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Abstract 
Machine Vis ion methods benefit from improving models, tuning trained parameters, or labeling 

representative data. In a series of experiments, this work validates the hypothesis that Active 

Learning improves the accuracy of these models. By extending the pseudolabel framework to 

Active Learning, this work includes a One-shot- learning approach to learn novel image cate

gories by util ising an algorithmic recommender, an online Graphical User Interface to optimise 

the onl ine Explorat ion/Exploi tat ion tradeoff for tagging, and a two-step offline binary Active 

Learning framework to improve the quality of data used for Font Capture. By demonstrating the 

benefit of Active Learning i n these approaches, this work contributes to the hypothesis, as well 

as concrete Machine Vis ion applications. 

Abstrakt 
Metody strojového vidění se zdokonalují zlepšením modelů, laděním trénovaných parametrů 

nebo anotací reprezentativních dat. Tato práce řadou experimentů potvrzuje hypotézu že 

aktivní učení zvyšuje přesnost těchto modelů. Rozšířením přístupu pseudolabelů o aktivní 

učení přispívá tato práce přístupem „one-shot-learning" k učení nových kategorií obrazů s 

použitím algoritmických doporučení, dále online grafickým uživatelským rozhraním pro opti

malizaci dilema Exploration/Exploitation pro online tagování, a dvoukrokovým offline binárním 

přístupem aktivního učení pro zlepšení kvality dat používaných pro snímání fontů. Tím, že 

demonstruje přínos aktivního učení v těchto přístupech, přispívá tato práce k hypotéze i konkrét

ním aplikacím strojového vidění. 
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CHAPTER 1 

Introduction 

M a c h i n e Learning i n general and Computer V i s i o n i n particular are highly sensitive to the 

amount and quality of data presented. Reproducible improvements i n results and abilities of 

created models can be whol ly attributed to the fol lowing factors: a model's prior and ability to 

fit, a model's actual fit to data, and representativity of training data. 

W i t h the vast majority of research focused o n the first factor, and the vast majority of 

engineering work focusing o n the second, the third factor receives far less attention. As quality 

data for various critical tasks is k n o w n to be costly to create, this work focuses o n how this can 

be done most effectively. The optimisat ion of expert labell ing and assessment of the resulting 

benefits is achieved via Active Learning. 

A hypothesis regarding the benefit of Active Learning i n Machine V i s i o n is experimentally 

validated under these scenarios: w h e n the labell ing oracle is a h u m a n expert, and w h e n the 

oracle is a pre-trained algorithm for another task. A large dataset, such as personal photos 

or hundreds of thousands of fonts, is most effectively labelled by using a human- in- the- loop 

approach. Facilitated by per-sample certainty analysis dur ing training, the expert labell ing 

effort achieves higher label quality with significantly fewer annotations. The second case, where 

existing models can preprocess useful information, requires systematic labelling and confidence 

tracking, or practical mappings. I have successfully used these approaches i n m y own published 

work, as presented i n this thesis. 

The hypothesis is experimentally validated i n several contemporary scenarios, such as fully 

automated labell ing (section 5.2) to create a dataset wi th combined informat ion not available 

elsewhere, but w i t h models trained o n several other datasets. M y work demonstrates that 

filtering data by retraining a m o d e l to select valuable examples only is shown to be usable to 

minimise h u m a n effort i n creating new, useful datasets, and models. 

In addit ion to four cases validating the hypothesis that Active Learning benefits contem

porary Computer Vis ion , at the core of this work lies another practical contr ibut ion: an i m -
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provement to the accuracy to work ratio achieved through a new pseudolabels Active Learning 

framework to integrate labelling by existing models, h u m a n experts, and a trained agent. 

The thesis is structured as follows: this introduct ion is fol lowed by an overview of Active 

Learning, w i t h relevant pr ior work, inc luding m y own, i n chapter 2. Next, chapter 3 presents 

an overview of relevant work i n M a c h i n e Vis ion , inc luding m y own. Chapter 4 discusses the 

hypothesis to be validated, and the approach taken. The work done i n Active Learning for 

Machine V i s i o n is them presented i n four sections of chapter 5, w h i c h is the core of the thesis. 

Finally, chapter 6 gives an overview of applications and future work, followed by the conclusion. 



CHAPTER 2 

Related Work in Active Learning 

Active Learning is the process of selecting w h i c h data needs to get an expert label, either by 

a h u m a n or by another algorithm. However, this can correspond to a variety of scenarios, 

and be handled i n a panoply of ways [KSF17, BRK19]. D u e to the breadth of the subject, only 

approaches relevant to the contents of this work are dealt w i t h here. This chapter presents 

an overview of techniques, gives some definitions, presents advances i n the field, and finally 

describes shortcomings and how these can be addressed. 

2.1 Overview 

The vast majority of Machine Learning applications relies on Supervised Learning, w h i c h is the 

fitting of a model to extrapolate given labelled data. This section uses standard notation used i n 

Active Learning literature [Mun20]. Formally, a model M is trained to approximate y given x as 

follows 

yp = MxX (2.1) 

argmin L(yp,yd) (2.2) 

M 

where yd is the dataset annotation, and yp is the model M prediction given x. 

In other applications, Unsupervised Learning is used. Under the unsupervised framework, 

unlabelled data is used to create a model . As before, M is trained to minimise a loss funct ion L 

as follows 

argmin L(M x x) 
M 

(2.3) 
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A typical Supervised Learning task is the classification of an image by the class of object 

it contains, and an unsupervised task can be the predict ion of the next character i n a text 

sequence [LDXT11, LDTX12]. Both approaches create a m o d e l w h i c h can be appl ied to new 

unseen data. Sometimes, the labelled data can be supplemented by a set of unlabel led data, 

and this combinat ion is used under the Semi-supervised Learning framework. This can be 

formulated as follows 

a r g m i n ( L U ( M U x xu) + Ls(yp,yd)) \yp = Msxxi (2.4) 
M 

where Mu is the por t ion of the m o d e l trained o n unlabel led data, and Ms is the port ion of 

the model trained o n labelled data 

M = MuuMs (2.5) 

By extending the semi-supervised approach to select data to be labelled during training, the 

approach becomes Active Learning wi th an expert E o n selected unlabelled data xs: 

ye = E(xs) (2.6) 

a r g m i n ( L u ( M u x xu),Ls{ye = Msx xs),La{xs = S x x)) (2.7) 
M 

M = Mu u Ms u S (2.8) 

Where S is the Active Learning component of the model which performs the selection. This 

process is iterative, selecting data as it is labelled: 

V i | Xcj = Si(M,pi,Xsj,XuJ) 
(2.9) 

XsJ+i=XsJuE{Xcj) 

Furthermore, the training process may have various labeling options, i n the form of multiple 

choices of experts. This creates an exploration-exploitation trade-off d i l emma, becoming a 

Reinforcement Learning problem, model led generally as a Markov decision process: 

(2.10) 
Pa(s, s) = P r ( 5 f + i = s\st = s,at = a) 

Where Ra is the immediate reward after transition from state 5 to state 5' via action a. In the 

context of Active Learning, this can be s impli f ied by setting the reward equal to the new total 

model accuracy, and dependent o n the selected expert En and datapoints xs 

Ra(xs) = LU{MU x xu),Ls(ye = Msx xs),La(xs = Ma*x) (2.11) 

Depending o n the assumptions made about the data, this could be presented as Weakly 

Supervised Mul t ip le Instance Learning (WSMIL), a subproblem of Semi-supervised Learning. 
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By making the assumption that at least one of the queried images belongs to a given class, 

training w i t h unlabel led data becomes W S M I L [VG08]. This approach has been coupled w i t h 

the tradit ional image classification approach of a d iv iding hyperplane i n a feature histogram 

hyperspace. 

Investing time and resources into labelling a portion of a dataset for use i n a Semi-supervised 

Learning framework leads to inefficiencies, as some data points are more informative than others. 

As a trivial example, take the labelling 100 samples of an unlabelled dataset of 1000 datapoints, 

where 100 datapoints are i n class A and 900 i n class B. If performed at random, probably only 

ten datapoints of class A w i l l be labelled. Active Learning w o u l d enable a better distribution of 

expert labelling effort, so that a more representative sample of A is labelled. 

Thus, Active Learning enables the creation of more accurate machine learning models. The 

basic principles of Active Learning are applicable to advanced scenarios, such as extrapolating 

single-task learning, where a model learns a single task, to Multitask Learning, where mult iple 

models are joined to share training parameters over several tasks. 

• to make Machine Learning more accurate 

• to make humans more efficient 

• achieving desired Machine Learning accuracy faster 

• making humans more accurate 

This last point is derived from another application of Active Learning, one with an orthogonal 

and complementary use-case to opt imal datapoint selection. Active Learning can also prepare 

the presented data i n such a way as to make h u m a n expert input more effective, for instance 

by highlighting relevant sections of a video to be labelled, or by presenting extracted features 

instead of raw data. 

The Active Learning approach lends itself well to combination with Transfer Learning, either 

by f ine-tuning an existing model or by applying an existing model to act as an expert annotator 

oracle. 

Finally, Active Learning is also used to address the complex issue of human errors i n training 

data. W h e n Supervised Learning models reach the same accuracy as the humans who labelled 

the data, for example a 1% error rate, breaking this barrier becomes challenging given this same 

data. W h e n predictions on training data are predicted as inaccurate, an Active Learning system 

may trigger a closer examination or examination by mult iple experts. By uti l is ing information 

such as labeller identity and error rate, a system can more accurately sift out human error which 

w o u l d otherwise propagate into the model , and into test-time predictions. 

2.2 Uncertainty Sampling 

Also called exploitation, uncertainty sampling aims to seek labels for datapoints near the decision 

boundary of a trained model . 
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Uncertainty sampling can be performed i n several ways. Some of these are least confidence 

sampling, margin of confidence sampling, ratio of confidence sampling, and entropy-based 

sampling. A l l these require a probabil i ty or confidence, w h i c h is weighted i n different ways. 

However, only Bayesian and probabil ist ic models are capable of producing a confidence or 

confidence interval for every prediction made. Therefore, Bayesian models are ideally suited for 

Active Learning i n the context of Uncertainty sampling, as well as methods presented below. 

However, Bayesian models achieve lower accuracy on critical tasks compared to Deep Learn

ing approaches. Especially deep neural networks, w h i c h inherently defy interpretability, and 

for these the confidence is substituted with a per-label score. Neural networks for classification 

can be trained to output a value i n the 0 - 1 interval, and these values can be normalised across 

classes to satisfy the criteria of a discrete probability distribution: 

V x e X, 0 < P{x) < 1 

E p w - i ( 2 ' 1 2 ) 

For example, Active Thompson Sampling (ATS) [BLU + 14] assigns a distribution to the pool , 

and samples one point f rom this distribution for labelling. 

2.3 Diversity Sampling 

Also called exploration, ..Representative Sampling", „Outlier Detection", or .Anomaly Detection", 

the diversity sampling approach requests labels for datapoints which are unknown or uncertain 

for the m o d e l being trained. Rather than merely div iding data into labelled and unlabelled, 

diversity sampling quantifies whether unlabel led datapoints are probably k n o w n or probably 

unknown. The 'known unknown' and 'unknown unknown' terminology has been adapted from 

Chemistry [LWPT11] to M a c h i n e Learning to denote unlabel led sections of the dataset w h i c h 

are likely classified correctly by the existing model , versus those w h i c h are likely not classified 

correctly. Where uncertainty sampling deals w i t h quantifying what a m o d e l knows about the 

unknown, diversity sampling is a complementary approach w h i c h quantifies what the m o d e l 

does not know about the u n k n o w n [Mun20]. 

The typical diversity sampling approaches utilise Model -based Outlier Sampling, Cluster-

based Sampling, Representative Sampling, and Sampling for Real-World Diversity. These model 

the data, the machine learning m o d e l being trained, or enforce the creation of an objectively 

more varied dataset. 

Current approaches mainta in a committee of models w i t h different hypotheses, whose 

votes are aggregated to produce most l ikely anomalies [ D W D + 1 6 , D z z l 5 ] . This Query-by-

Committee [SCF08] approach is model agnostic, while simple enough to be incorporated for a 

wide variety of models, as long as these mainta in an outiier rating of unlabel led training data 

points. 

Another widely used approach is to fit a Support Vector Machine (SVM) to labelled data, and 

used the margin, W, of each unlabelled datum i n Tuj and treat W as an n-dimensional measure 
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of certainty. This measure can be converted to a single scalar by computing the L distance, such 

as L-1 (Manhattandistance) , L-2 (euclideandistance), or L-oo (supremumnorm). 

2.3.1 Test-time Anomaly Detection 

Diversity sampling is concerned with the training-time evaluation of data, which maybe referred 

to as training-time anomaly detection. For test-time, this task is closely l inked to Refinement, 

where external annotators select and label samples to retrain a m o d e l w i t h [LB97], but where 

the m o d e l is expected to perform this funct ion independentiy [GSCOO], or i n concert w i t h 

annotators [ONJ13]. 

Measuring the certainty of a label can be performed just as it was done at training time, by 

model-based outlier sampling, cluster-based sampling, representative sampling, or sampling 

for Real-World Diversity. 

Model-based outlier computat ion can be performed o n models w h i c h explicitly compute 

this information, such as Bayesian models or non-parametric models. When the model produces 

scores i n an interval, as with SVMs [CV95], neural networks, or random forests [Ho95], these may 

not reflect confidence. Whi le the score is generally interpreted as such, there is no guarantee 

as to the relationship between datapoints of equal certainty or class probability, unl ike fully-

connected statistical Bayesian models. 

Cluster-based sampling may be more appropriate for these latter cases. By agglomerating 

data into clusters, and analysing unlabeled points together, noisy statistical estimates can 

be smoothed and sampled more accurately. A mult i -c luster ing approach can help smooth 

the distributions further, as i n the fol lowing case, where a mult i tude of models helps to f ind 

anomalies. 

In representative sampling, multiple models are taken and compared. Unlike cluster-based 

sampling, the jo ining does not take place over data, but over models. In order to minimise the 

amount of work and the overall complexity, the same model can be trained wi th various input 

randomisations, w i t h leave-one-out correlation training, or o n sequentially shuffled data to 

produce different but equivalent training parameters o n the data. These models can then be 

uniformly jo ined to produce smoother labelling. 

Finally, Real-World Diversity is another family of approaches to identify and reduce bias 

for arbitrary M a c h i n e Learning models. In essence, these a i m at creating a pr ior over models 

and a set of data such that they are increasingly representative. Performing this requires expert 

knowledge of the demographics of the data, as well as an ideal application of models. 

2.3.2 Federated Learning 

Gathering data with Active Learning may be some disadvantages, especially where the collection 

and processing of data are tightly interwoven [KMY + 16] . For certain tasks, the centralised 

collection of training data may be impractical, undesirable, or made impossible by their private 

nature. For tasks such as onscreen mobile keyboard predictions [ M M R + 1 6 ] , Federated Learning 

can offer significant advantages, resulting i n higher accuracy. 
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Federated Learning is a form of online learning, where all data is not available centrally at 

preparation t ime [BEG + 19]. For example, a language m o d e l may begin by being init ial ised o n 

idealised data, such as Wik ipedia text. Next, the m o d e l is distributed to devices, because the 

application requires the prediction of real text as users type it. Next, each user gathers their own 

n o n - i i d data by typing o n their keyboard and positively or negatively labelling the suggestions 

as they are or are not selected [ZLL + 18] . 

When the device is charging, a procedure retrains the recurrent neural network with the new 

data. This f ine-tuning is not performed centrally, so each user has a differently updated model . 

In order to bring these updates together without jeopardising privacy, the updates are uploaded 

and centrally weighted, wi th the resulting average taken as updates to a centralised model . 

W i t h this general Federated Learning approach, it is possible to update image annotators, 

face detectors, or any other appl icat ion that m a y otherwise require the gathering of a static 

dataset, w h i c h would then be centrally updated via traditional Active Learning. Another advan

tage of this approach is that an essential portion of the processing is performed at the client-side, 

reducing the server load for improving the model . In an era of powerful portable computers, this 

Active Learning approach is increasingly attractive for all scenarios where users are incentivised 

to annotate data. 

2.4 Restricted Boltzmann Machine 

A typical m o d e l for multi-class labell ing w i t h confidences is the Restricted B o l t z m a n n M a 

chine [Smo86]. R B M is an undirected bipartite graphical model [CPH05]. It defines a probability 

distr ibution over a vector of visible variables v and a vector of h i d d e n variables h. In the R B M 

model , the visible variables are independent of each other w h e n the h i d d e n variables are ob

served and vice versa. 

For modell ing dependencies among semantic tags, the visible variables v, each correspond

ing to the presence of a tag, are binary. In this work, the h i d d e n variables h are b inary as 

well . 

The joint probability over v and h is defined as 

p(v,h)= F" v - , (2.13) 

where Z is a normalisation constant and E is energy funct ion given by 

E(v,h) = - v T W h - v T b y - h T b ' ! , (2.14) 

where (W) is a matrix of weights between elements of v and h, and b" and bh are biases of visible 

respective hidden variables. Conditional dependencies between the visible and hidden variables 

are expressed as 

p(h|v) = a(Wv-b") andp(v|h) = cr(wTh-b / !), (2.15) 

where aQ is a sigmoid function. 



Restricted Boltzmann Machine 11 

As a generative model , R B M could be trained using m a x i m u m likel ihood. However, deriva

tives of the l ike l ihood are intractable. To overcome this problem, H i n t o n [Hin02] introduced 

a practical approximat ion called Contrastive Divergence (CD). The C D algori thm computes 

gradients for optimisation as 

V W = (vh)data-(vh)recon (2.16) 

V b " = {v)data-{v)recon (2.17) 

Vbh = (h)data-(h)recon, (2.18) 

where {.)data are expectations wi th respect to the distr ibution of data and Qrecon are expecta

tions with respect to the distribution of reconstructed data. The reconstructed data is obtained 

by starting w i t h a data vector o n visible variables, and sampl ing first f r o m distr ibution p(h|v) 

and then p(v|h) (Equation 2.15). 

In the context of tag suggestion, the task of R B M is to provide marginal probabilities of 

unobserved tags which constitute the visible variables v as more and more tags become observed 

(by actions of a user). Several algorithms could solve inference i n the R B M model . Gibbs 

sampling was chosen. It draws several samples f r o m the R B M distr ibution. The means of 

marginal distributions E{p{vi)) can then be computed from the samples. Gibbs sampling starts 

by assigning r a n d o m values to unobserved variables, and a sample is obtained by iterating 

between computing p(h|v) (Equation 2.15) and sampling from it, followed by computing p(v|h). 

As it is not practical or desirable to obtain a large training dataset where presence or absence 

of all tags for all images w o u l d be k n o w n due to a large n u m b e r of possible tags (hundreds or 

thousands), inevitably, such dataset has to have sparse annotations. Furthermore, the learning 

algorithm has to handle situations where a potentially large port ion of the tags is unobserved. 

Several methods for handling missing training data i n the context of R B M were proposed. Single 

missing value can be easily filled by sampling from its exact conditional distribution (it is known 

for single unobserved variable). More missing values can be treated i n the same way as the other 

parameters [HOT06] if they are updated often during learning. This approach is efficient only on 

training sets of l imited size. Salakhundinov et al. [SMH07] introduced a radical way of dealing 

with missing values by using RBM's wi th different numbers of visible units for different training 

cases. This approach is able to handle very sparse data; however, it no longer produces a single 

R B M model . 

In this work, Gibbs sampling was used to fil l the unobserved values i n the training data. For 

the C D gradients (Equation 2.16), the data means Qdata have to be computed. This can be done 

by drawing samples f rom the distr ibut ion of the unobserved visible variables condit ioned o n 

the observed visible variables. This distribution is not known during learning of the R B M model . 

However, the current imperfect R B M model can be used instead as an approximation. W h e n a 

sample f rom the distribution of the visible data is obtained, the C D algorithm proceeds exactly 

as described i n Section 2.4. 
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2.5 Training with Simulated Data 

It is known that Active Learning can benefit f rom simulated data [KSF17], and this result is used 

to create improved embeddings for electron microscopy segmentation. 

A Scanning Electron Microscope (SEM) equipped wi th an Energy Dispersive X-ray spec

troscopy (EDS) detector is a well-established tool to analyse the chemical composition of samples 

wi th a spatial resolution of the order of \xm [ G N M + 1 8 ] . It is widely used i n material science 

and geological/mineralogical research. Natural ly proper recognit ion of phase boundaries is 

essential for meaningful and trustworthy analytical results and interpretation. The phases are 

generally recognised 1) based o n their BSE brightness value o n l y or 2) using a combinat ion of 

BSE and E D S data. O n the other hand, acquisi t ion of E D S data is orders of magnitude slower 

than the acquisi t ion of BSE data (milliseconds per pixel compared to microseconds per pixel, 

respectively), thus inordinately prolonging the analysis. To keep the analysis reasonably short 

one could either acquire the EDS data i n a coarser grid then the BSE [HGS + 18 , MF13], or acquire 

only a relatively small number of X-ray events from each pixel (e.g. 1,000) or combine both. The 

disadvantage is that the low-count EDS spectra are prone to statistical noise, w h i c h is typically 

higher than spectral differences of the phases of interest. Classifying such data pixel-by-pixel 

inevitably leads to artefacts such as misclassified or unclassified pixels. 

A Graph-based Deep Learning Segmentation method (GDLS) is developed, such that is has 

the capacity to correctly distinguish chemically similar phases i n a BSE image, combined wi th 

noisy and sparsely occurring EDS data, while still maintaining a sizeable average segment size. 

This method is, therefore, of great benefit wi th regard to the robustness of results and speed of 

analysis. 

The proposed segmentation method takes one input field composed of a densely sampled 

BSE array and sparsely sampled E D S data w i t h k n o w n measurement locations. Each EDS 

measurement is a spectrum with 3,000 bins corresponding to energies from 0 to 30,000 eV with 

10 eV steps. The values i n the BSE array are calibrated, wi th a maximal value of 2 1 6 . Values i n 

the EDS spectra are positive integers corresponding to the number of detected events at each 

energy. A n example field is seen i n Figure 2.1. 

The output of the segmentation process is a dense array w i t h pixel-wise labels (integer 

values) where pixels wi th the same value belong to the same segment. The core of the proposed 

method is to determine if spatially close EDS measurements capture the same material, i n which 

case they belong to the same segment and should be labelled w i t h a c o m m o n label. A graph 

wi th EDS measurements represented as vertices is constructed. Edges connect spatially close 

measurements i n a planar graph obtained by Voronoi analysis [Bow81]. A deep learning model 

assigns a value to each edge. This value corresponds to differences i n BSE and distances between 

hyperspace representations of EDS spectra. Edges wi th high differences are removed, and the 

resulting graph components constitute separate segments — labels. F ina l dense labels are 

obtained by a dense Markov R a n d o m Fie ld operating over the BSE array wi th labels initialised 

f rom the graph. A n example of a graph and segmentation is i n Figure 2.2. The indiv idual 

steps of the algorithm are described next. They are projection of spectra to latent space, graph 
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BSE array B with points L E 

Figure 2.1: The field is a hyperspectral image with sparsely sampled data. The locations L of EDS 
measurements are superimposed on the BSE array B. The matrix E shows the actual spectra i n 
rows. Details i n section 2.5.1 

9l?P!lilpresentation Final segments 

Figure 2.2: The proposed method constructs a graph representation of the field (edge color 
encodes 8Z, see Section 2.5.6) and decomposes the graph to obtain compact segments. Details 
i n the text. 
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construction and calculation of edge values, graph component analysis, and Markov R a n d o m 

Field segmentation. 

2.5.1 Field Representation 

A field F (see Figure 2.1, left) is represented as a triplet F = (B, E, L). B is H x W array wi th BSE 

measurements (an image of w i d t h W and height FT). E and L are matrices containing N rows 

with EDS measurements 

V V 
E = L = 

where E is N x D matrix wi th N spectra wi th dimensionality D, and L is a N x 2 matrix with 

locations of EDS measurements i n the BSE array. The spectrum Sj corresponds to location i n 

the BSE array. 

The proposed method assumes ful l coverage by B, and sparse coverage by E D S measure

ments, whose locations are determined at scan-time by a separate mechanism internal to the 

electron microscope. Al though the proposed method poses no restrictions o n the locations of 

the sparse E D S measurements, they are best placed at regular intervals o n discrete materials, 

and ideally do not miss small separate grains. 

2.5.2 Mineral Dataset 

For training the embedding model , a dataset is used w h i c h contains 4,507 distinct materials 

relevant for the applicat ion. Each material is characterised by its ideal spectrum. D u r i n g the 

training, spectra are generated f rom the ideal profiles by r a n d o m sampling w i t h a r a n d o m 

number of events to simulate data f r o m a microscope. These spectra are close to what is 

captured by the microscope, but it is not perfect since the ideal profiles do not include recurring 

artefacts of pulse processing electronics like sum peaks or escape peaks, and other unmodeled 

effects [Rit09]. These differences influence the overall performance of the proposed method on 

the real data especially i n situations where mult iple materials are mixed (e.g. o n boundaries 

between two materials) since are trained o n pure spectra wi th no "deformations". 

2.5.3 Spectral Decomposition with Deep Learning 

The key part of the algori thm is to determine if two spectra capture the same material w h e n 

they are composed of the same elements i n the same ratio [GK72]. Whi le this can be solved 

wi th a relatively low error by, e.g., m e a n absolute difference or a two-sample K-S test o n high 

count spectral data [VSK + 19], i n the presence of noise due to a low number of X-ray events per 

pixel the task becomes difficult. In this solution, the spectra are processed with a deep learning 

model to provide a compact descriptor w h i c h can differentiate between spectra wi th different 

compositions [ W W M + 0 6 ] . The descriptor is obtained by embedding to a low dimensional space 

- latent space 3. as shown i n Figure 2.3. 
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Figure 2.3: The original spectra are projected by C N N to a latent space 2 wi th 64 dimensions, 
where similar materials are mapped to similar locations 

Transforming E D S measurements into this latent space serves as a preprocessing step to 

separate image-space segmentation f rom material composi t ion and characteristic l ine differ

entiation, but this m o d e l is made o n resampled ideal spectra, w h i c h cannot contain al l noise 

and variations of real measurements. By training the m a p p i n g to differentiate thousands of 

randomly selected materials, the network learns to generalise even unseen materials. Therefore, 

during segmentation, w h i c h is not trained for specific materials, the presented approach is not 

l imited to previously seen minerals and solid solutions. This is demonstrated by visual analysis 

of chemically-dist inct domains w i t h different N b / T a ratio i n grains of a columbite-tantalite 

solid solution are properly segmented despite the fact that no spectrum corresponding to such 

chemical composit ion was i n the training dataset. 

2.5.4 Neural Network Design 

The convolutional neural network ( C N N , see Figure 2.4) comprises three parts — normalization, 

feature extraction and embedding. The input of the network is the vector of the spectrum 5 with 

dimensionality D followed by normalisat ion wi th mean p and standard deviation a calculated 

f rom ground truth spectra. The 200 eV to 15,560 eV spectral b a n d w i t h 10 eV bins is used. 

Therefore, the input to the network are spectra w i t h D = 1,536. There are two reasons for 

this: first, coefficients outside this b a n d are mostly uninformative and second, reducing the 

number of coefficients reduces the n u m b e r of network parameters and this positively affects 

the execution speed of the network. However, noth ing prevents using the whole spectrum. 

Feature extraction contains 3 blocks wi th a sequence of convolution, batch normal izat ion and 

ReLU activation [NH10] followed by average pooling. Embedding processes the features wi th a 

sequence of dense layers and normalises the output to unit length, producing a latent vector z. 

Although almost any network design can be used here, a s imple network inspired by V G G 

architecture [SZ14] is chosen, main ly for performance reasons. O n a single field, usually, tens 

of thousands of measurements must be processed (in extreme cases it can be hundreds of 

thousands). This network can produce its output i n a matter of seconds o n low-end hardware 

w h i c h is still acceptable. 
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Figure 2.4: The neural network for mapping spectral information to latent space 2. It processes 
the input 5 wi th normalization, feature extraction and embedding and produces the vector z. 

2.5.5 Embedding to Low-Dimensional Space 

We train a neural network model M which produces a unit vector z = M(s) for a spectrum 5. The 

output dimensionality is a free parameter (64 i n these experiments). The spectral information is 

used as an input and material class (i.e. its integer ID) as an output and optimize the network 

with A D A M [KB15] optimizer wi th Semi-hard Triplet loss [SKP15]. 

The m a i n property of the latent space 3. is that the difference ||M(si) - M(s2)ll2 is close 

to zero if s\ and 52 are f r o m the same material and it is larger i f the materials are different, 

whatever the materials are. By mult iplying matrices M and E, individual EDS measurements 5 

are transformed into the spectrum decomposit ion z. 

2.5.6 Graph Construction and Labelling 

F r o m the k n o w n locations of E D S measurements i n the field, a planar graph G = {V, E) is con

structed by Voronoi analysis [Bow81]. Vertices V = (Zj, hi, z() are locations of the measurements, 

each assigned with its location U, BSE value hi and spectrum decomposition Zi obtained by the 

neural network. Edges are formed between spatially close measurements. The edges between 

measurements w i t h distance larger than the 2 x sampl ing distance are not considered. Each 

edge Ek = {i,j) is assigned wi th values 8k and 8z
k capturing difference i n BSE and latent space 

representation of the spectrum [JVK +20]. 

8h
k = \bi-bj\/2m (2.19) 

Sz
k = \\zi-Zj\\2 (2.20) 

Where the value of 8b is i n the (0,1) interval and 8Z >= 0. Edges w i t h 8b
k > x\, or 8z

k > rz 

are removed, w h i c h disconnects measurements wi th high difference i n BSE or spectrum. The 
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Figure 2.5: Dense per-pixel measurements (blue), sparse markers (gray), and relationships i n a 
Markov Random Field 

parameters and rz can be tuned by the user to obtain different segmentations of the input 

data. The components of the resulting graph then constitute sets of measurements with the same 

material. As a result, each vertex is assigned a value q e N which is the label of the component it 

belongs to. These labels are the starting point for the M a r k o v Field, w h i c h generates the f inal 

pixel-wise label map. 

2.5.7 Pixel Labelling with Dense M R F 

Markov Random Field segmentation [Li94] is a flexible optimisation method to create unlabelled 

segments given neighbouring pixel similarities and a sparse marker init ialisation. The field of 

pixel-wise BSE measurements is set o n a fully connected grid, and the segmentation m a p is 

initialised with known labels from EDS graph analysis. By using a priori probability of sampling 

different measurements f rom the same distribution (class), and the probability of adjacency of 

different classes, the entire system becomes a joint distribution whose a posteriori distribution 

can be maximised by comput ing conjugate gradients for a given segmentation estimate. The 

distr ibution is iteratively optimised unt i l convergence, where classes correspond to individual 

class probabilities. The m a x i m u m class at each pixel is taken to be its class, producing ful l 

segmentation. 

2.6 Superhuman Accuracy 

Without the ability to correctly generalise from flawed examples, any Machine Learning model 

trained on imperfect data is bounded to accuracy at most as high as that of the original dataset. 

This issue can be addressed i n a range of ways, f rom ful l re-labelling, semi-supervised co

operative labelling, or Active Learning. Fully re-labelling the dataset manually by several experts 

is time-consuming, but increases the accuracy by increasing the probability of disagreement over 

incorrect labels. For example, five experts label a dataset of 100 images for a binary label. If the 

accuracy of every expert is 95%, the joint accuracy of 5 experts under agreementis l - Q - 0 . 9 5 ) 5 = 

0.9999997, or 0.99997 for a dataset of 100. In practice, co-operative labelling is used i n an iterative 

process, where mult iple models are trained and manual ly examined, so that incorrect labels 
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may be found and analysed by experts, effectively achieving an offline Active Learning scenario 

over the course of years. This is the case for mult iple re-issued and improved datasets, such 

as labelled Faces i n the W i l d (LFW) [HRBLM07], V G G [PVZ15] and ImageNet [DDS+09], where 

state-of-the-art algorithms effectively guide the improvement process by point ing to errors i n 

the original labelling. Finally, active labelling can be used to reach an accuracy higher than that 

of an expert, by seeking potentially mistaken labels to be scrutinised at training time, as w i t h 

the Microsoft C O C O [LMB + 14] dataset, where every image was labelled by a varying number of 

A m a z o n Mechanica l Turk annotators [CFL + 15] , depending o n interagreement and agreement 

with a retrained predictive system. 

This problem is intrinsically l inked to selecting the appropriate oracle for a specific labelling 

application. This may be done by model l ing the accuracy of each oracle for each section of the 

data, or sub-task, or modality. Similarly to the mult i -armed-bandit problem [KVJ87] where the 

agent wi th highest-probability payoff is selected online, oracles wi th highest-probability correct 

labels are to be addressed for specific tasks. 

Superhuman accuracy has already been achieved for graphical tasks such as inpaint ing 

and superpixels, but recent work has also achieved superhuman accuracy i n facial recognition, 

O C R 1 , and driving. 

2.7 Shortcomings and Possible Improvements 

Active Learning methods can offer improvements i n accuracy given the ability to flexibly label 

data [KSF17, BRK19]. In the case of h u m a n experts, this challenge is rarely addressed, and re

search focuses instead on supervised and unsupervised approaches on fixed datasets [ABC + 16] . 

This is not the case for Active Learning w i t h an existing expert system, such as labell ing by 

responses f r o m pre-trained systems, or unlabel led retrieval f rom large data sources, such as 

image retrieval via online search. 

W h e n Active Learning is applied, a challenging tradeoff has to be addressed: system trans

parency versus accuracy. The state-of-the-art i n numerous fields is based on deep learning with 

neural networks, w h i c h is not interpretable, and the network presents no way of explaining 

the choices it has made. O n l y l imi ted insight of the inner workings of a trained deep net can 

be gained, such as low-pass filters [LGRN09] and class shapes [MOT15]. In comparison, other 

approaches with Bayesian interpretation [SKFH16] and numerical explanations [SMV + 19] can 

be fully transparent, at the expense of predict ion accuracy. 

Therefore, Active Learning is often used i n a collaborative setting: a simpler transparent and 

interpretable m o d e l is used to optimise dataset collection, and a second deep m o d e l is then 

trained o n such data, resulting i n a high-accuracy result wi th reduced manual annotation. 

Optical Character Recognition 



CHAPTER 3 

Related Work in Machine Vision 

This chapter discusses standard Deep Learning approaches i n machine vis ion, techniques 

specialised i n working o n small datasets, and finally Active Learning methods for Computer 

V i s i o n and Computer Graphics. In order to create an accurate discriminative or generative 

model , it must have the ability to fit the data, the data must be representative, and the m o d e l 

parameters must be wel l - tuned. These are three crit ical tasks i n Computer V i s i o n , and while 

this work focuses o n the second aspect (data), the other two aspects must also be taken into 

consideration. Data is made representative by increasing i n quantity, as can be witnessed from 

better models on better data, and improvements due to model flexibility being directly l inked to 

the availability of large datasets. This demonstrates that the issues of model complexity, model 

fit, and data are inherently interlinked, and must be assessed i n concert. 

This chapter lists the objectives and tasks of Computer Vis ion and how they are approached 

via Active Learning. The relevant datasets and methods employed i n their construct ion are 

explained i n sections 3.1 and 3.1.1, inc luding labell ing applications of Active Learning. Next, 

classical Machine Vis ion methods are listed i n section 3.2, followed by methods applying Active 

Learning via Transfer Learning i n section 3.3, where Last-layer retraining and Fine- tuning are 

discussed. Here, section 3.4 demonstrates how Transfer Learning may be applied to produce a 

baseline for Image Captioning. Next, Generative Adversarial Networks (GAN) and their applica

tions are presented i n section 3.5, followed by a section on how labelled and unlabelled data can 

be utilised 3.6. Section 3.6.1 also discusses pseudolabels and their applications, and shows how 

these are used to make use of weakly annotated data. 

3.1 Dataset Construction 

Classical computer vis ion algorithms relied o n manually tuned feature extractors and training 

of high-dimensional classifiers. Such approaches are less sensitive to dataset size because the 

number of parameters of typical models is linear wi th respect to feature size. 
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W i t h the advent of Deep Learning approaches, the n u m b e r of parameters i n machine 

v is ion models has gone f r o m thousands to mi l l ions [Kril2, D D S + 0 9 , LBBH98a]. Whenever 

a sufficient amount of data is available, the Deep Learning models outperform traditional 

approaches [RDS + 15a]. Therefore, it is not surprising that the success of deep neural networks 

relied o n two factors: the use of convolutions to reduce the n u m b e r of parameters [CSVZ14], 

and the ImageNet dataset [KSH12]. 

3.1.1 Cannonical Datasets 

Deep learning has radically changed the field of Computer Vision, but only thanks to the advent 

of large datasets. Some of the most relevant datasets are listed i n table 3.1, along with the number 

of categories and n u m b e r of images per instance. The first of these was ImageNet [DDS + 09] , 

created by manual ly attaching images to 1000 selected WordNet [Mil95] classes. Each image is 

labelled w i t h exactly one class, wi th all others impl ic i t ly u n k n o w n , but practically considered 

negative. Whi le this dataset has been qualitatively improved, it remains useful main ly for 

classification tasks, because the location of objects is not annotated. It is important to note that 

negative annotations are not present, and as images often contain mult iple classes as i n the 

Multi label Learning setting, the correct label at evaluation time is often different from the single 

label for a given image. Therefore, it is natural to evaluate the dataset w i t h a top-1, top-5, or 

top-10 score, where the actual label i n the data is one of the top-X predicted labels. 

These datasets are typically constructed by Class-domain-wise tagging. This process involves 

the creation of a set of tags/classes/objects, retrieving a large set which is likely to contain them, 

and manual ly or semi-manual ly sifting through the data to produce a large, accurate dataset. 

However, this approach suffers from various types of bias, which wi l l affect the resulting models' 

ability to generalise: Sample bias, where the data is representative of the sample, but not the 

wider populat ion; Reporting bias, where some tags are considered obvious, and others are 

repeatedly annotated, such as „sky" or „person"; Selection bias, Group attr ibution bias, and 

others [XHE+10]. 

Annotators may also be influenced by Repetition Priming, where the order and sequence of 

images presented affect the focus and perception of relevant information to be labelled. 

This l imitat ion is addressed by the M S C O C O dataset [LMB + 14] , which contains mil l ions of 

per-pixel annotations of hundreds of classes. Methods for training detectors and segmentation 

algorithms on data with no bounding boxes have been demonstrated to work successfully, but an 

evaluation is impossible without labelled segmentations. Thanks to its size, M S C O C O enables 

per-pixel training for detection and segmentation, thus going well beyond evaluation benefits. 

M S COCO, therefore, achieves the ambitious task of being an exhaustive full dataset, as opposed 

to sparsely labelled datasets where only some information is k n o w n for any given image. 

For a thorough review of image datasets and annotation methods, see [ L M B + 1 4 ] . 
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dataset # categories # images containing instance 
M N I S T [LBBH98b] 10 5421 - 6 745 (mean 6 000) 

ImageNet [RDS +15a] 1000 732 - 1300 (mean 1281) 
PASCAL V O C 2012 [EEVG+14] 20 3 0 3 - 4 087 (mean 834) 

S U N 397 [XHE+10] 397 100-2 361 (mean 274) 
Caltech 256 [GH07] 256 80-827 (mean 119) 

Caltech 101 [FFFP07] 101 31 -800 (mean 90) 
M S C O C O [LMB+14] 91 -300 - -600 000 (mean 7 849) 

Table 3.1: Comparison of image classification datasets 

3.1.2 Active Learning Dataset Construction 

Scalable dataset product ion wi th Active Learning has been shown to exceed other approaches 

i n terms of quality and scalability as to the amount of laborious and monotonous annota

t ion [CDLFF08]. Object recognit ion and scene recognit ion have been shown to benefit f rom 

an active learning approach as wel l [LG13], w i t h new development of loss functions still be

ing researched [SED19, YK19]. For tasks where the amount of required labelled data is pro

hibitive, such as reinforcement learning for Robot A r m manipula t ion i n response to visual 

st imuli [SUB96], active learning approaches enable the gathering of relevant data. 

MS COCO has been collected i n a series of work-intensive steps performed by crowdsourced 

workers, i n addit ion to val idat ion tasks performed by the authors. There are two core tasks: 

instance, segmentation and captioning. Instance segmentation was performed i n three steps, as 

described i n figure 3.1: labell ing selected categories, locating instances of categories, and seg

mentation of each instance. There are 91 selected categories i n 11 groups labelled i n the dataset, 

causing a smaller representativity than ImageNet or others, but w i t h per-pixel segmentation 

accuracy. 

The M S C O C O dataset contains 2 500 000 segmentations, performed by crowdsourced work

ers over 80 000 hours [ L M B + 1 4 ] . 

3.1.3 Deep Learning with Small Datasets 

New trends i n Computer Vis ion either focus on improving results on established large datasets [KBZ + 19 , 

TVDJ20, LVKB19], or o n applications i n new domains where only small datasets are avail

able [ M M K + 1 6 , ZZY17]. Data-hungry approaches are pitched against each other on the standard 

datasets of section 3.1.1, and this work is not focused o n improvements o n that front. Instead, 

other methods are being presented w h i c h mitigate the need for large datasets, while relying on 

mil l ions of parameters inherent to Deep Learning [TVDJ20]. 

Some simple approaches help reduce the need for a large dataset, and these are collectively 

called image augmentation. R a n d o m f l ipping, cropping, geometric deformations, per-pixel 

noise, and colour changes are used to create n e w images wi th k n o w n properties for training, 

and this has demonstrated benefits o n Deep Learning wi th small and large datasets. Image 
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A n n o t a t i o n P i p e l i n e 

dog, bottle 

(a) Category labeling (b) Instance spotting fc) Instance segmentation 

Figure 3.1: The M S C O C O annotation pipeline, i n sequence: (a) Labeling the categories present 
in the image, (b) locating and marking all instances of the labeled categories, and (c) segmenting 
each object instance. Taken f rom [LMB + 14] 

augmentation is therefore considered the standard, and other methods need to be devised to 

make deep models practical o n datasets so small that image augmentation is not sufficient. 

These methods are roughly categorized as follows: weight re-use, s imulated data training, 

and generative models. 

3.2 Contemporary Computer Vision methods 

This section discusses state-of-the-art discriminative and generative methods for image pro

cessing, most of w h i c h focus o n the model , not the data. Therefore, these are not designed 

to integrate Active Learning. As w i l l be shown later, judicious applicat ion of Active Learning 

principles systematically significantly improves the results of these approaches, irrespective of 

their inner mode of operation. 

Image classification is an important and challenging prob lem of Computer V i s i o n . Tra

ditionally, visual categories could be learned by Support Vector Machines o n histograms of 

local features [VDSGS10]. Current approaches have shifted towards Convolut ional Neural Net

works [KSH12, S E Z + 1 3 , DJV + 14] , which require vast amounts of data and computational power 

to learn mil l ions of parameters. Such approaches have achieved near -human performance i n 

face recognition [TYRW14], image segmentation [Kokl5], and have beaten previous approaches 

i n classification of both very broad and very specific categories [RDS + 15a]. The motivation for 

our approach is to make it possible to use datasets w i t h few examples, but it m a y also poten

tially be used to fine-tune Convolut ional Neural Networks (CNNs) w h i c h already achieve high 

accuracy. 

Convolutional Neural Networks produce state-of-the-art results but deal poorly wi th small 

datasets. Class complexity and variability are decisive for defining sufficient dataset size, and we 

consider any dataset wi th an insufficient number of examples to be "small". The pseudolabel 

method, section 3.6.1, uses an unlabelled dataset to mitigate this. 
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Convolutional Neural Networks [LBD + 89] are the state-of-the-art approach for image classi

fication, achieving the best accuracy for classification and detection [RDS +15a]. These methods 

require large datasets [TE11], and this is handled by dataset augmentation with rotation, distor

tion, and other changes to the used images [KSH12]. 

Whi le m u c h excellent work has been done to enhance the abilities of C N N s o n large 

datasets [WYS+15, SZS+13, SEZ+13, SZ14, SLJ+14, OBLS14], it has generally been accepted 

that small datasets cannot be directly trained u p o n w i t h r a n d o m weight ini t ia l izat ion. In this 

work, we focus o n using the C N N structure to improve accuracy, rather than explicitly attempt

ing to improve features, because features can be transferred f rom classifiers trained o n other 

datasets [YCBL14]. 

Other approaches to train on small datasets without Neural Networks have been published, 

wi th l imited success, such as generative models [FFFP07] and a VI - l ike model [PCD08]. 

3.3 Transfer Learning 

Training a new m o d e l for s imilar tasks, such as the detection of a new object w h e n object 

detectors are already available, can be time-consuming, and result i n lower accuracy. In order to 

mitigate some of these drawbacks, the following Transfer Learning techniques are widely used: 

Last layer(s) retraining as described i n section 3.3.1, and f ine-tuning of section 3.3.2. Apply ing 

these has repeatedly demonstrated improvements, thanks i n part to the transferable nature of 

the problems of image processing. 

3.3.1 Last Layer retraining 

It is well known that training very deep models of 10+ layers using backpropagation is slow and 

requires vast amounts of data, but results i n networks w i t h more representative h i d d e n layers 

and more accurate models. For example, a network of 100+ layers was the state-of-the-art i n 

image classification i n 2017, at the inconvenience of complex training. Training such networks 

is done by hierarchically adding layers during training, rather than keeping a fixed architecture. 

This accruing process is s imilar to using a wel l - tuned deep neural network, and retrain

ing the last layer only to suit a task [Gol08, Benl2] . This approach is widely used i n Tensor-

flow /citebtensorflow2015-whitepaper, a deep learning training library used for reference m o d 

els, i n research, and i n deployment. 

The high-level concept b e h i n d the technique is that feature extractors and object-part 

classifiers are c o m m o n to most tasks i n computer vision, and can, therefore, be re-used across 

tasks. As shown i n figure 3.2, these have been visual ized i n previous work [YCN + 15] , and it 

can be seen that the lower layers are analogous to hand-designed wavelet transforms, and the 

mid-layers are similar to SIFT and SURF feature extractors. 

For example, the reference neural network AlexNet [KSH12] is taken, the last layer is re

init ial ized and connected to 100 output neurons, and the last layer is retrained to classify to 

dogs /citebtensorflow2015-whitepaper, with state-of-the-art results. The same approach can be 

applied to other classes, other tasks, and other problem domains. 
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Figure 3.2: Visualized convolutions trained i n a three-layer face-detection deep neural network. 
Taken f rom [LGRN09] 

3.3.2 Fine-tuning 

Tasks i n computer vis ion exist, where last-layer retraining is not sufficient i n terms of achieved 

quality, or not usable for other reasons. In these cases, one can turn to fine-tuning, where more 

extensive changes can be made to the network whi le mainta in ing some of the weights of the 

original network [HOT06, CPH05]. 

Some instances where this approach m a y be more appropriate are: w h e n the input size 

changes, when the input number of channels changes, when the hidden layer size changes due to 

problem complexity, or when a network is being initialized for an entirely different task [ZLLS19]. 

In fact, there are benefits to re-using weights even i n the last case, because networks spend a 

large amount of initial computational time training to detect simple features, and this process is 

sped-up. 

A practical example of fine-tuning m a y be the processing classification of dogs [ABC + 16] , 

where a network previously trained to detect various objects must specialize its hidden layers as 

wel l as the last layer. Here, fine-tuning is expected to produce more informative channels for 

dog-specific low-level features, such as eyes and their variations, hair, ears, paws, and tails. 

3.4 Image Captioning 

The task of generating text which describes the content of an image is called Image Captioning. At 

the time of publication of m y early work on the subject, detecting objects and their relationships 

was already possible, but generating credible sentences on any topic was i n its infancy. Therefore, 

I presented a baseline approach: Image Captioning wi th Semantically Similar Images [KHZ15]. 
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assessment this method h u m a n random 
Ratio of captions evaluated as better or equal to h u m a n 0.194 0.638 0.007 
Ratio of captions that pass the Turing Test 0.213 0.675 0.020 
Average correctness of the captions o n a scale 1-5 3.079 4.836 1.084 
Average amount of detail of the captions o n a scale 1-5 3.482 3.428 3.247 
Ratio of captions that are similar to h u m a n description 0.154 0.352 0.013 

Table 3.2: Scores o n the M S C O C O Captioning Challenge 2015 

In this method, the oracle answers the question: 'How w o u l d similar images be captioned?', by 

f inding the per-word count mode and presenting this phrase. 

The method uses Convolutional Neural Network activations as an embedding to f ind seman-

tically similar images. From these images, the most typical caption is selected based on unigram 

frequencies. This Conformal Predictors approach is used i n various other scenarios, and it is a 

k n o w n beneficial Active Learning framework [MSDC12]. 

Image Capt ioning is a challenging prob lem w h i c h requires a smart and careful combina

t ion of Computer V i s i o n wi th Natural Language Processing. The approach presented here 

yields results which outperform several state-of-art published methods while being significantly 

simpler. 

In this approach, the last h i d d e n layer of a Convolut ional Neura l Network is used as an 

embedding. For a given test image, the nearest training images are found, and their captions 

are retrieved. In this body of captions, w o r d counts are used i n selecting the sentence w h i c h 

contains the most repeated terms, and this sentence is used to annotate the test image. 

This simple method was entered into the Microsoft C O C O [LMB + 14] 2015 captioning chal

lenge, where it was evaluated by various widely used metrics, and assessed by h u m a n judges 

through A m a z o n Mechanical Turk. These results are presented and discussed here. 

3.4.1 Semantic Similarity Captioning 

In order to simplify m y approach [KHZ15], it is divided into three steps: C N N embedding (3.4.2), 

F inding similar images (3.4.3), and caption selection (3.4.4). 

For a test image, a pre-trained image classification C N N is evaluated, and the last h i d d e n 

layer is used as an embedding. In this embedding space, n nearest training images are chosen. 

A l l the captions of these training images are then bagged together, unordered. Finally, one of 

these sentences is selected as the annotation of the test image. 

3.4.2 C N N Embedding 

The semantic image embedding is computed using the Caffe reference network [ISD +14], pre-

trained on ILSVRC [RDS + 15b] images. Specifically, the embedding is provided by activations of 

the last h i d d e n layer after the R e L U nonlinearity. The activations are a sparse vector of length 

4096 and were shown to be suitable for semantic content-based image search [CZ14]. This is 

evaluated o n all training and test images. 
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count word 
83 
47 train 
21 er± 
19 •the 
15 down 
14 track 
13 tracks 
11 bus 
10 traveling 
10 is 
7 Witft 
7 • t o 

7 road 

Table 3.3: Most frequent unigrams for the example image. Ignored words are crossed. 

3.4.3 Finding Similar Images 

For a query image, the n nearest database images by cosine distance are selected. See figure 3.3 

for an example, n is chosen manually, to fit the task, and n = 10 is chosen for the M S C O C O 2015 

challenge. Other distances were tested (1-norm, 2-norm, oo-norm, and ranking by linear SVM), 

but these d i d not outperform cosine distance. 

3.4.4 Caption Selection 

A l l captions of the n most s imilar images are bagged to create a description corpus - ranks of 

images are ignored. Since n = 10 and 5 captions are given for every database image, a corpus of 

50 candidate sentences is obtained (see figure 3.3c). F r o m the candidate sentences, the most 

representative one is selected by iteratively removing sentences w h i c h don't contain words 

which occur most frequently i n the 50 candidate sentences. This cull ing process starts wi th the 

most frequent word. 

If a w o r d is not present i n any of the remaining candidate sentences, it is skipped. The 

process ends w h e n only one sentence remains. The 100 most used words according to Google 

n-grams [MSA + 11] are ignored i n the cul l ing process. Table 3.3 shows the words used i n the 

example image. 

3.4.5 Results 

Figure 3.3 shows an example of images retrieved using the C N N embedding. As i n this example, 

the retrieved images match semantically more than visually, as desired. Figure 3.3c shows all 

candidate sentences of the retrieved images, and Table 3.3 shows the words used to select the 

final caption. 

In the M S C O C O Capt ioning Challenge 2015, resulting captions were assessed by h u m a n 

judges according to five metrics. Table 3.2 presents this method's score for each metric, along 

with the score for h u m a n and random annotation. 



Image Captioning 27 

(a) Query image (b) Retrieved images 
Guy stands near a train carrying gravel on its holding cars 

A man standing next to train on a train track. 
A train with multiple carts and a person working on it. 

A man standing next to a train on train tracks. 
A train attendant stands near a train pulling two filled cars. 

A train hauling a van is crossing some railroad tracks. 
Train passing a man on rural country road. 

A train with a man on the back of it with a vehicle in the background 
A train car carrying a man and a white van 

Much needed train track repairs are now in progress. 
A yellow bus carrying passengers riding along the road. 

A yellow school bus driving down a street with a red car following behind it. 
There is a bus driving down the street. 

This yellow bus is driving down the street 
A yellow bus traveling down a cobblestone road. 
A train driving down the tracks near a platform. 

A train that is sitting on a train track. 
People on a platform watching a steam train pull in 

A train traveling down tracks next to a loading platform. 
A train driving toward a station where people are waiting. 
A long train traveling through a tree covered countryside. 

A multicolored freight train on a track amid greenery. 
A train has many containers attached to it 

A train traveling down the tracks through scenic scenery, 
a long colorful passenger train going down a track by some trees 

A train traveling down a train track next to trees. 
A train on the tracks moving through bushes, 

an image of a train riding along the rail road track 
A railroad train traveling down the train tracks 

A train is approaching on a railroad track. 
A train is riding down the tracks in the middle of some woods. 

A very long large train going down a track. 
A long train on a track next to another track. 

A colorful train sits on the tracks on a foggy day. 
A train with two engines pulling cars along the curve of a fall photo. 

A locomotive train engine is pulling cars along a railroad track. 
A train with passenger cars on train tracks. 

A train with an older locomotive drives through the country, 
a train sitting on a track next to a bunch of trees 

Steam train engine on the tracks in a field. 
A train traveling past a building and two lights. 

The train is passing by parked trucks in a lot and buildings. 
A train that is sitting on the tracks. 

A passenger train that is traveling down some tracks. 
a big train drives down a track through a city 

A bus moving down a road lane designated for buses. 
A red and white bus traveling on a side road. 

A bus moving fast along an interstate highway. 
A red and white bus traveling the bus lane on a highway, 

a public transit bus on an empty road 

(c) Annotations from selected images, with the selected one in bold 

Figure 3.3: Example caption and intermediate results 



Image Captioning 28 

Although the method received low scores with automated evaluation metrics and i n human 

assessed average correctness, it is competitive i n the ratio of captions which pass the Turing test 

and w h i c h are assessed as better or equal to h u m a n captions. 
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3.5 Generative Adversarial Networks 

Direct Deep Learning wi th image input is a discriminative machine learning method, because 

the inner weights cannot be used to generate n e w samples f rom the training data distr ibu

tion. However, by introducing Generative Adversarial Neural Networks i n 2014 [GPAM + 14] , Ian 

Goodfellow made a breakthrough that challenges this l imit . This new approach combines two 

networks, a generator and a discriminator, and jointly trains them to produce a generative neural 

network for new samples f rom the training set. 

Random noise 
vector 

[0.84917559, -0.11757891,...} 

Generative 
model 

(generator) 

Real image 

5 0 H / 

Fake image 

1 
Discriminative 

model 
(discriminator) 

4* 6 e 8 

Real/Fa ke 
label 

© 
0\O 

Figure 3.4: Adversarial training of G A N s wi th real and fake images. Taken from [Rool7] 

G A N s are a f o r m of P U learning, training a generator o n data f r o m a set of images w i t h 

some shared class or property. The generator's input is a vector of random numbers, called the 

R a n d o m noise vector, latent space, or sampl ing distr ibution. The generator network consists 

typically of several deconvolution layers to produce an image output. 

This output is passed to the second network, the discriminator. This m o d e l takes images, 

and outputs a single 0 - 1 real/fake label. The entire G A N is then trained i n two modes: 

1. Discriminator training mode, where real and fake images are presented to the discrimina

tor network, and it is trained by backpropagation to distinguish them. 

2. Generator training mode, where the two networks are appended, the discriminator net

work weights are fixed, and updates are channelled via backpropagation f rom the true/-

false output to the generator. The weights are updated accordingly. 

The cost of training the discriminator is 

/ m ( 0 ™ ) 0 ( a ) = _ l E ^ p d a a l o g D W _ l E z l o g ( 1 _ D ( G ( z ) ) ) ( 3 1 ) 

where J(D) and / ( G ) are discriminator and generator costs, 9(D) and 9(G) are model parame

ters, x is every datapoint, and z is every sample from the latent space. 



Semi-supervised Learning 30 

Similarly, the cost of the generator is 

/ ( G ) = - i E z l o g ( l - D ( G ( z ) ) ) (3.2) 

Another variant of GANs are conditional GANs, where the generator input is composed of a 

r a n d o m noise vector and a descriptor. Similarly, the descriptor is added to the discriminator 

output. By using labels from the data, the generator is able to learn to produce random samples 

wi th a given property. This technique is described i n chapter 5, where it is used twice to train 

image generators. 

While GANs are notoriously challenging to train with stability, they are effectively impossible 

to overtrain [GPAM + 14] , because the space being explored is fitting a model to another model , 

rather than a m o d e l to data. If too few samples are used, the resulting generator m a y be 

unrepresentative of the real world distribution, but not of the distribution presented to it during 

training. 

3.6 Semi-supervised Learning 

As Active Learning proposes relevant datapoints for labeling during training, it is a method of 

semi-supervised learning, w h i c h combines labeled and unlabeled data. While semi-supervised 

learning does not include annotation feedback, it nonetheless includes important methods used 

i n Computer Vis ion, especially w h e n labeled data is rare i n comparison wi th unlabeled data. 

One such approach is Pseudolabels [Leel3], w h i c h supervises the training of a deep Convo-

lutional Neural Network by using a combinat ion of labeled and unlabeled data. 

3.6.1 Pseudolabel 

Pseudolabel [Lee 13] introduced Semi-supervised Learning to Convolutional Neural Networks. As 

shown i n Algorithm 1, the C N N is trained in the usual way, but training images are supplemented 

by an unlabeled dataset. A low-density separation between classes justifies the use of entropy 

regularization o n additional data. 

Data: labeled images, unlabeled images 
Result: trained classifier 
initial training of C N N with labeled images only; 
while CNN not converged do 

for each unlabeled image I do 
pick the class wi th max predicted probability 

end 
train C N N with labelled and weighted pseudolabeled images 

end 
Algorithm 1: Original pseudolabel algorithm 

In addition, at each iteration, the mixed set is classified with the current network, and these 

predictions are used as labels for the next iteration. R a n d o m selection f r o m the mixed set, 
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and increasing weights for the selected subset, are meant to help convergence to a classifier 

principally influenced by the training set. 

This approach is justified by the cluster assumption, which states that the decision boundary 

should lie i n low-density regions to improve generalization performance [CZ]. Rather than 

explicitiy searching for low-density regions, the pseudolabel approach impl ic i t ly finds these, 

because changes i n classification are more likely to occur i n regions where the consensus among 

examples can be perturbed by few label changes. The pseudolabel approach helps w i t h the 

M N I S T dataset, d ivided artificially into a training set and a m i x e d set for w h i c h labels are 

unknown. Accuracy comparable to that achieved by using the entire set was reached. However, 

this dataset is long considered solved [WZZ + 13] , and similar results remain to be demonstrated 

o n a challenging problem. 

3.7 Summary 

Machine Vis ion has seen a rapid improvement thanks to the application of highly flexible models 

wi th mil l ions of parameters, trained f rom the ground up, and thanks to datasets several orders 

of magnitude larger than before. While datasets have been gaining i n size and effect o n model 

quality, so has the need for extensive manual labell ing [ZLLS19]. After a careful Class-domain-

wise tagging init ial izat ion, canonical Image Datasets used to be first annotated by d o m a i n 

experts, then by groups of researchers, and n o w require tens of thousands of work-hours by 

a large body of crowdsourced workers [DDS + 09, K r i l 2 ] . In order to best util ize each of these, 

and all three types of workers i n unison, Active Learning is becoming the reference method of 

dataset construction [YSZ +15]. 

Automatic and semi-automatic annotat ion is necessary for training next-generation clas

sifiers, detectors, and segmentation methods, because of the exponential growth of necessary 

data. Therefore, this thesis n o w presents a systematic analysis of the question of h o w to best 

apply Active Learning to Machine Vis ion . 



CHAPTER 4 

Hypothesis & Contribution 

Generative and discriminative algorithms i n Computer Vis ion are designed and trained to maxi

mize their ability to generalize. This is tested on unseen data, and maximized by improving the 

model prior, improving the quality of the labelled and unlabeled data used, and by hyperparam-

eter tuning. A tangential approach, compatible with improving the model and hyperparameters, 

is Active Learning, by w h i c h the gathered data is improved during training-time by effectively 

managing the labelling and selection effort of an expert. 

4.1 Hypothesis 

As it is desirable to optimally transfer knowledge and existing models to new tasks where data is 

l imited, the following hypothesis is put forward: 

Human and algorithmic expert annotation using Active Learning improves the accu

racy of contemporary Computer Vision methods. 

The hypothesis is put forward with the expected result of achieving a significant margin, thus 

being both useful and demonstrably achievable. The term contemporary is taken to mean algo

rithms performing state-of-the-art accuracy in the case of discriminative models, or output qual

ity for generative models, but not expecting to produce comparable results to next-generation 

models. The hypothesis refers to human and algorithmic experts because Active Learning is 

expected to be applicable both i n the context of green-field datasets and applications and i n 

Transfer Learning applications where one or more useful weak learners already exist. The con

cepts of accuracy, quality, and labor time are context-specific, referring to a context-dependent 

relevant applicable metric of generalization, and to the t ime and effort taken to achieve said 

results. 
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4.2 Method 

The hypothesis is tested by comparing the achieved accuracy of this approach, as opposed to hy-

perparameter tuning, model tuning, and extended training time. These alternative approaches 

are known to hold the potential to improve accuracy and reduce labour time for Machine Vision 

tasks, and they are widely studied elsewhere [DDS + 09 , YRLT, TFF08, DBLFF10, AQ07, S G Z + 1 6 , 

RMC16, LBBH98a, K L A + 2 0 ] . The experimental proofs presented further are divided by approach 

and refer to m y o w n relevant publ ished work. These are experiments to demonstrate the ben

efit of Active Learning via sample selection, v ia h u m a n and algorithmic labelling, v ia feature 

selection and adaptive visualization, and pseudolabels. 

The standard supervised, unsupervised, or semi-supervised setting can be formulated as 

training a model M wi th parameters p o n two sets of data: 

p = argmin M(XK u Xv) (4 ^ 
P 

Where Xk are datapoints wi th k n o w n labels, and X\j datapoints wi th u n k n o w n labels. The 

Active Learning approach has the addit ional Xqj subset of X\j, w h i c h contains the datapoints 

chosen to be labeled: 

Xc,i = Si{M,pi,XK)i,XU)i) 
(4.2) 

Pi = argmin M(XKj u XUti u XCj) 
P 

A n d the hypothesis is therefore s imply that there exists a selection mechanism S such that 

VJ3S | L(M(XKuXu))< UMiXKjuXujuXcj)) (4.3) 

Where L is an appropriately chosen loss funct ion for the given model . 

The results of the demonstration of the hypothesis have a wide array of applications, such as 

Association-rule Learning used by comparing the quality of texture synthesis algorithms over 

inputs wi th selected properties [KDC17, KCD15]. 

In the fol lowing chapter, I w i l l test the hypothesis i n various scenarios. These tests cor

respond to various perspectives under w h i c h Active Learning can be util ised, namely online 

training wi th an optimized graphical interface [HKL + 12] i n section 5.3, iterative dataset opt imi

sation [KHZ20] i n section 5.1, and active transfer learning with an algorithmic expert [KHZ16] in 

section 5.4. 

4.3 Contribution and Proof Outline 

The theoretical contr ibut ion is that these results irrevocably demonstrate that the systematic 

application of Active Learning improves the accuracy of contemporary Computer Vis ion models. 

A practical contribution is also made, i n the form of an algorithmic process usable for Zero-shot 

Learning and One-shot Learning for image classification, given that a weak retrieval system is 

available from a large set, such as online image search indexing the Web. 
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Furthermore, appl ied contributions are made i n the fields where the hypothesis has been 

tested: an improved dataset and algorithm for Font Capture and a G U I for image tagging wi th 

Active Learning. 

Specifically, the existence c la im of equation 4.3 is demonstrated by f inding S for various 

scenarios of (L, M , X). For each, the contemporary M a c h i n e V i s i o n approach is considered i n 

comparison wi th the Active Learning alternative. These two options are then compared, wi th 

the desired objective of showing 

3S | (L,M,X) (4.4) 

under the condit ions of equation 4.3. By demonstrating this for four important problems 

of current research, the hypothesis is validated i n a l imi ted context. In order to validate the 

hypothesis wi th respect to all problems of Computer Vis ion , the argument by analogy is made 

that every Computer Vis ion problem can be aided by applying these Active Learning principles. 

The cases under consideration are: 

1. Tagging of c losed-domain information by opt imizing an Active Learning Graphical User 

Interface 

2. One-shot learning wi th pseudolabels and a weak algorithmic expert 

3. Active Learning for h u m a n experts to create data for Generative Adversarial Neural net

works 

4. Transfer Learning of algorithmic experts for Generative Adversarial Neural networks 

These four cases correspond to sections of the fol lowing chapter, where they are treated i n 

more detail. A n overview of the interconnections of these sections and how they jointly support 

the thesis is as follows: Active Learning benefits the model and users directly by allowing them 

to more efficiently label data w i t h general classes, as wel l as domain-specif ic informat ion (1. -

publ ished i n 2012). Moreover, sufficiently well-preprocessed image data allows high-quali ty 

training of classes without any h u m a n expert, by using an online image search algorithm and 

pseudolabels to train a Convolut ional Neural Network (2. - publ ished 2016). The fi ltering of 

existing datasets by humans (3. - under review), as well as the labelling of unsupervised datasets 

by algorithms (4.) can be performed with Active Learning, enabling improved generative quality 

as well as entirely new applications. 

Therefore, these four problems present a holistic approach to the applicat ion of Active 

Learning i n contemporary Computer Vis ion. Beyond the contribution made to the hypothesis, 

these have also served to further the fields of research they have been applied i n , as detailed i n 

the following chapter. 



CHAPTER 5 

Active Learning for Machine Vision 

The cases i n w h i c h Active Learning has been tested to support the hypothesis are described 

i n this chapter. The presented work is divided into four sections, loosely corresponding to m y 

own published work. By using a combination of Uncertainty Sampling and Diversity Sampling, 

the sections below focus o n creating improved data and models by sampling f r o m all data-

points while opt imizing labelling. Each of the fol lowing four cases is an experiment to test the 

hypothesis, and thus to serve as a quantitative proof. 

In the context of labelled image datasets, image-wise tagging is not l imited to pre-training 

annotation. In fact, the required expert input can be reduced by judicious initialization with an 

external system [KHZ16], by asking the annotator to verify rather than label [DDS + 09] , and by 

in-the-loop training to identify samples wi th low certainty [ H K L + 1 2 ] . 

This chapter describes m y o w n work, i n w h i c h the first approach has been tested and 

publ ished, as detailed i n section 5.4, the second approach has been tested i n the context of 

generating fonts 5.1, and the last approach has been experimentally validated through imple

mentat ion and user experiments 5.3. Similarly to the first approach, work i n section 5.2 also 

shows that beneficial results can be achieved with pure Transfer Learning, where a set of labels is 

created from specialized pre-trained models, serving new tasks not possible before. Section 5.2 

presents work made publ ic as a freely available dataset at h t t p s : / / g i t r m b . c o m / D C G M / f f h q -

f e a t u r e s - d a t a s e t . 

These three of sections correspond to peer-reviewed work, as follows: Section 5.1 contains 

work currently under review at The Visual Computer as Font Capture in the Wild [KHZ20], 

section 5.3 was publ ished as Annotating images with suggestions—user study of a tagging sys

tem [HKL + 12] , and section 5.4 describes the method publ ished as Deep learning on small 

datasets using online image search [KHZ16]. 

Finally, section 5.5 summarizes how these individual contributions support the hypothesis 

of the thesis, and integrates the findings into a cohesive methodical validation. 
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5.1 Improvements via Dataset Size and Quality 

Font Capture is a task i n Computer V i s i o n and Computer Graphics, i n w h i c h text present i n 

an image is replaced w i t h new text i n the same font. Worldwide, 750 m i l l i o n people are native 

speakers of a language wri t ten i n a Lat in-derived alphabet w i t h diacritics such as accents, 

subscripts, and superscripts [wikl8]. However, out of an estimated 100 thousand digital fonts 

widely available, only a few hundred include these non-Engl ish characters. 

Font extraction o n characters of the Lat in alphabet has been attempted before, either wi th 

l imited applications to classical fonts [CK14], or with blurry or noisy results [Ball7, USB16], and 

always by using individual characters as input. Thanks to an improved dataset and method for 

generating training samples, this work creates sharp fonts extracted directly f rom a line of text, 

suitable for use i n photo editing as wel l as vectorization. This approach makes it possible to 

take an existing TrueType font, render new characters, convert t h e m to vector graphics, and 

incorporate them i n the original, thus effectively closing the loop. Active Learning has been used 

to create a large high accuracy dataset of fonts, thus improving the quality of the method. 

Generating fonts cannot be replaced by font search over a large enough dataset, as shown. 

Al though fonts are widely shared o n the internet, and font search engines are freely available, 

few fonts can be acquired to perfectly match the desired input. Finding a font given an image is a 

challenging task, undertaken by domain experts or automated processes. Identification methods 

range f r o m pixel differences o n detected aligned characters [squl7] to matching manual ly 

entered detailed features [idel7] based o n standard font classification techniques [CGL13], or 

automatically extracted attributes [OIAH14]. If these methods fail, fonts can be identified by a 

c o m m u n i t y of experts, such as Fontid.co. However, exotic fonts m a y be u n k n o w n to experts, 

unavailable to identif ication systems, or non-digit ized. For example, Figure 5.1 shows a query 

text, along w i t h nearest retrieved fonts by existing methods. This demonstrates that pixel 

difference and others are not a sufficient metric i n font style matching. 

These limits of f inding existing fonts sparked an interest i n extrapolating the entire style of a 

font from a single example. Font extrapolation with warp mappings dates to the nineties [TF97], 

inspired by the effect on the shape of charge on ink particles. A manifold over fonts has allowed 

smooth traversal of the font space [CK14] and was applied to classical typefaces to interpolate 

fonts. Extrapolation of numerals on the M N I S T and S V H N datasets was made possible by deep 

generative models, creating a latent space w h i c h allows traversal across glyphs [KMRW14]. 

More recendy, a fully connected deep net has been used to create an embedding of 50 

thousand fonts [Berl6]. A feed-forward neural network has been used to generate the entire 

font f r o m four characters [Ball7], wi th poor quality results. In addit ion to l imi ted quality, this 

technique suffers f rom requir ing specific characters, w h i c h may not occur i n the sample text. 

Variational Autoencoders have been used to generate fonts from a single example glyph [USB 16], 

but w i t h a small dataset of 1'839 fonts and a fully connected network, the results are still 

blurry. The 50k fonts dataset [Berl6] has been used to train a VAE and a G A N [ganl6], using the 

principles out l ined i n [RMC16]. Fonts are extrapolated f r o m varying characters w i t h a M u l t i -

Content G A N [AFK + 18] , i n colour. However, existing methods require segmented characters 
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TOY MUSEUM HRACEK 
(a) Query text from image - hand-drawn 

TOY MUSEUM HRACEK 
(b) Nearest match by pixel difference - JollyGood Sans Condensed 

TOY MUSEUM HRACEK 
(c) Nearest match by property matching - Keynote (caron unavailable) 

TOY MUSEUM Hit ACER 
(d) Nearest match by expert community - Krinkes 

Figure 5.1: Comparison of font retrieval methods 

rather than analyzing text directly. Mos t crucially, results of all existing methods are blurry or 

noisy for all but the most standard fonts. 

Whi le the existing methods train various architectures of neural networks w i t h mi l l ions 

of parameters, I anticipate that increased quality m a y be reached through the appl icat ion of 

Active Learning to create a larger, more representative dataset on which similar methods may be 

trained. The dataset was made by assembling a large p o o l of .ttf font files, iteratively training 

and annotating data for a binary classifier of usability, and thresholding the ensuing classifier to 

produce a dataset of usable quality fonts. This procedure utilizes a combination of Uncertainty 

Sampling and Diversity sampling, by focusing the annotator's attention o n cases w i t h high 

certainty, as well as cases of very low certainty. 

The dataset is filtered through a shallow Convolutional Neural Network over three iterations. 

At each iteration, four representative characters of every font i n the unlabeled dataset are 

rendered, classified, some are annotated, and the process repeats. The representative characters 

are „a", „1", „1", and „?". 

The ini t ia l izat ion proceeds as follows: The representative characters are rendered for all 

fonts and placed into a single image n a m e d w i t h the unique font ID. If any of the characters 

„a-z", , A - Z " , and „0-9" is blank or undef ined (rendered as i n figure 5.2), the font is discarded 

immediately. Similarly, if any two characters are equal pixel-for-pixel, the font is discarded. A l l 

remaining fonts are viewed i n a directory, allowing quick preview and easy group selection. 
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ODDD 

Figure 5.2: Undef ined characters render as Unicode error codes 

The fonts which do not contain readable Latin characters are manually selected and labelled 

as negative. This is performed for 0.5% of the data, or 1 300 fonts, w h i c h requires about two 

hours of annotation time. The other seen examples are marked as positive. This annotated data 

is then used to train a shallow Convolut ional Neural Network. The network, used to classify 

usable fonts o n four characters of fixed size, has two convolutional layers of 8 and 2 channels, 

and a last dense layer w i t h a s igmoid activation funct ion. This s imple network is trained on 

the annotated data. Negatively annotated fonts include non-Lat in fonts, dingbats, emojis, and 

highly ornamental typefaces, w h i c h may produce unexpected characters for standard glyphs. 

Then, the network is used to make predictions o n the unlabeled data. The 99.5% of unla

b e l e d data receives ratings f rom 0 to 1, for w h i c h two tasks are semi-manually performed: the 

establishment of a threshold n where positive examples outweigh the negative, and m a n u a l 

labell ing of unlabeled fonts near this threshold (uncertainty sampling), and near the 0 and 1 

ratings (diversity sampling). 

This for of uncertainty sampling is very effective, producing a high percentage of samples to 

be re-labelled. O n the other hand, this s implif ied form of diversity sampling does not produce 

many examples to be re-labelled. This can be interpreted i n two ways: 

1. The classifier is very effective and has few high-certainty incorrect cases 

2. This diversity sampl ing m e t h o d is not effective at f inding new types of cases needing 

re-labeling 

After three iterations, the re-labelled fonts are once again thresholded w i t h T3, and the 

effectivity of the combination of the sampling methods is evaluated as follows. A random sample 

of positive fonts is taken and manual ly evaluated unt i l a false-positive is present (an incorrect 

font selected as correct). Using this method, the first false positive i n random data was found at 

posit ion 349, giving an expected accuracy of over 99.3%. 

The dataset is then processed further, to create a specialized section of fonts wi th diacritical 

marks. This process is performed as i n the init ial ization stage of the full unlabeled dataset, but 

over a different set of representative characters: „a", „c", „D", „c", „A". „a", „e", and „1". If any of 

these characters were blank, undefined, or initialized wi th an error Unicode as i n figure 5.2, the 

font was not selected. U p o n manual assessment of the quality of this data, it was judged that no 

further Active Learning was necessary to improve the quality of this port ion of the dataset wi th 

diacriticals. 

In summary, fonts used i n this method have been acquired online, wi th 222 462 used out of 

272 849 unique fonts, inc luding 7 089 fonts w i t h selected diacrit ical marks (an acute accent ' , 

circle °, or caron v o n eight characters). The fonts have been downloaded from various sources, 

such as multiple unofficial datasets, Open Source libraries of fonts and font families, and official 

repositories of font-sharing websites. A font family is typically a group of related fonts w h i c h 
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vary only i n weight, orientation, width, etc., so i n order to create a highly representative dataset, 

it is desirable to include fonts wi th similar variations. Downloaded fonts have been filtered with 

the deep net described earlier. 

A Generative Adversarial Network was trained on this dataset to render any of the characters 

wi th and without diacriticals. Whi le rendering data for training, the input was rendered as 

ordinary text with correct kerning and English letter statistics, by sampling phrases from a Harry 

Potter book. The G A N was simultaneously trained to generate diacritics, by using non-diacritics 

at the input with fonts containing diacritics, and a random accented character at the output. A n 

outline of the trained G A N can be seen i n figure 5.3, and further details on this standard process 

can be seen i n the original publ icat ion [KHZ20]. 
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Figure 5.3: G A N structure, wi th sample inputs and outputs 

5.1.1 User Study 

A user study with 17 participants compared generated characters from state-of-the-art methods: 

VAE [KMRW14], ADV-VAE [USB 16], and this work. The study was performed with three triplets of 

characters, as shown i n Figure 5.4. Each participant received 72 rows of triplets, printed on four 

sheets, and was asked to identify the different triplet. If the user fails to identify the generated 

triplet, the output of the method can be considered indist inguishable f r o m the original font. 

Correct and incorrect user classifications are summed for each method, and results are presented 

i n Table 5.1. The proposed m e t h o d recreates fonts convincingly i n 51% of cases, compared 

to 3% and 9% for the previous methods. According to the randomizat ion permutat ion test, 

these results are highly significant (p<0.0001). Furthermore, tests show that V A E outperforms 

A D V - V A E wi th p-value 0.059. 

Using this approach, fonts may be extended to other alphabets and non-alphabetic lan

guages for the benefit of bi l l ions of people whose native languages are not writ ten i n Lat in 

alphabets. Unicode defines 136 900 characters [Thel 1], all of w h i c h can be generated i n any 

font using this approach. Office suites such as Microsoft Office & Google Docs can benefit from 

incorporating such tools i n the future. 
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Figure 5.4: User Study Setup. Each row contains three triplets, two of w h i c h are ground truth, 
and one is generated by one of the three methods. Their order is randomized, except for the 
middle triplet, w h i c h is always the ground truth. 

Method success rate adjusted success rate 

VAE [KMRW14] 4.7% 9.4% 
A D V - V A E [USB 16] 1.6% 3.1% 
Ours 25.6% 51% 

Table 5.1: User Study Results. If the method produces indist inguishable outputs w i t h respect 
to the ground truth, the user performs a r a n d o m binary choice. This corresponds to a 100% 
method success rate for an ideal output, versus 50% measured i n the experiment. The adjusted 
success rate is doubled accordingly. 

A l imitation of this work is the lack of kerning information. Currently, kerning is being done 

manually, so automated letter spacing is only possible for monospaced fonts, but this can be 

incorporated as an additional specialized task. 

The hypothesis has been tested by compar ing similar generative neural networks under 

similar conditions, but the network shown here has been trained w i t h an improved larger and 

higher quality datasets thanks to the application of Active Learning. The method trained on the 

dataset produced via Active Learning has demonstrably outperformed the other, as shown i n 

table 5.1. 
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Figure 5.5: A sample from the Flickr Faces H Q dataset (FFHQ) [KIA19] 

5.2 Unsupervised Active Learning 

Another practical application of Active Learning principles is Transfer Learning, enabling effec

tive algorithmic annotation of unlabeled data. The Flick Faces H Q (FFHQ) dataset [KLA19] has 

been successfully used i n generating faces by training G A N s , but the images lack annotation, 

w h i c h w o u l d provide useful in format ion i n guiding face generation via features. D u e to this 

l imitat ion, faces can only be generated by randomly sampling the latent space, or by selecting 

latent space points corresponding to k n o w n faces. However, it has been previously impossible 

to generate random faces wi th specific attributes. 

The F F H Q dataset contains 70 000 unlabeled unique faces i n high resolution, making it well 

suited for applications i n graphics. See figure 5.5 for a r a n d o m sample of these images. These 

images, even w h e n annotated, w o u l d be impract ical for training other tasks, such as gender 

recognition or orientation, because of the unnecessarily high definition and low sample count. 

However, by combining state-of-the-art feature extractors wi th the high-resolution dataset, 

it is possible to create a dataset of labelled faces with useful information for guided generation 

of faces wi th specific features. 

5.2.1 Transferring features 

The dataset was created by running these pre-trained models to extract features: VGG-Face [PVZ15], 

Facenet [SKP15], OpenFace [BZLM18], andDeepFace [TYRW14]. These pre-trained models de

tect faces and then produce features. These are geometrical features (landmarks and orientation), 

and well as categorical features (facial hair, emotion, eye colour, etc.). The 70 000 faces i n were 

processed by these four models, and all but 528 very detected and annotated. The remaining 

faces are excluded f r o m addit ional training i n order to mainta in the system's ful l autonomy. 

Transfer learning from pre-trained experts enables the creation of data labels by applying other 

algorithms, without h u m a n labels or supervision. 
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"faceRectangle": { 
"top": 4B, 
" l e f t " : 25, 
"width": 76, 
"height": 76 

} , 
"faceAttributes": { 

"smile": 1, 
"headPose": { 

"pi t c h " : -7.3, 
" r o l l " : -B.8, 
"yaw": -B.3 

}, 
"gender": "female", 
"age": 26, 
" f a c i a l H a i r " : { 

"moustache": B, 
"beard": B, 
"sideburns": S 

}, 
"glasses": "NoGlasses", 
"emotion": { 

"anger": B, 
"contempt": B, 
"disgust": S, 
"fear": 0, 
"happiness": 1, 
"neutral": S, 
"sadness": S, 
•cum r i t p " • 

Figure 5.6: A random face from F F H Q dataset, wi th some extracted annotations i n .json format 

See figure 5.6 for a random annotated face. The resulting dataset, FFHQ-features, is available 

on l ine 1 . 

5.2.2 Generative Faces with Features 

The dataset was used to train a conditional Generative Adversarial Network. Unlike traditional 

G A N s , w h i c h randomly sample the latent space to generate samples indistinguishable f rom 

training data without control over the features, condit ional G A N s are trained w i t h an addi

t ional control vector, al lowing them to set the desired properties of the output, given that this 

information was k n o w n during training. 

Several architectures of c G A N s were trained, wi th a number of different tunings, loss func

tions, and hyperparameters [Ven20]. The features used were only age and gender, but the 

process can be applied to any categorical and continuous features present i n the FFHQ-features 

dataset. Figure 5.7 shows randomly generated faces wi th gender and age control. 

Instead of randomly sampling the latent space, and thus generating new faces, the network 

can also be used to generate the same face with different control features. In figure 5.8, the same 

random vector i n latent space is rendered with different ages, resulting i n the generated ageing 

process for a random, non-existent person. 

By extending the use of Active Learning methods to fully algorithmic solutions via labelling 

wi th pre-trained networks, new results have been achieved. It was previously impossible to 

generate faces w i t h specific features due to the lack of such quality data, and by applying 

https://github.com/DCGM/ffhq-features-dataset 

https://github.com/DCGM/ffhq-features-dataset
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Figure 5.7: ProGAN-generated faces wi th age and gender restrictions. Rows alternate genders, 
columns ho ld incremental age groups [Ven20] 

Figure 5.8: ProGAN-generated faces, wi th varying age parameters [Ven20] 

these techniques, the contemporary M a c h i n e V i s i o n prob lem of generating faces has been 

quantitatively furthered. 
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5.3 Optimising user annotations 

In this typical case of Adaptive Learning, a tagging system is presented such that it optimizes the 

annotation process wi th respect to two criteria: opt imal adaptive recommendations based o n 

prior actions, and an efficient interface for large-scale annotation. However, unlike Collaborative 

Filtering, this Active Learning use-case focuses o n user-specific informat ion, as opposed to 

preferences o n globally known objects. 

Most generally, users are presented w i t h the opt ion of creating arbitrary tags and al igning 

them to their own images. As these can be user-specific, language-specific, or location-specific, 

the information is not necessarily known for other users and other objects, and every tag has to 

be predicted online based o n current tags. 

By using Restricted B o l t z m a n n Machines to provide labell ing recommendations i n a web-

based user interface, the annotat ion of images v ia Active Learning has been experimentally 

tested i n a user study. The objective of the tag suggestion methods is to allow Image-wise 

tagging (assign tags to an image) rather than Class-domain-wise tagging (assign images to a 

tag). These results demonstrate that large datasets w i t h semantic labels (such as i n T R E C V I D 

Semantic Indexing) can be annotated m u c h more efficiently wi th the proposed approach than 

with current class-domain-wise methods, and produce higher quality data. 

5.3.1 Local Tag Suggestion 

A Restricted B o l t z m a n n M a c h i n e is used to predict labels, by the encoding of the labels of 

surrounding tags and extracted features. Aside f rom the R B M suggestion method, tags are also 

suggested if they are positively annotated i n nearby images in the gallery. A gallery is viewed as a 

chronological sequence, wi th images {Ii)f=1- W h e n generating suggestions for a given image U, 

each tag is given a weight id, given by 

N j 
(t> = ^ : * has_tag{I{), (5.1) 

where 

has_tag(Ii) = < 

p i log{\p-i\ + l) 

1 if the tag is positively annotated o n 7; 

- 1 if the tag is negatively annotated o n 7, 

0 if the tag is not annotated o n 7; 

The f o g ( | p
1 _ . | + 1 ) term ensures that closer annotations have more weight on a>, and the has_tag(It) 

term ensures that positive annotations have positive weight, negative annotations negative 

weight, and all others are ignored. Tags are then ordered by their io f rom highest to lowest. A n y 

tags with d)> 0 are then suggested, i n this order. 
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Figure 5.9: Typical view of the ITS web interface. Annotat ion opt ion parts are outl ined i n red. 

5.3.2 Integration of Suggestion and User Interface 

W h e n suggesting n tags, [n/2\ are f rom the R B M model , [n/2\ f rom local tag suggestion, and if 

n is odd, the remaining one is chosen wi th either method with equal probability. That ensures 

that w h e n only one tag is being added, neither method is favoured. 

W h e n an image is loaded, 15 tags are chosen, and three annotating options are available to 

the user. As seen i n Figure (picture of the Web), they are as follows: 

1. Each of the 15 suggested tags is presented w i t h a „check" and a „cross". W h e n c l icking 

check, the tag is added as positive annotation, and the cross adds negative annotation. 

W h e n cl icking either, the tag disappears from the suggestion list, and a new one is added 

at the end of the list. 

2. The user can use an auto-completing text field, where any typed word or part of a word is 

matched w i t h all occurrences i n existing tags as a substring. For example, w h e n typing 

„person", the user is presented with „person", „male person", „female person", and others. 

This ensures that w h e n no informat ion is given yet, the user can easily add informat ion 

that's compatible w i t h the current collection of tags i n the database. W h e n any of these 

is cl icked, it gets added to the current suggestion, and the suggested tags are refreshed 

accordingly. Users are allowed to enter new tags which are not yet i n the database; however, 

such tags are not immediate ly considered by the R B M model . It is more appropriate to 
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add new tags to the R B M m o d e l w h e n the n u m b e r of positive annotations of such tags 

increases over a certain threshold i n order to prevent saturating the m o d e l by rare or 

otherwise irrelevant tags. 

3. Given the chronological sequence of images, three preceding and three succeeding images 

are shown o n the right. W h e n any of these is cl icked, the positive tags that have been 

annotated on that image are copied over to the current image, and the suggested tags are 

refreshed accordingly. 

The suggestion operation takes o n average 0.1 seconds, making the system responsive and 

allowing quick interaction with the user. In case of sequential video frames, this interface allows 

users to seamlessly copy tags f rom previous images to the current one, either by copying tags 

from the three preceding and three succeeding images or by selecting the suggested local tags. 

Another use scenario is the annotation of holiday photos with recurring themes, people, and 

elements. In the case of unusual images and tags that are not a priory likely, the R B M suggestions 

may not be accurate very useful at first; however, by providing one or several tags relevant to 

the image (e.g. by using the auto-completing text field) w i l l make co-occurring tags likely to be 

suggested. 

5.3.3 Experiments and Results 

In order to identify the usability and usefulness of this system, two experiments wi th users were 

performed: testing w i t h untrained individuals w i t h m i n i m a l support, and testing w i t h expert 

annotators for an extended period of time. In order to make the test replicable, only images and 

tags 2 f rom the T R E C V I D 2011 Semantic Indexing task 3 were used, and the feature to add new 

tags was disabled. 

Besides the reproducibility of the experiments by others, there are several other advantages 

of using the T R E C V I D data. A part of the data is already annotated and can be used to learn 

the R B M tag-dependency model . Further, the dataset was annotated manual ly [AQ07], w h i c h 

provides a baseline for comparison. 

In addition to the user study, the ability of R B M to model dependencies among tags and the 

ability to estimate marginal tag probabilit ies by Gibbs sampl ing was tested o n the T R E C V I D 

data. This experiment gives the objective information f rom the R B M suggestion system alone. 

Testing by Untrained Users 

Ten randomly selected technical university students were asked to use four different tag sugges

t ion methods using this system, wi th as little training as possible. The four methods are: 

1. none — no suggestion method 

2Examples of the classes are Actor, Airplane Flying, Bicycling, Canoe, Doorway, Ground Vehicles, Stadium, Tennis, 
Armed Person, Door Opening, George Bush, Military Buildings, Researcher, Synthetic Images, Underwater and 
Violent Action. 

3

http://www-nipir.nist.gov/projects/tv2011/tv2011.html 

http://www-nipir.nist.gov/projects/tv2011/tv2011.html


Optimising user annotations 47 

effective pleasant 
none 
REM 

local 
RBM+local 

none 
REN 

local 
REM+local 

none RBH local REM+local none REM local REM+local 
more tags intel l igent 

none 
RBH 

local 
REM+local 

none 
REM 

local 
RBM+local 

none REM local REM+local 
saved time 

none 
REM 

local 
RBM+local 

none RBH local REM+local none REM local REM+local none REM local RBM+local 

Figure 5.10: Black squares represent a significantly better outcome i n the user evaluation, ac
cording to the questionnaire. The questions allowed a 1 - 5 rating on effectiveness, pleasantness, 
amount of images, amount of tags per image, perceived method intelligence, and whether the 
method saved time. 

2. RBM — only Restricted Bol tzmann Machine suggestion (Section 2.4) 

3. local — only local tag suggestion (Section 5.3.1) 

4. RBM+local — the combination of Restricted Bolzmann Machine and local tag suggestion, 

as presented i n section 5.3.2 

The methods were ordered randomly, and the user was not told which is which. After using each 

method, the user was asked to answer a questionnaire wi th questions regarding the rating and 

usability of the method, and data regarding the number of annotations created was stored. 

According to the results (Figure 5.11), RBM and RBM+local suggestion methods allow signif

icantly 4 faster annotation. There were no significant differences between RBM and RBM+local, 

nor between none and local. According to the questionnaire, method none is found by the users 

to be significantly 5 inferior to all the other methods i n almost all aspects. N o other significant 

differences were found, except that RBM and RBM+local received better marks i n the ability to 

facilitate annotating more tags per image compared to local. 

Testing by Expert Users 

Three expert users were asked to use the combined tag suggestion method (Section 5.3.2). The 

users previously took part i n TRECVID 2011 collaborative annotations [AQ08] and had at least 

two hours experience w i t h ITS. The users spent a total of three hours annotating randomly 

selected videos f rom the TRECVID dataset. 

In this setting, the n u m b e r of positive and negative annotations assigned per hour was 

448 and 3085, respectively, averaging 13.1 positive annotations per image. The annotating 

speed compares very favorably to Class-domain-wise tagging annotation for w h i c h the authors 

of [AQ08] expect 2 seconds per annotation; moreover, only 2.5% of the annotations i n the 

TRECVID 2011 SIN [ O A M + l l ] dataset are positive. When compared to the original distribution of 

4 Using the paired t-test at the 10% significance level. 
5 Using the Mann-Whitney U test at the 10% significance level. 
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none REM local REM+local none REM local REM+local 

Figure 5.11: The top graphs show the m e a n number of tags assigned per hour with confidence 
intervals at 90% significance level. The bot tom graphs show black squares where the c o l u m n 
methods annotate significantly more tags per hour than the row methods. 

tags obtained by the Active Learning method [AQ08], the ITS tags have a heavier tail distribution 

for both positive (kurtosis 8.35 i n TRECVID and 4.18 by ITS), and negative annotations (kurtosis 

2.18 i n TRECVID and 1.98 by ITS). 

It has been shown that the presented method produces higher quality annotations i n less 

time than comparable methods. Therefore, these results support the c laim that Active Learning 

presents an improvement over approaches without it and that the creation of labelled datasets 

w i l l benefit f rom the approach presented here. 

5.4 Deep Learning on Small Datasets using Online Image Search 

Learning image tags and object detectors is a core task of Computer V i s i o n , and the large 

amount of data required to train every visual class is prohibitive. Therefore, by reformulating 

the prob lem i n a Weakly Supervised P U learning setting, image categories can instead be 

trained from algorithmically preprocessed noisy online data. The following approach, the core 

contribution of this thesis, was presented at S C C G 2016 [KHZ16]. 

The proposed algorithm utilizes Google Image Search i n a H y b r i d A c t i o n Learning, where 

active learning w i t h a weak algorithmic expert is used after an unsupervised init ial izat ion. 

Thousands of images are retrieved for any search string. The resulting set of images is weakly 

annotated, i n the sense that numerous examples may be wrong or noisy. The data is stored 

statically for each given class, so this is not presented as a Onl ine Learning prob lem but as an 

Incremental Learning problem. 

The proposed algori thm (Algorithm 2) is composed of an ini t ia l pre-training, a selection 

process, and a repeated weighted training step. 

This section describes the data, the method, and the implementation. 

In the original paper [Lee 13], pseudolabels are labels assigned dur ing each epoch to any 

unlabeled images based on classifier responses. In the current setting, pseudolabels are weighted 

labels of the class used to query each image i n online image search. 
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Figure 5.12: Pseudolabel selects useful additional images from an unreliable source, to help train 
a Deep Learning classifier 

Throughout this section, the fol lowing conventions are adopted: X is a set of images 

{X\,X2,X^,...}, y is a set of labels {y1.y2.y3.---} where yn e {1,2,...C}. C denotes the n u m 

ber of categories. Training examples have the f o r m (X,y). Every i m o d e l update iterations is 

referred to as one epoch, and a set of images and labels during the duration of epoch e is denoted 

CXe,y e). 

labeled images are divided into a training set and testing set: (X" 3 1 1 1 , ^ 1 3 ™), ( X ^ . y * 6 8 * ) . 

In addition to the train and test sets, query images are retrieved from an online image search 

engine separately for each category. The queried images are denoted ( X q u e r y , y q u e r y ) . 

5.4.1 Training C N N 

C N N s are trained by Stochastic Gradient Descent, where training images are propagated forward 

through the network i n batches to produce outputs, for which error gradients are calculated. To 

complete an iteration, these are backpropagated to calculate loss gradients, w h i c h are used to 

update network weights. This process is repeated unti l convergence. 

http://%7by1.y2.y3.---%7d
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Data: labeled images, queried images for each class 
Result: trained classifier 
initial training of C N N with labeled images only; 
while CNN not converged do 

for each queried image I do 
select whether to use I for training 

end 
train C N N with labelled and selected images 

end 
Algorithm 2: Proposed pseudolabel algorithm 

5.4.2 Pseudolabels with Query Images 

The method described here relies on a different pseudolabel selection mechanism and a different 

pseudolabel weighting to the original approach [Leel3]. W h e n training wi th pseudolabel data, 

the C N N is trained as described i n section 5.4.1. However, x q u e r y images are repeatedly evaluated 

with the current network, and some are selected with pseudolabels X p l , for training. 

At the beginning of training, X^1 is empty. 

Xg 1 = 0 (5.2) 

For the first i iterations (during epoch 0), the C N N is trained only with (X t r a i n, y t r a i n ) . Then, X ^ u e r y 

is propagated forward through the C N N , to produce a set of vectors of beliefs for all labels bo 

for every query image. These beliefs correspond to the normal ized outputs of the last fully 

connected layer, before applying the last softmax layer. 

Then, a randomized selection process chooses w h i c h predicted labels y^ueiy wi l l be trusted. 

Pseudolabel examples Xg1 f rom the previous epoch are excluded. 

» ? + i , y ? + i ) = selectedOi.^\xf,y^y,be) (5.3) 

The selection method proposed here is explained i n section 5.4.3. The rest of X q u e r y \ X ^ is 

unused i n this epoch. 

This is the end of epoch 0. In each following epoch e, the C N N is trained with {(X^.yP1), (X t r a i n , y t r a i n ) } . 

Section 5.4.4 discusses h o w y g 1 can be weighted against y t r a i n for better convergence stability. 

5.4.3 Pseudolabel Selection 

Each example image is chosen wi th probability: 

(1 - A c ) * be 

(5.4) 

Where the accuracy A c for each class c o n unlabeled data is the ratio of images classified 

as class c to the n u m b e r of queried images i n class c. By m a k i n g the weak assumption that 

queried class accuracies across queried data are similar, class accuracies A c for the classifier are 

an indicator of training data and class complexity for each category. 
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The classifier belief be is the activation of the image for the queried class, as predicted by 

the network. By using the normal ized belief i n the y ^ 6 1 7 class, the selection favours images 

the classifier is more confident about, thus removing incorrect query images. This belief is 

normalized across network responses. 

Classes wi th higher accuracy on the query dataset are given lower pseudolabel priority. This 

is accomplished with the (1 - A c ) factor. 

A number of factors affect the quantitative benefit of using pseudolabeled images: dataset 

belief, the accuracy of the selection method, the difference between datasets, selection variability 

over epochs, and randomization. This selection method balances these by selecting images i n a 

randomized order, w h i c h depends o n class accuracies and classifier belief for the correct class. 

The last step is randomizat ion. A por t ion of query images is randomly removed dur ing 

selection. In these experiments, 50% were removed, and this was found to be beneficial. This is 

justified by a need to regularize across data w h e n the C N N is trained. 

5.4.4 Pseudolabel Weighting 

Pseudolabels are l ikely to affect the classifier adversely w h e n it hasn't yet reached a sufficient 

accuracy, just as the classifier w o u l d fail to train o n raw query data. Self-training is prone to 

quickly converge to suboptimal solutions because the classifier assigns high confidence to wrong 

examples. H o w this is mitigated i n this approach is explained below. 

In the original pseudolabel paper [Lee 13], images from the training set have constant weights, 

and the pseudolabel losses are weighted by a, where a increases w i t h time according to two 

hyperparameters. 

Our experiments showed that this method is not more effective than setting a = 0 unt i l the 

network reaches near-top accuracy and then setting a = 1. This method crucially relies o n the 

network's ability to create a weak classifier f rom the training data alone, and it was found that 

this is the case w i t h the previously publ ished a tuning method as wel l . A l l shown results are 

achieved wi th this step function, thus demonstrating its usefulness. 

This weighting method, albeit crude, simplifies hyperparameter tuning, and at the cost of a 

few epochs, achieves the same accuracy. 

5.4.5 Dataset Belief 

For an automatically retrieved set of images, a crucial piece of information for deciding whether 

to train us ing pseudolabels is the accuracy of the queried data. The u n k n o w n proport ion of 

images w h i c h belong to the queried category is B, or dataset belief. 

Query images can be wrong, misleading, and/or contain correctly and incorrectly labelled 

images from the training dataset, see Figure 5.13. 

A n imperfect selection must vary over epochs, i n order to mitigate convergence to a n o n -

median representation of the category. 
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Figure 5.13: Example images of the viaduct class 
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Figure 5.14: Train and test accuracies wi th varying correct query images, and varying train set 
sizes for each class 

5.4.6 Difference Between Datasets 

If the training dataset and the images queried from online image search are the same, the method 

w i l l not be of benefit. It is important that they are complementary, albeit w i t h an overlap, and 

that they disagree to a degree. The disagreement creates jitter i n the hyperspace between images 

where the classifier should not be divisive, and it supports convergence to a decision boundary 

elsewhere. 

We found that selecting (Xe,uery, yiuery) w h i c h fully agrees wi th the current classifier does 

not boost classifier accuracy over not using pseudolabels at all. This is because despite bringing 

new information, the data doesn't create disagreement, and therefore no novelty. In these 

experiments, it was found that a certain degree of wrong and randomly labelled images helped 

the classifier to converge to higher accuracy over the test set. Adding this form of noise achieves 

regularisation. 

5.4.7 Implementation 

A l l images x t r a i n , X t e s t , X q u e r y were resized so that the smaller d imens ion is 227 pixels, and a 

central crop of 227 x 227 pixels is extracted. This has been shown to work better than other 

cropping methods [CSVZ14], and the value 227 was chosen because this is the input size of the 

AlexNet network [KSH12]. Preprocessing details are discussed and evaluated i n [CSVZ14]. 

The AlexNet [KSH12] architecture was used and ini t ia l ized w i t h weights trained o n the 

ImageNet dataset. The network was retrained by keeping all but the last fully connected layer 

locked, and by updating weights o n the last layer. 

The network was trained over 100 epochs of 500 iterations each wi th each combinat ion of 

parameters. In a GPU-accelerated environment, such a network on the full S U N dataset wi th all 

query images converged i n 2 to 5 hours. 

The ratio of testing data to queried data accuracies is an indicator of the queried datasets 

accuracy or similarity. Assuming no constructive errors, such as those C N N s have been demon

strated to fall to when synthesizing examples [NYC15], the number of correctly classified images 

is a lower b o u n d o n how many really belong into the category. A large difference between this 

number and the actual number (B), directly indicates how m u c h further benefit the new data 

can have for training. 
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As shown i n the right table 5.14, over test data, it can be seen that w h e n the n u m b e r of 

labelled images is small, the Active Learning approach using pseudolabels and a weak classified 

image retrieval system is of significant benefit. The accuracy can increase by as m u c h as 25%, 

thus demonstrating that Active Learning benefits the critical Computer V i s i o n task of learning 

image classifiers. In fact, the broad spectrum of classes and the small amount of data shows that 

this general approach can benefit many further tasks, well beyond the scope of this experiment. 

5.5 Validating the Hypothesis 

This chapter lists several experiments i n w h i c h Active Learning has benefited contemporary 

Computer Vis ion , complementing existing algorithms via the judicious applicat ion of h u m a n 

labelling effort, or the use of pre-trained models for other, similar tasks. 

Specifically, Active Learning has been shown to increase the quality of Generative Adversarial 

Networks for Font Capture by al lowing the preparation of a larger and more representative 

dataset, it has enhanced the applicability of condit ional G A N s for generating faces by allowing 

the control of features, it has reduced the necessary time to manual ly annotate varied tags o n 

images, and it has been shown to enable weak supervision to vastly improve the classification 

accuracy of image classifiers. 

In terms of the symbolic formulat ion of the hypothesis, the method has shown that for 

various problems M and their associated loss functions L, there exists an Active Learning 

approach S which takes data X to produce parameters for the model which increase its accuracy 

over L. In practice, S can often benefit M even without the need for significant additional manual 

annotation, but by efficiently using Transfer Learning of existing algorithms as annotation 

experts. 

The hypothesis, as stated i n chapter 4, states that Human and algorithmic expert annotation 

using Active Learning improves the accuracy of contemporary Computer Vision methods. The 

work presented i n this demonstrates this repeatedly for the h u m a n expert case, as well as for an 

algorithmic expert. 

Therefore, this work validates the hypothesis formulated i n the last chapter, wi th improve

ments by a significant margin to several contemporary Computer Vis ion problems. 



CHAPTER 6 

Applications and Future Work 

Thanks to the methods developed i n the last chapter, it wi l l be possible to reduce the annotation 

time for labell ing data for various applications i n Computer Vis ion . There are tasks where this 

could be done i n a fully automated way, by uti l izing pre-trained algorithms as the expert oracle, 

and there are other tasks where the amount of h u m a n labelling and tagging can be reduced. 

The presented graphical user interface of section 5.3 can serve to annotate context-specific 

images for improved automated classification. While the approach to iterative opt imizat ion of 

section 5.1 to clean large datasets has been applied before, it has been shown to be of significant 

benefit and can be applied to other datasets, as w i l l be discussed i n section 6.3.1 also describe 

applications w h i c h can benefit f rom the approach presented i n section 5.3, where large-scale 

cross-domain Transfer Learning is systematically applied to train image classifiers. 

The fol lowing sections describe future work i n Active Learning. Section 6.1 discusses how 

Active Learning may improve u p o n texture synthesis, and section 6.2 describes current work on 

hyperspectral images. 

6.1 Applications in Textures 

Example-based texture synthesis is an important problem of Computer Graphics, where a small 

sample image is converted into a non-repeating texture, as shown i n figure 6.1. 

Numerous algorithms exist for example-based texture synthesis, some focusing of speed, 

others on memory efficiency, and many on quality. A m o n g algorithms focused on quality, none 

resolve the issue of tuning quality i n locations where it is visually most lacking [KDC17]. 

This problem may be addressed wi th Active Learning, al lowing annotators to interactively 

point to visual flaws i n generated textures, so that they may be resolved algorithmically. Such an 

approach w o u l d make it possible to improve the quality of texture synthesis methods. 
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(b) proceduraly generated texture 

Figure 6.1: Example of texture synthesis, taken from own work [KCD15] 

6.2 Spectral Interactive Annotation 

Hyperspectral data allows the gathering of additional useful information from a scene, allowing 

for more accurate classification or detection of natural objects or chemical processes. However, 

additional channels are challenging to visualise intuitively, especially i n the case of full-spectrum 

measurements i n every pixel of a scene. Such data is typically processed by analysing spectra of 

selected pixels, while viewing an RGB visualisation of the entire scene. One such hyperspectral 

classification platform is HSImager, shown i n figure 6.2. 

Active Learning m a y be beneficial i n support ing the annotat ion process, by opt imis ing 

the RGB visualisation of hyperspectral features. This feature-wise Active Learning approach 

focuses o n presenting individual datapoints, rather than selecting relevant data for annotation. 

In this sense it differs f r o m the approaches presented throughout this work, where m a n u a l 

annotation focuses on adding features to chosen data. Therefore, the two approaches may also 

be complementary. 

In practice, the annotat ion of spectral images could be performed as follows: the image 

may be displayed i n RGB for labelling initialisation, then locally processed to highlight relevant 

regions, and itteratively improved by taking into account new pixel classifications. 

Hyperspectral data is increasingly easy to capture, and w i t h a wide range of applications, 

s impl i fy ing annotat ion whi le increasing m o d e l accuracy is an important research question. 

Active Learning techniques are an excellent choice for addressing this. 
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Figure 6.2: Spectral image processing pipel ine of HSImager [BM18]. The interface can be 
improved by implementing a feedback mechanism for which pixels would be beneficial to label. 

6.3 Future Work 

The individual approaches developed i n chapter 5 can be extended to be applied i n numerous 

settings, to improve a wide range of Computer V i s i o n models o n various datasets. These are 

briefly discussed here. 

The graphical interface and recommender system of section 5.3 can be used to label a 

mult i tude of relevant classes i n numerous scenarios. For example, the processing of video 

feeds can be partially automated to detect people, animals, craft, or traded objects. The system 

could be used for non-expert labelling of food served i n a restaurant, or for the counting of wi ld 

animals i n a nature reserve. 

Whenever a large amount of b inary labelled images is needed, the approach presented i n 

section 5.1 to produce a font dataset can be used to semi-automatically produce hundreds of 

thousands of useful annotations i n a few hours. This method suffers f rom a lack of direct feed

back during each iteration, and the expert annotation process could be improved by updating 

the relevant images after each label is placed, instead of working i n large slow batches. 

Most generally, the pseudolabel approach of section 5.4 can help train classifiers for all 

classes described by text, such as all the 117 000 synsets of the WordNet lexical database. More 

specifically, it can be used to optimize the training of facial recognition, car classification, and 

any other data where weak labels are easily available o n a wide range of images. Just as state-

of-the-art models have seen major improvements due to the extension of datasets, a dataset 

produced with an algorithmic expert could contain a hundred thousand of classes and mill ions 

of examples for each, ushering a new era i n large-scale Computer Vis ion. 
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In the future, introducing Active Learning with human and algorithmic experts into problems 

of Computer V i s i o n can enable significantly broader and more accurate detections, segmenta

tions, and classifications than before. 



CHAPTER 7 

Conclusion 

Machine Vis ion model quality is dependent on the versatility of the prior of the models used, on 

hyperparameters and parameter tuning, and the range and accuracy of data see during training. 

This work focuses on improving the accuracy of models by increasing data quality and quantity 

through Active Learning, validates the posed hypothesis, and demonstrates its benefits i n a 

number of scenarios. 

These m a i n scientific contribution is the validation of the hypothesis, w h i c h stipulates that 

Active Learning benefits Computer Vis ion . This hypothesis is validated i n two sets of differing 

scenarios: increasing the efficiency of m a n u a l labour for annotation, and ut i l iz ing Transfer 

Learning principles by applying pre-trained models to benefit a task. The applied contribution of 

this work is a series of experimental demonstrations of the hypothesis, and minor contributions 

are application-specif ic m o d e l improvements i n Font Capture, One-shot- learning for image 

classification, and a tagging G U I to simplify annotation. 

A system for human-assisted Image-wise tagging w i t h suggestions was created, so that it 

could be used to obtain large semantically labelled datasets. The suggestion methods, as wel l 

as the annotating system itself, could be applied i n the context of publ ic media databases. The 

obtained annotations contain a higher percentage of positive examples of infrequent classes. 

In another applicat ion, font capture benefited f r o m Active Learning. Fonts are present i n 

all forms of visual media , but working wi th them remains possible only for those w i t h access 

to the type definitions. This work widens the possibilities for tools such as Photoshop and 

Google image translate, where recreating text i n a given font is key. Automatically expanding the 

diacritical sets for existing fonts brings all fonts to a wider audience of hundreds of mil l ions of 

users whose language includes diacritics. 

Generative Adversarial Networks for generating faces have also seen an improvement thanks 

to Active Learning, by w h i c h n e w faces can be rendered w i t h explicitly set features, such as 

gender and age. This benefit has come thanks to applying knowledge f r o m other pre-trained 
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models on existing data, showing that Active Learning is also beneficial i n the case of algorithmic 

experts, rather than only with h u m a n annotators. 

Similarly, an algorithmic expert i n image retrieval was integrated into an extended pseu-

dolabel training framework for C N N classifiers, demonstrating that Active Learning w i l l push 

forward challenging tasks like image classification. This new m e t h o d also does not require 

h u m a n supervision or annotation, br inging forth the possibil i ty of extended applications by 

w h i c h Active Learning is applied seamlessly i n Transfer Learning and Life-long learning tasks. 

These specific tasks are some examples where m y work has shown the benefit of Active 

Learning i n increasing the quality of contemporary Computer V i s i o n methods. While this val i 

dation is not a theoretical solution answering the hypothesis, this work wi l l have demonstrated 

the general applicabil i ty of these principles and w i l l enable a theoretical as wel l as a practical 

methodology to increase the quality of Computer Vis ion models at little cost. 

In future work, it may be interesting to explore the question i n a fashion systematic enough 

to allow automatic application, thus al lowing the creation of an algori thm w h i c h searches for 

trainable models and existing datasets, and semi-automatical ly improves them using other 

known data and models. It w i l l be particularly interesting to apply these principles to the other 

unsolved tasks where a large knowledge base can be drawn u p o n , such as theorem-proving, 

Computer V i s i o n i n video, and hyperspectral. 



Glossary 

Active Learning Process of selecting which data needs to get an expert label, either by a human 

or by another algorithm. 1, 3-8,17-19, 25, 32-34, 36, 40, 44, 48, 59 

Adaptive Learning Parameters are adjusted at runtime. 44 

Association-rule Learning Discovering information about relationships. 33 

Class-domain-wise tagging Assigning images to a tag. 20, 31, 44, 47 

Collaborative Filtering Predicting preferences of users for objects given sparse preferences by 

other users. 44 

Conformal Predictors Labeling unlabeled data using labels from similar labeled data. 25 

Deep Learning Training a sequence of processes to map input to output. 8, 19-21 

Federated Learning Distributed training o n unshared local data. 9,10 
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Online Learning Training data is not statically available. 48 

PU learning Positive and unlabeled data only. 29, 48 

Reinforcement Learning Agents learn to take actions. 6 

Repetition Priming The sequence i n which images are presented to the annotator affects their 

perception. 20 

Semi-supervised Learning A subset of the data is labeled. 1, 6, 7,30 

Supervised Learning Us ing labeled data. 5-7 

Transfer Learning Adapting a pre-trained model . 1, 7,19, 23, 32, 35, 41, 60 

Unsupervised Learning Us ing unlabeled data. 5 

Weakly Supervised Learning o n data wi th noisy, l imited, or imprecise labels. 6, 48 

Zero-shot Learning Classifying to classes not seen during training. 33 
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