this purpose. The signal was detected at the onset of the ictal beginning with the 
usage of bipartite OPTNs. 

To summarise, the O D E network could be especially used for the time series 
analysis because its continuous learning of the data depended on time. The com­
plexity of the algorithm is lower and could be for instance applied to a wireless 
solution of sleep analysis based on E E G . 

3.4 Conclusion 

The meticulous review of the methodology of COVID-19 recognition and pandemic 
development with M L and wearables is depicted in this chapter. Moreover, the 
approaches of P D detection are illustrated. The symptoms which were profoundly 
discussed are hypomimia, HD, and sleep disorders. They are used for P D recog­
nition. The novel solutions of mHealth and eHealth are taken into consideration. 
Furthermore, the benefit of this chapter is the presentation of the captivating trans­
ferable methodologies which would be appropriate for P D classification based on 
sleep disorders. The spectrum of difficulties manifesting in sleep disorders among 
P D patients is depicted to introduce the reader to the topic. Additionally, the tech­
niques of E E G analysis based on deep learning methods are discussed, such as SSDA, 
1-D C N N , ConvA, L S T M , C N N , B L S T M , DeepSleepNet. This section addresses the 
research objective R 0 7 . and answers the research question R Q 7 . 2 . The special 
attention has neural O D E which is a possible solution to RQ7 .3 . 
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4 Wearables for COVID-19 detection - Prac­
tical Solutions 

The purpose of this chapter is to investigate the use of wearable devices for the de­
tection of COVID-19. Furthermore, the M L methodology was utilized for this aim. 
Chapter 2 and Chapter 3 present the state-of-the-art methods and related works, 
whereas this Chapter 4 presents my research, experiments, and obtained results. 
The introduced in the thesis M L approaches are built upon two papers [59] and [1] 
that sought to identify COVID-19 among analysed cohorts. In the first them, 4642 
volunteers were involved in the experiment by Stanford University, whereas 114 of 
them were diagnosed with COVID-19 disease. Additionally, the cohorts had HC 
group and Influensa. The dataset had records of the heart rate and the number of 
steps. The sampling rate was 1 per minute. The personal activity was expressed 
as the heart rate value divided by the number of steps. The research idea in this 
thesis is the extension of this paper [59]. Nevertheless, the novelty in this thesis is 
focusing on the data classification problem, not just anomaly detection like in the 
original paper. The two scenarios were considered. The first of them distinguished 
COVID-19 cases from HC, while the second scenario focused on the classification of 
ill cases from HC. The physiological base of the assumption of the thesis was taken 
inter alia from [1]. The resting time of the heart rate is higher for an ill person 
than in the case of HC group. Moreover, there are differences in heart rate rhythm 
between COVID-19 and Influensa cases, they last longer and begin earlier. Further­
more, the highest contagiousness period is regarded as -2 to 1 day after the onset 
of COVID-19, which determines the necessity of early COVID-19 detection. This 
issue was likewise considered in this thesis. The second dataset from [1] contains the 
heart rate record and the number of steps but at a different sampling rate. Three 
groups can be distinguished: COVID-19, Influensa prior to the main pandemic, and 
Influensa during the main pandemic. The thesis also focuses thanks to the com­
bination of the two mentioned reused datasets on more diverse datasets in terms 
of demographic. The experiments provided the statistical analysis of the datasets 
likewise creation of support methodologies suitable for COVID-19 diagnosis in the 
early stage. 
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4.1 COVID-19 Diagnosis at Early Stage Based on 
Smartwatches and Machine Learning Techniques 

The primary objective of this study was to develop a support system methodol­
ogy for the early detection of COVID-19 [2,59]. Furthermore, the criteria were to 
focus on wearable measurements. This was accomplished by reusing the publicly 
available dataset prepared by Stanford University with cases of COVID-19, Influ-
ensa, and HC. The heart rate record and the number of steps were taken into 
account. Additionally, this work focused on developing a M L model suitable for use 
as a screening test. Taking into consideration the contagiousness and incubation 
periods of the analysing sample, the model should be able to identify which of the 
analysing sample is ill or healthy during the prodromal stage. The two scenarios 
were investigated, i.e., COVID-19 detection and Illness recognition when COVID-
19 and Influensa were treated as one group and the second was regarded as HC. 
Developing the appropriate set of features, which captures the time and frequency 
dependency in the data at various stages of the disease process, was a crucial step. 
Mann-Whitney U test was used to evaluate the statistical significance of the fea­
tures. The experiment scheme is shown in Fig. 4.1. Experiments were conducted in 
the following manner. First, the ratio of heart rate to steps was calculated. Next, 
the time windows - selected interval taken under analysis, for two scenarios were 
defined, i.e., COVID-19, Influensa, and HC likewise for COVID-19 and HC. There 
are three types of windows: five-day, seven-day, and ten-day. For each window, a 
set of features was computed. The difference in the windows between the later and 
earlier set of features was then calculated. Maximum Relevance Minimum Redun­
dancy (mRMR) was used for feature pre-selection with 50 features. Lastly, stratified 
cross-validation was performed. The following classifiers were used: Random Forest, 
Decision Tree, Logistic Regression, S V M , k-NN, XGBoost, and Generalised Learn­
ing Vector Quantisation (GLVQ). Thus, the results of classification between illness 
and HC were evaluated in terms of accuracy, sensitivity, specificity, and Matthews 
correlation coefficient (MCC)) [2]. 

4.1.1 Data Characterization 

Data for this study were obtained from [59]. For the research, the data were col­
lected by Stanford University using wearable devices and the M y P H D app. Data 
from smartwatches - heart rate, number of steps, and stages of sleep and their du­
ration were analysed. In view of their limited numbers, the sleep data are omitted, 
whereas the selected dataset contains the records of steps per minute and heart 
rate per second. This study enrolled 5262 participants. The data were gathered 
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Results 

Fig. 4.1: Experiment scheme. 

from February 2020 until June 2020. COVID-19 disease was diagnosed in 114 of 
the participants. The full records of 34 HC, 27 COVID-19 patients were taken un­
der analysis, they were collected by Fitbit device. HC and COVID-19 cases were 
balanced in this study, along with 7 Influensa cases. The 

4.1.2 Feature Extraction and Machine Learning 

Physiological data collected from wearable devices are typically continuous time-
series records. Data amounts are often quite limited in the majority of cases. Due to 
this, time-series signals require manual extraction of features [222]. The inspiration 
for analysing physiological signal features was taken from the following articles: 
[222-225]. These are the most frequently used features for physiological signals. 
Unfortunately, there is still a limited number of samples available for measurement. 
The decision was to use hand-crafted features in order to extract features from these 
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samples since they span a relatively long period of time. 1-D C N N and L S T M were 
also evaluated but without any significant results. Three types of features were 
extracted, i.e., temporal, statistical, and spectral. 

A Python package called tsfel [226] was used to extract the features. A diagram 
illustrating how features are extracted is shown in Fig. 4.2. 

Two windows of features were computed for the HC cohort in order to extract 
the HC samples (pnci - earlier window and puci - later window). Windows were 
fixed in size and separated by a specified spacing. The difference between a set of 
features for each window was calculated. Where: 

• Based on the earlier healthy state, the vector of features is expressed as follows: 

HCl 
• In the later healthy state, the vector of features is expressed as follows: /HC2 
• For HC, the final vector is as follows:: = fnci - fuci 
• There is an end point to the earlier healthy state window described as follows: 

t HCl 
• In order to indicate when the later healthy state window begins, it was used 

the following variable: tnc2 
Fig. 4.2 shows the scheme for HC feature extraction. 

27x 
COVID infected person: 
( = 1 (positive) 

P H 

Healthy state 

Feature extraction / H 

Pc Onset 

COVID early state 

U Difference 

• • • 

Feature extraction fc 

27x 
Healthy controller: 
( = 0 (negative) 

P H C I 

Healthy state 

P H C 2 

Healthy state 

Feature extraction / H C I U Difference 

/ = / H C 2
 — /HCl 

Feature extraction / H C 2 

Diagnosis 

Fig. 4.2: A n outline of the feature extraction process for cases of HC and COVID-19. 

Similarly, COVID-19 cases were extracted using the same procedure. To detect 
disease in the prodromal stage, shifts in the computation of windows were defined. 
Due to the contagious nature of this disease, the highest contagious peak occurs two 
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days before the disease begins. Following the same steps as when extracting HC 
samples, the next step was the extraction of COVID-19. As shown in Fig. 4.2, the 
steps are described in a systematic manner. 

Where: 

• A n analysis of the healthy state yields the following vector of features: /# 
• COVID-19 early state features are expressed as a vector as follows: fc 
• COVID-19's final vector can be expressed as follows: — fc - ÍH 
• A healthy state window ends as follows: tu 
• COVID-19 begins at the following time: tc 
• Symptoms begin to appear at the following time: i 0 

• COVID-19 is diagnosed as follows: tu 
• In terms of the Onset, it is: Onset = tc + Pc 
• The shift between the diagnosis time and the Onset of the disease is expressed 

as: SHIFT = tD - t0 

In order to evaluate the algorithms' predictions, metrics such as accuracy, sensi­
tivity, and specificity were computed, as well as the M C C . In order to perform the 
statistical analysis, the Mann-Whitney U test was used. S V M , Logistic Regression, 
k-NN, Decision Trees, Random Forests, XGBoosts, and GLVQ were used in this 
study. 

4.1.3 Results 

It was intended to assess the support system methodology for two cases: in the 
first scenario, for cohorts containing COVID-19 cases and HC, and, in the second 
scenario, for cohorts containing COVID-19 cases with Influensa and HC. A 7 day 
interval between windows is used and a 2 day SHIFT is used (please, check the 
designation in Fig. 4.2). There is a detailed description of the fixed parameters 
for experiments in Table 4.1. The extracted features were statistically evaluated 
using the Mann-Whitney U test with false discovery rate (FDR) correction. A 
table showing the results for scenarios with 5-day windows can be found in Table 
4.2 and Table 4.3. A total of 381 features were extracted, and their descriptions can 
be found at [227]. 

For the cohort of individuals suffering from COVID-19 disease and HC, Mann-
Whitney's U-test revealed the following important features: the sets of M F C C , 
Fast Fourier Transform (FFT) mean coefficient, and linear prediction cepstral coef­
ficients (LPCC), spectral slope, maximum frequency, spectral roll-off, spectral kurto-
sis, fundamental frequency, spectral skewness, zero-crossing rate, slope, min, spectral 
centroid, median frequency, empirical Cumulative Distribution Function (ECDF) 
percentile and signal distance. For the assumed confidence level a = 0.05, Table 
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Tab. 4.1: The scenario in which the experiment was conducted. 

Cases Len_window SHIFT Spacing 
5 2 7 

COVID+HC+Influenza 7 2 7 
10 2 7 
5 2 7 

COVID+HC 7 2 7 
10 2 7 

Tab. 4.2: Statistical analysis of COVID-19 cases vs. HC based on Mann-Whitney 
U test with F D R correction. 
Features pval pval_FDR Features pval pval_FDR 
MFCC_11 0.0045 0.3546 Zero crossing rate 0.0283 0.3546 
FFT mean coefficients 17 0.0070 0.3546 LPCC_3 0.0297 0.3546 
FFT mean coefflcient_189 0.0070 0.3546 LPCC_9 0.0297 0.3546 
Spectral slope 0.0102 0.3546 Slope 0.0297 0.3546 
FFT mean coefficient 43 0.0134 0.3546 Min 0.0304 0.3546 
FFT mean coefflcient_254 0.0134 0.3546 FFT mean coefHcient_21 0.0309 0.3546 
FFT mean coefflcient_233 0.0140 0.3546 FFT mean coefHcient_243 0.0321 0.3546 
Maximum frequency 0.0160 0.3546 FFT mean coefHcient_175 0.0333 0.3546 
Spectral roll-off 0.0160 0.3546 FFT mean coefficient 144 0.0346 0.3546 
FFT mean coefHcient_130 0.0174 0.3546 MFCC_7 0.0346 0.3546 
MFCC_0 0.0174 0.3546 FFT mean coefncient_163 0.0374 0.3546 
FFT mean coefficient 49 0.0189 0.3546 Spectral centroid 0.0374 0.3546 
FFT mean coefncient_149 0.0189 0.3546 LPCC_0 0.0388 0.3546 
FFT mean coefficient 0 0.0206 0.3546 FFT mean coefHcient_249 0.0403 0.3546 
FFT mean coefficient_202 0.0215 0.3546 Median frequency 0.0403 0.3546 
MFCC_2 0.0224 0.3546 ECDF Percentile_0 0.0409 0.3546 
FFT mean coefficient_37 0.0243 0.3546 FFT mean coefficient_39 0.0418 0.3546 
FFT mean coefHcient_247 0.0243 0.3546 FFT mean coefficient 185 0.0418 0.3546 
MFCC_9 0.0243 0.3546 FFT mean coefHcient_242 0.0418 0.3546 
FFT mean coefHcient_167 0.0263 0.3546 FFT mean coefficient 6 0.0434 0.3546 
FFT mean coefHcient_188 0.0263 0.3546 FFT mean coefficient 57 0.0450 0.3546 
Spectral kurtosis 0.0263 0.3546 Signal distance 0.0450 0.3546 
Fundamental frequency 0.0274 0.3546 FFT mean coefficient_235 0.0467 0.3546 
Spectral skewness 0.0274 0.3546 FFT mean coefficient 154 0.0484 0.3546 
Histogram 5 0.0283 0.3546 FFT mean coefficient_194 0.0484 0.3546 

4.2 presents the features that passed the test. A l l of the checked features failed 
the test after applying the F D R correction. However, it remains a strong criterion. 
In this case, 0.3546 was the minimum value obtained. A comparison between the 
two scenarios is possible by comparing the p-values with F D R corrections. For the 
scenario involving COVID-19, Influensa, and HC cases, the minimum p-value was 
lower than for the scenario involving COVID-19 and HC cases only, i . e. 0.2389 (see 
Table 4.3). 

82 



Tab. 4.3: Statistical analysis of COVID-19 cases, Inffuensa vs. HC based on Mann-
Whitney U test with F D R correction. 

Features pval pval FDR Features pval pval FDR 
FFT mean coefflcient_163 0.0024 0.2389 FFT mean coefficient 56 0.0212 0.2421 
FFT mean coefflcient_243 0.0031 0.2389 Min 0.0216 0.2421 
FFT mean coefflcient_189 0.0032 0.2389 FFT mean coefficient_236 0.0225 0.2421 
FFT mean coefflcient_202 0.0040 0.2389 FFT mean coefficient 53 0.0238 0.2421 
FFT mean coefflcient_149 0.0059 0.2389 FFT mean coefficient_29 0.0245 0.2421 
FFT mean coefflcient_242 0.0065 0.2389 FFT mean coefficient 15 0.0252 0.2421 
Spectral kurtosis 0.0065 0.2389 FFT mean coefficient 165 0.0259 0.2421 
FFT mean coefflcient_182 0.0070 0.2389 FFT mean coefficient_247 0.0259 0.2421 
FFT mean coefflcient_167 0.0075 0.2389 FFT mean coefficient_152 0.0267 0.2421 
Maximum frequency 0.0094 0.2389 FFT mean coefficient 185 0.0267 0.2421 
Spectral roll-off 0.0094 0.2389 Spectral centroid 0.0267 0.2421 
FFT mean coefHcient_254 0.0101 0.2389 FFT mean coefficients34 0.0299 0.2586 
FFT mean coefficients 17 0.0118 0.2389 Slope 0.0299 0.2586 
Histogram 5 0.0122 0.2389 Median frequency 0.0316 0.2615 
FFT mean coefficient 25 0.0126 0.2389 Spectral spread 0.0316 0.2615 
Zero crossing rate 0.0130 0.2389 FFT mean coefficient_125 0.0333 0.2647 
FFT mean coefficient_233 0.0138 0.2389 FFT mean coefficient 155 0.0333 0.2647 
FFT mean coefficients 94 0.0147 0.2389 FFT mean coefficient_250 0.0352 0.2738 
MFCC_11 0.0152 0.2389 FFT mean coefficient 50 0.0372 0.2832 
FFT mean coefficient 43 0.0157 0.2389 FFT mean coefficient_160 0.0382 0.2851 
FFT mean coefficient_39 0.0162 0.2389 FFT mean coefficient_230 0.0392 0.2872 
FFT mean coefficient 150 0.0162 0.2389 FFT mean coefficients75 0.0413 0.2874 
Spectral skewness 0.0162 0.2389 FFT mean coefficient 255 0.0413 0.2874 
FFT mean coefficient_143 0.0167 0.2389 FFT mean coefficient_222 0.0424 0.2874 
FFT mean coefficient 0 0.0172 0.2389 FFT mean coefficient_229 0.0447 0.2874 
FFT mean coefficient_130 0.0172 0.2389 FFT mean coefficient_231 0.0458 0.2874 
FFT mean coefficient_251 0.0172 0.2389 FFT mean coefficientSO 0.0470 0.2874 
Spectral slope 0.0177 0.2389 Signal distance 0.0470 0.2874 
FFT mean coefficient_235 0.0183 0.2389 FFT mean coefficientS80 0.0483 0.2874 
FFT mean coefficient_207 0.0188 0.2389 FFT mean coefficientS96 0.0483 0.2874 
FFT mean coefficient 48 0.0212 0.2421 FFT mean coefficientS87 0.0495 0.2874 

It is then necessary to explain how the parameters are selected. Due to the 
registration of the highest contagiousness peak exactly 2 days before the patient's 
clear onset [71], the shift was set as 2 days. Regarding the incubation period, the 
window interval was fixed as seven days. 2 days to up to 11 days are considered 
to be the incubation period. Considering this parameter, 7 days were chosen, so 
the sum of the later windows (from which the features were calculated) and spacing 
is greater than the maximum period registered for incubation. A variable in this 
study was the length of the window, i.e., 5-, 7-, and 10-day windows were tested. 
Results were obtained with XGBoost, k-NN, S V M , Logistic Regression, Decision 
Tree, Random Forest, and GLVQ classifiers. 

There is a presentation of the best results of the classifications for the cohort 
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that contains COVID-19 cases and HC in Table 4.4. The most accurate (0.78) with 
specificity 0.77, sensitivity 0.80, and M C C 0.60, were registered for k-NN during the 
5-days window (see Table 4.4). The best sensitivity was registered for GLVQ: 0.81. 
Stratified cross-validation was conducted on 27 HC and 27 COVID-19 cases. A M L 
models were also optimized. It was determined that the following parameters were 
most optimal for the best k-NN: 11 nearest neighbors, Manhattan distance as the 
distance metric. The weight function was also used (see Table 4.4). 

Tab. 4.4: COVID-19 disease detection results for 5-day windows (cohorts: 27 HC, 
27 COV). 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.71 0.72 0.71 0.46 
k-NN 0.78 0.77 0.80 0.60 
S V M 0.65 0.66 0.65 0.33 
Logistic Regression 0.69 0.69 0.69 0.41 
Decision Tree 0.50 0.52 0.49 0.01 
R a n d o m Forest 0.62 0.59 0.66 0.27 
G L V Q 0.76 0.81 0.71 0.55 

There is created second sub-dataset (Subsection 4.1.1) that includes COVID-19 
disease cases, Influensa patients, and HC. The COVID-19 disease and Influensa 
were grouped together, while HC was grouped separately. There was also a balance 
in the data this time. 34 cases of HC, 27 cases of COVID-19, and 7 cases of Influ­
ensa were included in the cohort (see Table 4.5). As a result of the case for a 5-day 
window, the best accuracy (0.73) and the best specificity (0.76) were recorded for 
k-NN, as well as the best M C C (0.49). With Logistic Regression, the sensitivity was 
the highest (0.76). GLVQ obtained also the accuracy equal to 0.73. k-NN was opti­
mized by selecting three nearest neighbors, Euclidean distance as the best distance, 
and weighing every point equally in the neighborhood. The GLVQ algorithm used 
distance function squared Euclidean, activation function 'swish', with parameter 
beta = 3, solver type steepest gradient descent with parameters maximum runs = 
56, and step size = 3.5. According to the results of the Logistic Regression, the L2 
penalty and the 'saga' optimization algorithm are the most appropriate parameters, 
and the inverse of regularization strength is C=464 (see Table 4.5). 

Additionally, there was provided the test for 7- and 10-day windows which are 
presented for the scenario with COVID-19 and HC in Tables 4.6 and 4.7 likewise for 
the scenario with COVID-19 and Influensa treated as one class and HC as second 
class in Tables. 4.8 and 4.9. 

The outcomes of the classification for the 7-day windows are shown in Table 4.6. 
As compared to Table 4.4, the results obtained for classification of 7-day windows 
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Tab. 4.5: Detection of COVID-19 disease and the presence of Inffuensa cases within 
a 5-day window (cohorts: 34 HC, 27 COV, and Inffuensa 7). 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.66 0.68 0.65 0.35 

k-NN 0.73 0.71 0.76 0.49 
S V M 0.71 0.75 0.68 0.45 

Logistic Regression 0.69 0.76 0.62 0.40 

Decision Tree 0.52 0.50 0.55 0.05 

R a n d o m Forest 0.56 0.56 0.56 0.13 

G L V Q 0.73 0.73 0.72 0.47 

were lower. In terms of accuracy (0.68), k-NN and GLVQ had the highest results, 
while XGBoost had the highest specificity (0.66). Additionally, the best sensitivity: 
0.84 and MCC:0.38 were observed also for GLVQ. 

Table 4.7 presents the results with a 10-day window. It has been found that 
k-NN produced the best results in accuracy (0.71), sensitivity (0.84), and M C C 
(0.46). Among the results obtained for Logistic Regression, a score of 0.68 was 
obtained for specificity. 

Tab. 4.6: COVID-19 detection results for 7-day windows (cohort: 26 HC, 26 COV). 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.67 0.68 0.66 0.35 

k-NN 0.68 0.73 0.63 0.37 

S V M 0.66 0.70 0.63 0.35 

Logistic Regression 0.63 0.60 0.64 0.26 

Decision Tree 0.54 0.50 0.57 0.08 

R a n d o m Forest 0.59 0.56 0.61 0.18 

G L V Q 0.68 0.84 0.51 0.38 

A Logistic Regression model (0.71) produced the best results for scenarios in­
cluding influensa cases within the 7-day window (Table 4.8). There was also a high 
level of specificity (0.68) and M C C (0.45) for this classifier. k-NN had the highest 
sensitivity (0.89). Lastly, k-NN provided the best performance in terms of accuracy 
(0.73), sensitivity (0.82), and M C C (0.50) for the 10-day window length (see Ta­
ble 4.9). Logistic regression provided the highest specificity (0.66). Considering the 
length of the window, the most beneficial analysed interval occurs to be a 5-day time 
window for both scenarios, i.e. classification of COVID-19 cases likewise detection 
of ill cases. 
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Tab. 4.7: The results of the COVID-19 disease detection for 10-day windows (co­
horts: 24 HC, 24 COV) . 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.65 0.65 0.67 0.34 

k-NN 0.71 0.84 0.60 0.46 
S V M 0.67 0.67 0.67 0.36 

Logistic Regression 0.70 0.72 0.68 0.42 

Decision Tree 0.53 0.61 0.46 0.07 

R a n d o m Forest 0.58 0.53 0.63 0.18 

G L V Q 0.66 0.67 0.64 0.34 

Tab. 4.8: Detection of COVID-19 disease as well as Infiuensa cases within a 7-day 
window (cohort: 33 HC, 26 COV, Infiuensa 7). 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.63 0.64 0.62 0.28 

k-NN 0.70 0.89 0.51 0.44 

S V M 0.68 0.80 0.57 0.39 

Logistic Regression 0.71 0.74 0.68 0.45 
Decision Tree 0.54 0.50 0.57 0.08 

R a n d o m Forest 0.60 0.55 0.65 0.21 

G L V Q 0.66 0.73 0.60 0.36 

Tab. 4.9: Detection results for COVID-19 disease and Infiuensa cases for 10-day 
windows (cohort: 31 HC, 24 COV, Infiuensa 7). 

Classifier A c c u r a c y Sensitivity Specificity M C C 
X G B o o s t 0.63 0.63 0.62 0.27 

k-NN 0.73 0.82 0.64 0.50 
S V M 0.68 0.72 0.65 0.39 

Logistic Regression 0.67 0.67 0.66 0.35 

Decision Tree 0.52 0.54 0.50 0.04 

R a n d o m Forest 0.59 0.58 0.59 0.18 

G L V Q 0.66 0.73 0.59 0.36 

4.1.4 Discussion and Summarisation 

A n early detection methodology for COVID-19 was presented in this section. In 
this study, they were considering the data collected from wearables, i.e., heart rate 
and the number of steps. Based on data gathered by Stanford University [59], the 
experiment was carried out. Among them, it was selected 27 COVID-19 cases, 7 
Infiuensa cases, and 72 HC cases. It is a limited dataset in the number of cases. 
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Nevertheless, the sampling rate is satisfactory and it makes this dataset valuable. 
Additionally, the advantage is that this dataset is publicly accessible. With consider­
ation of the incubation period and the highest contagiousness period, a few scenarios 
were designed with changeable window sizes, fixed spacing between the windows, 
and appropriate shifting of the windows. The parameters were chosen specifically 
to avoid analysing people who were already on quarantine. The difference between 
the features used in later and earlier stages of the disease was used to determine the 
nature of the disease. The features were computed in the spectral, frequency, and 
statistical domains. They were suitable for time signals. It was possible to identify 
the valuable features through statistical evaluation. It was found that M F C C , F F T , 
histogram, spectral-based, and L P C C could be used to distinguish between HC and 
COVID-19. The M F C C are using not only for speech analysis [7], but also were 
used for recognising abnormal heart rhythm based on E C G [228]. The most impor­
tant features for the scenarios COVID-19 and Infiuensa vs. HC were spectral-based, 
F F T , and M F C C . Nevertheless, after applying stronger criteria, i.e., F D R correc­
tion, none of the features fulfilled the requirements with significance level alfa = 
0.05. However, for the cohort with Infiuensa, the p-value after F D R correction was 
lower. Among the classifiers, k-NN appeared to be the most accurate. Furthermore, 
Logistic Regression and XGBoost performed well in the scenario with COVID-19 
and HC. The highest results for k-NN may indicate that there are clear boundaries 
between clusters in terms of dimension. It was determined that a 5-day time window 
was the most suitable. Using k-NN, the classifier achieved an accuracy of 0.78, a 
sensitivity of 0.77, a specificity of 0.80, and a M C C of 0.60. These results allow 
for the design of a shorter in-time detection methodology for COVID-19 than those 
presented in the original paper [59]. For cases with Infiuensa and COVID-19 treated 
as one group, the accuracy was greater than 0.70 for each type of time window. In 
this case, the best results were obtained for 5-day, i.e., 0.73 accuracy for k-NN and 
GLVQ. It was also found that k-NN had the highest specificity (0.76), and M C C 
(0.49). Based on the simple Logistic regression, it is possible to distinguish between 
ill cases and HC, and HC is detected with 0.76 specificity. COVID-19 heart-related 
symptoms tend to begin earlier and last longer than Infiuensa. Nevertheless, the 
difficulties in distinguishing ill cases from HC occur [1]. Due to their ease of use 
and accessibility, likewise relative affordability, wearables are ideal for serving as 
screening tests. Only pedometers can provide a more accurate measurement of the 
number of steps taken by a person than smartwatches, but they are not as widely 
distributed and are less user-friendly. 

Data were collected using a variety of devices. During the experiment, people 
wore a variety of smartwatches, but only Fitbit data were analysed. The data have 
been unified in relation to the user device. Additionally, it is possible to improve the 
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results by increasing the number of modalities. There is potential to increase the 
percentage of detection of COVID-19 in the cohort by incorporating parameters such 
as skin conductance, skin temperature, acceleration, Blood Volume Pulse (BVP), 
and HRV [229,230]. Nevertheless, the device's quality is reflected in its price. In 
those modalities is equipped Empatica. It is a medical device that can be used 
to collect data with greater precision, but it is intended for use with cohorts under 
observation rather than in real-life standard conditions. Therefore, Empatica cannot 
be used for screening tests [231]. Additionally, in contrast to the original paper 
on which the research was based, the support methodology was introduced with 
classification instead of simply anomaly detection, as in the original paper. While 
the original paper [59] examined 32 cases of COVID-19, the carried-out research 
presented in this thesis examined 27 cases of COVID-19. A total of 25 cases were 
found in original paper to deviate from the norm, with 22 of them occurring at an 
early stage. The metrics: accuracy, sensitivity, and specificity were calculated in this 
study. Spectral, frequency, and statistical features were used to classify the state 
problem. The authors developed both online and offline algorithms in their original 
work. However, these methods do not have the capability of clearly distinguishing 
between people with COVID-19 and those with HC. Online algorithm - CuSum -
considered 28 days of a person's health. Using this algorithm, 62.5 % of COVID-19 
cases were detected, however, the algorithm did not provide specificity. 

The research presented in this thesis aims to provide support system methodol­
ogy, not only anomaly detection. The promising classification was possible through 
the use of k-NN, which had an accuracy of 78 % and a sensitivity of 77 % for the 
5-day window. One of the main advantages of this work is that it does not require 
a long period to detect the disease. Furthermore, some obstacles to the research 
should be identified. The demographic distribution of the reused cohort from [59] 
was not specified. The race, ethnicity, and gender of the applicant were not provided. 
A number of instances in the dataset were limited. As a result of these two factors, 
M L models may be biased and overfit. The dataset should be extended in order 
to improve the classification outcome. The process of collecting the data is another 
obstacle to obtaining higher accuracy. The research aims to analyse data from a 
specific device, i.e., Fitbit. Each smartwatch has its own preprocessing steps. Data 
collected by this particular device were used to train the M L model. Therefore, it is 
not learned how to differentiate correctly between ill cases gathered by Fitbit and 
those collected by other devices. Furthermore, wearing the smartwatch during the 
experiment is a personal responsibility, for this reason, some data may be missing. 
Furthermore, data collected by smartwatches may be noisy and another sensor may 
interfere with the collection of data. In addition, Fitbit is not a medical device and 
does not include a wide range of functionality. 
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To summarize, the methodology was developed to aid the detection of COVID-19 
disease at the prodromal stage. Moreover, the character of the disease was taken into 
consideration, i.e., incubation and contagiousness period. A model based on five-day 
windows enables an accuracy of 78 percent in prediction. Several parameters were 
tested. Realistically, the solution based on 5-day windows is likely to be the most 
useful and practical. Based on [59], this study was conducted and differs from the 
original. This research focuses on creating a more powerful classification algorithm 
than the originally proposed model to detect anomalies. Based on the technology 
used in this experiment, it may be possible to perform a screening test utilising 
smartwatches. The study revealed the statistical importance of the majority of 
features from the statistical and spectral domain based on the Mann-Whitney U 
test. Moreover, the advantage of this research is that the model results were learned 
for two different cohorts, i.e., on COVID-19 disease and HC, as well as on COVID-19 
disease, Influensa, and HC. Both cases had similar results, with Influensa's extended 
cohort showing slightly worse results. Considering algorithms, k-NN and Logistic 
Regression produced the best results, showing that the datasets are not complexly 
dependent. XGBoost and GLVQ were also successful in some cases. In the future, it 
may be possible to extend the database and utilise neural networks to handle larger 
databases. It is also expected that the use of a medical device - Empatica - and the 
collection of a greater variety of sensor data will enhance the results. 

4.2 The Distinction between COVID-19 Cases and 
Two Types of Influensa with Wearable Devices 
and Machine Learning 

The major objective of this study was to distinguish COVID-19 cases from Influ­
ensa cases using M L and wearable technology. The two types of Influensa cases 
from various periods (before and during the pandemic) were examined. The data 
were retrieved from [1]. There are records of heart rate and the number of steps. 
The presented in the thesis support methodologies were developed to confirm the 
conclusions and assumptions from the original paper regarding the differences in 
heart rate between the types of viruses tested. Moreover, the incubation and con­
tagiousness periods were taken into consideration to create a solution suitable for 
early COVID-19 detection. Fitbit was the device used to gather data for this study. 
The flow of the applied algorithm is visible in Fig. 4.3. As a first step, the time 
window was selected to extract features concerning the contagious period and the 
incubation period. The features were also extracted from a 5-day window covering 
7 to 2 days prior to the visibility of the onset. A feature pre-selection method was 
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then applied to select the most valuable features. Next, a 10-fold cross-validation 
method was used. The applied classifiers were Logistic Regressions, Random Forests, 
k-NNs, XGBoosts, SVMs, Decision Trees, and GLVQs. Using cross-validation, the 
classification results were determined. 

Fig. 4.3: The flow of the algorithm 

4.2.1 Data Characterization 
It is difficult to collect the data by yourself, it would have been needed cooperation 
with hospitals, local authorities, and ethical approval to organise such an initiative. 
Therefore, the data were retrieved from [1]. There are two types of Influensa and 
COVID-19 cases in the dataset. 41 patients with COVID-19, 85 non-COVID-19 flu 
patients (data collected in the middle of pandemic for Influensa cases which were 
gathered 03.2020-05.2020), 1126 pre-COVID-19 flu patients (data collected before 
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the main pandemic for Influensa cases and data were gathered 11.2019-03.2020) were 
among them. Unfortunately, the HC group was not involved in this study. The 
dataset has records of the heart rate and the number of steps likewise the lacking 
records of sleep stages. It was necessary to recompute the data and resample them 
at a frequency of one sample per day. Due to the lack of data, the dataset for 
analysis was limited. 37 cases of non-COVID-19 flu, 37 cases of pre-COVID-19 flu, 
and 21 cases of COVID-19 were included in the recalculated and filled dataset. A n 
overview of the demographic characteristics of the analysed cohort can be found in 
the original paper [1]. 

4.2.2 Feature Extraction and Machine Learning 

A few gradual computations were conducted in order to obtain the features ready 
for teaching by M L models. In the beginning, the time window was calculated 
with respect to the period of incubation and contagiousness. The length of the 
window was 5 days. Generally, the window of time covers the period spanning from 
seven days before the diagnosis of disease onset to two days before the diagnosis. 
Several features were calculated for the isolated time window, including std, skew, 
variance (var), range, minimum (min), maximum (max), mean, kurtosis, slope, and 
approximate entropy. Accuracy, sensitivity, specificity, M C C , and Fl-score were 
computed to assess the M L algorithms. 

4.2.3 Results 

The purpose of this subsection is to present the results of the experiment. Below is 
a description of each table in this section: 

• Table 4.10: Differentiating Influensa cases during pandemics from cases caused 
by COVID-19; It was checked if there are differences between diseases caused 
by two different viruses during the same analysed period. 

• Table 4.11: Identifying Influensa cases during the pandemic and before the 
pandemic; The existing possible differences between Influensa, which cases 
were registered in various periods, were taken under analysis. 

• Table 4.12: Distinguishing the Influensa cases before the main pandemic and 
COVID-19 cases; It was evaluated if there are discrepancies between viruses 
collected in various intervals. One of the virus was COVID-19. 

• Table 4.13: Multiclass classification of Influensa before the main pandemic, 
Influensa during the main pandemic, and individuals with COVID-19; The 
possibility to distinguish parallelly three types of diseases caused by distinct 
viruses was checked. 
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Tab. 4.10: Identifying Inffuensa cases during the middle of the pandemic and cases 
of COVID-19. 
Classifier A C C Bal Accuracy Sensitivity Specificity M C C 
XGBoost 0.67 ± 0.20 0.71 ± 0.19 0.56 ± 0.37 0.81 ± 0.19 0.38 ± 0.42 

k-NN 0.73 ± 0.19 0.77 ± 0.16 0.58 ± 0.33 0.87 ± 0.16 0.49 ± 0.39 
S V M 0.64 ± 0.20 0.66 ± 0.19 0.56 ± 0.34 0.72 ± 0.23 0.29 ± 0.42 

Logistic Regression 0.68 ± 0.20 0.70 ± 0.18 0.61 ± 0.35 0.75 ± 0.22 0.38 ± 0.42 

Decision Tree 0.58 ± 0.20 0.62 ± 0.19 0.44 ± 0.35 0.72 ± 0.25 0.17 ± 0 . 4 4 

Random Forest 0.58 ± 0.20 0.61 ± 0.19 0.50 ± 0.36 0.67 ± 0.25 0.18 ± 0.42 

G L V Q 0.70 ± 0.19 0.74 ± 0.17 0.57 ± 0.34 0.83 ± 0.21 0.43 ± 0.40 

The outcome of the classification of COVID-19 cases and Inffuensa cases during 
the pandemic are shown in Table 4.10. The most successful algorithm in balanced 
accuracy, specificity, and M C C was k-NN. The balanced accuracy was equal to 
0.73, specificity achieved 0.87 and M C C was 0.49. The sensitivity was the highest 
for Logistic Regression and was equal to 0.61. 

Tab. 4.11: Identifying Infiuensa cases before and during the pandemic. 

Classifier A C C Bal Accuracy Sensitivity Specificity M C C 
XGBoost 0.80 ± 0.15 0.80 ± 0.15 0.86 ± 0.18 0.74 ± 0.24 0.63 ± 0.29 

k-NN 0.79 ± 0.14 0.79 ± 0.14 0.89 ± 0.15 0.69 ± 0.24 0.61 ± 0.27 

S V M 0.79 ± 0.15 0.79 ± 0.15 0.91 ± 0.14 0.67 ± 0.25 0.61 ± 0.29 

Logistic Regression 0.76 ± 0.16 0.76 ± 0.16 0.81 ± 0.20 0.71 ± 0.24 0.55 ± 0.32 

Decision Tree 0.80 ± 0.14 0.80 ± 0.14 0.95 ± 0.13 0.66 ± 0.24 0.64 ± 0 . 2 7 

Random Forest 0.78 ± 0.15 0.78 ± 0.15 0.87 ± 0.18 0.69 ± 0.24 0.59 ± 0.29 

G L V Q 0.82 ± 0.13 0.82 ± 0.13 0.96 ± 0.12 0.68 ± 0.23 0.68 ±0.24 

In the second experiment, Infiuensa cases were classified before and during a 
pandemic. The outcome is presented in Table 4.11. GLVQ! ( G L V Q ! ) achieved the 
best results. This classifier obtained achieved the highest balanced accuracy, i.e., 
0.82. sensitivity (0.96), M C C (0.68), while XGBoost achieved the highest specificity 
(0.74). 

The results of the distinction between COVID-19 cases and the Infiuensa cases 
registered before the main pandemic are shown in Table 4.12. The most successful in 
balanced accuracy among all tested classifiers was the GLVQ (0.84). This classifier 
also achieved the best M C C (0.71). Moreover, the best specificity was equal to 0.77 
for k-NN and the best specificity was registered for S V M . 

The multiclass classification results indicate that the k-NN is capable of distin­
guishing the cases at a level of 0.64 Fl-score (Table 4.13). The balanced accuracy 
for this same classifier was equal to 0.69 also for k-NN and M C C was equal to 0.54 
for k-NN. 
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Tab. 4.12: Identifying COVID-19 cases and Influensa cases prior to the main pan­
demic. 
Classifier A C C Bal Accuracy Sensitivity Specificity M C C 
XGBoost 0.80 ± 0.19 0.84 ± 0.16 0.93 ± 0.14 0.68 ± 0.35 0.64 ± 0.37 

k-NN 0.83 ± 0.15 0.85 ± 0.13 0.89 ± 0.15 0.77 ± 0.27 0.69 ± 0.28 

S V M 0.82 ± 0.17 0.86 ± 0.14 0.96 ± 0.10 0.68 ± 0.33 0.68 ± 0.33 

Logistic Regression 0.78 ± 0.17 0.79 ± 0.16 0.82 ± 0.19 0.74 ± 0.31 0.57 ± 0.34 

Decision Tree 0.75 ± 0.19 0.79 ± 0.17 0.89 ± 0.21 0.61 ± 0.34 0.54 ± 0 . 3 8 

Random Forest 0.74 ± 0.18 0.73 ± 0.18 0.70 ± 0.25 0.79 ± 0.31 0.50 ± 0.36 

G L V Q 0.84 ± 0.17 0.86 ± 0.14 0.92 ± 0.13 0.76 ± 0.31 0.71 ±0.32 

Tab. 4.13: Result of multiclass classification for COVID-19, Influensa cases prior to 
the main pandemic, and Influensa during the main pandemic. 

Classifier Fl-score A C C B a l Accuracy M C C 
X G B o o s t 0.61 ± 0.17 0.63 ± 0.15 0.67 ± 0.14 0.50 ± 0.22 
k - N N 0.64 ± 0.17 0.69 ± 0.13 0.66 ± 0.15 0.54 ± 0.22 
S V M 0.62 ± 0.16 0.64 ± 0.15 0.67 ± 0.14 0.51 ± 0.21 
Logistic Regression 0.56 ± 0.16 0.58 ± 0.16 0.59 ± 0.15 0.39 ± 0.24 
Decision Tree 0.46 ± 0.09 0.53 ± 0.09 0.62 ± 0.10 0.42 ±0.18 
Random Forest 0.48 ± 0.15 0.52 ± 0.14 0.57 ± 0.14 0.35 ± 0.22 
G L V Q 0.61 ± 0.17 0.63 ± 0.15 0.66 ± 0.14 0.49 ±0.23 

4.2.4 Discussion and Summarisation 

The purpose of this study is to determine if it is possible to distinguish between 
COVID-19 cases, Influensa cases before the main pandemic, and Influensa cases 
during the pandemic. M L and wearable devices were used for this purpose. The 
answer was presented through the summary of results in tables after analysing a few 
combinations of the problem. Because of the fact that the data were imbalanced, 
the balanced accuracy was calculated. The classification of COVID-19 cases and 
Influensa cases before the main pandemic achieved the best distinction in terms 
of balanced accuracy for the performed scenarios. During a pandemic, people's 
lifestyles changed and also their activities changed. Quarantine has a significant im­
pact on the lives of people. In addition, differences in heart rates between Influensa 
and COVID-19 cases were reported in [1]. It is possible that these observations could 
explain the good results obtained for the classification process. It could be inter­
preted that the S V M classifier was able to detect boundaries between the datasets. 
Furthermore, the algorithm was able to identify Influensa cases more easily than 
COVID-19 cases. There is also a good level of distinction between the two types 
of Influensa: the one prior to the main pandemic and the one in the middle of the 
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pandemic. It could be explained by the change in lifestyles that occurred during the 
pandemic, as well as the fact that there were two types of Infiuensa viruses and flu 
during this period. From a medical perspective, the most significant classification 
was the distinction between COVID-19 and Infiuensa cases during the pandemic. 
Based on this analysis, it is possible to distinguish the cases at a level of 0.73 bal­
anced accuracy. This finding confirms the hypothesis from the original work [1] that 
there is a difference in physiological signals: heart rate and personal activity before 
the onset of the disease likewise the intensity of the changes in symptoms. Logistic 
regression was the most successful in identifying COVID-19 cases (0.61 sensitivity), 
whereas k-NN was more successful in identifying Infiuensa cases (0.87 sensitivity). 
It was easier for the classifier to identify Infiuensa cases than COVID-19 cases based 
on the binary classification for COVID-19 and Infiuensa. A multiclass classification, 
however, indicates that there is a low probability of distinguishing between cases 
(0.64 Fl-score). Research limitations include the inclusion of people who are per­
haps self-quarantined. Nevertheless, the research is limited due to the absence of 
the HC group. Consequently, the generated models could not be used as a screening 
tool. Regarding the statement in the original paper, there were statistically signifi­
cant differences between races and ages. Additionally, the cohort was gathered in the 
United States of America (USA), which may have influenced the results. There was 
also probably a higher rate of hospitalization in the class during the pandemic than 
before it. According to the original paper [1], the R H R collected by wearables was 
observed to be higher for COVID-19 cases than for Infiuensa cases, and the changes 
lasted longer. Additionally, it should be noted that social contact restrictions in the 
USA may differ from those in other countries. 

To summarize, the research aimed to distinguish between each type of case, i.e.: 
COVID-19 cases, Infiuensa before the main pandemic, and during the pandemic. To 
accomplish this purpose, M L methodologies and wearable devices were used. The 
analyses were performed based on the data from [1] along with heart rate records and 
a number of steps. The most important of four performed classifications show that 
COVID-19 cases and Infiuensa in the middle of the pandemic can be distinguished 
with a 0.73 balanced accuracy via k-NN. Moreover, the contribution of this study 
is the introduction of models differentiating two types of infiuensa likewise COVID-
19 cases vs. Infiuensa cases before the main pandemic. The achieved balanced 
accuracies for GLVQ were equal to 0.82 and 0.84, respectively. Several factors could 
be responsible for the differences between the analyses, including the different types 
of infiuensa, differences in symptoms associated with heart rate and self-quarantine, 
as well as changes in people's lifestyles. The sampling rate and the size of the 
dataset are the limitations of this study. In addition, the lack of a HC group makes 
it impossible to create screening tests based on those models. 
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4.3 Wearable Analytics and Early Diagnostic of COVID-
19 Based on Two Cohorts 

The purpose of this study was to combine two datasets previously explored in chap­
ters 4.1 and 4.2. Both datasets considered COVID-19 disease. First of them with 
a higher sampling rate contains COVID-19 cases, Infiuensa, and HC (referred to as 
dataset A) . The second dataset does not have HC cases, however, it has the rep­
resentatives of two types of Infiuensa - before the main pandemic and during the 
pandemic, and COVID-19 cases (referred to as dataset B). A combination of the 
datasets should result in obtaining a more diverse and flexible M L model than was 
created in section 4.2 for the dataset with a lower sampling rate. Both datasets 
(A and B) contain heart rate records and steps taken. They were collected by the 
wearable - Fitbit device. A major difference between the datasets was the homo­
geneity of dataset B, which primarily represented overweight individuals from the 
USA. The scheme of the carried-out experiment is presented in Fig. 4.4. 

Tab. 4.14: The combinations of datasets and classes for each experiment. 
Types of data Experiment la Experiment lb Experiment 2 Experiment 3 Experiment 4 Experiment 5 
COVID-19 A 1 1 1 1 1 2 
COVID-19 B 1 1 1 1 2 
Infiuensa A 1 0 1 1 
Non-Covid-19 Flu 0 1 1 
Pre-Covid-19 Flu 0 1 1 
H C 0 0 0 0 0 

In the beginning, dataset A was undersampled in order to unify both datasets. 
Two modalities were sampled at a rate of one sample per day. The next step was to 
merge the datasets. The 5-day time window for each time series was then provided. 
According to the contagiousness of the disease and the incubation period, the time 
window was extracted from -7 to -2 days before the onset of the disease. Next, 
the features were calculated. They are mentioned in Fig. 4.4. Then, the ratios 
of the heart rate-related features to the number of step-related were computed. 
m R M R was used to select the features. Twenty features were chosen from a total 
of 36. Additionally, 10-fold stratified cross-validation was conducted. Classifiers 
used in this study included k-NN, S V M , Random Forest, Decision Tree, Logistic 
Regression, XGBoost, and GLVQ. Experiments were conducted according to Table 
4.14. There were the binary classifications as well as a multiclass classification. The 
experiments vary in analysed classes, from which datasets data were taken, likewise 
the number of chosen features during the features selection step. For example, 
Experiment l a treated COVID-19 cases from A and B datasets as one group and 
HC as a second class. The whole set of features was used in the classification step. 
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Fig. 4.4: Flow of the algorithm. 

Whereas, Experiment 2 considered COVID-19 and Inffuensa cases from dataset A 
as one class, while HC was the second group. The number of used features in 
Experiment 2 was 20. To analyse the data, the Mann-Whitney U test was used 
with F D R correction. The confidence level alfa = 0.05. 

4.3.1 Dataset Characterization 

The dataset was merged from two analysing in the previous subsection datasets 
4.1.1 and 4.2.1. The two datasets vary in sampling rate. The data from 4.1.1, here 
named dataset A , already mentioned before, have COVID-19, Influensa, and HC 
cases. The second dataset B contains COVID-19 cases (data were collected from 
03.2020 to 05.2020), and two types of Influensa: gathered before the main pandemic 
(11.2019-03.2020) and during the COVID-19 pandemic (03.2020-05.2020). Both 
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Tab. 4.15: Dataset mixtures and sample numbers for each experiment. 
Types of data Experiment la Experiment lb Experiment 2 Experiment 3 Experiment 4 Experiment 5 
COVID-19 A 27 27 27 27 27 27 
COVID-19 B 21 21 0 21 21 21 
Influensa A 0 0 7 7 7 7 
Non-Covid-19 Flu 0 0 0 19 10 20 
Pre-Covid-19 Flu 0 0 0 20 9 21 
H C 48 48 34 0 74 48 

types of data contain the record of heart rate and the number of steps taken during 
the day. For dataset A, the sampling rate for heart rate was 1 per minute and for the 
number of steps taken during the 1 hour. Dataset B characterises collected samples 
per day for both parameters. From the first dataset were chosen 27 COVID-19 cases. 
15 Influensa, and 73 HC. 21 COVID-19 cases, 37 Non-COVID-19 Flu, and 675 Pre-
COVID-19 Flu were in dataset B. A few scenarios of experiments were performed 
- classification among cases, which may be found in Table 4.15. Data balance was 
taken into account. 

4.3.2 Feature Extraction and Machine Learning 
The features were extracted based on the [2,59,61]. Based on the contagiousness 
period and the incubation period, the features were obtained. The highest conta­
giousness period is regarded as -2 to 1 days after the beginning of the onset of the 
disease. Five days were set as the length of the windows. A time window of -7 to 
-2 days prior to the onset of the disease was selected in order to detect the disease 
at its prodromal stage. To unify two datasets, dataset A was undersampled. The 
features were extracted according to the receipt from [61]. Fig. 4.5 illustrates the 
scheme for calculating the time window with respect to the mentioned onset disease. 

Ps 

t0 

Onset 

tD 

Diagnosis 

tD 

Diagnosis 

State of the person t w V ' -
Feature extraction / 

Fig. 4.5: Feature extraction. 

The following time points are computed: 
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• to is the detection of the disease to = to + 2 
• to is the visible Onset of the illness to = ps + ts 
• ps is the duration of the time window 
• i s is the beginning of the disease 
Subsequently, a few parameters were calculated for the time windows of heart 

rate and the number of steps for the datasets A and B. These were: max, min, 
mean, std, relative standard deviation (rsd), range, Shannon entropy, approximate 
entropy, skewness, kurtosis, variance, and slope. Furthermore, the ratios between 
the parameters of heart rate and the number of steps were calculated. For example, 
the maximum heart rate to the maximum number of steps taken to express changes 
in personal activity was computed. 

4.3.3 Results 

The statistical analysis, as well as the binary classification and multiclass classifica­
tion, were conducted according to Tables 4.14 and 4.15. 

The outcome of the Mann-Whitney U test and its variant with F D R correction 
is presented in: 

. Tab 4.16 for COVID-19 cases vs. HC 

. Tab 4.17 for COVID-19 cases, Influensa vs. HC. 
The procedure of Benjamini-Hochberg was carried out to minimise the impact 

of the number of type I errors. For the first case, having analysed COVID-19 cases 
vs. HC, the 13 features were statistically significant after F D R correction. For the 
scenario with COVID-19 cases, Influensa vs. HC, 17 features passed the test with 
F D R correction for the confidence level a = 0.05. 

The distinction of COVID-19 (cases from datasets A and B) from HC gave 
0.73 accuracy for XGBoost, and this same classifier achieved 0.75 sensitivity and 
0.48 M C C . The results are presented in Table 4.18. Whereas, k-NN had the best 
specificity of 0.77. The balance of the dataset was taken into consideration for 
all provided classifications. The details of used samples for each classification and 
regarded classes could be found in Tables 4.14 and 4.15. 

A second analysis was conducted using the identical sub-dataset but after feature 
selection, using 20 features out of 36 (Table 4.19). XGBoost obtained 0.73 accuracy, 
0.71 sensitivity, and 0.48 M C C . While GLVQ achieved a specificity of 0.91. 

The outcome of distinction COVID-19, Influensa vs. HC (all from dataset A) 
are visible in Table 4.20. The highest accuracy was observable for XGBoost, and 
it was equal to 0.63, whereas M C C was equal to 0.28 and was the best among all 
tested classifiers. S V M achieved the best sensitivity: 0.90, while Decision Tree has 
the highest specificity of 0.67. 
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Tab. 4.16: Analysis of COVID-19 cases,Tab. 4.17: Analysis of ill and HC cases 
and HC cases using the Mann-Whitney Uusing the Mann-Whitney U test and F D R 
test and F D R correction. correction. 
Feature pval pval FDR 
activ_std 0.00001 0.00014 
activ_variance 0.00001 0.00014 
activ_range 0.00001 0.00015 
activ_rsd 0.00003 0.00027 
activ_entropy_shannon 0.00092 0.00644 
heart_std 0.00184 0.00921 
heart_variance 0.00184 0.00921 
heart_rsd 0.00291 0.01249 
heart_range 0.00321 0.01249 
steps_entropy_shannon 0.00750 0.02624 
steps_range 0.01214 0.03540 
activ_max 0.01138 0.03540 
steps_slope 0.01593 0.04288 
steps_std 0.02331 0.05439 
steps_variance 0.02331 0.05439 
steps_max 0.03409 0.07457 
heart_max 0.03736 0.07692 
heart_entropy_shannon 0.04967 0.09658 
steps_skew 0.05699 0.10498 
activ_mean 0.06626 0.11596 
steps_kurtosis 0.09272 0.15453 
activ_min 0.09860 0.15687 
steps_mean 0.10960 0.16224 
steps_min 0.11125 0.16224 
heart_mean 0.12333 0.16602 
activ_slope 0.12333 0.16602 
steps_rsd 0.14433 0.18709 
heart_min 0.24971 0.31214 
activ_kurtosis 0.27791 0.33541 
heart_slope 0.38690 0.45139 
heart_skew 0.42406 0.47878 
heart_kurtosis 0.64317 0.70347 
activ_skew 0.92736 0.98357 
steps_approx_entropy 1.00000 1.00000 
heart_approx_entropy 1.00000 1.00000 

Feature pval pval FDR 
heart_std 0.00000 0.00002 
heart_range 0.00000 0.00002 
heart_variance 0.00000 0.00002 
activ_std 0.00000 0.00002 
activ_range 0.00000 0.00002 
activ_entropy_shannon 0.00000 0.00002 
activ_variance 0.00000 0.00002 
heart_rsd 0.00002 0.00009 
activ_rsd 0.00002 0.00009 
heart_max 0.00005 0.00019 
heart_entropy_shannon 0.00010 0.00031 
heart_mean 0.00040 0.00118 
steps_entropy_shannon 0.00303 0.00815 
heart_min 0.00395 0.00987 
activ_max 0.00952 0.02222 
activ_min 0.01776 0.03884 
activ_mean 0.01951 0.04017 
steps_min 0.05476 0.10648 
steps_max 0.10284 0.17997 
steps_skew 0.09805 0.17997 
steps_mean 0.11923 0.19872 
steps_slope 0.13656 0.21726 
steps_range 0.21119 0.32138 
steps_std 0.26776 0.36045 
steps_variance 0.26776 0.36045 
steps_kurtosis 0.26611 0.36045 
activ_kurtosis 0.44079 0.57139 
heart_skew 0.57789 0.72237 
steps_rsd 0.65872 0.75941 
activ_slope 0.67262 0.75941 
activ_skew 0.63672 0.75941 
heart_slope 0.77282 0.84528 
heart_kurtosis 0.88901 0.94289 
steps_approx_entropy 1.00000 1.00000 
heart_approx_entropy 1.00000 1.00000 
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Tab. 4.18: The outcome of distinction COVID-19 (A and B dataset) from HC (for 
all 36 features). 

Classifier Accuracy Sensitivity Specificity M C C 
X G B o o s t 0.73 ± 0.14 0.75 ± 0.22 0.75 ± 0.20 0.48 ± 0.30 
k - N N 0.68 ± 0.13 0.60 ± 0.21 0.77 ± 0.18 0.39 ± 0.27 
S V M 0.68 ± 0.15 0.61 ± 0.22 0.75 ± 0.22 0.38 ± 0.20 
Logistic Regression 0.66 ± 0.16 0.62 ± 0.23 0.70 ± 0.21 0.33 ± 0.32 
Decision Tree 0.66 ± 0.16 0.65 ± 0.22 0.66 ± 0.22 0.32 ± 0.33 
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33 
G L V Q 0.64 ± 0.14 0.55 ± 0.23 0.74 ± 0.20 0.30 ± 0.29 

Tab. 4.19: The outcome of distinction COVID-19 (A and B dataset) from HC (for 
selected 20 features). 

Classifier Accuracy Sensitivity Specificity M C C 
X G B o o s t 0.73 ± 0.14 0.71 ± 0.22 0.75 ± 0.19 0.48 ± 0.29 
k - N N 0.72 ± 0.15 0.58 ± 0.24 0.86 ± 0.16 0.47 ± 0.30 
S V M 0.67 ± 0.14 0.60 ± 0.22 0.73 ± 0.19 0.35 ± 0.29 
Logistic Regression 0.65 ± 0.15 0.59 ± 0.23 0.70 ± 0.20 0.31 ± 0.31 
Decision Tree 0.68 ± 0.15 0.64 ± 0.23 0.71 ± 0.18 0.37 ± 0.30 
Random Forest 0.70 ± 0.16 0.64 ± 0.24 0.76 ± 0.20 0.42 ± 0.33 
G L V Q 0.66 ± 0.12 0.40 ± 0.21 0.91 ± 0.12 0.36 ± 0.26 

Tab. 4.20: The outcome of distinction between COVID-19, Infiuensa vs. HC based 
on dataset A. 

Classifier Accuracy Sensitivity Specificity M C C 
X G B o o s t 0.63 ± 0.18 0.65 ± 0.26 0.62 ± 0.28 0.28 ± 0.38 
k - N N 0.56 ± 0.18 0.56 ± 0.27 0.58 ± 0.26 0.14 ± 0.39 
S V M 0.57 ± 0.14 0.90 ± 0.20 0.24 ± 0.22 0.18 ± 0.31 
Logistic Regression 0.49 ± 0.18 0.49 ± 0.28 0.48 ± 0.26 -0.03 ± 0.40 
Decision Tree 0.57 ± 0.17 0.48 ± 0.25 0.67 ± 0.30 0.16 ± 0.37 
Random Forest 0.54 ± 0.17 0.51 ± 0.33 0.57 ± 0.34 0.08 ± 0.36 
G L V Q 0.54 ± 0.15 0.71 ± 0.27 0.37 ± 0.32 0.09 ± 0.35 

The outcome of the distinction of COVID-19 (A and B dataset) vs. Infiuensa 
(for all analysed cases, from A and B dataset) is presented in Table 4.21. The 
best accuracy (0.67) and M C C (0.36) were observable for XGBoost. The highest 
sensitivity: 0.66 was obtained for Random Forest and GLVQ, whereas the best 
specificity: 0.73 was achieved for S V M . 
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Tab. 4.21: The outcome of distinction COVID-19 (A and B dataset) vs. Influensa 
(all analysed cases, from A and B dataset) 

Classifier Accuracy Sensitivity Specificty M C C 
X G B o o s t 0.67 ± 0.13 0.63 ±0. 21 0.71 ± 0.19 0.36 ± 0.27 
k - N N 0.62 ± 0.14 0.54 ± 0.22 0.70 ± 0.22 0.25 ± 0.30 
S V M 0.62 ± 0.14 0.52 ± 0.22 0.73 ± 0.21 0.26 ± 0.29 
Logistic Regression 0.61 ± 0.15 0.58 ± 0.22 0.64 ± 0.21 0.24 ± 0.31 
Decision Tree 0.61 ± 0.15 0.62 ± 0.25 0.61 ± 0.21 0.24 ± 0.31 
Random Forest 0.63 ± 0.14 0.66 ± 0.22 0.61 ± 0.21 0.28 ± 0.30 
G L V Q 0.60 ± 0.14 0.66 ± 0.23 0.54 ± 0.27 0.22 ± 0.31 

Tab. 4.22: The outcome of distinction of COVID-19 (A and B dataset), Influensa 
(for all cases, from A and B dataset) vs. HC. 

Classifier Accuracy Sensitivity Specificty M C C 
X G B o o s t 0.68 ± 0.12 0.62 ± 0.18 0.74 ± 0.16 0.37 ± 0.25 
k - N N 0.70 ± 0.12 0.65 ± 0.17 0.75 ± 0.16 0.41 ± 0.24 
S V M 0.72 ±0 .12 0.61 ± 0.19 0.82 ± 0.13 0.45 ± 0.25 
Logistic Regression 0.67 ± 0.12 0.66 ± 0.17 0.68 ± 0.17 0.35 ± 0.25 
Decision Tree 0.71 ± 0.11 0.53 ± 0.18 0.90 ± 0.11 0.47 ± 0.21 
Random Forest 0.67 ± 0.11 0.57 ± 0.18 0.78 ± 0.18 0.37 ± 0.24 
G L V Q 0.72 ± 0.12 0.64 ± 0.18 0.80 ± 0.16 0.45 ± 0.24 

The results of the classification of COVID-19 cases (A and B dataset), Influensa 
(for all three cases, from A and B dataset ) vs. HC are presented in Table 4.22. 
S V M and GLVQ obtained the highest accuracy of 0.72. Logistic Regression had a 
sensitivity equal to 0.66, and it was the highest, whereas the best specificity (0.90) 
and M C C (0.47) were observed for the Decision Tree. 

Moreover, the multiclass classification was performed. The following three classes 
were considered combined for A and B dataset: COVID-19 cases and Influensa, and 
HC. XGBoost gave the highest Fl-score and it was equal to 0.57. Accuracy was 
also the best for XGBoost: 0.58. M C C was registered the highest for XGBoost and 
GLVQ. 

4.3.4 Discussion and Summarisation 

The purpose of this experiment was to develop support methodologies for identi­
fying COVID-19, Influensa, and HC cases in different scenarios. Three types of 
Influensa were considered: Influensa from dataset A and two cases of Influensa from 
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Tab. 4.23: The outcome of multiclass classification of COVID-19, Influensa and HC 
for A and B datasets. 

Classifier F l - score Accuracy M C C 
X G B o o s t 0.57 ± 0.13 0.58 ± 0.13 0.38 ± 0.20 
k - N N 0.56 ± 0.14 0.57 ± 0.13 0.37 ± 0.20 
S V M 0.53 ± 0.13 0.55 ± 0.12 0.34 ± 0.19 
Logistic Regression 0.52 ± 0.13 0.54 ± 0.13 0.32 ± 0.19 
Decision Tree 0.40 ± 0.07 0.51 ± 0.09 0.31 ±0.15 
R a n d o m Forest 0.53 ± 0.12 0.55 ± 0.11 0.34 ± 0.17 
G L V Q 0.54 ± 0.12 0.57 ± 0.11 0.38 ± 0.18 

dataset B - Influensa before and during the main pandemic. The sampling rate of 
the datasets was not high, but it was necessary to undersample dataset A to conduct 
the experiment with a mixture of datasets. The important factors in the experiment 
were the contagiousness and incubation period. The nature of heart rate during the 
illness was one of the basements of this research. Regarding the feature creation, 
the parameters used in [61] were applied. Additionally, the changes in personal 
activity were considered thanks to the ratio between the appropriate features, like 
the range of heart rate to the range of steps taken. To reduce the type I error, the 
Mann-Whitney U test was applied with F D R correction. It was checked if there was 
a statistically significant difference between COVID-19 cases from HC and ill cases 
(COVID-19 cases and Influensa) from HC. For the first analysis, the most valuable 
features occurred to be those indicated on personal activity. Furthermore, heart 
rate-related parameters have statistical significance. The most important metrics 
were range, std, rsd, and variance together with Shannon entropy. As a result, the 
deviations from the norm demonstrate the differences between the cases. The sta­
tistical analysis of ill cases vs. HC revealed the importance of more than half of the 
prepared features. Changes in the heart confirmed the differences between cases, as 
well as variations in personal activity. The Shannon entropy of the steps taken is 
also important. Six versions of classification, including multiclass classification, were 
performed in order to test the quality of distinction between the classes. Among the 
tested classifiers, XGBoost proved to be the most successful. As a result, XGBoost 
succeeded in the distinction due to the complexity of its algorithm since the data 
dependencies were most likely more complex. Nevertheless, overfitting could have 
a small impact on the results. XGBoost achieved the highest accuracy and also for 
M C C - the metric which is suitable for imbalanced dataset. For two classifications, 
the accuracy was equal to 0.73 (Tables 4.18 and 4.19), and this metric was equal 
to 0.72 for one scenario (Table 4.22) thanks to the usage of XGBoost, S V M and 
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GLVQ. They were differentiations of COVID-19 cases from HC (Tables 4.18 and 
4.19) and distinctions of COVID-19 cases, Inffuensa vs. HC (Table 4.22), respec­
tively. Those models could simply be assisting in screening testing. Furthermore, 
the classification with the participation of the data from dataset A , i.e., COVID-19 
cases, Influensa vs. HC obtained only 0.63 accuracy. Nevertheless, the dataset is 
highly undersampled in the comparison to the solution from [2] where the support 
methodology for such combinations of the data and connected to its higher num­
ber of features achieved 0.73 balanced accuracy. Moreover, the separation of the 
COVID-19 sample vs. Influensa was obtained at a lower level of 0.67 considering 
data from the A and B datasets, than another achieved in [61] based just on dataset 
B. It is a small probability of correctly identifying each of the three classes for multi-
class classification (0.57 Fl-score). The case of distinction COVID-19 cases from HC 
does not outperform the solution from [2]. Here, the accuracy of the classification 
between COVID-19 vs. HC was equal to 0.73, whereas in [2] 0.78. Nevertheless, the 
spectrum of features and sampling rate of the time series were much lower. Addi­
tionally, dataset B is biased by people with overweight and the population comes 
from just on country - from the USA. The people could have specific clinical and 
demographic characteristics likewise epidemiologic features [232]. The comparison 
of the results from [61] (See Section 4.1) (0.73) with this solution (0.67) showed that 
the proposed approach in this Section with the usage of two datasets achieved lower 
accuracy for COVID-19 cases vs. Influensa. It would be beneficial to extend the 
gathered signals from various measurements in order to enhance the accuracy of the 
prediction. There could be temperature body signals, barometers, magnetometry, 
or gyroscope. 

To summarize, the support methodology of COVID-19 detection based on two 
cohorts was proposed. The combined dataset is one of the largest presented in 
the literature (see Subsection 3.1). The valuable features from the point of view of 
distinguishing COVID-19 cases from HC cases were identified by statistical analysis. 
They were derived from the heart rate and the number of steps taken records. 
The proposed models are one of a kind. Among the six performed classifications, 
XGBoost was found to be the most powerful algorithm. The distinction of COVID-
19 cases from HC from both datasets was possible in 0.73 balanced accuracy, whereas 
differentiation of ill cases achieved 0.72 balanced accuracy for k-NN and GLVQ. 

4.4 Conclusion 

A few methods using M L and wearables exist for detecting COVID-19 disease. By 
the same token, there is a research gap to introduce screening tests based on those 
technologies. The wearables could be especially utilised because they are relatively 
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inexpensive and approachable for a wider part of society. In this chapter, there 
were presented several approaches to COVID-19 detection and they are related to 
stated research objectives R O l . , R 0 2 . , and R 0 3 . Two datasets (A and B) were 
taken into account from [59] and [1]. The benefit of the conducted research is 
that all of the presented methods respect the contagiousness and incubation period. 
Additionally, all of them were destinated for early disease recognition. This approach 
is a big advantage because it could potentially effectively detect the disease at the 
early stage, and thereby limit the number of infected people. Most of the papers 
presented in the literature do not consider early detection. Furthermore, the utilised 
datasets contain the records of COVID-19, two types of Influensa (before and in the 
middle of the pandemic) from dataset B, and Influensa from dataset A , likewise 
H O A few types of Influensa were analysed and this diversity of the dataset makes 
the methodology unique. The gathered signals were records of H R and the number 
of steps taken. The foundations of the conducted and presented studies in this 
chapter, were observed differences in HR between the types of Influensa and COVID-
19 likewise the longer duration of the disease. Nevertheless, the authors in [1] made 
statistical analysis, whereas the solution in this thesis introduced the classification 
between the healthy and ill groups. The differentiation between the COVID-19 
disease and Influensa was not carried out earlier in the research. Additionally, the 
combination of the datasets allows for obtaining a more demographically diverse 
and numerous cohort. The main differences between the proposed approaches in 
each section are the number of the datasets, representation of classes, and sampling 
frequency of the used datasets. 

The most advanced methodology was proposed in section 4.1. The contribution 
is the identification of the most statistically significant features, they were frequency-
and spectral-related. They were: M F C C , F F T , histogram-related, spectral-based, 
and L P C C . The identified valuable features are the answers to the question RQ1 .2 . 

The advantage of this research is the proposal of the classification methodology. 
The best results based on dataset A were achieved for a 5-day window and the 
classification of COVID-19 cases and HC was equal to 0.78 accuracy for k-NN. The 
distinction between the ill cases (COVID-19 cases or Influensa) from HC reached 
0.73 accuracy for the k-NN and GLVQ classifiers and 5-day window. While just 
the anomaly detection was presented in the original paper [59], reaching 63 % of 
correctly detected COVID-19 cases likewise the specificity was not computed. It is 
a reply to question R Q 1 . 1 . 
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Tab. 4.24: The overview of the achieved outcomes in Sections 4.1, 4.2, and 4.3. 

A p p r o a c h Dataset A l g o r i t h m 
A ccuracy 
Balanced 

Sensitivity Specificity M C C Fl-s c o r e 

C OVID-19 detection (5-day window) A k-NN 0.78 0.77 0.80 0.60 -

Illness detection (5-day window) A 
k-NN 

GLVQ 
0.73 

0.71 
0.73 

0.76 
0.72 

0.49 
0.47 

-

D i s t i n c t i o n between Influensa cases during 
the middle of the pandemic and cases of COVID-19 

B k-NN 0.73 0.58 0.87 0.49 -

D i s t i n c t i o n between Influensa cases before 
and during the pandemic 

B GLVQ 0.82 0.96 0.68 0.68 -

D i s t i n c t i o n between COVID-19 cases and 
Influensa cases before to the pandemic 

B GLVQ 0.84 0.92 0.76 0.71 -

Multiclass classification for COVID-19, 
Influensa cases before and during the pandemic 

B k-NN 0.69 - - 0.54 0.64 

COVID-19 detection A and B XGBoost 0.73 0.71 0.75 0.48 -

Illness detection (II solution) A XGBoost 0.63 0.65 0.62 0.28 -

D i s t i n c t i o n between COVID-19 and Influensa A and B XGBoost 0.67 0.63 0.71 0.36 -

Illness detection A and B 
SVM 
GLVQ 

0.72 
0.61 
0.64 

0.82 
0.80 

0.45 -

Multiclass classification for COVID-19, 
Influensa and H C 

A and B XGBoost 0.58 - - 0.38 0.57 



Furthermore, four unique classifications were carried out for dataset B, consid­
ering also two types of Influensa. It is one-of-a-kind research, not explored earlier in 
the literature. This study also confirmed the existing differences between COVID-19, 
and two Influensa cases occurring in various periods. The differentiation between the 
COVID-19 cases from Influensa during the pandemic reached 0.73 balanced accu­
racy for k-NN, whereas the distinction between the COVID-19 cases from Influensa 
before the main pandemic was equal to 0.84 for GLVQ. Those achieved accuracies 
are the answers to question R Q 2 . 1 . The classification of two kinds of Influensa gave 
the distinction on the level of 0.82 balanced accuracy for GLVQ. This accuracy is 
the response to the question R Q 2 . 2 . The presented methodology is simpler with 
lower obtained results, however, it requires less complex data in comparison to the 
presented solution based on dataset A . 

Additionally, the five unique scenarios were conducted based on the mixture of 
datasets A and B. Those classifications were performed to evaluate if they could 
surpass the results achieved based on separate dataset A or B. The distinction 
between COVID-19 cases and HC was possible on the level of 0.73 accuracy for 
XGBoost. This accuracy is partial answer to the question R Q 3 . 2 . The classification 
of ill cases vs. HC reached 0.72 accuracy for S V M and GLVQ. This accuracy is the 
fragmentary reply to the question R Q 3 . 2 . It is a similar outcome achieved on 
dataset A (0.73). Moreover, the contribution is the identification of the statistically 
important features extracted from a mixture of A and B datasets. They were the 
parameters of the ratio between the measurements of heart rate to the measurements 
of the number of steps taken. Those features are the reply to the question R Q 3 . 3 . 

The summary of the obtained results in this chapter is presented in Table 4.24. 

There are significant differences in how the methodologies were designed for the 
detection of COVID-19 in each scenario, based on datasets A , B, and a combination 
of both datasets. The developed support methodology for the detection of COVID-
19 cases hinged on dataset A needed two-time windows. The spacing between the 
windows was chosen concerning the incubation period. The shift was equal to 7 days. 
The placement of the interval considered the highest contagiousness of the diseases. 
Subsequently, the set of features from spectral, frequency, and statistical domains 
was extracted for each window. The further bunch of features was subtracted from 
the earlier set of features. Next, the features selection was performed thanks to the 
mRMR. The 10-fold cross-validation was done with the classification step. The 
evaluated classifiers were XGBoost, S V M , k-NN, Random Forest, Decision Tree, 
Logistic Regression, and GLVQ. The aforementioned methodology is the reply to 
the question R Q 1 . 3 . The approach to detecting COVID-19 based on dataset B was 
various from the already mentioned methodology based on dataset A . The main 
limitation was the sampling rate of the dataset B. Because of that, one 5-day time 
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window was chosen instead of two. Nonetheless, the character of the disease in the 
calculation was maintained - the incubation period and contagiousness of the disease. 
The feature extraction was performed differently. The computed features were std, 
skew, var, range, min, max, mean, kurtosis, slope, and approximate entropy of 
the heart rate signals and number of steps taken. The next steps were computed 
similarly to the previous support methodology, i.e., the features pre-selection was 
done thanks to the mRMR, and the 10-fold cross-validation was performed with 
classification steps. Those same classifiers were used as in the previous example. 
This approach is a response to the question R Q 2 . 3 . The procedure which was 
used to create support methodologies based on datasets A and B was analogous 
to this used in the case of dataset B. However, dataset A had to be undersampled 
to combine both datasets. It is the answer to question R Q 3 . 1 . Additionally, the 
analysed datasets were gathered by the Fitbit devices. Thereby, created solutions 
are targeted at Fitbit. The device which could be used is Empatica because it 
collects a wider spectrum of signals. However, it is more expensive and not so widely 
distributed in society. Moreover, the COVID-19 restrictions could vary between the 
countries and thereby have an influence on the collected cohort and obtained results. 
To sum up, the increase in accuracy could be achieved thanks to the extension of 
the dataset with a higher sampling rate likewise incorporating other modalities such 
as skin temperature, B V P , RR, HRV, skin conductance, and oxygen saturation. 
However, the balance would be difficult to achieve between the probably elevated 
accuracy and the price of the device embedded in extra sensors. 
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5 mHealth Dedicated Solutions for Parkin­
son's Detection 

This chapter is targeting the detection of P D and is dedicated to mHealth and 
eHealth solutions for A A L . The undoubted advantage of mobile phones is their 
broad ownership in society. Moreover, the monitoring and detection of Parkinson's 
motor and non-motor symptoms are becoming approachable for the elders and their 
families. The additional clear advantage of this is the reduction of the cost of the 
healthcare system. This chapter presents the automatic analysis of changes in emo­
tions to recognise P D likewise the multimodal detection of P D based on hypomimia 
and HD symptoms with the usage of audio and video records. Furthermore, the 
chapter discusses the used material and methods, the collected dataset, and the fea­
ture extraction methodology. Moreover, the used M L approaches with the solutions 
for the interpretability of the model, the used metrics, and the discussion of the key 
findings are provided. Those kinds of techniques allowed the creation of support 
system methodologies for the detection of P D together with their interpretability. 

5.1 Parkinson's Disease Detection based on Changes 
of Emotions during Speech 

This research aims to develop a methodology which is detecting PD. Symptoms 
of hypomimia manifested in the difficulty of expressing emotions were the basis of 
the study. Using a numerical analysis of the changes in emotions over time, the 
set of features was determined. Face expression recognition (FEC) based on neural 
networks was used to detect differences frame by frame. For the evaluation of the 
disease, a tongue twister and reading aloud long texts were tested. Fig. 5.1 presents 
a schematic representation of the experiment. The first step was to calculate the 
intensity of the emotion in each frame using a neural network. Next, scalars for 
each emotion were calculated based on the time series. Using the mRMR, the 
feature pre-selection process was then performed. A stratified cross-validation with 
standardization and classification was conducted. k-NN, S V M , Random Forest, 
Decision Tree, Logistic Regression, and XGBoost were used as classifiers. 

A Mann-Whitney U test was used with F D R correction to eliminate the influence 
of type I errors in the statistical evaluation. SHAP values were used to calculate 
the interpretability of the classifier. 
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Calculation of intensity of emotion on 
each frame thanks to NN 

Creating scalar features from obtained 
data describing emotions 

Classifiers: 
• XGBoost 
• k-NN 
• SVM 
• Logistic Regression má • Decision Tree 

^ • Random Forest • 
Classification with Stratified Cross-

Validation (Standardisation + Classifier) 

Fig. 5.1: The scheme of the experiment. 

5.1.1 Dataset Characterization 

For the purpose of this research, 45 HC (21 females (mean age 62 ± 9.22), 24 males 
(mean age 66 ± 9.17)) and 70 P D patients (27 females (mean age 68 ± 8.04), 43 
males (mean age 66 ± 7.83)) were involved. 

It was found that the Unified Parkinson's Disease Rating Scale (UPDRS) III 
mean for female Parkinsonians was 21.6 ± 13.50 and the mean duration of P D in 
years was 7.2 ± 4.82, but the mean UPDRS III for male Parkinsonians was 26.3 ± 
11.31 and the mean duration of P D in years was 7.9 ± 4.64. HC and individuals 
with Parkinson's disease were recorded while being asked to pronounce and read 
long texts. 

During this experiment, a Czech sentence (Celý večer se učí sčítat) 1 was pro-

1 L i n k for the pronuncia t ion of the sentence: h t t p s : / / b i t . l y / 2 D V P J 5 M 
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nounced by the participants. The sentence means "He's been learning to count all 
night", however, the difficulty in pronouncing sentence matters in the case of this 
experiment. 

Ethical approval was granted by the Masaryk University Ethical Committee. 
The data were gathered by neurologists. 

The total number of video records for speech exercise is 70 P D plus 45 HC, which 
equals 115. Records vary in length. During the acquisition of the video, 25 frame 
per second (FPS) sampling was used. 

5.1.2 Feature extraction and Machine Learning 

The detection of P D was conducted in a few computational phases. The primary 
objective of this study was to assign the numerical values to emotions and to clas­
sify illness based on the differences in intensity of emotional changes during the 
pronunciation of the task. A F E C method was applied [233] to achieve this aim. 
F E R 2013 dataset [234] was used to train this publicly available neural network. 
Initially, the face was detected by using Multitask Cascaded Convolutional Net­
works (MTCNN) [235]. The neural network architecture was used in the second 
step to determine the intensity of seven analysed emotions. Aside from surprise and 
neutral emotions, disgust, sadness, happiness, fear, and anger are considered. Re­
gression intensities were calculated for each frame, and these were then aggregated 
for the seven time series for each participant. Fig. 5.2 illustrates the instances of 
recognition emotion per frame. The time series for each participant is shown in 
Fig. 5.3. As a next step, the scalar values were computed from seven time series 
for each participant. The following features were determined: approximate entropy, 
Shannon entropy, skewness, kurtosis, std, rsd, range, max, and min. 

Four metrics were used to evaluate the models: sensitivity, specificity, balanced 
accuracy and M C C . The used classifiers include XGBoost, k-NN, S V M , Decision 
Tree, Random Forest, and Logistic Regression. XGBoost emerged as the most 
promising. This classifier is among them the most powerful algorithms for struc­
tured data due to its ability to optimize specific loss functions and regularization 
techniques. Due to the use of parallebzation techniques, the algorithm is also exe­
cuted more rapidly. 

5.1.3 Results 

As can be seen in Table 5.1, a statistical analysis of the features has been con­
ducted. This table presents the top 10 features based on their p-values (pVals). 
Furthermore, there is also provided the pVal after F D R correction, as well as the 
median and IQR of P D and HC. P-values and P-values with F D R correction are all 
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Fig. 5.2: Emotional recognition based on the face image. (The image has been 
blurred for privacy reasons). 

0 50 100 150 200 250 300 350 
The number of frame 

Fig. 5.3: A n analysis of the changes in emotions during a speech exercise. 

below the set significance level a = 0.05. The following features are notably impor­
tant: fear_std, fear variance, angry_mean, angry_std, angry_variance, fear max, 
fear mean, angry min, fear range, sad approx entropy. 

The outcomes of the tongue twister classification are presented in Table 5.2. 
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Tab. 5.1: Statistical analysis of the created features among P D and HC. 
Features pVal p Val (FDR) Median (PD) Median (HC) IQR (PD) IQR (HC) 
fear std 0.0034 0.0408 0.0564 0.0350 0.0649 0.0390 
fear variance 0.0034 0.0408 0.0032 0.0012 0.0078 0.0032 
angry mean 0.0038 0.0408 0.1762 0.1276 0.1953 0.1639 
angry std 0.0039 0.0408 0.0819 0.0562 0.0605 0.0499 
angry variance 0.0039 0.0408 0.0067 0.0032 0.0097 0.0060 
fear max 0.0040 0.0408 0.2950 0.2100 0.3050 0.1800 
fear mean 0.0045 0.0408 0.0988 0.0725 0.1711 0.0719 
angry min 0.0050 0.0408 0.0600 0.0400 0.0700 0.0600 
fear range 0.0050 0.0408 0.2500 0.1900 0.2700 0.1500 
sad approx entropy 0.0053 0.0408 0.3624 0.4990 0.3005 0.2781 

Tab. 5.2: The prediction for tongue twister based on the various classifiers. 

Classifier A C C B a l Sensi t ivi ty Specificity M C C 
k - N N 0.63 ± 0.13 0.69 ± 0.17 0.57 ± 0.23 0.27 ± 0.27 
S V M 0.59 ± 0.13 0.70 ± 0.16 0.49 ± 0.25 0.19 ± 0.27 
Decis ion 
Tree 

0.57 ± 0.13 0.41 ± 0.17 0.73 ± 0.24 0.15 ± 0.27 

R a n d o m 
Forest 

0.62 ± 0.14 0.68 ± 0.18 0.56 ± 0.23 0.25 ± 0.29 

Logist ic 
Regression 

0.59 ± 0.13 0.73 ± 0.16 0.45 ± 0.24 0.18 ± 0.28 

X G B o o s t 0.69 ± 0.14 0.71 ± 0.17 0.67 ± 0.22 0.39 ± 0.29 

Based on balanced accuracy, XGBoost was rated as the best classifier with a score 
of 0.69. M C C for this classifier was 0.39. Logistic Regression had the highest 
sensitivity of 0.73, while the best specificity was observed for Decision Tree. 

The SHAP values provided for the XGBoost classifier the interpretability of the 
model (see Fig. 5.4). The positive correlation of the features to P D was recorded 
for std, variance, range, maximum, and mean for fear (fear std, fear variance, 
fear range, fear max, fear_mean) and maximum and variance for anger (angrymax, 
angry variance), as well as the mean for surprise (surprise_mean). P D was nega­
tively correlated with approximate entropy for surprise and sadness 

(surprise approx entropy, sad approx entropy). 

In addition, the results of the classification of P D for two different speech ex­
ercises for XGBoost are presented in Table 5.3. Not only the tongue twister was 
evaluated but also the participants were asked to read long text. Prediction re­
sults for the second speech exercise are 0.60 balanced accuracy, 0.66 sensitivity, 0.54 
specificity, and 0.20 M C C . 
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Fig. 5.4: The values of SHAP were derived from the XGBoost tongue twister model. 

Tab. 5.3: XGBoost predictions for tongue twister and reading text exercise. 

Speech 
exercise 

A C C B a l Sensi t ivi ty Specificity M C C 

Tongue 
twister 

0.69 ± 0.14 0.71 ± 0.17 0.67 ± 0.22 0.39 ± 0.29 

Long 
text 

0.60 ± 0.16 0.66 ± 0.21 0.54 ± 0.27 0.20 ± 0.34 

5.1.4 Discussion and Summarisation 

A methodology for the automatic detection of P D based on changes in emotions 
is presented. In this study, hard-to-pronounce Czech tongue twister was examined 
as well as the reading of a long text by participants. Based on the detection of 
seven emotions in each video frame, it occurs that fear is the most meaningful 
emotion. The results indicated that the most informative variables were mean, std, 
variance, maximum, mean and range of fear, mean, std, variance, min of anger, 
and approximate entropy of sadness. SHAP values confirmed the importance of 
fear emotion (std, var, range, max, and mean) for the classification. This may be 
explained by the fear of difficulty in correctly pronouncing the speech exercise by P D 
patients and laboratory conditions. The changes in entropy for surprise and sadness 
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were negatively correlated with PD, which could be explained by impairment to 
express emotions generally by P D patients. A tongue twister speech exercise proved 
to be more predictive and robust for detecting P D than reading a lengthy text. For 
this task, the XGBoost achieved a balanced accuracy of 0.69. 

As a conclusion, this study was designed to provide support methods for the 
detection of P D in order to assist clinicians in their diagnosis of this disease. This 
research is exploring the potential of rarely analysed - hypomimia symptom for 
P D detection. Moreover, the generation of scalars from the speech exercise record 
appears to be appropriate for the state problem. The contribution of this study is 
the identification of fear as the most statistically significant emotion based on SHAP 
values for the XGBoost model. XGBoost delivered the 0.69 balanced accuracy for 
a tongue twister, indicating that it is the most important speech task that has been 
evaluated. Thereby, the tongue twister appeared to have clinical value. The future 
direction of this research is to extend the database and test other tongue twisters 
for the detection of PD. 

5.2 Multimodal Detection of Parkinson Disease 

The P D methodology detection based on a multimodality approach (combination 
of video and audio) was set up as the goal. The 43 characteristic speech exercises 
were used to evaluate the P D thanks to the video and audio analysis. The feature 
extraction was designed to capture the hypomimia symptoms and changes in HD 
dimension between HC and illness cases. Especially, the facial features were created 
based on facial landmarks, which are valuable anthropometrically. The prediction 
of the P D was conducted according to the scheme presented in Fig. 5.5. In the first 
step, a previously introduced dataset in Subsection 5.1.1 was prepared for extracting 
features for each speech exercise. The exact feature extraction for video and audio 
modality was then provided separately. The regression out of the confounding factors 
was performed. Statistical analysis was then carried out using the Mann-Whitney 
U test and F D R correction. Next, the feature preselection method m R M R was 
also applied. The Stratified 10-fold Cross-Validation with XGBoost was used. The 
SHAP values were applied for the clinical interpretation of the model. 

5.2.1 Dataset Characterization 

A total of 73 people were included in the analysis, including 43 males (education 
length 14.76 ± 2.97, mean age 66 ± 7.83) and 30 females (education length 13.04 
± 2.70, mean age 68 ± 8.20) and 46 people with HC (24 males (mean age 66 ± 
9.17), 22 females (mean age 62 ± 9.02)). The dataset was collected under the 
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Feature extraction 

Video feature 
extraction 

Audio feature 
extraction 
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confounding factors 

Mann-Whitney U test Feature pre-selection 
(mRMR) 

FDR correction XGBoost classifier 

SHAP values 

Fig. 5.5: Flow of the algorithm. 

same conditions as those described in subsection 5.1.1. The clinical condition and 
demographic information can be found in Table 5.4. Additionally, the subsection 
provides the UPDRS III (Fig. 5.6) as well as the kernel density estimation of the 
duration of P D (Fig. 5.7). 

Individuals participated in a variety of speech exercises during the experiment. 
The Czech language was considered, but pronunciation difficulties rather than the 
meaning of the expression played a role. A variety of exercises were examined, in­
cluding tongue twisters, poems, free speech, diadochokinesis tasks, reading texts, 
sentences, words, vowels, and others. The used devices were the camera and micro-
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Tab. 5.4: Clinical and demographical information of the dataset. 

M e a n Std M i n Q l M e d i a n Q3 M a x 
Age 66.90 7.95 49 62.00 67.0 72.00 82 
Dura t ion of P D 7.80 4.39 1 4.00 7.0 11.00 22 
U P D R S III 24.91 11.91 3 14.75 25.5 33.00 55 
U P D R S I V 3.16 2.73 0 0.00 3.0 5.00 10 
F O G 7.16 5.79 0 2.00 7.0 11.00 20 
N M S S 38.37 23.06 2 19.00 34.5 54.00 112 
R B D S Q 3.79 3.21 0 1.00 3.0 6.00 13 
L E D [mg] 1006.04 542.94 0 621.25 879.5 1325.50 2275 
A C E - R 87.15 8.01 60 82.75 87.5 93.00 100 
M M S E 28.04 2.38 16 28.00 29.0 29.00 30 
B D I 10.41 6.06 0 6.00 9.0 13.50 27 
D X 74.32 8.90 30 71.00 76.0 79.00 88 

U P D R S III 

Fig. 5.6: Kernel Density Estimation of level of UPDRS III. 

phone. For this study, a PANASONIC SDR-H20 camera was used with a sampling 
frequency of 25 FPS. At a distance of 20 cm from the mouth, the cardioid micro­
phone M-AUDIO Nova was mounted on the arm, with a sampling frequency of 48 
kHz, and a 16-bit resolution. The UPDRS - diagnostic assessment was also used to 
assess the severity of P D illness. The data were collected at the hospital in Czechia. 
The Masaryk University Ethical Committee approved the study. 
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Fig. 5.7: Kernel Density Estimation of duration of PD. 

5.2.2 Feature Extraction 
There are two steps involved in the feature extraction process. A description of each 
of the video and audio features extraction is located in this section. 

Facial features 

A feature extraction algorithm was developed. This proposed methodology contains 
the extraction of facial landmarks and the computations of the differences between 
them within a specified period. The varieties between distances and angles in time 
were calculated from the facial measurements. 68 facial landmarks were detected 
using an open source framework 2 . Fig. 5.9 illustrates the schematic illustration. 
The algorithm involves two steps: first, it detects faces using the H O G and Haar 
feature-based cascade classifiers. Detection of facial landmarks was performed using 
a neural network in the second step. The founded positions of x and y were used 
to generate a time series. Lastly, the scalars were calculated to determine how the 
characteristic points on the face differentiated over time. The measurements were 
the Shannon entropy (se), the approximate entropy (ae), the max, the min, the std, 
the rsd, the var, the range, the slope, and the mean. The explaination of the created 
scalars is presented in Table 5.5. Fig. 5.8 illustrates the flow of the algorithm. 

2 https: / / p y p i .org/proj ect/face-recognition / 

118 



Facial landmarks detection: 68 
points 

Calculating distances and angles 
for each frame 

Calculation scalar features based 
on statistical metrics 

Fig. 5.8: Flow of the facial features extraction. 

*,9 *2° *21 

*38 *39 *28 
+ 3 7 * A , , d 1 * 4 0 

* 3%33*3#35* 3 6 

*51 *52 *53 

* 5 0 *62 *63 +64 + 5 4 

#49*61 +65(̂ 55 
*68 , „ *66 

*60 * b / -56 
* 59 , „ 157 

Fig. 5.9: Illustration of facial features [12]. 
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Tab. 5.5: Features extraction explanation. 
Name feature Points, angle 
D l 37, 49 
D2 46, 55 
D3 22, 23 
D4 52, 58 
D5 20, 38 
D6 25, 45 
D7 39, 41 
D8 45, 47 
D9 31, 9 
D10 1, 17 
D l l 18, 22 
D12 23, 27 
D13 34, 52 
E Y E B R O W 1 Angle: (22,19) vs. (40, 43) 
E Y E B R O W 2 Angle: (22, 19) vs. (23, 26) 
E Y E B R O W 3 Angle: (22, 19) vs. (23, 26) 
E Y E B R O W 4 Vertical: 19, 37 
E Y E B R O W 5 Vertical: 26, 46 
EYE1 37. 38 
EYE2 37, 39 
EYE3 46, 45 
E Y E 4 46, 44 
EYE5 40, 39 
EYE6 40, 38 
E Y E 7 43, 44 
EYE8 43, 45 
EYE9 37, 42 
E Y E 10 37. 41 
E Y E 11 43, 48 
E Y E 12 43, 47 
E Y E 13 40, 41 
E Y E 14 40, 42 
E Y E 15 46, 48 
E Y E 16 46, 47 
E Y E 17 38, 42 
E Y E 18 45, 47 
E Y E 19 39. 41 
EYE20 44, 48 
EYE21 37, 40 
EYE22 43, 46 
M l 49, 52 
M2 49, 58 
M3 55, 52 
M4 55, 58 
M5 49, 55 
M6 52, 58 
M7 60, 54 
M8 50, 56 
RATIO M O U T H M5/M6 

M O U T H A R E A 
The area of the inside 
of the month 

L E Y E A R E A The area of the left eye 
R E Y E A R E A The area of the right eye 
R A T I O _ F A C E D1/D2 
RATIO M O U T H 

S K E W _ U P 
M3/M1 

RATIO M O U T H 
S K E W _ D O W N 

M4/M2 
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Tab. 5.6: Description of the acoustic features. The details of the features implemen­
tation are provided in [14]. 

C o d e of A c o u s t i c feature D e s c r i p t i o n o f the features H D d i m e n s i o n Specif ic d i so rde r 

D D K rate D D K rate articulation slow alternating motion rate 

D D K reg std of D D K cycle periods articulation irregular alternating motion rate 

D U V fraction of locally unvoiced frames Phonation aperiodicity 

M P T total speech time Phonation airflow insufficiency 

N S R net speech rate prosody unnatural speech rate 

S P I R speech index of rhytmicity prosody inappropriate silences 

j i t t e r period perturbation quotient Phonation microperturbations in frequency 

m e a n H N R mean of harmonic-to-noise ratio Phonation increased noise 

r e l F O S D relative std of fundamental frequency prosody monopitch 

r e l F l S D relative std of 1st formant articulation rigidity of tongue and jaw 

relF2SD relative std of 2nd formant articulation rigidity of tongue and jaw 

r e l S E O S D relative std of short-time energy prosody monoloudness 

s h i m m e r amplitude perturbation quotient Phonation microperturbations in amplitude 

Tab. 5.7: Meaning of the part of the exercises in Czech and English. 
Code In Czech English translation 

T S K 1 9 
Chcete vidět, velký lov? Budu lovit, v džungli slov. 
Osedlám si Pegasa Chytím báseň do lasa. 

Would you like to see a big hunt? I will be hunting in a jungle of words. 
I will saddle the Pegasus. I will catch a poem into a lasso. 

T S K 2 0 Prostřete k obědu? Wi l l you lay the table? 
T S K 2 1 Prostřete k obědu! Lay the table! 
T S K 2 2 Prostřete k obědu. Lay the table. 
T S K 2 3 Teď musíš být, chvíli trpělivý, než to dokončíme. Now you have to be patient, for a while until we finish. 
T S K 2 4 Tak dáš mi už konečně pokoj! I urge you to leave me alone. 
T S K 2 5 Už mě to nebaví, dej mi už konečně pokoj! I am fed up. I urge you to leave me alone. 
T S K 2 6 Tak co. jak to dopadlo? So. what, happened? 
T S K 2 7 rychlonožka light, foot, 
T S K 2 8 
T S K 2 9 

marnotratný wasteful T S K 2 8 
T S K 2 9 horolezectví mountaineering 
T S K 3 0 stříbrotepec silversmith 
T S K 3 1 železobetonový iron-concrete 
T S K 3 2 zákonodárce legislator 
T S K 3 3 horkovzdušný convection 
T S K 3 4 strastiplná tortuous 
T S K 3 5 záviděníhodný enviable 
T S K 3 6 československý Czechoslovak 
T S K 3 7 Do čtvrt, hodiny tam byla smršť. In a quarter of an hour there was a whirlwind. 
T S K 3 8 
T S K 3 9 

Prohovořte to s ním dopodrobna. Discuss it, with him in detail. T S K 3 8 
T S K 3 9 Při ústupu pluku duní bubny. Drums are pounding during the retreat of regiment. 
T S K 4 0 Kuchařští učni nejsou jak zlatničtí. Apprentices of cookery school are not as those from goldsmith one. 
T S K 4 1 Celý večer se učí sčítat. He is learning to add the whole evening. 
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Tab. 5.8: Definition of the acoustic features in detailed. 
H D dimension and specific disorder| Vocal tasks | Acoustic feature | Feature definition 

Phonation 

Airflow insufficiency Expiration with closed (TSK2) or opened (TSK3) lips M P T 
Miixiiinnii |iln>ii,ition time. 

i M '] i ii i \ ] li 111 ti i - efficiency of the vocal tract measured ,is the niiixininni duration of the sustained vowel ..i .msonant. 

Irregular pitch fluctuations Sustained phonation (TSK3 - TSK17J relFOSD 1 he ~l am la nl u",iiil inn nl Inni.iini'iil i;l Irei.iienev irliil iw 11> ii ~ nriui. v;;ri;;iinn in Irei.iienev nl vne;;l Inli. vilirntion. 

MiiToportllliiiltions ill lror|l]o]]ey Sustained phonation (TSK3 - TSK17) jitter 

Frequency pe rtu that ion. the extent of variation of the voice range. 

.litter is defined us the variability of the Fll of speech from one cycle to the next. 

In this rase it rs implemented us i he live pnini peril n. perl nrl>:;i inn c]notient. 

Mil ri;perllirb;;linli- : ili iilKplil Hi J- Sustained phonation (TSK3 - TSK17] -1 ii n LI i: i T 

Amplil nu 1 prrlnrhiil inn. reprisent inn mind i ••]•• 'li. 

Shimmer i~ defined as i In1 sequence nl maximum I'Xii'in nl the -i'Aiii;] amplitude '.vil liin each vocal cycle. 

In 1 hi-: i 'i. •'1 ill: plemenici . ;;• 1 lie live pnini iilKplil Hi J' perl lllhiil inn i.llnl ienl . 

Tremor of jaw Sustained phonation (TSK3-TSK17) relFlSD, relF2SD 
The standard deviation of the first (Fi) and second 1 Fl'j formant relative to their mean. 

Forniants are related to the rosonamvs of the oro-nasn-pharyngeal tract mul me modified liy position of tongue and jaw. 

Increased noise Sustained phonation (TSK3 - TSK17] mean HNR 
Harnionics-to-noise riil in. i he iunminl nl imise in l he ~p i i sju]j};l. mi;inly i.ne in inenmplel e vi>iM fold closure. 

1 IMi i~ uiinei. i;s i he ;;n:plil n i.i' nl nnise relal ive in tonal COmponenl -: in speech. 

Aperiodic ity Sustained phonation (TSK3 -TSK17) D U V Degree of unvokvd segments, the Inn 1 ion ol |iileh In unes n lurked us unvoiced. 

Articulation 

li i-Ai'in'. "1 TH j]im• and jaw 

Rhytmical units (TSK19), Basic intonation template (TSK20-TSK22), 

Reading with different emotions (TSK23-TSK26), 

Repeated word complicated for articulation (TSK27-TSK36), 

Repeated sentence complicated for articulation (TSK37-TSK41), 

Reading paragraph (TSK42), Monologue (TSK43) 

relFlSD, relF2SD 
The standard deviation of the hrst |F1) iind second iFl*) formant relative to their mean. 

Forniants are related to the rosonamvs of the oro-nasn-pharyngeal tract and are modified liy position of tongue and jaw. 

Slow al tenia ting motion rate Diadochokinetic task (TSKIS) DDK rate 1 !i:;i .nelinkiliel ie 11; 1 e. repri selil ili'j, llie ] mull :-• T nl -yili.ble Vm i,li/.:;l inn-: per -eenlii .. 

Irregular alternating motion rate Diadochokinetic task (TSK18) DDK reg Diailochokinetie refill,iritv. dehmd us the stiiniliiril deviation <il distanivs hotwivn Inlliliving syllnliles nuclei. 

P r o u d y 

Mono loudness 

Rhytmical units (TSK19), Basic intonation template (TSK20-TSK22), 

Reading with different emotions (TSK23-TSK26), 

Repeated word complicated for articulation (TSK27-TSK36), 

Repeated sentence complicated for articulation (TSK37-TSK41), 

Reading paragraph (TSK42), Monologue (TSK43) 

relSEOSD S| in 'di loudness vmi ni ion. defined as the stain Inn 1 deviation of intensity contour relative to its mean. 

Monopil1 li 

Rhytmical units (TSK19), Basic intonation template (TSK20-TSK22). 

Reading with different emotions (TSK23-TSK26), 

Repeated word complicated for articulation (TSK27-TSK36), 

Repeal ei. ~=i -111 i -Hi -i • enlKplie;;! ei . 11 >r ;;rl ii •lll:;l ii >li : 1 HIv!? 1 Hh II i. 

Reading paragraph (TSK42), Monologue (TSK43I 

relFOSD Pitch variation, defined as the stain lard deviation nl |-'i.i ennimir relist ive i n it,s mean. 

Inappropriate silences 
Basic intonation template (TSK20-TSK22). Reading with different emotions (TSK23-TSK26), 

Repeated sentence complicated for articulation (TSK37-TSK 11). Reading paragraph (TSK42) 
SPIR Xumber of spiveh intor-panses per minute. 

1 liliiilllliil ••]•• 'li l:;l e 

Basic intonation template (TSK20-TSK22), Reading with different emotions (TSK23-TSK26), 

Repeated word complicated for articulation (TSK27-TSK36), 

Repeated sentence complicated for articulation (TSK37-TSK41! 

NSR 
II '.vi • consider nel sp i i tune (XST) as a dnriilinn nl ••]•• i i '.vii In ml pauses. 

1 lien 1 lie liel sp i i l'ill e 1 . \Sli j i~ defined i;~ 1 lie lil miser nl phiilics per \H 1 . 



Voice features 

The features were extracted with respect to [84]. Parameters related to personal 
impairments, phonation, articulation, and prosody were calculated. Details can be 
found in Tables 5.6 and 5.8. 

Tab. 5.9: Carried-out vocal tasks. 
Code Vocal task Description 
TSK1 expiration maximum phonation of [m] in one breath 
TSK2 expiration maximum phonation of [i] in one breath 

TSK3 phonation vowel [a] (sustained and normal intensity) 
TSK4 phonation vowel [e] (sustained and normal intensity) 
TSK5 phonation vowel [i] (sustained and normal intensity) 

TSK6 phonation vowel [o] (sustained and normal intensity) 
T S K 7 phonation vowel [u] (sustained and normal intensity) 
TSK8 phonation vowel [a] (sustained and maximum intensity) 

TSK9 phonation vowel [e] (sustained and maximum intensity) 
TSK10 phonation vowel [i] (sustained and maximum intensity) 
TSK11 phonation vowel [o] (sustained and maximum intensity) 

TSK12 phonation vowel [u] (sustained and maximum intensity) 
TSK13 phonation vowel [a] (sustained and minimum intensity, but not whispering) 
TSK14 phonation vowel [e] (sustained and minimum intensity, but not whispering) 

TSK15 phonation vowel [i] (sustained and minimum intensity, but not whispering) 
TSK16 phonation vowel [o] (sustained and minimum intensity, but not whispering) 
TSK17 phonation vowel [u] (sustained and minimum intensity, but not whispering) 

TSK18 diadochokinesis (DDK) D D K pa-ta-ka 
TSK19 rhytmical units read poem 
TSK20 main intonation pattern same sentence read as interrogative 

TSK21 main intonation pattern same sentence read as imperative 
TSK22 main intonation pattern same sentence read as declarative 

TSK23 intonation variability monitoring prosody (declarative read sentence) 
TSK24 intonation variability monitoring prosody (imperative read sentence) 
TSK25 intonation variability monitoring prosody (imperative read sentence) 

TSK26 intonation variability monitoring prosody (interrogative read sentence) 
TSK27 intelligibility of repeated words repeated word complicated for the articulation 
TSK28 intelligibility of repeated words repeated word complicated for the articulation 

TSK29 intelligibility of repeated words repeated word complicated for the articulation 
TSK30 intelligibility of repeated words repeated word complicated for the articulation 
TSK31 intelligibility of repeated words repeated word complicated for the articulation 

TSK32 intelligibility of repeated words repeated word complicated for the articulation 
TSK33 intelligibility of repeated words repeated word complicated for the articulation 
TSK34 intelligibility of repeated words repeated word complicated for the articulation 

TSK35 intelligibility of repeated words repeated word complicated for the articulation 
TSK36 intelligibility of repeated words repeated word complicated for the articulation 
TSK37 intelligibility of repeated sentences repeated sentence complicated for articulation 

TSK38 intelligibility of repeated sentences repeated sentence complicated for articulation 
TSK39 intelligibility of repeated sentences repeated sentence complicated for articulation 
TSK40 intelligibility of repeated sentences repeated sentence complicated for articulation 

TSK41 intelligibility of repeated sentences repeated sentence complicated for articulation 
TSK42 monitoring intelligibility and articulation long read paragraph 

TSK43 
interview at the beginning - monitoring prosody, 
hesitations, time needed for response, etc. 

free speech, usually the answer to "What are your hobbies?", 
"Where do you come from?", etc. 
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5.2.3 Statistical Evaluation with Machine Learning 
To eliminate the influence of age and gender on the data, the regression out step 
was first performed. Videos and audio recordings were exempt from the confound­
ing effect. The impact of confounding variables (gender and age) on independent 
variables (extracted features) and dependent variables (the existence of PD) was 
eliminated thanks to deleting the confounding effect. The confound was considered 
as a predictor, whereas the linear regression model was fitted on all features. The 
descriptions of the approach are illustrated in [236,237]. Next, the statistical anal­
ysis was conducted using the Mann-Whitney U test [238] to detect the dependency 
of a separate feature on PD. The F D R correction was applied to limit type I errors. 
Subsequently, The set of features was chosen with the usage of m R M R to avoid the 
curse of dimensionality. Next, the Stratified 10-fold cross-validation was performed. 
The stratified cross-validation contains two steps: the stratified sampling when to 
equal distribution of the samples of each group is guaranteed in the training and 
test dataset, and the standardization of the data [239]. XGBoost was used as the 
classifier. This classifier has a few benefits, for instance, the robustness for the im-
balanced dataset, a solid and effective approach for tabularised data, and the ability 
to find the non-linear correlation in the data. Moreover, this algorithm used a type 
of end-to-end tree ensembling model [240]. The SHAP values were used to under­
stand the decision standing beyond the models about the P D detection. They can 
indicate the correlation of features to the decision model [241,242]. Model quality 
was evaluated using the following metrics: accuracy, sensitivity, specificity, balanced 
accuracy, and M C C . 

5.2.4 Results 

Results are provided separately for statistical analysis and results of classification. 
Additionally, SHAP values are presented for the best models. 

Tab. 5.10: The statistical analysis of audio features. 

Features pVal pVal(FDR) Median (PD) Median (HC) IQR (PD) IQR (HC) 
relFOSD (TSK7) 2.7E-0.5 0.0057 -0.0408 0.0033 0.0863 0.102 
shimmer (TSK15) 4.6E-0.5 0.0057 -4.2218 3.374 12.4081 11.1142 
DUV (TSK7) 7.6E-0.5 0.0062 -4.6691 -1.7888 4.7326 8.6902 
relFOSD (TSK24) 0.000128 0.0078 -0.0389 0.0108 0.1234 0.0828 
shimmer (TSK17) 0.00035 0.0172 -3.7772 3.4596 13.5591 11.1147 
shimmer (TSK13) 0.000581 0.0237 -2.7854 2.5983 11.9312 9.9691 
NSR (TSK25) 0.001787 0.0487 -0.0402 -1.3382 3.7665 2.9786 
DUV (TSK8) 0.001657 0.0487 -4.6784 0.8537 16.464 13.3974 
shimmer (TSK16) 0.001754 0.0487 -2.9298 1.5677 12.2635 16.6985 
NSR (TSK41) 0.002379 0.0571 0.3378 -0.9651 3.1651 2.2758 
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Tab. 5.11: The statistical analysis of video features. 

Features pVal pVal(FDR) Median (PD) Median (HC) IQR (PD) IQR (HC) 
rsdD8 (TSK31) 0.000015 0.0733 -2.0961 1.2194 7.9407 7.0653 
rsdEYE18 (TSK31) 0.000015 0.0733 -2.0961 1.2194 7.9407 7.0653 
slopeM7 (TSK41) 0.000021 0.0733 0.0005 -0.0008 0.0024 0.0026 
rsdD8 (TSK32) 0.000025 0.0733 -2.1191 1.4171 6.2564 8.0297 
rsdEYE18 (TSK32) 0.000025 0.0733 -2.1191 1.4171 6.2564 8.0297 
stdD6 (TSK32) 0.000028 0.0733 -0.0111 0.0083 0.0239 0.0337 
aeEYElô (TSK37) 0.000032 0.0733 -0.0446 0.0449 0.1445 0.1318 
varD6 (TSK32) 0.000034 0.0733 -0.0015 0.0001 0.0014 0.0032 
varM2 (TSK12) 0.000035 0.0733 -0.0013 -0.003 0.0010 0.0015 
meanM5 (TSK18) 0.000044 0.0733 0.0416 0.1375 0.1433 0.0920 

A regressed out dataset was taken under analysis by the Mann-Whitney U test 
with an F D R correction. The statistical analysis was conducted on 13 audio features 
and 550 video features for each speech exercise. The results of statistical analysis of 
the video and audio features are presented in Tables 5.10 and 5.11. In addition, the 
median and IQR for each group are provided. 

Nine out of ten audio features were statistically significant (alpha = 0.05) when 
corrected with FDR. They were: relFOSD (TSK7), shimmer (TSK15), D U V (TSK7), 
relFOSD (TSK24), shimmer (TSK17), shimmer (TSK13), NSR (TSK25), D U V 
(TSK8), shimmer (TSK16). In Tables 5.6 and 5.9, the features are described in 
greater detail. 

According to the Mann-Whitney U test, none of 10 the best-selected vide features 
passed the test with F D R correction. Despite this, the test was passed for them 
without F D R correction. They were: rsdD8 (TSK31), rsdEYE18 (TSK31), slopeM7 
(TSK41), rsdD8 (TSK32), rsdEYE18 (TSK32), stdD6 (TSK32), aeEYE16 (TSK37), 
varD6 (TSK 32), varM2 (TSK12), meanM5 (TSK18). These details can be found 
in Tables 5.5, 5.9. Following this step, a M L algorithm was used to distinguish 
P D cases from HC cases. The results are presented for XGBoost. 10-fold stratified 
cross-validation was performed. 

Tab. 5.12: Accuracy of P D detection from different modalities. 

M o d a l i t y 
Accuracy 

(balanced) 
Sensi t ivi ty Specificity M C C 

Speech 0.77 (0.11) 0.81 (0.12) 0.73 (0.19) 0.54 (0.21) 
Video 0.81 (0.13) 0.88 (0.12) 0.74 (0.23) 0.64 (0.24) 
Multimodality 0.83 (0.11) 0.88 (0.13) 0.78 (0.20) 0.68 (0.22) 

For the purpose of evaluating the best classification model, the models were 
trained on the set of all video, audio, and multimodal features thanks to the 10-

125 



fold cross-validation. Table 5.12 presents the results of that classification. The 
multimodalit approach achieved the highest scores for balanced accuracy (0.83). 
specificity (0.78), and M C C (0.68). The sensitivity was equal to 0.88 for the video 
and multimodality. 

The interpretabilities of those models for video, audio, and multimodality ap­
proach are presented thanks to the SHAP values in Fig. 5.10, Fig. 5.11 and Fig. 
5.12, respectively. 

For the two features among 10 the best were observed the positive correlation 
with P D disease for video modality. They were: the approximate entropy of the 
eyelid during the pronunciation vowel 'a' (aeEYE12 (TSK13)) and the slope of the 
time series - the skew distance of the mouth during a repeating sentence difficult 
to pronounce (slope M7 (TSK41)). The negative correlation was registered for the 
approximate entropy of the eyelid during the pronunciation of a repeated, hard-
to-pronounce sentence (aeEYE16 (TSK37)) and the minimum of horizontal mouth 
distance during pronunciation vowel 'e' (minM5 (TSK4)). Additionally, negatively 
correlated features were: rsdEYE18 (TSK32), maxD5 (TSK31), varD9 (TSK4), 
meanD9 (TSK9), aeD9 (TSK4). 
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Fig. 5.10: SHAP values for the best 10 features from the video modality. 

SHAP values for audio features showed negative correlation with the P D for the 
following features: relFOSD (TSK24), relFOSD (TSK7), shimmer (TSK15), jitter 
(TSK14), and shimmer (TSK17). A positive correlation was recognised among the 
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features based on SHAP values for NSR (TSK30) and relFlSD (TSK21). Fig. 5.11 
illustrates the relationship between P D disease and audio features. 
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Fig. 5.11: SHAP values for the best 10 features from the audio approach. 

Multimodality analysis revealed a positive correlation between P D and slopeM7 
(TSK41), aeEYE12 (TSK13), minEYE20 (TSK35) and mean H N R (TSK15). A neg­
ative correlation was observed between P D and aeEYE16 (TSK37), varD9 (TSK4), 
rsdD8 (TSK32), maxM3 (TSK31), and varM6 (TSK12). Fig. 5.12 shows the SHAP 
values for the multimodality approach. 

As an additional step, every exercise was classified according to its video, audio, 
and multimodal configuration. There are three tables presenting the results of these 
tests: 5.13, 5.14, 5.15, respectively. 

According to the balanced accuracy, the prediction for the TSK39 was the most 
successful for the video modality and was equal to 0.73 (see Table 5.13). One of 
the tongue twisters was this task. The M C C for this same task was 0.47. TSK4 
(pronouncing the vowel 'e') had the highest sensitivity of 0.81. TSK1 had the highest 
specificity of 0.69. The exercise consisted of the maximum phonation o f 'm ' in one 
breath. 

TSK7 was classified with the highest level of balanced accuracy using audio 
features (see Table 5.14). This parameter was 0.68, and the task responsible for 
determining it was the pronunciation of the vowel 'u'. A M C C of 0.36 was obtained, 
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Fig. 5.12: SHAP values for the best 10 features from the multimodality. 

Tab. 5.13: Video-based speech exercise accuracy. 

Exercise 
Accuracy 
(balanced) 

Sensi t ivi ty Specificity M C C 

T S K 3 9 0.73 (0.14) 0.78 (0.17) 0.67 (0.24) 0.47 (0.29) 
T S K 4 1 0.73 (0.13) 0.79 (0.16) 0.66 (0.21) 0.47 (0.26) 
T S K 4 0 0.72 (0.15) 0.79 (0.17) 0.65 (0.26) 0.46 (0.30) 
T S K 4 0.72 (0.13) 0.81 (0.14) 0.63 (0.23) 0.46 (0.27) 
T S K 9 0.72 (0.13) 0.79 (0.15) 0.65 (0.22) 0.45 (0.26) 
T S K 1 3 0.71 (0.15) 0.79 (0.17) 0.62 (0.25) 0.43 (0.30) 
T S K 2 3 0.71 (0.15) 0.80 (0.14) 0.62 (0.25) 0.44 (0.30) 
T S K 8 0.71 (0.14) 0.80 (0.15) 0.62 (0.24) 0.44 (0.29) 
T S K 1 0.71 (0.13) 0.72 (0.18) 0.69 (0.21) 0.42 (0.26) 
T S K 3 5 0.71 (0.13) 0.78 (0.15) 0.64 (0.22) 0.42 (0.26) 

while a specificity of 0.66 was achieved. A maximum sensitivity of 0.77 was registered 
for TSK24 (monitoring prosody). 

The results of the multimodal classification for each task are presented in Table 
5.15. The most valuable exercise was TSK41, with a balanced accuracy of 0.74 and 
a M C C of 0.49. It is another tongue twister. The highest sensitivity was observed 
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Tab. 5.14: A n assessment of the accuracy of the best speech exercises based on audio 
recordings. 

Exercise 
Accuracy 
(balanced) 

Sensi t ivi ty Specificity M C C 

T S K 7 0.68 (0.13) 0.71 (0.15) 0.66 (0.22) 0.36 (0.26) 
T S K 2 4 0.67 (0.12) 0.77 (0.13) 0.57 (0.22) 0.35 (0.25) 
T S K 1 4 0.66 (0.12) 0.70 (0.15) 0.61 (0.20) 0.31 (0.24) 
T S K 1 9 0.66 (0.11) 0.67 (0.14) 0.65 (0.21) 0.32 (0.22) 
T S K 1 5 0.64 (0.12) 0.75 (0.12) 0.53 (0.23) 0.28 (0.25) 
T S K 3 7 0.62 (0.14) 0.64 (0.14) 0.61 (0.21) 0.24 (0.27) 
T S K 4 1 0.62 (0.14) 0.65 (0.15) 0.59 (0.23) 0.23 (0.27) 
T S K 4 2 0.62 (0.13) 0.73 (0.14) 0.51 (0.22) 0.24 (0.27) 
T S K 1 1 0.61 (0.13) 0.64 (0.13) 0.58 (0.21) 0.21 (0.26) 
T S K 2 2 0.61 (0.12) 0.66 (0.16) 0.56 (0.21) 0.22 (0.24) 

Tab. 5.15: Evaluation of the accuracy of multimodal speech exercises. 

Exercise 
Accuracy 
(balanced) 

Sensi t ivi ty Specificity M C C 

T S K 4 1 0.74 (0.13) 0.79 (0.15) 0.68 (0.22) 0.49 (0.27) 
T S K 2 3 0.73 (0.15) 0.83 (0.14) 0.62 (0.26) 0.47 (0.32) 
T S K 3 9 0.73 (0.14) 0.78 (0.17) 0.67 (0.24) 0.47 (0.29) 
T S K 1 8 0.73 (0.13) 0.78 (0.16) 0.68 (0.23) 0.48 (0.27) 
T S K 4 0 0.72 (0.16) 0.80 (0.16) 0.64 (0.25) 0.46 (0.32) 
T S K 8 0.72 (0.14) 0.81 (0.15) 0.63 (0.24) 0.45 (0.28) 
T S K 2 2 0.72 (0.14) 0.75 (0.17) 0.69 (0.24) 0.44 (0.28) 
T S K 4 0.72 (0.13) 0.82 (0.15) 0.62 (0.24) 0.46 (0.27) 
T S K 9 0.72 (0.13) 0.78 (0.16) 0.65 (0.21) 0.45 (0.25) 
T S K 1 0.71 (0.13) 0.72 (0.18) 0.69 (0.21) 0.42 (0.26) 

for TSK23 (during monitoring of prosody), which was equal to 0.83. TSK22, during 
which the sentence was read in a declarative manner, displayed the highest specificity 
(0.69). 

The results for the multimodality and video have been compiled in Table 5.16 
to compare the results of the most powerful speech exercises. Five of the 10 ex­
ercises showed an improvement in classification, and two showed no improvement. 
In the multimodality approach, TSK41 (the tongue twister) demonstrated the best 
accuracy of 0.74. 
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Tab. 5.16: A n analysis of the results obtained from multimodal and video ap­
proaches. 

Accuracy Accuracy 
Exercise (balanced) for (balanced) for 

mul t imodal i ty video 
T S K 4 1 0.74 (0.13) 0.73 (0.13) 
T S K 2 3 0.73 (0.15) 0.71 (0.15) 
T S K 3 9 0.73 (0.14) 0.73 (0.14) 
T S K 1 8 0.73 (0.13) 0.71 (0.12) 
T S K 4 0 0.72 (0.16) 0.72 (0.15) 
T S K 8 0.72 (0.14) 0.71 (0.14) 
T S K 2 2 0.72 (0.14) 0.70 (0.13) 
T S K 4 0.72 (0.13) 0.72 (0.13) 
T S K 9 0.72 (0.13) 0.72 (0.13) 
T S K 1 0.71 (0.13) 0.71 (0.13) 

Figs. 5.13, 5.14, 5.15 presents the SHAP values for determined the most accurate 
classification of video, audio, and multimodality, respectively. 

For the tongue twister (TSK39) (see Fig. 5.13), the video features which were 
positively correlated with P D are varEYEBROW3, slopeEYE13, and m i n E Y E l . 
In contrast, negative correlations were found between rangeM5, maxM5, minEYE-
BROW3, maxD6, a e R E Y E A R E A , aeEYEBROW5 and PD. 

According to the audio results (see Fig. 5.14), the TSK7 speech exercise pro­
vided the best results. There is a negative correlation between D U V , relFOSD, and 
shimmer and PD. Mean H N R and relFlSD have a positive correlation. 

For the task TSK41 - the tongue twister (see Fig. 5.15), the multimodal ap­
proach shows higher values of slopeM7, slopeD4, meanD2, and meanEYE5 for 
positive SHAP values. aeEYE9, aeEYE5, a e M O U N T H A R E A , slopeD7, maxRA-
TIO F A C E , and slopeEYE18 were lower for negative SHAP values. 

5.2.5 Discussion and Summarisation 

As part of this research, multiple scenarios were performed, including evaluating of 
variety of Czech speech exercises, as well as a performing multimodality approach 
for detecting PD. The carried-out experiments allow to find the best-fitted model 
based on the most appropriate features for this task. As a result of the choice of 
XGBoost, it is possible to train M L models capable of capturing the connection 
between impairments of facial muscles and observable changes in HD. The highest 
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Fig. 5.13: SHAP values for the optimal video approach (TSK39). 
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Fig. 5.15: SHAP values for the optimal multimodal approach (TSK41). 

level of accuracy can be achieved as a result of the combination of various speech 
exercises with multimodality. The multimodality outperformed the single modality-
based approach in the detection of PD. The best-achieved accuracy was equal to 
0.83. 

Considering the statistical analysis performed with the Mann-Whitney U test, 
audio features were more significant than video features after F D R correction. The 
most distinctive feature was shimmer across all of the exercises and was characteris­
tic of the pronunciation of the vowels T, 'u', 'a', and 'o'. A further important feature 
is the rsd of fundamental frequency when the vowel 'u' is pronounced and the vari­
ability in intonation is checked. Fraction of locally unvoiced frames matters for the 
pronunciation of vowels 'u' and 'a'. Net speech rate also proves the importance of 
checking intonation variability. 

Any of the features considered in the video analysis passed the Mann-Whitney 
U test with F D R correction. Nonetheless, they were close to a significant level of 
alpha = 0.05 and equal to 0.0733. Most of them were recognised for performing 
tongue twisters. Moreover, the diadochokinesis (DKK) task was valuable and the 
pronunciation of the vowel 'u'. The changes in blinking rate expressed in rsd and ap­
proximate entropy were recognised as a beneficial sources of information. The slope 
of the records of changes in opening mouth diagonal was detected as informative, 
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exactly variance and std. Additionally, the mean horizontal distance of mouth was 
valuable for the diadochokinesis task. 

The results of the experiments confirmed the statement that it would be better 
to use both modalities than a single one. A combination of subdatasets resulted in 
a higher level of specificity and accuracy. The sensitivity occurred to be the best for 
video modality and 0.88 of the P D cases were positively diagnosed. 

The models revealed that the most informative features are tongue twisters -
difficult-to-pronounce speech exercises. They were for video modality: TSK39, 
TSK41, TSK40 (see Table 5.13). Moreover, the pronunciation of the vowel 'e' 
caused a problem for patients (TSK4, TSK9). A similar situation was observed for 
the vowel 'a'. For the audio features, the most problematic task was to pronounce 
the vowel 'u' (see Table 5.14). The vowels 'e' and T created also difficulty (TSK14, 
TSK15). Furthermore, intonation variability was highly significant in distinguishing 
P D cases from HC cases (TSK24). Moreover, reading a poem by patients indicates 
difficulty in expression by P D patients (TSK19). Tongue twisters also worked out 
for this modality (TSK37, TSK41, TSK42). The combination of the video and au­
dio modality (Table 5.15) showed that the most robust diagnosis of P D was tongue 
twister (TSK41). Similarly, another tongue twister was capable of distinguishing i l l ­
ness at a high level (TSK39, TSK40). The intonation variability offers the valuable 
distinction of P D cases from HC (TSK23). The diadochokinesis task was also suc­
cessful in this task (TSK18). Regarding multimodality, the classification analysing 
the pronunciation of the vowel V achieved a relatively high result (TSK4, TSK9). 
The interpretability of the models was performed thanks to the SHAP values. They 
indicated a positive and negative correlation between the features of the PD. 

The SHAP values for the combination of all features showed the importance of 
changes in eye blinking during the pronunciation vowel 'a' (aeEYE12 (TSK13)) for 
video modality (Fig. 5.10). The approximate entropy of the eye distance showed 
a positive relationship with PD. It means that deviations from constant values of 
opening eyelid were positively correlated with P D - observation of unnormal be­
haviour of eyes. During the longer activity, i.e., the pronunciation of tongue twister 
was observed a negative correlation between P D and the irregular pattern of eye 
behavior (aeEYE16 (TSK37)). The changes in the mouth's ability to pronounce 
were observed (slopeM7 (TSK41), minM5 (TSK4)). slopeM7 (TSK41) indicates the 
highest slope of the time series of the skew distance of the mouth during the pro­
nunciation of tongue twister, which could be explained by the opening mouth longer 
time by P D patients of the mouth. The minimal value of the horizontal distance of 
the mouth was negatively correlated with P D during the pronunciation of the vowel 
'e'. Therefore, the HC group is able to open their mouths widely. There was also a 
negative correlation between maximum movement between eyelid and eyebrow, and 
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PD, which indicates higher level of 'freezing' of the face for persons with PD. That 
was observed during the pronunciation of difficult Czech word (maxD5 (TSK31)). 
Furthermore, there were challenges in moving the jaw during the pronunciation of 
the vowel 'e' (varD9 (TSK4), meanD9 (TSK9), and aeD9 (TSK4)). 

According to the speech analysis using SHAP values, there is a negative corre­
lation between the relative standard of fundamental frequency during monitoring 
prosody and pronunciation of the vowel 'u' (relFOSD (TSK24, TSK7)). This de­
pendency with P D was also alleged by [243]. In addition, shimmer and jitter were 
negatively correlated when participants were pronouncing vowels 'e', ' i ' , and 'u'. 
Nevertheless, the work [244] reports that the lower values are typical for women P D 
patients and ill men characterise higher values. This situation could be explained 
by the fact that the data were regressed out. 

In addition, the multimodality analysis model indicates a negative correlation 
between rsd of the eyelid (rsdD8 (TSK32)) and hard to pronounce words. This could 
be explained by the fact that P D is associated with a lower blinking rate. For PD, 
a lower value of skew of the mouth was observed (maxM3 (TSK31)) when persons 
were speaking a difficult word. It was noted that the open mouth variance was 
lower for P D when pronouncing 'u' (varM6 (TSK12)). Furthermore, P D displayed 
a higher harmonic-to-noise ratio during the pronunciation of vowel ' i ' (mean HNR 
(TSK15)). The authors in [245,246] also confirmed it. 

TSK39 was identified as the most effective speech exercise for the video (Fig. 
5.13). P D was positively correlated with variation in ankle movement between eye­
brows (varEYEBROW3) and its minimal value was lower for P D (minEYEBROW3). 
Additionally, HC had a higher chaotic movement of the distance between the hor­
izontal outer corner of the eye and the eyebrow (aeEYEBROW5). In addition, a 
dependency of keeping the open mouth horizontally was detected for the parameter 
range to HC (rangeM5) and the maximum to HC (maxM5). HC demonstrates a 
greater degree of flexibility when it comes to expressing yourself. A n increase in 
approximate entropy was observed for the right eye area in HC ( a e R E Y E A R E A ) -
this is due to higher blinking rate of HC. The slopeEYE13 parameter was also used 
to measure keeping longer eyes open. 

The audio analysis of single speech exercises (Fig. 5.14) - pronunciation vowel 
'u' (TSK7) shows the negative correlation with P D for fraction of locally unvoiced 
frames (DUV), relative std of fundamental frequency (relFOSD), and shimmer. The 
negative relationship of relFOSD was reported in [243]. The reverse phenomenon was 
registered for D U V and shimmer [246], most probably because of regression data out 
and gender issues. Whereas, the positive dependency was observable for the mean 
of harmonic-to-noise ratio (mean HNR) and relative std of 1st format (relFlSD). 
Those relations were reported in [245,246]. 
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The TSK41 was considered to be the most informative task for the multimodal 
approach (Fig. 5.15). The closer the opening mouth value to the constant value, the 
greater the chance that the model will identify the sample as PD. The symptoms 
of P D were also manifested in the pattern of eye blinking this time. HC showed a 
higher entropy in the movement of the eyelids (aeEYE9, aeEYE5). HC displayed a 
more chaotic pattern of open mouth during the pronunciation tongue twister (ae-
M O U T H A R E A ) . The parameter slopeD4 indicates longer staying open the mouth 
for P D with limited movability. This conclusion is also supported by the parameter 
meanD2 behaviour. 

The limitation of this research is the size of the dataset: 46 HC and 73 P D 
patients. However, the amount of participants in the experiment is quite big consid­
ering another dataset used for automatic hypomimia analysis and P D recognition 
(see Table 3.2). If the proposed approach is used for clinical purposes, it should 
be malleable on a larger dataset. Furthermore, the individuals were using glasses 
during the test. They were needed for the reading task of the text. Nevertheless, 
the outcome of the classification could have been improved if the individuals had 
taken them off. 

To summarise, the SHAP values illustrate the changes in eye-blinking for P D 
patients, and the impairments for PD. There was a slower pace of movement and 
patients kept their eyes open for a longer period of time. Comparatively to HC, the 
mouth movements were limited. Patients with P D used to keep their eyes open. The 
stacked movement of the jaw is also characteristic for PD. During the pronunciation 
tongue twister, the changes in facial muscles were most evident, whereas a variety 
of audio patterns were observed for the pronunciation of vowels. It is typical for P D 
to have a lower value of relFOSD. There was a positive correlation between mean 
H N R and PD. 

To summarize this section, the support methodology for P D detection based on 
multimodality, i.e., video and audio was presented. The proposed dataset is excep­
tional and contains 73 P D patients and 46 HC. When comparing other datasets 
introduced by scientists, this dataset is quite large and it uses a multimodal ap­
proach, which is a significant benefit (see Table 3.2). A total of 43 unique speech 
exercises were evaluated in order to identify the most reliable ones. The strength of 
this research is the identification of the most effective and clinically valuable speech 
exercise - tongue twister. Moreover, the results obtained by the XGBoost classifier 
were satisfactory. The multimodal approach showed that it outstands the solutions 
based on a single modality. There is so far a limited number of works dealing with 
multimodal solutions for P D detection. With the usage of a multimodal approach, 
the detection of P D was possible on the level 0.83 balanced accuracy. Several facial 
and audio features were prepared and the most significant features were selected 
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during the feature selection procedure, which allows models to achieve higher ac­
curacy of P D detection. The desirable clinical interpretability was obtained thanks 
to the statistical analysing and SHAP values. The performed statistical analysis 
revealed the statistical importance of the features. The SHAP values explain the 
value of parameters measuring the eye blinking, the openness of the mouth, and 
asymmetry of the face. Those founded dependencies are confirmed by the litera­
ture [88,105,108,110]. The most important features occurred to be parameters such 
as variance, approximate entropy, and slope of computed biomarkers. This work 
explored the clinical value and various speech exercises power in the prediction of 
P D with the potential to be applied as a mHealth solution. The accuracy of P D 
detection based on the most powerful speech exercise - tongue twister and multi-
modality achieved 0.74 balanced accuracy. By extending the dataset and using AUs 
for P D diagnosis, the accuracy and robustness of the model could be improved. 

5.3 Conclusion 

The need for the creation of more approachable and inexpensive solutions for P D 
detection than P E T , CT, MRI , and PSG exists [63,92]. There is still a lack of 
techniques dedicated for mHealth and A A L . The methodologies presented in this 
chapter are the answer for the occurring niche and two approaches to the detection of 
P D were presented. The common denominator of them was the analysed symptom 
of P D - hypomimia. The aim was to create not only the support methodologies for 
P D recognition but also to identify the computational biomarkers which could be 
clinically interpretable. 

The first methodology analysed computationally the difficulties in expressing 
emotions (section 5.1), whereas the second approach thanks to the created facial 
features explored the challenges of moving facial muscles and mimic of the partic­
ipants of the experiments (section 5.2). The advantage of this research is that the 
anthropometric characteristics were taken into consideration during facial features 
design. The database used for research in sections 5.1 and 5.2 was the same. The 
second approach, in section 5.2, also used the audio modality and HD symptom, 
combined moreover with the video modality. Subsequently, here, the existing re­
search gap was explored where there is still a lack of multimodal solutions of P D 
detection. Moreover, a limited number of works about hypomimia analysis for P D 
are already published. Furthermore, the dataset which was used for the research is 
unique, and it is relatively large in comparison to those presented in the literature. 
This dataset allows for identifying the most powerful speech exercise. Furthermore, 
the proposed methodologies are as objective as possible and not troublesome for 
patients. 
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In the section 5.1 and 5.2, both studies reported the difficulties in performing 
the tongue twister and the highest usefulness of this speech exercise for the clinical 
purpose of detecting PD. This speech exercise - tongue twister is the answer to the 
questions R Q 4 . 1 . and R Q 5 . 2 . Considering the research in which the recognition 
of emotion was utilised (section 5.1), the most informative emotions were identified 
thanks to the statistical analysis and they were fear and anger. 

Furthermore, the identification of the correlation between the parameters based 
on emotions and P D was not earlier provided in the literature, considering SHAP 
values. The approximate entropy of sadness showed its importance as a feature. 
Additionally, the interpretability of SHAP values depicted also the positive cor­
relation between P D and fear likewise anger (fear_std, fear variance, fear range, 
fear max, fear_mean, angrymax) . Whereas, the negative correlation was reported 
for approximate entropy of surprise and sadness for a checked tongue twister. Those 
identified features are the reply to the question R Q 4 . 2 . The prediction of P D was 
achieved with the XGBoost algorithm and was equal to 0.69 balanced accuracy. 
This accuracy is the answer to question R Q 4 . 3 . The other tongue twisters have the 
potential to increase the accuracy, according to the section 5.2. 

In the second scenario 5.2, the model, which was presented for the multimodal 
approach, and all speech exercises could serve as a support methodology system. The 
best prediction was obtained for this version of the model thanks to the XGBoost 
and was equal to 0.83 balanced accuracy. This approach and accuracy are the answer 
to question R Q 5 . 3 . While the result for the multimodal approach for single exercise 
TSK41 was equal to 0.74 balanced accuracy. The multimodal solutions proved to 
be outperforming in contrast to single-modality approaches. 

The interpretability of the models illustrated thanks to the SHAP values showed 
that P D manifests in blinking rate during the pronunciation of vowel 'a' likewise 
during the pronunciation of tongue twister. Mouth ability to move is higher for 
HC, whereas P D patients tend to keep their mouths open longer. Freezing of the 
eyebrow was also visible which could indicate the stiffness in facial muscles. The 
video features based on the combination of slope, approximate entropy, and variance 
occurred to be the most valuable. 

Furthermore, the HC displays a more chaotic movement of the mouth during 
pronunciation tongue twister (TSK41). On the top of that, the stacked movement 
of the jaw is also characteristic of PD. The audio analysis presented also the neg­
ative relationship of relFOSD during monitoring pronunciation of the vowel 'u' and 
prosody to PD. To sum up, the audio features reveal the disease during the pronun­
ciation of vowels, whereas the video features detect P D thanks to tongue twisters. 
What's more, the biomarkers were identified and could serve clinicians. Those two 
above-mentioned paragraphs are the answer to the question R Q 5 . 1 . 
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In conclusion, the introduced multimodal model could be used as the solution 
for mHealth (section 5.2). In the case of the first scenario (section 5.1), other tongue 
twisters have to be tested, if there are more suitable and could obtain higher accuracy 
in prediction P D based on difficulties in expressing the emotions. 

138 



6 Final Conclusion 

First and foremost, the thesis considers developing the application of wearables 
and M L technologies for healthcare solutions. The W H T is still expanding type 
of technology on the market and will consume and adapt new solutions based on 
wearable technology. Because of this reason, the developed technologies in this thesis 
are appropriate, considering the still progressing field. Additionally, the desirable 
solutions are those with provided interpretability. The main focus of this thesis is 
concentrated on used M L methods likewise also the applicability of the presented 
support system methodologies - i.e., their performance and interpretability. 

Two main thematic issues were discussed in this thesis, i.e., the wearable solutions 
for COVID-19 detection likewise the application of A A L for PD. The introduced 
research in this thesis is focused on finding solutions to prevent and minimize the 
effects of those emergency problems. The common denominator in this work is the 
usage of M L to generate support methodologies. 

The section Introduction is guiding the readers into the topic. The background 
about COVID-19 and its diagnosis likewise P D and its recognition, E E G analysis 
are presented in Chapter 2. Additionally, the thesis presents the state-of-the-art of 
the discussed scientific problems in Chapter 3. The summarisation of the existing 
approaches for the detection of COVID-19 and pandemic models with the usage of 
wearable and M L is described. Next, a description of how P D symptoms hypomimia, 
HD, and sleep disorders can be used to diagnose P D is illustrated. Moreover, the 
detailed representations of the recognition of other diseases based on actigraphy 
records and M L are presented in subsection 3.2.3. Those methods were identified 
because of their potential applications for P D detection based on sleep records. Fur­
thermore, the readers could familiarise themselves with the deep learning techniques 
for E E G analysis, especially the potential of the novelty - O D E network. 

The practical solutions for COVID-19 detection based on M L and wearables for 
three scenarios are presented in Chapter 4. The thesis tried to find the answer to the 
emergency need for screening tests in the early stage of the disease. Two datasets 
are the basement of those presented solutions [1,59]. The kinds of analysing signals 
were heart rate and the number of steps taken. The data were gathered by the 
Fitbit device and presented solutions are destinated for this device. Moreover, the 
biggest contribution of the illustrated approaches is the consideration of the nature 
of the disease, i.e., the contagiousness of the disease and incubation period. To 
reduce the increase in the number of sick people, those two parameters were taken 
into account. Additionally, the amount of presented solutions based on M L and 
wearables dedicated to COVID-19 detection is limited. By the same token, there is 
still room for exploring this area. 
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As the outcome of the first experiment, the support system methodology for the 
emergency issue - COVID-19 detection in the early stage of illness, was presented. 
The best-identified model based on 5-day windows allows obtaining the prediction of 
78 % accuracy for differentiating the COVID-19 cases from HC. The two time 5-day 
windows were chosen for each sample - time series and from them were extracted 
bunches of features. To emphasise, this outcome is significantly better than the one 
presented in the original paper [59]. Furthermore, the model treated the COVID-19 
cases and Influenza as one group-identified illness with 73 % of accuracy, also for 5-
day windows. The used classifier for both scenarios was k-NN. The same results for 
the scenario with Influensa were also achieved thanks to the GLVQ. The consensus 
is that this solution could serve as a screening test. A n additional benefit is that 
the most relevant features based on statistical evaluations were identified and they 
were frequency- and spectral-related. Furthermore, the unquestionable advantage 
is that the solution could be introduced as one of eHealth approach. Smartwatches 
are commonly available and can be used as a helpful diagnostic tool when dealing 
with outbreaks of pandemics. 

The second set of support methodologies aimed to distinguish COVID-19 cases 
from the two different types of Influensa in the early stage. Two types of Influensa 
were distinguished before the main pandemic and in the middle of the pandemic. 
The dataset intrinsically is unique because have instances of different viruses. This 
thesis extended the original research in [1] because it introduced the classifications, 
not only statistical analysis like in the [1] paper. The developed support methodolo­
gies allow distinguishing the COVID-19 cases between the Influensa in the middle of 
the pandemic on the level of 0.73 balanced accuracy thanks to the k-NN. Moreover, 
the distinction between the two types of Influensa was achieved with 0.82 balanced 
accuracy thanks to the GLVQ. What's more, this study proved the existing dif­
ferences between COVID-19 cases and Influensa being able to recognise cases by 
wearable and M L for the first time. 

The last support methodologies presented in this chapter are the models mal­
leable on combinations of the two previously used datasets. The data contained the 
representations of the COVID-19 cases, HC, and Influenza. The introduced dataset 
is relatively big to those limited and presented in the literature having COVID-19 
examples. The advantage of this study is the presented methodologies to differ­
entiate cases from various classes. The COVID-19 cases were distinguished from 
HC on the level of 0.73 accuracy by XGBoost. Whereas, the COVID-19 cases and 
Influensa were differentiated from HC with 0.72 accuracy by S V M and GLVQ. The 
statistical analysis revealed that the highest statistical importance was registered 
for the features generated as the parameters of the ratio of heart rate to the variable 
of the number of steps. 
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The next presented subject in this thesis concerned computerised automatic P D 
detection. The outcomes of the research were described in Chapter 5. The presented 
methods in the thesis could be potentially applied as still lacking the mHealth meth­
ods for P D recognition. They are more inexpensive and more accessible alternatives 
to the common tests: P E T , MRI , CT, and PSG. In addition, there still exists a 
research niche about hypomimia analysis for P D detection (Tab. 3.2). Moreover, 
not only the support methodologies are desirable but also clinical interpretability is 
well perceived together with recommending valid biomarkers. 

The first method of P D detection used the automatic analysis of changes in ex­
pression emotion by participants. The symptom which was the foundation of this 
research was hypomimia. The automatic analysis with speech exercises: reading 
the poem and tongue twister was especially valuable because could be as much 
nonsubjective and not bothersome as possible (Tab. 3.2). Neural network - F E R 
was utilised to recognise the intensity of seven emotions in each frame. To train 
the model, parameters expressing changes in those emotions were used. The best-
obtained prediction of P D was equal to 0.69 balanced accuracy for the XGBoost 
classifier and tongue twister. The tongue twister was identified as a clinically valu­
able speech exercise. As the most informative emotion occurred to be fear and it was 
registered as positively correlated with P D based on SHAP values. The found cap­
tivating biomarkers were fear-related. To emphasise, such analysis was not earlier 
provided in the literature. 

The second example of P D detection used the computerised multimodal ap­
proach analysing hypomimia and HD. There are just few papers that treated the 
multimodal detection of PD, especially with the participation of hypomimia symp­
tom. The choice of the audio and video modality and combined M L methodology 
allowed for obtaining 0.83 balanced accuracy for the fusion of biomarkers generated 
for all studied speech exercises. The used classifier was XGBoost. As the most 
predictive and powerful speech exercise was recognised the tongue twister for the 
multimodal approach Furthermore, the assumption of this study was confirmed by 
the results, the usage of multimodal approaches displayed to be better than those 
based on a single modality. By the same token, it makes sense to merge the modal­
ities for P D detection. The tongue twister - speech exercise was identified as the 
most appropriate for the utility in clinical practice. A plethora of them was tested 
and such exploration of the suitable tasks has not been earlier made. What's more, 
the dataset is unique and fairly large vis-a-vis other related datasets (Tab. 3.2). 

Moreover, the SHAP values were used to provide interpretability. The under­
standable solutions of the M L allowed identifying the features which are the most 
informative for the models and also were compared with the literature. The most 
valuable were those which capture the relation to different distances of eyelid, mouth, 
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likewise angles between eyebrows and others. To summarise, this approach provided 
a support system methodology that will be valued by clinicians because of its pre­
sented interpretability. It could broadly serve as a screening tool for P D detection 
and it is dedicated to mHealth solutions. 

The future directions are targeting the usage of M L methodologies for P D detec­
tion based on multimodal approaches and extending databases. Furthermore, there 
is still space for researching COVID-19 detection thanks to the wearables, increasing 
databases, and extending the number of types of analysing signals. 

To sum up, there were introduced ML-aided monitoring and prediction of respi­
ratory and neurodegenerative diseases using wearables in the thesis. The first topic 
considered COVID-19 detection. The solutions were destinated for early recogni­
tion thanks to taking into account contagiousness and incubation period. It is an 
incredible asset. There is still a research gap for COVID-19 detection, and the 
obtained outcomes in this thesis outperformed those already presented in the litera­
ture. Thereby, they introduced new solutions for diagnosis of COVID-19. Moreover, 
a longer discussion together with illustrating the classification between a few types 
of viruses, including COVID-19 was presented. Such distinctions have not been pre­
viously published. The merging of two datasets allows for having the largest such 
dataset. Moreover, the second topic presented the methods of P D detection. The 
symptom of hypomimia was the basement of the presented classification problem. 
The research on this topic filled the existing scientific demand. Furthermore, the 
HD was also evaluated. The multimodal methodology was proposed and approved 
as better than the single modality. The tongue twister arose as the best speech ex­
ercise which has special clinical value. The extra interpretability of the experiment 
was provided thanks to the statistical analysis and SHAP values. Furthermore, the 
computational analysis of emotion demonstrated to have potential in recognition of 
P D and could replace the other uncomfortable or fair subjective tests. Additionally, 
the transfer of probable methodology of detection P D based on discrepant sleep 
disorders was explored and depicted. 

142 



Bibliography of Author 

• Jus tyna Skibinska, Jiri Hosek, and Asma Channa. Wearable analytics and 
early diagnostic of covid-19 based on two cohorts. In 2022 14th Interna­
tional Congress on Ultra Modern Telecommunications and Control Systems 
and Workshops (ICUMT), volume 2022-October, pages 56-63, Valencia, Oc­
tober 2022. IEEE. doi:10.1109/ICUMT57764.2022.9943460. 

• Jus tyna Skibinska and Radim Bürget. Is it possible to distinguish covidl9 
cases and influenza with wearable devices? analysis with machine learning. 
Journal of Advances in Information Technology, 13(3):265-270, 2022. doi: 
10.12720/jait. 13.3.265-270. 

• Asma Channa, Nirvana Popescu, Jus tyna Skibinska, and Radim Bürget. 
The rise of wearable devices during the covid-19 pandemic: A systematic 
review. Sensors, 21(17):5787, 2021. doi:10.3390/s21175787. 

• Jus tyna Skibinska, Radim Bürget, Asma Channa, Nirvana Popescu, and 
Yevgeni Koucheryavy. Covid-19 diagnosis at early stage based on smart-
watches and machine learning techniques. IEEE Access, 9:119476-119491, 
2021. doi: 10.1109/ACCESS.2021.3106255. 

• Jus tyna Skibinska and Radim Bürget. The transferable methodologies of 
detection sleep disorders thanks to the actigraphy device for parkinson's dis­
ease detection, volume 2880, Tampere, June 2021. C E U R Workshop Proceed­
ings, CEUR-WS. 

• Jus tyna Skibinska and Radim Bürget. Parkinson's disease detection based 
on changes of emotions during speech. In 2020 12th International Congress 
on Ultra Modern Telecommunications and Control Systems and Workshops 
(ICUMT), volume 2020-October, pages 124-130, Brno, October 2020. IEEE, 
IEEE Computer Society. doi:10.1109/ICUMT51630.2020.9222446. 

• Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Jus tyna Skibinska, Salwa 
Saafi, Pavel Pascacio, Laura Flueratoru, Darwin Quezada Gaibor, Nadezhda 
Chukhno, Olga Chukhno, et al. A survey on wearable technology: His­
tory, state-of-the-art and current challenges. Computer Networks, 193:108074, 
2021. doi:10.1016/j.comnet.2021.108074. 

• Jus tyna Skibinska and Radim Bürget. The application of deep learning 
techniques in the electroencephalogram (eeg) analysis. In 2019 X X X V Finnish 
Union Radio Scientifique Internationale (URSI) Convention on Radio Science, 
Tampere, October 2019. URSI. 

• Jus tyna Skibinska, Abbas Shah, Asma Channa, Muhammad Shehram Shah 
Syed, Zafi Sherhan Syed, and Jiri Hosek. Foreseeing wearing-off state in 
Parkinson's disease patients, a multimodal approach with the usage of ma-

143 



chine learning and wearables. In 5th International Conference on Activity and 
Behavior Computing (ABC), Kaiserslautern, September 2023. 

• Jus tyna Skibinska and Jiri Hosek, Computerised Analysis of Hypomimia 
and Hypokinetic Dysarthria for Improved Diagnosis of Parkinson's Disease, 
2023, submitted to the Heliyon journal 

• Paulina Koziol, Magda K Raczkowska, Jus tyna Skibinska, Nicholas J Mc-
Collum, Slawka Urbaniak-Wasik, Czeslawa Paluszkiewicz, Wojciech M Kwiatek, 
and Tomasz P Wrobel. Denoising influence on discrete frequency classifica­
tion results for quantum cascade laser based infrared microscopy. Analytica 
Chimica Acta, 1051:24-31, 2019. doi:10.1016/j.aca.2018.11.032. 

• Paulina Koziol, Magda K Raczkowska, Jus tyna Skibinska, Slawka Urbaniak-
Wasik, Czeslawa Paluszkiewicz, Wojciech Kwiatek, and Tomasz P Wrobel. 
Comparison of spectral and spatial denoising techniques in the context of high 
definition ft-ir imaging hyperspectral data. Scientific reports, 8(1):14351, 2018. 
doi: 10.1038/s41598-018-32713-7. 

144 



Bibliography 
[1] Allison Shapiro, Nicole Marinsek, Ieuan Clay, Benjamin Bradshaw, Ernesto 

Ramirez, Jae Min, Andrew Trister, Yuedong Wang, Tim Althoff, and Luca 
Foschini. Characterizing covid-19 and influenza illnesses in the real world via 
person-generated health data. Patterns, 2(1), 2021. doi : 10.1016/j .pat ter . 
2020.100188. 

[2] Jus tyna Skib iňska , Radim Burget, Asma Channa, Nirvana Popescu, and 
Yevgeni Koucheryavy. Covid-19 diagnosis at early stage based on smartwatches 
and machine learning techniques. IEEE Access, 9:119476-119491, 2021. do i : 
10.1109/ACCESS.2021.3106255. 

[3] Hasan K Siddiqi and Mandeep R Mehra. Covid-19 illness in native and im-
munosuppressed states: a clinical-therapeutic staging proposal. The Journal 
of Heart and Lung Transplantation, 39(5):405, 2020. doi : 10.1016/j .healun. 
2020.03.012. 

[4] Rohan Gupta, Smita Kumari, Anusha Senapati, Rashmi K Ambasta, and 
Pravir Kumar. New era of artificial intelligence and machine learning-based 
detection, diagnosis, and therapeutics in parkinson's disease. Ageing Research 
Reviews, page 102013, 2023. d o i : 10.1016/j .arr.2023.102013. 

[5] Guokang Zhu, Jia L i , Zi Meng, Y i Yu, Yanan L i , Xiao Tang, Yuling Dong, 
Guangxin Sun, Rui Zhou, Hui Wang, et al. Learning from large-scale wearable 
device data for predicting epidemics trend of covid-19. Discrete Dynamics in 
Nature and Society, 2020, 2020. doi : 10.1155/2020/6152041. 

[6] Ge Su, Bo Lin, Jianwei Yin , Wei Luo, Renjun X u , Jie Xu , and Kexiong Dong. 
Detection of hypomimia in patients with parkinson's disease via smile videos. 
Annals of Translational Medicine, 9(16), 2021. doi : 10.21037/atm-21-3457. 

[7] Ajjen Joshi, Soumya Ghosh, Sarah Gunnery, Linda Tickle-Degnen, Stan 
Sclaroff, and Margrit Betke. Context-sensitive prediction of facial expres­
sivity using multimodal hierarchical bayesian neural networks. In 2018 13th 
IEEE International Conference on Automatic Face & Gesture Recognition (FG 
2018), pages 278-285, Xi 'an, June 2018. IEEE, doi : 10.1109/FG .2018.00048. 

[8] Juan Camilo Vásquez-Correa, Tomas Arias-Vergara, Cristian D Rios-Urrego, 
Maria Schuster, Jan Rusz, Juan Rafael Orozco-Arroyave, and Elmar Nóth. 
Convolutional neural networks and a transfer learning strategy to classify 

145 



Parkinson's disease from speech in three different languages. In Iberoamer-
ican Congress on Pattern Recognition, pages 697-706, Havana, October 2019. 
Springer, doi : 10.1007/978-3-030-33904-3_66. 

[9] Akane Sano, Weixuan Chen, Daniel Lopez-Martinez, Sara Taylor, and Ros­
alind W Picard. Multimodal ambulatory sleep detection using lstm recur­
rent neural networks. IEEE journal of biomedical and health informatics, 
23(4):1607-1617, 2018. doi:10.1109/JBHI.2018.2867619. 

[10] Patricia Amado-Caballero, Pablo Casaseca-de-la Higuera, Susana Alberola-
Lopez, Jesus Maria Andres-de Llano, Jose Antonio Lopez-Villalobos, Jose Ra­
mon Garmendia-Leiza, and Carlos Alberola-Lopez. Objective adhd diag­
nosis using convolutional neural networks over daily-life activity records. 
IEEE Journal of Biomedical and Health Informatics, 24(9):2690 - 2700, 2020. 
doi:10.1109/JBHI.2020.2964072. 

[11] Abhay Koushik, Judith Amores, and Pattie Maes. Real-time sleep staging 
using deep learning on a smartphone for a wearable eeg. arXiv preprint 
arXiv:1811.10111, 2018. d o i : 10.48550/arXiv. 1811.10111. 

[12] Facial landmark extraction. h t t p s : / / p y p i . o r g / p r o j e c t / 
face- recogni t ion/ . Accessed: 2020-11-23. 

[13] J u s t ý n a Sk ib iňska and Radim Burget. The transferable methodologies of de­
tection sleep disorders thanks to the actigraphy device for parkinson's disease 
detection, volume 2880, Tampere, June 2021. C E U R Workshop Proceedings, 
CEUR-WS. 

[14] Jiri Mekyska, Zoltan Galaz, Tomas Kiska, Vojtech Zvoncak, Jan Mucha, 
Zdenek Smekal, Ilona Eliášova, Milena Kostalova, Martina Mráčková, Dag­
mar Fiedorova, et al. Quantitative analysis of relationship between hypoki­
netic dysarthria and the freezing of gait in parkinson's disease. Cognitive 
computation, 10(6):1006-1018, 2018. doi : 10.1007/sl2559-018-9575-8. 

[15] Global Europe 2050, 2020 (Accessed 2020-08-18). URL: ht tps: 
/ /ec .europa .eu/ research/soc ia l -sc iences /pdf /pol icy_reviews/ 
global-europe-2050-report_en.pdf. 

[16] Marco Ciotti, Massimo Ciccozzi, Alessandro Terrinoni, Wen-Can Jiang, 
Cheng-Bin Wang, and Sergio Bernardini. The covid-19 pandemic. Critical 
reviews in clinical laboratory sciences, 57(6):365-388, 2020. d o i : 10.1080/ 
10408363.2020.1783198. 

146 

https://pypi.org/project/


[17] Elham Sheikhzadeh, Shimaa Eissa, Aziah Ismail, and Mohammed Zourob. Di­
agnostic techniques for covid-19 and new developments. Talanta, 220:121392, 
2020. doi:10.1016/j . talanta.2020.121392. 

[18] Bastiaan R Bloem, Emily J Henderson, E Ray Dorsey, Michael S Okun, 
Njideka Okubadejo, Piu Chan, John Andrejack, Sirwan K L Darweesh, and 
Marten Munneke. Integrated and patient-centred management of parkinson's 
disease: a network model for reshaping chronic neurological care. The Lancet 
Neurology, 19(7):623 - 634, 2020. d o i : 10.1016/S1474-4422(20)30064-8. 

[19] Alberto J Espay, Paolo Bonato, Fatta B Nahab, Walter Maetzler, John M 
Dean, Jochen Klucken, Bjoern M Eskofier, Aristide Merola, Fay Horak, An­
thony E Lang, et al. Technology in parkinson's disease: challenges and op­
portunities. Movement Disorders, 31(9):1272-1282, 2016. doi : 10.1002/mds. 
26642. 

[20] Asma Channa, Nirvana Popescu, Jus tyna Skibinska, and Radim Burget. 
The rise of wearable devices during the covid-19 pandemic: A systematic 
review. Sensors, 21(17):5787, 2021. doi : 10.3390/s21175787. 

[21] Suranga Seneviratne, Yining Hu, Tham Nguyen, Guohao Lan, Sara Khalifa, 
Kanchana Thilakarathna, Mahbub Hassan, and Aruna Seneviratne. A sur­
vey of wearable devices and challenges. IEEE Communications Surveys & 
Tutorials, 19(4):2573-2620, 2017. doi : 10.1109/COMST .2017.2731979. 

[22] Rozita Jamili Oskouei, Zahra MousaviLou, Zohreh Bakhtiari, and Khuda Bux 
Jalbani. lot-based healthcare support system for alzheimer's patients. Wire­
less Communications and Mobile Computing, 2020:1-15, 2020. d o i : 10.1155/ 
2020/8822598. 

[23] Erico Tjoa and Cuntai Guan. A survey on explainable artificial intelligence 
(xai): Toward medical xai. IEEE transactions on neural networks and learning 
systems, 32(11):4793-4813, 2020. doi : 10.1109/TNNLS .2020.3027314. 

[24] Helen Bridgman, Man Ting Kwong, and Jeroen H M Bergmann. Mechanical 
safety of embedded electronics for in-body wearables: A smart mouthguard 
study. Annals of biomedical engineering, 47(8):1725-1737, 2019. d o i : 10. 
1007/sl0439-019-02267-4. 

[25] Yulia Silina and Hamed Haddadi. New directions in jewelry: a close look 
at emerging trends & developments in jewelry-like wearable devices. In Pro­
ceedings of the 2015 ACM International Symposium on Wearable Computers, 

147 



pages 49-56, Osaka, September 2015. Association for Computing Machinery, 
Inc. doi:10.1145/2802083.2808410. 

[26] Aleksandr Ometov, Viktoriia Shubina, Lucie Klus, Jus tyna Skibinska, 
Salwa Saafi, Pavel Pascacio, Laura Flueratoru, Darwin Quezada Gaibor, 
Nadezhda Chukhno, Olga Chukhno, et al. A survey on wearable technol­
ogy: History, state-of-the-art and current challenges. Computer Networks, 
193:108074, 2021. doi:10.1016/j.comnet.2021.108074. 

[27] James Hay ward. Wearable Sensors 2018-2028: Technologies, Markets & Play­
ers. IDTechEx Ltd., 2018. 

[28] Grand View Research. Wearable technology market size, share & trends analy­
sis report by product (wrist-wear, eye-wear & head-wear, foot-wear, neck-wear, 
body-wear), by application, by region, and segment forecasts, 2020-2027, 2020. 

[29] Market Research Reports. Wearable healthcare devices mar­
ket, https:/ /www.futuremarketinsights.com/reports/ 
wearable-healthcare-devices-market, 2022. Accessed: 2023-02-28. 

[30] He L i , Jing Wu, Yiwen Gao, and Yao Shi. Examining individuals' adop­
tion of healthcare wearable devices: A n empirical study from privacy calcu­
lus perspective. International journal of medical informatics, 88:8-17, 2016. 
doi:10.1016/j . i jmedinf.2015.12.010. 

[31] Asma Channa, Nirvana Popescu, et al. Managing covid-19 global pandemic 
with high-tech consumer wearables: A comprehensive review. In 2020 12th 
International Congress on Ultra Modern Telecommunications and Control Sys­
tems and Workshops (ICUMT), volume 2020-October, pages 222-228. IEEE, 
IEEE Computer Society, October 2020. doi : 10.1109/ICUMT51630.2020. 
9222428. 

[32] Mostafa Al-Emran and Jesse M Ehrenfeld. Breaking out of the box: Wear­
able technology applications for detecting the spread of covid-19. Journal of 
Medical Systems, 45(2):l-2, 2021. doi : 10.1007/sl0916-020-01697-l. 

[33] Vladimir Tomberg, Trenton Schulz, and Sebastian Kelle. Applying universal 
design principles to themes for wearables. In Universal Access in Human-
Computer Interaction. Access to Interaction: 9th International Conference, 
UAHCI2015, Held as Part of HCI International 2015, Los Angeles, CA, USA, 
August 2-7, 2015, Proceedings, Part II 9, volume 9176, pages 550-560, Los 
Angeles, August 2015. Springer Verlag. doi : 10.1007/978-3-319-20681-3_ 
52. 

148 

https://www.futuremarketinsights.com/reports/


[34] Molly Follette Story, James L Mueller, and Ronald L Mace. The universal 
design file: Designing for people of all ages and abilities. 1998. 

[35] M Terzi, A Cenedese, and G A Susto. A Multivariate Symbolic Approach 
to Activity Recognition for Wearable Applications. IFAC-PapersOnLine, 
50(1):15865-15870, 2017. doi :10.1016/ j . i facol .2017.08.2333. 

[36] Rachel E Stirling, Mark J Cook, David B Grayden, and Philippa J Karoly. 
Seizure forecasting and cyclic control of seizures. Epilepsia, 62(S1):S2 - S14, 
2021. doi:10.1111/epi.16541. 

[37] Danilo Bzdok, Martin Krzywinski, and Naomi Altman. Machine learning: 
supervised methods. Nature methods, 15(1):5, 2018. doi : 10.1038/nmeth. 
4551. 

[38] Mirza Mansoor Baig, Hamid GholamHosseini, Aasia A Moqeem, Farhaan 
Mirza, and Maria Linden. A systematic review of wearable patient monitoring 
systems-current challenges and opportunities for clinical adoption. Journal of 
medical systems, 41(7):115, 2017. doi : 10.1007/sl0916-017-0760-l. 

[39] SB Kotsiantis, Dimitris Kanellopoulos, and P E Pintelas. Data preprocessing 
for supervised leaning. International Journal of Computer Science, 1 (2): 111— 
117, 2006. 

[40] Suresh Yaram. Machine learning algorithms for document clustering and fraud 
detection. In 2016 International Conference on Data Science and Engineering 
(ICDSE), pages 1-6, Cochin, August 2016. IEEE, doi : 10.1109/ICDSE. 2016. 
7823950. 

[41] Jinxi Wang, Bo Hu, Xiang L i , and Zhe Yang. Gtc forest: A n ensemble method 
for network structured data classification. In 2018 lJ^th International Confer­
ence on Mobile Ad-Hoc and Sensor Networks (MSN), pages 81-85, Shenyang, 
December 2018. IEEE, doi : 10.1109/MSN.2018.00020. 

[42] Baohua Sun, Lin Yang, Wenhan Zhang, Michael Lin, Patrick Dong, Charles 
Young, and Jason Dong. Supertml: Two-dimensional word embedding for the 
precognition on structured tabular data. In Proceedings of the IEEE Confer­
ence on Computer Vision and Pattern Recognition Workshops, page 2973 -
2981, Long Beach, June 2019. IEEE Computer Society, doi : 10.1109/CVPRW. 
2019.00360. 

[43] Saurav Verma, Khushboo Jain, and Chetana Prakash. A n unstructured to 
structured data conversion using machine learning algorithm in internet of 
things (iot). Available at SSRN 3563389, 2020. doi : 10.2139/ssrn.3563389. 

149 



[44] Zawar Hussain, Quan Z Sheng, and Wei Emma Zhang. A Review and 
Categorization of Techniques on Device-Free Human Activity Recognition. 
Journal of Network and Computer Applications, 167:102738, 2020. d o i : 
10.1016/j.jnca.2020.102738. 

[45] L Minh Dang, Kyungbok Min, Hanxiang Wang, M d Jalil Piran, Cheol Hee 
Lee, and Hyeonjoon Moon. Sensor-Based and Vision-Based Human Activ­
ity Recognition: A Comprehensive Survey. Pattern Recognition, 108:107561, 
2020. doi:10.1016/j.patcog.2020.107561. 

[46] Scott Pardoel, Jonathan Kofman, Julie Nantel, and Edward D Lemaire. 
Wearable-Sensor-Based Detection and Prediction of Freezing of Gait in Parkin­
son's Disease: A Review. Sensors, 19(23):5141, 2019. d o i : 10.3390/ 
S19235141. 

[47] Bjoern M Eskofier, Sunghoon I Lee, Jean-Francois Daneault, Fatemeh N Go-
labchi, Gabriela Ferreira-Carvalho, Gloria Vergara-Diaz, Stefano Sapienza, 
Gianluca Costante, Jochen Klucken, Thomas Kautz, et al. Recent Machine 
Learning Advancements in Sensor-Based Mobility Analysis: Deep Learning for 
Parkinson's Disease Assessment. In Proc. of 38th Annual International Confer­
ence of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 
655-658, Orlando, August 2016. IEEE, doi : 10.1109/EMBC. 2016.7590787. 

[48] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yix in Chen. A n End-
to-End Deep Learning Architecture for Graph Classification. In Proc. of 32nd 
Association for the Advancement of Artificial Intelligence (AAA!) Conference 
on Artificial Intelligence, volume 32, New Orleans, Apri l 2018. P K P Publishing 
Services Network, d o i : 10.1609/aaai. v 3 2 i l . 11782. 

[49] Francisco Javier Ordonez and Daniel Roggen. Deep Convolutional and lstm 
Recurrent Neural Networks for Multimodal Wearable Activity Recognition. 
Sensors, 16(1):115, 2016. doi : 10.3390/sl6010115. 

[50] Levent Eren, Turker Ince, and Serkan Kiranyaz. A Generic Intelligent Bear­
ing Fault Diagnosis System Using Compact Adaptive ID C N N Classifier. 
Journal of Signal Processing Systems, 91(2):179-189, 2019. d o i : 10.1007/ 
S11265-018-1378-3. 

[51] Santosh Kumar, Wendy J Nilsen, Amy Abernethy, Audie Atienza, Kevin 
Patrick, Misha Pavel, William T Riley, Albert Shar, Bonnie Spring, Donna 
Spruijt-Metz, et al. Mobile health technology evaluation: the mhealth ev­
idence workshop. American journal of preventive medicine, 45(2):228-236, 
2013. doi:10.1016/j.amepre.2013.03.017. 

150 



[52] Fadi Al-Turjman, Muhammad Hassan Nawaz, and Umit Deniz Ulusar. In­
telligence in the internet of medical things era: A systematic review of 
current and future trends. Computer Communications, 150:644-660, 2020. 
doi:10.1016/j.comcom.2019.12.030. 

[53] Alan Godfrey. Wearables for independent living in older adults: Gait and 
falls. Maturitas, 100:16-26, 2017. doi : 10.1016/j .maturitas . 2017.03.317. 

[54] Shwetambara Malwade, Shabbir Syed Abdul, Mohy Uddin, Aldilas Achmad 
Nursetyo, Luis Fernandez-Luque, Xinxin Katie Zhu, Liezel Cilliers, Chun-
Por Wong, Panagiotis Bamidis, and Yu-Chuan Jack L i . Mobile and wearable 
technologies in healthcare for the ageing population. Computer methods and 
programs in biomedicine, 161:233-237, 2018. d o i : 10.1016/j . cmpb.2018.04. 
026. 

[55] Donghyeog Choi, Hyunchul Choi, and Donghwa Shon. Future changes to 
smart home based on aal healthcare service. Journal of Asian Architecture and 
Building Engineering, 18(3): 190-199, 2019. doi : 10.1080/13467581.2019. 
1617718. 

[56] Liyakathunisa Syed, Saima Jabeen, S Manimala, and Abdullah Alsaeedi. 
Smart healthcare framework for ambient assisted living using iomt and big 
data analytics techniques. Future Generation Computer Systems, 101:136— 
151, 2019. doi:10.1016/j .future.2019.06.004. 

[57] Sebastian Heinzel, Daniela Berg, Thomas Gasser, Honglei Chen, Chun Yao, 
Ronald B Postuma, and MDS Task Force on the Definition of Parkinson's Dis­
ease. Update of the MDS research criteria for prodromal parkinson's disease. 
Movement Disorders, 34(10):1464-1470, 2019. d o i : 10.1002/mds .27802. 

[58] Giulio Marchesini, Francesca Marchignoli, and Salvatore Petta. Evidence-
based medicine and the problem of healthy volunteers. Annals of hepatology, 
16(6):832-834, 2017. d o i : 10.5604/01.3001.0010.5272. 

[59] Tejaswini Mishra, Meng Wang, Ahmed A Metwally, Gireesh K Bogu, An­
drew W Brooks, Amir Bahmani, Arash Alavi, Alessandra Celli, Emily Higgs, 
Orit Dagan-Rosenfeld, et al. Pre-symptomatic detection of covid-19 from 
smartwatch data. Nature Biomedical Engineering, 4(12):1208-1220, 2020. 
doi:10.1038/s41551-020-00640-6. 

[60] Jus tyna Skibinska and Asma Channa. The impact of wearables in 
improving silver economy. h t tp s : / / p ro jec t s . t un i . f i / a -wear /news / 

151 

https://projects.tuni.fi/a-wear/news/


the-impact-of-wearables-in-improving-si lver-economy/ [Accessed 
2021-10-18], 2020. 

[61] J u s t ý n a Sk ib iňska and Radim Bürget. Is it possible to distinguish covid-19 
cases and influenza with wearable devices? analysis with machine learning. 
Journal of Advances in Information Technology, 13(3):265-270, 2022. d o i : 
10.12720/jait .13.3.265-270. 

[62] J u s t ý n a Skib iňska , Jiri Hosek, and Asma Channa. Wearable analytics and 
early diagnostic of covid-19 based on two cohorts. In 2022 14th Interna­
tional Congress on Ultra Modern Telecommunications and Control Systems 
and Workshops (ICUMT), volume 2022-October, pages 56-63, Valencia, Oc­
tober 2022. IEEE, doi:10.1109/ICUMT57764.2022.9943460. 

[63] J u s t ý n a Sk ib iňska and Radim Bürget. Parkinson's disease detection based 
on changes of emotions during speech. In 2020 12th International Congress 
on Ultra Modern Telecommunications and Control Systems and Workshops 
(ICUMT), volume 2020-October, pages 124-130, Brno, October 2020. IEEE, 
IEEE Computer Society, d o i : 10.1109/ICUMT51630.2020.9222446. 

[64] Thirumalaisamy P Velavan and Christian G Meyer. The covid-19 epidemic. 
Tropical medicine & international health, 25(3):278, 2020. doi : 10.1111/tmi. 
13383. 

[65] Cristina Menni, Ana M Valdes, Maxim B Freidin, Carole H Sudre, Long H 
Nguyen, David A Drew, Sajaysurya Ganesh, Thomas Varšavsky, M Jorge 
Cardoso, Julia S El-Sayed Moustafa, et al. Real-time tracking of self-reported 
symptoms to predict potential covid-19. Nature medicine, 26(7): 1037-1040, 
2020. doi:10.1038/s41591-020-0916-2. 

[66] Thomas Struyf, Jonathan J Deeks, Jacqueline Dinnes, Yemisi Takwoingi, 
Clare Davenport, Mariska Mg Leeflang, René Spijker, Lotty Hooft, Devy 
Emperador, Sabine Dittrich, et al. Signs and symptoms to determine if 
a patient presenting in primary care or hospital outpatient settings has 
covid-19 disease. Cochrane Database of Systematic Reviews, 2020(7), 2020. 
doi:10.1002/14651858.CD013665. 

[67] A Pryce-Roberts, M Talaei, and NP Robertson. Neurological complications 
of covid-19: a preliminary review. Journal of Neurology, 267:1870-1873, 2020. 
doi:10.1007/s00415-020-09941-x. 

152 



[68] Shreyasi Gupta and Arkadeep Mitra. Challenge of post-covid era: man­
agement of cardiovascular complications in asymptomatic carriers of sars-
cov-2. Heart failure reviews, 27(1):239 249, 2021. d o i : 10.1007/ 
sl0741-021-10076-y. 

[69] Emily Fraser. Long term respiratory complications of covid-19. Bmj, 370, 
2020. doi:10.1136/bmj.m3001. 

[70] Qun L i , Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi 
Ren, Kathy SM Leung, Eric H Y Lau, Jessica Y Wong, et al. Early trans­
mission dynamics in wuhan, china, of novel coronavirus-infected pneumo­
nia. New England journal of medicine, 382(13):1199 - 1207, 2020. do i : 
10.1056/NEJMoa2001316. 

[71] X i He, Eric H Y Lau, Peng Wu, Xilong Deng, Jian Wang, Xinxin Hao, 
Y i u Chung Lau, Jessica Y Wong, Yujuan Guan, Xinghua Tan, et al. Temporal 
dynamics in viral shedding and transmissibility of covid-19. Nature medicine, 
26(5):672-675, 2020. d o i : 10.1038/s41591-020-0869-5. 

[72] Aravind Natarajan, Hao-Wei Su, and Conor Heneghan. Assessment of physi­
ological signs associated with covid-19 measured using wearable devices. NPJ 
digital medicine, 3(l) : l-8, 2020. doi : 10.1038/s41746-020-00363-7. 

[73] W Joost Wiersinga, Andrew Rhodes, Allen C Cheng, Sharon J Peacock, and 
Hallie C Prescott. Pathophysiology, transmission, diagnosis, and treatment of 
coronavirus disease 2019 (covid-19): a review. Jama, 324(8):782-793, 2020. 
doi:10.1001/j ama.2020.12839. 

[74] Rakesh Chandra Joshi, Saumya Yadav, Vinay Kumar Pathak, Hardeep Singh 
Malhotra, Harsh Vardhan Singh Khokhar, Anit Parihar, Neera Kohli, D Hi-
manshu, Ravindra K Garg, Madan Lai Brahma Bhatt, et al. A deep 
learning-based covid-19 automatic diagnostic framework using chest x-ray 
images. Biocybernetics and Biomedical Engineering, 41(1):239 - 254, 2021. 
doi:10.1016/j.bbe.2021.01.002. 

[75] Dhruv R Seshadri, Evan V Davies, Ethan R Harlow, Jeffrey J Hsu, Shanina C 
Knighton, Timothy A Walker, James E Voos, and Colin K Drummond. Wear­
able sensors for covid-19: a call to action to harness our digital infrastructure 
for remote patient monitoring and virtual assessments. Frontiers in Digital 
Health, 2:8, 2020. doi : 10.3389/f dgth. 2020.00008. 

[76] Rajalakshmi Krishnamurthi, Dhanalekshmi Gopinathan, and Adarsh Kumar. 
Wearable devices and covid-19: state of the art, framework, and challenges. 

153 



Emerging Technologies for Battling Covid-19, 324:157-180, 2021. doi :10. 
1007/978-3-030-60039-6_8. 

[77] Werner Poewe, Klaus Seppi, Caroline M Tanner, Glenda M Halliday, Pa­
trik Brundin, Jens Volkmann, Anette-Eleonore Schrag, and Anthony E Lang. 
Parkinson disease. Nature reviews Disease primers, 3(1):1—21, 2017. d o i : 
10.1038/nrdp.2017.13. 

[78] Jan Stochl, Anne Boomsma, Evžen Ruzicka, Hana Brožova, and Petr Blahus. 
On the structure of motor symptoms of parkinson's disease. Movement Dis­
orders, 23(9):1307-1312, 2008. doi : 10.1002/mds . 22029. 

[79] Ronald B Postuma, Daniela Berg, Matthew Stern, Werner Poewe, C Warren 
Olanow, Wolfgang Oertel, José Obeso, Kenneth Marek, Irene Litvan, An­
thony E Lang, et al. MDS clinical diagnostic criteria for parkinson's disease. 
Movement disorders, 30(12): 1591-1601, 2015. d o i : 10.1002/mds .26424. 

[80] Joseph R Duffy. Motor Speech Disorders E-Book: Substrates, Differential 
Diagnosis, and Management. Elsevier Health Sciences, 2019. 

[81] J G Kalf, B J M De Swart, B R Bloem, and Marten Munneke. Prevalence of 
oropharyngeal dysphagia in Parkinson's disease: a meta-analysis. Parkinson­
ism & related disorders, 18(4):311-315, 2012. d o i : 10.1016/j . pa rk re ld i s . 
2011.11.006. 

[82] L Ricciardi, A De Angelis, L Marsili, I Faiman, P Pradhan, E A Pereira, 
M J Edwards, F Morgante, and M Bologna. Hypomimia in parkinson's dis­
ease: an axial sign responsive to levodopa. European Journal of Neurology, 
27(12):2422 - 2429, 2020. doi:10.1111/ene.14452. 

[83] Jan Mucha, Jiri Mekyska, Zoltan Galaz, Marcos Faundez-Zanuy, Karmele 
Lopez-de Ipina, Vojtech Zvoncak, Tomas Kiska, Zdenek Smekal, Luboš 
Brabenec, and Irena Rektorova. Identification and monitoring of parkinson's 
disease dysgraphia based on fractional-order derivatives of online handwriting. 
Applied Sciences, 8(12):2566, 2018. d o i : 10.3390/app8122566. 

[84] Luboš Brabenec, Jiří Mekyska, Z Galaz, and Irena Rektorova. Speech dis­
orders in Parkinson's disease: early diagnostics and effects of medication 
and brain stimulation. Journal of neural transmission, 124(3):303-334, 2017. 
doi:10.1007/s00702-017-1676-0. 

154 



[85] Claudio De Stefano, Francesco Fontanella, Donato Impedovo, Giuseppe Pirlo. 
and Alessandra Scotto di Freca. Handwriting analysis to support neurodegen­
erative diseases diagnosis: A review. Pattern Recognition Letters, 121:37-45, 
2019. doi:10.1016/j .patrec.2018.05.013. 

[86] Ahmed A Moustafa, Srinivasa Chakravarthy, Joseph R Phillips, Ankur Gupta, 
Szabolcs Keri, Bertalan Polner, Michael J Frank, and Marjan Jahanshahi. 
Motor symptoms in parkinson's disease: A unified framework. Neuroscience & 
Biobehavioral Reviews, 68:727-740, 2016. doi : 10.1016/j .neubiorev.2016. 
07.010. 

[87] Sigurlaug Sveinbjornsdottir. The clinical symptoms of parkinson's disease. 
Journal of neurochemistry, 139:318-324, 2016. doi : 10.1111/jnc. 13691. 

[88] Andrea Bandini, Silvia Orlandi, Hugo Jair Escalante, Fabio Giovannelli, Mas­
simo Cincotta, Carlos A Reyes-Garcia, Paola Vanni, Gaetano Zaccara, and 
Claudia Manfredi. Analysis of facial expressions in parkinson's disease through 
video-based automatic methods. Journal of neuroscience methods, 281:7-20, 
2017. doi:10.1016/j.jneumeth.2017.02.006. 

[89] Pedro Gomez Vilda, Jiri Mekyska, Andres Gomez Rodellar, Daniel Palacios 
Alonso, V Rodellar Biarge, and Agustin Alvarez Marquina. Monitoring parkin-
son disease from speech articulation kinematics. Loquens: revista espaňola de 
ciencias del habla, (4):2, 2017. doi : 10.3989/loquens. 2017.036. 

[90] Ronald F Pfeiffer. Non-motor symptoms in parkinson's disease. Parkinsonism 
& related disorders, 22:S119-S122, 2016. d o i : 10.1016/j .parkre ld is .2015. 
09.004. 

[91] R Prashanth and Sumantra Dutta Roy. Early detection of parkinson's disease 
through patient questionnaire and predictive modelling. International journal 
of medical informatics, 119:75-87, 2018. doi : 10.1016/j . i jmedinf . 2018.09. 
008. 

[92] Ziad Obermeyer and Ezekiel J Emanuel. Predicting the future—big data, 
machine learning, and clinical medicine. The New England journal of medicine, 
375(13):1216, 2016. doi : 10.1056/NEJMpl606181. 

[93] Barbara S Connolly and Anthony E Lang. Pharmacological treatment of 
parkinson disease: a review. Jama, 311(16):1670-1683, 2014. d o i : 10.1001/ 
jama.2014.3654. 

155 



[94] Jeff M Bronstein, Michele Tagliati, Ron L Alterman, Andres M Lozano, Jens 
Volkmann, Alessandro Stefani, Fay B Horak, Michael S Okun, Kelly D Foote, 
Paul Krack, et al. Deep brain stimulation for parkinson disease: an expert 
consensus and review of key issues. Archives of neurology, 68(2): 165-165, 2011. 
doi:10.1001/archneurol.2010.260. 

[95] Bo Mohr Morberg, Anne Sofie Mailing, Bente Rona Jensen, Ole Gredal, Lene 
Wermuth, and Per Bech. The hawthorne effect as a pre-placebo expectation in 
Parkinsons disease patients participating in a randomized placebo-controlled 
clinical study. Nordic journal of psychiatry, 72(6):442-446, 2018. d o i : 10. 
1080/08039488.2018.1468480. 

[96] Amir Hossein Poorjam, Mathew Shaji Kavalekalam, Liming Shi, Jordan P 
Raykov, Jesper Rindom Jensen, Max A Little, and Mads Graesb0ll Chris-
tensen. Automatic quality control and enhancement for voice-based re­
mote Parkinson's disease detection. Speech Communication, 127:1-16, 2021. 
doi:10.1016/j.specom.2020.12.007. 

[97] Jan Rusz, Jan Hlavnička, Tereza Tykalová, Michal Novotný, Petr Dušek, 
Karel Sonka, and Evžen Ržička. Smartphone allows capture of speech ab­
normalities associated with high risk of developing parkinson's disease. IEEE 
transactions on neural systems and rehabilitation engineering, 26(8): 1495-
1507, 2018. doi:10.1109/TNSRE.2018.2851787. 

[98] Athanasios Tsanas, Max A Little, and Lorraine O Ramig. Remote assess­
ment of Parkinson's disease symptom severity using the simulated cellu­
lar mobile telephone network. IEEE Access, 9:11024 - 11036, 2021. d o i : 
10.1109/ACCESS.2021.3050524. 

[99] Juan Rafael Orozco-Arroyave, Juan Camilo Vásquez-Correa, Philipp Klumpp, 
Paula Andrea Perez-Toro, Daniel Escobar-Grisales, Nils Roth, Cristian David 
Rios-Urrego, Martin Strauss, Helber Andrés Carvajal-Castaňo, Sebastian Bay­
eři, et al. Apkinson: the smartphone application for telemonitoring Parkin­
son's patients through speech, gait and hands movement. Neurodegenerative 
Disease Management, 10(3):137-157, 2020. doi : 10.2217/nmt-2019-0037. 

[100] Oliver Y Chén, Florian Lipsmeier, Huy Phan, John Prince, Kirsten I Tay­
lor, Christian Gossens, Michael Lindemann, and Maarten De Vos. Building 
a machine-learning framework to remotely assess Parkinson's disease using 
smartphones. IEEE Transactions on Biomedical Engineering, 67(12):3491-
3500, 2020. d o i : 10.1109/TBME.2020.2988942. 

156 



[101] The early stage detection - definition. https://www. 
on l ine -med ica l -d i c t i ona ry .o rg /de f in i t i ons -e / ea r ly -d i agnos i s . 
html [Accessed 2022-01-18], Apri l 2021. 

[102] John Noel Victorino, Yuko Shibata, Sozo Inoue, and Tomohiro Shibata. Pre­
dicting wearing-off of parkinson's disease patients using a wrist-worn fitness 
tracker and a smartphone: A case study. Applied Sciences, 11(16):7354, 2021. 
doi:10.3390/appll l67354. 

[103] Joseph Jankovic. Parkinson's disease: clinical features and diagnosis. Journal 
of neurology, neurosurgery & psychiatry, 79(4):368-376, 2008. d o i : 10.1136/ 
jnnp.2007.131045. 

[104] Martin Rajnoha, Jiri Mekyska, Radim Bürget, Ilona Eliášova, Milena 
Kostalova, and Irena Rektorova. Towards identification of hypomimia in 
parkinson's disease based on face recognition methods. In 2018 10th In­
ternational Congress on Ultra Modern Telecommunications and Control Sys­
tems and Workshops (ICUMT), volume 2018-November, pages 1-4, Moscow, 
November 2018. IEEE, d o i : 10.1109/ICUMT. 2018.8631249. 

[105] Pedro Gómez-Vilda, Jiri Mekyska, José M Ferrández, Daniel Palacios-Alonso, 
Andres Gómez-Rodellar, Victoria Rodellar-Biarge, Zoltan Galaz, Zdenek 
Smekal, Ilona Eliášova, Milena Kostalova, et al. Parkinson disease detec­
tion from speech articulation neuromechanics. Frontiers in neuroinformatics, 
11:56, 2017. d o i : 10.3389/fninf .2017.00056. 

[106] Seyed-Mohammad Fereshtehnejad, Örjan Skogar, and Johan Lökk. Evolution 
of orofacial symptoms and disease progression in idiopathic parkinson's dis­
ease: Longitudinal data from the jönköping parkinson registry. Parkinson's 
disease, 2017, 2017. d o i : 10.1155/2017/7802819. 

[107] Gwenda Simons, Marcia C SMITH Pasqualini, Vasudevi Reddy, and Ju­
lia Wood. Emotional and nonemotional facial expressions in people with 
parkinson's disease. Journal of the International Neuropsychological Society, 
10(4):521-535, 2004. d o i : 10.1017/S135561770410413X. 

[108] Akshada Shinde, Rashmi Atre, Anchal Singh Guleria, Radhika Nibandhe, 
and Revati Shriram. Facial features based prediction of parkinson's disease. 
In 2018 3rd International Conference for Convergence in Technology (I2CT), 
pages 1-5, Pune, Pune 2018. IEEE, d o i : 10.1109/I2CT.2018.8529466. 

[109] Athina Grammatikopoulou, Nikos Grammalidis, Sevasti Bostantjopoulou, and 
Zoe Katsarou. Detecting hypomimia symptoms by selfie photo analysis: for 

157 

https://www


early parkinson disease detection. In Proceedings of the 12th ACM Interna­
tional Conference on PErvasive Technologies Related to Assistive Environ­
ments, pages 517-522, Rhodes, June 2019. Association for Computing Ma­
chinery, doi:10.1145/3316782.3322756. 

[110] Dawn Bowers, Kimberly Miller, Wendelyn Bosch, Didem Gokcay, Otto Pe-
draza, Utaka Springer, and Michael Okun. Faces of emotion in parkinsons dis­
ease: micro-expressivity and bradykinesia during voluntary facial expressions. 
Journal of the International Neuropsychological Society: JINS, 12(6):765, 
2006. doi:10.1017/S135561770606111X. 

[Ill] Lucia Ricciardi, Federica Visco-Comandini, Roberto Erro, Francesca Mor-
gante, Matteo Bologna, Alfonso Fasano, Diego Ricciardi, Mark J Edwards, 
and James Kilner. Facial emotion recognition and expression in parkinson's 
disease: an emotional mirror mechanism? PLoS One, 12(l):e0169110, 2017. 
doi:10.1371/j ournal.pone.0169110. 

[112] Dag Aarsland, Byron Creese, Marios Politis, K Ray Chaudhuri, Daniel Wein-
traub, Clive Ballard, et al. Cognitive decline in parkinson disease. Nature 
Reviews Neurology, 13(4):217-231, 2017. doi : 10.1038/nrneurol. 2017.27. 

[113] Ulupi Sitoresmi et al. Tongue twisters in pronunciation class. In Interna­
tional Conference on Teacher Training and Education, volume 1, Surakarta, 
November 2016. Sebelas Maret University. 

[114] Jan Hlavnicka, Roman Cmejla, Tereza Tykalovä, Karel Sonka, Evzen 
Rzicka, and Jan Rusz. Automated analysis of connected speech reveals 
early biomarkers of Parkinson's disease in patients with rapid eye move­
ment sleep behaviour disorder. Scientific reports, 7(1): 1—13, 2017. d o i : 
10.1038/s41598-017-00047-5. 

[115] Jan Rusz, Jan Hlavnicka, Tereza Tykalovä, Jitka Buskovä, Olga Ulmanovä, 
Evzen Rzicka, and Karel Sonka. Quantitative assessment of motor speech 
abnormalities in idiopathic rapid eye movement sleep behaviour disorder. Sleep 
medicine, 19:141-147, 2016. d o i : 10.1016/j .sleep.2015.07.030. 

[116] Aileen K Ho, Robert Iansek, Caterina Marigliani, John L Bradshaw, and San­
dra Gates. Speech impairment in a large sample of patients with Parkinson's 
disease. Behavioural neurology, 11 (3): 131-137, 1998. 

[117] Caroline Moreau and Serge Pinto. Misconceptions about speech impairment 
in parkinson's disease. Movement Disorders, 34(10):1471-1475, 2019. d o i : 
10.1002/mds.27791. 

158 



[118] Laureano Moro-Velazquez and Najim Dehak. A review of the use of prosodic 
aspects of speech for the automatic detection and assessment of Parkinson's 
disease. In Automatic Assessment of Parkinsonian Speech Workshop, volume 
1295, pages 42-59, Cambridge, September 2020. Springer Science and Business 
Media Deutschland GmbH, d o i : 10.1007/978-3-030-65654-6_3. 

[119] Laureano Moro-Velazquez, Jorge A Gomez-Garcia, Julian D Arias-Londono, 
Najim Dehak, and Juan I Godino-Llorente. Advances in Parkinson's disease 
detection and assessment using voice and speech: A review of the articulatory 
and phonatory aspects. Biomedical Signal Processing and Control, 66:102418, 
2021. doi:10.1016/j.bspc.2021.102418. 

[120] Vineet Prasad and Cary A Brown. A pilot study to determine the con­
sistency of simultaneous sleep actigraphy measurements comparing all four 
limbs of patients with parkinson disease. Geriatrics, 3(1):1, 2018. do i : 
10.3390/geriatrics3010001. 

[121] Alex Iranzo, Jose Luis Molinuevo, Joan Santamaria, Monica Serradell, 
Maria Jose Marti, Francesc Valldeoriola, and Eduard Tolosa. Rapid-eye-
movement sleep behaviour disorder as an early marker for a neurodegener­
ative disorder: a descriptive study. The Lancet Neurology, 5(7):572-577, 2006. 
doi:10.1016/S1474-4422C06)70476-8. 

[122] K Ray Chaudhuri and Yogini Naidu. Early parkinson's disease and non-
motor issues. Journal of neurology, 255(5):33-38, 2008. d o i : 10.1007/ 
S00415-008-5006-1. 

[123] Ignacio Perez-Pozuelo, Bing Zhai, Joao Palotti, Raghvendra Mall , Michael Au-
petit, Juan M Garcia-Gomez, Shahrad Taheri, Y u Guan, and Luis Fernandez-
Luque. The future of sleep health: a data-driven revolution in sleep sci­
ence and medicine. NPJ digital medicine, 3(1):1—15, 2020. d o i : 10.1038/ 
S41746-020-0244-4. 

[124] Michael A Grandner and Mary E Rosenberger. Actigraphic sleep tracking 
and wearables: Historical context, scientific applications and guidelines, limi­
tations, and considerations for commercial sleep devices. In Sleep and health, 
pages 147-157. Elsevier, 2019. d o i : 10.1016/B978-0-12-815373-4.00012-5. 

[125] Jessica Vensel Rundo and Ralph Downey III. Polysomnography. Handbook of 
clinical neurology, 160:381-392, 2019. d o i : 10.1016/B978-0-444-64032-1. 
00025-4. 

159 



[126] Paul L Nunez, Ramesh Srinivasan, et al. Electric fields of the brain: the 
neurophysics of EEC Oxford University Press, 2006. doi : 10.1093/acprof : 
oso/9780195050387.001.0001. 

[127] Piotr Augustyniak. Elektroniczna aparatura medyczna. Wydawnictwo A G H , 
2015. 

[128] Francesco Carlo Morabito, Maurizio Campolo, Cosimo Ieracitano, Javad Mo­
hammad Ebadi, Lilla Bonanno, Alessia Bramanti, Simona Desalvo, Nadia 
Mammone, and Placido Bramanti. Deep convolutional neural networks for 
classification of mild cognitive impaired and alzheimer's disease patients 
from scalp eeg recordings. In 2016 IEEE 2nd International Forum on Re­
search and Technologies for Society and Industry Leveraging a better tomor­
row (RTSI), pages 1-6, Bologna, September 2016. IEEE, d o i : 10.1109/RTSI. 
2016.7740576. 

[129] Siavash Sakhavi and Cuntai Guan. Convolutional neural network-based trans­
fer learning and knowledge distillation using multi-subject data in motor 
imagery bci. In 2017 8th International IEEE/EMBS Conference on Neu­
ral Engineering (NER), pages 588-591, Shanghai, May 2017. IEEE, d o i : 
10.1109/NER.2017.8008420. 

[130] Sachin S Talathi. Deep recurrent neural networks for seizure detection and 
early seizure detection systems. arXiv preprint arXiv:1706.03283, 2017. d o i : 
10.48550/arXiv.1706.03283. 

[131] X i u An , Deping Kuang, Xiaojiao Guo, Y i l u Zhao, and Lianghua He. A deep 
learning method for classification of eeg data based on motor imagery. In 
International Conference on Intelligent Computing, pages 203-210. Springer 
International Publishing, August 2014. doi : 10.1007/978-3-319-09330-7_ 
25. 

[132] Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. Eeg-gan: 
Generative adversarial networks for electroencephalograhic (eeg) brain signals. 
arXiv preprint arXiv.1806.01875, 2018. doi : 10.48550/arXiv. 1806.01875. 

[133] Slawomir Opalka, Bartlomiej Stasiak, Dominik Szajerman, and Adam Wo-
jciechowski. Multi-channel convolutional neural networks architecture feed­
ing for effective eeg mental tasks classification. Sensors, 18(10):3451, 2018. 
doi:10.3390/sl8103451. 

160 



[134] Ye Yuan, Guangxu Xun, Kebin Jia, and Aidong Zhang. A multi-view deep 
learning framework for eeg seizure detection. IEEE journal of biomedical and 
health informatics, 23(l):83-94, 2018. doi : 10.1109/JBHI. 2018.2871678. 

[135] Yannick Roy, Hubert Banville, Isabela Albuquerque, Alexandre Gramfort, 
Tiago H Falk, and Jocelyn Faubert. Deep learning-based electroencephalogra­
phy analysis: a systematic review. Journal of neural engineering, 16(5):051001, 
2019. doi:10.1088/1741-2552/ab260c. 

[136] Farhan Fuad Abir, Khalid Alyafei, Muhammad E H Chowdhury, Amith Khan-
dakar, Rashid Ahmed, Muhammad Maqsud Hossain, Sakib Mahmud, Ashiqur 
Rahman, Tareq O Abbas, Susu M Zughaier, et al. Pcovnet: A presymp-
tomatic covid-19 detection framework using deep learning model using wear­
ables data. Computers in biology and medicine, 147:105682, 2022. do i : 
10.1016/j.compbiomed.2022.105682. 

[137] Hyeong Rae Cho, Jin Hyun Kim, Hye Rin Yoon, Yong Seop Han, Tae Seen 
Kang, Hyunju Choi, and Seunghwan Lee. Machine learning-based optimiza­
tion of pre-symptomatic covid-19 detection through smartwatch. Scientific 
Reports, 12(1):1-15, 2022. d o i : 10.1038/s41598-022-11329-y. 

[138] Benjamin L Smarr, Kirstin Aschbacher, Sarah M Fisher, Anoushka Chowd-
hary, Stephan Dilchert, Karena Puldon, Adam Rao, Frederick M Hecht, 
and Ashley E Mason. Feasibility of continuous fever monitoring using 
wearable devices. Scientific reports, 10(1): 1 11, 2020. d o i : 10.1038/ 
S41598-020-78355-6. 

[139] Ashley E Mason, Frederick M Hecht, Shakti K Davis, Joseph L Natale, Wendy 
Hartogensis, Natalie Damaso, Kajal T Claypool, Stephan Dilchert, Subhasis 
Dasgupta, Shweta Purawat, et al. Detection of covid-19 using multimodal 
data from a wearable device: results from the first tempredict study. Scientific 
reports, 12(1):1-15, 2022. d o i : 10.1038/s41598-022-07314-0. 

[140] Shayan Hassantabar, Novati Stefano, Vishweshwar Ghanakota, Alessandra 
Ferrari, Gregory N Nicola, Raffaele Bruno, Ignazio R Marino, Kenza Hami-
douche, and Niraj K Jha. Coviddeep: Sars-cov-2/covid-19 test based on wear­
able medical sensors and efficient neural networks. IEEE Transactions on Con­
sumer Electronics, 67(4):244-256, 2021. doi : 10.1109/TCE. 2021.3130228. 

[141] R Karthickraja, R Kumar, S Kirubakaran, R Manikandan, et al. Covid-19 
prediction and symptom analysis using wearable sensors and iot. International 

161 



Journal of Pervasive Computing and Communications, 18(5):499 - 507, 2020. 
doi:10.1108/1JPCC-09-2020-0146. 

[142] Dean J Miller, John V Capodilupo, Michele Lastella, Charli Sargent, Gre­
gory D Roach, Victoria H Lee, and Emily R Capodilupo. Analyzing changes 
in respiratory rate to predict the risk of covid-19 infection. PloS one, 
15(12):e0243693, 2020. d o i : 10.1371/journal.pone.0243693. 

[143] Talha Burak Alakus and Ibrahim Turkoglu. Comparison of deep learning ap­
proaches to predict covid-19 infection. Chaos, Solitons & Fractals, 140:110120, 
2020. doi:10.1016/j.chaos.2020.110120. 

[144] Dylan M Richards, MacKenzie J Tweardy, Steven R Steinhubl, David W 
Chestek, Terry L Vanden Hoek, Karen A Larimer, and Stephan W Wegerich. 
Wearable sensor derived decompensation index for continuous remote moni­
toring of covid-19 diagnosed patients. NPJ digital medicine, 4(1): 1—11, 2021. 
doi:10.1038/s41746-021-00527-z. 

[145] Chun K a Wong, Deborah Tip Y i n Ho, Anthony Raymond Tarn, M i Zhou, 
Yuk Ming Lau, Milky Oi Yan Tang, Raymond Cheuk Fung Tong, 
Kuldeep Singh Rajput, Gengbo Chen, Soon Chee Chan, et al. Artificial in­
telligence mobile health platform for early detection of covid-19 in quarantine 
subjects using a wearable biosensor: protocol for a randomised controlled trial. 
BMJ open, 10(7):e038555, 2020. d o i : 10.1136/bmjopen-2020-038555. 

[146] Hyoyoung Jeong, John A Rogers, and Shuai X u . Continuous on-body sens­
ing for the covid-19 pandemic: Gaps and opportunities. Science Advances, 
6(36):eabd4794, 2020. doi : 10.1126/sciadv. abd4794. 

[147] Liang Pan, Cong Wang, Haoran Jin, Jie L i , Le Yang, Yuanjin Zheng, Yonggang 
Wen, Ban Hock Tan, Xian Jun Loh, and Xiaodong Chen. Lab-on-mask for 
remote respiratory monitoring. ACS Materials Letters, 2(9):1178—1181, 2020. 
doi:10.1021/acsmaterialslet t .0c00299. 

[148] Harry J Davies, Ian Williams, Nicholas S Peters, and Danilo P Mandic. In-ear 
spo2: A tool for wearable, unobtrusive monitoring of hypoxaemia in covid-19. 
Sensors, 20(17):1 - 12, 2020. d o i : 10.3390/s20174879. 

[149] Radovan Stojanovic, Andrej Skraba, and Budimir Lutovac. A headset like 
wearable device to track covid-19 symptoms. In 2020 9th Mediterranean 
Conference on Embedded Computing (MECO), pages 1-4, Budva, June 2020. 
IEEE, doi : 10.1109/MEC049872.2020.9134211. 

162 



[150] Jason S Chinitz, Rajat Goyal, Donna Chelle Morales, Melissa Harding, Samy 
Selim, and Laurence M Epstein. Use of a smartwatch for assessment of 
the qt interval in outpatients with Coronavirus disease 2019. The Jour­
nal of innovations in cardiac rhythm management, 11(9):4219, 2020. do i : 
10.19102/icrm.2020.1100904. 

[151] Hasan Fleyeh and Jerker Westin. Extracting body landmarks from videos 
for parkinson gait analysis. In 2019 IEEE 32nd International Symposium on 
Computer-Based Medical Systems (CBMS), volume 2019-June, pages 379-384, 
Cordoba, June 2019. IEEE, doi : 10.1109/CBMS .2019.00082. 

[152] Erika Rovini, Carlo Maremmani, and Filippo Cavallo. How wearable sensors 
can support parkinson's disease diagnosis and treatment: a systematic review. 
Frontiers in neuroscience, 11:555, 2017. doi : 10.3389/fnins .2017.00555. 

[153] Asma Channa, Giuseppe Ruggeri, Nadia Mammone, Rares-Cristian Ifrim, An­
tonio Iera, and Nirvana Popescu. Parkinson's disease severity estimation using 
deep learning and cloud technology. In 2022 IEEE International Conference 
on Omni-layer Intelligent Systems (COINS), pages 1-7, Barcelona, August 
2022. IEEE, doi:10.1109/C0INS54846.2022.9854945. 

[154] Andres Gömez-Rodellar, Agustin Älvarez-Marquina, Jiri Mekyska, Daniel 
Palacios-Alonso, Djamila Meghraoui, and Pedro Gomez-Vilda. Performance of 
articulation kinetic distributions vs mfccs in parkinson's detection from vowel 
utterances. In Neural Approaches to Dynamics of Signal Exchanges, volume 
151, pages 431-441. Springer, 2020. d o i : 10.1007/978-981-13-8950-4_38. 

[155] Juan Camilo Väsquez-Correa, Tomas Arias-Vergara, Juan Rafael Orozco-
Arroyave, Björn Eskofier, Jochen Klucken, and Elmar Nöth. Multimodal 
assessment of parkinson's disease: a deep learning approach. IEEE journal 
of biomedical and health informatics, 23(4):1618-1630, 2018. d o i : 10.1109/ 
JBHI.2018.2866873. 

[156] Wee Shin Lim, Shu-I Chiu, Meng-Ciao Wu, Shu-Fen Tsai, Pu-He Wang, Kun-
Pei Lin, Yung-Ming Chen, Pei-Ling Peng, Yung-Yaw Chen, Jyh-Shing Roger 
Jang, et al. A n integrated biometric voice and facial features for early detection 
of parkinson's disease, npj Parkinson's Disease, 8(1):145, 2022. d o i : 10.1038/ 
S41531-022-00414-8. 

[157] John Archila, Antoine Manzanera, and Fabio Martinez. A multimodal parkin-
son quantification by fusing eye and gait motion patterns, using covariance 

163 



descriptors, from non-invasive computer vision. Computer Methods and Pro­
grams in Biomedicine, 215:106607, 2022. doi : 10.1016/j . cmpb. 2021.106607. 

[158] M Katsikitis and I Pilowsky. A study of facial expression in parkinson's dis­
ease using a novel microcomputer-based method. Journal of Neurology, Neu­
rosurgery & Psychiatry, 51(3):362-366, 1988. d o i : 10.1136/jnnp.51.3.362. 

[159] L Ricciardi, A De Angelis, L Marsili, I Faiman, P Pradhan, E A Pereira, 
M J Edwards, F Morgante, and M Bologna. Hypomimia in parkinson's disease: 
an axial sign responsive to levodopa. European Journal of Neurology, 2020. 
doi:10.1111/ene.14452. 

[160] Nomi Vinokurov, David Arkadir, Eduard Linetsky, Hagai Bergman, and 
Daphna Weinshall. Quantifying hypomimia in parkinson patients using 
a depth camera. In International Symposium on Pervasive Computing 
Paradigms for Mental Health, volume 604, pages 63-71, Milan, September 
2015. Springer Verlag. d o i : 10.1007/978-3-319-32270-4_7. 

[161] Bhakti Sonawane and Priyanka Sharma. Review of automated emotion-
based quantification of facial expression in parkinson's patients, environment, 
37(5):1151 - 1167. d o i : 10.1007/s00371-020-01859-9. 

[162] Peng Wu, Isabel Gonzalez, Georgios Patsis, Dongmei Jiang, Hichem Sahli, 
Eric Kerckhofs, and Marie Vandekerckhove. Objectifying facial expressivity 
assessment of parkinson's patients: preliminary study. Computational and 
mathematical methods in medicine, 2014, 2014. doi : 10.1155/2014/427826. 

[163] Parekh Payal and Mahesh M Goyani. A comprehensive study on face recogni­
tion: methods and challenges. The Imaging Science Journal, 68(2):114-127, 
2020. doi:10.1080/13682199.2020.1738741. 

[164] Marcin Kolodziej, Andrzej Majkowski, Remigiusz J Rak, Pawel Tarnowski, 
and Tomasz Pielaszkiewicz. Analysis of facial features for the use of emo­
tion recognition. In 19th International Conference Computational Problems of 
Electrical Engineering, pages 1-4, Banska Štiavnica, September 2018. IEEE, 
doi:10.1109/CPEE.2018.8507137. 

[165] Michal Novotný, Tereza Tykalova, Hana Růžičkova, Evžen Ruzicka, Petr 
Dušek, and Jan Rusz. Automated video-based assessment of facial bradyki-
nesia in de-novo parkinson's disease. NPJ digital medicine, 5(1): 1—8, 2022. 
doi:10.1038/s41746-022-00642-5. 

164 



[166] Mohammad Rafayet A l i , Taylor Myers, Ellen Wagner, Harshil Ratnu, 
E Dorsey, and Ehsan Hoque. Facial expressions can detect parkinson's dis­
ease: preliminary evidence from videos collected online. NPJ digital medicine, 
4(l): l-4, 2021. d o i : 10.1038/s41746-021-00502-8. 

[167] Carlo Maremmani, Roberto Monastero, Giovanni Orlandi, Stefano Salvadori, 
Aldo Pieroni, Roberta Baschi, Alessandro Pecori, Cristina Dolciotti, Gfulia 
Berchina, Erika Rovini, et al. Objective assessment of blinking and facial 
expressions in parkinson's disease using a vertical electro-oculogram and fa­
cial surface electromyography. Physiological measurement, 40(6):065005, 2019. 
doi:10.1088/1361-6579/ablc05. 

[168] Ge Su, Bo Lin, Wei Luo, Jianwei Yin , Shuiguang Deng, Honghao Gao, and 
Renjun X u . Hypomimia recognition in parkinson's disease with semantic fea­
tures. ACM Transactions on Multimedia Computing, Communications, and 
Applications (TOMM), 17(3s):l-20, 2021. doi : 10.1145/3476778. 

[169] Avner Abrami, Steven Gunzler, Camilla Kilbane, Rachel Ostrand, Bryan Ho, 
and Guillermo Cecchi. Automated computer vision assessment of hypomimia 
in parkinson disease: Proof-of-principle pilot study. Journal of Medical Inter­
net Research, 23(2):e21037, 2021. doi : 10.2196/21037. 

[170] Fer dataset. https://www.kaggle.eom/c/ 
cha l lenges- in - represen ta t ion- lea rn ing- fac ia l -express ion 
- recogni t ion-chal lenge/data , 2013 (Accessed August 13, 2020). 

[171] Abhinav Agrawal and Namita Mittal. Using enn for facial expression recogni­
tion: a study of the effects of kernel size and number of filters on accuracy. The 
Visual Computer, 36(2):405-412, 2020. doi : 10.1007/s00371-019-01630-9. 

[172] Yichuan Tang. Deep learning using linear support vector machines. arXiv 
preprint arXiv:1306.0239, 2013. doi : 10.48550/arXiv. 1306.0239. 

[173] Yanling Gan, Jingying Chen, and Luhui X u . Facial expression recognition 
boosted by soft label with a diverse ensemble. Pattern Recognition Letters, 
125:105-112, 2019. doi:10.1016/j .patrec.2019.04.002. 

[174] Ajjen Joshi, Linda Tickle-Degnen, Sarah Gunnery, Terry Ellis, and Margrit 
Betke. Predicting active facial expressivity in people with parkinson's dis­
ease. In Proceedings of the 9th ACM International Conference on PErva-
sive Technologies Related to Assistive Environments, volume 29-June-2016, 
pages 1-4, Corfu, June 2016. Association for Computing Machinery, do i : 
10.1145/2910674.2910686. 

165 

https://www.kaggle.eom/c/


[175] George T Gitchel, Paul A Wetzel, and Mark S Baron. Pervasive ocular tremor 
in patients with parkinson disease. Archives of neurology, 69(8): 1011—1017. 
2012. doi:10.1001/archneurol.2012.70. 

[176] Jan Rusz, Tereza Tykalova, Lorraine O Ramig, and Elina Tripoliti. Guidelines 
for speech recording and acoustic analyses in dysarthrias of movement disor­
ders. Movement Disorders, 36(4):803 - 814, 2020. doi : 10.1002/mds . 28465. 

[177] Ina Kodrasi and Herve Bourlard. Spectro-temporal sparsity characterization 
for dysarthric speech detection. IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, 28:1210-1222, 2020. doi : 10.1109/TASLP. 2020. 
2985066. 

[178] Juan Rafael Orozco-Arroyave, Julian David Arias-Londono, Jesus Francisco 
Vargas-Bonilla, Maria Claudia Gonzalez-Rativa, and Elmar Noth. New Span­
ish speech corpus database for the analysis of people suffering from parkinson's 
disease. In Proceedings of the Ninth International Conference on Language Re­
sources and Evaluation (LREC'14), pages 342-347, Reykjavik, May 2014. 

[179] Laureano Moro-Velazquez, Jorge Andres Gomez-Garcia, Juan Ignacio Godino-
Llorente, Jesus Villalba, Jan Rusz, Stephanie Shattuck-Hufnagel, and Najim 
Dehak. A forced gaussians based methodology for the differential evaluation 
of parkinson's disease by means of speech processing. Biomedical Signal Pro­
cessing and Control, 48:205-220, 2019. d o i : 10.1016/j .bspc .2018.10.020. 

[180] Pedro Gomez, Jiri Mekyska, Andres Gomez, D Palacios, Victoria Rodellar, 
and A Alvarez. Characterization of Parkinson's disease dysarthria in terms 
of speech articulation kinematics. Biomedical Signal Processing and Control, 
52:312-320, 2019. doi:10.1016/j .bspc.2019.04.029. 

[181] JI Godino-Llorente, S Shattuck-Hufnagel, J Y Choi, L Moro-Velazquez, and 
JA Gomez-Garcia. Towards the identification of idiopathic parkinson's 
disease from the speech, new articulatory kinetic biomarkers. PloS one, 
12(12):e0189583, 2017. d o i : 10.1371/journal.pone.0189583. 

[182] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley. 
Deep learning for healthcare: review, opportunities and challenges. Briefings 
in bioinformatics, 19(6):1236-1246, 2018. doi : 10.1093/bib/bbx044. 

[183] Daniele Ravi, Charence Wong, Fani Deligianni, Melissa Berthelot, Javier 
Andreu-Perez, Benny Lo, and Guang-Zhong Yang. Deep learning for health 
informatics. IEEE journal of biomedical and health informatics, 21(1):4—21, 
2016. doi:10.1109/JBHI.2016.2636665. 

166 



[184] Juan Camilo Vásquez-Correa, Juan Rafael Orozco-Arroyave, and Elmar Nóth. 
Convolutional neural network to model articulation impairments in patients 
with parkinson's disease. In INTERSPEECH, volume 2017-August, pages 
314-318, Stockholm, August 2017. International Speech Communication As­
sociation, doi:10.21437/Interspeech.2017-1078. 

[185] Changqin Quan, Kang Ren, and Zhiwei Luo. A deep learning based method for 
parkinson's disease detection using dynamic features of speech. IEEE Access, 
9:10239-10252, 2021. d o i : 10.1109/ACCESS. 2021.3051432. 

[186] Hakan Gunduz. Deep learning-based parkinson's disease classification us­
ing vocal feature sets. IEEE Access, 7:115540-115551, 2019. d o i : 10.1109/ 
ACCESS.2019.2936564. 

[187] Gabriel Solana-Lavalle and Roberto Rosas-Romero. Analysis of voice as an 
assisting tool for detection of parkinson's disease and its subsequent clinical 
interpretation. Biomedical Signal Processing and Control, 66:102415, 2021. 
doi:10.1016/j.bspc.2021.102415. 

[188] Quoc Cuong Ngo, Mohammod Abdul Motin, Nemuel Daniel Pah, Peter 
Drotár, Peter Kempster, and Dinesh Kumar. Computerized analysis of speech 
and voice for parkinson's disease: A systematic review. Computer Methods and 
Programs in Biomedicine, 226, 2022. doi : 10.1016/j . cmpb.2022.107133. 

[189] Jan Rusz, Tereza Tykalová, Michal Novotný, David Zogala, Evžen Ržička, 
and Petr Dušek. Automated speech analysis in early untreated parkinson's 
disease: Relation to gender and dopaminergic transporter imaging. European 
Journal of Neurology, 29(l):81-90, 2022. doi : 10.1111/ene. 15099. 

[190] Katie L Stone and Sonia Ancoli-Israel. Actigraphy. In Principles and practice 
of sleep medicine, pages 1671-1678. Elsevier, 2017. 

[191] Meredith A Ray, Shawn D Youngstedt, Hongmei Zhang, Sara Wagner Robb, 
Brook E Harmon, Girardin Jean-Louis, Bo Cai, Thomas G Hurley, James R 
Hébert, Richard K Bogan, et al. Examination of wrist and hip actigraphy 
using a novel sleep estimation procedure. Sleep Science, 7(2):74-81, 2014. 
doi : 10.1016/ j .s lsci .2014.09.007. 

[192] Marek Mikulec. SYSTÉM ZABEZPEČENÉHO PŘENOSU A ZPRACOVÁNÍ 
DAT Z A K T I G R A F U . Master's thesis, Brno University of Technology, the 
Czech Republic, 2020. 

167 



[193] Harneet K Walia and Reena Mehra. Practical aspects of actigraphy 
and approaches in clinical and research domains. In Handbook of clini­
cal neurology, volume 160, pages 371-379. Elsevier, 2019. d o i : 10.1016/ 
B978-0-444-64032-1.00024-2. 

[194] Hiroshi Kataoka, Keigo Saeki, Norio Kurumatani, Kazuma Sugie, and Kenji 
Obayashi. Objective sleep measures between patients with parkinson's disease 
and community-based older adults. Sleep Medicine, 68:110-114, 2020. d o i : 
10.1016/j.sleep.2019.09.010. 

[195] Jirada Sringean, Chanawat Anan, Chusak Thanawattano, and Roongroj Bhi-
dayasiri. Time for a strategy in night-time dopaminergic therapy? an objec­
tive sensor-based analysis of nocturnal hypokinesia and sleeping positions in 
parkinson's disease. Journal of the Neurological Sciences, 373:244-248, 2017. 
doi:10.1016/j . jns.2016.12.045. 

[196] Roongroj Bhidayasiri and Claudia Trenkwalder. Getting a good night sleep? 
the importance of recognizing and treating nocturnal hypokinesia in parkin­
son's disease. Parkinsonism & related disorders, 50:10-18, 2018. d o i : 
10.1016/j .parkreldis .2018.01.008. 

[197] Gianluca Aloi , Giuseppe Caliciuri, Giancarlo Fortino, Raffaele Gravina, 
Pasquale Pace, Wilma Russo, and Claudio Savaglio. A mobile multi-
technology gateway to enable iot interoperability. In 2016 IEEE First Interna­
tional Conference on Internet-of-Things Design and Implementation (IoTDI), 
pages 259-264, Berlin, Apri l 2016. IEEE, doi : 10.1109/IoTDI. 2015.29. 

[198] Ting Liang and Yong J Yuan. Wearable medical monitoring systems based on 
wireless networks: A review. IEEE Sensors Journal, 16(23):8186-8199, 2016. 
doi:10.1109/JSEN.2016.2597312. 

[199] Salvatore Tedesco, John Barton, and Brendan O'Flynn. A review of activity 
trackers for senior citizens: Research perspectives, commercial landscape and 
the role of the insurance industry. Sensors, 17(6):1277, 2017. d o i : 10.3390/ 
S17061277. 

[200] Ritu Dhull, Dheeraj Chava, Deepala Vineeth Kumar, Kantipudi M V V Prasad, 
Gaurav Samudrala, and M Vijay Bhargav. Pandemic stabilizer using smart-
watch. In 2020 International Conference on Decision Aid Sciences and Ap­
plication (DASA), pages 860-866, Virtual, Sakheer, November 2020. IEEE, 
doi:10.1109/DASA51403.2020.9317056. 

168 



[201] Malathi Devarajan and Logesh Ravi. Intelligent cyber-physical system for 
an efficient detection of parkinson disease using fog computing. Multi­
media Tools and Applications, 78(23):32695-32719, 2019. d o i : 10.1007/ 
S11042-018-6898-0. 

[202] Roisin McNaney, Emmanuel Tsekleves, and Jonathan Synnott. Future op­
portunities for iot to support people with parkinson's. In Proceedings of 
the 2020 CHI Conference on Human Factors in Computing Systems, pages 
1-15, Honolulu HI USA, Apri l 2020. Association for Computing Machinery, 
doi:10.1145/3313831.3376871. 

[203] Di Pan, Rohit Dhall, Abraham Lieberman, and Diana B Petitti. A mobile 
cloud-based parkinson's disease assessment system for home-based monitoring. 
JMIR mHealth and uHealth, 3(l):e29, 2015. doi : 10.2196/mhealth. 3956. 

[204] Vahid Farrahi, Maisa Niemela, Maarit Kangas, Raija Korpelainen, and Timo 
Jamsa. Calibration and validation of accelerometer-based activity monitors: 
A systematic review of machine-learning approaches. Gait & posture, 68:285-
299, 2019. doi:10.1016/j .gai tpost .2018.12.003. 

[205] Martin Benka Wallen, Hakan Nero, Erika Franzen, and Maria Hagstromer. 
Comparison of two accelerometer filter settings in individuals with parkin­
son's disease. Physiological measurement, 35(11):2287, 2014. d o i : 10.1088/ 
0967-3334/35/11/2287. 

[206] Mohammad Abu Alsheikh, Ahmed Selim, Dusit Niyato, Linda Doyle, Shaowei 
Lin, and Hwee-Pink Tan. Deep activity recognition models with triaxial ac-
celerometers. arXiv preprint arXiv:1511.04664, 2015. doi : 10.48550/arXiv. 
1511.04664. 

[207] Aria Khademi, Yasser El-Manzalawy, Orfeu M Buxton, and Vasant Honavar. 
Toward personalized sleep-wake prediction from actigraphy. In 2018 IEEE 
EMBS International Conference on Biomedical & Health Informatics (BHI), 
pages 414-417, Las Vegas, March 2018. IEEE, doi : 10.1109/BHI. 2018. 
8333456. 

[208] A P Zaretskiy, KS Mityagin, VS Tarasov, and D N Moroz. Periodic limb 
movements detection through actigraphy signal analysis. In 2019 Interna­
tional Multi-Conference on Industrial Engineering and Modern Technologies 
(FarEastCon), pages 1-5, Vladivostok, October 2019. IEEE, d o i : 10.1109/ 
FarEastCon.2019.8934102. 

169 



[209] Taeheum Cho, Unang Sunarya, Minsoo Yeo, Bosun Hwang, Yong Seo Koo, 
and Cheolsoo Park. Deep-actinet: End-to-end deep learning architecture for 
automatic sleep-wake detection using wrist actigraphy. Electronics, 8(12): 1461, 
2019. doi:10.3390/electronics8121461. 

[210] Jia L i , Y u Rong, Helen Meng, Zhihui Lu, Timothy Kwok, and Hong Cheng. 
Tate: Predicting alzheimer's disease with actigraphy data. In Proceedings of 
the 24th ACM SIGKDD International Conference on Knowledge Discovery & 
Data Mining, pages 509-518, London, August 2018. Association for Comput­
ing Machinery, d o i : 10.1145/3219819.3219831. 

[211] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 
Neural ordinary differential equations. In Advances in neural information 
processing systems, volume 31, pages 6571-6583, Montreal, December 2018. 
Curran Associates, Inc. 

[212] Colin Lea, Michael D Flynn, Rene Vidal, Austin Reiter, and Gregory D 
Hager. Temporal convolutional networks for action segmentation and detec­
tion. In proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition, volume 2017-January, pages 156-165, Honolulu, July 2017. IEEE, 
doi:10.1109/CVPR.2017.113. 

[213] Lena Granovsky, Gabi Shalev, Nancy Yacovzada, Yotam Frank, and Shai Fine. 
Actigraphy-based sleep/wake pattern detection using convolutional neural net­
works. arXiv preprint arXiv:1802.07945, 2018. doi : 10.48550/arXiv. 1802. 
07945. 

[214] Hanrui Zhang, Kaiwen Deng, Hongyang L i , Roger L Albin, and Yuanfang 
Guan. Deep learning identifies digital biomarkers for self-reported parkinson's 
disease. Patterns, 1(3), 2020. doi : 10.1016/j .patter .2020.100042. 

[215] Niamh O'Mahony, Blanca Florentino-Liano, Juan J Carballo, Enrique Baca-
Garcia, and Antonio Artes Rodriguez. Objective diagnosis of adhd using 
imus. Medical engineering & physics, 36(7):922-926, 2014. d o i : 10.1016/ 
j.medengphy.2014.02.023. 

[216] Jus tyna Skibinska and Radim Burget. The application of deep learning 
techniques in the electroencephalogram (eeg) analysis. In 2019 XXXV Finnish 
Union Radio Scientifique Internationale (URSI) Convention on Radio Science, 
Tampere, October 2019. URSI. 

170 



[217] David Ahmedt-Aristizabal, Clinton Fookes, Kien Nguyen, and Sridha Srid-
haran. Deep classification of epileptic signals. In 2018 40th Annual interna­
tional conference of the IEEE Engineering in Medicine and Biology Society 
(EMBC), pages 332-335, Honolulu, July 2018. IEEE, d o i : 10.1109/EMBC. 
2018.8512249. 

[218] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. Deepsleepnet: A model 
for automatic sleep stage scoring based on raw single-channel eeg. IEEE Trans­
actions on Neural Systems and Rehabilitation Engineering, 25(11): 1998-2008, 
2017. doi:10.1109/TNSRE.2017.2721116. 

[219] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich, Stephen M Gor­
don, Chou P Hung, and Brent J Lance. Eegnet: a compact convolutional 
neural network for eeg-based brain-computer interfaces. Journal of neural 
engineering, 15(5):056013, 2018. doi : 10.1088/1741-2552/aace8c. 

[220] Dongwei Chen, Rui Miao, Zhaoyong Deng, Na Han, and Chunjian Deng. 
Sparse granger causality analysis model based on sensors correlation for emo­
tion recognition classification in electroencephalography. Frontiers in compu­
tational neuroscience, 15, 2021. d o i : 10.3389/fncom.2021.684373. 

[221] Narayan Puthanmadam Subramaniyam, Reik V Donner, Davide Caron, 
Gabriella Panuccio, and Jari Hyttinen. Causal coupling inference from multi­
variate time series based on ordinal partition transition networks. Nonlinear 
Dynamics, 105(l):555-578, 2021. d o i : 10.1007/sll071-021-06610-0. 

[222] Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi. Data mining for wear­
able sensors in health monitoring systems: a review of recent trends and chal­
lenges. Sensors, 13(12):17472-17500, 2013. d o i : 10.3390/sl31217472. 

[223] Philip Schmidt, Atti la Reiss, Robert Diirichen, and Kristof Van Laerhoven. 
Wearable-based affect recognition—a review. Sensors, 19(19):4079, 2019. do i : 
10.3390/sl9194079. 

[224] Frederic L i , Kimiaki Shirahama, Muhammad Adeel Nisar, Lukas Koping, 
and Marcin Grzegorzek. Comparison of feature learning methods for hu­
man activity recognition using wearable sensors. Sensors, 18(2):679, 2018. 
doi:10.3390/sl8020679. 

[225] Diane J Cook and Narayanan C Krishnan. Activity learning: discovering, 
recognizing, and predicting human behavior from sensor data. John Wiley & 
Sons, 2015. doi:10.1002/9781119010258. 

171 



[226] Marilia Barandas, Duarte Folgado, Leticia Fernandes, Sara Santos, Mariana 
Abreu, Patricia Bota, Hui Liu, Tanja Schultz, and Hugo Gamboa. Tsfel: 
Time series feature extraction library. SoftwareX, 11:100456, 2020. d o i : 
10.1016/j.softx.2020.100456. 

[227] Time series feature extraction library, h t t p s : / / t s f e l . r ead thedocs . i o / en / 
l a t e s t / . Accessed: 2021-03-18. 

[228] Siti Agrippina Alodia Yusuf and Risanuri Hidayat. Mfcc feature extraction 
and knn classification in ecg signals. In 2019 6th International Conference on 
Information Technology, Computer and Electrical Engineering (ICITACEE), 
pages 1-5, Semarang, September 2019. IEEE, doi : 10.1109/ICITACEE. 2019. 
8904285. 

[229] Uichin Lee, Kyungsik Han, Hyunsung Clio, Kyong-Mee Chung, Hwajung 
Hong, Sung-Ju Lee, Youngtae Noh, Sooyoung Park, and John M Carroll. 
Intelligent positive computing with mobile, wearable, and iot devices: Lit­
erature review and research directions. Ad Hoc Networks, 83:8-24, 2019. 
doi:10.1016/j.adhoc.2018.08.021. 

[230] Andrea Bizzego, Giulio Gabrieli, Cesare Furlanello, and Gianluca Esposito. 
Comparison of wearable and clinical devices for acquisition of peripheral ner­
vous system signals. Sensors, 20(23):6778, 2020. d o i : 10.3390/s20236778. 

[231] Jerry Chen, Maysam Abbod, and Jiann-Shing Shieh. Pain and stress detection 
using wearable sensors and devices—a review. Sensors, 21(4):1030, 2021. d o i : 
10.3390/s21041030. 

[232] SM Israfil, M d Moklesur Rahman Sarker, Parisa Tamannur Rashid, A l i Azam 
Talukder, Khandkar A l i Kawsar, Farzana Khan, Selina Akhter, Chit Laa Poh, 
Isa Naina Mohamed, and Long Chiau Ming. Clinical characteristics and diag­
nostic challenges of covid- 19: an update from the global perspective. Frontiers 
in public health, 8:955, 2021. doi : 10.3389/fpubh. 2020.567395. 

[233] Justin Shenk. Facial expression recognition, 2020 (Accessed August 11, 2020). 
U R L : https : / / g i t hub . com/justinshenk/f er. 

[234] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi 
Mirza, Ben Hamner, Wi l l Cukierski, Yichuan Tang, David Thaler, Dong-Hyun 
Lee, et al. Challenges in representation learning: A report on three machine 
learning contests. In International conference on neural information process­
ing, volume 8228 LNCS, pages 117-124. Springer, Springer, November 2013. 
doi:10.1007/978-3-642-42051-1 16. 

172 

https://tsfel.readthedocs.io/en/


[235] Ivan de Paz Centeno. Face detection, 2020 (Accessed August 11, 2020). URL: 
ht tps: / /gi thub.com/ipazc/mtcnn/ . 

[236] Lukas Snoek, Steven Miletic, and H Steven Schölte. How to control for con­
founds in decoding analyses of neuroimaging data. Neuroimage, 184:741-760, 
2019. doi:10.1016/j.neuroimage.2018.09.074. 

[237] Mohamad Amin Pourhoseingholi, Ahmad Reza Baghestani, and Mohsen Va-
hedi. How to control confounding effects by statistical analysis. Gastroenterol­
ogy and hematology from bed to bench, 5(2):79, 2012. 

[238] Carlos Alonso-Martinez, Marcos Faundez-Zanuy, and Jiri Mekyska. A com­
parative study of in-air trajectories at short and long distances in on­
line handwriting. Cognitive computation, 9:712-720, 2017. d o i : 10.1007/ 
S12559-017-9501-5. 

[239] Stratified cross-validation. https:/ / towardsdatascience.com/ 
wha t - i s - s t r a t i f i ed - c ro s s -va l i da t i on - in -mach ine - l ea rn ing -
8844f3e7ae8e. Accessed: 2023-01-23. 

[240] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. 
In Proceedings of the 22nd acm sigkdd international conference on knowledge 
discovery and data mining, pages 785-794, San Francisco, August 2016. Asso­
ciation for Computing Machinery, doi : 10.1145/2939672.2939785. 

[241] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model 
predictions. Advances in neural information processing systems, 30, December 
2017. 

[242] Shap library, h t tps : / / shap . readthedocs . io /en / la tes t / . Accessed: 2022-
11-23. 

[243] Sabine Skodda, Heiko Rinsche, and Uwe Schlegel. Progression of dysprosody 
in parkinson's disease over time—a longitudinal study. Movement disorders: 
official journal of the Movement Disorder Society, 24(5):716-722, 2009. do i : 
10.1002/mds.22430. 

[244] Hamid Azadi, Mohammad-R Akbarzadeh-T, A l i Shoeibi, and Hamid Reza 
Kobravi. Evaluating the effect of parkinson's disease on jitter and shimmer 
speech features. Advanced Biomedical Research, 10(1), 2021. d o i : 10.4103/ 
abr.abr 254 21. 

173 

https://github.com/ipazc/mtcnn/
https://towardsdatascience.com/
https://shap.readthedocs.io/en/latest/


[245] Andrea Fernandez Martinez. Identification of patients at the risk of lewy 
body diseases based on acoustic analysis of speech. In Proceedings of the 25st 
Conference STUDENT EEICT 2019 [online], pages 50-53, 2019. 

[246] Jan Rusz, Marika Megrelishvili, Cecilia Bonnet, Michael Okujava, Hana 
Brožová, Irine Khatiashvili, Madona Sekhniashvili, Marina Janelidze, Eduardo 
Tolosa, and Evžen Ržička. A distinct variant of mixed dysarthria reflects 
parkinsonism and dystonia due to ephedrone abuse. Journal of Neural Trans­
mission, 121(6):655-664, 2014. d o i : 10.1007/s00702-014-1158-6. 

174 


