
CZECH UNIVERSITY OF LIFE SCIENCES

PRAGUE

Faculty of Economics and Management

Informatics

Department of Information Engineering

Diploma Thesis

Application Development in Object-Oriented
Languages

Doina Moraru

© 2015 CULS Prague

2

Declaration

I declare that I have worked on my diploma thesis titled “Application Development

in Object-Oriented Languages” by myself and I have used only the sources mentioned

at the end of the thesis. As the author of the diploma thesis, I declare that the thesis does not

break copyrights of any third person.

In Prague on ………………………. …………………………………………………………

Doina Moraru

3

Acknowledgement

I would like to thank to Ing. Vojtěch Merunka, Ph.D. for giving me a good guideline

for assignment throughout numerous consultations. I also thank the University of Life Sciences

in Prague for consent to include copyrighted pictures as a part of my paper.

Many people, classmates, especially Ing. Petr Benda, Ph.D., who have made valuable

comment suggestions on this thesis which gave me an inspiration to improve my assignment.

I thank all the people for their help to complete my diploma thesis.

4

Vývoj Aplikací v Objektově Orientovaných
Jazycích

Application Development in Object-Oriented

Languages

5

Souhrn

Tato práce se věnuje analýze a vyhodnocení současného stavu vývoje aplikací a způsobu

fakturace drobného podniku z hlediska ziskovosti a použitelnosti. Mezi metody analýzy se řadí

standard softwarového inženýrství UML, technologie relačních databází na základě standardu

SQL, vývoj aplikací v prostředí Builder C++. Implementace databáze a desktopové aplikace lze

nalézt v přílohách. Z výsledků analýzy dat vyplývá, že vytvořená aplikace umožňuje výměnu

výrobků mezi drobnými podniky, snižuje dobu zpracování informací a implementačních

nákladů. Výsledky práce říkají, že vyhlídky na drobné podnikání ve své současné pozici, nejsou

pozitivní. Hlavní slabiny vyžadují další zkoumání. K dispozici jsou následující doporučení:

• Zavést automatizace pro zlepšení účinnosti a snížení nákladů

• Změňte aktuální databázové aplikace, aby se minimalizoval spouštěcí čas a zvýšila

integrita dat.

Práce uznává, že analýza má svá omezení. Některá tato omezení jsou: druh podnikání

neposkytuje dostatek podrobností o to reálné aktivitě, výsledky jsou tedy založeny na minulých

výsledcích.

Klíčová slova: vývoj aplikací, nativní aplikace, OOP, rodák grafické uživatelské rozhraní, klient

relační databáze, databázový systém řízení, systém faktura, drobné podnikání, grafické OOP

6

Summary

This thesis provides an analysis and evaluation of current state of application development and

of the invoicing process at the micro scale business from perspective of profitability and

usability. Methods of analysis include software engineering standard UML, relational database

technology following the SQL standard, application development in Builder C++.

Implementation of database and desktop application can be found in the appendices. Results of

data analysis show that the created application make possible the exchange of products between

micro scale businesses, decreasing the processing time of the information and implementation

costs. The thesis results say that the prospects of the micro scale business in its current position

are not positive. The main areas of weakness needs further investigation. There are following

recommendations:

 Introduce automation to improve efficiency and reduce costs

 Change the current database application to minimize time execution and increase data

integrity.

The thesis recognized the fact that the analysis has limitations. Some of the limitations include:

the type of business does not provide enough details about it real activity i.e. results are based

on past performances not present.

Keywords: application developement, native application, OOP, native graphical user interface,

client of a relational database, database management system, invoice system, micro scale

business, graphical OOP

7

TABLE OF CONTENT

INTRODUCTION ... 8

OBJECTIVES .. 9

METHOLOGY ... 10

CHAPTER I. APPLICATION DEVELOPMENT IN OBJECT ORIENTED LANGUAGE. INTRODUCTION 11

1.1 A BRIEF HISTORY OF APPLICATION DEVELOPMENT ... 11
1.2 PROGRAMMING PARADIGMS ... 12
1.3 INTRODUCTION TO OBJECT ORIENTED PROGRAMMING ... 8

1.3.1 Basic concepts of OOP ... 8
1.3.2 Object Oriented Programing Languages ... 11

1.4 APPLICATION TYPE CONSIDERATIONS .. 13

CHAPTER II. IMPLEMENTATION OF DATABASE MANAGEMENT SYSTEM .. 15

2.1 INTRODUCTION AND DEFINITIONS .. 15
2.2 DATABASE MANAGEMENT SYSTEM ... 15
2.3 IMPLEMENTING DATABASE “INVOICE” ... 19

2.3.1 Conceptual model. Class Diagram .. 19
2.3.2 Dynamic modeling ... 26
2.3.3 Interactions modeling .. 29
2.3.4 Sequence diagrams ... 31
2.3.5 Activity diagram .. 33
2.3.6 Relational Database implementation .. 34

CHAPTER III. IMPLEMENTATION OF APPLICATION IN OBJECT ORIENTED LANGUAGE 40

CONCLUSION ... 59

LIST OF SOURCES USED .. 61

LIST OF FIGURES ... 64

8

Introduction

Nowadays, Object Oriented Programming (OOP) is very often used to resolve tasks

with a high level of complexity. To develop an application using OOP we assume to organize

application code to operate with objects. In this case, the application development will focus on

analyzing, processing and creating objects in concordance with task specifications.

In first two chapters are done the analysis of current state of application development

and most used OOP languages around the world. The basics about where are the starting points

of the modern programing languages and how does existence of databases affect development

of applications.

In practical part of presented work is described the steps in elaborating of an application

in Object Oriented Language utilizing alternative database management system as a supporting

database for desktop application. It include the elaboration of database that will improve quality,

increase efficiency and transparency control of documents and records necessary for making

invoices in a micro scale businesses, which encounter difficulties with developing or extending

commerce transactions with other businesses. Making possible the exchange of products,

services or information between businesses, the micro scale businesses will minimize

transportation cost and improve the business relationships between each other.

A particularity of the done work is highlighting the positive aspects of a system of

making invoices in a micro scale businesses. This task is difficult because it requires a high-level

business culture (Tax Code, standards, etc.).

Present work does not represent a finished product, because it is only a simulation

tool, a prototype in order to test its usefulness. The next stage requires the development of tools

and an optimization method for documents administration providing services but also

producing of goods, possible usage in ecommerce (e-invoicing with the bank system), websites.

9

Objectives

 This thesis focuses on application development in Object Oriented Language utilizing

alternative database management system as a supporting database for desktop application.

Concept of object oriented programming together with relational database management

systems slightly dominates the development, used to fix the nowadays problems.

Goals of the thesis are:

 Overview of available literature on the topic

 Comparison of OOP and different types of programming paradigm

 To review and select the type of database to be implemented

 To review and select the type of application to be implemented

 To develop an application for better fit of data in micro scale business

 To evaluate possible usage in micro scale business of created application

 The aim of the project is to analyze information about current state of the making

invoice process at the certain producing company in Republic of Moldova, to develop a desktop

application for better data processing. To obtain a desktop application that satisfy

the client(micro scale business) needs, connected with a database which will permit easy adding,

changing and removing data from database, avoiding data duplication and inconsistent records.

10

METHOLOGY

Methodology of the thesis is based on analysis of available information sources

and knowledge bases. The practical part aims to develop an OOP application provided by Builder

C++ with relational database management system MYSQL to analyze performance, recognize

compatibility issues, and evaluate their possible complementarity.

To visualize the design of the system have been used the UML (Unified Modelling

Language) Technology, provided by StarUML 5.0.0.1570 software (The Open Source UML/MDA

Platform) designing the static structure of the system, and the relations between objects (class

diagram). To draw the state diagrams, use case diagrams, activity diagrams and sequence

diagrams is used Visio Professional 2013 for Microsoft Office 2013, easy to create, customize,

review, and modify diagrams, by adding and removing shapes.

To manipulate with the database was used the open source package XAMP 5.6.3, which

handle with PHPMyAdmin to perform different tasks on MySQL database.

To make connection to the database was used ODBC Driver for connection

of Builder C++ 6 application with MySQL Database, which provide access to a MySQL database

using the industry standard Open Database Connectivity (ODBC) API.

11

Chapter I. Application Development in Object Oriented Language.
Introduction

1.1 A Brief History of Application Development

Application development knows a significant progress beginning with the 1960s, starting

with Assembler code, with its low CPU1 and storage resource requirements. After, application

development focus to COBOL2 (WALDEN, DAVID AND NICKERSON, 2012). But many of these early

Assembler and COBOL programs used, made programs difficult to debug and maintain.

The evolution of database management systems (DBMSs) and data dictionaries set a new

step in application development. Structured programming concepts were introduced by Edsger

Dijkstra, and formally developed by IBM Fellow Dr. Harlan Mills. In the early 1970s some IT

development projects solidified the benefits of structured programming especially in debugging

and application maintenance (MURPHY, 2012).

The introduction of relational technology brought in 1980s a new breath in IT application

development. Relational systems allow to use tables for data storage while maintaining and

enforcing certain data relationships by using Structured Query Language (SQL), which can be

embedded in most high-level languages. In addition, object-oriented (OO) technology also began

to be accepted. New OO languages such as C++ and Java grew in popularity (MURPHY, 2012). Since

the 1990s, companies have adopted these technologies for application development,

and till present an imposing application migration from legacy systems to these technologies

take place, and is still in process.

1 CPU – Central Processing Unit
2 COBOL - Common Business-Oriented Language

12

1.2 Programming paradigms

 Nowadays, programing languages are categorized according to the approach they

use to solve a problem. A Programing paradigms represent models of programing based on

different concepts which predetermined how the programmers design, manage and write

programs in order to solve a problem. There four major programming paradigms represented

in the Figure 1.

Figure 1. Four major programming paradigm (Source: author)

A selected Programming Paradigm defines main property of a created software

in concordance of programming language supporting the paradigm. In spite of that,

a programing language can support more than one paradigm, these is so called multi paradigm

programming languages. Indifferently which programming language and which programing

paradigm support, developed application should satisfy several characteristics:

1. scalability

2. integrability/reusability

3. portability

4. performance

5. reliability

6. easy to develop

Programming
Paradigms

Imperative (Procedural) Paradigm (Fortran, C, Pascal, Ada)

Object-Oriented Paradigm (SmallTalk,Simula,Java, C++)

Logic Paradigm (Prolog)

Functional Paradigm (pure Lisp, ML, Haskell)

7

Imperative paradigm – Machine-model based, notion introduced by John von

Neumann, works by changing the program state through assignment statements, the

procedural abstraction and structured programming are its design techniques

(PEOPLE.CS.AAU.DK, 2013). The phrase highlighted bellow represents the way how

imperative programming works. Focus on incremental change of the program state as a

function of time.

First do this and next do that

Functional paradigm – (Equations; Expression Evaluation) origins from

mathematical discipline, focused on theory of functions. A function is a black box that marks

a list of inputs to a list of outputs (PEOPLE.CS.AAU.DK, 2013). Time do not play an important

role in comparison to the imperative paradigm. All computations are done by calling

functions.

Figure 2. Functional Paradigm function (Source: author)

Logic Paradigm - First-order Logic Deduction, has a different approach then the

other three paradigms, and is based on axioms, inference rules, and queries. The phrase

highlighted bellow represents the main idea how logic programming works.

Answer a question via search for a solution

 Object Oriented Paradigm – these paradigm knows a great popularity, data and

operations are encapsulated in objects, information hiding is used to protect internal

properties of an object, objects interact by means of message passing. Emphases on data

abstraction, using a bottom-up design, presence of reusable libraries, suited for

programming in the large.

inputs
Function

(black box)
outputs

8

Send messages between objects to simulate the temporal evolution of a set of real
world phenomena

1.3 Introduction to Object Oriented programming

 Object Oriented Programming (OOP) is a method of designing and implementing

programs as a collection of objects, which interact with each other via messages. In OOP is

defined not only the data type of a data structure, but also the types of operations that can

be applied.

The OOP paradigm dates from SIMULA (Simulation of real systems) language that was

developed in 1960 by researchers at the Norwegian Computing Center. Later in 1970,

the research group at Xerox PARK (the Palo Alto Research Center) with Alan Kay developed

the first pure OOPL: Smalltalk. In the same time, Bjarne Stroustrup at Bell Laboratories was

also developing an extension to C language, called C++, which implements the OO concepts

(JACOBSON, 1992). Beginning with the idea of OOP till now, are dozens of languages object

oriented, like: Object C (1986), Eiffel (1988), Object Pascal (1986), JAVA (1995), etc.

The success of OOP as a programming methodology is due to how the key principle

are respected in software engineering like the use of well-defined interfaces for

communication between components, reuse components and the ability to define standard

scheme of building components for specific purposes (PREDA, 2010). Object-oriented

Programming is very popular also because of the special features like (reusability,

encapsulation, and inheritance). It is very suitable for Graphic User Interface, GUI application

development.

1.3.1 Basic concepts of OOP

The basic notions in OOP are:

 Code - sequences of computer instructions in a specified programing language.

9

 Data is representation of the perception of the real world. Any data has a

degree of information. Data is considered stored in an electronic format and

managed by an information system (AZUMA, VANíčEK J., 2001).

 Class is a template of object, it contain all information of an object data

structure and code.

 Object is an instance of a class. Objects have state, identity and behavior.

 Method is the implementation of some behavior of an object.

The main concepts which stands on the base of OOP are represented in the Figure 3.

Figure 3. Basic OOP Concepts (Source: author)

Inheritance is the concept, that when a class of objects is defined, any subclass that

is defined can inherit the definitions of one or more general classes (MEYER, 2013). In other

words, inheritance characterize relationships among classes.

An object of the subclass is a kind of object of the superclass.

Subclasses make available for use specialized behaviors from common elements

provided by the superclass. Through the use of inheritance, programmers can reuse the code

the superclass many times.

Data abstraction - specifies behavior, based on the separation of interface and

implementation. The user of application interface should not know how the application was

implemented.

Basic OOP Concepts

Inheritance

Data abstraction Encapsulation

Polymorphism

10

Encapsulation (called information hiding) is the process of making the detailed

implementation of an object hidden from its user. Users sow objects as black boxes: knowing

what operations may be requested of an object, but don’t knowing how the specifics of how

the operation are performed. Encapsulation hides detailed implementation of an object that

can be vulnerable to malicious attack (CARDELLI, LUCA, WEGNER, 1985).

Polymorphism is a variable entity or data structure element, which will have the

ability, at run time, to become attached to objects of different types, all controlled by the

static declaration(MEYER, 2013) . The same operation can be defined for many different

classes, and each can be implemented in their different way.

 A general classification of polymorphism was introduced by Luca Cardelli and Peter

Wegner according to this, there two general types of polymorphism (CARDELLI, LUCA,

WEGNER, 1985), represented in the Figure 4.

Figure 4. General Classification of Polymorphism. (Source: author)

Coercion represents implicit parameter type conversion to the type expected by

a method or an operator, thereby avoiding type errors (SINTES, 2002).

Overloading afford to use the same operator or method name to denote multiple

implementation of a method. Each method only differs in number and type of its parameters

(SINTES, 2002).

Polymorphism

Ad-hoc

Coercion

Overloading

Universal

Parametric

Inclusion

11

An example of overloading in JAVA is shown below and the method max () takes two

parameters and returns the maximum from those, whatever the parameters are integers or

other type.

Public static int max(int a, int b);

Public static double max(double a, double b);

Parametric polymorphism allows the use of a single abstraction across many types.

Coding something once and have it working with many different kinds of arguments.

Inclusion occurs in languages that allow subtypes and inheritance. An instance of

an object of a given type can use the functions of its super type. Inclusion polymorphism

achieves polymorphic behavior through an inclusion relation between types or sets of

values. For many object-oriented languages the inclusion relation is a subtype relation

(SINTES, 2002).

 Not using the basic concepts of OPP does not mean that the software is not object

oriented, but at a minimum it should be always used encapsulation. Without encapsulation

it not possible to make an effective inheritance or polymorphism.

1.3.2 Object Oriented Programing Languages

Today, programming languages make things work on easiest way for human needs

satisfaction. It’s difficult to determine programming languages which are most popular, or

most used, because particular languages are used for particular types of applications.

IEEE — the world's largest professional association for the language of technology published

its ranking of the popularity of programming languages on July, 2014. The ranking is based

on 12 weighted factors, including Google search rankings and trends, social programming

activity (GitHub and StackOverflow), job opportunities (Career Builder and Dice), social

media chatter, aggregator posts (Reddit and Hacker news) and academic citations (SMITH,

2014). Looking at other object oriented languages, JAVA was ranked #1 and C++ at #3, C#

ranked #5 (SMITH, 2014).

12

Figure 5. Ranking of the popularity of programming languages. (Source http://revolution-

computing.typepad.com/.a/6a010534b1db25970b01a511df7b8e970c-pi)

13

1.4 Application Type Considerations

Application is a shorter form of application program. An application program is

a program designed to perform directly the specific tasks for the user or, in some cases,

for another application program. There are several general categories of applications used

today, in the Figure 6 are represented the classification.

Figure 6. Application types (Source: author)

Mobile applications – programs designed to run on smartphones, tablet computers

and other mobile devices. When is designed a mobile application, the device resources may

prove to be a constraint. Mobile devices represents support for handled devices. On other

hand, mobile applications have navigation limitations and limited screen area (MICROSOFT,

2009).

Rich client applications (RCA) – is client–server applications with a graphical user

interface used to solve tasks with high level of complexity. One part of the task could be

implemented on the client side, and another one on the server side. This type of applications

permit disconnected and occasionally connected scenarios if is need to access remote data

or functionality (MICROSOFT, 2009). Rich client application has rich UI functionality, and

improved user experience. Support offline and occasionally connected scenarios. From other

side, the RCA involve a complex development, also it is dependent on the platform, need to

be updated over the time (MICROSOFT, 2009). Typical Rich Client architecture is

represented in the figure 7. In the figure billow are represented detailed architecture, but in

Application types

Mobile applications

Rich client applications

Rich Internet applications

Web applications

14

real life not all components are taken in consideration, this depends on the complexity of the

application needed to be implemented.

 Figure 7. Typical Rich Client Architecture (Source: https://msdn.microsoft.com/en-

us/library/ee658087.aspx)

Rich Internet applications – developed to support multiple platforms and multiple

browsers, displaying rich media or graphical content (MICROSOFT, 2009). This type

of application supports streaming media and graphical display and simple to develop. But

requires a suitable runtime framework on the client.

 Web applications – support connected scenarios and can support different

browsers running on a range of operating systems and platforms (MICROSOFT, 2009).

Dependent on network connectivity and do not provide a rich user interface.

15

Chapter II. Implementation of Database Management System

Today databases are used in every part of day-to-day life. Each company tend to

extend amounts of information about business transactions, and depends on a file system

(generally a database system) that allows for the access of specific information in a timely

and cost effective manner. In following sections are described DBMS3 and it components.

2.1 Introduction and Definitions

Today companies use huge amount of information about clients, personnel and

business operations. This information is usually stored in files, records and fields.

A file is a collection of information relative to a number of related entities. For

example, a company needs to collect various types of information about clients, personnel,

sells, etc. Each one of these is a “sub package” of information, stored as a file. They may have

3 files, and Personnel File, a Clients File and invoice file which contain information about

sells.

A record represents a single, implicitly structured data item in a table. If we look at

the example above, the Clients File record contains information required by the company

about each client, and stored for each client. For example, information contained in a client

record may include at least first name, last name, id number, birth date. Each record in the

file contain the same number and types of fields, the records have the same type.

A field is contained in a record. In the above example, the 4 pieces of information,

first name, last name, id number and birth date are all fields.

Data value is the atomic content of an attribute. Is a qualitative or quantitative

variable which describe a record.

2.2 Database Management System

Database Management System (DBMS) is a set of programs that permits users to

manage a database structure. DBMS is focused on defining, designing, sharing and managing

databases through different users and applications.

3 DBMS – Database Management System

16

Today is possible to use a huge number of DBMSs to implement a database, if is

needed one, so if is presented multiple processes (users/servers) modifying the data, then

the database serves to prevent them from overwriting each other’s changes, helps to

structure data, when data is larger than memory. Nowadays with the memory we have

available, this does indeed makes the use of databases in many applications out of date.

Functions of DBMS4:

1. Defining – specifying the data types, structures and constraints for the data to be

stored in the database (SCHWARTZ, ZAITSEV, TKACHENKO, 2012).

2. Constructing – the process of storing the data itself on some storage medium that is

controlled by the DBMS.

3. Manipulating – includes functions as querying the database to retrieve specific data,

updating the database to reflect changes, and generating reports from the data.

4. Sharing – allows multiple users and programs to access the database concurrently.

Other functions include protecting the database and maintaining it over a long

period of time:

1. Protection – includes system protection against software/hardware malfunction

and security protection against unauthorized/malicious access.

2. Maintaining – the DBMS should allow the database to evolve as requirements change

over time.

The following Figure 8 show the general database system overview.

4 DBMS – Database Management System

17

Figure 8. Overview of Database System (Source: author)

The DBMS administrates incoming data, processes it, and make it available for use, to

be viewed, modified or extracted by users or other programs.

Besides, here are so many different DBMSs available, that permits to use one most

suitable for needed solution for specific task.

Most important is to be a way for them to communicate with each other. In this case,

most DBMS comes with an Open Database Connectivity (ODBC) driver that allows the

database to communicate with other databases. For example, common SQL statements such

as CREATE, SELECT, INSERT are recognized by other Database Management Systems.

Some DBMS examples include MySQL, Oracle, Microsoft Access, SQL Server, FoxPro

and others.

User

Application program

Tranzaction processing

Data Management

DB (MetaData)

DBMS

Database System

18

To manipulate with the database I is used the open source package XAMP 5.6.3, which

handle with PHPMyAdmin to perform different tasks on MySQL database, as a relational

database management system implemented on operating systems Windows. This system

can be used free of charge and is open source. This system is compatible with SQL standards,

which make MySQL easy to use.

MySQL permits to set access rights to allow some or all privileges to individuals.

Passwords are encrypted. Can handle almost any amount of data, up to approximately 50

million rows or more.

The default file size limit is about 4 GB. However, it is possible to increase this number

to a theoretical limit of 8 TB of data (SCHWARTZ, ZAITSEV, TKACHENKO, 2012). It supports

several development interfaces: which include ODBC, JDBC, and scripting (PHP and Perl),

allowing creating database solutions that run on all major platforms, including Linux, UNIX,

and Windows.

19

2.3 Implementing database “Invoice”

This section is based on a graphical representation of the design done by class

diagram, state diagrams, use case diagram, activity diagrams and sequence diagrams. The

technology used for design of the models is UML (Unified Modelling Language) and for

creating diagrams is used StarUML 5.0.0.1570 software (The Open Source UML/MDA

Platform). Each of diagrams has its own chapter and it’s provided with short description of

basic information about it.

2.3.1 Conceptual model. Class Diagram

The static structure of the system, with it's classes and their attributes, operations

(or methods), and the relationships among objects, keep track of which invoices are

processed from clients, and which contracts represent the agreement between the client and

company, that still needs to be created, modified or updated.

The created system involves with next types of users presented in the Figure bellow.

A user take on different roles while interacting with the system. There are next roles:

Figure 9. System Users (Source: author).

Staff role – plays a vital role in the invoice system. Staff have to control the specific

entities of the database. The staff itself generates the report of the sold products. However,

System users

Staff

Admin

Client

20

not the all company staff have access to the invoice system. The access rights to the system

have only authorized users who must be employed or be the company staff. The staff is the

only user thet can manage invoices, check the contract preconditions, post conditions and

invariances.

Adim role – deals with all necessary changes which can appear in the functionality

of the created system, also the admin manage staff who will work with the invoices directly.

Client role – describes the potential clients who will buy the company product.

Any commercial enterprise especially small backeries, bars will be able to buy it like a clients.

Class diagram is used to maintain information concerning staff and clients in a invoice

system. It describes the types of objects in the system and the various kinds of static

relationships that exist among them (Figure 10).

21

Figure 10. Class diagram. Types of objects in the invoice system (Source: author).

In the table below is the short description of the classes present in the class diagram.

User

+userId
+pass
+staff

+modifyPass()
+manageInv()
+managecontr()

Staff

+employed
+education
+certification
+lanquages
+position

+confirmDelivery()
+customerNotification()

Contract

+contractId
+company
+user
+bankdetails
+products
+unitPrice
+openDate
+endDate
+contactDetails

+checkPrecondition()
+checkPostConditions()
+checkInvariance()

ClientDetails

+cName
+cFicalCode
+adress
+contactDetails

Item

+name
+upc
+price
+bestBefere

Invoice

+user
+company
+phone
+dateCreated
+dateShipped
+product
+quatity
+pricePerUnit
+disscount
+deliveryDate
+deliveryAdress
+totalPrice
+vat

+calcTotalPrice()
+doPayments()

+0..*

+1

is object agreement

+1..*

+1..*

manages

manages

produces

+0..*

+1

agreed to
+0..1

+0..*

22

Table 1. Description of the Classes presented in the Class Diagram (Source: author)

Class

name
User

It is an inherited class defining basic attributes

information of the system administrator.

Attributes

userID This attribute contains the nicknames of the user.

pass
We need this attribute in case of personal

information security.

Operation

modifyPass () Method used to change the account password.

manageinv() Method used to manage the invoices.

managecontr() Method used to manage the contracts.

Class

name
Invoice

Characterize the attributes that describes the

invoice.

Attributes

user Represents the person who will use the system.

company Client information to whom is shipped the invoice.

phone
Indicates the phone number of the client with

which we dill.

dateCreated In this attribute is the date of invoice creation

dateShipped In this attribute is the date of invoices shipping.

product
In this attribute is the information about product

which a client what to bay.

quantity
In this attribute is specified the quantity of the

product which a client what to bay.

pricePerUnit Represents the price for one unit of our product.

discount
Indicates the discount percentage per one unit of

product.

deliveryDate
Date when the client what to take the bayed

product.

23

deliveryAddress Indicates the delivery address.

totalPrice Indicates the total sum of the invoice.

Operations

calcTotalPrice()
Method used to calculate the total cost of the bayed

products.

doPayments()
Method used to make and verified if the payments

have been done.

Class

name
Contract

This class characterize the agreement between

our client and more parties for baying our

product.

Attributes

contractID
This attribute indicates the contract identification

number.

company Client information to whom is shipped the invoice.

user
Represents the person who will use the system in

case of managing contracts.

bankdetails
Contains the all bank information necessary for the

payments.

products

In this attribute is the information about product

which a client what to bay. The subject of the

contract.

unitPrice
Represents the price for one unit of our product

agreed for a period.

opendate Indicates the date from which the contract is valid.

endDate Indicates the date to which the contract is valid.

contactDetails
Indicates the contact details of the client with

which we dill. (Phone, fax, email).

Operation checkPreconditions()
Method used to check if the preconditions where

respected.

24

checkPostConditions()
Method used to check if the pros conditions where

respected.

checkInvarience() Method used to check if there are some invariance.

Class

name
ClientDetails

This class characterize the company with which

we work.

Attributes

cName Specifies the company name details

cFiscalCode Specifies the public identification number.

address Indicates the company address

contactDetails
Indicates the contact details of the company with

which we dill. (Phone, fax, email).

Class

name
Item This class describes item details

Attributes

name Specifies the product name details

upc
Describes the Universal Product Code (UPC) that

represents the barcode of the products.

price
Contains price for one unit of our product agreed

for a period.

bestbefore
Indicates the date to which the product is valid to

use.

In concordance with class diagram where specified next constrains for the database

to be created:

1. The NOT NULL constraint which obligates the user to NOT introduce NULL values for

the invoice system objects, especially until the all details of the invoices are not

completed, in concordance with the contracts, the invoice status is “pending”.

2. Each attribute has unique identification to exclude repetition, and once the invoice

was completed and saved the identification number will not change or repeated.

25

3. The invoice cannot be managed until the contract is not agreed.

4. Only the users have access to the invoices and contracts, not the whole staff.

5. Admin cannot manage invoices, or other data stored in the database, admin takes care

only on the expected functionality of the system and register staff to access database.

6. Into numeric columns is not possible to introduce string values. For example in

the amount field is not possible to write “one”, only “1”.

26

2.3.2 Dynamic modeling

In this section is represented the dynamic model of the system, which consists from

many state diagrams, one for main classes.

The first state diagram is describing the process of creating an invoice (Figure 11).

Creating invoice process steps:

1. First is needed to log into the system, to make possible to display the

application Invoice form.

2. An empty invoice is created and data needs to be set.

3. After selecting items and quantity to be sold, the price is calculated and then

stores to the price attribute of the invoice.

4. The prices are calculated with and without VAT and automatically saved

into the specified fields.

5. Next step is on the client because the system is waiting for his confirmation.

There is a specific agreement between the client and company. If the agreement

conditions is not respected then the invoice is set as cancelled. If the agreement conditions

is respected then invoice is complete and the items are delivered to client (Figure 11).

To draw the diagrams is used Visio Professional 2013 for Microsoft Office 2013. To

create, customize, review, and modify diagrams, with improved support for common

activities (such as adding and removing shapes) (MICROSOFT, 2015).

27

Logged in

New empty invoice

Incompleted

Completed

Staff log in

Create invoice

Cancelled

 Client cancel
 invoice

Cancelled

Invoice created

All details completed

Company cancel
 invoice

Close Completed Invoice

Closed

Figure 11. State diagram. Process of creating an Invoice (Source: author).

28

The second state diagram is describing the process of drawing up the contact between

company and client (Figure 12).

Contract agreement process steps:

1. To create a new contract, the company staff should be logged into the system.

2. First, an empty contract is created and data needs to be set.

3. Setting agreement priorities regarding type of products to be purchase, price,

delivery, and other details.

4. Contract is completed and company will complies with all conditions.

Initiation

New contract

Contract Conditions

Contract
postcondition

Client wants to collaborate

Create contract

All contract
 preconditions
 are completed

Cancelled
 Client cancel

 contract

Cancelled

Preconditions
Not completed

 all contract
 preconditions

Contract created

All contract preconditions
 are completed

 [ship date in future]

Cancel
contract

Company respecting
 postconditions

Closed

Figure 12. State diagram contract (Source: author).

29

2.3.3 Interactions modeling

Interaction model represents the mode of how objects act to each other. Created

diagrams shows the integral view over many objects. In this section is defined two use case

diagrams, two sequence diagrams and one activity diagram.

Use case diagram describes interactions of a system with its environment. First use

case diagram is “Invoice”. Actors are Client and Company staff. In Figure 13 is shown the use

case diagram “Invoice”. Clients and company staff work together to create, edit and delete

invoices and invoices components.

Company staff

Client

Set Incoice Tax Create Client Invoice Line in
concordance with contract

agreement

Delivery Details

Edit Invoice

Select Items

Close Client Invoice Line

<<extend>>

<<extend>>

Close Invoice

Create New Invoice

<<extend>>

<<include>>

<<include>>

Figure 13. Use case diagram Invoice (Source: author).

30

The second diagram is use case diagram “New contract”. Actors are Client and Company

staff. Functional requirements (Figure 14) are:

1. Client specifies the details for contract with the company.

2. Company staff check the information which client gives.

3. The perfected contract is confirmed and sign be client.

4. Company staff create introduce contract details to system.

Company staff

Client

Create New Contract

Set PostConditions

Update Contract

Set Contract Status Close Contract

Set Precondition

<<include>>

<<include>>

<<include>>

Set Delivery Schedule

Figure 14. Use case diagram “New contract” (Source: author)

31

2.3.4 Sequence diagrams

Sequence diagram describes an exchange of messages in time within a set of objects.

It is suitable to describe sequences of behavior from a perspective of a system user. This type

of sequence diagram gives the possibility to represent the majority of objects state modified

in time, as usually objects are passive and they are activated only by calling. They return

control back to a calling object after completing their operations and become inactive again.

The first sequence diagram (Figure 15) shows how user (company staff) login into

the system by interacting with various classes. The user will enter his/her login & password

and then will log into account. The system gets login and user details from user class instance

and verifies the login and password. If user details are invalid then user will not be allowed

to login and an appropriate error message will be displayed, otherwise the user is logged in

and the work session will be initiate.

UI Invoice systemCompany staff

DisplayLoginForm() LoginId(userID, PASS)

Verify Login(usedID, PASS)

Logged Status Message(Success)

Initiate Work Sesion()

Close Work Sesion()

ActivateApplicationComponents()

Work SessionClosed(success)

32

Figure 15. Sequence diagram Login In (Source: author)

The second sequence diagram (Figure 16) shows a successful invoice transaction

between client and company.

Specifications: The client will select the needed item, after the company staff will

create invoice and insert all necessary details about transaction. Some of the methods, like

calcPrice which is called to calculate the total amount after all the products are selected, will

automate the business operations. When a client checks out a product, the prices of all

products selected are calculated, including the shipping charges. Then is placed Invoice

confirmation message and it is sent to the client.

Client

selectItem(itemName)

user/company
staff

Invoice
system

Login in(userId,pass)

LogedIn()

verify login (userId, pass)

UI

displayLoginForm()

boolean(1)

placeInvoice()

checkItemAvailability()
boolean(1)

calcTotalPrice()

calcBasePrice

getPriceInfo()

InvoiceCompleted()

ClientNotification()

calcTax

calcDiscount

closeInvoice()

Figure 16. Sequence diagram Invoice (Source: author)

33

2.3.5 Activity diagram

An activity diagram (Figure 17) is used to display the sequence of activities. Activity

diagrams show the workflow from a start point to the finish point detailing the many

decision paths that exist in the progression of events contained in the activity. They may be

used to detail situations where parallel processing may occur in the execution of some

activities (OBJECT MANAGEMENT GROUP, 2015). Example of an activity diagram is shown

below.

The diagram shows the “New Invoice”.

create invoice
check Item
availability

In stock?

[Available] Fill Invoice

calculatePrices

Accept/Discard
Items

Do payment

[Discard]

[Not Available]

Back Invoice

[Paid] [Not paid] cancelled Invoice Completed

Close Invoice

check Contract
Conditions

[contract conditions are respected]

[contract conditions are not respected]

create Payment
Schendule

[accept]

Figure 17. Activity diagram “New Invoice” (Source: author)

34

2.3.6 Relational Database implementation

In recent years, development of database systems becomes one of the most important

component in Information Technology, having a decisive impact on the mode how an

institution are organized and work.

Day by day, almost all people have activities that involve interaction with a database, like

different management systems implemented to be used by employees in a company, a large

variety of database systems for education etc.

Vast majority of existing database systems are currently relational or object oriented and

there are a large number of commercial systems that can be purchased.

The relational databases model was introduced by E. F. Codd, IBM Company, in

1970 in this work “A Relational Model of Data for Large Shared Data Banks”. This model is

based on mathematical relationships, which correspond to entities of the same type and has

an understandable representation, and are easy to manipulate. Consists of a two-

dimensional table composed of lines and columns. Each line in the table represents an entity

and is composed of a set of attribute values, each attribute corresponds to a column of the

table (GLASS, 2004).

The user see data as tables, which is easy to use in almost all domains of activities.

Besides the benefit of an accurate and simple data model, the relational database

systems also has advantage from a recognized and accepted programming language, SQL

(Structured Query Language), for which was developed a large number of standards by the

International Organization for Standardization (ISO).

Object oriented data model is a unifying concept in computer science, being

applicable in programming, hardware design implementation, user interface design, in

databases etc.

There are some areas, especially which handle with complex data types such as

geographic information systems, in medicine etc., are most suitable for this type of

databases, here relational model proved to be insufficiently expressive and with reduced

execution performance.Important characteristics of object-oriented model are: abstraction,

35

inheritance, encapsulation, and polymorphism possess characteristics described in the

chapter I OOP introduction (SCHWARTZ, ZAITSEV, TKACHENKO, 2012).

In object oriented programming, programs are organized as collections of

cooperating objects, each object is an instance of a class. Each class is an entity type

abstraction of reality shaped and classes are members of a hierarchy of classes, interrelated

through inheritance relationships. Every object is encapsulated, meaning that his

representation (the internal structure of the object) is not visible to users who have access

only to the functions (methods) on the object which they are able to perform. Classes and

object oriented program objects are grouped into modules that can be compiled separately

and which have boundaries defined and documented, which reduces the complexity of

handling data (in other words the presence of polymorphism).

Object-relational data model is extending the relational model with characteristics

of object-oriented model, extending the databases for defining and processing complex data

types. In essence, the model object-relational data structure maintains relations

(represented as tables), but adds the possibility to define new data types for fields of

attribute values.

In hierarchical data model a database is represented by a hierarchical structure of

data (records) connected by links (links). The hierarchical model was first used for the

databases development. The conceptual structure of hierarchical database model is

represented by a certain number of trees. A tree is a directed and is represented on multiple

levels, in which the nodes are the types of records and arcs are the types of links. Each node

(with except the root node) has a single connection to a node on a higher level (parent node)

and each node (except leaf nodes) has one or more links to nodes of the level immediately

below (nodes sons).

The Network Model uses a graph structure to define the conceptual schema of the

database, nodes of the graph are the types of entities (records) and edges of the graph are

explicitly associations (links) between entity types. Like the hierarchical model, the main

disadvantage of network model is that each query must be provided early in design stage by

36

storing explicit links between entity types. In addition, the complexity of network data

representation model is particularly high.

Independently of the type of database, there tree levels of database architecture,

implemented by ANSI/X3/SPARC (1975) standard. The levels of database architecture are

focused on enabling users to access the same data but with a personalized view of it.

The internal level responsible for physically storage of data, not visible for simple

users. This level also permit to change the database storage structures without affecting the

users' views.

1. Conceptual level describes the structure of the whole database for a

community of users. On the conceptual level is the full description of the

database, without the details of physical storage, focusing on describing

entities, data types, relations between them and the associated restrictions.

The details described on this level usually are used in implementation.

2. External level includes a collection of external diagrams that describe the

database through the various users. Each user group describes this database

through their own interests. At this level a user group could hide details from

other groups of users who are not interested.

3. For database implementation is used Database Management Systems

(DBMS). DBMS is focused on defining, designing, sharing and managing

databases through different users and applications.

Nowadays, the market has a very large DBMSs, from those which could be used for

free (unlicensed or licensed public), to high-performance systems, the use of which requires

paid licenses. For these systems exist, on websites, managed by producers, called trial

version of DBMS, to use it a limited number of days (30, 60 days, depending on the

manufacturer) for free after which is decided to by license or not.

Microsoft SQL Server database management system is multi-user relational

database developed for Microsoft Windows operating systems. There were several versions,

the current one being SQL Server 2014. In all versions, the database system supports SQL2

standard, the implementation of efficiency, advanced storage features and data processing.

37

There is also GUI for user interaction, for using all options: export / import data, create and

handling tables, create queries, store procedures, triggers etc. (MICROSOFT, 2009).

MySQL is a relational database management system implemented on operating

systems like Linux, UNIX, and Windows. This system can be used free of charge and is open

source. The latest version and documentation on MySQL can be downloaded at

http://www.mysql.com. This system is compatible with SQL2 standard, but some provisions

of the standard being implemented partially.

DBMS Oracle is a multi-user database management system, with implementations

on all platforms (Windows, Linux, UNIX), which provides both high execution performance

and a high degree of protection and data security. In all versions, Oracle offers complete

implementation of the characteristics of the relational model, SQL2 standard, and the last

version (Oracle8i, Oracle9i, etc.) are object-relational management systems distributed,

implementing object oriented extensions provided in SQL3 standard and enabling the

development of bases distributed data. The license terms allow free use of these systems for

non-commercial purposes, for commercial use there are paid appropriate licenses (ORACLE,

2014).

 Most systems management of current relational database implement different

version of the standard for SQL, like called SQL: 2006 (working with XML data) and others.

Below are all necessary DDL5 and DML6 commands required for relational database

implementation. Both of these categories contain far more statements than is presented

here, and each of the statements is far more complex then is shown in this section.

Used tools to implement database are:

1. XAMPP 5.6.3

‒ phpmyadmin version 4.2.11

‒ http://www.phpmyadmin.net

5 DDL - Data Definition Language (DDL) is a vocabulary used to define data structures in SQL Server 2014.
Use these statements to create, alter, or drop data structures in an instance of SQL Server.
6 DML - Data Manipulation Language (DML) is a vocabulary used to retrieve and work with data in SQL Server
2014. Use these statements to add, modify, query, or remove data from a SQL Server database.

38

‒ Host: 127.0.0.1

‒ Server version: 5.6.21

‒ PHP Version: 5.6.3

2. Database server:

‒ Server: 127.0.0.1 via TCP/IP

‒ Server type: MySQL

‒ Server version: 5.6.21 - MySQL Community Server (GPL)

‒ Protocol version: 10

‒ User: root@localhost

‒ Server charset: UTF-8 Unicode (utf8)

In the Figure 18 is the implemented design of the relational database “Invoice”.

DDL statements, used to build and modify the structure of tables and other objects

in the database, and DML statements, are.

First statement is creation of database itself, which will consists of all needed tables

for invoice system presented below.

CREATE DATABASE IF NOT EXISTS `invoice` DEFAULT CHARACTER SET latin1 COLLATE

latin1_swedish_ci;

To use created database is needed to call the function use:

USE `invoice`;

Second statement is to create table structure for table `accounts`:

CREATE TABLE IF NOT EXISTS `accounts` (`acc_id` varchar(15) NOT NULL, `p_d`

varchar(250) NOT NULL COMMENT 'Position description ', PRIMARY KEY (`acc_id`))

ENGINE=InnoDB DEFAULT CHARSET=latin1;

To see the souse code of the implementation of the relational database using DBMS

MySQL look at APPENDIX 4.

39

Figure 18. Entity-Relation Diagram of the “Invoice” Database (Source: author).

40

Chapter III. Implementation of Application in Object Oriented Language

A good desktop API7 design focuses on the functionality that it provides to the user.

The desktop API presents a logical view of the functionality of the real system which usually

is needed to be automated.

The way of how is done and what mechanism is being used to accomplish it, the user

no need to know. The user will be able to use a desktop API if it would be designed in simplest

way, efficient, and clear, in the way that the user will be able to use it intuitively. Today using

graphical environment, we can exactly know what we are going to design or build, and to get

immediate feedback about what is working and what is not working.

In this chapter is implemented a desktop API which will work with the invoice system

for micro scale businesses. The application starts with the concept, with the idea about what

is going to be implemented and what is needed to do to get it.

Problem formulation:

Micro scale businesses in the villages, like small shops, bakeries, bars use excel

databases to work with their accounting documentation, but this is not the biggest problem,

because is no need to work with large data, and excel is enough for this. The problem is that

they can work only with consumer in other words possible only B2C8, no possibility to sell

to other business (B2B9). To make possible to sell to anther businesses the micro scale

business should implement accounting software with agreement from Fiscal Police. As an

example of this type of software is 1C: Enterprise, which have a lot of modules which is no

need for micro companies. The License price a quite high, and not all individual business can

afford it.

Proposed solution:

 If it was possible just to implement an invoice system which will permit only

generation of invoices and save information about clients, it will be low cost and increase the

processing time of the information. In this case, will be implemented a desktop application

7 API – Application Program Interface
8 B2C – Business to consumer
9 B2B – Business to Business

41

which will permit generation and evidence of invoices, also will save information about

clients (B2B), using different tools described below.

To identify what a Micro Scale businesses presents, is extracted some basic

information/ characteristics from Low of Republic of Moldova Number 619, from 08

November 2001 with changes in currents years:

1. Micro-scale business revenue is generally lower than companies that operate

on a larger scale.

2. The maximum revenue allowance for the small business designation is set at

3 million lei per year (LEGE Nr. 619, 08.11.2001).

3. Maximum number of employees for small scale business is 9 persons (LEGE

Nr. 619, 08.11.2001).

Proposed solution tools:

Implementation of a simple invoice system in which will be saved data about what

was sold, about clients and information about items (goods) which are going to be sold.

For implementation is used following tools:

1. XAMPP10 5.6.3

‒ phpmyadmin version 4.2.11

‒ http://www.phpmyadmin.net

‒ Host: 127.0.0.1

‒ Server version: 5.6.21

‒ PHP Version: 5.6.3

a. Database server:

‒ Server: 127.0.0.1 via TCP/IP

‒ Server type: MySQL

‒ Server version: 5.6.21 - MySQL Community Server (GPL)

‒ Protocol version: 10

‒ User: root@localhost

‒ Server charset: UTF-8 Unicode (utf8)

10 XAMP – X (to be read as "cross", meaning cross-platform) Apache HTTP Server MySQL PHP Perl

42

2. Connector/ODBC 5.3 for connection between database and desktop API

3. Borland C++ Builder Enterprise Suite version 6

C++ Builder is the multi-device, standards-based C++ solution, used for faster building

high performance, natively compiled apps. C++Builder uses tools that permit drag-and-drop

visual development making the process of creating graphical user interface more easy and

faster (EMBARCADERO TECHNOLOGIES, 2014).

To create an application using C++ Builder first of all is needed to know some

introductory notions like:

Forms – are most frequent objects used in the creation of an application, they are

defined as C++ classes and are graphical windows on which are positioned almost all

components needed to work with database. Forms could be created dynamically or statically,

in dependence on what is going to be build. The form is implemented by TForm Class, and

when is created a new form is called the CreateForm() method of the TApplication Class

(EMBARCADERO TECHNOLOGIES, 2014).

void __fastcall CreateForm(System::TMetaClass* InstanceClass, void *Reference);

When the application is started or ended, initialization and finalization is carried out

by Terminate() and Initialize() functions. So, the initialization, will run the main form after

checking for error occurrence.

Application->Terminate(); or Application-> Initialize();

When CreateForm() method is called, it requires to set the name of the form which

will be used in following work. This is done by the operator _classid() , which plays the role

of identification key for the new created form.

Application->CreateForm(__classid(TForm1), &Form1);

After is specified the name of the source file, that holds the implementation of the

form, using USEFORM macro.

43

USEFORM("Unit1.cpp", Form1);

Automatically when is saved a form also is saved Project1.cpp with all implemented

forms and source files names (see APPENDICS). In the applications created are implemented

almost all forms as static forms which can be accessed outside the application, it was also

created a dynamical form which is locally created, and available only in the event or the

function in which is created (Login form).

First, application begins with the database login form(Figure 18) in which is specified

if you are not a user of the used database (see Chapter II) the application would be not

opened.

Figure 18. Login form (Source: author)

To make connection to the database was used ODBC Driver for connection of Builder

C++ 6 application with MySQL Database. ODBC Driver can be used on all major platforms

supported by MySQL. MySQL Connector/ODBC provide access to a MySQL database using

the industry standard Open Database Connectivity (ODBC) API (ORACLE, 2014).

 It was used Connector/ODBC 5.3, which includes the functionality of the Unicode

driver and the ANSI driver, which formerly were split between Connector/ODBC 5.1 and

Connector/ODBC 3.5. Also it provides both driver-manager based and native interfaces

to the MySQL database, with full support for MySQL functionality, including stored

procedures, transactions and, with Connector/ODBC 5.1 and higher, full Unicode compliance

(ORACLE, 2014).

44

To create the connection with MySQL database using ODBC, first I create a Data

Source Name (DNS). Connection steps:

1. Using ODBC Data Source Administrator was crated new data source for MySQL

(Figure 20).

Figure 19. ODBC Data Source Administrator window (Source: author work)

2. After running ODBC Data Source Administrator window is configured the
specific fields for the DSN11.

11 DSN – Data Source Name

45

Figure 20. MySQL Connector/ODBC Data Source Configuration (Source: author work)

3. After configuring the specific fields for the DSN was tested the connection

and the results of connection are successful.

Figure 21. MySQL Connector/ODBC Data Source Configuration. Testing connection

(Source: author work)

46

To apply created connection in the application, is used TADOConnection component

from the ADO tab of the Component Palette (Figure 23).

Figure 22. TADOConnection component from the ADO tab of the Component Palette.

(Source: author work)

On the Object Inspector -> Proprieties, is selected ConnectionString, cliking on which

is displayed ADOTConnection -> ConnectionString dialog box (Figure 24).

Figure 23. Connection String dialog box (Source: author work).

Pressing button is displaying Data Link Window dialog box, in which

was specified details with created DSN.

47

Figure 24. Data Link Window dialog box (Source: author work).

After the all information is completed, like information to log to the server, database

which is going to be used, connections string with DSN, is needed to press button

 and Connection String dialog box is completed, the connection between

database and application is created.

48

Figure 25. Completed Connection String dialog box (Source: author work).

The connection string looks like:

Provider=MSDASQL.1;Password=068003524;Persist Security Info=True;

UserID=root; ExtendedProperties="DRIVER={MySQL ODBC 5.3 ANSI

Driver};UID=root;

PWD=068003524;SERVER=127.0.0.1;DATABASE=invoice;PORT=3306;COLUMN_SI

ZE_S32=1;";Initial Catalog=invoice

When the application is running is displayed Login Form (see Figure 19). If the user

have entered a wrong password or username, authorization fails and is displayed the alert

window with corresponding message (Figure 27). Is verified if it matching Password and

User ID from connection string specified before.

Figure 26. Alert Window displaying Authorization Fail (Source: author work)

If the login into the database is successful, is displayed the invoice/client new contract

form with the all necessary components for creating invoices (Figure 27).

49

Figure 27. Invoice form (Source: author).

To calculate an item’s purchase price based on the item’s store price added the tax,

with the tax rate in percentage value is needed to transform tax rate from 8 % in C++ terms,

and it will be equal to 0.08 (because 8 %
100 %⁄ = 0.08). In this case the tax amount

collected on a purchase is taken from an item’s price formula:

𝑉𝐴𝑇𝑖𝑡𝑒𝑚 = 𝑃𝐼𝑡𝑒𝑚 ∗
𝑉𝐴𝑇𝑟𝑎𝑡𝑒

100 %
 ; (Equation 1)

50

Where:

 VATitem – Value Added Tax per item represents the tax amount for the unit item

price.

 PItem – Price per Item.

 VATrate – Value Added Tax in percentages.

The formula of calculating the final price of an item is:

𝑇𝑃𝐼𝑡𝑒𝑚 = 𝑃𝐼𝑡𝑒𝑚 + 𝑉𝐴𝑇𝐼𝑡𝑒𝑚; (Equation 2)

Menu bar is part component of almost every commercial application, and using

C++Builder's Menu Designer to create it in concordance with user’s expectations are timeless

and easy. To construct a menu bar is used The MainMenu component from Standard Pallet,

which permit this, containing all functionality (properties, methods, and events) for forms

menu bar and associates dropdown menus and submenus with accelerators and shortcuts.

On the Invoice Form is presented menu bar with next submenus:

 File menu has a submenu Exit which permit to close the all

forms opened to work with.

Menu Edit allow user to call forms for introduction

new information details about items, employee, clients. This form could be called

also from the others forms using buttons to add something new.

51

 Menu Help does not have submenu, it directly calls the form

with details about how to use the application.

 To call system menu is needed to set click right the icon

used on the title bar possesses. The menu displayed allows to perform the common

actions of a regular Windows form.

Figure 28. Invoice form (Source: author work)

On the same form is component TabSheet2 (Figure 29), which show the all-necessary

components for making new clients contracts and set their company details.

52

Figure 29. Component TabSheet2 – New Client Contract (Source: author).

 The contract status in the “New Contract Form”

is a system-defined value which every contract that is created is associated with. Each new

53

contract has automatically set default status Pending and in the table below are the list

of statuses which I am working with and their characteristics.

Table 2. Processing status of a contract. Source (ORACLE, 2014).

№ Status Description Characteristics

1 Pending Default processing status of a new
contract. This status indicates that the
contract was created and that some
data was entered.

Data fields are available for entry.

Minimal system data validation
was performed to validate the
entered data.

2 Active All contract data is entered into the
system and has passed system data
validation. A contract must be in a
status of Active for any contract
element to be available for application
processing.

Controlled data fields are available
for entry. The system has
confirmed the entry of required
fields and has validated the
contract data.

3 Closed The contract was terminated or the
contract was completed, all
contractual obligations were fulfilled
and all entitlements were received.

Data fields are not available for
entry. The contract passed system
data validation to verify that all
processing related to this contract
was completed.

Note: Once is defined a contract status, the remap of the contract status to a different

processing status will cause a change for all mapped invoices to that contract.

Before creating the new contract is needed to have the client information in the

system. To introduce new client information,on the component TabSheet2 –> New Client

Contract near the component object DBLookupComboBox2 component from class

TDBLookupComboBox are placed button which permit to display form New Clinet

(Figure 30).

54

Figure 30.Form for registration new clients.

There are all necessary Edit Boxes for registration new client. In concordance with

Article 161 of the Tax Code, the tax authorities exercise state registration of the taxpayer by

way of assignment of fiscal code and maintenance of the tax registry.

The state identification number (IDNO) – is unique numeric code assigned by

registration authority to the entrepreneurs at the time of state registration, which serves to

identify them in the information systems of the Republic of Moldova. It is assigned only once,

irrespective of the provisions of the tax regulations concerning the establishment and

discharge of tax obligations. An organization, which was not assigned a fiscal code, may not

55

be registered as a taxpayer. The IDNO code of a resident or non-resident organization is

considered to be the personal code indicated at the moment of state registration.

Also to introduce new information about bank which work with the client company

is needed to press button , and will be displayed the Form “New Bank Details” (Figure

31).

Figure 31. Form “New Bank Details” (Source author).

On the figure 29 is seen, on the left side down of the form New Client Contract, the print options

which permits to print the reports based on status of the contract, to see which of them are active and

which are not (Figure 32).

56

Figure 32. Printing options for new client Contract Form.

Each of this options activate the specific form called by the BitBtn2 on click event.

The source code to call the form are presented bellow using if statement.

void __fastcall TForm1::BitBtn2Click(TObject *Sender)

{

if (RadioGroup1->ItemIndex==0) Form9->Show();

else if (RadioGroup1->ItemIndex==1) Form10->Show();

else if (RadioGroup1->ItemIndex==2) Form11->Show();

}

Returning back to the invoice form, is important to make registration of the new

client but also to specify which product item the client want. To introduce a new product

item into the system is possible using the menu Edit -> Manage Item Details, but also using

button from form invoice which on activate event will call the Form “Manage new

Item” (Figure 33).

57

Figure 33. Manage New Item Form (Source: author).

The presence of the button “ ” on every form or Tab Sheet Component assume

the possibility of displaying the some additional forms which helps with the inserting date

into the database. As an example on the TForm1 is located “ ” near the product Edit

component, this button helps to display the Form for inserting the new product of the

company (Figure 29).

The employee or staff have a huge role in the activity of the application, only the staff

can manage and work with invoice system directly. To manage employee/staff (Figure 34)

details introducing into the system using application, is needed to use Menu Edit-> Manage

Employee Details, but even after introduction information about new employee, the new

58

employed person do not have access to the application forms. To get the access right is

needed the admin involvement. Only admin gives the access right to the new employed

person.

Figure 34. New employee Details Form (Source: author).

The implemented application source code are partial included in the appendix 5. The

total amount of the pages with application source code exceeds 100 pages, because of the

DFM12 files in which are include graphical objects characteristics.

12 DFM - Contains the properties of objects contained in a Borland Delphi form, could be saved in either binary or
text format, information from DFM files is loaded into the final executable (.EXE) file.

59

CONCLUSION

This thesis is focuses on application development in Object Oriented Language

utilizing alternative database management system as a supporting database for desktop

application. To achieve the aim of the project which was set, was analyzed information about

current state of the making invoice process at the micro scale business in Republic of

Moldova, in concordance with the Article 161 and Article 117 of the Tax Code, and there is

developed a prototype of desktop application for better data processing.

To implement the prototype of the desktop application was led on the software

development life cycle – prototype model. From elaborating requirements till the developing

initial prototype, was used UML (Unified Modelling Language) Technology, provided by

StarUML 5.0.0.1570 software (The Open Source UML/MDA Platform) to design class

diagram. To draw the state diagrams, use case diagrams, activity diagrams and sequence

diagrams was used Visio Professional 2013 for Microsoft Office 2013. To manipulate with

the database was used the open source package XAMP 5.6.3, which handle with

PHPMyAdmin to perform different tasks on MySQL database. To make connection to the

database was used ODBC Driver for connection of Builder C++ 6 application with MySQL

Database, which provide access to a MySQL database using the industry standard Open

Database Connectivity (ODBC) API.

The company which activity was analyzed, wanted to be anonymous, and is used the

notion of company when is spoken about it. The company is micro scale businesses in the

village, a small shop which want to collaborate with bakery and bars, but because

of impossibility to use bills to sell to other companies the B2B is not possible. In concordance

with the law the simple bills a not recognize as accounting document used for reports to

Fiscal Office. To make possible to sell to other businesses the micro scale business should

implement accounting software with agreement from Fiscal Police. As an example of this

type of software is 1C: Enterprise, which have a lot of modules which is no need for micro

companies. The License price a quite high, and not all individual business can afford it.

What was implemented is invoice system which permit only generation, evidence of

invoices and save information about clients. The application is created based on the 2 main

60

articles from Fiscal Office, where is described the all necessary components of invoices and

gives a general knowledge about the types of businesses and their contribution to Fiscal

Office. Created prototype of desktop application meets the exact needs of the user and:

 Make possible to create invoice agreed by Fiscal Office and recognized as
significant for accounting reports.

 Low cost to implement (in order to 100$ per year paying for Licenses).
 Decrease the processing time of the information.
 Permit multiple access.
 Restrict access to improve the security of the information stored.
 Properly documented.
 Efficient, quick, easy, intuitively access to all forms, following instructions.

Futures of the application:

 Implementation on other platforms except Microsoft Window.

 Collaboration with the web application based on MySQL database.

 Diversification of the modules contained by created prototype (Summarizing

reports for Fiscal Police, Salary etc.).

There are many technologies, which could be used to develop an application

prototype, the desktop applications is not the only possibility to resolve the task. This thesis

focused on desktop application, using Graphical Object Oriented Programming, which is a

component part of rich client application type, it has rich UI functionality, and improved user

experience. It support offline and occasionally connected scenarios, according to the client’s

desires. Together with the databases management systems, can process a huge amount

of data with minimum time consumption, automating paper work and multiple calculations.

For this prototype was used MySQL DBMS because it is an open source, it has easy

statements for processing data and it is easy to understand the structure of the created

database (using tables and foreign keys). It is working with structured data which is optimal

for small companies.

 In comparison to the NoSQL database model, which is more useful for analyzing big

data stores, and is non-relational DBMS, MySQL has enough power and flexibility to work

with small and medium scale companies. MySQL can handle around 8 TB of data, having

many reporting tools, which can help to prove application validity, and uses standardization,

which is a significant point in the database industry.

61

LIST OF SOURCES USED

[1] MURPHY, NATE. IBM: (2012) A Brief History of Application Development:

Exploring the capabilities of IBM InfoSphere Optim data lifecycle management

solutions [online]. [cit. 2015-02-10]. Available at: http://ibmdatamag.com/2012/08/a-brief-

history-of-application-development

[2] MICROSOFT: (2009) .NET application architecture guide. 2nd ed. Redmond,

Wash.: 524 p. Patterns & practices. ISBN 073562710x. Available at:

https://msdn.microsoft.com/en-us/library/ff650706.aspx

[3] GLASS MICHAEL: (2004). Beginning PHP, Apache, MySQL web development

[online]. Indianapolis, Ind.: Wiley, 2004, xx, 700 p. [cit. 2015-03-20]. 720 pages. ISBN 07-

645-5744-0. Available at: http://www.wrox.com/WileyCDA/WroxTitle/Beginning-PHP-

Apache-MySQL-Web-Development.productCd-0764557440,descCd-DOWNLOAD.html

[4] AZUMA M., VANÍČEK J.: (2001). SQuaRE: Next Generation of ISO/IEC 9126 &

14598. In: EurOpen CZ. XVIII konference Dolní Malá Úpa: 1–16 pages.

[5] MEYER BERTRAND: (2013). Touch of class: learning to program well with

objects. New York: Springer p. cm. ISBN 9783540921448.

[6] PREDA MIRCEA CEZAR: (2010). Introducere in programarea orientata obiect.

Concepte fundamentale din perspectiva ingineriei software. Romania, Iaşi: Polirom, 01 Jan

2010. ISBN 9789734616299.

[7] JACOBSON IVAR: (1992). Object-oriented Software Engineering: A Use Case

Driven Approach. New York: ACM.

[8] CARDELLI LUCA and PETER WEGNER: (1985). On understanding types, data

abstraction, and polymorphism. ACM Computing Surveys. vol. 17, issue 4, s. 471-523. DOI:

10.1145/6041.6042. Available at: http://portal.acm.org/citation.cfm?doid=6041.6042

http://ibmdatamag.com/2012/08/a-brief-history-of-application-development
http://ibmdatamag.com/2012/08/a-brief-history-of-application-development
https://msdn.microsoft.com/en-us/library/ff650706.aspx
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-PHP-Apache-MySQL-Web-Development.productCd-0764557440,descCd-DOWNLOAD.html
http://www.wrox.com/WileyCDA/WroxTitle/Beginning-PHP-Apache-MySQL-Web-Development.productCd-0764557440,descCd-DOWNLOAD.html
http://portal.acm.org/citation.cfm?doid=6041.6042

62

[9] DARIESCU, NADIA: (2009) Drept procedural fiscal. Romania: Editura Lumen.

233 pages. ISBN 9789731661438. Available at:

Https://books.google.cz/books?id=V3z7U3E0ZfAC&dq=Cod+de+Identificare+Fiscal%

C4%83&source=gbs_navlinks_s

[10] HAILPERN, B.: (1986) Guest Editor's Introduction Multiparadigm Languages

and Environments. IEEE Software. 1986, vol. 3, issue 1, s. 6-9. DOI:

10.1109/MS.1986.232426. Available at:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1695465

[11] ORACLE (2014). PeopleSoft Online Help: Defining Contract Statuses [online].

2014 [cit. 2015-03-26]. Available at:

http://docs.oracle.com/cd/E52390_01/fscm92pbr3/eng/fscm/fcam/task_DefiningContrac

tStatuses-9f6074.html

[12] Overview of the four main programming paradigms [online]. July 2, 2013, July

2013 [cit. 2015-03-02]. Available at: http://people.cs.aau.dk/~normark/prog3-

3/html/notes/paradigms_themes-paradigm-overview-

section.html#paradigms_imperative-paradigm-overview_title_1

[13] KAISLER, STEPHEN H.:(2005) Software Paradigms. United States: John

Wiley & Sons. ISBN 0471703575. Available at: https://books.google.cz/books?id=kfGHwo2

E0FYC&dq=functional+paradigm+characteristics+ppt&source=gbs_navlinks_s\

[14] SCHWARTZ, Baron, Peter ZAITSEV a Vadim TKACHENKO: (2012) High

Performance MySQL: Optimization, Backups, and Replication. 3. vyd. United States: "O'Reilly

Media, Inc.", 2012. 828 pages. ISBN 1449332498, 9781449332495.

[15] Republic of Moldova. LEGE Nr. 619 din 08.11.2001 pentru modificarea şi

completarea Legii nr.112-XIII din 20 mai 1994 cu privire la susţinerea şi protecţia micului

business. In: LP112/1994. Republic of Moldova: PARLIAMENT, 2001. Accessible at:

https://books.google.cz/books?id=V3z7U3E0ZfAC&dq=Cod+de+Identificare+Fiscal%C4%83&source=gbs_navlinks_s
https://books.google.cz/books?id=V3z7U3E0ZfAC&dq=Cod+de+Identificare+Fiscal%C4%83&source=gbs_navlinks_s
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1695465
http://docs.oracle.com/cd/E52390_01/fscm92pbr3/eng/fscm/fcam/task_DefiningContractStatuses-9f6074.html
http://docs.oracle.com/cd/E52390_01/fscm92pbr3/eng/fscm/fcam/task_DefiningContractStatuses-9f6074.html
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-overview-section.html#paradigms_imperative-paradigm-overview_title_1
https://books.google.cz/books?id=kfGHwo2E0FYC&dq=functional+paradigm+characteristics+ppt&source=gbs_navlinks_s
https://books.google.cz/books?id=kfGHwo2E0FYC&dq=functional+paradigm+characteristics+ppt&source=gbs_navlinks_s

63

http://lex.justice.md/viewdoc.php?action=view&view=doc&id=33325&lan

g=1

[16] ORACLE USA, Inc.: (2014) MySQL Connector/ODBC Developer Guide: Chapter 1

Introduction to MySQL Connector/ODBC [online]. Oracle Corporation, 2005, 2014 [cit. 2015-

03-11]. Available at: http://dev.mysql.com/doc/connector-odbc/en/preface.html

[17] EMBARCADERO TECHNOLOGIES: (2014) Inc. Turbo C++ Community:

C++Builder XE7 [online]. Embarcadero Technologies, Inc., [cit. 2015-03-13]. Available at:

http://www.turboexplorer.com/video/cpp

[18] SMITH, David: (2014). Revolutions. Learn more about using open source R for

big data analysis, predictive modeling, data science and more from the staff of Revolution

Analytics: IEEE ranks R #9 amongst all languages [online]. [cit. 2015-03-25]. Available at:

http://blog.revolutionanalytics.com/2014/07/ieee-ranks-r-9-amongst-all-languages.html

[19] MICROSOFT, (2015). Office: Visio Professional 2013 [online]. United States:

Microsoft [cit. 2015-03-25]. Available at: http://products.office.com/en-us/Visio/visio-

professional-2013-business-and-diagram-software

[20] OBJECT MANAGEMENT GROUP: (2015), Inc. Unified Modeling Language™

(UML®) Resource Page: Introduction to Unified Modeling Language [online]. Object

Management Group, Inc., 1997-2015 [cit. 2015-03-25]. Available at:

http://www.omg.org/gettingstarted/what_is_uml.htm

http://lex.justice.md/viewdoc.php?action=view&view=doc&id=33325&lang=1
http://lex.justice.md/viewdoc.php?action=view&view=doc&id=33325&lang=1
http://dev.mysql.com/doc/connector-odbc/en/preface.html
http://www.turboexplorer.com/video/cpp
http://blog.revolutionanalytics.com/2014/07/ieee-ranks-r-9-amongst-all-languages.html
http://products.office.com/en-us/Visio/visio-professional-2013-business-and-diagram-software
http://products.office.com/en-us/Visio/visio-professional-2013-business-and-diagram-software
http://www.omg.org/gettingstarted/what_is_uml.htm

64

LIST OF FIGURES

FIGURE 1. FOUR MAJOR PROGRAMMING PARADIGM (SOURCE: AUTHOR) .. 12

FIGURE 2. FUNCTIONAL PARADIGM FUNCTION (SOURCE: AUTHOR) .. 7

FIGURE 3. BASIC OOP CONCEPTS (SOURCE: AUTHOR) ... 9

FIGURE 4. GENERAL CLASSIFICATION OF POLYMORPHISM. (SOURCE: AUTHOR) ... 10

FIGURE 5. RANKING OF THE POPULARITY OF PROGRAMMING LANGUAGES. (SOURCE HTTP://REVOLUTION-

COMPUTING.TYPEPAD.COM/.A/6A010534B1DB25970B01A511DF7B8E970C-PI) 12

FIGURE 6. APPLICATION TYPES (SOURCE: AUTHOR) .. 13

FIGURE 7. TYPICAL RICH CLIENT ARCHITECTURE (SOURCE: HTTPS://MSDN.MICROSOFT.COM/EN-

US/LIBRARY/EE658087.ASPX) .. 14

FIGURE 8. OVERVIEW OF DATABASE SYSTEM (SOURCE: AUTHOR) .. 17

FIGURE 9. SYSTEM USERS (SOURCE: AUTHOR). ... 19

FIGURE 10. CLASS DIAGRAM. TYPES OF OBJECTS IN THE INVOICE SYSTEM (SOURCE: AUTHOR). 21

FIGURE 11. STATE DIAGRAM. PROCESS OF CREATING AN INVOICE (SOURCE: AUTHOR). ... 27

FIGURE 12. STATE DIAGRAM CONTRACT (SOURCE: AUTHOR). ... 28

FIGURE 13. USE CASE DIAGRAM INVOICE (SOURCE: AUTHOR). .. 29

FIGURE 14. USE CASE DIAGRAM “NEW CONTRACT” (SOURCE: AUTHOR) ... 30

FIGURE 15. SEQUENCE DIAGRAM LOGIN IN (SOURCE: AUTHOR) ... 32

FIGURE 16. SEQUENCE DIAGRAM INVOICE (SOURCE: AUTHOR) ... 32

FIGURE 17. ACTIVITY DIAGRAM “NEW INVOICE” (SOURCE: AUTHOR) .. 33

FIGURE 18. ENTITY-RELATION DIAGRAM OF THE “INVOICE” DATABASE (SOURCE: AUTHOR). 39

FIGURE 19. ODBC DATA SOURCE ADMINISTRATOR WINDOW (SOURCE: AUTHOR WORK) .. 44

FIGURE 20. MYSQL CONNECTOR/ODBC DATA SOURCE CONFIGURATION (SOURCE: AUTHOR WORK) 45

FIGURE 21. MYSQL CONNECTOR/ODBC DATA SOURCE CONFIGURATION. TESTING CONNECTION (SOURCE:

AUTHOR WORK) .. 45

FIGURE 22. TADOCONNECTION COMPONENT FROM THE ADO TAB OF THE COMPONENT PALETTE. (SOURCE:

AUTHOR WORK) .. 46

FIGURE 23. CONNECTION STRING DIALOG BOX (SOURCE: AUTHOR WORK). .. 46

FIGURE 24. DATA LINK WINDOW DIALOG BOX (SOURCE: AUTHOR WORK). .. 47

FIGURE 25. COMPLETED CONNECTION STRING DIALOG BOX (SOURCE: AUTHOR WORK). ... 48

FIGURE 26. ALERT WINDOW DISPLAYING AUTHORIZATION FAIL (SOURCE: AUTHOR WORK) 48

FIGURE 27. INVOICE FORM (SOURCE: AUTHOR). ... 49

FIGURE 28. INVOICE FORM (SOURCE: AUTHOR WORK) .. 51

FIGURE 29. COMPONENT TABSHEET2 – NEW CLIENT CONTRACT (SOURCE: AUTHOR). .. 52

FIGURE 30.FORM FOR REGISTRATION NEW CLIENTS. ... 54

FIGURE 31. FORM “NEW BANK DETAILS” (SOURCE AUTHOR). .. 55

FIGURE 32. PRINTING OPTIONS FOR NEW CLIENT CONTRACT FORM. .. 56

FIGURE 33. MANAGE NEW ITEM FORM (SOURCE: AUTHOR). ... 57

FIGURE 34. NEW EMPLOYEE DETAILS FORM (SOURCE: AUTHOR). ... 58

65

LIST OF TABLES

TABLE 1. DESCRIPTION OF THE CLASSES PRESENTED IN THE CLASS DIAGRAM (SOURCE: AUTHOR)22

TABLE 2. PROCESSING STATUS OF A CONTRACT ...53

