
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

DEPLOYMENT AND LICENSING OF AN APPLICATION ON

GITHUB PACKAGES
NASAZENÍ A LICENCOVÁNÍ APLIKACE NA GITHUB PACKAGES

BACHELOR'S THESIS
BAKALÁŘSKÁ PRÁCE

AUTHOR Anton Misskii
AUTOR PRÁCE

SUPERVISOR Ing. David
VEDOUCÍ PRÁCE Kohout

BRNO 2024

T B R N O F A C U L T Y OF E L E C T R I C A L |

U N I V E R S I T Y E N G I N E E R I N G |

OF T E C H N O L O G Y A N D C O M M U N I C A T I O N

Bachelor's Thesis
Bachelor's study program Information Secur i ty

Department of Telecommunications

Student: Anton Misskii ID: 230622

Year of

study:
Academic year: 2023/24

TITLE O F THESIS :

Deployment and Licensing of an Application on GitHub Packages

INSTRUCTION:

The main goal of the thesis is to utilize the version control platform GitHub and the GitHub Packages service for

sharing a demo application in the Java language. The application will incorporate the JavaFX graphical interface

and Maven build tool. The solution will include an automated build process directly on the GitHub platform,

followed by deployment to GitHub Packages for subsequent automatic updates of this demo application.

The demo application will check for the availability of a new version. When the new version is detected, the user

will be prompted to update the application. The application will support two deployment types. The first type will

be a standalone executable .jar (including necessary packages and libraries). The second type will be a modular

application, where all required libraries will be automatically downloaded and are not part of the .jar file.

Another component of the thesis will involve designing and implementing the licensing for this application. Upon

the expiration of the provided license, the application's capabilities will be restricted. The license will be

cryptographically secured to minimize the possibility of license tampering.

R E C O M M E N D E D L I T E R A T U R E :

[1] M A S T R O P A O L O , Antonio, et al. Toward Automatically Completing GitHub Workflows. arXiv preprint

arXiv:2308.16774, 2023.

[2] F E R R A N T E , Daniel. Software licensing models: What's out there?. IT Professional, 2006, 8.6: 24-29.

Date of project Deadline for
5.2.2024 28.5.2024

specification: submission:

Supervisor: Ing. David Kohout

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board
WARNING:

The author of the Bachelor's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or

property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an

infringement of provisions as per Section 11 and following of Act No 121/2000 Co l l . on copyright and rights related to copyright and on

amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as

resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Col l .

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

MISSKII, Anton. Deployment and Licensing of an Application on GitHub Packages.

Bachelor's Thesis. Brno: Brno University of Technology, Faculty of Electrical Engineering

and Communication, Department of Telecommunications, 2024. Advised by Ing. David

Kohout

Author's Declaration

Author: Anton Misskii

Author's ID: 230622

Paper type: Bachelor's Thesis

Academic year: 2023/24

Topic: Deployment and Licensing of an Applica­

tion on GitHub Packages

I declare that I have written this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibliography at the end of the paper.

As the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and/or ownership rights.

In this context, I am fully aware of the consequences of breaking Regulation § 11 of the

Copyright Act No. 121/2000 Coll. of the Czech Republic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Acts such as the Intellectual Property Act or the Criminal Code, Act No. 40/2009 Coll.

of the Czech Republic, Section 2, Head VI, Part 4.

Brno

author's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank my bachelor's thesis supervisor, Mr. Ing. David Kohout, for his

expert guidance, consultations, patience, and valuable suggestions for the thesis.

Contents
Introduction 15
1 Tools and services 16

1.1 Maven 16
1.1.1 Features 16

1.2 Git 18
1.2.1 Version control systems 18
1.2.2 Storing data 19
1.2.3 Local operations 19
1.2.4 File's states 19
1.2.5 Branching system 20
1.2.6 Git workflows 20

1.3 GitHub 21
1.3.1 GitHub use cases 21
1.3.2 GitHub as a collaborative coding platform 21
1.3.3 C I / C D pipelines 22
1.3.4 GitHub Actions overview 22
1.3.5 The components and structure of GitHub Actions . . 23
1.3.6 Automatic token authentication 24

1.4 GitHub Packages 24
1.4.1 Packages permissions 25
1.4.2 Working with the Apache Maven registry 26
1.4.3 GitHub packages with GitHub Actions 26
1.4.4 GitHub Packages Registry 27

2 Software license 29
2.1 Software license models 29

2.1.1 Perpetual license model 29
2.1.2 Network-based model 30
2.1.3 Subscription model 30
2.1.4 Utility-based model 30
2.1.5 Trial model 31

2.2 Software license implementation 31
2.2.1 Proposed application license design 31
2.2.2 Spring RESTful API license manager overview . . . 33
2.2.3 Software license key generation 33
2.2.4 Software license key validation 34
2.2.5 Software license key expiration and renewal 35

3 JavaFX application 36

3.1 The application overview 36
3.2 The JavaFX application structure 38

3.2.1 Stages configuration 38
3.2.2 Scenes configuration 39
3.2.3 Navigating through scenes 40

3.3 Implementation of a Postgresql database 41
3.3.1 Interacting with the database 42

3.4 The application updates 43
3.5 Integration of software licensing into the application 44

3.5.1 Software license activation 44
3.5.2 Communication with the license manager server . . . 45

4 Java modules 49
4.1 Java environment 49
4.2 Introduction to modularity 50

4.2.1 Core Tenets of Modules 50
4.2.2 Modules declaration 50
4.2.3 Modules resolution 53
4.2.4 Modules A P I and Services 54
4.2.5 Modules evaluation 56

4.3 Migrating a JavaFX application to the module system 56
4.3.1 Modules with Apache Maven 57

4.4 Custom runtime images 58
4.4.1 Automatic modules and jdeps tool 58
4.4.2 Creating custom runtime images 59

Conclusion 60

Bibliography 61

Symbols and abbreviations 64

A Structure of the archive with the source files 65

B Manual for the Applications 66

1 The Demo JavaFX Application 66
1.1 Start the Demo JavaFX Application 66
1.2 Using the JavaFX Application 66

2 The License Manager Application 70
2.1 Start the License Manager Application 70
2.2 Using the License Manager Application 70

List of Figures
1 GitHub Packages registry 28
2 Software license implementation block diagram 32
3 Software license key generation block diagram 34
4 Software license key verification block diagram 35
5 The application login scene 36
6 The application main scene 37
7 The application information window 38
8 Relational database schema 42
9 The application license scene 44
10 Modules dependencies graph 52
11 The modular JavaFX demo application diagram 57
B . l The ToDo list application login scene 67
B.2 The ToDo list application register scene 68
B.3 The ToDo list application license scene 68
B.4 The ToDo list application license information stage 69
B.5 The ToDo list application main scene 69
B.6 The ToDo list application about stage 70
B.7 The license manager application licenses page 71
B.8 The license manager application email form 71
B.9 The license manager application new license creation form 72
B.10 The license manager application license key information page 72

Listings
1 GitHub Actions workflow example 24
2 Work with GitHub Packages with GitHub Actions 27
3 Primary stage configuration 38
4 Main scene controller 39
5 Method for transitioning between scenes 40
6 Person Data Access Object class 42
7 Method for checking application versions 43
8 Method for requesting trial license keys 45
9 Method for requesting license validation 46
10 Invoking the license validation method 47
11 Module declaration file 51
12 Qualified export example 52
13 Providing module A P I 54
14 Using modules API 55
15 Service loader example 55
16 Add module descriptors to automatic modules 58
17 Custom runtime image creation 59

ABSTRACT
The work focuses on the versioning platform GitHub, specifically its GitHub Packages
service. The goal is to automate the build process of a demo JavaFX application using
the JavaFX graphical interface and the Maven tool on the GitHub platform. This includes
deployment on GitHub Packages and ensuring the application can be updated efficiently.
Additionally, the application must incorporate a system for versioning and licensing to
protect the software. Another key objective is to describe and implement the modular
Java system introduced in Java 9, which offers enhanced possibilities for application
development and distribution. By implementing these systems and deploying the appli­
cation on GitHub Packages, the project aims to create a comprehensive methodology
for developing modern applications, integrating security systems, maintaining a reliable
application versioning system, and continuously delivering and distributing applications
through popular services.

KEYWORDS
Application delivering and distribution practices, Application versioning resolution,
GitHub Actions, GitHub Packages, GitHub Services, Java Platform Module System,
Licensing models

ABSTRAKT
Práce se zaměřuje na platformu pro verzování GitHub, konkrétně na její službu GitHub
Packages. Cílem je automatizovat proces sestavení ukázkové Java aplikace pomocí gra­
fického rozhraní JavaFX a nástroje Maven na platformě GitHub. To zahrnuje nasazení na
GitHub Packages a zajištění, aby bylo možné aplikaci efektivně aktualizovat. Kromě toho
musí aplikace obsahovat systém pro verzování a licencování k ochraně softwaru. Dalším
klíčovým cílem je popsání a implementace modulárního systému, který byl zaveden v Java
9, který nabízí rozšířené možnosti pro vývoj a distribuci aplikací. Implementací těchto
systémů a nasazením aplikace na GitHub Packages projekt sleduje vytvoření komplexní
metodologie pro vývoj moderních aplikací, integraci bezpečnostních systémů, udržování
spolehlivého systému verzování aplikací a kontinuální doručování a distribuci aplikací
prostřednictvím populárních služeb.

KLÍČOVÁ SLOVA
Praxe dodávání a distribuce aplikací, Řešení verzování aplikací, GitHub Actions, GitHub
Packages, GitHub služby, Java Platform Module System, Licenční modely

Typeset by the thesis package, version 4.09; https://latex.fekt.vut.cz/

https://latex.fekt.vut.cz/

ROZŠÍŘENÝ ABSTRAKT
Tato bakalářská práce si klade za cíl podrobně prostudovat moderní postupy vývoje
JavaFX aplikací, s důrazem na distribuci, správu verzí, licencování a využití Java
modulů. Jako efektivní řešení distribuce aplikací je prezentováno využití platformy
GitHub a jejích služeb. Díky nové službě GitHub Packages je možné publikovat
artefakty aplikací přímo na GitHub spolu se zdrojovým kódem, což přináší výhodu
kombinace kódu aplikace a jejích artefaktů na jednom místě, což je pro uživatele
i vývojáře velmi užitečné. Klíčovou roli v automatizaci procesu aktualizace zdro­
jového kódu aplikace a zároveň zveřejňování nových verzí balíčků, sehrává služba
GitHub Actions, která umožňuje definovat sekvenci kroků pro konkrétní události na
GitHubu.

Dále se práce zaměřuje na detaily licenčních modelů a implementuje spolehlivá
kryptografická opatření pro kontrolu šíření demo aplikace a ochranu určitých funkcí.
Podrobně je rozebrán proces vývoje, výhody a potenciál distribuce modulárních
Java aplikací, které byly představeny v Javě 9. Součástí výzkumu je také analýza
bezpečnostních aspektů a praktická implementace licenčního serveru založeného na
Spring Rest, který zajišťuje generování a ověřování licenčních klíčů. Tento licenční
server je navržen tak, aby byl flexibilní a bezpečný, což umožňuje jeho použití i pro
jiné aplikace mimo hlavní projekt.

Tímto praktickým přístupem a konkrétními strategiemi si tato práce klade za cíl
vybavit vývojáře nezbytnými nástroji pro úspěšné navigování a překonávání prob­
lémů, které se vyskytují v moderních vývojových prostředích softwaru. Důraz je
kladen na integraci automatizace a bezpečnosti do vývojového procesu, což přispívá
k efektivitě a spolehlivosti výsledných aplikací.

První kapitola této bakalářské práce se podrobně věnuje popisu nej důležitějších
nástrojů a služeb pro vývoj Java aplikací, jako je Maven, který slouží ke správě
Java projektů. Maven je odpovědný za strukturu Java projektů, definování závis­
lostí projektu a jejich automatické stažení, sestavení aplikace do spustitelných Java
archivů a v rámci této práce se používá také k zveřejnění sestavených artefaktů do
GitHub Packages. V této kapitole jsou také důkladně popsány systémy kontroly
verzí, různé přístupy k nim a prozkoumány výhody a nevýhody každého systému v
konkrétních situacích. Velký důraz je kladen na distribuční systém kontroly verzí
Git a práci s ním. Další platformou, která je zkoumána v této kapitole, je GitHub a
jeho služby GitHub Actions spolu s GitHub Packages, u kterých jsou popsány prin­
cipy práce s těmito službami, jejich komponenty a způsoby využití jak samostatně,
tak i společně. Na konci této kapitoly je příklad nastavení GitHub Packages spolu
s Apache Maven a ukázka výsledného GitHub Packages registru.

Druhá kapitola práce se věnuje popisu modelů softwarových licencí, jejich porovnání
a kritériím výběru a návrhu vhodných modelů softwarových licencí. Konkrétně se

11

zaměřuje na subscription model a trial software model pro demo JavaFX aplikaci
na základě její funkcionality a požadavků na kontrolu distribuce. V této kapitole je
také představen diagram implementace softwarové licence do demo JavaFX aplikace
s podrobným popisem každého kroku. Dále je v této kapitole navržena Spring Rest-
ful aplikace pro správu licenčních klíčů, která umí komunikovat se základní aplikací
pomocí definovaného API . Tato aplikace řeší vytvoření licenčních klíčů jak pro delší
období, tak i pro zkušební dobu na základě emailu uživatelů. Z emailu vytvoří hash
pomocí algoritmu SHA-256, který pak podepisuje privátním klíčem pomocí E C D S A
algoritmu a následně dekóduje vytvořený podpis pomocí base64, čímž vytváří l i ­
cenční klíč. Aplikace také zajišťuje validaci licenčních klíčů. Přijímá POST request,
který obsahuje email uživatele a licenční klíč, vytvoří z emailu hash pomocí SHA-256,
dekóduje licenční klíč a ověří tento klíč pomocí E C D S A a veřejného klíče. Rovněž
umí pracovat s vypršením a obnovením doby platnosti licenčních klíčů. Podstatné
algoritmy generace a validace klíčů jsou popsány pomocí blokových diagramů.

Třetí kapitola bakalářské práce popisuje obecnou strukturu JavaFX aplikací a
také konkrétní demo aplikaci. Demo aplikace představuje todo list, který je propo­
jený s databází pro trvalé uložení profilů uživatelů a jejich úkolů. Tento systém
umožňuje efektivní správu úkolů, přičemž každý uživatel má svůj vlastní profil s in­
dividuálním seznamem úkolů. Aplikace rovněž obsahuje mechanismus pro kontrolu
dostupnosti novější verze prostřednictvím GitHub API , čímž zajišťuje, že uživatelé
vždy používají nej aktuálnější verzi softwaru. Komunikace s GitHub A P I umožňuje
aplikaci zjistit poslední verzi GitHub balíčku určeného pro aplikaci a případně uži­
vatele informovat o možnosti aktualizace.

Poslední podkapitola se zabývá integrací softwarové licence do aplikace. Uži­
vatelé mohou získat trvalý licenční klíč na určitou dobu, který zadávají ve speciálním
okně aplikace. Alternativně si uživatelé mohou vygenerovat zkušební licenci, pokud
dosud žádný licenční klíč nemají. Zadaný licenční klíč je uložen do lokální databáze
v neověřeném stavu a aplikace jej dále používá. Zkušební licence umožňuje uži­
vatelům vyzkoušet plnou funkčnost aplikace a rozhodnout se, zda licenci prodlouží
na delší období.

Pokud má uživatel při přihlašování do aplikace již zadaný licenční nebo zkušební
klíč, aplikace odešle H T T P POST požadavek s licenčním klíčem a e-mailem uživatele
licenčnímu manažeru, který ověří platnost klíče. Na základě výsledku ověření se
stav licenčního klíče aktualizuje v lokální databázi, což uživateli umožní přidávat k
jednotlivým úkolům prioritu. Tato priorita se projeví na barvě každého úkolu, čímž
se zlepší přehlednost a usnadní řízení úkolů podle jejich důležitosti. Pokud uživatel
nemá žádný klíč nebo má neplatný klíč, tato funkcionalita mu nebude dostupná.

12

Aplikace také umí sama zkontrolovat platnost licenčního klíče v případě ne­
dostupnosti licenčního serveru. Pokud byl klíč již jednou ověřen, aplikace využije
poslední stav uložený v databázi a zkontroluje, zda platnost klíče nevypršela. Pokud
je klíč stále platný a nebyl zrušen, aplikace umožní přístup ke všem funkcím. Tato
funkcionalita zajišťuje, že uživatelé mohou nadále používat aplikaci i v případě
dočasné nedostupnosti licenčního serveru, což zvyšuje spolehlivost a dostupnost ap­
likace pro koncové uživatele.

Poslední kapitola se věnuje vývoji modulárních Java aplikací a jejich distribuci.
Kapitola popisuje základní vlastnosti modulů, jejich výhody oproti standardním
Java aplikacím a podrobně zkoumá vzájemnou spolupráci modulů. Základem pro
tuto kapitolu je Java aplikace popsaná ve třetí kapitole, která je během procesu
migrace rozdělena do několika samostatných modulů, z nichž každý odpovídá za
určitou funkcionalitu aplikace. Tyto moduly jsou propojeny na základě osvědčených
postupů při vytváření modulárních aplikací.

Jednou z hlavních výhod modulárních Java aplikací je možnost vytváření vlast­
ního runtime prostředí, které obsahuje pouze nezbytné moduly pro provoz aplikace
a může být distribuováno uživatelům. S vlastním runtime prostředím uživatelé
nepotřebují mít předinstalovanou Javu, protože všechno potřebné pro spuštění ap­
likace a její funkčnost je již součástí tohoto prostředí. Tím se výrazně zjednodušuje
proces instalace a nasazení aplikace, čímž se zvyšuje uživatelská přívětivost a snižuje
riziko problémů spojených s kompatibilitou různých verzí Java Runtime Environ-
ment (JRE).

Kapitola také zdůrazňuje další výhody modulárního přístupu, jako je zlepšení
bezpečnosti a údržby kódu. Díky modularitě lze jednotlivé části aplikace aktual­
izovat a testovat izolovaně, což zjednodušuje identifikaci a opravu chyb. Moduly
mohou mít jasně definovaná rozhraní a závislosti, což usnadňuje jejich správu a
minimalizuje riziko nežádoucích interakcí mezi různými částmi aplikace.

Výsledky práce zahrnují vytvoření demonstrační JavaFX aplikace a její mod­
ulární alternativy, jejichž automatická distribuce je realizována pomocí platformy
GitHub a jejích služeb GitHub Packages, GitHub Actions a Releases.

Při aktualizaci původní aplikace se spouští workflow, které vytvoří spustitelný
Java archiv (JAR) a následně ho publikuje na GitHub Actions s novou verzí, čímž
umožňuje uživatelům stahování aplikace přímo z GitHubu. Při aktualizaci mod­
ulární aplikace dochází k automatickému vytvoření Java runtime image, který ob­
sahuje pouze potřebné knihovny, a je distribuován do složky Releases na GitHubu
společně s vytvořením Java balíčku pro každý modul aplikace. Tento proces za­
jišťuje, že uživatelé mají vždy přístup k nejnovější verzi aplikace s minimálními
nároky na ruční zásahy, což přispívá k efektivní a bezproblémové distribuci.

Pro potřeby správy licencí, byla také vytvořena Spring Rest aplikace, která slouží

13

jako licenční server pro hlavní aplikaci a provádí veškeré ověřování a vytváření l i ­
cenčních klíčů. Tato aplikace byla navržena s důrazem na bezpečnost a modular­
itu. Vytvoření této samostatné aplikace přispělo ke zvýšení bezpečnosti aplikace,
správnému rozdělení odpovědností a umožňuje použití daného licenčního serveru i
pro jiné aplikace. Licenční server je zodpovědný za generování a ověřování licenčních
klíčů, což zajišťuje, že přístup k aplikaci mají pouze autorizovaní uživatelé.

Prostřednictvím výzkumu provedeného v této práci bylo dosaženo komplexního
porozumění moderním praktikám vývoje aplikací, které zahrnují oblasti jako auto­
matické doručování a distribuce, správa verzí, správa licencí a modularizace. Získané
poznatky poskytují nezbytné nástroje k překonávání výzev spojených se současným
vývojem softwaru a k využití plného potenciálu nově vznikajících technologií.

14

Introduction

When developing modern applications, certain aspects such as subsequent distribu­
tion to end users, maintaining a reliable application versioning system, and control­
ling application usage through licensing models play significant roles. The goal of
this thesis is to demonstrate an approach to solving these problems in the process of
developing a JavaFX demo application together with Apache Maven, using modern
technologies and best practices.

Distributing applications simultaneously with application updates is a crucial
aspect of modern development. Utilizing the Git version control system and the
GitHub platform offers a comprehensive solution. Noteworthy in this context is the
GitHub Packages service, provided by GitHub, which is responsible for hosting and
managing packages, including containers and other dependencies [1]. This service
was first introduced as part of the GitHub versioning platform in 2019. In this
bachelor's thesis, the configuration for publishing application artifacts to GitHub
Packages is demonstrated, along with an overview of the key features and usage
of GitHub Actions to automate the processes of building and deploying application
artifacts.

Moreover, the study provides a review of the main existing licensing models,
introduces the key criteria for their selection, and describes an example of imple­
menting licensing using a third-party server that controls licenses. The proposed
licensing model contains cryptographic protection that minimizes the possibility of
license forgery.

The next important concept discussed in this work is Java modules, a concept
introduced in Java 9 that revolutionized the development and distribution process of
Java applications. It emphasizes the advantages of modular applications, the migra­
tion process from standard Java applications to modular ones, and new possibilities
for distributing modular applications.

Through the exploration undertaken in this work, a comprehensive understand­
ing of modern application development practices is achieved, covering areas such
as automatic delivery and distribution, version control, licensing management, and
modularization. The insights gained provide the necessary tools to navigate the
challenges inherent in contemporary software development and to leverage the full
potential of emerging technologies.

15

1 Tools and services

This work primarily involves the demonstration and practical implementation of
various development services and tools to enhance the development process. This
section describes the fundamental principles of working with these services and tools,
as well as to provide a practical demonstration. It includes a description of the
Maven tool and its key features. Following that, there will be a description of
version control systems, particularly Git. The last two subsections will be devoted
to GitHub and its services. Specifically, GitHub Packages, where an example of its
usage will be provided, which is one of the main goals of this work.

1.1 Maven

Maven is a build automation tool primarily used for Java projects. The Maven
project is hosted by the Apache Software Foundation and was formerly part of the
Jakarta project. Maven has the standard way to build the projects, a clear definition
of what the project consisted of, an easy way to publish project information, and
a mechanism for distributing J A R files among multiple projects [2]. Maven uses a
Project Object Model, P O M for short. It is an X M L file that contains information
about the project and configuration details used by Maven to build the project.
Components that can be specified in the P O M are the project dependencies, the
plugins or goals that can be executed [3].

1.1.1 Features

Maven offers developers comprehensive support, starting from project creation to
the compilation of the project into executable files. The basic features and options
it includes to provide this support are [4]:

• Simple project setup
It means that there is no need to create the project structure. When creat­
ing a new project using Maven, one can simply select the appropriate Maven
archetype, a predefined project structure, and Maven will automatically gen­
erate the basic project that meets the requirements.

• Project structure consistency
This feature is closely related to the previous one: using Maven for creating
projects helps developers across the world because Maven standardizes and en­
forces project structure, making it easier to understand and work with different
projects created with Maven.

• Dependency management

16

Most modern applications require the integration of external code, often re­
ferred to as external libraries. These libraries enable developers to enhance
the functionality of their applications without having to develop their own so­
lutions. Typically, multiple such libraries are employed in a single application,
significantly speeding up the development process by reducing the time spent
on resolving specific tasks.
Maven simplifies the process of exporting libraries/dependencies, making it
both convenient and fast. Developers only need to search for the dependen­
cies in Maven repositories. They can then select the appropriate version and
import the dependency into the automatically generated pom.xml file. Maven
downloads these dependencies and stores them in the user's local repository.
With Maven, developers can easily update the versions of all their dependen­
cies. When a new version is released in the Maven repository, the pom.xml
file will contain a notification indicating the availability of a new dependency
version.

• Build lifecycles
Build lifecycles in Maven allow developers to build and distribute a particular
project in a predefined way. Maven has three built-in build lifecycles: default,
clean, and site . The default lifecycle manages project deployment, clean
manages project cleaning, and site creates the project's website with project
documentation, and adds standard reports about the state of the project's
development. Each build lifecycle has own set of goals which must be fulfilled
at the end of it. Examles of common Maven goals include: compile, test,
package, and install.
Each lifecycle in Maven is made up of phases that define specific actions and
has own set of goals. For example, the phase "validate" is used to validate that
the project is correct and that all necessary information is available. Lifecycle
phases can be executed sequentially or in any order [5].

• Plugins
Plugins define implementations for various goals and can be used to modify
existing goals. Maven provides two types of plugins: build plugins, which are
executed during the build process and should be configured in the <build>
element of pom.xml, and reporting plugins, which are executed during the site
generation process and should be configured in the <reporting> element of
pom.xml [6].

17

1.2 Git

To understand what Git is, how it works, and why developers may need to use it,
one must first comprehend the problem of a Version Control System (VCS), as this
is crucial thing that Git is based on. A Version Control System is a system that
helps users manage the development state by saving changes of they projects in a
specific file or set of files over time [7]. It is convenient for many people to access the
oldest versions to their projects, not only to track all differences from the current
version but also to control the entire development process and debug new features
or changes in the project.

1.2.1 Version control systems

Version control systems can be devided into multiple approaches [7]:
• Local Version Control System (LVCS). In this system, there is a simple

local database that stores all changes to files under revision control. One of
the most popular LVCS systems is The Revision Control System (RCS), which
is still distributed with many computers today. RCS can manage multiple re­
visions of files, automates the storing, retrieval, logging, identification, and
merging of revisions, and it also is useful for text that is revised frequently,
including source code, programs, documentation, graphics, papers, and form
letters [8]. However, there is one major limitation: in a Local Version Control
System, people cannot easily share their files with other developers to collab­
orate on a project. Therefore, VCSs can be useful for local projects but are
not intended for projects that involve more than one person.

• Centralized Version Control System (CVCS) were developed to deal with
problem of sharing data within developers, that can't be done with LVCSs.
CVCSs systems have a server that stores all versioned files. These systems
have a hierarchical structure managing access rights for each collaborator, en­
suring everyone is aware of their responsibilities. A typical Centralized Version
Control Workflow is [13]:

— Pull down any changes other people have made from the central server.
— Make your changes, and make sure they work properly.
— Commit your changes to the central server, so other programmers can

see them.
The main disadvantage of this approach is the absence of a local copy of
repository, consequently resulting in the inability to work offline.

• Distributed Version Control System (DVCS), such as Git, are a type
of version control system where users can create full local copies of reposito­
ries, including their entire history, from remote servers. Also DVCSs enables

18

developers to work with multiple repositories simultaneously. This approach
resolves numerous issues associated with remote servers and significantly im­
proves the speed of repository-related actions. Here are some of the most
crucial advantages of DVCSs over Centralized Version Control [13]:

— Committing new changes can be done locally without pushing them to
the remote server. This allows you to thoroughly test all the changes
before pushing them to the remote server.

— Because each programmer has a complete copy of the project repository,
they can share changes with just one or two other people to gather feed­
back before presenting the changes to everyone.

— You can work with your repository offline, and then, when you have
internet access, you can push your work to the remote server easily.

1.2.2 Storing data

Git has the different approach in storing data then others VCS. Where other VCS
would save information about files changes as a set of all current files and the changes
made to each file over the time. Git creates snapshots of a file systems, so when user
commit new changes, Git saves files state in this moment and stores the reference
to new snapshot. If some is not changed, Git doesn't store these files again, it just
makes the reference to the previous file that have been already stored.

1.2.3 Local operations

For faster development Git and DVCS uses local storage to have access to all files
and metadata without connection to remote server. One of the main advantages of
this approach is the possibility of working offline. Developers just need to have a
local repository copy to work with it. This feature is especially valuable when the
remote server is not available. Developers can continue working without waiting for
server accessibility, and when the server is accessible again, they can upload all their
changes.

1.2.4 File's states

In Git, there are three possible file states: "modified", "staged", and "committed".
When a developer initializes Git in a local directory with the git init command and
makes changes to files, the status of those files turns to "modified". This indicates
differences between the current version of the file and the original version saved in
the last snapshot.

To apply changes from this current version, the developer needs to stage the
file with the git add command, which moves the files to the staging area - an

19

intermediate space where commits can be formatted and reviewed before finalizing
the commit [10]. In this staged state, the file is prepared to be committed by the
git commit command to the next snapshot, or it can also be reverted if necessary.

The final state of files in Git is "committed". When files are committed, it
means they are safely stored in the local database, and the developer will always
have access to them.

1.2.5 Branching system

Git utilizes the branching system, which allows developers to create new branches
from the main branch of the repository in their local copy and then upload their local
branch changes to a remote repository. The main advantage of using the branching
system is the structured development process they provide. Using a new branch
for each change in the code ensures that developers always have a clear overview of
the development of new features, as each feature is divided into its own dedicated
branch. As all branches are fully independent of each other, developers can use
them to testing new features without affecting the main branch. If the new feature
works, developers can easily merge it into the main branch. If, for some reason, a
developer doesn't want to implement the new feature into the main branch, then
the branch can easily be deleted.

1.2.6 Git workflows

Because of Git's distributed nature and superb branching system, an almost endless
number of workflows can be implemented with relative ease. There are two examples
of git workflows:

The Centralized workflow is the simplest model where developers push their
local changes directly to the main branch of the remote server. One key thing
developers need to remember is that Git does not allow you to push new changes if
someone else has pushed changes since the last time you fetched [11]. This precaution
helps prevent conflicts between local data and remote data, ensuring that data
pushed to the server does not conflict with changes made by others.

The Integration Manager workflow involves a designated integration man­
ager who is responsible for committing changes to the main repository [11]. In
this workflow, developers fork the main repository on platforms like GitHub or Git-
Lab. They then clone the main repository to their local system, create branches for
each feature, commit and push those changes to the fetched repository, and sub­
mit a merge request. The integration manager reviews the code and determines
whether the changes can be integrated into the main repository. If everything is

20

good, branch with new features will be integrated into the main branch of reposi­
tory. In this workflow developers and integration manager need to control conflicts.
To successfully merge code into the main branch, developers need to incorporate
any other changes that have occurred since the last fetch to their local main branch
and perform a feature branch rebase to the latest version of local main branch.

1.3 GitHub

GitHub is a code hosting platform for version control and collaboration, founded on
Git, and delivered through a software as a service (SaaS) business model [12]. It
allows people to work together on projects from anywhere using Git functionality.

1.3.1 GitHub use cases

GitHub is used to store, track and collaborate on software projects in a number of
different contexts [12]:

• Businesses
Many big companies use GitHub as a platform to host their products. It offers
numerous advantages because different developers within the company can
work on the product simultaneously and maintain control over the development
process. GitHub also provides a variety of useful features that can be used
during code review and safety merging changes.

• Open source software development
That case doesn't really differ from the previous one, but in this case, people
share their projects with the entire Internet, and anyone who wants to collab­
orate can do it. Sometimes big companies do the same, giving some tasks to
open source. Git also has a system that encourages developers to contribute
to other projects.

• Non-programmer
Some people can use GitHub as a version control system for their documents
or multimedia because Git ensures that committed files never disappear, and
GitHub is a right and convenient place to access such files.

1.3.2 GitHub as a collaborative coding platform

GitHub provides extensive opportunities for collaboration among developers in cre­
ating and making changes to code. The key tool in this process is pull requests,
representing the initial stage of integrating new code into the production [14].

The entire process of introducing new code on GitHub is flexible and easily
customizable. The platform offers options for configuring notifications for updates

21

in the repository and an extensive code review process. This process involves the
review of written code by other team members, who can leave comments on specific
code fragments, initiate new discussions, and make decisions regarding the approval
of changes. After the successful completion of the code review process, the code
can be integrated. A Developer can request code reviews from specific colleagues,
selecting them as code reviewers [15].

While the pull-based development workflow introduces valuable opportunities for
community engagement, it is not without its drawbacks. The process of reviewing
pull requests by developers can be time-consuming and does not guarantee a hun­
dred percent quality of the final code. To address this, GitHub Actions have been
developed and implemented. Configuring these actions can streamline the work for
repository administrators, as they are capable of automating the routine testing
process [16].

1.3.3 C I /CD pipelines

To better understand GitHub Actions and why developers use it, it's helpful to know
about the C I / C D method and its advantages. C I / C D stands for Continuous Inte­
gration and Continuous Deployment, these terms highlights the core aspect of this
method. Continuous Integration is a process of integrating code changes between
team members that are automatically build, tested and merged with the existing
code. When Continuous Delivery is the process of safely and quickly delivering
a product to the user, allowing for continuous feedback and the ability to obtain
information related to ongoing changes.

Without integrating a C I / C D pipeline into a project, all testing, building, and
merging steps need to be performed manually. This results in an increased workload
for repository maintainers, who must handle communication, code reviews, contrib­
utor license agreement issues, testing new changes, and the explanation of project
guidelines [18].

With C I / C D pipelines, developers can establish a mechanism that automates all
these steps. As a result, C I / C D pipelines assist developers in enhancing the quality
and productivity of making changes to their products [16].

1.3.4 GitHub Actions overview

GitHub provides its own solution for implementing C I / C D workflows directly on
the platform called GitHub Actions. Developers can program their own workflows
and share them within the GitHub community via the GitHub Marketplace [16].
Workflows are defined in the .github/worknows directory and use Y A M L syntax. In

22

each repository, it is possible to define multiple workflows that can execute different
scenarios [17].

1.3.5 The components and structure of GitHub Actions

Runners are servers that runs workflows when they're triggered. Each runner can
run a single job at a time. GitHub provides Ubuntu Linux, Microsoft Windows, and
macOS runners to run workflows, also is possible to host own self-hosted runners
in own data center or cloud infrastructure. In yaml configuration file the type of
runner, wich will be used by particular workflow, is defined by runs-on key.

Events in GutHub Actions trigger worflow runs, basically users can define as a
event whatever thay want like a pushing new commit to a repository, opening an
issue etc. In yaml configuration file event is configured by key on, users can define
one or more events to trigger particular workflow.

Actions are custom applications for the GitHub Actions platform that performs
a complex but frequently repeated task. Use an action to help reduce the amount of
repetitive code that you write in your workflow files. Actions can be compared with
functions in programming. For example checkout@v3; this action checks-out repos­
itory under the default working directory on the runner for steps, and the default
location of repository when using the checkout action ($ G I T H U B _ W O R K S P A C E) ,
so workflow can access it [19]. Action setup-java@v3 is a setup-java action that
provides the following functionality for GitHub Actions runners [20]:

• Downloading and setting up a requested version of Java.
• Extracting and caching custom version of Java from a local file.
• Configuring runner for publishing using Apache Maven.
• Configuring runner for publishing using Gradle.
• Configuring runner for using G P G private key.
• Registering problem matchers for error output.
• Caching dependencies managed by Apache Maven.
• Caching dependencies managed by Gradle.
• Caching dependencies managed by sbt.
• Maven Toolchains declaration for specified J D K versions.
Jobs are a set of steps in a workflow that will be executed. Each step is shell

script or action, that will be run. A l l jobs in configuration file are run on the same
runner, so users must adhear to the same scripting language. Since all jobs are
running on the one runner, they can exchanges data from one step to another. By
default jobs don't have dependencies and execute in parallel with other jobs defined
on particluar workflow, but in case when developer need to execute jobs in order, it
can easily be done by setting job's dependencies by other jobs.

23

Listing 1 represents a simplified example of a GitHub Actions workflow that
illustrates the described components and workflow structure. This workflow is trig­
gered to run when someone pushes changes only to the main branch (lines 2-4). It
contains just one job that consists of two steps (lines 5-11). One of these steps runs
a predefined action checkout@v4- The second one runs a bash script that will output
the string "Hello, World!" to the console. A l l these steps run on the "ubuntu-latest"
virtual machine (line 7).

name: GitHub Actions Demo

on :

push :

branches: [main]

jobs :

Explore-GitHub-Actions:

runs-on: ubuntu-latest

steps :

- name: Check out repo s i t o r y code

uses: act ions/checkout@v4
- run: echo " H e l l o , world!"

Listing 1: GitHub Actions workflow example

1.3.6 Automatic token authentication

GitHub offers automatic token authentication that developers can leverage with
GitHub Actions. At the commencement of each workflow job, GitHub automati­
cally generates a unique GITHUB_ TOKEN secret for use within the workflow. The
GITHUB_TOKEN is employed for authentication in the workflow job, with its per­
missions limited to the repository containing the workflow. To use the GitHub token,
you can reference it as secrets.GITHUB_TOKEN . When employing the reposi­
tory's GITHUB_ TOKEN for tasks, events triggered by the GITHUB_ TOKEN do
not initiate a new workflow run. This precautionary measure helps prevent inadver­
tent creation of recursive workflow runs [21].

1.4 GitHub Packages

GitHub packages is a platform for hosting and managing packages, including con­
tainers and other dependencies. Developers can centralize their entire software de­
velopment process on GitHub, eliminating the need to publish packages on other
platforms like npm, RubyGems, Apache Maven, Gradle, Docker, and NuGet. This
proves advantageous for developers working on various projects, enabling them to

24

host different software packages in a single location. Additionally, GitHub Pack­
ages allows users to host packages as public or private, providing flexibility to suit
different project needs.

Combining GitHub APIs, GitHub Actions, and WebHooks allows developers to
create a fully integrated end to end DevOps workflow, including C I / C D pipelines
[22].

GitHub package registry allows you to view package contents, download statis­
tics, version history to get a better understanding before you download [22].

1.4.1 Packages permissions

There are two types of packages permissions: one of them is granular user-scoped
or organization-scoped, where packages permissions are scoped to a person ac­
count or organization and don't relate with repository permission, where they were
published [23]. The following GitHub Packages registries support granular permis­
sions.

• Container registry
• npm registry
• NuGet registry
• RubyGems registry

Within these registries, it is possible to release a package without associating it with
a specific repository. Access to the package can then be controlled by configuring
access permissions and visibility settings in the package's preferences. When a de­
veloper publishes a package, they automatically receive administrative permissions
for that package. If a package is published within an organization, individuals with
the owner role also gain administrative privileges for the package. Those with ad­
ministrative permissions for the package have the authority to designate the package
as either private or public. Moreover, they can assign access permissions specifically
for the package, distinct from the permissions established at the organization and
repository levels.

The second type of packages permission is repository-scoped permission. In
this situation packages inherit permission and visibility of the repository, where they
were created, so if repository is private, packages will be also private. In this case,
there will be some limitations on using private packages for free. The following
GitHub Packages registries only support repository-scoped permissions.

• Apache Maven registry
• Gradle registry
To use or manage a package hosted by a package registry, you must use a personal

access token (classic) with the appropriate scope, and your personal account must

25

have appropriate permissions. When you create a GitHub Actions workflow, you can
use the GITHUB_TOKEN, described in the section 1.3.6, to publish, install, delete,
and restore packages in GitHub Packages without needing to store and manage a
personal access token [23].

1.4.2 Working with the Apache Maven registry

To authenticate to GitHub Packages, developers need to use a personal access
token (classic) [24]. For Apache Maven, this authentication is accomplished by
configuring the .m2/settings .xml file, which contains elements used to define val­
ues for Maven execution. This is achieved by adding a child <server> tag in the
<servers> tag with a mapping repository defined by the <id> tag, a <username>
tag set to the GitHub username, and a <password> tag set to the personal access
token.

When authenticating to a GitHub Packages registry within a GitHub Actions
workflow, the GITHUB_TOKEN can be used to publish packages associated with the
workflow repository [24].

To publish Maven packages to GitHub Packages, it is necessary to configure
the <distributionManagement> section in the Maven pom.xml file. Within this
section, the <repository> tag needs to be configured with a mapping tag <id>,
and optionally with the <url> tag, which is used for publishing multiple packages
to the same repository. The mvn deploy command then initiates the deployment
process, making the packages available for collaboration and use by other developers
and projects within the GitHub platform. This allows for publishing several packages
at once.

To install a GitHub package into projects, developers need to copy the X M L
code from the package page and add it as a dependency in the project's pom.xml
file. They can then initiate the mvn install command, which will locally download
all dependencies used in this package.

1.4.3 GitHub packages with GitHub Actions

GitHub Actions provides developers with the capability to seamlessly automate the
entire GitHub packages lifecycle, from publication to installation. This streamlined
process becomes particularly evident when publishing new versions of applications.
The workflow shown in Listing 2 is triggered when new commits are pushed to the
main branch of the current repository. It comprises a single job that runs on a Win­
dows virtual machine and executes specific steps. The workflow leverages predefined
actions, specifically checkout@v3 and setup-java@v3, described in the section 1.3.5.
The setup-java@v3 action modifies the settings.xml file, configuring the server tag

26

with a username tag set to the environment variable GITHUB_ACTOR and a pass­
word tag set to the environment variable GITHUB_TOKEN. These credentials are
then used by distributionManager in the pom.xml file. The server-id parameter is
used to bind the appropriate repository tag inside the distributionManager tag with
the credentials defined in settings.xml. Subsequently, the package is deployed and
published to GitHub Packages using the commands mvn package and mvn deploy.
Publishing the package also requires the GITHUB_ TOKEN for authentication, and
it is provided as a parameter.

i name: Maven Package

•2 on :

3 push:

branches : [main]

5 jobs:

fi b u i l d :

7 runs-on: windows-latest

8 permissions :

9 contents : read

10 packages : write

n steps :

12 - uses: actions/checkout@v3
13 - name: Set up JDK 11

uses: actions/setup-java@v3
15 with :

16 j ava-version : ' 1 1 '
17 d i s t r i b u t i o n : 'temurin'

is s e r v e r - i d : github # Value of the distributionManagement/

r e p o s i t o r y / i d f i e l d of the pom.xml

sett i n g s - p a t h : ${{ github.workspace }} # l o c a t i o n for the

settings.xml f i l e

20 - name : Build with Maven

21 run: mvn -B package - - f i l e pom.xml

22 - name: Publish to GitHub Packages Apache Maven

23 run: mvn deploy -s D:\a\todolistApp\todolistApp\settings.xml

24 env :

25 GITHUB_T0KEN: ${{ github.token }}

Listing 2: Work with GitHub Packages with GitHub Actions

1.4.4 GitHub Packages Registry

After publishing a package, it appears in the GitHub Packages Registry. Figure 1
shows the newly published package in the Github. When opening the package
the user sees its name, the latest version, and in the case of Maven packages, the
dependency on this package. In the "Details" section, information about the creator

27

file://D:/a/todolistApp/todolistApp/settings.xml

of this package, the creation date, and the number of dependencies included in this
package are displayed. One of the key sections for this work is "Assets", where
J A R files for the application can be downloaded. To track activity, there is also a
download statistics for this package and previous versions. The author can provide
a detailed description of the package for users who may want to use it.

t com.misskii.javatod olistapp 1.0.4 < w « ™

<> Install 1/2: Add this to pom.xml: Learn more about Maven or Gradle
Detai ls

AnionMisskii

Detai ls

AnionMisskii

dependency >
•:grojpId>com.rri55kii':/gr-oupId>
<artifactId>javatodoli5tapp</artifactId>

Q November 14, 2023

£j£ 8 dependencies

<version>l.0.4</vers ion>
^/dependency> Assets

0 Install 2/2: Run via command line javatodolistapp-1.0.4-

shaded.jar.md5

javatodolistapp-1.0.4-

shaded.jar.md5

% mvn ins ta l l (|) javatodolistapp-1.0.4-
shaded.jar.shs1

(|) javatodolistapp-1.0.4-
shaded.jar.shs1

(1) javatodolistapp-1.0.4-

shaded.jar

(1) javatodolistapp-1.0.4-

shaded.jar

Fig. 1: GitHub Packages registry

28

http://shaded.jar.md5
http://shaded.jar.md5
http://shaded.jar.shs1
http://shaded.jar.shs1

2 Software license

A software license is a tool for regulating the use and distribution of a program
in accordance with the rules established by the developer or vendor. The primary
purpose of a software license is to protect the interests of the vendor by ensuring
that the product is safeguarded from piracy, thereby protecting the investment made
in creating and maintaining the project [27]. This investment is expected to be
recouped when the product is used and adopted by enough users. The license
typically becomes part of the application when it is released, ensuring that all terms
and conditions set by the software owner are met and fully complied with.

However, when integrating software license, also protecting of user interests need
to be considered. A common practice is for licensed users to receive timely program
updates that add new functionality, fix bugs, or improve security. The software
owner must also ensure that the license verification process for the user appears
intuitive and consistent with the complexity of the licensing model [28].

2.1 Software license models

Licensing models play a key role in regulating the distribution and use of software,
providing a framework for developers and businesses to determine the terms of access
and use of their products. These models range from traditional approaches such as
perpetual licensing, where users purchase a one-time license for ongoing use, to
modern subscription-based models that offer recurring payments for ongoing access
and updates.

2.1.1 Perpetual license model

The perpetual licensing model is one of the classical models for licensing software.
It can use a hardware locking system or a key expiration system. Hardware locking
provides several implementations, such as using a dongle - a hardware device that
typically plugs into a parallel or USB port, acting as copy protection for a particular
software application. Alternatively, it may rely on the Media Access Control (MAC)
address of the device, a unique identifier assigned to a network interface controller
[27]. However, a hardware locking system has its drawbacks. Weak node locking
invites the potential misuse of purchased software, and it isn't user-friendly. It
can pose problems when users want to change their device, where the software is
installed, or if it's lost; consequently, they risk losing their licensed copy.

To address these disadvantages, many software vendors have developed in-house
web-based systems for license distribution. These systems allow customers to log in,
activate their license key, and register their product. License activation involves the

29

user interacting with an activation wizard, which requests the entry of an activation
code. This activation code is then processed by the software vendor's registration
server, which returns information either allowing or denying activation [27].

2.1.2 Network-based model

Network-based models utilized by large companies to provide licensed copies to thou­
sands of employees on their devices. In this licensing model, a company purchases a
pool of a large number of licenses and then distributes copies to its employees [27].
However, this approach requires the license server to maintain constant communi­
cation with each copy of the software, which can potentially overload the server.
One solution to this problem is an approach where the user temporarily acquires
a licensed copy, which the license server locks temporarily and cannot provide to
another user [27]. This approach has its benefits; a user with a licensed copy can
work offline since constant communication with the server is not required, and it
significantly reduces the load on the server.

2.1.3 Subscription model

The subscription model assumes that the user purchases a license for a certain
period [27]. During this period, the user owns the software and receives all updates.
Upon license expiration, the user is prompted to renew it, temporarily losing access
to the application's functionality. It is primarily used by companies catering to
individual users rather than large organizations and is convenient for buyers as they
can choose not to renew, encouraging developers to introduce new features to retain
users. It is primarily used by companies catering to individual users rather than
large organizations.

2.1.4 Utility-based model

Utility-based model is also known as a license-as-needed model, where a business
can acquire a pool of licenses and distribute them among its employees. Fees are
charged based on the actual usage of the software as needed. This licensing model
integrates well with the concurrent network-based model because the network license
management system can continuously record each use and update its internal state to
recognize when users have exceeded limits. The enterprise can adapt the concurrent
network-based model to record each use and submit audit reports to appropriate
internal teams, which in turn can submit these reports periodically to the software
vendor [27].

30

2.1.5 Trial model

The trial licensing model provides unrestricted access to the application for users
to explore its functionality by imposing limitations on the usage period or restrict­
ing the software's features. Often, solutions involve implementing both types of
restrictions.

Introducing a trial version of the application is an economically beneficial ap­
proach for both the product owner and potential users. This method attracts new
users by allowing them to familiarize themselves with the product before making a
purchase. Users can assess the functionality, decide if the application meets their
needs, and provide feedback, which is crucial for product improvement. In a sense,
it is akin to beta testing, requiring no formal commitments but contributing to the
enhancement and promotion of the application.

2.2 Software license implementation

When implementing a software license, it is crucial to clearly define the developer's
interests it should cover and the benefits the license buyer should receive. This
includes ensuring that the license provides protection against incomplete or unau­
thorized access to the application, facilitated through timely updates. A n essential
step in license implementation is selecting the appropriate licensing model that aligns
with the protected product.

For instance, in the case of a basic application, creating a complex security
system might be unnecessary, as it could inflate development costs and complicate
the licensing process for the buyer. On the other hand, if the product's utilization
is expected to generate significant revenue from licensing agreements for the vendor,
implementing a more complex protection system may be advisable.

It's also vital to decide whether the application will offer a trial license period for
evaluation and how trial version of the application will differ from the full version.
The trial period might limit functionality, or users may not receive all new updates.

2.2.1 Proposed application license design

In this proposed solution for implementing application licensing to JavaFX appli­
cation that is described in the section 3, the focus lies on restricting application
functionality for users without a license and controlling the number of application
license copies. Depending on the application's functionality and intent, the most
suitable approach is to employ a subscription model in tandem with a trial license
model.

31

This entails providing all interested users with a standard version of the appli­
cation, but with limited features, alongside trial licenses. These trial licenses afford
users the opportunity to explore the application's full suite of features initially and
the option to subsequently obtain a license for a specified duration.

The implementation of these two license models is based on a market analysis
of similar applications. This underscores the value of allowing buyers to trial the
application and, based on their experience, opt for a subscription over a set period
(e.g., 1 month, 3 months, or a year).

Figure 2 depicts a block diagram illustrating the application license validation
process that takes place when the user logs into the application.

U s e r log in to app

Val idate the l icense
key.

Y E S

D isp lay a not i f icat ion.

Prov ide a c c e s s to the
ful l - f ledged
appl icat ion

- N O -

- N O -

Disp lay a noti f icat ion.

Prov ide the
appl icat ion
with l imited
functionality.

Fig. 2: Software license implementation block diagram

32

To implement licenses for the application, one approach is to utilize a separate
license manager service. Developers or vendors can either integrate existing ser­
vices with their software or develop their own service to handle license management
functionalities.

In this work, a Spring RESTful A P I license manager has been created to provide
all the necessary web services for license management. Using an external license
manager has a significant advantage in security; the secret key won't be distributed
with the main application, preventing crackers from writing a keygen without ob­
taining the private key.

2.2.2 Spring RESTful API license manager overview

The RESTful A P I license manager utilize two controllers designed to handle in­
coming H T T P requests, such as POST, G E T , D E L E T E or P A T C H and deliver
appropriate responses. One of these controllers is dedicated to the web application,
where administrators can manually create, delete, or modify licenses. The second
controller facilitates communication between the client, which is the main JavaFX
application, and the web application API . Through specific methods and URLs, this
controller enables services like generating trial licenses for new users or validating
license keys entered by users of the client application.

Each license key have various attributes, including the user's email (serving as
the primary identifier), the license value, current status, creator information, and
two timestamps indicating the creation and expiration dates to manage the license's
lifespan.

To streamline communication between the main JavaFX application and the
license manager, a Data Transfer Object (DTO) class is used. This D T O class
contains only essential fields attributes for communication, eliminating the need for
users to send H T T P requests with all license attributes, enhancing efficiency and
simplicity in the communication process.

In order to strengthen security measures, the web application operates under the
HTTPS protocol, safeguarding data integrity and confidentiality during communi­
cation between the client and the server.

2.2.3 Software license key generation

Through the license manager application, administrators can create new license
keys and track their usage. The process of generating and validating license keys
employs the asymmetric E C D S A digital signature algorithm, utilizing pre-generated
private and public keys. To create a license key, the administrator enters the user's
email, which is then hashed using the SHA-256 algorithm along with the license key

33

creation date. Subsequently, the hash signed with the E C D S A private key, encoded
using base-64, and the resulting encoded signature becomes the license key. A l l
other attributes of the license key are predefined, except for the expiration date,
which requires manual input by the administrator.

The diagram in Figure 3 illustrates the sequential steps involved in generating a
license key for the application.

Select an user's email

Use the SHA-256
hashing algorithm to hash the

selected email along with
license key creation date

V

Use the ECDSA algorithm
to sign the hash with

the private key

Encode the signature
with the base-64

Fig. 3: Software license key generation block diagram

The new generated license key is stored in the database with an initial status of
"Unknown". This status changes dynamically when users attempt to log in to the
application using the generated license key. If the method responsible for validating
the license key confirms its authenticity, the status is updated to "Valid"; otherwise,
it is marked as "Invalid".

2.2.4 Software license key validation

The license key validation process initiates when a user attempts to log in to the
application. The client application initiates communication with the license manager
application via H T T P S and sends JSON data containing the user's email and the
license key.

Upon receiving the data, the license manager application retrieves the user's
email. Using this email, the application searches the database for the corresponding
license key creation date. It then hashes the user's email along with the creation
date using the SHA-256 algorithm. Subsequently, it verifies the signature using the
built-in public key. If the signature is valid, the status attribute of the license key
instance is set to "Valid".

The license manager application returns information about this license key us­
ing the License Data Transfer Object (DTO) definition, which includes the updated
status, to the client application. Based on the response received, the client applica­
tion provides the appropriate version of the application to the user. If the license
is valid, the full-featured version is provided; otherwise, only the basic features are
accessible.

The process of validating a license key for the application is illustrated in Figure
4 in the accompanying diagram.

34

Use the SHA-256
hashing algorithm to hash the

selected email along with
license key creation date

V

Decode the Base-64
encoded signature

Verify the signature
with the E C D S A

public key

Fig. 4: Software license key verification block diagram

2.2.5 Software license key expiration and renewal

In this work, two licensing models are utilized: subscription and trial. They are
often employed together and share similar characteristics. Both aim to familiarize
users with the protected product and have expiration dates, requiring users to renew
their license keys after a certain period. Therefore, it is crucial to establish a defined
process for renewing users' license keys in the license manager application.

The distribution logic for trial licenses relies on one key factor: the user has
never possessed the license, and there is no corresponding information about them
in the license manager database. If a user attempts to reuse the trial license, the
license manager returns an H T T P response message indicating that the trial license
cannot be activated. Thus, renewing trial license keys is prohibited.

In contrast, common keys can be obtained by users, who simply input them
via the license activation form. When a user attempts to log in to the JavaFX
application, they send a validation request with the new license value.

35

3 JavaFX application

To demonstrate the process of integrating GitHub Packages into a development
workflow, a Java "To-Do list" demo application was developed utilizing JavaFX
and the Maven tool. The application also has access to the relational Postgresql
database to save data about users and their tasks. Additionally, a robust software
licensing mechanism was implemented to prevent unauthorized users from exploiting
additional features.

3.1 The application overview

Figure 5 shows a login scene that is presented to the user, when application starts.
It contains text fields for entering email and password, along with three buttons.
The first one is the "Sing in!" button that performs login to the application. If
the user's credentials are correct, the scene will transition to the main application
scene; otherwise, an error message will be displayed, indicating that the credentials
are incorrect. The second one is the "Sign Up!" button that will switch the login scene
to the register scene. The last button "Activate license" performs the transfer to the
application license scene that is described in details in the section 3.5. Additionally,
the login scene includes a text area with a message dependent on the application
version. If the user's version is outdated, the message informs about it, with a link
to GitHub packages registry where the user can download the latest version.

E TO-DO List Appl icat ion •

Email: Enter your email

Password: Erneryour password

Sing Inl

Do not have account yet? Sing Up!

Activate application license Activate license

You're all up to date with the latest version!

Fig. 5: The application login scene

36

The main scene that is shown on Figure 6 consists of a table displaying the user's
tasks, which are saved in database, accompanied by buttons to create new tasks and
edit existing ones.

The application features a task prioritization mechanism, exclusively accessible
to users with a valid application license key. Tasks are color-coded to indicate
urgency, with the most critical tasks highlighted in green, the second category in
blue, the third in orange, and default tasks in black text. Users can customize the
priority of tasks through the edit functionality. By navigating to the edit scene,
users can input the task's ID and select one of four priority buttons. Alternatively,
users can specify task priorities during their creation. Users without a software
license can access all other application features but will find the priority status of
each task set to default.

E TO-DO List Application • X

ID Title Description DueTo Status

13 Grocery Run milk, eggs, and bread 2024-04-27 In Progr...

Add 14 30-minute cardio or yoga Morning Workout 2024-04-27 In Progr...

Edit 15 Research DIY Decor Find home decor inspiration onl... 2024-04-30 In Progr... Edit
16 Declutter Closet 2024-04-30 In Progr...

About About

Logout Logout

Fig. 6: The application main scene

Additionally, there is a button that, when clicked, opens a new stage, shown on
Figure 7, displaying author information and precise details about the current and
latest version of the application. If the versions differ, the latest version will be
displayed in red text; otherwise, it will be displayed in green text.

37

E TO-DO List Application

Add

Edit

About

ID

• X

Title Description

31 m

E About n X

T o - d o l ist a p p

Author Anton Vlisskii

Actual version: 1.0,3

Latest version: 1.0.4

DueTo Status

12/13/23 InProgr..,

today In Progr..

Fig. 7: The application information window

3.2 The JavaFX application structure

Applications based on JavaFX platform have hierarchically categorized components,
these are stages, scenes and nodes [25].

3.2.1 Stages configuration

The top-level component in JavaFX is the stage, which contains all other JavaFX
components. Stages serve as containers for all JavaFX objects [25]. The primary
stage is automatically created by the platform, while additional stages can be created
by the application. Listing 3 shows the basic configuration of the primary stage.

1 ©Override
2 publ ic void s tar t (Stage stage) throws IOException {
3 Parent root = FXMLLoader. load (get Class ()
4 . getResource (" login—page . fxml")) ;
5 stage . s e t T i t l e ("TCMX) L i s t A p p l i c a t i o n ") ;
6 stage.setScene(new Scene(roo t)) ;
7 stage . se tRes izable (true) ;
8 stage . show () ;
9 }

Listing 3: Primary stage configuration

To display the primary stage, it needs to override the start method, within this
method, developers can configure the stage by customizing elements such as setting
the initial scene, titles, stage resizable properties, and more. The configuration is

38

then finalized with the use of the show method, which needs to be called when
the application starts to display the configured stage. The appearance of the stage
depends on the host system and may vary between Mac OS, Windows, and Linux
platforms [25].

3.2.2 Scenes configuration

Scenes are second-level elements in the JavaFX application structure, which are
held by stages. Each scene consists of a scene graph, which contains various visual
JavaFX elements known as Nodes. Nodes placed within the scene graph become
visible components in the application [25].

One way to declare scene graph nodes in JavaFX is by using F X M L files. F X M L
allows to describe and configure the scene graph in a declarative format. Usually
with usage the F X M L files developers use the Model-View-Controller (MVC) soft­
ware design pattern [26]. Additionally, with F X M L , it is possible to use Scene
Builder, a drag-and-drop tool that provides a visual representation of the scene.
Using this tool reduces the amount of code needed to write. The Scene Builder
provides a clear preview of how the application will look when launched.

In JavaFX, each F X M L scene file needs to have a controller, which is a Java
class. The controller is specified using the fx:controller parameter in the F X M L file
and contains the code that controls the behavior of a scene that is described in the
F X M L file. F X M L files consist of appropriate node tags with parameters, such as
coordinates of each visible object, height, and width. Some of these elements, like
buttons, have an onAction parameter, which defines the name of the function that
manages the interaction with this object. In Listing 4, the code fragment for the
MainSceneController class is demonstrated.

1
o

publ ic class MainSceneControl ler extends Genera lCon t ro l l e r {

Z
3 @EXML
4 pr iva te TableView<Task> table ;
5 @EXML
G pr iva te TableColumn<Task , Integer> t a b l e l d ;
7 @EXML
8 pr iva te TableColumn<Task , S t r ing> t a b l e T i t l e ;
9 @EXML

10 p r iva te TableColumn<Task , S t r ing> t a b l e D e s c r i p t i o n ;
11 @EXML
12 p r iva te TableColumn<Task , Date> tableDueTo;
13 @EXML
14 pr iva te TableColumn<Task , S t r ing> tableSta tus ;
15 pr iva te f i n a l TaskDAO taskDAO = new TaskDAO() ;
1G publ ic void f i l l T a b l e () throws JsonProcess ingExcept ion {

39

17 ObservableList<Task> tasks = taskDAO . select A l l T a s k s B y P e r s o n l d (
t h i s . u s e r l d) ;

18 t a b l e l d . s e tCe l lVa lueFac to ry (new PropertyValueFactory<Task ,
Integer >(" taskld ")) ;

19 t a b l e T i t l e . s e t C e l l V a l u e F a c t o r y (new PropertyValueFactory<Task ,
Str ing>(" t a s k T i t l e ")) ;

20 t a b l e D e s c r i p t i o n . s e tCe l lVa lueFac to ry (new Property ValueFactory <
Task , St r ing >(" t a skDesc r ip t i on ")) ;

21 tableDueTo . s e t C e l l V a l u e F a c t o r y (new Property ValueFactory <Task ,
Date>(" date ")) ;

22 tab leSta tus . s e t C e l l V a l u e F a c t o r y (new Property ValueFactory <Task ,
St r ing >(" status ")) ;

23 se tCel lFac toryBasedOnLicenseSta tus (th i s . l i censeS ta tus) ;
24 table . setl tems (tasks) ;
25 }

Listing 4: Main scene controller

This class extends another class named GeneralController and includes the at­
tributes table, tableld, tableTitle, tableDescription, tableDate and tableStatus all an­
notated with the @ F X M L annotation that establishes a connection between the
F X M L file and these Java attributes (lines 3-14). Within this class, an instance of
the TaskDAO class is present, serving for interactions with the database (line 15).

The class contains the fillTable method that populates the TableView defined in
the main scene F X M L file with tasks retrieved from the database using the taskDAO
(line 16). It sets cell value factories based on licenseStatus value for each TableCol-
umn to specify the color of each cell with data from the Task objects.

In this way this MainPageController manages JavaFX scene that are originally
specified in F X M L file, providing seamless integration between backend logic and
frontend presentation.

3.2.3 Navigating through scenes

To navigate through various scenes, it is often necessary to pass the user's identity.
Listing 5 shows an example of the switchToMainPage function that handles these
two tasks.

1 publ ic void switchToMainScene (Act ionEvent event, int i d , S t r ing
s ta tus) throws IOException {

2 FXMLLoader loader = new FXMLLoader (get Class () . getResource (" main
—page . fxml")) ;

3 root = loader . load () ;
4 MainSceneControl ler mainSceneControl ler = loader . g e tCon t ro l l e r

0 ;
5 mainSceneCont ro l l e r . d i sp layUser (personDAO . loginUser () . get (id) .

g e t l d Q) ;

40

11
10

G

8
7

mainSceneControl ler . se tLicenseSta tus (s ta tus) ;
mainSceneControl ler . f i l l T a b l e () ;
stage = (Stage)((Node) event. getSource ()) . getScene () . get Window ()
scene = new Scene(root) ;
s tage .se tScene(scene) ;
stage . show () ;

12 }

Listing 5: Method for transitioning between scenes

After the user logs into their account, they should only see their tasks. To achieve
this, when calling the scene transition function named switchToMainScene, the user's
ID is passed as a parameter (line 1). With this ID, the application determines which
tasks belong to the logged-in user and need to be displayed. The user's ID is then
retrieved from the database and stored in the userld variable using the setUserld
method of the MainSceneController instance (line 5).

Another crucial aspect is populating the license status value from the login-
SceneController while validating license keys. To accomplish this, the function
takes the license status as a parameter and uses the setLicenseStatus function to
propagate the license status to the main scene controller (line 6).

Following this setup, the fillTable function is invoked to populate the table with
the corresponding data using the current user's ID.

After setting up the necessary parameters, the application proceeds with the
scene change process. This process involves loading the 'main-page.fxml' F X M L file
from the resource directory, obtaining the root node of the scene graph using the load
function (line 3). The getController function retrieves the associated controller (line
4), assuming the F X M L file has one. A new Scene is created using the obtained root
node, and setScene sets the created scene as the content for the stage, essentially
specifying what should be displayed within the application window (lines 8-11).

3.3 Implementation of a Postgresql database

The primary functionality of this JavaFX application revolves around interaction
with a PostgreSQL database. This interaction encompasses operations such as read­
ing information about users, tasks, and licenses, as well as storing necessary data
and providing information, such as the validation status of license keys.

The database comprises three tables: Users, Tasks, and Licenses. The relation­
ship between the Users and Tasks tables is many-to-one, indicating that one user can
have multiple tasks, with all tasks belonging exclusively to that user. Additionally,
there is a one-to-one relationship between the Users and Licenses tables, as each
user can have only one license key at a time.

41

In Figure 8, the entire database schema is shown, including all entities' columns
and their data types.

l icenses 1 people tasks

user Email & varchar •i
.—v- person ID iJ>

integer taskID -y

person ID integer -i—l name varchar u person ID

licenseValue varchar email varchar title

licenseStatus varchar password varchar description

expiration Date date expiration

status

integer

integer

varchar

varchar

varchar

varchar

dbdiagram.io

Fig. 8: Relational database schema

3.3.1 Interacting with the database

The application is utilizing J D B C A P I for easy access to database. J D B C is a low-
level A P I where all actions with the database need to be implemented manually, such
as translating Java objects to a string representation of a table or vice versa. This
implies that all SQL queries need to be written in Java code, requiring developers
to handle the intricacies of database interactions within their application logic.

Listing 6 shows an example code for interacting with the database.
1 publ ic class PersonDAO {
2 pr iva te f i n a l Connection connection = D B U t i l . getConnection () ;
3
4 publ ic void createNewPerson (Person person){
5 PreparedStatement preparedStatement =
6 connection . prepareStatement ("INSERT INTO PERSON (

personName , personEmail , personPassword) VALUES (? ,
? , ?) " , Statement .RETUIW_GE]NEIUTED_KEYS) ;

7 preparedStatement . s e tS t r ing (1 , person . getName ()) ;
8 preparedStatement . s e tS t r ing (2 , person . getEmail ()) ;
9 preparedStatement . s e tS t r ing (3 , person . getPassword ()) ;

10 preparedStatement . executeUpdate () ;
11 ResultSet resu l tSe t = preparedStatement. getGeneratedKeys () ;
12 i f (r e s u l t S e t . n e x t ()) {
13 int id = r e s u l t S e t . g e t l n t (1) ;
14 }
15 }
16 }

Listing 6: Person Data Access Object class

42

This code represents a part of a Data Access Object (DAO) Java class designed
to interact with a database. Initially, it is necessary to obtain a database connec­
tion through the DBUtil.getConnection function, which handles database connection
details. Subsequently, the createNewPerson function takes a Person object as a pa­
rameter and inserts its data into the Person table using a prepared statement (lines
4-6). It sets the values for the placeholders in the SQL query using the corresponding
properties of the Person object and then execute updates (lines 7-10).

3.4 The application updates

The application also includes a feature for checking version updates and displays to
the user whether they have the latest version of the app or not. Listing 7 demon­
strates a part of the Java class that checks the relevance of the application version.

1 publ ic boolean compareVersions () {
2 S t r ing a p i l l r l = " h t t p s : / / a p i . g i t h u b . c o m / u s e r s / A n t o n M i s s k i i /

packages/maven/com. m i s s k i i . j a v a t o d o l i s t a p p / v e r s i o n s " ;
3 H t tpC l i en t h t t p C l i e n t = H t t p C l i e n t s . createDefaul t () ;
4 HttpGet httpGet = new HttpGet (a p i U r l) ;
5 ht tpGet . addHeader (" Accept" , " a p p l i c a t i o n / vnd . github+j son ") ;
6 ht tpGet . addHeader (" A u t h o r i z a t i o n " , "Bearer "+ g i tToken) ;
7 ht tpGet . addHeader (" X - G i t H u b - A p i - V e r s i o n " , "2022-11-28");
8 HttpResponse response = h t t p C l i e n t . execute (ht tpGet) ;
9 S t r ing responseBody = E n t i t y U t i l s . t oS t r i ng (response .

ge tEn t i t y ()) ;
10 ObjectMapper objectMapper = new ObjectMapper () ;
11 JsonNode jsonNode = objectMapper . readTree (responseBody) ;
12 S t r ing la tes t V e r s i o n = jsonNode . get (0) . get ("name"). asText () ;
13 setLatest Ve r s ion (la tes t V e r s i o n) ;
14 i f (ACTUAL_VERSION. equals (la tes t V e r s i o n)) {
15 return true ;
16 }

Listing 7: Method for checking application versions

This Java class checks versions updates by accessing a GitHub A P I endpoint
through an H T T P G E T request (lines 2-8). The GitHub A P I provides details on
Maven package versions. The response is decoded using the ObjectMapper (lines
8-9) to extract the most recent version from the JSON data (lines 10-11), then
latestVersion variable is assigned extracted value (lines 12-13). If the current version
matches the latest one, the method returns true, which means that user has the latest
version of application (lines 22-24).

43

http://api.github.com/users/AntonMisskii/

3.5 Integration of software licensing into the application

The JavaFX demo application uses two license models: subscription and trial. The
subscription model grants users access to the application's full features for a specified
period. On the other hand, the trial model offers a limited-time evaluation period
during which users can explore the application's functionality before deciding to get
a subscription.

3.5.1 Software license activation

After the registration a user can switch to the license management scene shown in
Figure 9 from the login scene.

E TO-DO List Appl icat ion — • X

Email: Enter yours email

Enter application license key:

Enter yours license key

Submit

Get Trial

Cancel

Fig. 9: The application license scene

In this scene, users will see fields to input their email and license key. Alongside,
there are three buttons: "Submit", "Get Trial", and "Cancel".

Users have two options: one is to enter their email and license key obtained from
the license manager application described earlier. They need to input these details
correctly into the respective fields and click "Submit". After that, the application
will check if the email and license key are in the correct format and save the data
into the licenses table in the database, as described earlier. This data will be used
later to create an H T T P POST request to the api/validate U R L , directed to the
license manager application, to authenticate the license key.

The second option is to get a trial license key. To get the trial license, the user
should not have had an account in this application where they've already used any

44

software key. The application will send an H T T P POST request to the api/trial
U R L . The license manager will verify this condition and then either send an ex­
ception or the trial license key data. This data will also be saved in the database
related to the JavaFX application.

3.5.2 Communication with the license manager server

As the license manager server operates as a RESTful A P I application, this client
application communicates with the license manager primarily through H T T P meth­
ods. The LicenseClient Java class includes methods dedicated to handling the POST
requests for two main purposes: validating licenses and creating trial licenses.

The requestTrialLicense method depicted in the listing 8. When invoked, this
method triggers a request to the license manager server's designated A P I endpoint
responsible for generating trial license keys.

1 publ ic S t r ing r e q u e s t T r i a l L i c e n s e (S t r i ng userEmail) throws
JsonProcess ingExcept ion {

2 Map<String , S t r ing> jsonData = new HashMap<>();
3 jsonData . put (" userEmai l" , u se rEmai l) ;
4 HttpEntity<Map<String , S t r i n g » request = new HttpEnti ty<>(

jsonData) ;
5 t ry {
6 RestTemplate restTemplate = new RestTemplate () ;
7 S t r ing response = restTemplate . postForObject (" https : / /

l o c a l h o s t : 8 4 4 3 / a p i / t r i a l " , request , S t r i n g . c l a s s) ;
8 ObjectMapper mapper = new ObjectMapper () ;
9 JsonNode jsonNode = mapper . readTree (response) ;

10 return jsonNode . get (" l i censeValue ") . asText () ;
11 } catch (H t t p C l i e n t E r r o r E x c e p t i o n . Forbidden ex) {
12 S t r ing responseBody = ex . getResponseBodyAsString () ;
13 t ry {
14 ObjectMapper mapper = new ObjectMapper () ;
15 JsonNode jsonNode = mapper . readTree (responseBody) ;
16 return jsonNode . get (" errorMessage ") . asText () ;
17 } catch (Except ion e) {
18 e . p r in tS tackTrace () ;
19 }
20 } catch (JsonProcess ingExcept ion e) {
21 throw new RuntimeException (e) ;
22 }
23 return " " ;
24 }

Listing 8: Method for requesting trial license keys

45

The method takes the user's email value as an input parameter. Then, a
HashMap named jsonData is utilized to store the user email in key-value format
(lines 2-3). Using HttpEntity, the method generates JSON data using the jsonData
HashMap, incorporating the user email into it (line 4). Using the RestTemplate
object from the Spring Web library, the method conveniently creates a POST re­
quest with the generated JSON data and sends it to the specified U R L (lines 6-7).
The method also parses JSON responses to extract JSON data using Jackson's Ob-
jectMapper (lines 8-10).

Since creating trial licenses involves a condition, the license manager server can
return two responses: if the user's email that was sent is already in the license man­
ager database and had the license key before, the license manager server returns
an HttpClientErrorException.Forbidden exception with the error message. The re-
questTrialLicense method can catch this exception and process it (lines 11-16). It
checks the H T T P client status, and if it is forbidden, it retrieves the error message
and returns it. This error message is then displayed to the user who attempted to
use the trial license again or who already possessed the license key.

If the H T T P client status is OK, then the method takes the license key value
from the JSON data response and saves it to the local database for subsequent
authorization.

The validateLicenseKey method, depicted in Listing 9, follows a similar workflow
to communicate with the license manager server.

1 publ ic L i s t<S t r i ng> va l ida teLicenseKey (S t r i n g userEmail , S t r ing
l i censeKey) throws JsonProcessingExcept ion ,
ResourceAccessException {

2 Map<String , S t r ing> jsonData = new HashMap<>();
3 jsonData . put (" userEmai l" , u se rEmai l) ;
4 jsonData . put (" l i censeValue " , l i c e n s e K e y) ;
5 HttpEntity<Map<String , S t r i n g » request = new HttpEnti ty<>(

jsonData) ;
6 RestTemplate restTemplate = new RestTemplate () ;
7 S t r ing response = restTemplate . postForObject (" https : / / l o c a l h o s t

: 8 4 4 3 / a p i / v a l i d a t e " , request , S t r i n g . c l a s s) ;
8 ObjectMapper mapper = new ObjectMapper () ;
9 JsonNode jsonNode = mapper . readTree (response) ;

10 L i s t<S t r i ng> j sonResul t = new A r r a y L i s t <>();
11 j s o n R e s u l t . add (jsonNode . g e t (" l i c e n s e S t a t u s ") . a s T e x t ()) ;
12 j s o n R e s u l t . add (jsonNode .ge t ("expi redDate") . asText ()) ;
13 return j sonResul t ;
14 }

Listing 9: Method for requesting license validation

It receives two parameters: the user email and the license key value. It creates a

46

HashMap named jsonData with these two parameters in key-value format, generates
JSON from this Map using HttpEntity, and sends a POST request with the generated
JSON data using the Spring RestTemplate. Then, it parses the JSON response to
retrieve the license status and expiration date, adds these values to a list, and returns
this list.

The validateLicenseKey method is called within the switchToApp method de­
picted in Listing 10 which resides in the Login scene Controller.

1 publ ic void switchToApp (ActionEvent event) throws IOException {
2
3 i f (Objects . equals (personDAO . loginUser () . get (i) . getEmail () ,

u se rEmai l . getText ())
4 &fe Objects . equals (personDAO . loginUser () . get (i) .

getPassword () , userPassword . getText ())) {
5 try {
6 L i s t<S t r i ng> l icenseData = l i c e n s e C l i e n t .

va l ida teLicenseKey (use rEmai l . getText () ,
licenseD A O . ge tLicenseValueByl lser lD (i +1)) ;

7 licenseDAO . updateLicenseStatus (l i censeData . get (0) ,
LocalDateTime . parse(l icenseData . get (1)) , i +1);

8 }catch (ResourceAccessException e){
9 i f (! LocalDateTime .now() . i sBefore (licenseDAO .

getExpireDate (i +1))) {
10 licenseDAO . updateLicenseStatus (" i n v a l i d " , i+1);

11 }
12 }
13 S t r ing l i censeS ta tus = licenseDAO . getLicenseStatus (i+1)
14 i f (Objects . equals (l i censeSta tus , " v a l i d ")){
15 d i sp l ayL icenseConf i rma t ion (" Your l icense is ac t ive

and v a l i d ") ;
16 }e lse{
17 d i sp l ayL icenseConf i rma t ion (" Your l icense is not

ac t ive or i n v a l i d ") ;
18 }
19 switchToMainPage (event , i , l i c e n s e S t a t u s) ;
20 return ;
21 }
22
23 }

Listing 10: Invoking the license validation method

If the user credentials are correct, the validateLicenseKey method is invoked
(line 6). The returned values from this method are saved into a licenseData list.
Subsequently, the status of the license for this user is updated in the database,
along with the expiration date. Based on the returned license status, the application

47

decides whether the user has a valid or invalid license.
Additionally, the application handles exceptions such as ResourceAccessExcep-

tion that the validateLicenseKey method may throw (lines 8-11). This exception
occurs when the license manager server is not accessible. In such cases, if the user
already has a valid license status stored locally, the application checks if the license
key has not expired. If the license key is valid and has not expired, the user will
still have access to the licensed version of the application, even if the server is not
accessible. This ensures uninterrupted access to the application for users with valid
licenses, even in scenarios where the license manager server is temporarily unreach­
able.

48

4 Java modules

This section is dedicated to the Java module system introduced in Java 9, which
is considered a significant change in Java project structures, as modularizing an
application affects design, compilation, packaging, and deployment processes [30].

4.1 Java environment

To better understand Java modularity and its benefits, it's crucial to understand
the components of the Java environment.

There are three essential components in Java development:
• Java Virtual Machine, or J V M , is responsible for converting bytecode

to machine-specific code. It is also platform-dependent and performs many
functions, including memory management and security. J V M can run pro­
grams written in other programming languages that have been translated to
Java bytecode [29]. J V M is contained within both the Java Development Ki t
(JDK) and the Java Runtime Environment (JRE).
J V M consists of three main components or subsystems [29]:

— Class Loader Subsystem is responsible for loading, linking and initial­
izing a Java class file.

— Runtime Data Areas contain method P C registers, stack
and threads.

— Execution Engine contains an interpreter, compiler and garbage col­
lection area.

• Java Runtime Environment, or J R E , is a set of software tools responsible
for the execution of Java programs or applications on a system [29]. Compo­
nents that are in the J R E [29]:

— Java Virtual Machine: The J V M interprets Java bytecode and exe­
cutes the instructions.

— Deployment solutions: These simplify the activation of applications
and provide advanced support for future Java updates.

— Development toolkits: These are development tools designed to im­
prove the application's user interface.

— Integration libraries: These are libraries and class libraries that assist
developers in creating seamless data connections between their applica­
tions and services.

— Language and utility libraries: These include the Java.lang. and
Java.util. packages, which are fundamental for the design of Java appli­
cations. They also handle package management.

49

• Java Development Kit, or J D K , is a software development kit, the J D K
includes all the Java tools, executables, and binaries needed to run Java pro­
grams. This includes the Java Runtime Environment (JRE), a compiler, a
debugger, an archiver, and other tools used in Java development [29]. Since
Java 9, the J D K comprises approximately 90 platform modules, instead of a
monolithic library, every platform module constitutes a well-defined piece of
functionality of the J D K [30].

4.2 Introduction to modularity

Modularization is the process of fragmenting an application's codebase into smaller,
self-contained units called modules. These modules are logically connected to each
other to maintain application functionality.

4.2.1 Core Tenets of Modules

Modules must adhere to three core tenets [30]:
• Strong encapsulation: The module system allows separating the module

code into publicly usable and internal implementation parts. This prevents
other modules from accessing encapsulated code. Consequently, encapsulated
code may change freely without affecting users of the module [30].

• Well-defined interfaces: The modules need to communicate with each
other. To facilitate this, each module has its own API , which defines a portion
of the module's publicly usable code. It is crucial to define a well-defined and
strict A P I for each module as much as possible. This encapsulation ensures
that changes within a module are isolated and do not affect the functioning of
the rest of an application.

• Explicit dependencies: Modules often depend on other modules, and these
dependencies are typically defined in a module description file. With explicitly
defined dependencies, developers can construct a module graph. Having this
module graph is important for understanding an application and ensuring that
it runs with all necessary modules [30].

4.2.2 Modules declaration

Each Java module must have metadata about the module, such as module dependen­
cies, module exports, and more. A l l this metadata is defined in a module declaration
file named module-info.Java, located in the src directory of each module. Each mod­
ule declaration starts with the Java keyword module, followed by the module name.
Modules live in a global namespace; therefore, module names must be unique [30].

50

After the module name, there is the main body of the module describing its char­
acteristics. The Listing 11 illustrates the example of the module declaration file.

1 module t o d o l i s t . models {
2 requires j a v a . s q l ;
3 exports com. m i s s k i i . t odo l i s t app . e n t i t i e s ;
4 }

Listing 11: Module declaration file

In this simple module declaration file, two characteristics of the todolist.models
module are defined. The requires keyword indicates the dependencies used in this
module. In this example, the todolist.models module defines just one dependency,
which is the java.sql module. Every module implicitly requires the Java.base plat­
form module, as it exposes packages such as java.lang and java.util, which no other
module can do without [30].

The other keyword in module's declaration files is exports, indicating which pack­
ages the module exports to other modules, enabling them to utilize these packages.
Packages that are not exported are not accessible from other modules, even if those
modules have a dependency on this module, due to the encapsulation concept of
modules.

Java 9 brings new capabilities to dependency handling, introducing new ways for
modules to interact and shaping the design of Java applications. Below are the key
characteristics to consider when working with Java modules and their dependencies.

• The readability characteristic of a module allows it to access other modules.
Readability is established when a module declares a dependency on another
module in its declaration file. If a module attempts to use a class or interface
from another module without specifying it in the requires clause, or if the class
is not accessible, it will result in a compile-time error.

• Another important characteristic of modules is accessibility. When one mod­
ule has set the readability to another module, it does not necessarily grant full
read rights. In this situation, the normal Java accessibility rules apply: only
public types in exported packages are accessible in other modules [30].
This characteristic vividly demonstrates the strong encapsulation that comes
along with Java modules and provides developers with more flexibility in code
structuring. Exporting only packages meant for external use and separating
them from packages meant only for internal implementation.

• When a module reads another module, it means that the module reads all
dependencies of the other module transitively. To configure this behavior,
implied readability is utilized. Implied readability is achieved by the requires
transitive statement in the module declaration file. This approach is employed

51

by developers to establish transitive dependencies necessary for the module to
function properly.
The Figure 10 shows a diagram of modules dependencies graph. When the
todolist.utils module declares a dependency on the java.sql module using the
requires transitive directive in its module-info.Java file, it establishes implied
readability. Consequently, any module that depends on todolist.utils will also
transitively depend on java.sql.
Solid arrows are used to denote transitively used dependencies between mod­
ules, when intermittent arrows represent normal requires relationships, indi­
cating direct dependencies between modules.

java.sql

> f

todolist.utils

f

todolist.dao <-

Fig. 10: Modules dependencies graph

• Sometimes modules need to be exported to other specific modules for different
purposes. Qualified exports are used for this. The module declaration file
shown in Listing 12 illustrates how to handle it.

1 module t o d o l i s t . gui{
2 requires javafx . fxml;
3 requires j a v a f x . c o n t r o l s ;
4
5 exports com. m i s s k i i . t odo l i s t app . gui . s ta r t to javafx . graphics ;
6 }

Listing 12: Qualified export example

52

In the todolist.gui module, JavaFX is used. To ensure this module works
correctly, a qualified export of the package containing the class that initializes
the main stage to the javafx.graphics module is required (line 5). This allows
developers to selectively open packages to certain modules while preventing
other modules from accessing them.

4.2.3 Modules resolution

The Java compiler and runtime use module descriptors to resolve the correct modules
when compiling and running modules. Modules are resolved from the module path
[30].

The module path serves as an alternative to the classpath, which was used before
Java 9 to locate classes. When the J V M loads a class, it attempts to resolve its
dependencies and reads the classpath in sequential order.

Using the classpath to locate classes presents two significant issues. Firstly, while
the classpath might lack necessary classes, the Java application can compile without
immediate errors. However, because the classpath is lazily loaded, issues may only
arise at runtime when the J V M tries to load a required class for a specific application
feature. Secondly, the classpath may include duplicate classes. Since the classes in
the classpath are defined without order, the version of a class that other classes rely
on may not appear, potentially leading to runtime errors.

The module path is designed to resolve these problems. Unlike the classpath,
where dependencies are not explicitly defined, each module in the module path brings
along a module declaration file. Consequently, the Java runtime and compiler know
exactly, which module to resolve form the module path when looking for types in a
given package [30].

Module resolution is the process of computing a minimal required set of modules
given a dependency graph and the root module chosen from that graph. Every
module reachable from the root module ends up in the set of resolved modules [30].
This process includes repeated phases to resolve the entire module graph [30]:

• Start with a single root module and add it to the resolved set.
• Add each required module to the resolved set.
• Repeat step 2 for each new module added to the resolved set in the step 2.
The module graph must be acyclic for the process of module resolution to con­

clude.
When modules cannot be resolved or conflicts arise due to different versions,

addressing these issues during compilation helps ensure that the application runs
smoothly without errors for users. Detecting and fixing module-related errors before

53

deployment simplifies debugging, making it easier for developers to identify and
resolve issues.

4.2.4 Modules API and Services

The Module A P I comprises all packages exported by a module, aimed at concealing
implementation details of specific modules from other parts of the application.

Module APIs are typically implemented using standard Java interfaces, which
contain function definitions, return value types, and exceptions that the functions
may throw.

There are different methods for implementing a module API :
• One approach is to define the module A P I within the same module where the

implementation classes reside. This method is suitable when the A P I interface
is expected to have only one implementation. In this case, the module API
should be located in a separate package containing only the APIs specific to
that module.

• Another option is to utilize Services introduced in Java 9. This approach is
suitable when the implementation classes share function signatures described
in a interface located in a separate module. The module containing the imple­
mentation class requires access to both the service type and the implementa­
tion class. This approach can be advantageous when developers aim to incor­
porate multiple implementations of the same interface defined in the service.
Such a design promotes the extensibility of the application, as introducing new
implementations does not affect existing code.

A n example of a module declaration file that uses the A P I to provide oppor­
tunities for other modules to utilize implementation instances without exporting
packages is presented in Listing 13.

1 module t o d o l i s t . d a o {
2 requires t r a n s i t i v e t o d o l i s t . u t i l s ;
3 requires t r a n s i t i v e t o d o l i s t . models ;
4 requires j ava fx .base ;

G
7

exports com. m i s s k i i . t odo l i s t app . dao . api ;
provides com. m i s s k i i . t odo l i s t app . dao . api . Person A p i

8 with com. m i s s k i i . t odo l i s t app . dao . PersonDao ;
provides com. m i s s k i i . t odo l i s t app . dao . api . Task Api

11
10 with com. m i s s k i i . t odo l i s t app . dao . TaskDao ;

provides com. m i s s k i i . t odo l i s t app . dao . api . L icenseApi
12 with com. m i s s k i i . t odo l i s t app . dao . LicenseDao ;
13 }

Listing 13: Providing module A P I

54

The module todolist.dao contains the package api with the interfaces for each
implementation class in another package. The provides with syntax means that
this module provides A P I interfaces with implementation classes (lines 6-12). For
example, the module provides the interface PersonApi with the PersonDao as an
implementation class.

To use modules services and modules api the module need to have in the module-
info.java file uses clause. In the Listing 14 is shown how to todolist.gui module can
consume the modules api definied in the todolist.dao module.

1 module t o d o l i s t . gui{
2 requires j a v a f x . f x m l ;
3 requires Java fx . c o n t r o l s ;
4 requires t o d o l i s t . updater ;
5 requires t o d o l i s t . d a o ;
G
7

requires t o d o l i s t . l i cense ;

i
8 opens com. m i s s k i i . t odo l i s t app . gui . c o n t r o l l e r s to j a v a f x . f x m l ;
9 exports com. m i s s k i i . t odo l i s t app . gui . s ta r t to J a v a f x . g r a p h i c s ;

10
11 uses com. m i s s k i i . t odo l i s t app . updater . api . UpdaterApi ;
12 uses com. m i s s k i i . t odo l i s t app . dao . ap i . TaskApi ;
13 uses com. m i s s k i i . t odo l i s t app . dao . ap i . PersonApi ;
14 uses com. m i s s k i i . t odo l i s t app . dao . ap i . L i c e n s e A p i ;
15 uses com. m i s s k i i . t odo l i s t app . l i cense . api . L i c e n s e C l i e n t A p i ;
1G }

Listing 14: Using modules API

The todolist.gui module first needs to import the packages containing the APIs
it wants to use from the todolist.dao module. Then, it declares that it uses services
provided by the todolist.dao module using the uses clause in its module-info.Java
file. The uses clause instruct the ServiceLoader that this module want to use im­
plementations of another module. Example of service loader that is used todolis.gui
module to load the implementation class from the todolist.dao module is shown in
the Listing 15

1 PersonApi personApi = ServiceLoader . load (PersonApi . c lass)
2 . f i n d F i r s t ()
3 . orElseThrow (() —> new RuntimeException ("No implementation

found ")) ;

Listing 15: Service loader example

The ServiceLoader loads implementation classes lazily. This means that the
implementation classes are loaded at runtime when the ServiceLoader is called upon
to load a service provider. This lazy loading mechanism is efficient because it only

55

loads the necessary implementation classes when needed, which can save memory
and improve startup time for applications.

4.2.5 Modules evaluation

In evaluation, modules serve as a robust tool for application development, offering
flexibility, understandability, and reusability [30].

Modules is versatile tool, allowing for code reuse and reliable configuration across
different scenarios. The module system checks whether a specific combination of
modules meets all dependencies before compiling or running the code [30]. Ex­
plicit dependencies ensure that each module operates correctly. When modules need
to communicate, a well-defined module A P I facilitates this interaction. Addition­
ally, encapsulation ensures that modules do not depend on implementation details,
protecting against disruptions when these details change. Modular architecture
improves code maintainability by enabling developers to isolate and debug issues
within specific modules without affecting the entire application. It also supports
scalable development by establishing explicit boundaries, allowing teams to work in
parallel [30]. Moreover, it enables optimization by creating a minimal configuration
of modules for distribution [30].

4.3 Migrating a JavaFX application to the module system

Before starting the application migration process to Java modules, the applica­
tion structure needs to be investigated. Since modules are independent parts of an
application aimed at solving specific problems, the application must be carefully
examined, and an initial application migration plan must be drawn up, dividing the
code into modules.

After investigating the structure of the application, the application dependencies
must be analyzed. Firstly, all dependencies on which the application relies need to
be defined, and then they need to be sorted to separate modules. It is also important
to define internal dependencies between modules. Module declaration files also need
to expose the A P I of each module. It is important to set appropriate APIs for each
module to ensure that implementation details are concealed, and simultaneously,
that modules export everything that might be needed to use them fully.

The module diagram of the JavaFX demo application shown in Figure 11 indi­
cates the relationships of the internal application modules; solid arrows represent
transitive dependencies, indicating that a module depends on another module tran­
sitively through other modules, while intermittent arrows represent normal depen­
dencies, indicating direct dependencies between modules.

56

todolist.gui

- • y A i > . .

todolist.dao

todolist. models

todolist.license

Fig. 11: The modular JavaFX demo application diagram

The modular JavaFX application consists of six modules. Each module is dedi­
cated to specific application functionalities. For instance, the todolist.updater mod­
ule verifies if the user is using the latest application version, the todolist.dao module
manages interactions with the database, the todolist. license module handles JavaFX
demo application license keys, the todolist.models module defines classes describing
license, users, and tasks objects, and the todolist.utils modules manage database
connections.

The primary module, todolist.gui, hosts the Java class initiating the application
and encompasses all F X M L views of scenes and their controllers. The declaration
file of todolist.gui module, that is described in the 4.2.4 Section. According to
this file, todolist.gui not only requires platform modules but also external modules
such as javafx, and internal modules including todolist.updater, todolist.dao, and
todolist. license. It utilizes their APIs to load their implementation classes with
ServiceLoader at runtime.

4.3.1 Modules with Apache Maven

As the original demo application was developed using the Apache Maven tool, mi­
grating it to Java modules requires restructuring the application. The original pom
file needs to be split into several smaller pom files, each belonging to a particular
module and defining only their dependencies. Additionally, a parent pom file needs
to be created, which contains the entire list of internal application modules and
defines generic dependencies or plugins.

57

4.4 Custom runtime images

In the Java Platform Modules System, developers can create minimal custom run­
time images with the jlink tool that links the modules. Linking is the process of
bringing together compiled artifacts into an efficiently executable form [30].

Creating a custom runtime image is beneficial for several reasons [30]:
• The jlink tool creates an application distribution and J V M , ready to be

shipped.
• The size of this runtime image will be lower as only the modules that the

application uses are linked into the runtime image.
• As the custom runtime image contains only modules that the application uses,

developers may control them to exclude potentially vulnerable modules.
• A custom runtime image is fully self-contained. It bundles the application

modules with the J V M and everything else it needs to execute the application.
No other Java installation (J D K / J R E) is necessary [30].

4.4.1 Automatic modules and jdeps tool

Before creating a custom runtime image, it's crucial to investigate the application's
dependencies. Many libraries have not modularized yet and are represented in modu­
lar applications as automatic modules. Automatic modules lack a module-info.class
module descriptor, they require transitive dependencies on all other application
modules and export all their packages.

The issue with automatic modules arises because they lack a module description
file, and thus, jlink cannot resolve and link them with other modules.

The solution is to either use already modularized libraries or create module
descriptor files for these modules. This can be achieved using the jdeps tool, which
generates module descriptor files for JARs. Developers need to resolve all module
dependencies and recursively create module descriptors for them if they do not
already exist. Once the module descriptor files are created, the next step is to
compile them. This can be done using the javac tool. After compiling the module
descriptors, it is necessary to add them to the J A R files of libraries.

The example workflow is shown in Listing 16, it demonstrates steps to add
module-info.java file to postgresql automatic module jar.

Listing 16: Add module descriptors to automatic modules

1) jdeps --generate-module-info . checker-qual.jar

2) javac --patch-module \

org.checkerframework.checker.qual = checker -qual.j ar \

module-info.Java

58

3) jar uf checker - qual . j ar -C . module - inf o . class

4) jdeps --module-path . --add-modules \

org.checkerframework.checker.qual \

--generate-module-info . postgresql.jar

The first command uses the checker-qual.jar file to generate a module-info.Java
file uses -generate-module-info option. The second command compiles the module-
info. Java file using the javac compiler. The -patch-module option specifies that the
checker-qual.jar file should serve as a patch for the checker.qual module. The
third command updates the checker-qual.jar file by adding the module-info.class file
to it. The last command analyzes the dependencies of the postgresql.jar file. It
specifies the module path and adds the compiled checker, qual module. Eventually
generating a module-info.Java file for the postgresql.jar library. Finally, the new
module-info file for postgresql.jar must be compiled and integrated into the library
J A R using javac and jar tools, following a similar process as with the checker-qual
library.

4.4.2 Creating custom runtime images

After ensuring that the application does not have automatic modules, developers
can create a custom runtime image. The jlink tool is used to create this image.

Listing 17: Custom runtime image creation

j l i n k --module-path . --add-modules todolist.dao, \

t o d o l i s t . g u i , t o d o l i s t . l i c e n s e , \

todolist.models,todolist.updater, \

t o d o l i s t . u t i l s , o r g . p o s t g r e s q l . j d b c \

--launcher todolistapp = t o d o l i s t . g u i --output todolist-image

JLink specifies the module path where all necessary modules are located, in­
cluding the application modules to be added to the custom image, including the
org.postgresql.jdbc that is created from an automatic module. Define the name of a
launcher script, indicating the module it should run, and set the output directory
where the image is generated.

After this, the new directory with the custom image is created. This image
includes only the modules that the application needs and can be distributed.

59

Conclusion

One of the main tasks of this work is to study and implement the GitHub Packages
service into the development and distribution process of Java applications. Since
this service cannot be considered in isolation, it is being used in conjunction with
other services and tools such as Maven, Git, GitHub, and GitHub Actions, all of
which are discussed in Chapter 1.

Another crucial aspect being addressed in this work is licensing. Chapter 2
delves into different licensing models, proposing a merger of the trial period model
and the subscription model to align with project requirements. To manage appli­
cation license keys effectively, a dedicated web application is being developed. This
application allows the administrator to create keys manually or via its API , facilitat­
ing tasks such as generating trial licenses, validating license keys, and distributing
them to users. The Chapter 2 also elaborates on the operations involved in key
expiration and renewal, essential for the licensing models explored.

A comprehensive demo application has been selected to showcase various func­
tionalities, aiding in understanding real-world development and maintenance chal­
lenges. Chapter 3 provides a detailed overview of the JavaFX application's structure
and its interaction with external services. It discusses processes like fetching the lat­
est version from GitHub Packages via H T T P requests and communication with the
license manager to activate licensed versions. Upon updating the application and
pushing new code to GitHub, an automatic GitHub Actions workflow is initiated.
This workflow handles all necessary steps, including building and publishing ap­
plication artifacts to the GitHub Packages service. Users can then download the
ready-made J A R file from there to begin using the application.

Chapter 4 provides a detailed exploration of Java modules and their benefits in
the application development process. Building upon the JavaFX demo application
outlined in Chapter 3, this chapter includes an example of migrating a standard Java
application to a modular one. It offers a comprehensive overview of the application
structure and describes the use of custom runtime images, which can facilitate the
distribution of modular applications.

60

Bibliography
[1] GitHub Docs. Introduction to GitHub Packages, [online] Available at: https:

//docs.github.com/en/packages/learn-github-packages/introduction

-to-github-packages. [Accessed: 2023-11-2].

[2] Apache Maven. Apache Maven - What is Maven?. [online] Available at: https:
//maven.apache.org/what-is-maven.html. [Accessed: 2023-10-20].

[3] Apache Maven. Introduction to the POM - Apache Maven. [online] Available
at: https://maven.apache.org/guides/introduction/introduction-to-t

he-pom.html#what-is-a-pom. [Accessed: 2023-10-20].

[4] Apache Maven. Maven Features - Apache Maven. [online] Available at: https:
//maven. apache. org/maven-features .html. [Accessed: 2023-10-20].

[5] Apache Maven. Introduction to the Maven Lifecycle - Apache Maven. [online]
Available at: https : //maven. apache. org/guides/introduction/introduct
ion-to-the-lifecycle.html[Accessed: 2023-10-20].

[6] Akhtar, H. Understanding Maven Goals and Plugins - Browser Stack Guide.
BrowserStack. [online] Available at: https://www.browserstack.com/gui

de/maven-lif ecycle#: ~ :text=Management°/o20with°/
0
20Selenium- ,Unders

tanding
,

/.20Maven
,

/.20Goals
,

/.20and
,

/.20Plugins,-In
,

/.20Maven
,

/.2C
,

/.20goals.

[Accessed: 2023-10-20].

[7] Chacon, S., Straub, B. (2014). Pro Git. 2st ed. New York: Apress. ISBN 978-
1484200773.

[8] G N U RCS. GNU Revision Control System, [online] Available at: https ://ww
w.gnu.org/software/rcs/. [Accessed: 2023-10-22].

[9] Lionetti, G. Version Control: Centralized vs. DVCS. Atlassian. [online] Avail­
able at: https://www.atlassian.com/blog/software-teams/version-con
trol-centralized-dvcs. [Accessed: 2023-10-22].

[10] Git S C M . Git - The Staging Area, [online] Available at: https://git-scm. c
om/about/staging-area. [Accessed: 2023-10-22].

[11] Git S C M . Git - Distributed Git. [online] Available at: https://git-scm.com
/about/distributed. [Accessed: 2023-10-24].

[12] Lutkevich, B, Courtemanche, M . GitHub Definition. TechTarget. [online] Avail­
able at: https://www.techtarget.com/searchitoperations/definition/G

itHub. [Accessed 2023-10-27].

61

https://maven.apache.org/guides/introduction/introduction-to-t
https://www.browserstack.com/gui
http://gnu.org/software/rcs/
https://www.atlassian.com/blog/software-teams/version-con
https://git-scm
https://git-scm.com
https://www.techtarget.com/searchitoperations/definition/G

[13] Lionneti, G. Version Control: Centralized vs. Distributed. Atlassian. [online]
Available at: https : //www. atlassian. com/blog/sof tware-teams/version

-control-centralized-dvcs [Accessed 2023-10-28].

[14] Dabbish, L. , Stuart, C , Tsay, J. , and Herbsieb, J., 2012. Social coding in
GitHub: transparency and collaboration in an open software repository. In:
Proceedings of the ACM 2012 Conference on Computer Supported Coopera­
tive Work, Seattle, Washington, USA. New York: Association for Computing
Machinery. DOI: 10.1145/2145204.2145396.

[15] GitHub Docs. About Pull Requests, [online] Available at: https://docs.git
hub.com/en/pull-requests/collaborating-with-pull-requests/propos
ing-changes-to-your-work-with-pull-requests/about-pull-requests.
[Accessed 2023-11-27].

[16] Kinsman, T., Wessel, M . , Gerosa, M . A. , and Treude, C , 2021. How do soft­
ware developers use GitHub Actions to automate their workflows?. In: 2021
IEEE/ACM 18th International Conference on Mining Software Repositories
(MSR). DOI: 10.1109/MSR52588.2021.00054.

[17] Mastropaolo, A . , Zampetti, F., Bavota, G., and Di Penta, M . , 2024. Toward
automatically completing GitHub workflows. In: Proceedings of the IEEE/ACM
46th International Conference on Software Engineering, Lisbon, Portugal. New
York: Association for Computing Machinery. DOI: 10.1145/3597503.362335
1.

[18] Gousios, G , Storey, M. -A. , and Bacchelli, A . , 2016. Work practices and chal­
lenges in pull-based development: the contributor's perspective. In: Proceedings
of the 38th International Conference on Software Engineering, Austin, Texas.
New York: Association for Computing Machinery. DOI: 10.1145/2884781.28
84826.

[19] GitHub Actions. Checkout repository, [online] Available at: https://github. c
om/actions/checkout [Accessed 2023-11-6].

[20] GitHub Actions. Setup Java JDK. [online] Available at: https://github.com
/marketplace/actions/setup-java-jdk [Accessed 2023-11-6].

[21] GitHub Docs. Automatic token authentication, [online] Available at: https:
//docs.github.com/en/actions/security-guides/automatic-token-aut

hentication [Accessed 2023-11-4].

62

https://docs.git
https://github
https://github.com

[22] Dulanga, C , 2020. GitHub Package Registry: Is it worth trying out?, [online]
Available at: https ://blog.bitsrc. io/github-package-registry-is-i
t-worth-trying-out-62163aa3d518 [Accessed 2023-11-5].

[23] GitHub Docs. About permissions for GitHub Packages, [online] Available at:
https://docs.github.com/en/packages/learn-github-packages/abou

t-permissions-f or-github-packages [Accessed 2023-11-6].

[24] GitHub Docs. Working with the Apache Maven registry, [online] Available at:
https://docs.github.com/en/packages/working-with-a-github-pac

kages-registry/working-with-the-apache-maven-registry [Accessed
2023-11-6].

[25] Java Developer. JavaFX Application Basic Structure By Example, [online]
Available at: https://dev.java/learn/javafx/structure/ [Accessed 2023-
11-3].

[26] Java Developer. Using FXML. [online] Available at: https://dev.java/learn
/javafx/fxml/ [Accessed 2023-11-3].

[27] Ferrante, D., 2006. Software Licensing Models: What's Out There?. In: IT
Professional, vol. 8, no. 6. DOI: 10.1109/MITP .2006.147.

[28] Noorian L. , Perry M . , 2009. Autonomic Software License Management System:
An Implementation of Licensing Patterns. In: Proceedings of the 2009 Fifth
International Conference on Autonomic and Autonomous Systems. DOI: 10.1
109/ICAS.2009.15.

[29] I B M Cloud Education, 2021. JVM vs. JRE vs. JDK: What's the Difference?.
[online] Available at: https://www.ibm.com/blog/jvm-vs-jre-vs-jdk/.
[Accessed 2024-4-20]

[30] Mak, S., & Bakker, P., 2017. Java 9 Modularity: Patterns and Practices for De­
veloping Maintainable Applications. 1st ed. Sebastopol, Calif: O'Reilly Media.
ISBN 978-1491954164.

63

https://docs.github.com/en/packages/learn-github-packages/abou
https://docs.github.com/en/packages/working-with-a-github-pac
https://dev.java/learn/javafx/structure/
https://dev.java/learn
https://www.ibm.com/blog/jvm-vs-jre-vs-jdk/

Symbols and abbreviations
P O M Project Object Model

J A R Java Archive

P O M Project Object Model

V C S Version Control System

LVCS Local Version Control System

RCS Revision Control System

C V C S Centralized Version Control System

D V C S Distributed Version Control System

SaaS Software Service

C I / C D Continuous Integration/Continuous Deployment or Continuous
Delivery

M A C Media Access Control

R E S T Representational State Transfer

API Application Programming Interface

D T O Data Transfer Object

E C D S A Elliptic Curve Digital Signature Algorithm

SHA-256 Secure Hash Algorithm 256-bit

OS Operating System

M V C Model-View-Controller

D A O Data Access Object

SQL Structured Query Language

J V M Java Virtual Machine

J R E Java Runtime Environment

J D K Java Development Ki t

64

A Structure of the archive with the source
files

sorce-f i l e s -BP-Missk i i Root directory
todo-application.zip .. The archive with the demo JavaFX application source
(pode

src The directory with the application source code
main

resources The directory with the scenes defenition fxml files
— Java

com. missk i i . j avatodolistapp The root package of the
application

u t i l Package containing utility classes
updater . . . Package containing classes responsible for updating
application

.models Package containing entity classes
_ license .. Package containing classes related to licensing of the
application
dao . Package containing classes responsible for interacting with
the database

_ controllers Package containing controller classes for fxml
scenes
Main. j ava Main entry point class of the application
Application. Java Class responsible for application
configuration and setup

module-info. java Module declaration file
mvn

.idea

.github
L workflows

L maven-publish.yaml The GitHub Actions workflow definition file
• g "
pom.xml File used by Maven to configure the project
mvnw.cmd
mvnw
.gitignore

license-manager.zip . The archive with the license manager application source
code

65

B Manual for the Applications
The source code files for the demo JavaFX To-do list and license manager applica­
tions are included in the archive attached to this thesis.

1 The Demo JavaFX Application

1.1 Start the Demo JavaFX Application

The entire source code for the ToDo List application is available on GitHub. To
clone the repository to your local machine, use the following command:

git clone https://github.com/amisskiil/todolistApp

Then, run the application.
Alternatively, users can download a directly runnable J A R file from the GitHub

packages dedicated to this repository. The shaded J A R file can be found in the
assets section. Visit the following link to download the J A R file:

https://github.com/amisskiil/todolistApp/packages/1962002

The application uses a GitHub token to communicate with the GitHub API .
Users need to create a new environment variable with the GitHub token for the
application to work correctly. Additionally, ensure that Java J D K is pre-installed
on your machine.

If users want to start the modular JavaFX application, the source code is avail­
able in a separate GitHub repository:

https://github.com/amisskiil/modular-application

To run the modular application, go to the releases section of the repository and
choose one of the latest releases. This will allow you to download a custom image
that already contains the binary file necessary to start the application.

1.2 Using the JavaFX Application

After the application starts, the user sees the login page. Here, the user can enter
their credentials to access the application if they already have an account. Alter­
natively, the user can register for a new account on the registration page. The user
also has the option to activate the software license on the activation license page.
On this page, the user can enter their email and license key if they have one, or

66

https://github.com/amisskiil/todolistApp
https://github.com/amisskiil/todolistApp/packages/1962002
https://github.com/amisskiil/modular-application

simply enter their email to receive a trial license key if they do not already have one.
If the user has a valid license key and logs into the application, the application will
inform them with a new window.

On the main application page, the user will see a table with tasks. On this page,
the user can navigate to the form for creating a new task or editing an existing task.
When creating a new task or editing one, the user can select the task's priority,
and the task will be colored appropriately based on its priority. This feature is only
available for users with license keys. On the main page, the user can also navigate
to the "About" window, where information about the current and latest versions is
displayed.

E TO-DO List Appl icat ion

Email:

Password: Erneryour password

Sing Ini

Do not have account yet? Sing Up:

X

Activate application license Activate license

You're all up to date with the latest version!

Fig. B . l : The ToDo list application login scene

67

0-DO L'st A:j:j CatOl

Registration

Username:

Enter your email:

Enter your password:

Enter your password again:

Create an account!

• X

Fig. B.2: The ToDo list application register scene

E TO-DO List Appl icat ion • X

Email: I Enter yours email

Enter application license key:

Enter yours license key

Submit

Get Trial

Cancel

Fig. B.3: The ToDo list application license scene

68

E TO-DO List Appl icat ion - D X

E Message X

L i cense i n f o r m a t i o n O
Your license is active and valid

OK

Activate application license Activate license

You're all up to date with the latest version!

Fig. B.4: The ToDo list application license information stage

E TO-DO List Application • X

ID Title Description DueTo Status

17 test taskl test 2024-05-25 In Pragr..

Add

Edit

About About

Logout Logout

Fig. B.5: The ToDo list application main scene

69

E TO-DO List Application

Add

Edit

About

Logout

ID Title

17 te

Description

WJ About • X

To-do list app

Author Anton Misskii

Actual version:

Latest version: 1.1,2

X

DueTo Status

2024-05-25 In Progr...

Fig. B.6: The ToDo list application about stage

2 The License Manager Application

2.1 Start the License Manager Application

The source code for the license manager application is available on GitHub. To
clone the repository to your local machine, use the following command:

git clone https://github.com/amisskiil/license-manager

Then, run the application. By default, the application runs on localhost with
port number 8443, indicating that the application uses the HTTPS security protocol.

2.2 Using the License Manager Application

The https ://localhost: 8443/licenses is the main application page where all
users' emails who have or had a license key are displayed. From this page, the admin
can navigate to the creation of a new license key page at https://localhost:
8443/licenses/new and enter the user's email for whom the admin wants to
generate a new key. Then the admin will be automatically redirected to the creation
form where the default values are predefined, such as the license key value, the
user's email, license status, created by, and date of creation. On this form, the
administrator can only configure the expiration date. After the new license key is
created, the admin will be redirected to the main page.

70

https://github.com/amisskiil/license-manager
https://localhost

The admin can click on every record to see license key details. On this page, the
admin can edit each field or delete the record with the license key.

us er1 examole.com
us er2 \c£ ex amp 1 e. com
>

Create new license

Fig. B.7: The license manager application licenses page

Enter Your Email

Email: Submit

Fig. B.8: The license manager application email form

71

http://examole.com

License Value: MEQCIGJqQxfCghRg2whv
User email: jser3@example.cam
License status: unknown
Lrial status: false
Created by: admin
date of creation

date of expired:

20.05.2024, 17:04
2024-05-25T10:42:00 Create!

Fig. B.9: The license manager application new license creation form

License Information
User Email: user2@ exampLe. com

License Value: MEQCIDV9IoaTGglWhmm6EsJ0ZJsw^

License Status: unknown

Trial Status: false

Created By: admin

Date Of Creation: 2024-05-20T16:59

Expiration Date: 2024-05-25T10:42

Edit
Dsle-.e

Fig. B.10: The license manager application license key information page

72

mailto:jser3@example.cam

