

 Czech University of Life Sciences in Prague

Faculty of Economics and Management

Department of Information Engineering

Diploma Thesis

Design of IS for Travel Expense Management Automation

Author: Mirakmal Kobilov

Supervisor: Doc. RNDr. Dana Klimešová, CSc.

.

© Prague, 2016

Declaration

I declare that I have worked on my diploma thesis titled “Design of IS for Travel Expense

Management Automation” by myself and I have used only the sources mentioned at the end of the

thesis.

In Prague on ……………………………………

 signature

Acknowledgement

I take this opportunity to express my deep gratitude and regards to my supervisor Doc. RNDr.

Dana Klimešová, CSc. for the help in the preparation of my thesis. My supervisor gave me great

help in the research, not only helped me to correct errors, but also gave me valuable advice. I

would like to take this opportunity to express my heartfelt gratitude and deepest respect.

I would like to thank to my family and friends for all their supports.

Design of IS for Travel Expense

Management Automation

Návrh informačního systému

Řízení cestovních nákladů

Abstract

Today’s challenging corporate environment often requires that professionals travel more

often and more widely to expand and enhance business operations. Organizations’ push for

efficiency necessitates that these traveling professionals be more cost-productive without

sacrificing accuracy, compliance, or results. Financial process automation is becoming essential

for efficient corporate travel, as is the ability to access that automation on the go, making mobile

functionality a requirement for maintaining competitive advantage. This need is especially visible

in the area of expense reporting, when corporate travelers must organize and record receipts for

all their business spend. Automation of Travel and Expense Management (TEMA), with its mobile

integration and intelligent features, allows traveling employees to trade the inefficiencies of

outdated expense spreadsheets and receipt handling for speed, productivity, and compliance. This

thesis discusses designing and implementation of TEMA in the mid and small size companies.

Project contains 5 parts: Literature Review which contains discussion of Designing Information

Systems, Object-Oriented Development Methodology, Travel Expense Management Automation,

Software Development and Implementation, Conclusion.

In project realization, one of the high level programming languages C# was used based on

Object Oriented Methodology. Within C#, classes of .NET Framework (which was created and

supported by Microsoft) were utilized. The reason that C# and .NET was chosen is that this

technologies are increasing in usage day by day surpassing other object oriented programming

languages. C# is becoming most popular programming language in System Development.

Keywords: Information Systems, Information System Design, Travel Expense, Management

Automation, OOP, UML, Expense Reporting.

Abstrakt

Dnešní náročné korporátní prostředí často od odborniků vyžaduje, aby vzhledem k

zkvalitňování a rozšiřování podnikání čím dál, tím víc cestovali. Organizace zvyšují požadavky

na efektivnost, produktivitu a snižování nákladú , při zachování stejné kvality. Tato potřeba je

obzvlášť patrná v oblasti vykazování výdajů, kdy zaměstnanci na služebních cestách musí pečlivě

uchovávat a zaznamenávat účetní doklady pro všechny výdaje. Automatizace řízení cestovních

nákladů (TEMA), s mobilní integrací inteligentních funkcí umožňuje cestujícím zaměstnancům

nahradit neefektivní zastaralý systém výkazů cestovních nákladů a účtenek za rychlí a efektivní

systém. Tato práce popisuje vývoj a implementaci TEMA ve středních a malých podnicích. Projekt

obsahuje 5 částí: přehled literatury, uvod do automatizace řízení cestovních nákladů , funkční

požadavky a metodiku , vývoj a implementace softwaru, závěr.

Klíčová slova: Cestovní Výdaje, Automatizace řízení, OOP, UML, Vykazování nákladů, Navrh

informacniho systemu.

Contents

1. Introduction 1

2. Objectives and Methodology 3

3. Theoretical Background 4

3.1. System and its components 4

3.2. Introduction to Information Systems 8

3.3. Types of Information Systems 12

3.4. System Development Methodologies 15

4. Object-Oriented Methodology 23

4.1. Classes and Objects. Inheritance, Polymorphism and Encapsulation 24

4.2. Unified Modelling Language (UML) 31

5. Travel Expenses Management 44

5.1. Travel Expenses Structure 45

5.2. Life-cycle of Travel Expenses Management 47

5.3. Travel Expenses Management Automation (TEMA) 49

5.4. Goal and Benefits of Automation of Travel Expense Management 49

5.5. Current situation of Travel Expense Management Automation 53

5.6. Future of Travel Expense Management Automation 57

6. Application Design 59

6.1. TEMA Methodology 59

6.2. Software Development 63

6.3. Use Case Model 64

6.4. Sequence diagrams 65

6.5. User Interface wireframe 69

6.6. Source codes for some important actions 71

6.7. Relational database diagram 76

6.8. TEMA Implementation 79

7. Conclusion 80

8. References 81

9. List of figures 83

10. List of tables 84

1

1. Introduction

Corporate business travel has been long-term necessity in the greater scheme of organizational

growth. Business travel is linked to effective customer development, supplier relationships and

maintaining a corporate presence on the global and local stage. In fact, expenses related to travel

accounts for 7-13% of the average company's total budget (according to Aberdeen Group reports

2014), forcing enterprises across the world to manage these expenses in the way that is consistent

with bottom line growth. Companies continue their strategic approach towards expense

management as we move into new decade, the challenges and opportunities for organizations of

all sizes have changed dramatically over the past few years. Today many organizations are focused

on finding practical ways to improve their bottom lines, and as the second-largest operating

expense in most organizations, travel expense (T&E) is a focal point. As a result, financial

executives are looking for more cost-effective and efficient approaches to managing travel

expenses.

More and more companies are leaving classic spreadsheet style expense reporting systems

and striving to improve their travel expenses by absorbing automated travel expense reporting

technologies. Therefore, the importance of Automated Travel Expense Reporting is higher than

ever before.

Travel expenses typically represent the second-highest controllable corporate annual expense,

and travel bookings through TMC (Travel Management Company)es are only part of the picture.

A mature travel-expense management strategy includes many elements: buying travel, traveling,

travel reimbursement, processing and analyzing travel spend, and using the data gathered during

the cycle to buy future travel more efficiently. The Aberdeen Group reports (2013) that nearly

70% of organizations globally view travel-expense management as a strategic function. In 2015,

65% of these companies indicated they plan to improve their expense-management processes.

These companies have realized that viewing the entire travel and expense program as an integrated

system enables their organizations to better control travel spend and save money. Considering this,

many leading IT companies produce solutions for better travel expense management, but these

solutions are not for all: for many companies there are issues like unaffordability, lack of service

support, location mismatch and so on. Most of technologies which are aimed for better travel

expense management are not affordable for mid and small sized companies.

2

Realizing these problems, I see the need to study and analyze the current state of TEMA in

especially mid and small size companies. Finally, I try to suggest simple and useful Travel Expense

Reporting Application prototype as a possible solution for mid and small sized companies.

In this thesis Travel Expense Management application has been designed using one of the

high level Object-Oriented language - C# with .NET framework tools such as ASP.NET, Entity

Framework alongside with Relational Database - MSSQL. Above-mentioned Back-End

technologies demonstrated with modern Client-Side technologies such as HTML5, CSS3 and

jQuery framework. I want to implement his simple TEMA solution for mid and small size

companies to make this solution affordable for them, to make their business activities more

efficient and to cut their operational costs. During my time in university, I learned above-

mentioned technologies on theoretical basis. Also during my internship in 2 companies, I tried to

learn how those technologies are used in practice. In this thesis I tried to combine my theoretical

knowledge and practical skills so that to create this project.

3

2. Objectives and Methodology

Goal

The Goal of this thesis is to study and analyze the theory of designing information systems and to

discuss current state of Travel Expense Automation and to develop information system for travel

expense management and to provide mid and small size companies with simple affordable solution

to make them work more efficiently and cut their costs which are related to their business trips.

Partial goals of this thesis:

 to study and analyze designing of information systems

 to have closer look at current state of travel expense management automation in the

companies;

 to identify problems with implementing automation of travel expense and explain, analyze

benefits of implementing information system for travel expense management;

 to design possible solutions/best practices for companies.

As a student, my objectives in this thesis is to learn Object-Oriented Programming better and

to absorb better view of system design and development. Today OOP is most popular methodology

in designing and developing information systems, the role of OOP will only increase and I think,

by learning OOP properly, I can become better IT professional.

Methodology

Methodology of this thesis is based on analysis of information that was collected from

available sources and knowledge to study and analyze Designing of Information Systems and to

find out current state of Travel Expense Management Automation in different types of companies.

Practical part aims to develop web-based application (prototype) using OOP language (C# and

.NET Framework) with relational database (MSSQL). Requirements and Methodology of the

project will be discussed in chapter 6. Also, Software Development and Implementation will be

analyzed in chapter 6. Finally, conclusion and his recommendations are given in chapter 7.

Application will be web-based program which will have central server. The reason that it was

intended to be web based is that in the future most of business applications are supposed to migrate

to Cloud based systems. Migrating from web-based application to cloud based system will be easy

and less costly.

4

3. Theoretical Background

This chapter is dedicated to study and analysis of designing information systems; chapter includes

introduction to information systems, types of information systems. Then following are discussed:

main system development methodologies, advantages and disadvantages of those methodologies.

Finally, Object Oriented methodology and Unified Modelling Language in designing information

systems are discussed.

3.1. System and its components

Starting talking about System Design, first we need to understand definition of Data,

Information and Knowledge. Abdalla Uba Adamu, professor of National University of Nigeria, in

his book (“Information System Design and Programming”, 2006) describes data as follows - “Data

is raw facts, figures, images or sounds collected from observations or recordings about events,

objects or people, which can be stored on a manual or computer-based medium e.g. employee’s

name and number, number of hours worked in a week, inventory part numbers, or sales orders.”

It is important to distinguish between data and information. Data has little meaning/value in its

own right, it only has meaning when it is processed and put into context as information. The

information has a value in decision making while data does not have. Information brings clarity

and creates an intelligent human response in the mind.

Information is defined as “data that is processed for a particular purpose” - (Curtis and

Cobham, 2002) or as “an answer to a specific question” - (Paresi, 2000). A common definition of

information is that information is data that have been processed and presented in a useful format

that will enable an individual to gain knowledge in order to be able to make a decision. Information

can generally be considered as an entity that is responsible for reducing uncertainty about a

particular state or event, as pointed out by (Lucas, 1985).

Figure 1: Data transformation into Information.

5

We can conclude that the difference between data and information is data is raw material, while

information is data stored on computer systems.

Although information is useful resource for individuals and organisations not all

information can be considered useful. The differences between ‘good’ and ‘bad’ information can

be identified by considering whether or not it has some or all of the attributes of information

quality. Attributes can be related to the timing, content and form of the information. Knowledge

depends on personal experience and is on a pragmatic level.

Based on Anthony's classification of Management, information used in business for decision-

making is generally categorized into three types:

 Strategic Information: Strategic information is concerned with long term policy decisions

that defines the objectives of a business and checks how well these objectives are met. For

example, acquiring a new plant, a new product, diversification of business etc., comes

under strategic information.

 Tactical Information: Tactical information is concerned with the information needed for

exercising control over business resources, like budgeting, quality control, service level,

inventory level, productivity level etc.

 Operational Information: Operational information is concerned with plant/business level

information and is used to ensure proper conduction of specific operational tasks as

planned/intended. Various operator specific, machine specific and shift specific jobs for

quality control checks comes under this category.

Merriam Webster defines knowledge in this way – “Knowledge is the fact or condition of

knowing something with familiarity gained through experience or association, acquaintance with

or understanding of a science, art, or technique”. Knowledge can also be defined as “the fact or

condition of being aware of something and the range of one's information or understanding”.

Professor Ray R. Larson of the School of Information at the University of California, Berkeley,

provides an Information Hierarchy, which is:

 Data - The raw material of information.

 Information - Data organized and presented by someone.

 Knowledge - Information read, heard, or seen, and understood.

 Wisdom - Distilled and integrated knowledge and understanding.

6

Scott Andrews' explains Information Continuum as follows:

 Data - A Fact or a piece of information, or a series thereof.

 Information - Knowledge discerned from data.

 Business Intelligence - Information Management pertaining to an organization's policy or

decision-making, particularly when tied to strategic or operational objectives.

System

The term system is derived from the Greek word `systema’ which means an organized

relationship among functioning units or components. In other words, A system is an orderly group

of independent components linked together according to a plan to achieve a common objective.

Definitions of the system concept appear in several books (e.g. Langefors, 1995; Ackoff, 1981;

Klir, 1991). These definitions can be synthesised as follows: “a system is a collection of related

elements organised into a whole to perform a particular function and/or reaching a goal”. Despite

different definitions, the main characteristics of systems in our meaning are the fact that it is up to

the observer of a system to view the system. In the broadest sense, a system is simply a set of

components that interact to accomplish some purpose. They are all around us. For example, human

body is a biological system. We experience physical sensations by means of a complex nervous

system, a set of parts, including brain, spinal cord, nerves, and special sensitive cells under our

skin, that work together to make us feel hot, cold, itchy, and so on.

An organization may also be viewed as a system where all the employees interact with each

other and also with the employer to make the organization a functional unit. The organization also

interacts with their customers to make a complete business system.

In our day to day life, we see many business systems. These businesses have varied objectives,

which range from producing a notebook to producing aircraft. These systems have their

information needs. It can be for maintaining the records for employee for their wages calculations,

keeping track of their leave status, maintaining company's expenses, inquiries from customers in

case the business provide some service, or for keeping track for some particular function. So

maintaining data is an important and essential activity in any business. The overall data maintained

constitutes what is known as Information system.

According to Joseph S. Valacich, Professor of Management Information Systems at the

University of Arizona (“Essentials of Systems Analysis and Design”, 2012), a system has nine

7

characteristics: Components, Interrelated components, Boundary, Purpose, Environment,

Interfaces, Constraints, Input, Output.

Figure 2: System characteristics

A system is made up of components:

 A component is either an irreducible part or an aggregate of parts, also called a subsystem.

The simple concept of a component is very powerful. For example, just as with an

automobile or a stereo system, with proper design, we can repair or upgrade the system by

changing individual components without having to make changes throughout the entire

system.

 The components are interrelated; that is, the function of one is somehow tied to the

functions of the others. For example, the work of one component, such as producing a daily

report of customer orders received, may not progress successfully until the work of another

component is finished, such as sorting customer orders by date of receipt.

 A system has a boundary, within which all of its components are contained and which

establishes the limits of a system, separating it from other systems. Components within the

boundary can be changed, whereas systems outside the boundary cannot be changed.

8

 All of the components work together to achieve some overall purpose for the larger system:

the system’s reason for existing.

 A system exists within an environment - everything outside the system’s boundary that

influences the system. For example, the environment of a state university includes

prospective students, foundations and funding agencies, and the news media. Usually the

system interacts with its environment. A university interacts with prospective students by

having open houses and recruiting from local high schools. An information system

interacts with its environment by receiving data (raw facts) and information (data processed

in a useful format).

 The points at which the system meets its environment are called interfaces; an interface

also occurs between subsystems.

 In its functioning, a system must face constraints—the limits (in terms of capacity, speed,

or capabilities) to what it can do and how it can achieve its purpose within its environment.

Some of these constraints are imposed inside the system (e.g., a limited number of staff

available), and others are imposed by the environment (e.g., due dates or regulations).

 A system takes input from its environment in order to function. People, for example, take

in food, oxygen, and water from the environment as input. You are constrained from

breathing fresh air if you’re in an elevator with someone who is smoking.

 Finally, a system returns output to its environment as a result of its functioning and thus

achieves its purpose. The system is constrained if electrical power is cut.

3.2. Introduction to Information Systems

Alan R. Hevner in his article (2004) which he published in University of South Florida gives

explanation to information system in this way – “An information system (IS) is a computerized

database designed to accept, store, process, transform, make useful, and analyze data and to

report results, usually on a regular, ongoing basis. It is often construed as a larger system

including not only the database and the software and hardware used to manage it but also

including the people using and benefiting from it and also including all necessary manual and

machine procedures and communication systems”. More specifically, it is the study of

complementary networks that people and organizations use to collect, filter, process, create and

distribute data. Information system is the means by which data flow from one person or department

to another and can encompass everything from interoffice mail and telephone links to a computer

9

system that generates periodic reports for various users. Information systems serve all the systems

of a business, linking the different components in such a way that they effectively work towards

the same purpose.

Kroenke, David (2015) says: “An information system (IS) is a group of components that interact

to produce information”. The role of the Information systems to provide information to

management which will enable them to make decisions which ensure that the organisation is

controlled. According to authors of MIS tutorial in Tutorialspoint.com, Information System – “An

arrangement of people, data, processes and information technology that interact to collect,

process, store and provide as output, the information needed to support an organisation.”

The six components that must come together in order to produce an information system are:

 Hardware: The term hardware refers to machinery. This category includes the computer

itself, which is often referred to as the central processing unit (CPU), and all of its support

equipments. Among the support equipments are input and output devices, storage devices

and communications devices.

 Software: The term software refers to computer programs and the manuals (if any) that

support them. Computer programs are machine-readable instructions that direct the

circuitry within the hardware parts of the system to function in ways that produce useful

information from data. Programs are generally stored on some input / output medium, often

a disk or tape.

 Data: Data are facts that are used by programs to produce useful information. Like

programs, data are generally stored in machine-readable form on disk or tape until the

computer needs them.

 Procedures: Procedures are the policies that govern the operation of a computer system.

"Procedures are to people what software is to hardware" is a common analogy that is used

to illustrate the role of procedures in a system.

 People: Every system needs people if it is to be useful. Often the most over-looked element

of the system are the people, probably the component that most influence the success or

failure of information systems. This includes "not only the users, but those who operate

and service the computers, those who maintain the data, and those who support the network

of computers." (Kroenke, D. M. (2015). MIS Essentials. Pearson Education)

 Feedback: it is another component of the IS, that defines that an IS may be provided with

a feedback (Although this component isn't necessary to function).

10

Data is the bridge between hardware and people. This means that the data we collect is only data,

until we involve people. At that point, data is now information. Three activities provide the

information that organizations need. These activities are Input, Processing and Output. 'Input'

consists of acquisition of the 'raw data', which is transformed into more meaningful packets of

'Information' by means of 'Processing'. The processed information now flows to the users or

activities also called as 'Output'. The shortcomings are analyzed and the information is sent back

to the appropriate members of the organization to help them evaluate and refine the input. This is

termed as 'feedback'. Examples of 'Information Inputs' would be Transactions, events which would

undergo 'processing' in the form of sorting, listing, merging and updating resulting in 'outputs' such

as detailed reports, lists and summaries.

Figure 3: Activities that provide the information organizations need

 A computer information system is a system composed of people and computers that processes or

interprets information. The basic components of computer-based information systems are:

 Hardware- these are the devices like the monitor, processor, printer and keyboard, all of

which work together to accept, process, show data and information.

 Software- are the programs that allow the hardware to process the data.

11

 Databases- are the gathering of associated files or tables containing related data.

 Networks- are a connecting system that allows diverse computers to distribute resources.

 Procedures- are the commands for combining the components above to process

information and produce the preferred output.

Some authors, (for example O'Brien, J A. (2003). “Introduction to information systems:

essentials for the e-business enterprise”. McGraw-Hill, Boston, MA) make a clear distinction

between information systems, computer systems, and business processes. Information systems

typically include an ICT component but are not purely concerned with ICT, focusing instead on

the end use of information technology. Information systems are also different from business

processes. Information systems help to control the performance of business processes. Information

systems inter-relate with data systems on the one hand and activity systems on the other. An

information system is a form of communication system in which data represent and are processed

as a form of social memory. An information system can also be considered a semi-formal language

which supports human decision making and action.

“Information technology (IT) refers to the combination of hardware, software, and services

that people use to manage, communicate, and share information” – Gary B. Shelly and Harry J.

Rosenblatt, (2012)

Information Technology (IT): The enabling mechanism which facilitates the processing and flow

of information, as well as the technologies used in the physical processing to produce a product or

provide a service. Includes telecommunications, computers and automation technologies,

represents the technical perspective. Information technology has significantly expanded the power

and potential of most information systems. Information technology is a contemporary term that

describes the combination of computer technology (hardware and software) with

telecommunications technology (data, image, and voice networks). Technology has created a data

and information explosion in virtually all businesses. The ability of businesses to harness and

manage this data and information has become a critical success factor in most businesses.

12

3.3. Types of Information Systems

Information systems differ in their business needs. Also depending upon different levels in

organization information systems differ. Four major information systems are:

 Executive information systems.

 Transaction processing

 Management information system

 Decision support system

The "classic" view of Information systems found in the textbooks (Laudon, K.C. and Laudon, J.P.

“Management Information Systems”, (2nd edition), Macmillan, 1988.) in the 1980s was of a

pyramid of systems that reflected the hierarchy of the organization, usually transaction processing

systems at the bottom of the pyramid, followed by management information systems, decision

support systems, and ending with executive information systems at the top.

Figure 4: Classic Information Systems Pyramid

Executive information system (EIS), also known as an executive support system (ESS).

Executive support systems are intended to be used by the senior managers directly to provide

support to non-programmed decisions in strategic management. It is commonly considered a

13

specialized form of decision support system (DSS). These information are often external,

unstructured and even uncertain. Exact scope and context of such information is often not known

beforehand. Following are some examples of intelligent information, which is often the source of

an ESS - external databases, technology reports like patent records, technical reports from

consultants, market reports, confidential information about competitors, speculative information

like market conditions, government policies, financial reports and information.

Decision support systems (DSS) are interactive software-based systems intended to help

managers in decision-making by accessing large volumes of information generated from various

related information systems involved in organizational business processes, such as office

automation system, transaction processing system, etc. DSS uses the summary information,

exceptions, patterns, and trends using the analytical models. A decision support system helps in

decision-making but does not necessarily give a decision itself. The decision makers compile

useful information from raw data, documents, personal knowledge, and/or business models to

identify and solve problems and make decisions.

There are two types of decisions - programmed and non-programmed decisions. Programmed

decisions are basically automated processes, general routine work, where these decisions have

been taken several times and these decisions follow some guidelines or rules. For example,

selecting a reorder level for inventories, is a programmed decision. Non-programmed decisions

occur in unusual and non-addressed situations. For example, investing in a new technology is a

non-programmed decision. Decision support systems generally involve non-programmed

decisions. Therefore, there will be no exact report, content, or format for these systems. Reports

are generated on the fly.

Following are the components of the Decision Support System - Database Management System

(DBMS), Model Management System, Support Tools.

Management information system (MIS) focuses on the management of information systems

to provide efficiency and effectiveness of strategic decision making. The concept may include

systems termed transaction processing system, decision support system, expert system, or

executive information system. Management information systems (plural) as an academic

discipline studies people, technology, organizations, and the relationships among them ("What is

Management Information Systems?". May’s Business School. Archived from the original on May

9, 2015). This definition relates specifically to "MIS" as a course of study in business schools.

14

Many business schools (or colleges of business administration within universities) have an MIS

department, alongside departments of accounting, finance, management, marketing, and may

award degrees (at undergraduate, master, and doctoral levels) in Management Information

Systems.

The three components of MIS provide a more complete and focused definition, where System

suggests integration and holistic view, Information stands for processed data, and Management is

the ultimate user, the decision makers.

MIS means a system for processing data in order to give proper information to the management

for performing its functions. The goals of an MIS are to implement the organizational structure

and dynamics of the enterprise for the purpose of managing the organization in a better way and

capturing the potential of the information system for competitive advantage.

Following are the basic objectives of an MIS - Capturing Data, Processing Data, Information

Storage, Information Retrieval, Information Propagation.

Transaction Processing System (TPS) processes business transaction of the organization.

Transaction can be any activity of the organization. Transactions differ from organization to

organization. For example, take a railway reservation system. Booking, canceling, etc are all

transactions. Any query made to it is a transaction. However, there are some transactions, which

are common to almost all organizations. Like employee new employee, maintaining their leave

status, maintaining employees accounts, etc. This provides high speed and accurate processing of

record keeping of basic operational processes. These include calculation, storage and retrieval.

Transaction processing systems provide speed and accuracy, and can be programmed to follow

routines functions of the organization.

Although the pyramid model remains useful, since it was first formulated a number of new

technologies have been developed and new categories of information systems have emerged, some

of which no longer fit easily into the original pyramid model. Every day new enterprise

applications are developed which are designed for the sole purpose of promoting the needs and

objectives of the organizations. Enterprise applications provide business-oriented tools supporting

electronic commerce, enterprise communication and collaboration, and web-enabled business

processes both within a networked enterprise and with its customers and business partners.

15

Basically these applications intend to model the business processes, i.e., how the entire

organization works. These tools work by displaying, manipulating and storing large amounts of

data and automating the business processes with these data.

Other types of Enterprise Applications (Systems):

 Enterprise Resource Planning (ERP)

 Customer Relationship Management (CRM)

 Knowledge Management Systems (KMS)

 Content Management System (CMS)

 Business Intelligence System (BIS)

 Enterprise Application Integration (EAI)

 Business Continuity Planning (BCP)

 Supply Chain Management (SCM)

3.4. System Development Methodologies

There are various information systems development approaches defined and designed which

are used/employed during development process of software, these approaches are also referred as

“Software Development Process Models” (e.g. Waterfall model, Agile model, RAD model, Spiral

model, Prototype model etc.). Each process model follows a particular life cycle in order to ensure

success in process of software development.

System Development Life Cycle

“Systems development life cycle (SDLC) is a series of phases to plan, analyze, design,

implement, and support an information system” – Gary B. Shelly and Harry J. Rosenblatt, 2012.

The systems development life cycle (SDLC) is the traditional systems development method used

by most organizations today. The systems development life cycle (SDLC) is central to the

development of an efficient information system. The SDLC is a structured framework that consists

of sequential processes by which information systems are developed. These processes, in turn,

consist of well-defined tasks. Some of these tasks are present in most projects, whereas others are

16

present in only certain types of projects. That is, large projects typically require all the tasks,

whereas smaller development projects may require only a subset of the tasks.

Software life cycle models describe phases of the software cycle and the order in which

those phases are executed. Each phase produces deliverables required by the next phase in the life

cycle. Requirements are translated into design. Code is produced according to the design which is

called development phase. After coding and development the testing verifies the deliverable of the

implementation phase against requirements.

Most authors of books related to information system design agree that there are following six

phases in every software development life cycle model:

 Requirement gathering and analysis

 Design

 Implementation or coding

 Testing

 Deployment

 Maintenance

1) Requirement gathering and analysis: Business requirements are gathered in this phase. This

phase is the main focus of the project managers and stake holders. Meetings with managers,

stakeholders and users are held in order to determine the requirements like; Who is going to use

the system? How will they use the system? What data should be input into the system? What data

should be output by the system? These are general questions that get answered during a

requirements gathering phase. After requirement gathering these requirements are analyzed for

their validity and the possibility of incorporating the requirements in the system to be development

is also studied.

Finally, a Requirement Specification document is created which serves the purpose of guideline

for the next phase of the model.

2) Design: In this phase the system and software design is prepared from the requirement

specifications which were studied in the first phase. System Design helps in specifying hardware

and system requirements and also helps in defining overall system architecture. The system design

specifications serve as input for the next phase of the model.

17

3) Implementation / Coding: On receiving system design documents, the work is divided in

modules/units and actual coding is started. Since, in this phase the code is produced so it is the

main focus for the developer. This is the longest phase of the software development life cycle.

4) Testing: After the code is developed it is tested against the requirements to make sure that the

product is actually solving the needs addressed and gathered during the requirements phase.

During this phase all types of functional testing like unit testing, integration testing, system testing,

acceptance testing are done as well as non-functional testing are also done.

5) Deployment: After successful testing the product is delivered / deployed to the customer for

their use.

As soon as the product is given to the customers they will first do the beta testing. If any changes

are required or if any bugs are caught, then they will report it to the engineering team. Once those

changes are made or the bugs are fixed then the final deployment will happen.

6) Maintenance: Once when the customers starts using the developed system then the actual

problems comes up and needs to be solved from time to time. This process where the care is taken

for the developed product is known as maintenance.

Waterfall Model

The Waterfall Model was first Process Model to be introduced. It is also referred to as a

linear-sequential life cycle model. It is very simple to understand and use. In a waterfall model,

each phase must be completed fully before the next phase can begin. This type of model is basically

used for the for the project which is small and there are no uncertain requirements. At the end of

each phase, a review takes place to determine if the project is on the right path and whether or not

to continue or discard the project. In this model the testing starts only after the development is

complete. In waterfall model phases do not overlap.

18

Figure 5: Waterfall Model

Advantages of waterfall model:

 This model is simple and easy to understand and use.

 It is easy to manage due to the rigidity of the model – each phase has specific deliverables

and a review process.

 In this model phases are processed and completed one at a time. Phases do not overlap.

 Waterfall model works well for smaller projects where requirements are very well

understood.

 Disadvantages of waterfall model:

 Once an application is in the testing stage, it is very difficult to go back and change

something that was not well-thought out in the concept stage.

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of changing.

19

Very less customer enter action is involved during the development of the product. Once the

product is ready then only it can be demoed to the end users. Once the product is developed and if

any failure occurs then the cost of fixing such issues are very high, because we need to update

everywhere from document till the logic.

Agile Methodology

Professors of Rutgers University Kenneth E. Kendall and Julie E. Kendall in their book

(“Systems Analysis and Design”, eighth edition, 2011) describe Agile methodology as follows –

“Agile software development (Agile) is a collection of software development methodologies that

promote adaptive planning, evolutionary development and delivery, continuous improvement, and

a time-boxed period of time to complete a body of work”. Software development is dynamic by

nature, and Agile encourages rapid and flexible response to change. Because adaptability is central

to its conceptual framework, teams using this approach are well-equipped to respond to changes

throughout the development cycle.

In addition to being a collection of methodologies, Agile software development also promotes a

different way of thinking or mindset about how to build things and evolve processes to deliver

continuous improvement. Agile facilitates information-sharing amongst teammates, where

everyone has a say on processes and practices and decisions are made together as a team.

Concepts of incremental and adaptive software development processes date back as early

as the 1950s, with growth and progress from a small vocal minority through the 1980s. It was not

until the 1990s, when an assortment of similar lightweight software development methods

emerged in reaction to waterfall-oriented methods, that Agile started to gain some traction. The

real watershed moment for the Agile movement was the publication of The Manifesto for Agile

Software Development in 2001 by a group of 17 software developers, who met to discuss the

collection of lightweight development methods, which is now referred to as Agile methods.

20

Figure 6: Agile Model

Principles. The authors of the Agile Manifesto also agreed upon the following 12 principles:

 Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

 Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of months, with

a preference to the shorter timescale.

 Business people and developers must work together daily throughout the project.

 Build projects around motivated individuals. Give them the environment and support they

need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within the

development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users

should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

21

 Simplicity — the art of maximizing the amount of work not done — is essential.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 At regular intervals, the team reflects on how to become more effective, then tunes and

adjusts its behavior accordingly.

Example: Google is working on project to come up with a competing product for MS Word, that

provides all the features provided by MS Word and any other features requested by the marketing

team. The final product needs to be ready in 10 months of time. Let us see how this project is

executed in Traditional and Agile methodologies.

In traditional Waterfall model:

 At a high level, the project teams would spend 15% of their time on investigation and

analysis (1.5 months)

 20% of their time on design (2 months)

 40% on coding(programming) (4 months) and unit testing

 20% on System and Integration testing (2 months).

 At the end of cycle, project may have 2 weeks of User Acceptance testing by mark-g teams.

 In this approach, the customer does not get to see the end product until the end of the

project, when it becomes too late to make significant changes.

Figure 7 shows how these activities align with project schedule in traditional software

development.

Figure 7: Development Cycle of Google’s project in Waterfall model.

22

With Agile development methodology:

 In the Agile methodology, each project is broken up into several ‘Iterations’.

 All Iterations should be of the same time duration (between 2 to 8 weeks).

 At the end of each iteration, a working product should be delivered.

 Rather than spending 1.5 months on requirements gathering, in Agile software

development, the team will decide the basic core features that are required in the product

and decide which of these features can be developed in the first iteration.

 Any remaining features that cannot be delivered in the first iteration will be taken up in the

next iteration or subsequent iterations, based on priority.

 At the end of the first iterations, the team will deliver a working software with the features

that were finalized for that iteration.

 There will be 10 iterations and at the end of each iteration the customer is delivered a

working software that is incrementally enhanced and updated with the features that were

shortlisted for that iteration.

The iteration cycle of an Agile project is shown in the image below.

Figure 8: Development Cycle of Google’s project in Agile model.

23

This approach allows the customer to interact and work with functioning software at the end of

each iteration and provide feedback on it. This approach allows teams to take up changes more

easily and make course corrections if needed. In the Agile approach, software is developed and

released incrementally in the iterations.

4. Object-Oriented Methodology

An object-oriented approach to systems development combines data and methods into single

entities called objects (Hoffer et al, 1999). The objects collaborate with each other through the

sending of messages to request services, for example a request for a report (Rowley, 1998). Object-

oriented methods, as argued by (Rowley, 1998) include, Object-Oriented Analysis (OOA) and

Object-Oriented Analysis and Design (OOAD). In both methods, objects and classes are defined

at the beginning, followed by a definition of relationships to put objects and class together, hence

forming a system-wide view. Object detail is added into the system by giving specifications on

attributes, methods and the object life history (Rowley ,1998).

Object-oriented development is based on a fundamentally different view of computer systems

than that found in traditional SDLC development approaches. Traditional approaches provide

specific step-by-step instructions in the form of computer programs, in which programmers must

specify every procedural detail. These programs usually result in a system that performs the

original task but may not be suited for handling other tasks, even when the other tasks involve the

same real-world entities. For example, a billing system will handle billing but probably will not

be adaptable to handle mailings for the marketing department or generate leads for the sales force,

even though the billing, marketing, and sales functions all use similar data such as customer names,

addresses, and current and past purchases. An object-oriented (OO) system begins not with the

task to be performed, but with the aspects of the real world that must be modeled to perform that

task.

Professor Alan Dennis (Indiana University), Barbara Wixom (University of Virginia) and Roberta

M. Roth (University of Northern Iowa) in their book (“System Analysis and Design”, 2012)

describe object-oriented model as follows: “The field of systems design now incorporates object-

oriented concepts and techniques, by which a system is viewed as a collection of self-contained

objects that include both data and processes. Objects can be built as individual pieces and then

put together to form a system, leading to modular, reusable project components”. In 1997, the

24

Unified Modeling Language (UML) was accepted as the standard language for object

development.

The object-oriented approach views a system as a collection of self-contained objects,

including both data and processes. Systems analysis and design methodologies are either data-

centric or process-centric. Until the mid-1980s, developers had to keep the data and processes

separate in order to build systems that could run on the mainframe computers of that era. Due to

the increase in processor power and the decrease in processor cost, object-oriented approaches

became feasible. Consequently, developers focused on building systems more efficiently by

enabling the analyst to work with a system’s data and processes simultaneously as objects. These

objects can be built as individual pieces and then put together to form a system. The beauty of

objects is that they can be reused over and over in many different systems and changed without

affecting other system components. Although some authors feel that the move to objects will

radically change the field of systems analysis and design and the SDLC, the incorporation of

objects as an evolving process in which object-oriented techniques are gradually integrated into

the mainstream SDLC.

4.1. Classes and Objects. Inheritance, Polymorphism and Encapsulation

A class is the general template that is used to define and create specific instances, or objects.

Every object is associated with a class. For example, all of the objects that capture information

about patients could fall into a class called Patient, because there are attributes (e.g., names,

addresses, and birth dates) and methods (e.g., insert new instances, maintain information, and

delete entries) that all patients share. An object is an instantiation of a class. In other words, an

object is a person, place, event, or thing about which we want to capture information. If we were

building a sales system for an RV dealer, classes might include vehicle, customer, and offer. The

specific customers like Jim Maloney, Mary Wilson, and Theresa Marks are considered instances,

or objects, of the customer class. Each object has attributes that describe information about the

object, such as a customer’s name, address, e-mail, and phone number. The state of an object is

defined by the value of its attributes and its relationships with other objects at a particular point in

time. For example, a vehicle might have a state of “new” or “pre-owned.”

25

Figure 9: Classes and Objects

One of the more confusing aspects of object-oriented systems development is the fact that

in most object-oriented programming languages, both classes and instances of classes can have

attributes and methods. Class attributes and methods tend to be used to model attributes (or

methods) that deal with issues related to all instances of the class. For example, to create a new

customer object, a message is sent to the customer class to create a new instance of itself. However,

from a systems analysis and design point of view, we will focus primarily on attributes and

methods of objects, and not of classes.

Methods and Messages

Methods implement an object’s behavior. A method is nothing more than an action that an

object can perform. Methods are very much like a function or procedure in a traditional

programming language such as C, COBOL, or Pascal. Messages are information sent to objects to

trigger methods. A message is essentially a function or procedure call from one object to another

object. For example, if a customer is new to the organization, the system will send an insert

message to the customer object. The customer object will receive a message (instruction) and do

what it needs to do to insert the new customer into the system (execute its method). (Figure 10.)

26

Figure 10: Messages and methods.

Encapsulation and Information Hiding

The ideas of encapsulation and information hiding are interrelated in object-oriented

systems. Neither of the concepts is new, however. Encapsulation is simply the combining of

process and data into a single entity. Object-oriented approaches combine process and data into

holistic entities (objects). Information hiding was first promoted in structured systems

development. The principle of information hiding suggests that only the information required to

use a software module be published to the user of the module. Typically, this implies that the

information required to be passed to the module and the information returned from the module are

published. Exactly how the module implements the required functionality is not relevant. It doesn’t

matter how the object performs its functions, so long as the functions occur. In object-oriented

systems, combining encapsulation with the information hiding principle suggests that the

information hiding principle be applied to objects instead of merely applying it to functions or

processes. As such, objects are treated like black boxes.

The fact that an object can be used by calling methods is the key to reusability, because it shields

the internal workings of the object from changes in the outside system and it keeps the system

from being affected when changes are made to an object. In Figure 10, it can be noticed how a

message (insert new customer) is sent to an object, yet the internal algorithms needed to respond

to the message are hidden from other parts of the system. The only information that an object needs

27

to know is the set of operations, or methods, that other objects can perform and what messages

need to be sent to trigger them.

Inheritance

Inheritance, as an information systems development characteristic, was proposed in data

modeling in the late 1970s and early 1980s. The data modeling literature suggests using inheritance

to identify higher level, or more general, classes of objects.

Common sets of attributes and methods can be organized into superclasses. Typically, classes are

arranged in a hierarchy whereby the superclasses, or general classes, are at the top, and the

subclasses, or specific classes, are at the bottom.

In Figure 11, person is a superclass to the classes employee and customer. Employee, in turn, is a

superclass to salesperson and shop mechanic. Notice how a class (e.g., employee) can serve as a

superclass and a subclass concurrently. The relationship between the class and its superclass is

known as the A-Kind-Of (AKO) relationship. For example, in Figure 12, a salesperson is A-Kind-

Of employee, which is A-Kind-Of person.

Subclasses inherit the attributes and methods from the superclass above them. That is, each

subclass contains attributes and methods from its parent superclass. For example, Figure 11 shows

that both employee and customer are subclasses of person and therefore will inherit the attributes

and methods of the person class. Inheritance makes it simpler to define classes. Instead of repeating

the attributes and methods in the employee and customer classes separately, the attributes and

methods that are common to both are placed in the person class and inherited by those classes

below it.

28

Figure 11: Class hierarchy.

Most classes throughout a hierarchy will lead to instances; any class that has instances is called a

concrete class. For example, if Mary Wilson and Jim Maloney were instances of the customer

class, customer would be considered a concrete class. Some classes do not produce instances,

because they are used merely as templates for other, more specific classes (especially those classes

located high up in a hierarchy). They are abstract classes. Person would be an example of an

abstract class. Instead of creating objects from person, we would create instances representing the

more specific classes of employee and customer, both types of person. (Figure 12)

29

Figure 12: Inheritance.

Polymorphism and Dynamic Binding

Polymorphism means that the same message can be interpreted differently by different

classes of objects. For example, inserting a patient means something different than inserting an

appointment. As such, different pieces of information need to be collected and stored. Luckily, we

do not have to be concerned with how something is done when using objects. Message can simply

be sent to an object, and that object will be responsible for interpreting the message appropriately.

For example, if the message “Draw yourself ” is sent to a square object, a circle object, and a

triangle object, the results would be very different, even though the message is the same. Figure

13 shows how each object responds appropriately (and differently), even message is identical.

Figure 13: Polymorphism and Encapsulation.

30

Polymorphism is made possible through dynamic binding. Dynamic, or late, binding is a

technique that delays identifying the type of object until run-time. As such, the specific method

that is actually called is not chosen by the object-oriented system until the system is running. This

is in contrast to static binding. In a statically bound system, the type of object would be determined

at compile time. Therefore, the developer would have to choose which method should be called,

instead of allowing the system to do it. This is why in most traditional programming languages

you find complicated decision logic based on the different types of objects in a system.

For example, in a traditional programming language, instead of sending the message “Draw

yourself ” to the different types of graphical objects mentioned earlier, we would have to write

decision logic by using a case statement or a set of “if ” statements to determine what kind of

graphical object we wanted to draw, and you would have to name each draw function differently

(e.g., draw-square, draw-circle, or draw-triangle). This obviously makes the system much more

complicated and more difficult to understand.

Advantages of the object-oriented approach. The OO approach to software development offers

many advantages:

 It reduces the complexity of systems development and leads to systems that are easier and

quicker to build and maintain, because each object is relatively small and self-contained.

 It improves programmers’ productivity and quality. Once an object has been defined,

implemented, and tested, it can be reused in other systems.

 Systems developed with the OO approach are more flexible. These systems can be

modified and enhanced easily, by changing some types of objects or by adding new types.

 The OO approach allows the systems analyst to think at the level of the real-world systems

(as users do) and not at the level of the programming language. The basic operations of an

enterprise change much more slowly than the information needs of specific groups or

individuals. Therefore, software based on generic models (which the OO approach is) will

have a longer life span than programs written to solve specific, immediate problems.

 The OO approach is also ideal for developing Web applications.

 The OO approach depicts the various elements of an information system in user terms (i.e.,

business or real-world terms), and therefore, the users have a better understanding of what

the new system does and how it meets its objectives.

31

The OO approach does have disadvantages. OO systems, especially those written in Java,

generally run more slowly than those developed in other programming languages. Also, many

programmers have little skill and experience with OO languages, necessitating retraining.

4.2. Unified Modelling Language (UML)

Professors of Rutgers University – Kenneth E. Kendall and Julie E. Kendall in their book

(“System Analysis and Design”, eight edition, 2006) give definition to UML as follows – “UML

provides a standardized set of tools to document the analysis and design of a software system. The

UML toolset includes diagrams that allow people to visualize the construction of an object-

oriented system, similar to the way a set of blueprints allows people to visualize the construction

of a building”. Whether work is done independently or with a large systems development team,

the documentation that is created with UML provides an effective means of communication

between the development team and the business team on a project.

UML consists of things, relationships, and diagrams, as illustrated in Table 1. The first

components, or primary elements, of UML are called things. It may be prefered another word,

such as object, but in UML they are called things. Structural things are most common. Structural

things are classes, interfaces, use cases, and many other elements that provide a way to create

models. Structural things allow the user to describe relationships. Behavioral things describe how

things work. Examples of behavioral things are interactions and state machines. Group things are

used to define boundaries. An example of a group thing is a package. Finally, there are

annotational things, so that notes can be added to the diagrams.

Relationships are the glue that holds the things together. It is useful to think of relationships

in two ways. Structural relationships are used to tie the things together in the structural diagrams.

Structural relationships include dependencies, aggregations, associations, and generalizations.

Structural relationships show inheritance, for example. Behavioral relationships are used in the

behavioral diagrams. The four basic types of behavioral relationships are communicates, includes,

extends, and generalizes. There are two main types of diagrams in UML: structural diagrams and

behavioral diagrams. Structural diagrams are used, for example, to describe the relationships

between classes. They include class diagrams, object diagrams, component diagrams, and

deployment diagrams. Behavioral diagrams, on the other hand, can be used to describe the

interaction between people (called actors in UML) and the thing that is referred to as a use case,

32

or how the actors use the system. Behavioral diagrams include use case diagrams, sequence

diagrams, communication diagrams, statechart diagrams, and activity diagrams.

Table 1: UML and its components: Things, Relationships, and Diagrams.

33

The five most commonly used UML diagrams are:

1. A use case diagram, describing how the system is used.

2. An activity diagram, illustrating the overall flow of activities. Each use case may create one

activity diagram.

3. Sequence diagrams, showing the sequence of activities and class relationships. Each use case

may create one or more sequence diagrams. An alternative to a sequence diagram is a

communication diagram, which contains the same information but emphasizes communication

instead of timing.

4. Class diagrams, showing the classes and relationships. Sequence diagrams are used (along with

CRC cards) to determine classes. An offshoot of a class diagram is a gen/spec diagram (which

stands for generalization/specialization).

5. Statechart (transition) diagrams, showing the state transitions. Each class may create a

statechart diagram, which is useful for determining class methods.

Use Case Diagram

Use-case modeling is applied to analyze the functional requirements of a system. Valacich,

Joseph S., Joey F. George, Jeffrey A. Hoffer in their book “Essentials of systems analysis and

design, 5-th edition” describe Use Case modelling as follows – “Use-case modeling is done in the

early stages of system development to help developers understand the functional requirements of

the system without worrying about how those requirements will be implemented.” The process is

inherently iterative; developers need to involve the users in discussions throughout the model

development process and finally come to an agreement on the requirements specification.

A use-case model consists of actors and use cases. An actor is an external entity that interacts with

the system. It is someone or something that exchanges information with the system. A use case

represents a sequence of related actions initiated by an actor; it is a specific way of using the

system. An actor represents a role that a user can play. The actor’s name should indicate that role.

Actors helps to identify the use cases they carry out.

The developer sits down with the intended users of the system and makes a thorough analysis of

what functions they desire from the system. These functions are represented as use cases. For

34

example, a university registration system has a use case for class registration and another for

student billing. These use cases, then, represent the typical interactions the system has with its

users.

In UML, a use-case model is depicted diagrammatically, as in Figure 14. This use-case

diagram is for a university registration system, which is shown as a box. Outside the box are four

actors—Student, Registration clerk, Instructor, and Bursar’s office—that interact with the system

(shown by the lines touching the actors). An actor is shown using a stick figure with its name

below. Inside the box are four use cases—Class registration, Registration for special class, Prereq

courses not completed, and Student billing—which are shown as ellipses with their names inside.

These use cases are performed by the actors outside the system. A use case is always initiated by

an actor. For example, Student billing is initiated by the Bursar’s office. A use case can interact

with actors other than the one that initiated it. The Student billing use case, although initiated by

the Bursar’s office, interacts with the Students by mailing them tuition invoices. Another use case,

Class registration, is carried out by two actors, Student and Registration clerk. This use case

performs a series of related actions aimed at registering a student for a class. The numbers on each

end of the interaction lines indicate the number of instances of the use case with which the actor

is associated. For example, the Bursar’s office causes many (*) Student billing use-case instances

to occur, each one for exactly one student.

A use case represents a complete functionality. It should not be represented an individual

action that is part of an overall function as a use case. For example, although submitting a

registration form and paying tuition are two actions performed by users (students) in the university

registration system, we do not show them as use cases, because they do not specify a complete

course of events; each of these actions is executed only as part of an overall function or use case.

We can think of “Submit registration form” as one of the actions of the Class registration use case,

and “Pay tuition” as one of the actions of the Student billing use case.

A use case may participate in relationships with other use cases. An extends relationship, shown

as a line with a hollow triangle pointing toward the extended use case and labeled with the

“<<extends>>” symbol, extends a use case by adding new behaviors or actions. In Figure 14, for

example, the Registration for special class use case extends the Class registration use case by

capturing the additional actions that need to be performed in registering a student for a special

class. Registering for a special class requires prior permission of the instructor, in addition to the

other steps carried out for a regular registration. We may think of Class registration as the basic

35

course, which is always performed—independent of whether the extension is performed or not—

and Registration for special class as an alternative course, which is performed only under special

circumstances. Another example of an extends relationship is that between the Prereq courses not

completed and Class registration use cases. The former extends the latter in situations where a

student registering for a class has not taken the prerequisite courses.

Figure 14: Use Case Use-case diagram for a university registration system.

Figure 15 shows a use-case diagram for Hamburger. The Customer actor initiates the Order

food use case; the other actor involved is the Service Person. A specific scenario would represent

a customer placing an order with a service person. Another kind of relationship is included, which

arises when one use case references another use case. An include relationship is also shown

diagrammatically as a dashed line with a hollow arrowhead pointing toward the use case that is

being used; the line is labeled with the “<<include>>” symbol. In Figure 15, for example, the

include relationship between the Reorder supplies and Track sales and inventory data use cases

implies that the former uses the latter while executing. Simply put, when a manager reorders

supplies, the sales and inventory data are tracked. The same data are also tracked when

36

management reports are produced, so there is another include relationship between the Produce

management reports and Track sales and inventory data use cases.

The Track sales and inventory data is a generalized use case, representing the common behavior

among the specialized use cases, Reorder supplies and Produce management reports. When

Reorder supplies or Produce management reports is performed, the entire Track sales and

inventory data is used.

Figure 15: Use Case Use-case diagram for Hamburger system.

37

Class Diagram

A class diagram shows the object classes and relationships involved in a use case. A class

diagram is a logical model, which evolves into a physical model and finally becomes a functioning

information system. In structured analysis, entities, data stores, and processes are transformed into

data structures and program code. Similarly, class diagrams evolve into code modules, data

objects, and other system components. In a class diagram, each class appears as a rectangle, with

the class name at the top, followed by the class’s attributes and methods. Lines show relationships

between classes and have labels identifying the action that relates the two classes. To create a class

diagram, we review the use case and identify the classes that participate in the underlying business

process.

The class diagram also includes a concept called cardinality, which describes how instances of

one class relate to instances of another class. For example, an employee might have earned no

vacation days or one vacation day or many vacation days. Similarly, an employee might have no

spouse or one spouse. Figure 16 shows various UML notations and cardinality examples. In Figure

16, the first column shows a UML notation symbol that identifies the relationship shown in the

second column. The third column provides a typical example of the relationship, which is

described in the last column. In the first row of the figure, the UML notation 0..* identifies a zero

or many relation. The example is that an employee can have no payroll deductions or many

deductions.

Figure 16: Examples of UML notations that indicate the nature of the relationship between

instances of one class and instances of another class.

38

Figure 17 shows a class diagram for a sales order use case. It can be noticed that the sales office

has one sales manager who can have anywhere from zero to many sales reps. Each sales rep can

have anywhere from zero to many customers, but each customer has only one sales rep.

Figure 17: Class diagram for a sales order use case (attributes, methods omitted for clarity)

Sequence diagram

A sequence diagram is a dynamic model of a use case, showing the interaction among

classes during a specified time period. A sequence diagram graphically documents the use case by

showing the classes, the messages, and the timing of the messages. Sequence diagrams include

symbols that represent classes, lifelines, messages, and focuses. These symbols are shown in

Figure 18.

39

Figure 18: A sequence diagram with two classes. X indicates the end of the CLASS 2

lifeline. Each message is represented by a line with a label that describes the message, and

that each class has a focus that shows the period when messages are sent or received.

Classes. A class is identified by a rectangle with the name inside. Classes that send or receive

messages are shown at the top of the sequence diagram.

Lifelines. A lifeline is identified by a dashed line. The lifeline represents the time during which the

object above it is able to interact with the other objects in the use case. An X marks the end of the

lifeline.

Messages. A message is identified by a line showing direction that runs between two objects. The

label shows the name of the message and can include additional information about the contents.

Focuses. A focus is identified by a narrow vertical shape that covers the lifeline. The focus

indicates when an object sends or receives a message.

Figure 19 is a simplified example of a sequence diagram for a use case that admits a student to a

university. On the left is the newStudentUserInterface class that is used to obtain student

information. The initialize() message is sent to the Student class, which creates a new student

record and returns the student number. To simplify the diagram, the parameters that are sent to the

40

Student class have been omitted, but would include the student name, address, and so on. The next

activity is to send a selectDorm message to the Dorm class. This message would include dorm

selection information, such as a health dorm or other student requirements. The Dorm class returns

the dorm name and room number. The third activity is to send a selectProgram message to the

Program class, including the program name and other course of study information. The program

advisor name is returned to the newStudentUserInterface class. A studentComplete message is sent

to the Student class with the dorm, advisor name, and other information.

Figure 19: A sequence diagram for student admission. Sequence diagrams emphasize the

time ordering of messages.

Sequence diagrams can be used to translate the use case scenario into a visual tool for systems

analysis. The initial sequence diagram used in systems analysis shows the actors and classes in the

system and the interactions between them for a specific process. A sequence diagram emphasizes

the time ordering (sequence) of messages. During the systems design phase, the sequence diagrams

are refined to derive the methods and interactions between classes. Messages from one class are

used to identify class relationships. The actors in the earlier sequence diagrams are translated to

interfaces, and class interactions are translated to class methods. Class methods used to create

41

instances of other classes and to perform other internal system functions become apparent in the

system design using sequence diagrams.

State Transition Diagrams

A state transition diagram shows how an object changes from one state to another,

depending on events that affect the object. All possible states must be documented in the state

transition diagram, as shown in Figure 20. A bank account, for example, could be opened as a

NEW account, change to an ACTIVE or EXISTING account, and eventually become a CLOSED

or FORMER account. Another possible state for a bank account could be FROZEN, if the

account’s assets are legally attached. In a state transition diagram, the states appear as rounded

rectangles with the state names inside. The small circle to the left is the initial state, or the point

where the object first interacts with the system. Reading from left to right, the lines show direction

and describe the action or event that causes a transition from one state to another. The circle at the

right with a hollow border is the final state.

Figure 20: An example of a state transition diagram for a bank account.

Activity Diagrams

An activity diagram resembles a horizontal flowchart that shows the actions and events as

they occur. Activity diagrams show the order in which the actions take place and identify the

outcomes. Figure 21 shows an activity diagram for a cash withdrawal at an ATM machine. It can

be seen that the customer initiates the activity by inserting an ATM card and requesting cash.

Activity diagrams also can display multiple use cases in the form of a grid, where classes are

shown as vertical bars and actions appear as horizontal arrows.

42

Figure 21: An activity diagram shows the actions and events involved in withdrawing cash

from an ATM machine.

43

Choosing which systems development method to use

The differences among the three system design and development approaches described earlier are

not as big as they seem at the outset. The SDLC and object-oriented approaches both require

extensive planning and diagramming. The agile approach and the object-oriented approach both

allow subsystems to be built one at a time until the entire system is complete. The agile and SDLC

approaches are both concerned about the way data logically moves through the system. So given

a choice to develop a system using an SDLC approach, an agile approach, or an object-oriented

approach, which would we choose? Table 2 provides a set of guidelines to help you choose which

method to use when developing your next system (Professor Kenneth E. Kendall, “System

Analysis and Design”, eighth edition, 2006).

Table 2: How to decide which development method to use.

44

5. Travel Expenses Management

The typical enterprise spends thousands if not millions annually on non-compensation related

corporate expenses. Whether it is a company with pilots traveling around the world or a

Sales/Marketing Department attending events, the cost of travel is almost unavoidable. Therefore,

for most companies, travel related expenses remain a significant area of spend –second

only to payroll. This is expected to dramatically increase in the coming years due to

globalization and increased cost of air travel as well as accommodations. As economic

conditions tighten, companies worldwide are increasingly paying greater attention to their

expense management systems. To keep up and maintain tight control with their day-to-day

expenses, companies must think creatively while also improving financial reporting to

meet regulatory and internal audit requirements. The key to succeeding in this game is by

utilizing new technologies and fostering best practices that help companies take their expense

management strategies to a new level. The availability of real-time data in reference to expense

management improves overall performance for companies. According to Aberdeen Group’s

released report, “Travel Expense Management: Leveraging Data to Drive Performance,” Best-

In-Class companies are focusing on managing their expense related processes by creatively

blending technology and strategy. Expense management is a vital component of a finance

department and comprises a large portion of a companies annual budget, with the average

organization spending between 10-12% of their annual budget on expenses related to travel and

entertainment. With the large corporate expense, the speed and accuracy of expense reporting and

oversight can have a direct impact on the efficiency of a company and affect its bottom line. In an

annual study conducted by the Aberdeen Group, top companies in a variety of industries were

interviewed and executives were asked to list their top financial pressures. Nearly 50% cited the

need to improve compliance to company policies 41% said they wanted to improve business

reporting and analytics 38% stated they needed to reduce the cost of processing expense reports.

Within the same report, the perceived importance of expense management increased by 39%

between 2014 and 2015. The reality is that expense management is a significant component of a

successful 21st century business and modern technology can now make it a more affordable, to

manage component.

45

5.1. Travel Expenses Structure

Travel expenses are expenditures that an employee makes while traveling on company

business. Company business can include conferences, exhibitions, business meetings, client and

customer meetings, job fairs, training sessions, and sales calls, for example. Expenses can include

lodging, personal car mileage reimbursement, flights, ground transportation, tips to bellhops,

meals, tips to waiters, room service, and other incidental expenses an employee might experience

while on the road. Expenditures that an organization will reimburse are found in the company’s

business travel policy. Every worker should become familiar with his/her company’s policy

because some extra expenses can be covered on extended trips. Client entertainment at

conferences, on sales calls, and on site visits is another reimbursable expense, but knowing one's

company’s policies helps not to exceed the limits that are placed on entertainment costs.

The figure below shows that Travel Expense management involves Policy, Processes and System.

Figure 22: Travel Expense Management involves policy, processes and a system

46

Typically, organizations pay employee travel expenses in these three ways.

 Company credit cards are issued to employees who must travel frequently for business.

Employees may charge most of the expenses they incur on a business trip to the company credit

card. For reimbursement of incidentals such as tips and fast food, employees will need to fill out

an expense report. Charge cards are convenient for employees as they do not have to come up cash

to pay for business expenses prior to reimbursement. Employee should become knowledgeable

about company's policies, though; he/she may still need to turn in receipts and other supporting

documentation.

 Cash: Organizations without employee company credit cards require employees to fill out an

expense reimbursement report for each expenditure while the employee is on the road. They

generally require receipts and some level of justification for each expense.

 Only rarely would an organization ask employees to pay for the big ticket items such as air fare

and seek reimbursement later. A company purchase order or company credit card pay for large

expenses up front. But employees are often required to pay cash out-of-pocket for day-to-day travel

expenses which are later reimbursed.

 Per diem: A per diem is a daily allowance of a certain amount of money that an employee is

given to cover all expenses. The employee is responsible for making sound travel expense choices

within the parameters of the amount of money that he or she is allotted daily. Some companies pay

directly for transportation and housing, but give traveling employees a per diem for all other

expenses including meals and ground transportation. Employees have been known to under spend

on expenses to keep the extra cash from the per diem. Companies generally allow this.

Employees who travel for business are advised to stay up-to-date on company travel policies and

costs covered for reimbursement. Expenses that fall outside of the policies are generally not

reimbursed or covered. Receipts are required by most companies except for those that pay a per

diem. Company also likely has a form that they expect employees to use for turning in travel

expenses. To stay on top of reimbursable expenses, employees are often given a deadline by which

they need to file an expense report and turn in applicable receipts. The finance department will

have guidelines that help it stay current.

47

In the following figure, we can see how large eastern European countries’ travel expenses are.

(Source: “Hermes Management Consulting: Corporate Travel Management in Western Europe,

opportunities and challenges”)

Figure 23: Total Western Europe Business Travel spend by country (2014)

5.2. Life-cycle of Travel Expenses Management

In general, companies view travel expense management as a compilation of disparate and

distinct processes that, when brought together, provides a medium for employees to submit

expenses while adhering to policies and meeting compliance. While these processes and

procedures vary from one company to another, the steps are essentially the same. To better

understand how the various elements of this lifecycle interact with each other, see Figure .

The travel & expense management lifecycle starts out with Pre-Trip Objectives. This includes

defining the scope of the trip and quantifying it against measurable business objectives. Once the

stakeholders have cleared this phase, Travel Planning follows. Here, reservations with flights,

hotels, rental cars are made and submitted to the system. The middle step is Travel Authorization.

This allows the user to proceed with the travel after it has been approved. Here, the budgeted

48

expenses for the trip are registered in the system. This information is used at a later point to

compare against actual trip costs –which is a valuable metric for corporations looking to get a

better handle on spending. After clearing the initial steps, the trip is approved. Once the trip has

been completed, incurred expenses are entered into an expense report during the Expense Report

Creation phase. This report is usually trip specific. The traveler submits the report to the

system per the Expense Report Submission & Approval step. The report is reviewed by the

manager and approved if there is no missing information and the report fully complies with

company policies. Once the report is approved, reimbursements are initiated by the system and

submitted per the Expense Reimbursement phase. At the same time, trip related transactions are

entered into the company’s accounting or ERP system. Finally, Travel Expense Data is exchanged

with the system. Here, total budgeted costs for the trip are compared to actual trip costs –

including incurred expense trend, preferred hotels, partner discounts, maximum daily

allowances for meals, unexpected expenses, financial conversion fees, entertainment expenses

and other parameters.

Figure 24: Full life cycle of Travel Expense Management

49

5.3. Travel Expenses Management Automation (TEMA)

The rising cost of business travel is one of the leading reasons that companies are

scrutinizing and more closely managing employee business and travel expenses. According to the

Global Business Travel Association (GBTA) Foundation, the research arm of the GBTA, their

Industry Pulse: Business Travel Buyers Sentiment survey indicates that expected increases in air

and hotel rates are major contributors to escalating corporate travel costs. Companies need to

manage these expenses against internal company policies and external government compliance

and regulations. Employee business expense data can reveal critical metrics that allow

organizations visibility into their employee's business expenses to take proactive steps to reduce

overall spend through improved communication, policies, compliance and even vendor

negotiations. Travel Expense Management Automation (TEMA) is critical component in an

organization's business strategy. While controlling costs, increasing employee satisfaction and

improving bottom line performance, TEMA enables companies to streamline the processes

involved in managing employee business and travel expenses. TEMA also tracks compliance and

decrease the length of time required for each step in managing the expense report process. Since

employee business and travel expenses are among the largest controllable costs for most

organizations, opportunities for savings can be significant. Simply by automating the expense

reporting process with either an on-premise or Software-as-a-Service (SaaS) deployment, an

organization can expect to recognize a significant cost savings from reduced labor costs related to

the processing of expense reports. Expense management automation dramatically cuts the cost of

processing expense reports while increasing employee satisfaction by shortening reimbursement

cycles.

5.4. Goal and Benefits of Automation of Travel Expense Management

Goal of TEMA is clear - to improve travel expense management, to reduce operational costs.

There are numerous motives for organizations to deploy an automated solution for managing their

employee business and travel expenses, including:

 Spend Control

 Ensure Compliance

 Fraud Detection

 Cost Reduction

50

 Vendor Analysis and Negotiations

 Operational Savings

 Traveler Satisfaction

Though many leading enterprises have moved to automate their expense management, there are

still corporations that continue to manage their expense claims either via a paper, a spreadsheet

based system, an outdated and costly legacy system or one developed in-house.

Many of these businesses often feel trapped into continuing to use their current system because

they are worried about the cost to change; whether this is the cost of new software, the cost of the

implementation project, or the cost of deploying resources to manage the project. However, when

between 7% to 10% of an average company’s budget relates to travel and entertainment expenses

(Aberdeen Group report, 2013), badly managed expense management processes can impact on the

enterprise’s financial performance.

Some challenges in the manual expense reporting system:

 Manual & error prone process. Expense reports have to be manually filled out and sent for

approval. Manual work is required to move the expense report through the approval

process. Accounting staff are required to manually enter the details of expenses and

receipts into the company’s finance system in order to reimburse employees.

 Paper based process. Expenses, receipts, reimbursement checks are all paper based. All of

them have to be stored and archived periodically which is a tedious task and adds to storage

and archival costs.

 Lack of visibility in employee spending. Air, hotel, car and other service providers are

known only after submitting the expense report. No prior negotiations are possible with

preferred suppliers to achieve the best services and discounts available.

 Inability to impose travel policies. As the expense report process happens after the

expenses are incurred, there is no possibility of imposing travel policies and spend limits

on expenses prior to travel.

 High processing costs. The total cost of processing an expense report includes the cost of

paper, resources, storage, archival, approval, manual entry, and out of policy claims.

 Longer reimbursement cycle times. Claims and receipts are manually verified and then

entered into financial system. The expense report is generated and followed by

reimbursement. This manual effort results in wasted time. Even today, according to

51

Aberdeen Group report, more than 43% of businesses follow the traditional manual process

to manage their expenses. They do not find a need to automate their existing process.

Figure 25: Manual Travel Expense Management

According to the PayStream (TEM 2009, Adoption Survey Report), it was found that the average

cost of manually processing an expense report is $28.21 compared to $6.19 for those using an end-

to-end automated expense management solution.

Businesses use various solutions for automating each of these areas. To reduce processing

costs and to overcome challenges in the manual system, companies are encouraged to move

towards using an automated solution for managing the entire travel expense management process.

Automation improves compliance to corporate travel policies by 31%, lowers processing costs by

80%, and reduces the reimbursement cycle time from weeks to days. It also increases visibility

and significantly increases ROI. Automation also eliminates the manual tasks, paperwork, time

delays, and reduces the risk of fraud.

Here are top 10 reasons why using automation can improve expense management process.

 Drive Cost Efficiency

 Ensure Internal and Regulatory Compliance

 Minimize Fraud

52

 Integrate Travel into company's Expense

 Stay Flexible and Scalable with Cloud-based Solutions

 Support Business Strategy

 Managing Risk Effectively

 Reinforce Company Policy to Manage Behavior

 Expense on the Move

According to research by PayStream Advisors, many organizations have seen improved travel

policy enforcement, lower processing costs, increased visibility, and improved employee

satisfaction and reimbursement time, see Figure 26.

Figure 26: What are biggest benefits you have achieved by automating your T&E process?

53

5.5. Current situation of Travel Expense Management Automation

According to the Expense Management Trends Report survey conducted in December 2015,

over one-third of organizations are using a manual process to manage their T&E costs. A manual

process involves the use of electronic spreadsheets, paper reports and receipts, and postal mail.

Manual expense reporting requires extensive time to create, approve, reconcile, process, and

reimburse the expense reports, along with cumbersome manual data entry across multiple systems

to capture all relevant information. Errors or violations can cause delays throughout the process—

and if no errors or violations are found, erroneous payments may be made. A manual process also

does not include time and costs associated with any audit investigations related to expense

management. PayStream Advisors surveyed over 200 individuals employed in many different

industries, compiling data reflecting current attitudes towards and usage of TEM automation

software. Among the majority of the surveyed organizations, T&E processes are still mostly

manual, and these organizations experience difficulties stemming from a lack of automation.

However, research also indicates that organizations desire improved employee control and cost

reduction, and these needs are driving AP departments towards TEM solutions.

PayStream’s research shows in 2014, the average cost of a manually processed expense

report was $23.12. In 2015, the average cost is $26.60—quite high, compared to the average cost

of $6.85 per report with a fully automated TEM solution. These costs place heavy burdens on

organizations processing hundreds of thousands of expense reports each year.

Table 3: What is your average cost to process a single expense report?

High processing costs go hand-in-hand with manual T&E operations. Research shows (PayStream

Advisors) that 45 percent of organizations have no TEM software, see Figure 27. However, an

impressive 50 percent use at least some T&E automation. Figure 27 also shows a large gap in

automation between SMEs and large corporations. Of the small organizations surveyed, 63 percent

reported fully manual T&E processes, and 25 percent have in-house automation. In contrast, only

9 percent of larger enterprises operate manually, and 81 percent have some in-house automation.

54

Figure 27: Which of the following statements best describes the extent of automation in

your TEM process?

Organizations that have not adopted a TEM solution demonstrate reluctance towards change—

many believe that current processes work, see Figure 28. While this may be true, it does not mean

that current processes work well.

55

Figure 28: What is the reason your organization has not automated the TEM process?

According to figure 28, which was result of research by PayStream Advisors, 36% companies

think current processes work. As you can see, 15% companies don’t implement TEMA because

of their scale. And considerably amount of companies – 13 % of them think there is no RIO (return

on investment) in case they implement automated TEM. Lack of sponsorship is also one of the

reasons they don’t automate TEM. 11% companies can’t simply afford to buy those technologies

(software, etc). Only 4 % of them say they are using some TEM solution.

As you can see, really large amount of companies don’t automate their travel expense management

because simply they can’t afford.

Current market. As the travel and expense management applications market began to

expand in 2010 with renewed corporate spending on business travel and services requisitioning, a

number of trends started to manifest themselves. The ubiquity of smart phones has meant corporate

travelers placing greater emphasis on mobile solutions to help them manage their travel plans and

56

expense reporting. Concur’s recent purchase of TripIt, which leverages mobile devices to organize

and share travel information for travelers, underscores the shift of delivering travel and expense

management experiences from the desktop to smart phones.

For more than a decade travel and expense management applications have been mostly

implemented at large corporations with tens of thousands of employees. That began to change in

the past few years as on-demand applications became popular among small and mid-sized

organizations that found the delivery model flexible and affordable.

Top 10 Applications Vendors. The following table lists the 2010 shares of the top 10 applications

vendors in the travel and expense management market and their 2009 to 2010 applications

revenues (license, maintenance and subscription) from the market. (Source: “Apps Run The World,

2011”)

Table 4: TEMA applications revenues.

57

5.6. Future of Travel Expense Management Automation

Based on the need for web-based simple prototype solution for mid and small size companies, I

developed TEMALite application. In the future, web-based applications as TEMALite will be even

more popular. Because there are advantages of this kind of web-based applications, they are:

 Security. Web-based applications usually have one central server and it’s enough to protect

that central server. If for example, it’s not web based and it should be installed in every

computer, then every computer which has this app should be protected from attacks. It

would make the process more difficult and more costly.

 Space. As mentioned above, web-based apps have just one server and it can be updated,

modified from one place.

 Compatibility. Web-based apps are supported by almost all OS-es and they are cross-

platform and cross-browser.

 System migration. In near future all business applications will be migrating to claud based

systems and it’s very easy to migrate from web-based systems to cloud-based systems.

 Availability. Web-based applications can be accessed by many types of devices unlike

other software systems which requires installment before using.

In hard economic times like this, most companies will seek better solutions to improve their costs

and performance, applications as TEMALite will be widely used among mid and small size

companies.

According to Aberdeen Group reports (2015), presently 27% companies still use a paper based

process, this will nearly vanish and while about 25% of users will still rely on systems that are

hosted in-house, the balance will move to cloud based systems or to a hybrid of cloud and in-house

systems. This data is summarized in the graph (SaaS in the graph refers to Software as a Service

where you hire the software and work purely in the cloud).

Interfacing with ERP and other backend systems - The below graph also indicates the nearly two

fold increase businesses will see in hybrid systems. These systems use specialist cloud based

expense management systems to get the best out of their expenses. At the same time these systems

interface with ERP solutions to deliver greater strategic value to users.

58

Figure 29: Trends in Use of business Expense Management Systems

59

6. Application Design

In the chapters above, we can see that many mid and small size companies can't afford to buy

or customize major TEMA solutions, I feel that there is a need to create affordable simple TEMA

solution for mid and small size companies. For research purposes, TEMA application is developed

and named TEMALite. TEMALite is web-based application. Following chapters will show how

this application is developed.

6.1. TEMA Methodology

Methodology could be explained in a set of recommended practices. It is defined as

organized, documented set of procedures and guidelines that describes how something is done.

Methodology includes the frameworks, techniques, methods, patterns and procedures that are used

to accomplish a set of goals and objectives. This step shows what methodology will be used so

that to deploy TEMALite application in the companies.

There are 6 steps to deploy TEMALite in companies:

 System Analysis

 System Design

 System Development

 Testing

 Implementation

 Maintenance

Step 1 - System Analysis. Systems analysis is the examination of the business problem that the

organization plans to solve with TEMALite application. This stage defines the business problem,

identifies its causes, specifies the solution, and identifies the information requirements that the

solution must satisfy. Organizations have three basic solutions to any business problem:

 Do nothing and continue to use the existing system unchanged.

 Modify or enhance the existing system.

 Develop a new system.

Considering the fact that almost most mid and small size companies heavily rely on paper based

manual Expense Reporting, third option will be chosen – new system (TEMALite) will be

developed.

60

The systems analysis stage produces the following information:

 Strengths and weaknesses of the existing system (paper based manual system)

 Functions that the new system (TEMALite) must have to solve the business problem

 User information requirements for the TEMALite Application

Armed with this information, developer can proceed to the systems design stage.

Step 2 – System design. Systems analysis describes what TEMALite must do to solve the business

problem, and systems design describes how the system (TEMALite) will accomplish this task. The

deliverable of the systems design phase is the technical design that specifies the following:

 System outputs, inputs, and user interfaces

 Hardware, software, databases, telecommunications, personnel, and procedures

 How these components are integrated

Systems design encompasses two major aspects of the new system:

 Logical systems design states what the system will do, with abstract specifications.

 Physical systems design states how the system will perform its functions, with actual

physical specifications.

Logical design specifications include the design of outputs, inputs, processing, databases,

telecommunications, controls, security, and IS jobs. Physical design specifications include the

design of hardware, software, database, telecommunications, and procedures.

Step 3 – System Development. Once step 2 is finished, the development phase for TEMA will

emerge. Since technology is the enabler of TEMA, this step starts with getting hardware and

software which are needed to develop the TEMA.

TEMALite is built on .NET environment using C# programming language. Following hardware

and software are required:

Hardware: PC with a 1.6GHz or higher processor, 2 GB (32 Bit) or 4 GB (64 Bit) RAM, 8GB of

available hard disk space after Operation System installed, 5400 RPM hard disk drive, DirectX 9

capable video card running at 1024x768 or higher-resolution display

61

Software: Supported operation systems: Windows 7 or 10, Windows Vista, Windows XP,

Windows Server 2003, Windows Server 2008.

Supported Web Servers: Internet Information Service (IIS) 6.0 (or above), ASP.NET 4.0

Supported Databases: MSSQL 2005 or above

Supported browsers: Microsoft Internet Explorer 9 and above, Mozilla Firefox 6.0 and above,

Google Chrome 1.x (latest version), Apple Safari 2.x,

Visual Studio 2012 or above is required.

TEMALite is developed based on the theories and methodologies which were obtained during

literature review, paired with the things which were learned from the requirements analysis.

TEMALite will be developed based on Object-Oriented methodology using best practices of Agile

Methodology. The researcher was provided with detailed concepts of TEMA in the literature

review. The TEMA will be a personalized, The personalization is accessible through a password

and username.

Step 4 – Testing. Thorough and continuous testing occurs throughout the programming stage.

Testing checks to see if the computer code will produce the expected and desired results under

certain conditions. Testing requires a large amount of time, effort, and expense to do properly.

However, the costs of improper testing, which could possibly lead to a system that does not meet

its objectives, are enormous. Testing is designed to detect errors (“bugs”) in the computer code.

These errors are of two types: syntax errors and logic errors. Syntax errors (e.g., a misspelled word

or a misplaced comma) are easier to find and will not permit the program to run. Logic errors

permit the program to run, but result in incorrect output. Logic errors are more difficult to detect,

because the cause is not obvious. The programmer who is writing code for TEMALite Application

must follow the flow of logic in the program to determine the source of the error in the output. As

software increases in complexity, the number of errors increases, making it almost impossible to

find them all. This situation has led to the idea of “good enough software,” software that developers

release knowing that errors remain in the code. However, the developers feel that the software will

still meet its functional objectives. That is, they have found all the show-stopper bugs, errors that

will cause the system to shut down or will cause catastrophic loss of data.

Step 5 – Implementation. Implementation is the process of converting from the old system (paper

based, manual) to the new system (TEMALite). Organizations use four major conversion

62

strategies: parallel, direct, pilot, and phased. In a parallel conversion process, the old system and

the new system operate simultaneously for a period of time. That is, both systems process the same

data at the same time, and the outputs are compared. This type of conversion is the most expensive,

but also the least risky. Most large systems have a parallel conversion process to lessen the risk.

In a direct conversion process, the old system is cut off and the new system is turned on at a certain

point in time. This type of conversion is the least expensive, but the most risky if the new system

doesn’t work as planned. Few systems are implemented using this type of conversion, due to the

risk involved. The pilot conversion process introduces the new system in one part of the

organization, such as in one plant or in one functional area. The new system runs for a period of

time and is assessed. After the new system works properly, it is introduced in other parts of the

organization. The phased conversion process introduces components of the new system, such as

individual modules, in stages. Each module is assessed, and, when it works properly, other

modules are introduced, until the entire new system is operational.

63

6.2. Software Development

Web based application will be developed based on company’s needs. There will be mainly 4

actors:

 Traveler

 Controller

 Accountant

 Manager

Based on the functionality, access level and position, for each actor separate pages and access

levels are created. All functionalities are considered and system will be built in the way that all

process automated (made online, accessible anywhere outside of company).

TEMALite will provide the organization with best possible activities to achieve better travel

expense management by implementing TEMA concepts and assimilating essential components

into it. Following figure shows how TEMALite works.

Figure 30: TEMALite components

As it can be seen from the figure 30, users of TEMALite first send HTTP request to Domain Name

System (DNS), DNS connects with Application server in turn. Application server receives the

request, analyses it, sends request to Database. Database responds to request and request is returned

as response respectively. Finally user gets response as plain HTML since it’s web-based software.

64

6.3. Use Case Model

Following use case diagram will be helpful in capturing TEMA’s responsibility for its users. All

use cases are shown and TEMA functionality is displayed in Figure 31.

Figure 31: Use-case diagram for TEMLite

65

6.4. Sequence diagrams

Following sequence diagrams describe behavior of TEMLite, interaction between TEMLite and

its environment.

Figure 32: Login Sequence Diagram

66

Figure 33: RequestTrip Sequence Diagram

Figure 34: CheckRequests Sequence Diagram

67

Figure 35: ReportExpenses Sequence Diagram

Figure 36: Payment Sequence Diagram

68

Figure 37: ViewReports Sequence Diagram

Figure 38: Logout Sequence Diagram

With detailed conceptual design, the TEMALite is developed, then user interfaces will be

designed. Screenshots of selected features of TEMALite are shown next chapter.

69

6.5. User Interface wireframe

wireframe, also known as a page schematic or screen blueprint, is a visual guide that represents

the skeletal framework of a web-based system. Following section will provide wireframe for some

part of the whole system. It can be viewed and accesses by 3 actors of this system – Traveler,

Controller and Manager.

1) Login form. All users of the system can see and login in login form. Depending on the

position and access level, they are redirected into different pages.

Figure 39: Login form.

2) List of travels. It can be accessed by Travelers and Managers. Travelers can see travel

details, the progress of their travels if it’s approved, accounted, in progress or requested.

New travel can be created based on the needs of employee.

Figure 40: List of travels

3) Authorization form. This page can be viewed by controller. Controller can see the

employees, dates of submission, amounts of expenses and so forth. Controller can check

requested travel against company policy, tax policies, deductibility, quotas and so on.

Based on that process, controller can approve or reject the travel.

70

Figure 41: Authorization form

4) Travel details. It can be viewed by Accountant who does payment process. Accountant can

see list of expenses, list of travels, advances and so on. Based on company policy,

accountant does payment process via bank transfer, in cash, vouchers or cashier’s check

and so on.

Figure 42: Travel details

5) Travel expenses. It can be viewed by traveler and accountant. Traveler will specify all

expenses after doing the trip. He/she will insert all the expenses that were made during the

travel. And then accountant checks if they match the quotas and norms of the company

policy. Based on that, traveler can return some unused funds or accountant can make

reimbursements in case traveler’s expenses are more than allocated funds.

71

Figure 43: Travel expenses.

6.6. Source codes for some important actions

TEMALite application is developed in C# programming language and .NET framework; in this

section source codes of some important actions are demonstrated.

Authentication class and its static properties provides information about user authentication and

authorization in global application scope:

Authentication.cs

public class Authentiocation

{

 public static Guid UserId

 {

 get

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 return Guid.Empty;

 return (Guid)HttpContext.Current.Session["UserId"];

 }

 set

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 HttpContext.Current.Session["UserId"] = value;

 }

 }

 public static string UserName

 {

 get

 {

72

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 return HttpContext.Current.Session["UserName"].ToString();

 }

 set

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 HttpContext.Current.Session["UserName"] = value;

 }

 }

 public static string FirstName

 {

 get

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 return HttpContext.Current.Session["FirstName"].ToString();

 }

 set

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw (new Exception("HttpContext.Current.Session is null"));

 HttpContext.Current.Session["FIRST_NAME"] = value;

 }

 }

 public static string Surname

 {

 get

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 return HttpContext.Current.Session["Surname"].ToString();

 }

 set

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw new Exception("Unexpected error");

 HttpContext.Current.Session["Surname"] = value;

 }

 }

 public static bool IsController

 {

 get

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw (new Exception("Unexpected error"));

 return (bool)HttpContext.Current.Session["IsController"];

 }

 set

 {

 if (HttpContext.Current == null || HttpContext.Current.Session == null)

 throw (new Exception("Unexpected error"));

 HttpContext.Current.Session["IsController"] = value;

 }

 }

 public static bool IsAuthenticated()

 {

 return string.IsNullOrEmpty(Security.UserId);

 }

73

 public static void Clear()

 {

 HttpContext.Current.Session.Clear();

 }

}

Authentication class is used for Login and Logout user actions:

Login.aspx.cs

public partial class Login: BasePage

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (Authentication.IsAuthenticated())

 {

 UserLoginPanel.Visible = false;

 }

 }

 protected void Page_UserCommand(Object sender, CommandEventArgs e)

 {

 if (e.CommandName == "Login")

 {

 if (Page.IsValid)

 {

 if (DoAuthentication(UserLoginPanel.UserName, UserLoginPanel.Password))

 {

 Employee employee = GetEmployee(UserLoginPanel.UserName);

 Authenctication.UserName = employee.UserName;

 Authenctication.UserId = employee.UserId;

 Authenctication.IsController = (bool)employee.IsController;

 Authenctication.FirstName = employee.FirstName;

 Authenctication.Surname = employee.Surname;

 Response.Redirect("/TEMALite/");

 }

 }

 }

 }

 private bool DoAuthentication (string userName, string password)

 {

 using (TEMALiteDBContext dbContext = new TEMALiteDBContext())

 {

 try

 {

 Employee employee = dbContext.Employee.Where(e => e.UserName == UserName).Single();

 return employee.Password.Equals(Utils.CalculateSHA1(password));

 }

 catch

 {

 return false;

 }

 }

 }

74

 private Employee GetEmployee(string userName)

 {

 using (TEMALiteDBContext dbContext = new TEMALiteDBContext ())

 {

 try

 {

 Employee employee = dbContext.Employee.Where(e => e.UserName == userName).Single();

 return employee;

 }

 catch

 {

 return null;

 }

 }

 }

}

Logout.aspx.cs

public partial class Logout : BasePage

{

 protected void Page_Load(object sender, EventArgs e)

 {

 Authenctication.Clear();

 Response.Redirect("/TEMALite/");

 }

}

BasePage provides all pages with default parent template. Also controls for anonymous visit and

redirects user to specific login page.

BasePage.cs

public partial class BasePage : Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!Authentication.IsAuthenticated() && System.IO.Path.GetFileName(Request.Path) != "Login.aspx")

 {

 Response.Redirect("/TEMALite /Login.aspx");

 }

 if (Authentication.IsAuthenticated())

 {

 LogoutPanel.Visible = true;

 LoginPanel.Visible = false;

75

 }

 else

 {

 LogoutPanel.Visible = false;

 LoginPanel.Visible = true;

 }

 }

}

76

6.7. Relational database diagram

The purpose of the relational model is to provide a declarative method for specifying data

and queries: users directly state what information the database contains and what information they

want from it, and let the database management system software take care of describing data

structures for storing the data and retrieval procedures for answering queries. The following

database system for TEMALite, which is relational, was done in Microsoft SQL Server

Management Studio.

Figure 44: TEMALite Relational Database Object Model

77

Figure 45: Relational Database System for TEMALite application

78

Some of the objects’ relationships are explained as follows:

Employee:

 Has only 1 position. (many to 1 relationship)

 Belongs to 1 company (many to 1 relationship)

 Has login credentials (1 to 1 relationship)

 Has 0 or more travels (1 to many relationship)

Travel:

 Can have 0 or more advances (1 to many relationship)

 Can have 0 or more travel expenses (1 to many relationship)

 Must have 1 traveler profile (many to 1 relationship)

TravelProfile: Can have many expense types (many to many relationship)

Expense: Belongs to 1 category (many to 1 relationship)

Workflow: Can have more workflow instances (1 to many relationship)

WorkFlowInstance: Can have more steps (1 to many relationship)

Payment: Can have more travel expenses or advances

79

6.8. TEMA Implementation

This section shows how the final outcome of this project that has been developed by me will

be implemented. TEMALite will go through particular implementation steps that will be described

in the upcoming sections.

• Assign a staff who will be in charge of the TEMALite

Through submission of the TEMA, enterprise should take immediate action with assigning

a person that will be in charge of the TEMALite and to undergo important steps before

TEMALite launching

• TEMALite Content and Features Upgrading

Company staff (administrator) will verify TEMA contents and upgrade or provide

information that is to be included. All features inside TEMALite including services are

upgraded so that better serve company needs.

• TEMALite Launched

The new TEMA is uploaded and launched.

• Analysis of results and feedbacks

Analysis will include services, feedback, as well as polls and online survey. Looking up

the employees’ participation and comment notes, the company might measure and review

its services eventually.

• Brief Review and Updating

TEMALite’s contents should be updated on regular basis. Company must at last make

decision about the duration (time) to make a conduct a review of its TEMALite

effectiveness. Admin and staff in charge first must collect all necessary data, statistics and

analysis in order that the TEMALite review could happen and next improvements could be

made to the current Travel Expense Management.

80

7. Conclusion

Travel is often one of the highest single expenditures for companies and as such stands to be

the biggest area for savings and improvement. The costs and time associated with manual data

entry are by far the leading challenge among today’s organizations. Increasingly, organizations are

solving this problem with automated TEM solutions, the benefits of which, as we have illustrated,

do not end there.

TEMALite is an end-to-end solution that automates all areas of T&E expense management

process. Filing and approval of expense reports becomes faster and easier. It eliminates paperwork

and reduces the number of resources required to process expense claims. These resources can be

used to perform more valuable tasks in the company. The analytical dashboards and customized

reports help management understand spending patterns and improve travel policies to align with

the changing needs of employees.

While developing the TEMALite using C# and .NET technologies, I realized that the Object –

oriented methodology increases creativity of developer considerably. I also found out that C#

language is very powerful which is rich in built in classes that don’t leave a developer a lot of

work. In traditional programming languages like PHP, you have to write long lines of codes to

create simple method, but in C# it’s either a single function or class which solves a lot of problem.

The TEMALite is aimed for mid and small size companies with personalized requirements. The

Application has four distinct users - traveler, controller, accountant and the manager. With

absorbing TEMALite application, companies improve their performance and cut their operational

costs. Considering the fact that soon web-based systems will migrate to Cloud based systems, I

can say that applications like TEMALite has great future. The TEMALite is also cost effective and

easily customizable for the mid and small size companies.

Best advantage of TEMALite that I think is that it’s available, affordable. It can be accessed from

different devices and anywhere where there is connection with internet. It doesn’t require special

installments and security checks.

It is suggested that TEMALite should be more widely used among the companies who want

to manage their Travel and Expenses in better way.

81

8. References

1. Joseph S. Valacich, Joey F. George, Jeffrey A. Hoffer. Essentials of systems analysis and

design, - 5th ed. p. cm. 2012, Pearson Education, Inc. New Jersey, 445 p. ISBN-13: 978-0-13-

706711-4 ISBN-10: 0-13-706711-9

2. Gary B. Shelly, Harry J. Rosenblatt . Systems Analysis and Design, Ninth Edition, Course

Technology, 2012. Boston, 761 p, ISBN-13: 978-0-538-48161-8

3. Kenneth E. Kendall, Julie E. Kendall. Systems analysis and design,— 8th ed. p. cm. 2011,

Pearson Educatiion, Inc. New Jersey, 601 p. ISBN-13: 978-0-13-608916-2, ISBN-10: 0-13-

608916-X

4. Alan Dennis, Barbara Haley Wixom, Roberta M. Roth. Systems analysis and design,–5th ed.

2012, John Wiley & Sons, New Jersey. 594 p. ISBN 978-1-118-05762-9

5. Wagner, E. L., Piccoli, G., & Louthen, S. (2005). Information system design: A systematic

way to analyze IT in your business. [Electronic article]. Cornell Hospitality Report, 5(5), 6-

22. Accessible at: [http://scholarship.sha.cornell.edu/chrpubs/158/]

6. Alan R. Hevner, Salvatore T. March, Jinsoo Park and Sudha Ram. Design science in

information systems research. Published by: Management Information Systems Research

Center, University of Minnesota Tampa, FL 33620, U.S.A. Vol. 28, No. 1 (Mar., 2004), pp.

75-105. 31 p.

7. Kenneth C. Laudon, Jane P. Laudon. Management Information Systems, twelfth edition,

Pearson Education Limited, 2014, Edinburg Gate, Harlow, England. 678 p. ISBN-13: 978-0-

13-214285-4, ISBN-10: 0-13-214285-6

8. Elizabeth Hardcastle. Business Information Systems, 2008, Ventus Publishing Ats, 56 p. ISBN

978-87-7681-463-2

9. Chrostopher J. Dwyer. Expense Management for a new decade, Aberdeen Group, Global Harle

Hanks Company, March 2011

10. Accounts Payable & Procure To Pay. Travel and Entertainment Expense Management Trends

for 2016, report. 2015

11. PayStream Advisors. Travel and Expense Management Report, 2015. PayStream Advisors,

Inc

12. Concur Technologies. Top 10 reasons to automate Expense Management, online. 2012.

Accessible at: [https://www.concur.com/sites/default/files/lp/pdfs/ca-assets-top10-reasons-to-

automate-asset-download.pdf]

82

13. Anne Becknell. 10 Expense management Best Practices, 2012, Chrome River Technologies.

5757 Wilshire Blvd. , sui te 270, Los Angeles, CA 90036

14. SutiSoft Solutions Inc. Automated Travel and Expense Management, report, 2010. 4984 W El

Camino Real # 200, Los Altos, CA 94022, USA

15. “Getting Expense Management Right”, Quocirca Ltd, 2014

16. Concur Technologies. The Essential Guide To Managing Expenses, 2014. Accessible at:

[https://www.concur.com/sites/default/files/the_essential_guide_to_managing_expenses_0.p

df]

17. Apps Run The World. Travel and Expense Management, Enterprise Applications Market

Report 2010-2015.

Internet sources

1. [On-line]. [Accessed on 2016-01-08]. [http://cporising.com/2015/01/12/then-and-now-a-

technology-evolution-series-part-i-travel-and-expense-management/]

2. [On-line]. [Accessed on 2016-01-15]. [https://www.dataserv.us/content/top-5-reasons-to-

automate-expense-reporting]

3. [On-line]. [Accessed on 2016-01-20]. [http://www.tatetryon.com/the-benefits-of-automated-

expense-reporting/]

4. [On-line]. [Accessed on 2016-01-26]. [http://blog.macnairtravel.com/how-to-measure-your-

travel-and-expense-program-is-it-delivering-the-results-you-need]

5. [On-line]. [Accessed on 2016-02-03].

[https://archive.org/details/ExpenseManagementAutomationMakingTheRightChoice]

6. [On-line]. [Accessed on 2016-02-10]. [https://www.gtnews.com/articles/expense-

management-is-automation-the-answer/]

7. [On-line]. [Accessed on 2016-02-11].

[http://sapinsider.wispubs.com/Assets/Articles/2006/October/Automated-Expense-

Reporting-Online-Booking-And-Other-Ways-To-Reduce-T-E-Overhead-With-SAP-Travel-

Man]

8. [On-line]. [Accessed on 2016-02-19]. [http://sites.tcs.com/blogs/agile-business/travel-and-

entertainment-management/]

9. [On-line]. [Accessed on 2016-09-13] [http://www.uh.edu/~mrana/try.htm]

10. [On-line]. [Accessed on 2016-10-07] [https://bus206.pressbooks.com/chapter/chapter-10-

information-systems-development/]

83

9. List of figures

Figure 1 - Data transformation into Information... 4

Figure 2 - System characteristics ……... 7

Figure 3 - Activities that provide the information organizations need …………..…................... 10

Figure 4 - Classic Information Systems Pyramid... 12

Figure 5 - Waterfall Model.. 18

Figure 6 - Agile Model.. 20

Figure 7 - Development Cycle of Google’s project in Waterfall model.. 21

Figure 8 - Development Cycle of Google’s project in Agile mode... 22

Figure 9 - Classes and Objects... 25

Figure 10 - Messages and methods.. 26

Figure 11 - Class hierarchy.. 28

Figure 12 - Inheritance ... 29

Figure 13 - Polymorphism and Encapsulation.. 29

Figure 14 - Use Case Diagram for university registration system …………………………….... 35

Figure 15 - Use Case Use-case diagram for Hamburger system... 36

Figure 16 - Examples of UML notations.. 37

Figure 17 - Class diagram for a sales order use case... 38

Figure 18 - A sequence diagram with two classes.. 39

Figure 19 - Sequence diagram for student admission... 40

Figure 20 - An example of a state transition diagram for a bank account..................................... 41

Figure 21 - An activity diagram for withdrawing cash from an ATM machine............................ 42

Figure 22 - Travel Expense Management involves policy, processes and a system...................... 45

Figure 23 - Total Western Europe Business Travel spend by country (2014)............................... 47

Figure 24 - Full life cycle of Travel Expense Management... 48

Figure 25 - Manual Travel Expense Management... 51

Figure 26 - What are biggest benefits you have achieved by automating your T&E process?. ….52

Figure 27 - Which of the following statements best describes the extent of automation in your TEM

process?.. 52

Figure 27 - What is the reason your organization has not automated the TEM process? ………. 54

Figure 28 - What is the reason your organization has not automated the TEM process? ……….. 55

Figure 29 - Trends in Use of business Expense Management Systems..58

Figure 30 - TEMALite components... 63

Figure 31 - Use-case diagram for TEMLite... 64

Figure 32 - Login Sequence Diagram.. 65

Figure 33 - RequestTrip Sequence Diagram.. 66

Figure 34 - CheckRequests Sequence Diagram... 66

Figure 35 - ReportExpenses Sequence Diagram ………………………………………………. 67

Figure 36 - Payment Sequence Diagram... 67

Figure 37 - ViewReports Sequence Diagram...68

Figure 38 - Logout Sequence Diagram... 68

Figure 39 - Login form... 69

Figure 40 - List of travels... 69

Figure 41 - Authorization form.. 70

Figure 42 - Travel details... 70

Figure 43 - Travel expenses... 71

Figure 44 - TEMALite Relational Database Object Model... 76

Figure 45 - Relational Database System for TEMALite application…………………............... 77

84

10. List of tables

Table 1 - UML and its components: Things, Relationships, and Diagrams.............................. 32

Table 2 - How to decide which development method to use.. 43

Table 3 - What is your average cost to process a single expense report?...................................... 53

Table 4 - TEMA applications revenues... 56

