
Czech University of Life Sciences Prague

Faculty of Economics and Management

Department of Information Technologies

OF LIFE S C I E N C E S P R A G U E

Diploma Thesis

Comparison of Graph and Relational Databases

Bo Bunmeng

©2022 CULS Prague

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE
Faculty of Economics and Management

DIPLOMA THESIS ASSIGNMENT
Bunmeng Bo

Systems Engineering and Informatics

Informatics

Thesis title

Comparison of Graph and Relational databases

Objectives of thesis

The goal of the thesis is to design, create, and test a small database application for parts of the car renting
business model (car, client, staff, rent...) in a graph database environment and also a relational database.

Methodology

The first part of the thesis contains the description of the theoretical tools used. The second part of the work
will be a personal project in the Dgraph environment for the Graph Database and in MySQL for Relational
Database. For documentat ion, UML standard will be used. Both applications (graph and relational) will
contain the same data and the same queries. At the conclusion of the thesis, the differences, the advantages
and disadvantages of both used technologies will be evaluated.

Official document * Czech University of Life Sciences Prague * Kamýcká 129,165 00 Praha - Suchdol

The proposed extent of the thesis

60-80 pages

Keywords

graph database; Dgraph; relational database; MySQL

Recommended information sources

Meier, A. a Kaufmann, M. , 2019. SQL & NoSQL databases: models, languages, consistency options and
architectures for Big data management. Wiesbaden: Springer. ISBN 978-3-658-24548-1.

Meruňka, V., 2002. Objektový přístup v databázových systémech. Praha: Credit. ISBN 80-213-0882-6.
Robinson, I., Webber, J. a Eifrem, E., 2015. Graph databases. Second edit ion. Sebastopol: O'Reilly Media .

ISBN 978-1-491-93089-2.

Expected date of thesis defence

2022/23 S S - F E M

The Diploma Thesis Supervisor

Ing. Marek Picka, Ph.D.

Supervising department

Department of Information Engineering

Electronic approval: 4 . 1 1 . 2022 Electronic approval: 2 8 . 1 1 . 2022

Ing. Martin Pelikan, Ph.D. doc. Ing. Tomas Subrt, Ph.D.

Head of department Dean

Prague on 30 .11 . 2022

Official document * Czech University of Life Sciences Prague * Kamýcká 129,165 00 Praha - Suchdol

Declaration

I declare that I have worked on my diploma thesis titled "Comparison of Graph and

Relational Databases" by myself and I have used only the sources mentioned at the end of

the thesis. As the author of the diploma thesis, I declare that the thesis does not break

copyrights of any person.

In Prague on 30.11.2022

Acknowledgement

I would like to thank my supervisor Marek Picka and professor Vojtech Merunka for

their advice and support during my work on this thesis. I would like to take this opportunity

to show my deep gratitude to my family, especially my parents namely Bo Kunthearith and

Heng Kimchry, for their emotional support and unconditional love throughout the whole

process. Although they are not here with me in the Czech Republic, their love from afar

remains my biggest inspiration. Also, I would not forget to mention my manager, Robert

Varga, for his effort to provide all the support I could get at the workplace.

Comparison of Graph and Relational Databases

Abstract

In this thesis, relational and graph databases have been selected as the two main databases to

be evaluated and discussed. Databases are one of the most important entities in any type of

application for a long run. While relational databases have been around for many decades, the

growth of other types of databases is also remarkable, especially Graph database. Each type of

databases has their own benefits and drawbacks. The main focus of the study is to find out the

features provided by Relational database with MySQL and the ones by Graph database with

GraphQL in Dgraph environment. The databases are designed to store the data of a small part

of the car renting business model, which are used to display to users in a simple iOS application

that has also been built during the process. These databases are evaluated based on their

complexities and compatibilities with the client-side application, an iOS mobile application.

The results discussed are focused on time saving for an application development and developer-

friendliness of each database. Hence, those results are meant to help designers, project

managers, developers, and people related to the field make decision towards the selection of

the databases for their future projects.

Keywords: graph database; dgraph; graphql; relational database; mysql

6

Porovnání grafové a relační databáze

Abstrakt

V této práci byly vybrány relační a grafové databáze jako dvě hlavní databáze, které budou

hodnoceny a diskutovány. Databáze jsou dlouhodobě jednou z nej důležitějších entit v

jakémkoli typu aplikací. Zatímco relační databáze existují již mnoho desetiletí, pozoruhodný je

i růst jiných typů databází, zejména databáze Graph. Každý typ databází má své výhody a

nevýhody. Hlavním zaměřením studie je zjištění funkcí, které poskytuje Relační databáze s

My SQL a databáze Graph s GraphQL v prostředí Dgraph. Databáze jsou navrženy tak, aby

ukládaly data malé části obchodního modelu pronájmu aut, která se používají k zobrazení

uživatelům v jednoduché aplikaci pro iOS, která byla také vytvořena během procesu. Tyto

databáze jsou hodnoceny na základě jejich složitosti a kompatibility s klientskou aplikací,

mobilní aplikací pro iOS. Diskutované výsledky jsou zaměřeny na úsporu času při vývoji

aplikace a vývoj ářskou přívětivost každé databáze. Tyto výsledky maj í tedy pomoci návrhářům,

projektovým manažerům, vývojářům a lidem souvisejícím s oborem při rozhodování o výběru

databází pro jejich budoucí projekty.

Klíčová slova: grafová databáze; dgraph; graphql; relační databáze; mysql

7

Table of content

1. Introduction 12

2. Objectives and Methodology 13

2.1 Objectives 13

2.2 Methodology 13

3. Literature Review 14

3.1 Relational Database 14

3.1.1 What is a Relational Database? 14

3.1.2 History of Relational Database 15

3.1.3 ACID Transaction Goal 16

3.1.4 Primary Key and Foreign Key 16

3.1.5 Relationships 17

3.1.6 Database Normalisation 18

3.2 Graph Database 20

3.2.1 What is a Graph Database? 20

3.2.2 NoSQL 21

3.2.3 Graph Database Types 23

3.3 iOS Mobile Application 28

3.3.1 About iOS 28

3.3.2 Guides to iOS Development 30

3.4 Car Rental Business 31

4. Practical Part 33

4.1 Data Dictionary 33

4.2 Database with MySQL 34

4.2.1 I, M L 34

4.2.2 MySQL Database Preparation 35

4.3 Database with Dgraph GraphQL 38

4.3.1 U M L 38

4.3.2 Dgraph GraphQL Database Preparation 38

8

4.4 Client-Side Application 41

4.4.1 Vapor API 41

4.4.2 Dgraph API 49

4.4.3 iOS Application 52

5. Results and Discussion 65

6. Conclusion 68

7. References 70

List of pictures
Figure 1: Relational and Graph databases 12

Figure 2: Entity Relational Diagram Example of a Database Schema 17

Figure 3: Database Normalisation Process 20

Figure 4: Graph Database Example 21

Figure 5: NoSQL Databases 23

Figure 6: Property Graph 24

Figure 7: RDF Triple 26

Figure 8: iOS Supporting Devices 29

Figure 9: Revenue history for Apple (Source: companiesmarketcap.com) 29

Figure 10: Code Comparison between Objective-C and Swift 31

Figure 11: Projected Global Car Rental Market Revenue (Source: Zippia.com) 32

Figure 12: U M L of Car Rental Relational Database Schema 34

Figure 13: SQL Create Table identity 35

Figure 14: SQL Create Table person 36

Figure 15: SQL Create Table client 36

Figure 16: SQL Create Table staff 36

Figure 17: SQL Create Table car 37

Figure 18: SQL Create Table pricejype 37

Figure 19: SQL Create Table rent 37

Figure 20: U M L of Car Rental Graph Database Schema 38

Figure 21: GraphQL Enums (IDType, StaffGrade, CarCondition, GearType) 39

Figure 22: GraphQL interface Person 39

Figure 23: GraphQL Types (Client, Identity, Staff) 40

9

http://companiesmarketcap.com
http://Zippia.com

Figure 24: GraphQL Types (PriceType, Car, Rent) 40

Figure 25: Architecture of Application 41

Figure 26: Vapor API Workflow 42

Figure 27: MySQLKit MySQL Configuration 43

Figure 28: SQL query for all Clients 44

Figure 29: SQL query for all Staff 44

Figure 30: SQL query for all Cars 45

Figure 31: SQL query for all Rents 45

Figure 32: Controllers extend RouteCollection protocol 46

Figure 33: Routes Registration 47

Figure 34: Sample of struct Rent implements Codable protocol 47

Figure 35: get All Method 48

Figure 36: Sample Result of Cars 48

Figure 37: GraphQL for Clients and Results 50

Figure 38: GraphQL for Staff and Results 50

Figure 39: GraphQL for Cars and Results 51

Figure 40: GraphQL for Rents 51

Figure 41: Results for GraphQL Rent 52

Figure 42: Swift Programming Language v5 and XCode IDE v l4 53

Figure 43: iOS Application Workflow 53

Figure 44: Car Rent (Admin View) Launch Screen 54

Figure 45: Car Rent (Admin View) Main Screen 55

Figure 46: Display Screen for MySQL and GraphQL 55

Figure 47. Car Rent (Admin View) Menu Clicked 56

Figure 48: Car Rent (Admin View) Display A l l Clients 61

Figure 49: Car Rent (Admin View) Display A l l Staff 62

Figure 50: Car Rent (Admin View) Display A l l Cars 63

Figure 51: Car Rent (Admin View) Display A l l Rents 64

List of tables
Table 1: Relational Database Example 14

Table 2: Relational Model Terminology 15

Table 3: Relational Database Top Vendors and the Products 15

Table 4: Data Redundancy Example 19

10

Table 5: RDF subject-predicate-object

Table 6: Data Dictionary

Table 7: MySQL and GraphQL Evaluation

1. Introduction

In today modern society, data is part of human's daily life. Everyone generates and receives

data in their own way. People use it to make sense of things around them. Data can be used in

various ways from solving a small math problem to sending a rocket to the space. Just in 2022

alone, the prediction of data generated at the end of the year would be about 94 zettabytes which

equals to 94,000,000,000,000 GB (Techjury, 2022).

With the exponential growth of data, we can also see the changes in data storing

management. Up until now, there are Relational Database, Object-Oriented Database, NoSQL

Database, Graph Database, and many more. Relational Database has been well-known over the

years and been selected as a subject for teaching database by many institutions. Meanwhile,

there is also a remarkable growth of Graph Database usage.

The information in a Relational Database is stored structed about other data and this type

of database is often used when the integrity of the data is concerned. While in Graph Database,

the data and the connections between them equally share the same value (Indeed.com, 2021).

Figure 1: Relational and Graph databases

As each databases have its own strengths and weaknesses and along with the rise in

popularity of Graph Database, this research is introduced to experiment Relational Database

and Graph Database to understand better between these two.

12

http://Indeed.com

2. Objectives and Methodology

2.1 Objectives

The main objective of the thesis is to design, create, and test a small database application

for some parts of the car renting business model (car, client, staff, rent, ...) in a Graph Database

environment as well as in Relational Database.

2.2 Methodology

The first part of the thesis contains the description of the theoretical tools used. The

second part of the work will be a personal project in the Dgraph environment for the Graph

Database and in MySQL for the Relational Database. For documentation, U M L standard will

be used. Both applications (Graph and Relational) will contain the same data and the same

queries. At the conclusion of the thesis, the differences, the advantages and disadvantages of

these two technologies will be evaluated.

13

3. Literature Review

3.1 Relational Database

3.1.1 What is a Relational Database?

A relational database is a type of database that stores and provides data as a set of tables

with columns and rows. Each table has its own pre-defined relationship and is used to store

information of a certain object. The rows in a table of this type of database are called records,

each of which has a unique ID called the key. The columns, on the other hand, are the attributes

of the data/table with its value being store in each record (Oracle, 2021).

firstname lastname sex dateofbirth identity id

Michael Lim M 14.05.1994 4

Steven Okrud M 20.03.1996 9

Hailey Williams F 31.01.1992 13

John Tucker M 28.02.1994 14

Amy Stark F 09.09.1995 20

Anna Jeiserova F 08.12.1994 22

Shelly Rower F 04.07.1995 23
Table 1: Relational Database Example

In the example, the table represents table Person with five attributes "firstname",

"lastname", "sex", "dateofbirth", and "identity id". Each row is a record that has a value

corresponding to each attribute.

As the relational model provides a single way to represent data: as a two-dimensional

table called a relation, there are some important terminologies regarding relations (Garcia-

Molina, Jeffrey & Jennifer, 2014). Table 2 displays some important relational model

terminologies with their explanations.

14

Terminology Explanation

Attributes The names of the columns of a relation (firstname, lastname,

sex, etc.)

Schemas The name of a relation and the set of attributes for a relation

(Person, Book, etc.)

Tuples The rows of a relation other than the header row containing the

attribute names (Michael, 14.05.1994, M , etc.)

Relation Table in a database

Entity Names of a table

Table 2: Relational Model Terminology

3.1.2 History of Relational Database

The first introduction of the relational database was in 1970 after Edgar F. Codd, a

computer scientist from IBM, had published an academic paper containing his proposed ideas

regarding a new way to model data, which was called a relational model. The way that people

thought about databased was changed since then and this relational model became continuously

dominant in the entire database market in the 1980s and '90s. SQL, Structured Query Language,

was chosen as the standard query language by the American National Standards Institute in

1986 and the International Organisation for Standardisation in 1987 (Quickbase, 2022).

Presently, many giant tech companies have developed their own Relational Database

Management System (RDBMS) with different capabilities and cost. Some top vendors and

their products are listed in the table below:

Vendor Product

Microsoft Corporation Microsoft SQL Server

Oracle Oracle Database

Amazon Web Services Amazon Relational Database Service (RDS)

Oracle Corporation MySQL

I B M I B M Db2

PostgreSQL Global Development

Group

PostgreSQL

Microsoft Corporation Azure SQL Database

Table 3: Relational Database Top Vendors and the Products

15

3.1.3 ACID Transaction Goal

A transaction is a piece of work that a user submits in one go to a database that might be

made up of a single interactive command or of several commands sent from an application

program (Harrington, 2009). In 1983, a collection of properties, including Atomicity,

Consistency, Isolation, and Durability (ACID), was developed in order to enhance transaction

reliability (Haerder & Andreas, 1983).

• Atomicity

Every transaction should be atomic. A D B M S with atomic transactions never leaves a

transaction unfinished (data consistency problems, power failures, and so on). That

means i f any portion of the transaction fails, the entire transaction should fail without

affecting the databases in any way.

• Consistency

After every transaction, the database should remain consistent. In other words, each

piece of data shall conform to all constraints and whether the transactions are corrects

or not, they must maintain the consistency of the database.

• Isolation

Each ongoing transaction should be independent of other concurrent transactions up

until it has been properly completed and committed, according to the isolation

property. As a result, the outcome of two transactions running simultaneously should

be the same as i f one transaction had run completely first, then the other.

• Durability

Durability refers to when changes made by a transaction should persist in the database

even in the event of a system failure, power outage, or error. In other words, a

transaction is permanent once it is finalised.

3.1.4 Primary Key and Foreign Key

A Primary Key (PK), as Davidson (2021) mentioned in his book, refers to one single

attribute or a composite of multiple attributes in an entity that is used to identify each record.

The value or the combined values of attribute(s) selected as a primary key must be unique in

the whole table and can never have N U L L value. In an entity, there is only one primary key.

Attributes that can be considered and set as a primary key are person identification number,

passport id, student number, car license number, etc. Database management system

16

normally requires this value to be set to ensure the uniqueness in order to reduce the redundancy

in the table.

A Foreign Key (FK) in an entity is the primary key of another entity (Davidson, 2021).

An entity can have one or multiple foreign keys and each foreign key represents the entity with

which the current entity has a relationship.

Identity

PK Id

number

id type

valid_from

expiration_date

Client

PK Id

FK person_id

FK driving_ld

registration_date

Person

PK id

FK identity_id

firsts name

last_name

sex

date_of_birth

Rent

P K id

FK c a r j d

FK clientjd

start J i me

endjime

kilometer_driving

total price

Staff

PK id

FK personjd

position

start_date

Car

PK Id

FK staff id

FK price^type

model

fuel_type

license_number

Price Type

PK Id

type

price_per_minute

price_per_kilometer

Figure 2: Entity Relational Diagram Example of a Database Schema

Figure 2 displays an entity relational diagram (ERD) of a database schema. There are 7

entities in this figure such as Identity, Person, Client, Staff, PriceType, Car and Rent. Each of

these entities have an attribute called "id" as their Primary Key. The attributes "personid",

"driving_id", "identityjd", "car_id", "clientjd", "staff id", and "priceJype" (Car) are the

Foreign Keys, which originally the Primary Keys of other entities.

3.1.5 Relationships

Harrington (2009) stated in his book that entities in relational database generally have

relationships between them. Relationship refers to the association of a to one or more tables

17

that is connected by a foreign key referencing the primary key of those tables. There are 3 types

of relationship in relational database - one-to-one (1:1), one-to-many (1 :M), and many-to-many

(M:N or M:M).

• One-to-One (1:1) relationship refers to a relationship between two tables that only share

one record on both side, which means a foreign key of a referenced table in the current

table also has unique value as its own primary key.

Figure 2: entity Person and Identity have a one-to-one relationship. This can be

described in a simple term as: "one person can only have one identity (card)" or "one

identity (card) is owned by one single person"

• One-to-Many (1 :M) relationship refers to a relationship of which one record in an entity

may have one or more records in the other table. This can be explained by the duplicated

value of Foreign Key found in one table.

Figure 2: entity Client and Rent have a one-to-many relationship. In simple

explanation, "a client can rent (a car) multiple times; however, during one car rental,

there is only one client."

• Many-to-Many (M:N or M:M) relationship refers to the fact that one record of table A

can be found multiple times in table B and one record in table B can also be found

multiple times in table B. This kind of relationship is very uncommon and when there

is such a relationship, it will be transformed into 1 : M relationship via some database

techniques.

3.1.6 Database Normalisation

Database normalisation is a process of replacing duplicate attributes, which are normally

called redundant data, in a table with a reference to the original one in order to improve storage

efficiency, data integrity, and scalability (Date, 2012).

Data redundancy refers to a piece of data that appears in multiple places. Data

inconsistency, on the other hand, occurs when the same data have different formats in multiple

tables.

In the table 4, it shows the data redundancy example of a table which a part of the car

renting database schema. Looking at the column "CarLicenseNumber" and "TotalPrice", there

are a lot of values there in one box, which is understandable in a real-world scenario as a person

18

might drive or rent several cars and each rental costs differently. However, the values of the

column "CarLicenseNumber" such as "CZ 0198", "CZ 1829" and "CZ 2014" appear several

times in the table. These values are called data redundancy.

Table 4: Data Redundancy Example

ID FirstName LastName IdentityNumber CarLicenseNumber TotalPrice

1 John Tucker N012345678 CZ 0198 450

CZ 1829 320

2 Melissa Rower N012345679 CZ 2014 230

3 Jessica Miller N012345680 CZ 1829 350

CZ 2014 560

4 Amy Stark N012345681 CZ 1829 220

CZ 2014 330

CZ 0198 110

Data inconsistency can be caused by data redundancy because the values of the same

attribute existed in different table have not been updated consistently, which leads to same

attribute but different value (Yaowen, 2016). Additionally, data redundancy would also

unnecessarily increase the size of the storage

Edgar F. Codd (1970) was the first person to propose, in his paper, the process of

normalisation which he called a very simple elimination procedure of the nonsimple domains

and replaced by domains that have atomic (undecomposable) values. Furthermore, he

established three normal forms which are called First Normal Form (INF), Second Normal

Form (2NF), and Third Normal Form (3NF) (Codd, 1972). Up until today, there are now other

NFs, however it is widely considered acceptable if the tables in a database reach 3NF.

Database normalisation is going through below processes:

• First Normal Form (INF)

First Normal Form is used to deal with removal of redundancy of data in the

records/rows. Tables in a database is considered in INF when each field in the table

conveys unique information and the attributes in that table are single valued.

Additionally, there must not be any repeating groups of attributes.

• Second Normal Form (2NF)

19

Second Normal Form, similarly to the First Normal Form, but instead of dealing with

data redundancy across a horizontal row, it deals in vertical columns. 2NF tables are

those tables that do not have any column data that exists in a table with which they have

a relationship, instead those data can be fetched by relying on its primary key.

• Third Normal Form (3NF)

Third Normal Form is intended to minimise data duplication and ensure referential

integrity. Every attribute in the table must solely depend on the primary key and not on

any non-prime attributes for a relation to be in 3NF, which is only possible if it is in

2NF.

Unnormalized Form

A B C D E F G H

1NF
remove repeating groups

2NF

H

/ \
remove partial dependencies

3NF /

I E H

\ \ \ \
A B C D E

/ V f

remove transitive dependencies
\ | 3NF

3NF

A B C D

Figure 3: Database Normalisation Process

3.2 Graph Database

3.2.1 What is a Graph Database?

A graph is simply a set of vertices and edges, or, in less daunting terms, a collection of

nodes and the connections between them (Robinson, Emil & Jim, 2015). Entities are shown as

nodes in graphs, and relationships are the connection between those entities related to the world.

20

Harrison (2015) stated in his book that there are three major components of a graph such

as:

o Vertices, or "nodes" represent distinct objects

o Edges, or "relationships" or "arcs" connect these objects

o Properties are the attributes of vertices or edges

Figure 4 represents a small social data in graph. Each node has User as the label. The

"FOLLOWS" relationships connect these nodes together, which further establish the semantic

context as Harry and Jasper follow each other; Harry and Jess also follow each other; however,

Jasper follows Jess, yet Jess has not followed Jasper.

User

name: Jess

name:
Harry

FOLLOWS

FOLLOWS

name:
Jasper

Figure 4: Graph Database Example

In closing, a graph database refers to a database that stores data using graphs, a type of

highly interconnected data structure. Since it is simple to represent social actors as nodes, edges

as relationships between users, and properties as social data of each user, it is very helpful for

social networking applications.

3.2.2 NoSQL

Graph database started its fame after NoSQL database became effective. Kristi (2012) on

History of Databases stated that in 1998, Carlo Strozzi used the term "NoSQL" to describe an

open-source, lightweight relational database that did not provide the traditional SQL interface.

21

However, it was not until 2009 that the term NoSQL came into effect when an event organised

by Johan Oskarssaon to discuss open-source distributed databases.

In the last decade, NoSQL databases have been increasingly popular due to the growth

of cloud computing and large-scale web application (Jing, Haihong, Guan & Jian, 2011).

NoSQL is a large category of database management systems that differs from the popular

relational database management model by not being primarily constructed on tables (Vaish,

2013). In other words, NoSQL databases typically do not use SQL for data processing and are

used in attempt to solve the problems of scalability and availability against that of atomicity or

consistency.

NoSQL databases have four major types: column-oriented, document store, key value

store, and graph. Figure 5 shows these four types of NoSQL graphically.

• Column-oriented

Column-oriented database systems (sometimes known as "column stores") store each

database table column independently with attribute values relating to the same column

stored concurrently as opposed to the way the RDBMS stores data. In simplified term,

this type of database stores use columns to store data of the same attribute instead of

rows (Daniel, Boncz & Harizopoulos, 2009).

• Document store

A document store allows the semi-structured data to be inserted, retrieved from, and

modified. The majority of the databases in this category employ X M L , JSON, BSON,

Y A M L , and data access is often made through HTTP utlising a RESTful API or the

Apache Thrift protocol for compatibility between languages. Compared to RDBMS, the

documents themselves function as records (or rows).

• Key-value store

A key-value store, which enables the storage of a value against a key, is very similar to

a document store. In other words, the data in this category is stored as a typical hash

table in a seamless way. Since it has a straightforward design (key-value), this storage

model provides high availability, scalability, and application-user friendliness, which

are particularly beneficial in distributed environment.

• Graph store

Graph database or graph store, which is a unique subset of NoSQL database, displays

relationships as graphs. In a graph, there may be several links between any two nodes,

signifying the various connections that the two nodes have.

22

Document Graph Key-Value

key value

key value

key value

key value

Figure 5: NoSQL Databases

Wide-column

3.2.3 Graph Database Types

Based on the underlying graph data structures, different graph databases have been

categorised, including:

Labeled Property Graphs

RDF (Resource Description Framework) Triple Stores

Both RDF stores and property graphs are designed to store data that is graphically

organised and provide a variety of ways to access it. But the implementation of these two graph

databases and structural design differ greatly from one another.

3.2.3.1 Property Graphs or Labeled Property Graphs

A property graph or a labeled property graph (LPG) is made up of a set of nodes and a

set of edges, with each node and edge effectively being a "struct" - a basic data structure made

up of keys and values. Nowadays, JSON is the preferred method for encoding these structs;

each node and edge is a JSON document, with edges having unique keys that represents a

pointer to a node.

A property graph has the following elements (Yaowen, 2016):

• A set of vertices:

1. Each vertex has its unique identifier

2. Each vertex has several incoming edges

3. Each vertex has several outgoing edges

4. Each vertex has several properties associated with it, defined by a map from key to

value

23

set of edges:

Each edge has its unique identifier

Each edge has an incoming head vertex

Each edge has an outgoing tail vertex

Each edge has a number of properties associated with it, defined by a map from key

to value

Each edge has a label to denote that relationship between the incoming vertex and

outgoing vertex

Figure 6: Property Graph

Figure 6 represents an example of a labeled property graph. It consists of 4 actors:

"Alex", "Sophie", "Skoda II", and "Ferrari". They are nodes in the graph and their information

is stored as the properties of nodes. At the same time, they are connected by edges and the

information about the relationships is stored as the properties of edges.

Property graphs provide advantages such as:

Simplicity: Property graphs are easy to use and set up quickly.

Easy Navigation: Property graphs are simpler to navigate because they do not have

constraints or predefined query languages.

Detailed: Without having to add additional nodes for each detail, properties associated

with relationship in property graphs provide more information about the data entries and

their relationships. The user is in charge of how to interpret the data.

24

However, there are also disadvantages with property graphs:

Lack of Interoperability: It is challenging to share or exchange data with multiple data

storage since property graphs are not standardised. Because they are specific to the

property graphs, the unique identifiers are meaningless to any other database.

Vendor Lock-in: Business utilising graphs based on property graphs are unable to

connect their data between various tools or systems. There is a very high likelihood of

becoming trapped into a single vendor of property graphs.

3.2.3.2 RDF Triples

The Resource Description Framework (RDF) is web-born technology that was

developed in 1990s at Netscap by Tim Bray as a meta-data framework for characterising

objects. The fundamental concept is straightforward; RDF files are made up of a triple (subject,

predicate, and object) of logical statements (Luke, 2022).

Using a range of syntax notations and data serialisation formats, RDF has been used as

a broad way for conceptual description or modeling of information that is realised in web

resources. Additionally, it breaks down all kinds of knowledge into manageable chunks while

maintaining some standards for the semantics, or meaning, of those chunks. There are some

facts about the RDF format (Powers, 2003):

• It is a data model where an RDF triple serves as the fundamental piece of data.

• RDF represents information based on the concept of subject-predicate-object

expressions. It could alternatively be regarded as a name for an attribute or property, its

value, or a resource identifier.

• A triple's subject and predicate must be URIs in order to make the information it states

clear and unambiguous.

25

Figure 7: RDF Triple

The graph of the RDF triple in the figure 7 can be converted into the "subject-predicate-

object" as below:

Subject Predicate Object

Articlel has Author CodyBurleson

CodyBurleson has friend Mary Smith

CodyBurleson has friend JohnDoe

CodyBurleson author of Article2

CodyBurleson author of Article3

Mary Smith author of ArticleX

Mary Smith author of ArticleY

JohnDoe author of Article A

JohnDoe author of ArticleB

Table 5: RDF subject-predicate-object

The Semantic Web now uses RDF extensively as a graph database and as one of the

three core Semantic Web technologies. On the Semantic Web, there might not be enough data

to tell whether two nodes are identical or not. RDF utilises the idea of the URI to address the

identity issue. The W W W works very well to represent identity via URIs, therefore adopting

26

the URI as a standard for global identifiers enables a reference for any symbol to be used

globally (Berners-Lee, James & Ora, 2001). It implies that individuals may determine whether

any two users, located anywhere in the world, are making the identical reference. As standards

body can easily declare the definition of particular phrases using this attribute of URIs. For

usage with Web technologies, the World Wide Web Consortium (W3C) has established a

number of standard namespaces, such as xsd for X M L schema definition and xmlns for X M L

namespaces.

X M L below represents a typical RDF file and shows how it is written in a car renting:

<?xml version="1.0"?>

<rdf:RDF

xmlns: rdf="http ://www. w3 .org/1999/02/22-rdf-syntax-ns#"

xmlns: company="http ://company/Person#">

<rdf: Description

rdf: about="http://company/Person">

<Person: firstName>Mary</Person: firstName>

<Person: lastName>Owen</Person: lastName>

<Person: sex>F</Person: sex>

</rdf: Description>

<rdf: Description

rdf: about="http://company/Person">

<Person: firstName> John</Person: firstName>

<Person:lastName>Hallo</Person:lastName>

<Person: sex>M</Person: sex>

</rdf: Description>

</rdf:RDF>

Using RDF graphs has its own advantages and disadvantages (Vettrivel, 2022).

RDF graphs provide advantages such as:

Standardisation: A l l RDF-based graphs have a common formal semantics, framework,

and querying language for storing and representing data. Thanks to the web-native

syntax of RDF, data sharing between RDF data stores on the web is made simpler.

Interoperability: RDF Triple Stores adhere to a W3C-endorsed standard that enables

communication between graphs. RDF-based graphs can interact and share information

because of this interoperability.

27

http://company/Person
http://company/Person

Extensibility: Users of RDF Graphs can add new nodes, relationships, or even

substructures without having to recreate the database.

The disadvantages provided by RDF graphs are:

Deep Search Complexity: A deep search in a big RDF network needs navigating every

relationship, which is a challenging task.

Strict Adherence to Standards: Only two objects can be linked at a time, which can

be restricting for many use cases, as all data saved in RDF should be in the form of

triples.

3.3 iOS Mobile Application

Techopedia (2020) defines a mobile application, more usually abbreviated as "an app,"

as a category of application software created specifically to run on mobile devices likes

smartphones and tablets. Similar services to those accessed on PCs are routinely made available

to consumers through mobile applications. Apps are often small, discrete software modules

with constrained functionality. When mobile applications are discussed, in general two most

famous mobile operating systems are focused: iOS and Android. However, this section will

only discuss iOS mobile application as the client-side application of this project is built for iOS

operating system.

3.3.1 About iOS

iOS is an operating system developed by Apple company (AAPL). It was first designed

for the iPhone; however, it can now support iTouch, iPad, and Apple TV. Despite being inspired

from MacOS X , iOS offers features that are exclusive to it, like the multi-Touch interface and

accelerometer support, which make the iPhone easier to use.

28

Figure 8: iOS Supporting Devices

When iPhone first hit the market in June 2007, the initial version of iOS was also

introduced. A l l of mobile devices of Apple run iOS or iPhone Operating System, a Unix-based

operating system. It was not until 2008 that Apple launched the iPhone software development

kit (SDK), allowing anybody to create apps for the platform, that the term iOS was formally

given to the program (Kenton, 2022). Up until now, the latest version of iOS is iOS 16.

Revenue history for Apple from 2001 to 2022

$400B

2005 2010 2015 2020

Figure 9: Revenue history for Apple (Source: companiesmarketcap.com)

Figure 9 represents the revenue history for Apple from 2001 to 2022. The graph shows

how high the revenue of this company is. It is undeniable that iPhone alone makes up around

29

http://companiesmarketcap.com

50% of the whole revenue, based on the Apple Statistics shown by Business of Apps (2022),

and there are currently more than 1 billion Apple users.

3.3.2 Guides to iOS Development

In order to be able to develop iOS, there are some requirements that need to be fulfilled.

I B M Cloud Education (2020) mentioned that developers are required to:

Have a running Apple Mac computer with the latest version of macOS.

Have an XCode, which is the sole IDE (Integrated Development Environment) for

developing iOS app.

Hold an active Apple Developer account. There is, although very limited, also a free

Apple Developer account that can be registered to explore some basic iOS development,

but without the possibility to push app into AppStore.

iOS application, at this moment, can be programmed with two programming languages:

Objective-C: Objective-C served as the main programming language for all Apple

devices for many years. The object-oriented programming language Objective-C, which

is derived from C, is focused on conveying messages to various processes (as opposed

to invoking a process in traditional C programming). Instead of converting their older

Objective-C applications to the 2014-introduced Swift framework, many developers

want to preserve them.

Swift: Swift programming language is the new "official" language of iOS. Althoug

Swift and Objective-C are quite similar, Swift is intended to have a simpler syntax and

is more security-focused than its predecessor. Because it and Objective-C share a run

time, updating apps with legacy code is simple. Even for those who are just learning to

program, Swift is simple to learn. Unless one has a compelling reason to continue with

Objective-C, one should aim to utilise Swift to develop the iOS app since it is faster,

more secure, and simpler to use than Objective-C.

30

iSwift

Objective-C > Swift
1 #import <Cocoa/Cocoa.h> 1 import Cocoa
2 2
3 (^implementation aClass 3» c l a s s aClass {
4 4
5» - (v o i d) a F u n c : (i n t) a { 5» func aFunc(a: I n t) {
6 NSString* s = @"Hi"; 6 var s: S t r i n g i • " H i "
7 NSArray* a = @[(a"l",@"2"] 7 var a: Array = [•'1","2"]
8 NSString* i ; 8 var i : S t r i n g
9 9

ie f o r (i i n a) 10 » for i i n a {
11» { 11 NSLogC'i = %@",i)
12 NSLog((a"i = %@",i); 12 }
13 } 13
14 } 14 }
15 15
16 @end 16 }

17
18

Figure 10: Code Comparison between Objective-C and Swift

3.4 Car Rental Business

Car Rental is very well-known at the moment. Car Rental business has many services.

It can be a service that allows a client to rent a car to use for days or months. This type of service

is mostly served at the car rental company or branches, which means a client must go there and

complete some forms before being able to use the service. The other service is the currently

most popular one, car sharing. This service allows a client to use the distributed cars available

at any moment. The available cars can be found parking somewhere specified in their respective

application.

Salon (2022) shared a short history of Car Rental on the Linkedln webpage that the

oldest records of car rentals date back to 1904, when a Minneapolis bicycle shop began offering

car rentals. Then, in 1912, around eight years later, a German corporate by the name of Sixt

began renting out automobiles. They initially only offered three automobiles. But it did not take

long for the business to start growing.

Up until today, as demand expanded, car rental business popped up everywhere. With

the world becoming increasingly globally interconnected, people are travelling at a never-

before-seen rate. They now hire cars, vans, and other vehicles more frequently than they did in

the past.

31

PROJECTED GLOBAL CAR RENTAL MARKET REVENUE

$120B

$11 OB $110.89B

$104;47B

$100B

§ $90B
= $85.253-

£ $80B
01

$93.59B

$91.16B /

\ $ 8 0 ^ B

£ $70B
01
cc

\ $64^8B

§ $60B
c

<
$50B

$40B $40Lp5B

$30B

2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 11: Projected Global Car Rental Market Revenue (Source: Zippia.com)

Although the car rental markets appear to be profitable over the years, it requires a lot

of perseverance and good strategy plans. According to GrowThink (2022), there are several

steps to be realised such as:

• Determine what type of car rental company to open

• Choose the name for the business and make sure the name is available, simple, but

appealing and meaningful

• Develop the business plan

• Choose the legal structure for the business

• Secure startup funding and location

• Register the car rental business

• Open a business bank account and get a business credit card

• Get required business licenses and permits

• Get business insurance

• Buy or lease the right car rental business equipment

• Develop the marketing materials

• Purchase and setup the software needed to run the business

• Hire the team

• OPEN FOR BUSFNESS

32

http://Zippia.com

4. Practical Part

Car Rental business logic differs amongst business owners, each of whom have various

tactics to tackle their market, which makes the data and its type that the business accumulates

to store and to analyse are different between companies.

In this section, such Car Rental data is compromised into a generic one, which is

considered as a necessary data for a Car Rental business to function.

4.1 Data Dictionary

Class Description Attribute

Identity A class which stores the identity

information of a person and the driving

license information of a client

idNumber, idType, validFrom,

expirationDate

Person A superclass which holds a general

information of a relevant person in the

business (Client, Staff)

firstName, lastName, sex,

dateOfBirth, nationality,

phoneNumber, email,

permanentAddress

Client A class which holds the information of

a client required to be able to use the

service

registrationDate,

currentAddress,

drivingLicenseld

Staff A class which stores the information of

those who work in the service

currentAddress,

typeOfContract, startDate,

grade

PriceType A class which saves the details of the

price of the renting service set by the

business

priceType, pricePerMinute,

pricePerKilometer

Car A class which keeps the details of the

cars used in the service

model, color, fuelType,

licenseNumber, gear Type,

entryDate, fuelAmount,

currentLocation,

kilometerCounter,

carCondition

33

A class which stores the information of

the renting services used by the client

startTime, endTime,

kilometerDriving, totalPrice

Table 6: Data Dictionary

4.2 Database with MySQL

4.2.1 UML

Identity

+ idNumber: String

+ idType: String

+ validFrom: DateTime

+ expirationDate: DateTime

• drivingld-

Person

— + identityld—| + firstName: String

+ lastName: String

+ sex: String

+ dateOfBirth: DateTime

+ nationality: String

+ phoneNumber: String

+ email: String

+ permanentAddress: String

A

-+ personld-

Client

+ registrationDate: DateTime

+ currentAddress: String
+ cl i o n t l d —

Rent

+ startTime: DateTime

+ endTime: DateTime

+ kilometerDriving: Real

+ totalPrice: Real

PriceType

+ priceType: String

+ pricePerMinute: Real

+ pricePerKilometer: Real

+ personld_

Staff

+ currentAddress: String

+ typeOfContract: String

+ startDate: DateTime

+ grade: String

+ staffld

-+ c a r l d — 1

• priceType-

Ca-

+ model: String

+ color: String

+ fuelType: String

+ licenseNumber: DateTime

+ gearType: String

+ entryDate: DateTime

+ fuelAmount: Real

+ currentLocation: String

+ kilometerCounter: Integer

+ carCondition: String

Figure 12: U M L of Car Rental Relational Database Schema

• Table Identity is an independent one, storing all the information relating to a person's

identification document, which can be a passport or an ID as well as a driving license

of a client with the ID number and its validity.

• Table Person acts as a parent class for table Client and Staff. This table holds all basic

but necessary information about a person who is related to the Car Renting service. Each

34

person needs to be verified as a legal one to be in this service, therefore the Person table

holds and connects to the Identity table via the foreign key identityld.

Table Staff, while extending its basic information from table Person, holds other

information relating to the working environment.

Table Client also extends the information from table Person while stores other

information that such car renting service requires. This table also has a relationship with

table Identity via its foreign key, drivingld, which is one of the most important

information to verify that a person can legally drive.

Table PriceType is a stand-alone table which has the information regarding the price

of the car renting service usage set by the business owner.

Table Car holds various information about cars being owned and used within the

business. It has two relationships: the first one is with table Staff via staffld in order to

provide information about who has worked with the car; the second one is with table

PriceType via priceType to specify to which price category a car belongs.

Table Rent is used to store information about the service being used. It has a relationship

with table Client via clientld in order to provide information about who use the service;

and it has another relationship with table Car via carld to specify which car is rented.

4.2.2 MySQL Database Preparation

Figures below are the SQL for creating all the tables.

CREATE TABLE i d e n t i t y (

id i nt NOT NULL AUTO_INCREHENT PRIMARY KEY,

id_number varchar(30) NOT NULL,

id_type varchar(30) NOT NULL,

valid_from timestamp NOT NULL,

expiration_date timestamp NOT NULL

);

Figure 13: SQL Create Table identity

35

CREATE TABLE person (

id int NOT NULL AUTO_INCREMENT PRIMARY KEY,

identity_id int NOT NULL,
first_name varchar(50) NOT NULL,

last_name varchar(50) NOT NULL,
sex varchar(lO),

date_of_birth timestamp NOT NULL,

nationality varchar(50),

phone_number varchar(20) NOT NULL,
email varchar(100).

permanent_address text,
FOREIGN KEY (identity_id) REFERENCES identity(id) ON UPDATE CASCADE ON DELETE CASCADE

);

Figure 14: SQL Create Table person

CREATE TABLE client (

id int NOT NULL AUTO_INCREHENT PRIMARY KEY,

person_id int NOT NULL,

driving_id int NOT NULL,

registration_date timestamp,

current_address text,

FOREIGN KEY (person_id) REFERENCES person(id) ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (driving_id) REFERENCES identity(id)

);

ON UPDATE CASCADE ON DELETE CASCADE

Figure 15: SQL Create Table client

CREATE TABLE staff (

id int NOT NULL AUTO_INCREMENT PRIMARY KEY,

person_id int NOT NULL,

position varchar(100),

current_address text.

type_of_contract varchar(lOO),

start_date timestamp,

grade varchar(10),

FOREIGN KEY (person id) REFERENCES person(id) ON UPDATE CASCADE ON DELETE CASCADE

Figure 16: SQL Create Table staff

36

- CREATE TABLE car (

id int NOT NULL AUTO_INCREHENT PRIMARY KEY,

model varchar(100) NOT NULL,

color varchar(50),

fuel_type varchar(lO),

license_number varchar(50),

gear_type varchar(10),

entry_date timestamp,

Staff_id int NOT NULL,

price_type int NOT NULL,

fuel_amount float,

current_location text,

kilometer_counter float,

car_condition varchar(20),

FOREIGN KEY (staff_id) REFERENCES st a f f (i d) ,

FOREIGN KEY (price_type) REFERENCES price_type(id)

);

Figure 17: SQL Create Table car

• Q CREATE TABLE p r i c e _ t y p e (

i d i n t NOT NULL AUTO_INCREMENT PRIMARY KEY,

p r i c e _ t y p e v a rchar(50) NOT NULL,

p r i c e _ p e r _ m i n u t e f l o a t NOT NULL,

p r i c e _ p e r _ k i l o m e t e r f l o a t NOT NULL

) ;

Figure 18: SQL Create Table pricetype

CREATE TABLE rent (

id int NOT NULL AUTO_INCREMENT PRIMARY KEY,

car_id i n t ,

c l i e n t _ i d i n t ,

start_time timestamp,

end_time timestamp,

kilometer_driving f l o a t ,

total_price float

) ;

Figure 19: SQL Create Table rent

37

4.3 Database with Dgraph GraphQL

4.3.1 UML

Identity

+ idNumber: String

+ idType: String

+ validFrom: DateTime

+ expirationDate: DateTime

-+ identity-

y drtvingLicense-

Person

+ firstName: String

+ lastName: String

+ sex: String

+ dateOfBirth: DateTime

+ nationality: String

+ phoneNumber: String

+ email: String

+ permanentAddress: String

A

Client

- registrationDate: DateTime

- currentAddress: String
> client

Rent

+ startTime: DateTime

+ endTime: DateTime

+ kilometerDriving: Real

+ totalPrice: Real

PriceType

+ priceType: String

+ pricePerMinute: Real

+ pricePerKilometer: Real

Staff

+ currentAddress: String

+ typeOfContract: String

+ startDate: DateTime

+ grade: String

I
h staffld

• priceType

Ca-

+ model: String

+ color: String

+ luelType: String

+ licenseNumber: DateTime

+ gearType: String

+ entryDate: DateTime

+ fuelAmount: Real

+ currentLocation: String

+ kilometerCounter: Integer

+ carCondition: String

Figure 20: U M L of Car Rental Graph Database Schema

Like the U M L classes description in Database with MySQL section, the classes for

GraphQL also store all the necessary information required for the car renting service. However,

the relationship between each class in GraphQL is denoted by an object (identity person client

car priceType) rather than by a foreign key.

4.3.2 Dgraph GraphQL Database Preparation

4.3.2.1 Schema Preparation

In GraphQL, everything and every class, which is called type in GraphQL, is input into

its schema with the correct syntax and validation rules.

38

Taking advantage of the enumeration types of the GraphQL, IDType, StaffGrade,

Gear Type, and CarCondition are created as an enum type, so that their values are restricted to

a particular set.

enum IDType {
NATIONALID
PASSPORT
DRIVINGID

}

enum StaffGrade {
JUNIOR
SEMI
SENIOR
DIRECTOR

}

enum CarCondition {
FUNCTIONING
NEEDCLEAN
NEEDREPAIR

}

enum GearType {

AUTO

MANUAL

}

Figure 21: GraphQL Enums (IDType, StaffGrade, CarCondition, GearType)

Person is created as an interface, so that any type that implements this shall share the

same basic information of a person.

interface Person {

id: ID!
identity: Identity
firstName: String!
lastName: String!
sex: String
dateOfBirth: DateTime!

nationality: String
phoneNumber: String!

email: String
permanentAddress: String

}

Figure 22: GraphQL interface Person

39

The other types such Identity, Client, Staff, PriceType, Car, and Rent are implemented

as shown in the figures below.

t y p e C l i e n t i m p l e m e n t s P e r s o n {

i d : ID!

i d e n t i t y : I d e n t i t y @id

f i r s t N a m e : S t r i n g !

l a s t N a m e : S t r i n g !

s e x : S t r i n g

d a t e O f B i r t h : DateTime!

n a t i o n a l i t y : S t r i n g

phoneNumber: S t r i n g !

e m a i l : S t r i n g

p e r m a n e n t A d d r e s s : S t r i n g

d r i v i n g I D : I d e n t i t y !

r e g i s t r a t i o n D a t e : DateTime

c u r r e n t A d d r e s s : S t r i n g

type I d e n t i t y {
i d : ID!
idNumber: S t r i n g ! @id @search
idType: IDType!
validFrom: DateTime!
e x p i r a t i o n D a t e : DateTime!

}

t y p e S t a f f implements Person {
i d : ID!
i d e n t i t y : I d e n t i t y @id
f i r s t N a m e : S t r i n g !
lastName: S t r i n g !
sex: S t r i n g
d a t e O f B i r t h : DateTime!
n a t i o n a l i t y : S t r i n g
phoneNumber: S t r i n g !
e m a i l : S t r i n g
permanentAddress: S t r i n g
c u r r e n t A d d r e s s : S t r i n g
t y p e O f C o n t r a c t : S t r i n g
s t a r t D a t e : S t r i n g
grade: S t a f f G r a d e

}

Figure 23: GraphQL Types (Client, Identity, Staff)

t y p e P r i c e T y p e {
i d : ID!
p r i c e T y p e : S t r i n g ! @id
p r i c e P e r M i n u t e : F l o a t
p r i c e P e r K i l o m e t e r : F l o a t

}

type Car {
i d : ID!
model: S t r i n g !
c o l o r : S t r i n g
f u e l T y p e : S t r i n g
licenseNumber: S t r i n g ! @id
gearType: GearType
ent r y D a t e : DateTime
pri c e T y p e : P r i c e T y p e !
fuelAmount: F l o a t
c u r r e n t L o c a t i o n : S t r i n g
k i l o m e t e r C o u n t e r : F l o a t
c a r C o n d i t i o n : C a r C o n d i t i o n
s t a f f : S t a f f !

type Rent {
i d : ID!
c a r : Car!
c l i e n t : C l i e n t !
s t a r t T i m e : DateTime
endTime: DateTime
k i l o m e t e r D r i v i n g : F l o a t
t o t a l P r i c e : F l o a t

}

Figure 24: GraphQL Types (PriceType, Car, Rent)

From these types above, a GraphQL file can be created and named as schema.graphql.

4.3.2.2 Schema Migration

As this research is developed on a MacBook, this Dgraph software is run using the

standalone Docker image. Therefore, Docker installation and a few commands are needed to

start the service and install the schema. However, Docker and Dgraph image installation will

not be discussed in this section.

In order to start the Dgraph GraphQL, run the command line below: docker run -it -p

8080:8080 dgraph/standalone:%VERSION_HERE. The line of command will start the graphql

service at localhost:8080/graphql.

40

After, the command line: curl - X POST localhost:8080/admin/schema —data-binary

'@schema.graphql' is used to add and update the GraphQL schema.

With these two commands running successfully, schema preparation and migration for

Dgraph can be considered ended.

4.4 Client-Side Application

Data inside the database is raw of which people find it difficult to make sense. The

client-side application is developed in order to put those raw data together and combine them,

so that they can provide a clear information to a client.

In this research, iOS mobile application is selected as the client-side application to fetch

the data from both databases (MySQL, GraphQL) and display them. The application is

responsible for displaying information about the staff, clients, cars, and rents.

In a security sense, the client-side application should never be authorised to directly

communicate with the database. Usually, these applications communicate with each other via

a middleman, the API. Therefore, in this section the API is also built along with the iOS

Application.

iOS Application Database

Figure 25: Architecture of Application

4.4.1 Vapor API

Vapor is a Swift web framework that enables user to create HTTP servers, backends,

and APIs for web applications. Swift, a cutting-edge, powerful, and secure language that offers

many advantages over many conventional server languages, is the language used in Vapor.

In this section, Vapor is used to create the API services for passing the data from

MySQL database to the iOS client-side. As for Graph Database, Dgraph has already built-in

41

APIs that allows the client-side application to connect and fetch the data with a few U R L request

parameters and headers. Dgraph API will be explained in the next section 4.4.2.

There are various ways to install Vapor framework. However, this will not be discussed

in this section. The installation process is elaborately described in the Vapor official website.

4.4.1.1 Workflow

There are 4 main and important tables in the current car renting project - Client, Staff,

Car, and Rent. Client table stores all the information about clients using this service; Staff

provides information about their employees; Car has the information about their distributed

vehicles (cars); and Rent, the most important one, shows the details how this renting service is

used by which client and on which car.

Figure 26 represents the expected API endpoints that this Vapor must provide to the

applications. As presenting in the figure, there are 4 must-created APIs with the endpoints

{/clients, /staff, /cars, and /rents). Additionally, at the end of flow, each API shall return in a

JSON format the data queried from the database.

/clients

/rents

Figure 26: Vapor API Workflow

42

4.4.1.2 Vapor Implementation

Using MySQLKit dependency available for Vapor framework, it offers the possibility

to configure itself to connect to MySQL database installed in the local machine or in the server.

Figure 27 represents a piece of Swift code embedded with the MySQLKit library to create a

configuration to connect to a local database named "carrentingdb" on port 3306 with "root"

as username, "imaginär_password" as root password.

var t l s = T L S C o n f i g u r a t i o n . m a k e C l i e n t C o n f i g u r a t i o n ()
t l s . c e r t i f i c a t e V e r i f i c a t i o n = .none
l e t mysqlConf = MySQLConfiguration(

hostname: " l o c a l h o s t " ,
p o r t : 3306,
username: " r o o t " , // MySQL username
password: "imaginary_password", // Password of MySQL user
database: " c a r _ r e n t i n g _ d b " , // Database name
t l s C o n f i g u r a t i o n : t l s)

Figure 27: MySQLKit MySQL Configuration

4.4.1.2.1 MySQL Queries

Being as an API server, it provides the privilege to decide which data could be passed

down to the client-side application. By limiting, it also helps the application to work faster and

avoid unnecessary data to be sent. Therefore, before writing an API, the decision of which data

should be passed to which endpoint must be made in advance.

• Query for getting Clients

Information required: Person (first name, last name, sex, date of birth, nationality,

phone number, email, permanent address), Identity (number, type, valid from,

expiration date), Client (id, registration date, current address), Diving License

(number, valid from, expiration date)

SQL for getting all clients based on the decided information

43

select

id.id_number, id.id_type, id.valid_from, id.expiration_date,
p.first_name, p.last_name, p.sex, p.date_of_birth, p.nationality,
p.phone_number, p.email, p.permanent_address,
c l . i d , c l.registration_date, cl.current_address,
d.id_number as driving_license_number, d.valid_from as driving_license_valid_from,
d.expiration_date as driving_license_expiration_date

from c l i e n t c l
joi n person p on cl.person_id = p.id
joi n i d e n t i t y id on p.identity_id = i d . i d
j o i n i d e n t i t y d on c l . d r i v i n g _ i d = d.id

Figure 28: SQL query for all Clients

• Query for getting Staff

Information required: Person (first name, last name, sex, date of birth,

nationality, phone number, email, permanent address), Identity (number, type,

valid from, expiration date), Staff (id, current address, type of contract, start date,

grade)

SQL for getting all staff based on the decided information

s e l e c t

id.id_number, i d . i d _ t y p e , i d . v a l i d _ f r o m , i d . e x p i r a t i o n _ d a t e ,

p . first_name, p.last_name, p.sex, p . d a t e _ o f _ b i r t h , p . n a t i o n a l i t y ,

p.phone_number, p.email, p.permanent_address,

s t . i d , s t . c u r r e n t _ a d d r e s s , s t . t y p e _ o f _ c o n t r a c t , s t . s t a r t _ d a t e , st.grade

from s t a f f st

j o i n person p on s t . p e r s o n _ i d = p.id

j o i n i d e n t i t y i d on p . i d e n t i t y _ i d = i d . i d

Figure 29: SQL query for all Staff

• Query for getting Cars

Information required: Car (id, model, color, fuel type, license number, gear type,

entry date, fuel amount, current location, kilometer counter, car condition), Price

Type (price type, price per kilometer, price per minute), Staff (id, first name, last

name)

SQL for getting all staff based on the decided information

44

select
car.id, car.model, car.color, car.fuel_type, car.license_number,
car.gear_type, car.entry_date, car.fuel_amount, car.current_location,
car.kilometer_counter, car.car_condition, c a r . s t a f f _ i d ,
price_type.price_type, price_type.price_per_minute, price_type.price_per_kilometer,
person.first_name as staff_first_name, person.last_name as staff_last_name

from car
jo i n price_type on car.price_type = price_type.id
j o i n s t a f f on s t a f f . i d = c a r . s t a f f _ i d
j o i n person on person.id = staff.person_id

Figure 30: SQL query for all Cars

• Query for getting Rents

Information required: Client (id, first name, last name), Car (id, model, color,

license number), Price Type (price type, price per minute, price per kilometer),

Rent (id, start time, end time, kilometer driving, total price)

SQL for getting all staff based on the decided information

s e l e c t
c l . i d as c l i e n t _ i d ,
p.first_name as c l i e n t _ f i r s t _ n a m e , p.last_name as client_last_name,
c.id as c a r _ i d , c.model as car_model, c.color as c a r _ c o l o r ,
c.license_number as car_license_number,
pt.price_type as car_price_type, pt.price_per_minute as car_price_per_minute,
pt.price_per_kilometer as car_price_per_kilometer,
r . i d as r e n t _ i d , r . s t a r t _ t i m e , r.end_time, r . k i l o m e t e r _ d r i v i n g , r . t o t a l _ p r i c e

from rent r
j o i n car c on r . c a r _ i d = c.id
j o i n c l i e n t c l on r . c l i e n t _ i d = c l . i d
j o i n person p on cl.person_id = p.id
j o i n price_type pt on c.price_type = p t . i d

Figure 31: SQL query for all Rents

4.4.1.2.2 API Development

Logic of Vapor is written in its Controller. Based on the workflow, 4 controllers will be

created (ClientController, StaffController, CarController, RentController). In order to create the

endpoints such as "/api/vl/clients", "/api/vl/staff \ "/api/vl/cars", "/api/vl/rents", there are

45

various ways; however, in this project, RouteCollection, the Vapor route protocol, will be used,

therefore each controller will be extended from this protocol.

Figure 32 shows how each controller can extend the RouteCollection protocol. In the

protocol (interface for other programming languages), there is a must-override function

boot(Routes: RoutesBuilder) which tells the application which method to use in case a certain

"endpoint" is passed. In this case, when an empty endpoint is passed to the route with GET

HTTPMethod, a function named "getAll" will be utilised.

c l a s s C l i e n t C o n t r o l l e r : R o u t e C o l l e c t i o n {
func boot(routes: RoutesBuilder) throws {

routes.get("", use: g e t A l l)
}

}

c l a s s S t a f f C o n t r o l l e r : R o u t e C o l l e c t i o n {
func boot(routes: RoutesBuilder) throws {

routes.get("", use: g e t A l l)
\
/

}

c l a s s C a r C o n t r o l l e r : R o u t e C o l l e c t i o n {
func boot(routes: RoutesBuilder) throws {

routes.get("", use: g e t A l l)
\
/

}

c l a s s R e n t c o n t r o l l e r : R o u t e C o l l e c t i o n {
func boot(routes: RoutesBuilder) throws {

routes.get("", use: g e t A l l)
\
/

}

Figure 32: Controllers extend RouteCollection protocol

46

In order to allow these controllers to come into effect, it is a must to register these

controllers in the "routes" file in the Vapor project. Figure 33 shows how to register the routes

with the group "/api/vF.

func r o u t e s (_ app A p p l i c a t i o n) throws {
l e t apiRoutes = app.grouped("api", " v l ")
t r y apiRoutes g r o u p e d (" c l i e n t s ") . r e g i s t e r (c o l l e c t i o n : C l i e n t C o n t r o l l e r O)
t r y apiRoutes g r o u p e d (" s t a f f ") . r e g i s t e r (c o l l e c t i o n : S t a f f C o n t r o l l e r ())
t r y apiRoutes g r o u p e d (" c a r s ") . r e g i s t e r (c o l l e c t i o n : C a r C o n t r o l l e r ())
t r y

}

apiRoutes g r o u p e d (" r e n t s ") . r e g i s t e r (c o l l e c t i o n : R e n t C o n t r o l l e r ())

Figure 33: Routes Registration

Before starting the query, the models of each class/table should be prepared in advance.

Select query with MySQLKit will return an array of its built-in type SQLRow and has a decode

method that allows the developer to map the value of SQLRow to the model that they want in

just one line of code. However, it is required that the model is implemented the Swift protocol

Codable, which actually is a type-alias of protocol Encodable and Decodable. Figure 34 below

shows how a struct can implement the protocol Codable. One thing needs to be specified here

is the enum CodingKeys which tells the protocol to know which struct property should be

mapped with which "json_key".

struct Rent: Codable {
le t c l i e n t l d : String
l e t clientFirstName: String
l e t clientLastName: String

l e t carld: String
l e t carModel: String

l e t rentld: String
l e t startTime: Date
l e t endTime: Date

enum CodingKeys: String, CodingKey {
case c l i e n t l d = " c l i e n t _ i d "
case clientFirstName = "client_first_name"

case carld = "car _ i d "
case carModel = "car_model"

case rentld = "rent_id"
case startTime = "start_time"
case endTime = "end_time"

}

}

Figure 34: Sample of struct Rent implements Codable protocol

47

With the MySQL queries ready, the function "getAll" can be now. Figure 35

represents a piece of code that is used to fetch the data from the database with the prepared

queries, "db" is an object of SQLDatabase getting from MySQLKit library. Figure 36 shows

the result from this function.

// s q l -> p r e p a r e d query (carQuery, s t a f f Q u e r y , ...)
// MODEL_TYPE => R e n t . s e l f , C a r . s e l f , ...
func g e t A l K r e q : Request) async throws -> S t r i n g {

l e t q u e r i e s = t r y db.raw("\(raw: s q l) ") . a l l () . w a i t ()
l e t models = t r y queries.map { t r y $0.decode(model: /*MODEL_TYPE*/) }
r e t u r n " { V ' d a t a V : [\ (t r y models. compactMapK t r y c o n v e r t T o J s o n (v a l : $8) }) . j o i n e d (s e p a r a t o r : " , "))] } "

func c o n v e r t T o J s o n t v a l : S t r i n g) throws -> S t r i n g {
l e t encoder = JSONEncodert)
l e t d a t a = t r y e n c o d e r . e n c o d e (v a l)

guard l e t j s o n S t r i n g = S t r i n g l d a t a : d a t a , e n c o d i n g : . u t f 8) e l s e {
throw MySQLError.errorConvertJSON

}

r e t u r n j s o n S t r i n g

Figure 35: getAll Method

<r C 6 © localhost:1337/api/v1/cars

{
" d a t a " : [

I T <
" i d " : " 2 " ,

" p r i c e _ p e r _ m i n u t e " : 3 . 5 ,

" c a r _ c o n d i t i o n " : " G o o d " ,

" e n t r y _ d a t e " : 6 1 3 6 1 2 8 0 0 ,

" p r i c e _ p e r _ k i l o m e t e r " : 7,

" c u r r e n t _ l o c a t i o n " : "33 L e w i s R d #46",

" f u e l _ t y p e " : " G a s o l i n e " ,

" l i c e n s e _ n u m b e r " : " 4 S J 4 5 9 6 " ,

" s t a f f i d " : " 1 7 " ,

" f u e l _ a m o u n t " : 6 1 ,

" c o l o r " : " B l a c k " ,

" g e a r _ t y p e " : "MANUAL",

" p r i c e _ t y p e " : " B A S I C " ,

" k i l o m e t e r _ c o u n t e r " : 2 5 9 5 ,

" s t a f f _ f i r s t _ n a m e " : " V e r d e l l " ,

" m o d e l " : " A c u r a CL 1 9 9 8 " ,

" s t a f f _ l a s t _ n a m e " : " G a r n e s s "

},
i

" i d " : " 3 " ,

" p r i c e _ p e r _ m i n u t e " : 3 . 5 ,

" c a r _ c o n d i t i o n " : " G o o d " ,

" e n t r y d a t e " : 6 0 8 3 4 2 4 0 0 ,

" p r i c e _ p e r _ k i l o m e t e r " : 7,

" c u r r e n t _ l o c a t i o n " : " 8 1 0 0 J a c k s o n v i l l e R d #7",

" f u e l _ t y p e " : " G a s o l i n e " ,

" l i c e n s e n u m b e r " : " 4 S J 4 5 9 7 " ,

" s t a f f _ i d " : " 2 1 " ,

Figure 36: Sample Result of Cars

48

4.4.2 Dgraph API

Dgraph is a distributed GraphQL database with a graph backend that is horizontally

scalable. It is designed for the intensive transactional workloads needed to run modern apps and

websites, but it is not limited to only these types of applications. Since Dgraph is a native

GraphQL database, sparse data set can be efficiently queried.

Running a self-managed Dgraph via the installation mentioned above (section 4.3.2),

Dgraph provides the GraphQL API at /graphql. Therefore, there would not be any time needed

to spend on building a GraphQL API.

Upon schema migration, Dgraph creates two root types which are Query and Mutation.

Based on the types specified in the schema, these two root types self-create fields that are

necessary. Query will create fields contained aggregate- (aggregateCar, aggregateClient), get-

(getCar, getClient), and query- (queryCar, queryClient). Fields in Query are used to fetch data.

On the other hand, Mutation type will create fields contained add- (addCar, addClient), delete-

(deleteCar, deleteClient), and update- (updateCar, updateClient). These fields are used to make

changes in the database.

In this section, to match the APIs created in Vapor, only field query in Query type will

be discussed. In order to use query the data from the Graph Database with Dgraph, the endpoint

"/graphql" is used and a complete U R L would be "localhost:/?ort ra/w&er/graphql". Using the

POST HTTPMethod, the body of the request will be sent in the GraphQL format.

49

• GraphQL for getting Clients

POST - http://localhost:8080/graphql 1 Send Preview » H e a d e r s 9 C o o k i e s Timeline

GraphQL » Auth - Query Headers 1 Docs
1 - <
2 - "d a t a " : {
3 - " q u e r y C l i e n t " : [

1 - query { schema / 4 - <

2 - q u e r y C l i e n t {
schema /

5 " i d 0x17",

3 i d 6 - " i d e n t i t y " : {

4 - i d e n t i t y { 7 " i d " : "0x573",

5 i d

idNumber

8 "idNumber": "003126015",

6

i d

idNumber
9

10
"idType": "NATIONALID",
" v a l i d F r o m " : "2022-06-02T00:00:00Z",

7
8

idType

v a l i d F r o m
11
12

" e x p i r a t i o n D a t e " : "2032-06-01T00:00:00Z"

>,
9 e x p i r a t i o n D a t e 13 " f i r s t N a m e " : "Carmen",

ie } 14 "lastName": "Sweigard",

l i f i r s t N a m e 15 "sex": "H",

12 lastName 16 " d a t e O f B i r t h 2002-06-10T00:00:08Z",

13 sex 17 " n a t i o n a l i t y " : " E n g l i s h " ,

14 d a t e O f B i r t h 18 "phoneNumber 7329412621",

15 n a t i o n a l i t y
19
20

" e m a i l " : "csweigardtasweigard. com",
"permanentAddress": "61304 N French Rd",

16 phoneNumber 2 1 - " d r i v i n g I D " : {
17 e m a i l 22 " i d " : "0x645",
18 permanentAddress 23 "idNumber EP01231519",
1 9 - d r i v i n g I D { 24 "idType DRIVINGID",

20 i d 25 " v a l i d F r o m " : "2017-12-13T80:00:00Z",

21 idNumber 26 " e x p i r a t i o n D a t e " : "2032-12-12T00:00:06Z"

22 idType 27 },

23 v a l i d F r o m 28 " r e g i s t r a t i o n D a t e " : "2022-04-11T00:00:00Z", 23 v a l i d F r o m
29 " c u r r e n t A d d r e s s " : "42744 Hamann I n d u s t r i a l Pky #82"

24 e x p i r a t i o n D a t e 30 >,
25 } 3 1 - {
26 r e g i s t r a t i o n D a t e 32 " i d " : "0x19",
27 c u r r e n t A d d r e s s 3 3 - " i d e n t i t y " : {
28 } 34 " i d " : "0x7e8",
29 } 35 "idNumber": "001254695",

30 36 "idType NATIONALID",

Figure 37: GraphQL for Clients and Results

• GraphQL for getting Staff

POST ' http://localhost:8080/graphql 1 Send - 1

GraphQL » Auth • Query Headers 1 Docs

1 » query { schema /
2- queryStaff {

3 id

4- identity {

5 id

6 idNumber

7 idType

8 validFrom

9 expirationDate

ie }
l i firstNane

12 lastName

13 sex

14 dateOfBirth

15 nationality

16 phoneNumber

17 email

18 permanentAddress

19 currentAddress

20 typeOfContract

21 startDate

22 grade

23 }
24 >
25

Preview -

9
ie
11
12
13
14
15
16
17
18
19
28
21
72
23
2.1
25
26-
11

28 -
29
38
31
32
33
3J
35
36
37
38

"data": {
"queryStaff": 1

<

" i d 0x2711",
" i d e n t i t y " : {

" i d " : "8x2722",
"idNumber": "081431981",
"idType NATIONALID",
"validFrom 2028-85-87108:80:80ZM,
"expirationDate": "2030-05-86Tee:80:00Z"

>,
"firstName": "Vilma",
"lastName": "Berlanga",
"sex M",
"dateOfBirth": '•1998-04-25T00:00:eeZM,
" n a t i o n a l i t y " : "German",
"phoneNumber": "6167373085",
"email": "vberlanga@berlanga.com",
"permanentAddress": "79 S Howell Ave",
"currentAddress": "6385 Elstow St",
"typeOfContract": " F u l l Time",

"startDate 2019-08-01",
"grade DIRECTOR"

),
<

" i d " : "0x2713",
" i d e n t i t y " : {

" i d " : "8x2743",
"idNumber": "003215638",
"idType NATIONALID",
"v a l i d F rom 2019-07-25T00:88:88Z",
"expirationDate": "2829-87-24T00:00:00Z"

>,
"firstNane von",
"lastName": " A p r i g l i a n o " ,
"sex M",
"dateOfBirth": "2004-04-86T00:00:08Z",

Figure 38: GraphQL for Staff and Results

50

http://localhost:8080/graphql
http://localhost:8080/graphql
mailto:vberlanga@berlanga.com

• GraphQL for getting Cars

POST » http://localhost:8080/graphql Preview Headers 9 Cookies Timeline

GraphQL Auth • Query Headers

l- query { schema /•
2- queryCar {
3 i d
4 model
5 c o l o r
6 f u e l T y p e
7 licenseNumber
8 gearType
9 entryDate

lß p r i c e T y p e <
11 p r i c e T y p e
12 p r i c e P e r M i n u t e
13 p r i c e P e r K i l o m e t e r
14 }
15 fuelAmount
16 c u r r e n t l o c a t i o n
17 k i l o m e t e r C o u n t e r
18 c a r C o n d i t i o n
19- s t a f f {
7« i d
21 - i d e n t i t y {
22 i d
23 idNumber
24 idType
25 v a l i d F r o m
26 e x p i r a t i o n D a t e
27 >
28 fir s t N a m e
29 lastName
38
31 d a l e O f B i r t h
32 n a t i o n a l i t y
33 phoneNumber
34 e m a i l
35 permanentAddress
36 cu r r e n t A d d r e s s
37 typ e O f C o n t r a c t
38 s t a r t D a t e
39 grade
48 }
41 }
42 }

. {
2.
3-
4
5
6
7
8
9
18
11
12-
13
14
15
16
17
18
19
20
21
22
23-
24
75
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 .
45
46

"data": {
"queryCar": [
<

" i d " : " 8x31ff",
"model": "Skoda Fabia 1999",
" c o l o r " : "White",
"fuelType": " D i e s e l F u e l " ,
"licenseNumber": "4B0 9600",
"gearType": "MANUAL",
"entryDate": "2020-06-08T00:00:00Z",
"priceType": {

"priceType": "BASIC",
"pricePer+linute": 3.500000,
" p r i c e P e r K i l o m e t e r " : 7.000000

},
"fuelAmount": 74.000000,
" c u r r e n t L o c a t i o n " : "34 S a i n t George Ave #2",
"kilometerCounter": 9983.000000,
" c a r C o n d i t i o n " : "NEEDREPAIR",
" s t a f f " : {

" i d " : "0x271c",
" i d e n t i t y " : {

" i d " : "0x2776",
"idNumber": "J048795535",
"idType": "PASSPORT",
"validFrom": "2021-04-16T00:00:00Z",
" e x p i r a t i o n D a t e " : "2031-04-15T00:00:00Z"

>,

"firstName": "Verona",
"lastName": " J o b s t " ,
"sex": "M",
" d a t e O f B i r t h " : "1991-05-36T00:00:00Z",
" n a t i o n a l i t y " : "German",
"phoneNumber": "5148427487",
" e m a i l " : "verona_jobst(ajobst.org",
"permanentAddress": "9041 Grand P l a z a P l a c "
"currentAddress": "33108 S Yosemite Ct",
"typeOfContract": " F u l l Time",

" s t a r t D a t e 2019-10-02",
"grade": "SENIOR"

>

{
" i d " : "0x3200",
"model": "Toyota Camry 1996"

Figure 39: GraphQL for Cars and Results

• GraphQL for getting Rents

POST " http://localhost:8080/graphql Send -
GraphQL » Auth • Query Headers 1 Docs

1 - q u e r y < schema /
2 - queryRent {
3 i d star t T i m e endTime k i l o m e t e r D r i v i n g t o t a l P r i c e
4
5 - car { i d model c o l o r fuelType licenseNumber
6 gearType entryDate

priceType { priceType p r i c e P e r M i n u t e p r i c e P e r K i l o m e t e r }
8 fuelAmount c u r r e n t L o c a t i o n kilometerCounter c a r C o n d i t i o n
9

1 0 - s t a f f { i d
11 i d e n t i t y { i d idNumber idType validFrom e x p i r a t i o n D a t e }
12 firstName lastName sex d a t e O f B i r t h n a t i o n a l i t y
13 phoneNumber email permanentAddress currentAddress
14 typeOfContract s t a r t D a t e grade
15 >
16 }
17
1 8 - c l i e n t {
19 i d
20 i d e n t i t y { i d idNumber idType validFrom e x p i r a t i o n D a t e }
21 firstName lastName sex d a t e O f B i r t h n a t i o n a l i t y
22 phoneNumber email permanentAddress
23 d r i v i n g I D { i d idNumber idType validFrom e x p i r a t i o n D a t e }
24 r e g i s t r a t i o n D a t e currentAddress
25 }
26 }
27 }

Figure 40: GraphQL for Rents

51

http://localhost:8080/graphql
http://obst.org
http://localhost:8080/graphql

Preview • Headers 9 Cookies Timeline

l - r {
2 T " d a t a " : {
3T " q u e r y R e n t " : [
4T {
5 " i d 0x6313",
6 " s t a r t T i m e " : "2022-01-01T17:50:00Z",
7 "endTime 2022-01-01T19:19:00Z",
8 " k i l o m e t e r D r i v i n g " : 18.000000,
9 " t o t a l P r i c e " : 440.540000,

10 T " c a r " : {
11 " i d " : "0x321e",
12 "model": "Toyota Camry 1996",
13 " c o l o r " : "Red",
14 " f u e l T y p e " : " D i e s e l F u e l " ,
15 " l i c e n s e N u m b e r " : "4S5 0242",
16 "gearType": "MANUAL",
17 " e n t r y D a t e " : "2019-03-25T00:00:00Z",
18 T " p r i c e T y p e " : {
19 " p r i c e T y p e " : "BASIC",
20 " p r i c e P e r M i n u t e " : 3.500000,
21 " p r i c e P e r K i l o m e t e r " : 7.000000
22 }.
23 "fuelAmount": 76.000000,
24 " c u r r e n t L o c a t i o n " : "57 Haven Ave #90",
25 " k i l o m e t e r C o u n t e r " : 11856.000000,
26 " c a r C o n d i t i o n " : "FUNCTIONING",
27 T " s t a f f " : {
28 " i d " : "0x2754",
29 T " i d e n t i t y " : {
30 " i d " : "0x272e",
31 "idNumber": "J048795523",
32 " i d T y p e PASSPORT",
33 " v a l i d F r o m " : "2018-11-14T00:00:00Z",
34 " e x p i r a t i o n D a t e " : " 2 0 2 8 - l l - 1 3 T 0 0 : 0 0 : 0 0 Z "
35 },
36 " f i r s t N a m e " : " V i o l a " ,
37 "lastName": "Eddens",
38 " s e x " : "M",
39 " d a t e O f B i r t h " : "1996-03-20T00:00:00Z",
40 " n a t i o n a l i t y " : " I r i s h " ,
41 "phoneNumber": "5067723108",
42 " e m a i l " : "veddens@eddens.org",
43 "permanentAddress": "51 S Hulen S t " ,
44 " c u r r e n t A d d r e s s " : "9892 Hernando W",
45 " t y p e O f C o n t r a c t " : " F u l l Time",
46 " s t a r t D a t e " : "2019-07-28",
47 "grade": "DIRECTOR"
48 }
49 V.

Figure 41: Results for GraphQL Rent

4.4.3 iOS Application

As mentioned above, the client-side application is built on iOS mobile application, using

Swift5 as the programming language and XCode as the application. And with the latest

technology of iOS development, SwiftUI, which has been introduced as a declarative UI

framework over the legacy Storyboard, will be used.

52

mailto:veddens@eddens.org

Swift 5 XCode 14 SwiftUI

Figure 42: Swift5, IDE XCodel4, and SwiftUI

4.4.3.1 Workflow

This mobile application is developed for the business owners, investors, authorised staff

as intended users. As it is not intended for public use, the application is lack of functionalities

such as login, registration, car availability, rent, etc.

Figure 43 represents the flow of the application focus on viewing the final results of the

car renting services with a clear distinction of which database is being used for comparison.

Launch Screen

Main Screen

MySQL Screen GraphQL Screen

displays

All Clients • All Staff • All Cars • All Rents • All Clients • All Staff • All Cars I All Rents

4.4.3.2 Screens

Figure 43: iOS Application Workflow

4.4.3.2.1 Launch Screen

A screen that appears shortly and then disappears at the start of almost all mobile

applications. Most of the time, it shows the logo and the name of the application and/or with a

little bit description about the application.

53

C a r Rent
Admin View

Figure 44: Car Rent (Admin View) Launch Screen

Figure 44 shows the Car Rent Launch Screen. The screen is embedded with an image

of a car rent representing as the logo of the company or the service. Below the image, there is

a title text specifying the name and

4.4.3.2.2 Main Screen

On Main Screen, there are two options for a user to choose.

1. Car Rent with MySQL: to display the list of all necessary information being stored in

Relational Database using MySQL to query

2. Car Rent with GraphQL: to display the list of all necessary information that is being

stored in the Graph Database using GraphQL to query

54

2:27

ft

MySQL

RENT
Car Rental Application

CAR RENT
with

MYSQL

G r a p h Q L

CAR RENT with GraphQL

Figure 45: Car Rent (Admin View) Main Screen

4.4.3.2.3 Display Screen

From the Main Screen, although there are two options, there is only one Display Screen.

The title of the display screen (MySQL or GraphQL) is differentiated based on the selection of

the user on the Main Screen.

2:32 m

E) BACK M y S Q L (j=) Menu

Count: 0

2:32

E) BACK G r a p h Q L (§) Menu

Count: 0

Figure 46: Display Screen for MySQL and GraphQL

55

On the top left of the Display Screen, the button " B A C K " serves as an action to return

to the Main Screen which is the previous screen. On the top right of the screen, the button

"Menu" allows user to select one from the 4 existing menu items to display the data that they

want to view.

2:42 • m

0 BACK GraphQL

All Clients

All Staff

All Cars

All Rents

Figure 47: Car Rent (Admin View) Menu Clicked

In order to be able to the fetch data from the API, some codes are needed to do the

request. The app will use pure Swift programming language without embedded any third-party

library. Figures 48 and 49 below are two created functions in the Network class to be used to

request the data API.

s t a t i c t u n c r e q u e s t (p a t h : S t r i n g , c o m p l e t i o n : ^ e s c a p i n g ([[S t r i n g : A n y]] ? , E r r o r ?) -> V o i d) {

l e t u r l S e s s i o n = U R L S e s s i o n t c o n f i g u r a t i o n : . d e f a u l t)
l e t u r l S t r i n g = " h t t p : / / l o c a l h o s t : 1 3 3 7 / a p i / v l / H + p a t h

g u a r d l e t u r l = U R U s t r i n g : u r l S t r i n g) e l s e {
p r i n t C F a i l t o p a r s e URL s t r i n g ")
r e t u r n

>

l e t d a t a T a s k = u r l S e s s i o n . d a t a T a s k (w i t h : u r l) < (d a t a , r e s p o n s e , e r r o r) i n
i f l e t e r r o r = e r r o r {

p r i n t (" E r r o r : \ (e r r o r . l o c a l i z e d D e s c r i p t i o n) ")
c o m p l e t i o n (n i l , e r r o r)
r e t u r n

>

i f l e t d a t a = d a t a {
do {

l e t j s o n = t r y J S O N S e r i a l i z a t i o n . j s o n O b j e c t (w i t h : d a t a , o p t i o n s : . a l l o w F r a g m e n t s) a s ! [S t r i n g : Any]
c o m p l e t i o n ! j s o n [" d a t a "] as? [[S t r i n g : A n y]] , n i l)

} c a t c h {
p r i n t (" E r r o r p a r s e : \ (e r r o r . l o c a l i z e d D e s c r i p t i o n) ")

>

}

1
d a t a T a s k . r e s u m e {)

}

Figure 48: Network Request for Relational Database

56

http://localhost:1337/api/vl/H

Network Request for Relational Database takes paths such as clients, rents, cars, and

staff- which are the U R L paths that are created in the Vapor API. The function is written using

Swift closure that is typically used for asynchronous request. Upon completion, the function

returns either a list of key-value of the result getting from the API or an error.

s t a t i c f u n c c a l l G A P K q u e r y B o d y : S t r i n g , c o m p l e t i o n : ^ e s c a p i n g ([S t r i n g : A n y] ? , E r r o r ?) -> V o i d) <
l e t u r l S e s s i o n = U R L S e s s i o n (c o n f i g u r a t i o n : . d e f a u l t)
g u a r d l e t u r l • U R K s t r i n g : " h t t p : / / l o c a l h o s t : 8 e 8 e / g r a p h q l ") e l s e {

p r i n t (" F a i l t o p a r s e URL s t r i n g ")
r e t u r n

>

v a r r e q u e s t = U R L R e q u e s t t u r l : u r l)
r e q u e s t . h t t p M e t h o d = "POST"
r e q u e s t . h t t p B o d y - " q u e r y < X (q u e r y B o d y) > " . d a t a (u s i n g : . u t f 8)
r e q u e s t . a d d V a l u e (" a p p l i c a t i o n / g r a p h q l " , f o r H T T P H e a d e r F i e l d : " C o n t e n t - T y p e ")

l e t d a t a T a s k = u r l S e s s i o n . d a t a T a s k (w i t h : r e q u e s t) { { d a t a , r e s p o n s e , e r r o r) i n
i f l e t e r r o r = e r r o r {

p r i n t (" E r r o r : \ (e r r o r . l o c a l i z e d D e s c r i p t i o n) ")
c o m p l e t i o n t n i l , e r r o r)
r e t u r n

}

i f l e t d a t a = d a t a {
do {

l e t j s o n = t r y J S O N S e r i a l i z a t i o n . j s o n O b j e c U w i t h : d a t a , o p t i o n s : . a l l o w F r a g m e n t s) a s ! [S t r i n g : Any]
l e t q u e r y = (j s o n [" d a t a "] a s ? [S t r i n g : A n y])
c o m p l e t i o n (q u e r y , n i l)

} c a t c h {
p r i n t C ' E r r o r p a r s e : \ (e r r o r . l o c a l i z e d D e s c r i p t i o n) ")

}

}
}

d a t a T a s k . r e s u m e t)

}

Figure 49: Network Request for Graph Database

Request for Graph Database is more special. The method takes string queryBody in

form of GraphQL as a parameter. The request is made with POST HTTP method and the

queryBody as the HTTP body. The function also returns a list of key-value as the result upon

completion.

s t r u c t GRent: GModel, H a s h a b l e {
l e t i d : S t r i n g
l e t c a r : GCar
l e t c l i e n t : G C l i e n t
l e t s t a r t T i m e : S t r i n g
l e t endTime: S t r i n g
l e t k i l o m e t e r D r i v i n g : C G F l o a t
l e t t o t a l P r i c e : C G F l o a t

s t a t i c v a r gQuery: S t r i n g {
r e t u r n "queryRent { i d s t a r t T i m e endTime k i l o m e t e r D r i v i n g t o t a l P r i c e c a r { i d model c o l o r f u e l T y p e l i c e n s e N u m b e r gearType

e n t r y D a t e p r i c e T y p e { p r i c e T y p e p r i c e P e r M i n u t e p r i c e P e r K i l o m e t e r } fu e l A m o u n t c u r r e n t L o c a t i o n k i l o m e t e r C o u n t e r
c a r C o n d i t i o n s t a f f { i d i d e n t i t y { i d idNumber i d T y p e v a l i d F r o m e x p i r a t i o n D a t e > f i r s t N a m e lastName sex d a t e O f B i r t h
n a t i o n a l i t y phoneNumber e m a i l permanentAddress c u r r e n t A d d r e s s t y p e O f C o n t r a c t s t a r t D a t e g r a d e } } c l i e n t { i d i d e n t i t y {
i d idNumber i d T y p e v a l i d F r o m e x p i r a t i o n D a t e } f i r s t N a m e lastName sex d a t e O f B i r t h n a t i o n a l i t y phoneNumber e m a i l
p ermanentAddress d r i v i n g I D { i d idNumber i d T y p e v a l i d F r o m e x p i r a t i o n D a t e } r e g i s t r a t i o n D a t e c u r r e n t A d d r e s s } }"

>

)

Figure 50: Client-Side Rent Struct for Graph Database

57

http://localhost:8e8e/graphql

struct Rent: Model, Hashable {
l e t c l i e n t l d : String
l e t clientFirstName: String
l e t clientLastName: String

l e t c a r l d : String
l e t carModel: String
l e t carColor: String
l e t carLicenseNumber: String

l e t carPriceType: String
l e t carPricePerMinute: CGFloat
l e t carPricePerKilometer: CGFloat

l e t rentld: String
l e t startTime: Date
l e t endTime: Date
l e t kilometerDriving: CGFloat
l e t t o t a l P r i c e : CGFloat

extension Rent <
enum CodingKeys: String, CodingKey {

case c l i e n t l d = " c l i e n t _ i d "
case clientFirstName = "client_first_name"
case clientLastName = "client_last_name"

case carld = "c a r _ i d "
case carModel = "car_model"
case carColor = "car_color"
case carLicenseNumber = "car_license_number"

case carPriceType = "car_price_type"
case carPricePerMinute = "car_price_per_minute"
case carPricePerKilometer = "car_price_per_kilometer"

case rentld = "rent_id"
case startTime = "start_time"
case endTime = "end_time"
case kilometerDriving = "kilometer_driving"
case t o t a l P r i c e = " t o t a l _ p r i c e "

}
}

Figure 51: Client-Side Rent Struct for Relational Database

Figures 50 and 51 are example of Rent structs for the APIs of Graph and Relational. For

GRent, the fields of other structs (classes) related to it are included as an object. Since the fields

in Graph schema are conformed to camel case convention, this helps in API data mapping in

iOS without having needs to specify the key as shown in the Rent struct for Relational database.

58

p r i v a t e func f e t c h R e n t s O {
Network.callGAPKqueryBody: GRent.gQuery) < (d i c t A r r , e r r o r) i n

i f e r r o r != n i l {
p r i n t C ' E r r o r f e t c h i n g gRents")
r e t u r n

}

guard l e t d i c t A r r = d i c t A r r ,
l e t q u e r i e s = d i c t A r r t " q u e r y R e n t "] as? [[S t r i n g : Any]] e l s e { r e t u r n }

var models • [GRentlO
q u e r i e s . f o r E a c h {

do {
l e t data = t r y J S O N S e r i a l i z a t i o n . d a t a (w i t h J S O N O b j e c t : $e, o p t i o n s : . p r e t t y P r i n t e d)
l e t model = t r y JSONDecoder().decode(GRent.self, from: data)
models.append(model)

} catch {
p r i n t C E r r o r : cannot decode j s o n ")

}

}
DispatchQueue.main.async {

s e l f . r e n t s = models
self.rowCounts = models.count
self.showLoading = f a l s e

}
}

}

Figure 52: Client-Side Rent Struct for Graph Database

p r i v a t e func f e t c h R e n t s O {
Network.requestlpath: MySQLURLPath.rents) { (j s o n A r r , e r r o r) i n

i f l e t e r r o r = e r r o r {
p r i n t C ' E r r o r f e t c h \ (e r r o r . l o c a l i z e d D e s c r i p t i o n) ")
r e t u r n

}
guard l e t j s o n A r r = j s o n A r r e l s e { r e t u r n }

var models = [Rent]()
j s o n A r r . f o r E a c h {

do {
l e t data = t r y J S O N S e r i a l i z a t i o n . d a t a l w i t h J S O N O b j e c t : $0, o p t i o n s : . p r e t t y P r i n t e d)
l e t model • t r y JSONDecoder().decodelRent.self, from: data)
models.append(model)

} catch {
p r i n t C ' E r r o r : cannot decode json")

}
)
DispatchQueue.main.async {

s e l f . r e n t s = models
self.rowCounts = models.count
self.showLoading = f a l s e

}
>

}

Figure 53: Client-Side Rent Struct for Relational Database

Figure 52 and 53 shows a piece of code that is used to fetch the Rent data both API

(Graph and Relational). From the key-value (JSON) results received, those will be converted

to the Rent struct of each database respectively. The values will then be used to display in the

UI to the user.

59

Bo Bunmeng
Great Wall (NS 7475)
20.12.202210:00
20.12.202212:00
80Km
COMFORT (7.50Kč/min & 8.00Kč/km)

Total: 1,200 Kč

struct RentRow: View {
let fullName: String
let carModel: String
let carNumber: String
let start: String
let end: String
let kilometer: CGFloat
let priceType: String
let pricePerMinute: CGFloat
let pricePerKilometer: CGFloat
let totalPrice: CGFloat

var body: some View (
VStacktspacing: 6) {

buildSectionftitle: "Client:", value: fullName)
buildSectionftitle: 'Car:', value: "McarModel) (UcarNumber))")
buildSectionftitle: "Start:", value: start)
buildSectionftitle: "End:", value: end)
buildSection(title: "Kilometer:", value: "\(Int{kilometer))Km")
buildSectionftitle: "Price Type:", value: "\(priceType) (\(String(format: "X.2f\

pricePerMinute))Kc/min & \(String(format: "H.Zf*, pricePerKilometer))Kc'km)•)
HStack í

SpacerO
T«t("Total:')

.foregroundColor(.white)

.fontl.system(size: 14})
Textl"\(Int(totalPrice)) Kč")

.foregroundColort.white)

.fontl.systemfsize: 14))

.fontWeightl.bold)
>

>

.padding(8)

.background!Color!"mysql-color"))

.cornerRadius(8)

.shadow!color: .gray, radius: 2, x: 1, y: 1)

private func buildSectionftitle: String, value: String) -> some View {
HStack {

Text(title)
.foregroundColor(.white)
.font(.system(size: 14))
.frame(width: 100, alignment: .leading)

Text(value)
.foregroundColor(-white)
.fontt.systemfsize: 14))
.fontWeightl.semibold)
.frame(minWidth: 100, alignment: .leading)

SpacerO

9

©•888 S O

Figure 54: List item for displaying Rent information

Figure 54 shows the implementation in SwiftUI in order to create a sample list item for

displaying Rent information. The view at the right side is called canvas, which makes the UI

development in SwiftUI much easier. As being shown, the list item of Rent will take in

information such as full name of client, car model with car license number, start time and end

time of renting, kilometres driven, car price type with price per minute and price per kilometre,

and the total cost of that rent.

private func buildRentl_istView() -> some View {
List(viewModel.rents, i d : \.self) { rent in

RentRowifullName: "\(rent.client.firstName) \(rent.client.lasíName)", carModel:
rent.car.model, carNumber: rent.car.licenseNumber, start:
rent.displayGDateStr(rent.startTime), end: rent.displayGDateStr(rent.endTime),
kilometer: rent.kilometerDriving, priceType: rent.car.priceType.priceType,
pricePerMinute: rent.car.priceType.pricePerMinute, pricePerKilometer:
rent.car.priceType.pricePerMinute, totalPrice: rent.totalPrice)

}.listStyle(.plain)

Figure 55: SwiftUI build Rent list view

Figure 55 shows a piece of code that is used for building the list view to display Rent

information upon user's selection on the menu item. This function returns the SwiftUI built-in

List using the list of Rent objects that are obtained after the data fetching from the API. For

60

each Rent object received, the value is passed to the RentRow, which is the list item created

specifically to serve as the UI for display Rent information (mentioned above).

Figures below (Figure 56, Figure 57, Figure 58, Figure 59) display the various data

when user clicks on each menu. Above list, there is a title text specifying which tables/classes

user is viewing with the number of items displayed at the top right of the list.

2:47

0 BACK

All Clients

MySQL

m> 2:47

(§) Menu @ BACK GraphQL

Count: 1,890

ID M08745165 (PASSPORT)

Eg Aaron Kloska (M) 08.09.1994

f 6 6 4 9 N Blue Gum St

Client since 07.07.2021

• 001212577 (NATIONALID)

Eg Abel Maclead (F) 23.12.1999

f 4 B Blue Ridge Blvd

Client since 14.10.2020

• 003687419 (NATIONALID)

Ei Abraham Cratch (M) 03.10.1992

t 8 W Cerritos Ave #54

Client since 02.11.2020

• M08745426 (PASSPORT)

Eg Adaline Galagher (F) 03.12.1990

• 639 Main St

Client since 07.08.2022

• J 0 4 8 7 9 5 5 5 3 (PASSPORT)

Eg Adela Echegoyen (F) 01.08.2000

f 34 Center St

All Clients

(§) Menu

Count: 1,890

• 003126015 (NATIONALID)

Eg Carmen Sweigard (M) 10.06.2002

• 42744 Hamann Industrial Pky #82

Client since 11.04.2022

001254695 (NATIONALID)

Jeff Brossoit (F) 22.09.1993

83 Battenburg St

Client since 24.11.2020

M08745168 (PASSPORT)

Brigette Breckenstein
(F) 05.01.2002

9122 Carpenter Ave

Client since 16.12.2021

J048795470 (PASSPORT)

Dion Lamastus (F) 28.02.2001

20113 4th Ave E

Client since 19.02.2020

005747000 (PASSPORT)

Earlean Suffern (M) 26.08.1991

Figure 56: Car Rent (Admin View) Display A l l Clients

61

2:47

@ BACK MySQL

2:52

S> Menu @ BACK GraphQL (§) Menu

All Staff Count: 59 All Staff Count: 59

• 002451344 (NATIONALID)

Eg SEMI Valentin Klimek (F) 11.01.1995

f 9874 Oakfield Rd

Since: 24.12.2019

003215460 (NATIONALID)

JUNIOR Valentin Billa
(F) 10.02.1992

f 6605 Federal St

Since: 19.01.2019

002451243 (NATIONALID)

JUNIOR Valentine Gillian
(M) 01.12.1991

f 60 15th Ave

Since: 11.07.2019

• 002451274 (NATIONALID)

Eg SEMI Vallie Mondel la (F) 11.10.1997

f 9 34th Ave #69

Since: 06 .06 .2019

• 002351504 (NATIONALID)

Eg SEMI Vallie Yafaie (F) 24.01.1999

001431981 (NATIONALID)

DIRECTOR Vilma Berlanga
(M) 25.04.1998

6305 Elstow St

Since: 01.08.2019

003215630 (NATIONALID)

DIRECTOR Von Aprigliano
(M) 06.04.2004

700 Wilmson Rd

Since: 07.10.2019

001254690 (NATIONALID)

SEMI Veronica Mcc lodden
(M) 21.01.1996

6126 E 14th St #6

Since: 30 .04 .2019

X054697833 (PASSPORT)

DIRECTOR Vince Siena
(M) 23.05.1995

37 N Elm St #916

Since: 07.03.2019

Figure 57: Car Rent (Admin View) Display A l l Staff

62

2:47

0 BACK

All Cars

2:47

MySQL !§) Menu @ BACK

Count: 63

Fuel Type:

Acura CL 1998 (Black)
(4SJ 4596)

Gasoline

f 33 Lewis Rd #46

Car Condit ion: Good

. . Acura CL 1998 (Black)
(4SJ 4597)

Fuel Type: Gasoline

f 8100 Jacksonvi l le Rd #7 ^ 4 8 %

Car Condit ion: Good

. . Acura CL 1998 (Black)
(4SJ 4598)

Fuel Type: Gasoline

f 7 W Wabansia Ave #227 ^ 4 8 %

Car Condit ion: Need Clean

Acura CL 1998 (Silver)
(4SJ 4601)

Fuel Type: Gasoline

985 E 6th Ave

Car Condit ion: Need Clean

Toyota Camry 1996
ivvnitei (4bb 0233)

GraphQL

All Cars

(§) Menu

Count: 63

Fuel Type:

Skoda Fabia 1999
(White) (4B0 9600)

Diesel Fuel

f 34 Saint George Ave #2 ^ 74%

Car Condit ion: NEEDREPAIR

Model- T 0 y 0 t a C a m r y 1 9 9 6

(Red) (4S5 0238)

Fuel Type: Diesel Fuel

f 66552 Malone Rd ^ 5 8 %

Car Condit ion: FUNCTIONING

Skoda Fabia 1999
(Red) (4B0 9609)

Fuel Type: Diesel Fuel

2 S 15th St ^ 3 9 %

Car Condit ion: FUNCTIONING

. . , Acura CL 1998 (Silver)
M 0 d 6 l : (4SJ4599)

Fuel Type: Gasoline

f 25 M inters Chapel Rd #9 ^ 9 2 %

Car Condit ion: NEEDREPAIR

Acura CL 1998 (Silver)

Figure 58: Car Rent (Admin View) Display A l l Cars

63

2:47 á 2:48 1 m

@ BACK MySQL (i) Menu @ BACK GraphQL (i i) Menu

All Rents Count: 15,071 All Rents Count: 15,071

Client: Frank Amend Client: Lang Heuring

Car:
Skoda Octavia Scout
2013 (2AL 3342) Car:

Toyota Camry 1996
(4S5 0242)

Start: 25.01.2021 19:54 Start: 01.01.2022

End: 25.01.2021 20:59 End: 01.01.2022

Kilometer: 11Km Kilometer: 18Km

Price Type:
BASIC (3.50Kč/min &
7.00Kč/km)

Total: 307 Kč
A

Price Type:
BASIC (3.50Kě/min &
3.50Kč/km)

Total: 440 Kč

Client: Francoise Byon Client: Ines Tokich

Car: Acura CL 1998
(4SJ 4597)

Car: Skoda Octavia Scout
2013 (2AL 3351)

Start: 25.01.2021 06:15 Start: 31.01.2022

End: 25.01.2021 07:09 End: 31.01.2022

Kilometer: 31 Km Kilometer: 115Km

Price Type:
BASIC (3.50Kč/min &
7.00Kč/km)

Total: 406 Kč

Price Type:
BASIC (3.50Kč/min &
3.50Kč/km)

Total: 1,622 Kč

r
Client: Edwin Logghe

r
Client: Daniela Comnick

Car: Skoda Octavia Scout
2013 (2AL 3350)

Car: Skoda Karoq 2017
(4S5 0247)

Start: 25.01.2021 10:49 Start: 02.02.2022

End: 25.01.2021 14=21 End: 02.02.2022

Kilometer: 73Km Kilometer: 120Km

Price Type:
BASIC (3.50Kč/min &
7.00Kč/km) Price Type:

COMFORT (4.00Kč/min
& 4.00Kč/km)

Total: 1,254 Kč Total: 2,031 Kč Total: 1,254 Kč Total: 2,031 Kč

Figure 59: Car Rent (Admin View) Display A l l Rents

64

5. Results and Discussion
Based on the whole practical part from creating database to applications development

(client-side, Vapor API), relational and graph database has its own strengths and weaknesses.

The evaluations for comparing these two databases will be made based on source lines of code,

complexity of queries, development time consumption, and database collaboration complexity.

The evaluation will conclude between these two databases which one is more developer

friendly.

• Source Lines of Code

Source lines of code (SLOC), also referred to as lines of code (LOC), is a software

metric that counts the lines in the source code of a computer program to determine the size of

the program. SLOC is often used to assess programming productivity or maintainability after

the software is created, as well as to predict the amount of effort that will be needed to develop

a program.

There are two major types of SLOC measures: physical source lines of code (LOC) and

logical source lines of code (LLOC).

In this comparison, two projects are considered: the first one is the API application, and

the last one is the mobile application.

• Complexity of Queries

In database, query is one of the most important parts. A query might ask a database for

data results, a specific action to be taken with the data, or both. A query can be add, alter, or

remove data from a database, conduct computations, integrate data from other databases, and

answer simple questions (Indeed.com, 2021).

As Relational database uses SQL and Graph database uses GraphQL, these are two

different query languages, which mean they both have different syntax. As the car renting

project is intended for admin view, only the queries for fetching the data are used.

• Collaboration Complexity

The relational database using MySQL and the graph database with Dgraph GraphQL

are two independent software. With Swift as a programming language at the client-side, it

requires to find a way to connect the database to the client-side. The connection can be made

65

http://Indeed.com

through API or direct connection. The comparison will be made based on how resourceful it is

to make connection between MySQL and iOS and between GraphQL and iOS

• Development Efficiency

There are multiple criteria that can be used to consider a development is efficient.

However, in this comparison, the efficiency of development will focus on how efficiently the

application can receive the data and use them in the application.

Comparison

Criteria MySQL GraphQL

Source Lines of API (Vapor) SLOC: 722 API SLOC: N/A

Code Application SLOC: 1,135 Application SLOC: 1,060

Total: 1,857 Total: 1,060

MySQL has more lines as code as

it requires two applications:

Vapor API andiOS.

Complexity of In order to do queries with Query with GraphQL requires

Queries MySQL, relationships between the body to be wrapped by the

tables need to be taken into query at the front and the

consideration, the fields need to query [Type] after.

be clearly specified in order to tell

the database to which table they query { queryClient { body } }

belong, and the connection

between foreign key of the main "body" contains the field of the

table to the primary key of the Graph Type that need to be

related tables must be done retrieved

correctly.

select importantyields

from table

join table 1 on {foreign key)

join table2 on (foreing key)

66

Collaboration

Complexity

Mobile Application needs to have

a developed API application to be

able to fetch the data from

MySQL database. Therefore, in

order to allow the collaboration

between MySQL and iOS app, a

Vapor API application is created.

Although it is required to have

another project to allow the

collaboration between these two,

there are fortunately abundant

frameworks for connecting an

API application to MySQL.

Dgraph GraphQL provides

sufficient built-in APIs that

allow developers to use it in

the mobile application to

retrieve the data immediately

right after the data has been

inserted without having a need

to create them from scratch. It

also provides the possibility to

create additional APIs to match

the requirements of the

application with a simple

POST request.

Development

Efficiency

Query in MySQL does the

transaction line by line. The data

returned from MySQL is a list of

rows. Therefore, in order to get

display this data, the mobile

application needs to first read one

row and then map the values to

appropriate class/struct members.

This process is repeated N times

of rows.

Query in GraphQL returns a

JSON string with all the values

ready to be mapped to

appropriate class/struct

members and display at the

client-side. Therefore, it is

more efficient and less time

consuming for the mobile

application.

Table 7: MySQL and GraphQL Evaluation

Based on the evaluation made in the table, it can be seen that for the Car Rental

application at Admin Site, the graph database with Dgraph GraphQL is more efficient and time

saving, which helps reduce the workload of the developers involved in the project, in

comparison to relational database with MySQL.

67

6. Conclusion

Relational Database and Graph Database have their advantages and disadvantages. Based

on the project Car Rental alone, it cannot be used to determine which type of database is the

best or better than which. It is advisable to take full consideration and weigh the positive and

the negative sides of each database before choosing one.

Before selecting a database for any project, from physical databases to cloud solutions,

Silnitsky (2021) mentioned about some criteria that people need to consider:

• Query pattern: How intricate are your search patterns? Do you require key retrieval

alone or do you additionally need a variety of other parameters? Do the data also require

fuzzy search?

If fetching data by key is required, then a key-value store is needed, (e.g. S3, Redis,

DynamoDB). If the query is used to get many different fields, Relational Database (e.g.

MySQL, PostgreSQL) or Document Database (e.g. MySQL, MongoDB, CouchDB)

would be ideal. Lastly, i f the fuzzy search query capabilities are the case, then it is

advisable to use search engines like Elasticsearch and Solr.

• Consistency: Is strong consistency (read after write, especially when you transfer writes

to a new data center) necessary, or is eventual consistency also acceptable?

A relational database, such as MySQL or PostgreSQL, is typically more suited for

strong consistency requirements than a document database, such as MongoDB or

CouchDB.

• Storage Capacity: How much storage is needed?

Most database systems struggle with performance as the number of Nodes and Shards

increases into the hundreds (e.g. Elasticsearch) or are by the amount of disk space (such

as MySQL). Therefore i f infinite storage is the target, then cloud storage would be the

best choise. Data can be store as much as you want using object storage services like S3

or GCS.

• Performance: What throughput and latency are required?

Solutions from cloud providers like Amazon's DynamoDB and Google's Bigtable may

be the perfect fit i f you need very low latency and huge traffic. However, the price is

obviously a drawback.

68

• Maturity and Stability: How much experience does your D B A team have with self-

hosted deployment, and how advanced is the technology?

It may be tempting to self-host the most popular, robust, and feature-rich database, but

if your organisation lacks experience with it, you might come to regret it.

Database setup, configuration, and fine tuning is a time-consuming and dangerous

process. When it comes to production consistency, sometimes going with the "old"

organisation self-hosted workhorse will yield more long-term rewards.

• Cost: What are the costs i f you choose a managed cloud solution? Which restrictions

apply to it?

Typically, read/write traffic is inversely proportional to the cost of managed cloud

solutions. Ensure that each managed solution is cost-effective for your unique read/write

consumption patterns by carefully reading the fine print.

On the query language side, MySQL and GraphQL, on the other hand, are both

important for their respective databases. It is undeniable for the fact that everybody must be

feeling more comfortable with MySQL (SQL) as it has been on its fame for a long time and has

been used for many legacy projects. Nevertheless, it is advisable to keep oneself up to date with

latest technologies.

69

7. References

1. "How Much Data Is Created Every Day in 2022?" Techjury. Accessed November 20,

2022. https://techjury.net/blog/how-much-data-is-created-every-day/.

2. "What Are the Different Types of Databases? | Indeed.com." Accessed November 20,

2022. https://www.indeed.com/career-advice/career-development/types-of-databases.

3. "What Is a Relational Database?" Oracle. Accessed November 21, 2022.

https://www.oracle.com/database/what-is-a-relational-database/.

4. Codd, Edgar. F. " A Relational Model of Data for Large Shared Data Banks."

Communications of the ACM 13, no. 6 (1970): 377-87.

https://doi.org/10.1145/362384.362685.

5. Quickbase. " A Timeline of Database History." Quickbase. Accessed November 27, 2022.

https://www.quickbase.com/articles/timeline-of-database-history.

6. Davidson, Louis. Pro SQL Server Relational Database Design and Implementation: Best

Practices for Scalability and Performance. Berkeley, CA: Apress, 2021.

7. Harrington, Jan L. Relational Database Design and Implementation Clearly Explained.

Amsterdam: Morgan Kaufmann/Elsevier, 2009.

8. Date, C.J. Database Design and Relational Theory Normal Forms and All That Jazz.

Sebastopol, Calif: O'Reilly, 2012.

9. Yaowen, Chen. "Comparison of Graph Databases and Relational Databases When

Handling Large-Scale Social Data," 2016.

10. Codd, Edgar F. "Further Normalization of the Data Base Relational Model," 1972.

11. Haerder, Theo, and Andreas Reuter. "Principles of Transaction-Oriented Database

Recovery." ACM Computing Surveys 15, no. 4 (1983): 287-317.

https://doi.org/10.1145/289.291.

12. Robinson, Ian, Emil Eifrem, and Jim Webber. Graph Databases: New Opportunities for

Connected Data. Sebastopol, CA: O' Reilly, 2015.

13. Harrison, Guy. Next Generation Databases: Nosql, NewSQL, and Big Data. New York:

Apress, 2015.

14. Jing Han, Haihong E, Guan Le, and Jian Du. "Survey on NoSQL Database." 2011 6th

International Conference on Pervasive Computing and Applications, 2011.

https://doi.org/10.1109/icpca.2011.6106531.

15. Kristi, Berg, Seymour Tom, and Goel Richa. "History Of Databases," December 31,

2012.

70

https://techjury.net/blog/how-much-data-is-created-every-day/
http://Indeed.com
https://www.indeed.com/career-advice/career-development/types-of-databases
https://www.oracle.com/database/what-is-a-relational-database/
https://doi.org/10.1145/362384.362685
https://www.quickbase.com/articles/timeline-of-database-history
https://doi.org/10.1145/289.291
https://doi.org/10.1109/icpca.2011.6106531

16. Vaish, Gaurav. Getting Started with Nosql Your Guide to the World and Technology of

Nosql. Birmingham: Packt Publishing, 2013.

17. Garcia-Molina, Hector, Jeffrey David Ullman, and Jennifer Widom. Database Systems:

The Complete Book. Harlow: Pearson, 2014.

18. Daniel, Abadi, Boncz Peter, and Harizopoulos Stavros. "Column Oriented Database

Systems," August 1, 2009.

19. Luke. "Graph Database Fundamentals - RDF, Property Graph, Linked-Data."

TerminusDB, October 14, 2022. https://terminusdb.com/blog/graph-database-

fundamentals/.

20. Hayes, Jonathan. " A Graph Model for RDF," 2004.

21. Powers, Shelley. Practical RDF: Solving Problems with the Resource Description

Framework. Sebastopol (California): O'Reilly, 2003.

22. Berners-Lee, Tim, James Hendler, and Ora Lassila. "The Semantic Web." Scientific

American 284, no. 5 (2001): 34-43. https://doi.org/10.1038/scientificamerican0501-34.

23. Salon, Pamela. " A Brief History of the Car Rental Industry." Linkedln, May 16, 2022.

https://www.linkedin.com/pulse/brief-history-car-rental-industry-pamela-salon/.

24. "How to Start a Car Rental Business [Updated 2022]." Growthink, November 22, 2022.

https://www.growthink.com^usinessplan/help-center/how-to-start-a-car-rental-business.

25. "What Is a Mobile Application? - Definition from Techopedia." Techopedia.com.

Accessed November 25, 2022. https://www.techopedia.com/definition/2953/mobile-

application-mobile-app.

26. Kenton, Wil l . "Apple IOS." Investopedia. Investopedia, March 24, 2022.

https://www.investopedia.eom/terms/a/apple-ios.asp.

27. "Apple Statistics (2022)." Business of Apps, October 28, 2022.

https://www.businessofapps.com/data/apple-statistics/.

28. By: I B M Cloud Education. "IOS App Development." IBM. Accessed November 27,

2022. https://www.ibm.com/cloud/learn/ios-app-development-explained.

29. Vettrivel, Vishnu, and Name *. "Knowledge Graphs: RDF or Property Graphs, Which

One Should You Pick?" Wisecube AI. Accessed November 27, 2022.

https://www.wisecube.ai/blog/knowledge-graphs-rdf-or-property-graphs-which-one-

should-you-pick.

30. Community, Vapor. "Welcome." Vapor Docs. Accessed November 27, 2022.

https://docs.vapor.codes/.

71

https://terminusdb.com/blog/graph-database-
https://doi.org/10.1038/scientificamerican0501-34
https://www.linkedin.com/pulse/brief-history-car-rental-industry-pamela-salon/
https://www.growthink.com%5eusinessplan/help-center/how-to-start-a-car-rental-business
http://Techopedia.com
https://www.techopedia.com/definition/2953/mobile-
https://www.investopedia.eom/terms/a/apple-ios.asp
https://www.businessofapps.com/data/apple-statistics/
https://www.ibm.com/cloud/learn/ios-app-development-explained
https://www.wisecube.ai/blog/knowledge-graphs-rdf-or-property-graphs-which-one-
https://docs.vapor.codes/

31. Silnitsky, Natan. "How to Choose the Right Database for Your Service." Medium. Wix

Engineering, August 27, 2022. https://medium.com/wix-engineering/how-to-choose-the-

right-database-for-your-service-97bl670c5632.

72

https://medium.com/wix-engineering/how-to-choose-the-

