
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

VULNERABILITY ASSESSMENT OF CONTAINER
IMAGES
DETEKCE ZRANITELNOSTÍ V KONTEJNEROVÝCH OBRAZECH

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. MICHAL FINDRA
AUTOR PRÁCE

SUPERVISOR Ing. JIŘÍ PAVELA
VEDOUCÍ PRÁCE

BRNO 2024

T BRNO FACULTY
UNIVERSITY OF INFORMATION
OF TECHNOLOGY TECHNOLOGY

Master's Thesis Assignment ||||||||||||||||||
Institut: Department of Intelligent Systems (DITS) 157039
Student: Findra Michal, Be.
Programme: Information Technology and Artificial Intelligence
Specialization: Cybersecurity
Title: Vulnerability Assessment of Container Images
Category: Security
Academic year: 2023/24

Assignment:

1. Study the topic of vulnerability assessment and detection within container images.
2. Get acquainted with existing tools for vulnerability assessment in container images, such as Syft,

Grype, TheLateSyft or Vulntron.
3. Design and implement automated vulnerability assessment of container images within the Vulntron

tool. The tool must periodically retrieve, parse and scan images found within a given namespace,
and report the detected vulnerabilities through an API or other tools within the Red Hat pipeline
(e.g., DefectDojo).

4. Evaluate the scalability of the tool, that is, whether it manages to analyze all namespace images
within the analysis time frame (e.g., 24 hours). Discuss the advantages, shortcomings and possible
future work of the resulting tool.

Literature:
• Repozitář nástroje Syft: https://github.com/anchore/syft
• Repozitář nástroje Grype: https://github.com/anchore/grype
• Repozitář nástroje TheLateSyft: https://github.com/xxlhacker/TheLateSyft

Requirements for the semestral defence:
First two points of the assignment.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor:
Consultant:
Head of Department:
Beginning of work:
Submission deadline:
Approval date:

Pavela Jiří, Ing.
Gábor Bürges
Hanáček Petr, doc. Dr. Ing.
1.11.2023
17.5.2024
6.11.2023

Faculty of Information Technology, Brno University of Technology / Božetěchova 1/2 / 612 66 / Brno

https://github.com/anchore/syft
https://github.com/anchore/grype
https://github.com/xxlhacker/TheLateSyft
https://www.fit.vut.cz/study/theses/

Abstract
The work focuses on the problem of automated security analysis of container images in
a distributed environment. It describes present vulnerabilities in these environments and
tools that deal with the analysis of container images that serve as a template for deploying
a specific container. The process involves acquiring an environment description and subse
quently processing it into a format meaningful for Vulntron tool developed as part of this
thesis. Vulntron automates this process, performs a security analysis of individual compo
nents of the container image, and generates a report in a visually and technically processable
format. The thesis also includes practical integration in form of Vulntron deployment into
various types of development processes within the Red Hat company.

Abstrakt
Jr ľc tCc t Sel zaoberá automatizovaným bezpečnostným rozborom kontajnerových obrazov v dis
tribuovanom prostredí. Popísané sú aktuálne zraniteľnosti v týchto prostrediach a násto-
jenie, ktoré sa zaoberajú analýzou kontajnerových obraz, slúžiacich ako vzor na vytvore
nie daného kontajneru. Popísané je získanie popisu prostredia, následného spracovania
do formátu zmysluplného pre vyvíjaný nástroj Vulntron. Vulntron slúži na automatizáciu
tohoto procesu, bezpečnostnú analýzu jednotlivých komponentov kontajnerového obrazu
a následný report do vizuálnej aj technicky ďalej spracovateľnej podoby. Súčasťou imple
mentácie bude aj praktické nasadenie nástroja do rôznych typov vývojového procesu vrámci
firmy Red Hat.

Keywords
Vulntron, Container image, Container security, Security analysis, Grype, Syft, S B O M ,
Vulnerability detection, CI-CD

Klíčová slova
Vulntron, Kontajnerový obraz, Kontajnerová bezpečnosť, Bezpečnostná analýza, Grype,
Syft, S B O M , Detekcia zraniteľností, CI-CD

Reference
F I N D R A , Michal. Vulnerability Assessment of Container
Images. Brno, 2024. Master's thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor Ing. Jifi Pavela

Rozšířený abstrakt
Táto práca sa zaoberá automatizovaným bezpečnostným rozborom kontajnerových obrazov
s cieľom identifikovať, analyzovať a riešiť aktuálne zraniteľnosti a bezpečnostné hrozby, ktoré
sa môžu vyskytnúť v komplexných a dynamických distribuovaných prostrediach. S ohľadom
na rýchly rozvoj a nasadenie kontajnerizovaných aplikácií vo viacerých odvetviach je nevy
hnutné zabezpečiť, aby boli tieto aplikácie chránené pred potenciálnymi útokmi a zran
iteľnosťami, ktoré by mohli ohroziť ich integritu a dostupnosť. Okrem analýzy rizík a hrozieb
práca skúma aj aktuálne požiadavky zamerané na zabezpečenie kontajnerových technológií,
čo poskytuje základ pre implementáciu bezpečnostných opatrení.

Prvá časť práce sa venuje štúdiu a analýze existujúcich nástrojov a metód pre hod
notenie zraniteľností v kontajnerových obrazoch. Podrobne rozoberá nástroje ako Syft,
Grype a ďalšie, ktoré umožňujú efektívne vyhľadávanie a klasifikáciu bezpečnostných ne
dostatkov. Popisuje tiež rôzne typy zraniteľností, ktoré môžu kontajnerové obrazy obsaho
vať, a metodiky ich detekcie. V tá to časť sa taktiež zaoberá porovnaním efektivity a pres
nosti týchto nástrojov, čím poskytuje praktické odporúčania pre ich využitie vo vývojových
procesoch.

Druhá časť sa zameriava na návrh a implementáciu nástroja Vulntron, ktorý automa
tizuje proces identifikácie a spracovania zraniteľností. Nástroj Vulntron integruje analýzu
zraniteľností priamo do procesov vývoja softvéru a umožňuje dynamické sledovanie a reago
vanie na nové hrozby, čím zvyšuje bezpečnosť kontajnerových aplikácií. Nástroj Vulntron
bol navrhnutý tak, aby bol schopný efektívne spracovávať veľké množstvo dát a integrovať
sa s dalšími nástrojmi používanými vo vývojovom procese, ako sú C I / C D pipeline. Detailné
technické opisy implementácie nástroja Vulntron ukazujú, ako boli riešené požiadavky od tí
mov a nasadenie nástroja do produkčného prostredia.

Tretia časť práce predstavuje praktické nasadenie a evaluáciu systému Vulntron vo vývo
jovom prostredí spoločnosti Red Hat. Hodnotí účinnosť systému v rôznych scenároch a an
alyzuje jeho schopnosť integrovať sa s existujúcimi nástrojmi a procesmi. Práca taktiež
obsahuje štúdiu prípadov, kde bol Vulntron úspešne aplikovaný na reálne projekty a jeho
dopad na zlepšenie bezpečnostných postupov pri vývoji softvéru.

Záver práce sumarizuje dosiahnuté výsledky a navrhuje možné smerovania pre další
vývoj systému Vulntron. Diskutuje o potenciálnych vylepšeniach a rozšíreniach, ktoré by
mohli zvýšiť jeho efektivitu a adaptabilitu na meniace sa bezpečnostné hrozby v distribuo
vaných systémoch. V návrhoch na zlepšenie sa zameriava na rozšírenie funkcionalit systému
o nové analytické nástroje a zlepšenie používateľského rozhrania pre intuitívnejšiu admin
istráciu a monitorovanie bezpečnostných udalostí.

Vulnerability Assessment of Container
Images

Declaration
I hereby declare that this master's thesis was prepared as an original work by the author
under the supervision of Ing. Jifi Pavela. The supplementary information was provided by
Mr . Gabor Biirges. I have listed all the literary sources, publications and other sources,
which were used during the preparation of this thesis.

Michal Findra
May 14, 2024

Acknowledgements
I would like to express my heartfelt gratitude to my supervisor, Ing. Jiří Pavela, for all the
guidance and valuable feedback. I would also like to extend my appreciation to consultant
Mr . Gábor Búrgés for their assistance. Additionally, I am deeply thankful to my close
friends and family for their unwavering support and encouragement throughout this journey.
A FITting verse that provided inspiration: "For I know the plans I have for you, plans to
prosper you and not to harm you, plans to give you hope and a future." — Jeremiah 29:11.

Contents

1 Introduction 2

2 Containers and Container Orchestration 3
2.1 Container Orchestration 4
2.2 Kubernetes 5
2.3 Red Hat OpenShift Container Platform 14

3 Vulnerability Detection 17
3.1 Vulnerabilities 20
3.2 Container Image Vulnerabilities 21
3.3 Container Image Security 22
3.4 Vulnerability Management 25

4 Software Bill of Materials and Advanced Scanning Techniques 28
4.1 Key Components of an S B O M 29
4.2 Syft 29
4.3 Grype 35

5 Existing Tools for Vulnerability Detection 40
5.1 Clair 40
5.2 Trivy 41
5.3 Nessus 42
5.4 Jfrog Xray 44

6 Vulntron 46
6.1 Design 46
6.2 Implementation 48
6.3 Usage 55
6.4 Performance and Resource Management 58
6.5 Testing 59
6.6 Testing Evaluation 60

6.7 Future Improvements 60

7 Conclusion 63

Bibliography 64

1

Chapter 1

Introduction

The last few years have seen a dramatic shift in software development and deployment due
to the widespread adoption of containerization technologies, best represented by platforms
such as Red Hat OpenShift and Docker. Applications can be efficiently packaged and
distributed across a wide range of computing environments with the help of containers
that are lightweight, portable, and effective. However, as more and more businesses take
advantage of containerized applications, possible security issues concerning container images
are coming to light.

The main goal of this thesis is to create and implement an automated pipeline that
can monitor container images in advance and seamlessly integrate vulnerability assessment
tools into the deployment process. By automating this process, the security posture of
containerized environments is strengthened, as it addresses the time-sensitive nature of
vulnerability identification and remediation. A distinct set of vulnerabilities are introduced
by container images that enclose not only the program but also its dependencies and runtime
environment. Comprehending and addressing these vulnerabilities is crucial to ensure the
availability, confidentiality, and integrity of the programs installed in containers.

The suggested system introduces a user-friendly interface to visualize and comprehend
vulnerabilities that have been identified, in addition to streamlining the assessment pro
cess. By providing developers and security experts with a clear and user-friendly way to
comprehend and react to possible threats, this interface is intended to empower all relevant
parties.

In the following chapters, the current state of containerization will be explored, the
unique security risks that container images present will be discussed, state-of-the-art vul
nerability assessment techniques will be reviewed, and new insights will be provided on
strengthening the security posture of containerized applications.

2

Chapter 2

Containers and Container
Orchestration

Particularly in the context of the Linux ecosystem, containers constitute a fundamental
paradigm in contemporary computing. These compact, lightweight and effective units con
tain applications and their dependencies, making them consistent with the deployment in
a variety of computing environments. Isolating applications from the underlying system
allows for increased flexibility and scalability, which is the core idea of containers.

Docker and Linux Containers (LXC) [3] [9] are two well-known containerization tech
nologies. Due to Docker being built on top of L X C and offers a higher-level abstraction,
it makes containerization processes easier for developers to handle. L X C offers a low-level
container management toolset. Through the use of Linux kernel features like cgroups and
namespaces, containers are able to achieve isolation, which guarantees that every container
runs independently while sharing resources with the host system and keeping itself separate
from other containers.

The efficiency of containerized applications lies in their ability to share the host OS ker
nel, optimizing resource utilization. This contrasts with traditional virtualization, where
each virtual machine requires a separate OS instance. Containerization streamlines deploy
ment, fosters rapid development cycles, and supports microservices architectures, making
it a cornerstone in contemporary software development and deployment practices within
the Linux ecosystem.

A n image of a container is required initially to utilize a Linux container. It is a file (or
files) that contains the environment, which includes configuration files, runtimes, and l i
braries, along with the application. Dockerfiles, text files with a human-readable description
of the image, are the foundation upon which container images are built. In the majority of
use cases, users construct their images over the preexisting ones, saving them from having
to start from scratch. Starting with a fully-hedged container image, like Ubuntu or UBI8,
which contains all the necessary Linux utilities and package managers, like DNF or APT,
can sometimes be a better option when building the container image. Nevertheless, engi
neers occasionally utilize lighter (also referred to as minimal) images, like ubi8-minimal or
alpine, when optimizing for image sizes. These images have fewer features, but still enable
the installation of all required tools while consuming fewer resources.

When the container image is prepared, it can be unpacked by calling a container engine
like Docker or Podman. It initiates what is known as a container process by making an A P I
call to the Linux kernel. The clone () system call is used to create this container process.

3

Due to this, the container is really just a Linux process with additional isolation thanks
to kernel namespaces. Only the filesystem and processes created within the same namespace
are visible to the Linux container. Apart from the data structures that represent processes
and namespaces, the Linux kernel does not contain any data structures that represent
containers.

There has been an attempt to standardize every aspect of the workflow as container
technologies gained popularity and a plethora of new tools have been developed. The main
goals of this standardization have been to guarantee that all of these tools generate and
use the same artifacts, that switching container tooling is feasible without causing major
problems, and that the containerization investment is independent of vendors.

2.1 Container Orchestration

The following section describes container orchestration with descriptions and definitions of
technologies that are closely related to the topic of this thesis. The content of this chapter
is derived from current Kubernetes[6][7] and Red Hat OpenShift[14][2] documentations.

Applications are typically deployed on top of a single operating system as a standard
procedure. A physical host can be divided into multiple virtual hosts by using virtualization.
However, in terms of scalability and operational efficiency, using virtual instances on shared
resources might not be the best option. Since a virtual machine (VM) uses resources exactly
like a physical machine does, allocating resources like C P U , R A M , and storage to a V M
comes at a high cost. The utilization of virtual instances on shared resources may degrade
the performance of the application.

Containerization offers a solution by segregating applications within a containerized
framework. Containers, similar to virtual machines, possess distinct attributes such as
filesystems, virtual CPUs (vCPUs), memory allocations, and dependencies. They are
portable across diverse environments and exhibit reduced resource overhead compared to
full-fledged operating systems, functioning as lightweight, isolated processes atop the oper
ating system kernel. In contrast, V M s , acting as abstractions of physical hardware, have
slower boot times and rely on a hypervisor for execution within a singular machine envi
ronment.

The comparison of individual container technologies throughout the years and their
structure is shown in Figure 2.1 with more detailed description of individual eras:

Traditional deployment era. In the past, companies used actual servers to run their
applications. Resource allocation problems resulted from the inability to define resource
boundaries for applications on a physical server. When several applications are running on
a single physical server, for instance, there may be times when one of the applications uses
all the resources and the others perform worse. Running every application on a different
physical server would be one way to solve this. However, because resources were not fully
utilized and maintaining numerous physical servers was costly for enterprises, this did not
scale.

Virtualized deployment era. Enables to use the C P U of a single physical server to run
multiple Virtual Machines. Applications can be isolated within virtual machines thanks
to virtualization, which also adds a layer of security by preventing unauthorized access
to one application's data by other applications. Better scalability and resource utilization

4

in a physical server are made possible by virtualization, which also lowers hardware costs
and makes it easier to add or update applications. A group of disposable virtual machines
can be presented as a cluster of physical resources through the use of virtualization. On
top of virtualized hardware, every virtual machine is a complete machine running every
component, including its own operating system.

The era of container deployment. Containers share the operating system with other
applications due to their minimal isolation properties compared to virtual machines. Con
tainers are therefore regarded as lightweight. A container shares the same C P U , memory,
process space, filesystem, and other resources as a virtual machine. They are cross-cloud
and cross-OS distribution compatible because they are separated from the underlying in
frastructure. A non-exhaustive list of benefits of using container deployments:

• Agile application creation and deployment. Simplified and expedited creation of con
tainer images compared to utilizing V M images.

• Continuous development, integration, and deployment. Facilitation of dependable
and frequent building and deployment of container images with swift and effective
rollbacks, owing to the immutability of images.

• Environmental consistency across development, testing, and production. Uniform
operation across diverse environments, ensuring equivalence between local and cloud-
based executions.

• Cloud and OS distribution portability. Compatibility with a multitude of operating
systems such as Ubuntu, Red Hat Enterprise Linux, CoreOS, spanning on-premises
setups, major public cloud platforms, and beyond.

• Loosely coupled, distributed, elastic, liberated micro-services. Fragmentation of ap
plications into smaller, autonomous units, enabling dynamic deployment and manage
ment, in contrast to a monolithic configuration reliant on a single-purpose machine.

• Resource isolation. Assured consistency in application performance through isolation
of resources.

• Resource utilization. Enhanced efficiency and density in resource utilization.

2.2 Kubernetes

Kubernetes is an open source container orchestration tool developed by Google. Kubernetes
can be used to run and manage workloads that are container-based. Using Kubernetes to
build cloud-native applications by deploying a collection of interconnected microservices
is the most common use case. Kubernetes clusters that span hosts across public, private,
on-premise, and hybrid clouds can be established.

Kubernetes facilitates sharing resources, orchestrating containers across multiple hosts,
installing new hardware configurations, running health checks and self-healing applications,
and scaling containerized applications.

5

Traditional deployment Virtualized deployment Container deployment

Apps

Operating system

Virtual machines

Apps

Bin/library

Operating system

Hypervisor

Operating system

Hardware

Apps

Bin/library

Container runtime

Operating system

Figure 2.1: Comparison of container technologies throughout the years [14].

2.2.1 Kubernetes Objects and Architecture

Kubernetes objects are persistent entities in the Kubernetes system. Kubernetes uses these
entities to represent the state of your cluster. They can describe:

• What containerized applications are running (and on which nodes).

• The resources available to those applications.

• The policies around how those applications behave, such as restart policies, upgrades,
and fault-tolerance.

Manipulating a Kubernetes object (create, modify, or delete) is done using the Kuber
netes A P I .

The object specification spec and the object status are two embedded object fields that
determine the configuration of almost all Kubernetes entities. When an object is created,
the specification, which is present in objects with a defined spec, must be configured to
clarify the desired properties and state of the resource. On the other hand, the status
represents the object's current state at that moment, which the Kubernetes system and its
component parts keep updated. The Kubernetes control plane continuously and proactively
arranges for each object's actual state to match the user's specified desired state.

List 2.1 shows an example initial manifest for a Kubernetes deployment.

1 apiVersion: applications/vl
2 kind: Deployment
3 metadata:
4 name: tomcat-deployment

(i

5 spec:
6 selector:

7 matchLabels:

8
 a

PP
:

 tomcat

9 replicas: 3

10 template:

n metadata:

12 labels:

13
 a

PP
:

 tomcat

14 spec:

15 containers:

16 - name: tomcat

17 image: tomcat:9.0.46

18 ports:

19 - containerPort: 8080

Listing 2.1: A n example Kubernetes manifest for deployment of a Tomcat application.

After Kubernetes is deployed, e.g. using the deployment manifest similar to one shown
in Listing 2.1, a cluster is instantiated.

Cluster. Consists of a group of worker computers, or nodes, that are responsible for run
ning containerized applications. Every cluster includes a minimum of one worker node. The
hosting environment for Pods, which make up the functional elements of the application
workload, is provided by the worker node. Simultaneously, the control plane coordinates the
cluster's worker node and Pod management. To provide fault-tolerance and high availabil
ity, a cluster usually consists of multiple nodes, whereas the control plane in an operational
context usually spans multiple computing units.

Control Plane Components

The components of the control plane detect and respond to cluster events (e.g., starting up
a new Pod when a Deployment's replicas field is unsatisfied) and make global decisions
about the cluster (e.g., scheduling). Any machine in the cluster can run the components
of the control plane. Setup scripts usually start all control plane components on the same
machine for simplicity.

The following are the descriptions of the most vital control plane components. The
components are also shown in Figure 2.2.

• kube-apiserver. The A P I server is a component of the Kubernetes control plane
that exposes the Kubernetes A P I . The A P I server is the front-end for the Kubernetes
control plane.

• etcd. Consistent and highly-available key value store used as Kubernetes' backing
store for all cluster data.

• kube-scheduler. Control plane component that watches for newly created Pods with
no assigned node, and selects a node for them to run on.

• kube-controller-manager. Runs controller process.

7

Figure 2.2: A schema of the Kubernetes cluster architecture [6].

Node Components

Every node has node components that operate on it to maintain Pod operations and provide
the Kubernetes runtime environment.

The following are the descriptions of the most vital node components. The components
are also shown graphically in Figure 2.2.

• kubelet. A n agent that runs on each node in the cluster. It makes sure that containers
are running in a Pod.

• kube-proxy. A network proxy that is individual for each node and maintains network
rules on nodes.

• Container runtime. A n essential part that enables Kubernetes to efficiently run con
tainers. In the Kubernetes environment, it is in charge of overseeing the execution
and lifecycle of containers.

Nodes

The workload is orchestrated by Kubernetes through the deployment of containers inside
of Pods, which are then run on nodes. Depending on how the cluster is set up, these nodes
could be virtual or real computers. Every node has the necessary services to carry out Pods
and is overseen by the control plane.

2.2.2 Containers in Kubernetes

Due to dependencies that promote standardization and guarantee consistent behavior across
a range of deployment environments, every executed container embodies repeatability. Wi th
containers, it is easier to deploy applications across different cloud platforms or operating
systems because they help to detach applications from the host's underlying infrastructure.
Individual nodes within a Kubernetes cluster run the containers that make up the Pods

8

that are assigned to them. To encourage co-location and concurrent execution, containers
in a Pod are arranged and scheduled jointly on a single node.

Container images. A pre-built software package that includes all the necessary parts
to run an application, such as the codebase, runtime environment, relevant application
and system libraries, and default settings for important parameters. Due to their stateless
and immutable nature, containers are not meant to have their codebase modified while in
use. If there are situations where changes must be made to a containerized application,
the recommended process is to create a new image with the necessary changes and then
recreate the container to start using the updated image.

Container runtimes. A n essential element that enables Kubernetes to efficiently manage
containers. It oversees the Kubernetes environment's container execution and lifecycle
management.

Container security. The most common attacks on containers [17] include malicious ac
tors who aim to escape the container. It is more common for attackers to exploit known
vulnerabilities that remain unpatched. Administrators of containerized environments must
regularly scan their container images to ensure that they are free from known and ex
ploitable vulnerabilities. Many of these vulnerabilities are straightforward to exploit, often
through automated scripted attacks. Various types of attackers exist, including those who
script attacks to identify or exploit vulnerabilities. These individuals may relay information
about potential exploits to more sophisticated attackers who assess whether a vulnerability
provides a pathway into a container and whether it might allow an escape. However, the
initial concern should be the vulnerable dependencies that grant attackers access.

The concept of defense in depth involves multiple layers of security between an attacker
and the assets being protected. This strategy ensures that breaching one layer does not
immediately compromise sensitive data. In the context of container security, numerous lay
ers can be implemented. For example, one might start with a network security layer that
restricts specific types or sources of traffic into a deployment. Following this, a network
policy could limit the traffic reaching specific containers or groups of containers. Addition
ally, runtime enforcement can be applied to containers to ensure that they execute only
authorized programs and prevent activities like unauthorized cryptomining. Implementing
a read-only file system is another layer that prevents attackers who penetrate a container
from modifying files.

Another critical security measure is configuring containers to operate non-privileged
users instead of running as root. By default, containers operate with root privileges identical
to the root user on the host machine. This means that if a container is compromised and
the attacker manages to escape, they gain root-level access to the host, potentially leading
to significant security breaches.

2.2.3 Workloads

Workloads are an essential part that enables Kubernetes to efficiently run containers. In
the Kubernetes environment, it is in charge of overseeing the execution and life cycle of
containers.

9

Pods

Pods are the smallest deployable computing units that you can create and manage in
Kubernetes.

A Pod is a collection of one or more containers that share network and storage resources
and operating guidelines. The contents of a Pod are always executed in a shared context, co-
located, and co-scheduled. A Pod, which consists of one or more closely coupled application
containers, represents a logical host that is specific to a given application. Applications
running on the same physical or virtual machine are comparable to cloud applications
running on the same logical host in non-cloud scenarios.

Pods management. Even singleton Pods don't require direct creation. Workload re
sources like Deployment or Job are used for their creation. StatefulSet resource is used
if Pods need to track state.

Only one instance of a particular application is intended to run on each Pod. Multiple
Pods, one for each instance, should be used if the application is scaled horizontally (i.e. to
provide more overall resources by running more instances). This is commonly referred to
as replication in Kubernetes. Replicated Pods are typically created and controlled by
a workload resource and controller.

A Pod in Kubernetes clusters may be used in two ways:

• Single container Pod. The most popular Kubernetes use case is the „one-container-
per-Pod" model, where a Pod acts as a wrapper around a single container, with
Kubernetes handling Pod management instead of container management directly.

• Multiple container Pod. A n application made up of several co-located containers that
must share resources and are closely coupled can be contained within a single Pod.
When co-located containers work together, they create a unified unit of service. For
example, a container may serve publicly accessible data from a shared volume, while
a separate sidecar container updates or refreshes the files. These containers, storage
assets, and a transient network identity are all bundled into a single unit by the Pod.

Pods are more like single application containers in that they are temporary rather than
permanent. Pods are created, given a unique identifier (UID), and assigned to nodes where
they remain until they are terminated, unless the restart policy is followed or until they are
removed voluntarily. When a node fails, the Pods associated with that node are deleted
after a predetermined amount of time.

Pods are not inherently capable of self-healing. If a Pod is connected to a broken
node or experiences a resource shortage that requires eviction, it is immediately removed.
Kubernetes uses a higher-level abstraction called a controller to oversee the orchestration
of these transient Pod instances in order to manage the dynamic lifecycle of Pods. A Pod
identified by its UID cannot be rescheduled to a different node. Alternatively, in the event
that it becomes necessary, the Pod might be swapped out for a brand-new, strikingly
similar instance that might have a different UID but the same name. When an entity,
like a volume, is marked to survive with a Pod, it means that the entity will remain for
the duration of the life of that particular Pod, depending on its UID. As such, the end of
the corresponding Pod, independent of any further replication, triggers the destruction and
subsequent reconstruction of the corresponding entity, represented in this case by a volume.

10

Storage in Pods. A n array of shared storage volumes can be specified by a Pod. The
shared volumes in the Pod are accessible to all containers, enabling data sharing amongst
them. Additionally, volumes enable the survival of persistent data within a Pod in the
event that one of its containers needs to be restarted.

Pod phases. The phase field of an object called PodStatus serves as the status field for
a Pod.

The Pod phase provides a concise, comprehensive representation of the Pod's lifecycle
stage at that particular moment. It is not intended to be an exhaustive state machine, nor
to include a comprehensive compilation of container or Pod state observations.

• Pending. The Kubernetes cluster has accepted the Pod, but one or more of the
containers are not yet configured and operational.

• Running. Every container has been instantiated and the Pod has been bound to
a node. At least one container is running right now, or it is starting or stopping right
now.

• Succeeded. Every container in the Pod has completed its activities successfully and
will not be restarted.

• Failed. Every container in the Pod has shut down, and at least one of them did so in
an ineffective manner. This means that the system will either terminate it or provide
an exit with a non-zero status.

• Unknown. For some reason, it was not possible to determine the condition of the
Pod. Errors in communication with the node where the Pod is supposed to run usually
result in this phase.

Pod networking. A distinct IP address is given to each Pod for every address family.
The IP address and network ports of each container within a Pod are shared by all of
the containers in the Pod. Localhost is used by the containers that are part of the same
Pod for communication between them. The use of shared network resources (like ports) by
containers in a Pod must be coordinated when they communicate with entities outside the
Pod. Containers can locate one another using localhost and share an IP address and port
space within a Pod.

A n example network created between one Pod with two containers and the second one
with a container is shown in Figure 2.3. Localhost is used to communicate between two
containers, and Virtual bridge to communicate between two Pods.

Route. A route is a way to give a service an external hostname so that it can be accessed
from the outside. Each route is composed of a service selector, a designated name, and
a security configuration. A router can use a pre-established path in conjunction with the
endpoints that are recognized by the service to which it is connected in order to provide
a unique identifier that allows clients from outside the network to access applications. Even
though it is easy to deploy a full multi-tier application, without the routing layer, incoming
traffic coming from sources outside the environment cannot reach the application directly.

11

Figure 2.3: Container to Container and Pod to Pod networking, (created by the author)

Management

There are numerous built-in APIs provided by Kubernetes that are specifically designed to
enable declarative management of workloads and their parent components. Applications
run inside containers that are stored inside Pods. However, it would require a significant
amount of work to manually manage each individual Pod. It would be better to instantiate
a new Pod in its place, for example, in the event of Pod failure. These tasks are automated
by Kubernetes, which reduces the load. Kubernetes control plane takes over the role of
managing Pod entities, following the guidelines specified in the workload object that was
created.

• ReplicaSet. The main goal of a ReplicaSet is to guarantee that a specified set of
backup Pods is always present and functioning at all times. For this reason, it is
frequently used to guarantee the constant availability of a predetermined number of
identical Pods. Several defining fields define a ReplicaSet:

1. a selector that specifies the criteria for identifying Pods that are available for
acquisition:

2. a replica count that indicates how many Pods the set should support:
3. a Pod template that specifies the details of newly instantiated Pods that are

required to satisfy the preset replica count.

A ReplicaSet then goes about doing its job, creating and deleting Pods in order to
reach the desired number. When conditions call for the creation of new Pods, the
ReplicaSet uses the assigned Pod template.

• Deployments. Deployments make declarative changes to Pods and ReplicaSets eas
ier. In a deployment, you specify the desired configuration, and the deployment
controller modifies the existing state to conform to this specification while controlling
the changeover at a controlled speed. ReplicaSets can be instantiated by Deploy
ments, or they can be set up to replace other Deployments by moving their resources
to new instances.

12

• StatefulSets. The StatefulSet is a key component of the workload A P I and is used as
a supervisor for stateful applications. Its principal purpose is to coordinate and scale
a specific group of Pods while providing guarantees for the orderly deployment and
unique occurrence of these Pods. Similar to a deployment, a StatefulSet manages Pods
based on the same container specification. However, it deviates from the deployment
paradigm in that it gives each of its component Pods a persistent identity. Due to the
fact that these Pods are based on a single specification, they are not interchangeable.
Instead, they are all assigned a unique identifier that will not change even in the event
of a rescheduling.

• Jobs. Job coordinates the formation and operation of one or more Pods, continuously
attempting to run them until a predefined quantity of them successfully complete their
missions. The Job keeps a close eye on the Pods' successful completions throughout
this process. The Job is deemed fulfilled when the required number of successful
completions is reached. The cleanup procedure for the related Pods that a Job deleted
is triggered. Furthermore, when a Job is suspended, its active Pods are removed until
the Job is reactivated. In a simple case, one Job instance is used to guarantee the
consistent running of one single Pod until it is finished. If the first Pod fails or is
removed (for example, due to a reboot or hardware failure of the node), the Job
quickly starts a new Pod to carry out the task.

2.2.4 Security

A range of APIs and security features are included in Kubernetes, along with techniques
for defining policies that support the management of information security procedures.

Following the Cloud Native Computing Foundation's 1 recommendations for best prac
tices in information security in cloud-native environments, Kubernetes follows a cloud-
native architectural framework.

Limiting access to the Kubernetes A P I is a crucial security feature for any Kubernetes
cluster.

Secrets

A Secret is an object that contains a restricted amount of sensitive information, such as
cryptographic keys, tokens, or passwords. Otherwise, a Pod's specification might incorpo
rate such sensitive data, or a container image might contain it. Using Secrets eliminates the
need to directly include sensitive information in application code. The process of creating
Secrets on their own, apart from the Pods that depend on them, reduces the possibility that
the Secret and any related information will be accidentally revealed. This process includes
the Pod creation, inspection, and modification workflow.

Pod Security Standards

The three policies that make up the Pod Security Standards are designed to address security
issues in a multifaceted manner. Taken as a whole, these policies range from extremely
minimal to noticeably restrictive, depending on how permissive they are.

• Privileged: Having the widest range of permissions and an unrestricted policy. This
policy permits the escalation of known privileges.

x

https: //www.cncf .io/

13

http://www.cncf

• Baseline: Serving as a placeholder for a minimally restrictive rule meant to prevent
known privilege increases. Allows the minimal standard configuration of Pods.

• Restricted: Including a severely limited policy that conforms to industry best practices
and modern Pod hardening principles.

Service Accounts

A Service Account is any type of non-human account that has a distinct identity inside
a Kubernetes cluster. The credentials linked to a specific Service Account can be used
by Application Pods, system parts, and entities inside and outside the cluster to assume
the identity of that Service Account. This feature is used for a number of things, such as
implementing identity-based security measures and authenticating A P I servers.

2.3 Red Hat OpenShift Container Platform

Red Hat OpenShift Container Platform is a Kubernetes environment designed to manage
container-focused applications and their dependencies in a variety of computing environ
ments, such as cloud, virtualized, on-premise and bare metal. Wi th a focus on usability,
stability, and component customization, it makes the deployment, configuration, and ad
ministration of containers easier. This platform runs on nodes, which are computing re
sources that are equipped with Red Hat Enterprise Linux CoreOS (RHCOS), a secure and
lightweight operating system based on Red Hat Enterprise Linux (RHEL) . The overview of
the Red Hat OpenShift Container Platform is shown in Figure 2.4.

A node obtains a container runtime, such as C R I - 0 or Docker, upon booting and setup,
enabling it to administer and carry out container workloads that are scheduled for it. These
workloads are scheduled and node registration and workload details are managed by the
Kubernetes agent, or kubelet. The networking, load balancing, and routing within the
cluster are managed by Red Hat OpenShift Container Platform. It has cluster services for
logging, managing upgrades, and keeping an eye on performance and health of the cluster.

The platform also includes features like OperatorHub and the container image reg
istry, which provide community-developed software and certified Red Hat products to de
liver a range of application services within the cluster. These services include database
management, front-end development, user interface design, application runtimes, business
automation, and developer tools for testing and developing container applications.

Within the cluster, application management can be handled manually by setting up
container deployments from pre-existing images or by using specialized resources known as
Operators. Additionally, users can use pre-built images and source code to create custom
images that they can store locally in internal, private, or public registries. Moreover,
the Multicluster Management layer allows for the distribution of workloads among several
clusters and their deployment, configuration, compliance, and management all from a single
console interface.

The following sections will build on the knowledge about Kubernetes that was acquired
in the previous sections. They will discuss the features and important differences between
Kubernetes technology and the Red Hat OpenShift Container Platform technology that are
used within the created implementation.

14

. Red Hat
OpenShift
Platform Plus -

Multicluster
management

Cluster security Global registry Cluster data
management

Manage
workloads
(Platform services)

Build
cloud-native apps
(Application services)

Developer
productivity
(Developer services)

Data-driven
insights
(Data services)

- Red Hat
OpenShift
Container Platform •

Service Mesh

Serverless

Builds

CI/CD pipelines

GitOps

Distributed
Tracing

Log management

Cost management

Sandboxed
containers

API management

Languages and
runtime

Integration

Process
Automation

Developer
Web Console

Kubernetes-native
IDE

Kubernetes
on laptop

Plugins
and extensions

Databases

Cache

Data ingest
and preparation

Data analytics

A l / M L

Kubernetes cluster services

L Red Hat
OpenShift
Kubernetes Engin>

Install Over-the-air updates Networking Ingress Storage Monitoring Log forwarding

Registry Authorization Containers VMs Operators Helm

^ Red Hat ^ Red Hat
Enterprise Linux Enterprise Linux

CoreOS

Physical Virtual Private cloud Public cloud Edge

Figure 2.4: Red Hat OpenShift Container Platform overview [14].

2.3.1 Networking

Red Hat OpenShift Networking offers a wide range of features, plugins, and sophisticated
networking functionalities that are intended to improve Kubernetes networking. Whether
the cluster consists of one single entity or several hybrid clusters, this ecosystem is designed
to meet its complex networking needs. Ingress, egress, load balancing, high-performance
throughput, security protocols, and intra- and inter-cluster traffic management are just
a few of the components that are seamlessly integrated within this framework. Role-based
observability tools are also included to help simplify the inherent complexities.

Some of the key features commonly utilized within Red Hat OpenShift Networking are:

• Management of network plugins through the Cluster Network Operator.

• T L S encryption for web traffic via the Ingress Operator.

• Name assignment functionalities provided by the DNS Operator.

• Traffic load balancing on bare metal clusters enabled by the MetalLB Operator.

• Support for IP failover to ensure high availability.

• Expanded hardware network support through various Container Network Interface
(CNI) plugins, including macvlan, ipvlan, and SR-IOV.

15

• Provision for IPv4, IPv6, and dual-stack addressing.

• Compatibility with hybrid Linux-Windows host clusters accommodating Windows-
based workloads.

• Integration with Red Hat OpenShift Service Mesh for service discovery, load balanc
ing, service-to-service authentication, failure recovery, and comprehensive metrics and
monitoring.

Routes and Ingress

Pods and services that run within Red Hat OpenShift Container Platform cluster are given
unique IP addresses during the cluster's setup. While other proximate Pods and services
can reach these IP addresses, external clients cannot access them. The Ingress Operator
runs the IngressController A P I , making services within the Red Hat OpenShift Container
Platform cluster accessible from the outside. When one or more HAProxy-based Ingress
Controllers are deployed and managed, the Ingress Operator handles routing, allowing
external clients to communicate with your service. Traffic routing via Kubernetes Ingress
and Red Hat OpenShift Container Platform Route can be configured by using the Ingress
Operator. Furthermore, Ingress Controller configurations provide ways to publish Ingress
Controller endpoints, such as specifying the type of endpointPublishingStrategy and
controlling internal load balancing.

The Red Hat OpenShift Container Platform's Kubernetes Ingress feature is powered by
an Ingress Controller that is enabled by a shared router service that runs as a Pod inside
the cluster. This Ingress Controller, which can be scaled and replicated like any other
standard Pod, is the main tool used to manage Ingress traffic. HAProxy is an open-source
load balancing solution that is used by this router service.

The route mechanism in the Red Hat OpenShift Container Platform enables Ingress
traffic to cluster services. Routes provide additional features, such as T L S re-encryption,
T L S passthrough, and traffic splitting for blue-green deployments, that are not always
possible with standard Kubernetes Ingress Controllers. Through routes, ingress traffic is
able to access cluster services. While handling external requests and routing them according
to predetermined criteria are features that both Ingress and routes have in common, Ingress
is only capable of accepting three different connection types:

. H T T P / 2 ,

• H T T P S with server name identification (SNI),

• and T L S with certificates.

Routes on the Red Hat OpenShift Container Platform are created dynamically in response
to the Ingress resource's specifications.

16

Chapter 3

Vulnerability Detection

Cybersecurity field requires having a thorough understanding of vulnerabilities and imple
menting efficient detection techniques is essential to protecting digital environments from
possible threats. The complexities of vulnerabilities are explored in this chapter, along with
their nature, sources, and importance of early detection.

Before exploring the issues presented, it is essential to clarify the commonly used terms.
The following definitions are based on [19]. This book discusses the topic of cybersecurity
of information systems. However, the issues and definitions presented are largely similar to
those mentioned in this thesis, so they will be incorporated in their translated paraphrased
form as stated in the book.

Weak point. A weak point in an information system (IS) is susceptible to exploitation
that causes harm or losses through an attack on the IS. The existence of weak points is
a consequence of errors, failures in analysis, design, and/or implementation of the IS.

A weak point can also be the result of the high density of stored information, software
complexity, the presence of hidden channels for information transmission, and other factors.

Types of a weak point:

• Physical. For example, the location of the IS physical infrastructure is in an area
easily accessible to sabotage or vandalism, or vulnerable to power outages.

• Natural. Objective factors such as floods, fires, earthquakes, or lightning.

• In Hardware or Software. Vulnerabilities can exist in the physical components or
the software systems.

• Physical Attacks. This includes radiations, attacks during communication for mes
sage exchange, or attacks on communication channels.

• Human Factor. Representing the greatest vulnerability among all possibilities.

Threat. Weak points are characteristics or elements of an information system that make
it vulnerable to threats from the environment in which it functions. Threat is a potential
for an attacker to target weak areas in an IS in order to damage its assets.

17

Threats are categorized as follows.

• Objective.

— Natural, physical: fire, flood, power outage, malfunctions, etc.; A n emergency
plan must be created in situations like these, where prevention is challenging
and attention must be paid to minimizing the effects through a suitable recovery
plan.

— Physical: e.g. electromagnetic radiation.

— Technical or logical: memory failure, software backdoors, improper connection of
otherwise secure components, theft, or destruction of storage media, or incorrect
deletion of information.

• Subjective (human factor threats).

— Unintentional: actions of untrained user or administrator.

— Intentional: posed by the existence of external attackers (spies, terrorists, crim
inal elements, competitors, hackers) and internal attackers. It is estimated that
80% of IT attacks are conducted from within, by attackers who could be dis
missed, disgruntled, blackmailed, or greedy employees. In terms of attack man
agement, the cooperation of both types of attackers is very effective.

The essence of a threat lies in its origin, whether external or internal, and the motiva
tions driving potential attackers, such as financial gain or gaining a competitive edge. In
situations where prevention is difficult and it is necessary to focus on minimizing impacts
through an appropriate recovery plan, an emergency plan must be developed. A threat is
also characterized by its frequency and criticality of application. Common risks to infor
mation technology include data alteration without authorization, message interception and
modification, illegal access through eavesdropping, and vulnerability exploitation through
the use of harmful software or electromagnetic radiation. The gathering of private data, the
unauthorized use of resources, the denial of service, and the abdication of accountability
for actions pertaining to security are additional ways that threats might appear.

Attack. A n attack, also known as a security incident, may consist of a deliberate use of
a weak point, i.e., either the unintentional execution of an action that results in asset damage
or the use of a vulnerable point to cause losses or damage to IS assets. The manifestation
of computer crime, potential attack forms, attackers' identities, the risks associated with
using information technologies, and attack defense strategies are typical issues to consider
when analyzing potential forms of IT attacks.

Attacks can take the following forms:

• Interruption. A n intentional attack on availability, including loss, unavailability,
damage to assets, peripheral malfunction, data erasure, program deletion, and oper
ating system issues.

• Interception. A passive attack on confidentiality, in which an unauthorized party
gains unauthorized access to assets, such as a program or data copy.

• Modification. A n active attack on integrity, in which an unauthorized party alters
an asset, such as by changing stored and/or transmitted data or by adding function
ality to a program.

18

• Fabrication. A n active attack on authenticity or integrity, in which an unauthorized
party creates something (transaction forgery, provision of false data).

Since detecting interception is very difficult, prevention is a good way to defend against
passive interception attacks. Total attack prevention is unachievable, so typical defense
(particularly against active attack forms) depends on identifying attacks and then restoring
activity. Whether a heuristic is active, detection-based, preventive, or based on hypotheses,
it is crucial to apply knowledge gained from observed facts and experiences to improve
protections. A n attack may occur accidentally, intentionally or randomly. Identified are
the following types of attacks.

• Attacks on hardware:

— Interruption: natural disasters, impacts, intentional attacks by theft, destruc
tion.

— Interception: theft of processor time or memory space.

— Modification: changing operational modes.

• Attacks on software:

— Interruption: unintentional attacks may include software deletion caused by in
correct configuration systems or archival systems, use of untested programs,
operator errors; intentional attacks may include deliberate software deletion.

— Interception: unauthorized copying of software, piracy.

— Modification: using backdoors (non-public startup procedures from the time of
software creation).

— Fabrication: embedding trojans, viruses, worms, logic bombs.

• Attacks on data:

— Attacks on data are much more dangerous because data can be read and inter
preted by virtually anyone; the value of data is characterized by its temporality,
and the market value of data is not the sole cost consideration, as it must also
include the cost of data reconstruction, re-creation, etc.

— Interruption: unintentional deletion, such as accidental data erasure, deliberate
deletion, sabotage.

— Interception: breach of confidentiality, theft of copies.

— Modification: integrity violation, unauthorized data modifications.

— Fabrication: repeated unauthorized partial withdrawals from a bank account
(salami attack), transaction generation, etc.

Attacker. A n attacker can be external, but often, there is also an internal attacker within
the organization. Generalization based on their knowledge and resources:

• Weak strength attackers: amateurs, random attackers exploiting randomly discovered
vulnerabilities during routine work; these are random, often unintentional attacks,
where attackers have limited knowledge, opportunities, and means. Relatively weak
security measures, which are inexpensive, are sufficient for protection against them.

19

• Moderate strength attackers: hackers whose frequent creed is to gain access to unau
thorized areas; these are common attacks, attackers often have a lot of knowledge,
but usually lack obvious opportunities for attacks and have limited means; moderate
security measures are taken against them.

• Significant strength attackers: skilled criminals, typically with experience in the com
puter industry, who possess a high degree of expertise, sufficient financial resources,
and sufficient time to execute an attack. They execute attacks that depart from
standard procedure, and strong security measures are necessary to protect against
them.

Risk. Risk, or the likelihood of taking advantage of weaknesses in an information system,
is implied by the existence of threats. A threat is said to materialize with a certain degree
of probability. Risks can be defined as potential harm inflicted by a security incident as
well as the likelihood of one occurring.

3.1 Vulnerabilities

Weakness in an information system, system security procedures, internal controls, or im
plementation that could be exploited or triggered by a threat source [10].

Recognizing that vulnerabilities can manifest in various forms is crucial for developing
effective mitigation strategies.

Vulnerabilities come in various forms and types, each representing a distinct facet of
potential weaknesses within digital systems.

1. Buffer Overflow. This occurs when a program writes more data to a block of
memory, or buffer, than it can hold. Exploiting this vulnerability allows attackers to
overwrite adjacent memory, potentially leading to execution of malicious code.

2. Injection Attacks. Injection vulnerabilities, such as SQL injection and cross-site
scripting (XSS), involve injecting malicious code into input fields or scripts. Successful
exploitation can result in unauthorized access, data manipulation, or execution of
arbitrary code.

3. Cross-Site Scripting (XSS). XSS vulnerabilities enable attackers to inject mali
cious scripts into web pages viewed by other users. This can lead to a theft of sensitive
information, session hijacking, or website defacement.

4. Cross-Site Request Forgery (CSRF). C S R F exploits trust in a user's authenti
cated session to perform unauthorized actions on their behalf. Attackers trick users
into unwittingly submitting requests, leading to actions such as changing passwords
or making financial transactions.

5. Security Misconfigurations. Improperly configured settings, default passwords,
or unnecessary services can expose vulnerabilities. Attackers exploit these misconfig
urations to gain unauthorized access or disrupt services.

6. Insecure Direct Object References (IDOR). IDOR vulnerabilities occur when
an application provides direct access to objects based on user-supplied input. Ex
ploiting this allows attackers to access unauthorized data.

20

7. Privilege Escalation. Privilege escalation vulnerabilities enable attackers to elevate
their permissions beyond what is intended. This could involve gaining administrative
access or higher-level privileges within a system.

8. Denial of Service (DoS) and Distributed Denial of Service (DDoS). DoS
vulnerabilities involve overwhelming a system or network with traffic, causing ser
vice interruptions. DDoS attacks amplify this by coordinating attacks from multiple
sources, making mitigation more challenging.

9. Zero-Day Vulnerabilities. These are vulnerabilities that are unknown to the soft
ware vendor or the public. Attackers exploit these vulnerabilities before a patch or
fix is available.

10. Physical Security Vulnerabilities. Physical vulnerabilities involve weaknesses in
the physical security of systems, such as unauthorized access to hardware, theft, or
tampering.

11. Third-Party Software Vulnerabilities. Dependencies on third-party libraries or
software components can introduce vulnerabilities. Attackers may exploit weaknesses
in these components to compromise the overall system.

12. Social Engineering. While not strictly a technical vulnerability, social engineering
exploits human psychology to manipulate individuals to reveal sensitive information
or perform actions that compromise security.

This extended list based on [4] is not exhaustive, and new vulnerabilities emerge as
technology evolves. Addressing these vulnerabilities requires a multifaceted approach, com
bining robust coding practices, regular security assessments, and user education.

3.2 Container Image Vulnerabilities

A vulnerability [8], in the context of container images, refers to a weakness or flaw that could
be exploited by malicious entities to compromise the confidentiality, integrity or availability
of the deployed application.

Container image vulnerabilities [21] can take many different forms, including misconfig-
ured software, insecure dependencies, and software flaws. To fully comprehend, one must
acknowledge that vulnerabilities include more than just code-level flaws. They also include
the configuration settings, runtime environments, and dependencies present in a container
ized program.

Regarding container security, a vulnerability is any weakness, opening, or incorrect setup
that an unauthorized party might be able to take advantage of to jeopardize the security
of a container image or the containerized environment as a whole. It is crucial to realize
that as technology develops, new threats emerge and vulnerabilities change constantly.

Information about the following example container vulnerabilities is sourced from the
National Vulnerability Database, NIST. More details can be found on their official website1.

• CVE-2019-5736: Exploit allows attackers to overwrite the host rune binary and
gain root-level code execution on the host. This affects most containers that use the
default container runtime.

x

https: //nvd.nist.gov/

21

• CVE-2018-15664: A vulnerability in Docker that can allow a path traversal at
tack, enabling an attacker to execute arbitrary commands inside the container and
potentially escape to the host.

• CVE-2020-14386: A serious issue in the Linux kernel that could allow an attacker
in a container to cause a heap-based buffer overflow, leading to privilege escalation
and root access on the host.

• CVE-2021-30465: Vulnerability in Open Containers rune that allows a malicious
container to escape to the host system due to improper handling of file descriptors.

• CVE-2019-16884: Vulnerability in containerd allows attackers to use a specially
crafted image that, when pulled and unpacked, leads to a container escape and arbi
trary command execution on the host.

3.2.1 Dynamic Nature of Container Vulnerabilities

Containers, by design, promote agility and rapid deployment, but this dynamism introduces
unique challenges regarding security. The dynamic nature of containers means that the
vulnerability landscape evolves rapidly. Continuous integration, continuous deployment
(CI/CD) pipelines [1], and frequent updates contribute to a fluid environment where new
vulnerabilities may arise with each iteration.

It is critical to stay on top of the constantly shifting threat landscape in this envi
ronment and to quickly patch any vulnerabilities. Understanding the dynamic nature of
vulnerabilities is important for putting in place efficient security measures, especially as
containerized applications become increasingly integrated into modern computing.

3.3 Container Image Security

The following section is derived from Container image security: Going beyond vulnerability
scanning whitepaper by Red Hat [13].

In cloud-native environments, container images are the common application delivery
format. A new set of best practices is needed to ensure the integrity of container images
given their widespread distribution and deployment. Although running image scans to
look for known vulnerabilities in language packages and operating systems is still a crucial
component of image security, it is merely one of many security measures you must take to
protect your environments. Decisions about image infrastructure and handling to improve
and maintain your organization's security will be informed by an understanding of the risks
at each stage of a container's life cycle.

3.3.1 Bui ld process

A container image that has malicious software in it already presents a risk while running.
In the context of continuous integration build infrastructure to stop outside vulnerabilities
from getting into your images, security in continuous integration build infrastructure is
just as crucial as it is in production environment. Steps to help improve securing build
infrastructure and pipelines ctre cts follows:

• Limit administrative access to the build infrastructure.

22

• Permit only necessary network ingress.

• Handle any required secrets with caution and only give the bare minimum of access.

• Make sure to thoroughly inspect any external websites from which sources or other
files are retrieved and use network firewalls to restrict list access to reliable sources.

• Use a vulnerability scanner on the resulting images, but in order to obtain reliable
results, it is also necessary to make sure that the scanner is secure and reliable.

Base image. In the process of constructing images based on pre-existing, third-party
base images, several critical factors warrant consideration:

• Trustworthiness of the base image's provenance and hosting infrastructure. Verifying
the legitimacy of the open-source community or source organization that is providing
the base image is essential. It is crucial to confirm that the image is hosted on
a reliable registry and comes from a respectable source. Transparency and security
are further strengthened by making the Dockerfile and underlying source code of every
component in the image accessible.

• Update frequency. Choosing base images that are updated frequently is essential,
especially when relevant vulnerability disclosures occur. Images that are not updated
regularly present increased risks and can expose systems to known vulnerabilities.

• Default software packages installed. A more stable and controllable deployment ap
proach is produced by starting with a base image that is minimalistic and carefully
adding the necessary tools and libraries based on the requirements of the application.
By eliminating the necessity to determine which packages can be securely removed
from an existing image, this method reduces the possibility of complications and
dependencies.

Among the growing number of safe and simple base image choices, a few choices are
worth taking into account. For example, Google Distroless2 provides incredibly simple base
images that are already set up for popular programming languages. Even though these
images don't come with a package installer, you can add more software by copying files to
them. Furthermore, the Red Hat Universal Base Image (UBI), which is based on Red Hat
Enterprise Linux, offers a feasible alternative that can be accessed without requiring a Red
Hat subscription. UBI supports a variety of language ecosystems and is offered in several
tiers that include standard platform, multi-service, and minimalistic versions. A custom
base image can also be created from scratch, providing more control over the composition
and security posture of the image.

Securing Container Images. Reducing the number of potential attack vectors becomes
crucial in the event that hostile actors are able to successfully compromise the security of
an operating container. Starting with a simple base image establishes a strong basis, but
this benefit is compromised by the use of a common set of flexible tools for all Dockerfiles.
Keeping the image small enough to minimize its footprint has two advantages: it makes it
less likely that zero-day vulnerabilities will be included inside the image, and it also makes
the image smaller, which speeds up storage and retrieval.

2

https: //github.com/GoogleContainerTools/distroless

23

Using an approach that restricts the image to necessary binaries, libraries, and con
figuration files provides the best protection. In particular, installing (or uninstalling) the
following tools should be avoided: package managers (like apt, yum, and apk), Unix shells
(like bash and sh), compilers, and debuggers (removing them also prevents shell scripts
from running in runtime).

If it becomes necessary to use these tools for application debugging in production images,
workflows and practices should be reevaluated. It is wise to consider creating temporary
debugging images in order to address diagnostic challenges, at the very least. Notably,
ephemeral containers are given initial support by Kubernetes starting with version 1.16,
which makes it easier to integrate them into already existing Pods and speed up debugging
efforts.

Ephemeral containers are temporary and lightweight containers that can be added to a
running Kubernetes pod, primarily used for debugging purposes or testing without affecting
the Pod's operation. They are designed to execute and terminate without leaving any state
or configuration behind.

Secrets. It is essential that private information is not inserted into images, even if they
are intended for internal use. Key elements including SSH private keys, cloud provider
credentials, Transport Layer Security (TLS) certificate keys, and database passwords are
all included in this type of sensitive data. It is critical to acknowledge that any individual
who has access to the image has the ability to extract these private elements. A safe
strategy is to only supply sensitive data during runtime, which makes it easier to use the
same image in different runtime environments, each requiring different credentials. This
approach simplifies the update of compromised or expired secrets without requiring the
image to be rebuilt. Providing Secrets to Kubernetes Pods as Kubernetes secrets or using
a different secret management system are workable substitutes for embedding secrets inside
images.

Image security scanning. Images that contain software that has security flaws can be
exploited while the program is running. When building an image using the CI pipeline,
image scanning becomes a necessary precondition to ensure build runs are completed suc
cessfully. Insecure images must never be allowed to register in the production-accessible
container registry. It is important to remember that while there are many free and paid
image scanning programs available, along with cloud-based scanning services, their cov
erage effectiveness varies. Although some scanners only check installed operating system
packages, others also check installed runtime libraries related to particular programming
languages.

Some scanners can enhance their capabilities by incorporating additional procedures,
such as binary fingerprinting or other types of file content analysis.

Careful consideration should be given to the scanner's ability to meet the required
coverage parameters, support the package installer database of the base image, and work
with the programming languages used in the application ecosystem when choosing one to
integrate into the continuous integration pipeline. It is the practitioner's responsibility
to define appropriate risk thresholds, which may include defining vulnerability severity
thresholds and creating a protocol for managing builds that have fixable vulnerabilities
that are more severe than predefined thresholds.

24

3.3.2 Storing process

Once the secure container image is constructed, it becomes necessary to choose a loca
tion for its storage. Selecting a private, internal registry offers a significant advantage for
strengthening security protocols and enabling personalized setups. This method requires
close supervision of the infrastructure and access protocols of the registry. A lot of cloud
service providers, on the other hand, offer managed registry services that are linked into
the cloud's access control system. Private repositories can benefit from these service-based
registries, which also significantly reduce administrative burdens. Thus, depending on their
unique security requirements and available infrastructure resources, security engineers and
build engineers must carefully determine which solution best meets their organization's
needs.

3.4 Vulnerability Management

In order to lower the risks of cyberattacks and security breaches, vulnerability management
is an IT security practice that entails finding, evaluating, and fixing security flaws in de
vices, networks, and applications. Vulnerability management is seen by security experts as
a crucial component of security automation. This Section is derived from [16].

Common Vulnerabilities and Exposures (CVEs) is a system used by the security indus
try to catalog vulnerabilities found by IT vendors and security researchers. Vulnerability
management is a continuous process due to the constant emergence of new C V E s . Secu
rity teams can automate vulnerability scanning and patching, among other detection and
remediation procedures, with the use of a vulnerability management program.

Common Vulnerability Scoring System (CVSS) is the industry standard for grading
C V E s . The vulnerability is assessed by means of a formula that considers various aspects,
including the degree of complexity, the possibility of remote attack, and the need for user
intervention. A base score, ranging from 0 (no impact) to 10 (highest base impact), is
assigned by the CVSS to each C V E . This score by itself does not provide a thorough
evaluation of risk. A more comprehensive CVSS analysis can be formed with the aid of two
additional review types: temporal and environmental.

A temporal review includes information about the methods of exploitation that are
currently in use, the presence of attacks that take advantage of the vulnerability, and the
accessibility of fixes or workarounds for the flaw.

A n environmental review contributes details unique to the organization concerning
mission-critical information, systems, or controls that may be present in the environment
of the end user and have the potential to change the likelihood or impact of an attack being
carried out successfully. Researchers and vendors may also employ other scales in addition
to CVSS scores. Red Hat Product Security, for instance, offers a four-point severity scale
to assist users in assessing security risks.

• Critical impact: Vulnerabilities that could be quickly and easily used by an unau-
thenticated remote attacker to compromise the system without requiring user input.

• Important impact: Vulnerabilities that could compromise resource availability, confi
dentiality, or integrity.

• Moderate impact: Vulnerabilities that might be harder to take advantage of, but in
some cases, could still compromise resource availability, confidentiality, or integrity.

25

• Low impact: Any other security-related vulnerabilities, such as those that are thought
to require unusual circumstances to be exploited or those for which a successful exploit
would have little repercussions.

3.4.1 Vulnerability management

Vulnerability management is a cyclical process [18]. The cycle is represented graphically in
Figure 3.1.

Report
on status

Discover
vulnerabilities

Prioritize
assets

0
Verify

remediat ion

Vulnerability
Management

Lifecycle
Assess

vulnerabilities

Remediate
vulnerabilities

Prioritize
vulnerabilities

Figure 3.1: Vulnerability management cycle [18].

The cycle goes through a certain number of steps before repeating. The steps are as
follows:

• Discover vulnerabilities. A security breach is more likely to occur the longer
a vulnerability goes undiscovered. Conduct weekly network scans, both internal and
external, to find new and old vulnerabilities. This procedure includes scanning sys
tems that are accessible over a network, determining which ports and services are
open on those systems, obtaining system data, and comparing those data with known
vulnerabilities.

• Prioritize assets. After learning which assets are being used, an assessment of the
worth of each asset can be performed in relation to its use or alignment with the goals
of the organization. Including this contextual understanding in the system list makes
it easier to assess how urgently vulnerabilities need to be fixed. Determining, for
example, whether the compromised system is related to a business laptop, a customer
support desk terminal, an application, or a web server that provides essential services
to a distinguished clientele helps prioritize security fixes appropriately.

• Assess vulnerabilities. Assessment is a systematic examination aimed at capturing
the condition of applications and systems within a given environment.

26

• Prioritize vulnerabilities. Prioritizing vulnerabilities based on their possible im
pact on the company, employees, and customers is crucial as soon as vulnerabilities
are found during the scanning process. Traditional vulnerability management systems
provide a variety of integrated metrics that are intended to aid in the evaluation and
prioritization of vulnerabilities. But it is also crucial to supplement this process with
background knowledge about company operations, current threats, and related risks
that come from both internal and external sources. Finding vulnerabilities that are
highly relevant, have the potential to have a substantial impact, and are likely to
be exploited is the main goal. It might not be possible to patch every vulnerability
in the organizational ecosystem due to the multiplicity of devices, services, and soft
ware. A practical strategy for navigating this reality is to identify and rank the most
important and likely targets of future attacks.

• Remediate vulnerabilities. The remediation and/or mitigation of these identified
weaknesses is the natural progression that occurs after vulnerabilities are identified,
prioritized, and cataloged. It is important to recognize that those responsible for
understanding the risks associated with vulnerabilities may not often be in a position
to implement corrective actions within an organization. Keeping this discrepancy in
mind, companies should work to ensure that their security operations, IT operations,
and system administration teams have a common vocabulary, set of standards for
making decisions, and set of procedures.

• Verify remediation. Confirming the vulnerability's resolution is a critical but fre
quently overlooked step. After carrying out the actions described above, it is wise
to carry out a follow-up scan with the objective of verifying that the risks that are
of the highest priority have been successfully resolved or mitigated. This final proce
dural step allows the incident to be formally closed within the tracking system and
makes it easier to evaluate key performance indicators like the mean time to remediate
(MTTR) or the number of critical vulnerabilities that are still present.

• Report on status. Especially after major events like a widely publicized software
bug or the use of a zero-day vulnerability, questions from management, executives,
and board members might come up about how well vulnerability assessment and
mitigation efforts are working inside company infrastructure. Reports that provide
information about vulnerabilities, related risks, and the effectiveness of vulnerability
management practices can be used to support requests for staffing or purchase of
relevant tools. Leading vulnerability management platforms, for example, provide
features like interactive dashboards that are customized to fit different user profiles,
stakeholder interests, and analytical viewpoints, as well as automated reports.

27

Chapter 4

Software B i l l of Materials and
Advanced Scanning Techniques

The adoption of Software Bill of Materials (SBOM) has become a pivotal practice in en
hancing transparency and security in software supply chains.

A n S B O M [11] functions as a detailed inventory, listing the ingredients, software com
ponents, along with their identification, information, and supply chain relationships. The
richness of information in an S B O M varies based on industry needs and consumer require
ments.

When creating an S B O M , the focus is on establishing a baseline with the minimum
necessary information, allowing for swift adoption and subsequent evolution. This approach
avoids imposing an exhaustive set of attributes initially, ensuring a practical starting point.

SBOMs are dynamic and relate each component through intricate supply chains, offering
a comprehensive view of software systems. The capture and exchange of these links are
some of the crucial features.

Structured data formats and exchange protocols are essential for a functional S B O M ,
enabling machine readability and automation, especially for large organizations managing
diverse data sources.

Importantly, SBOMs are not isolated; they connect with other data sources. For in
stance, in vulnerability management, SBOMs rely on a catalog of known vulnerabilities
(e.g., C V E) and associations of vulnerabilities to components (e.g., Vultron project will
use default libraries from Grype). Similarly, for license management, mapping licenses to
components is essential for compliance.

In essence, SBOMs serve as dynamic and interconnected tools, delineating software
compositions and facilitating efficient data management, scalability, and alignment with
crucial data sources in the software ecosystem.

Crucial role of S B O M as a catalyst for achieving transparency in software supply chains.
S B O M promises to mitigate cybersecurity risks and streamline costs by [11]:

• Identifying Vulnerabilities. Enhancing the recognition of vulnerable software com
ponents to reduce cybersecurity incidents.

• Streamlining Supply Chains. Reducing unproductive work from convoluted sup
ply chains and fostering efficient development and maintenance processes.

• Market Differentiation. Allowing S B O M supporting vendors to distinguish them
selves, fostering trust and accountability.

28

Standardization Efforts. Reducing duplication through the promotion of stan
dardized formats, enhancing unity across different sectors.

• Counterfeit Detection. Facilitating the identification of suspicious or counterfeit
software components, fortifying the integrity of the entire system.

4.1 Key Components of an S B O M

The cornerstone of an effective S B O M lies in its ability to uniquely and unambiguously
identify components and establish their relationships. The following baseline information
serves as the foundational elements for an S B O M entry, providing essential details for
comprehensive identification:

• Author Name. The author of the S B O M entry, not necessarily the supplier. This
attribution ensures clarity regarding the source of the S B O M information.

• Supplier Name. This signifies the name or identity of the component supplier in
the S B O M entry. In cases where the author and supplier are the same, it designates
a first-party authoritative component. When different, it indicates a claim or assertion
about a component from an alternative supplier.

• Component Name. One or more names of the component are specified, allow
ing flexibility for multiple names or aliases. Component names can include supplier
information and may be expressed using a generic namespace:name construct.

• Version String. Version information is crucial for component identification. Syn
tax specifics are not prescribed, but basic consistency and logic, such as Semantic
Versioning, are expected.

• Component Hash. The cryptographic hash of the component serves as a precise
identifier. While highly accurate, other baseline identification information is consid
ered useful and sometimes necessary.

• Unique Identifier. A version 4 or 5 UUID can be generated and utilized as a unique
identifier for components, enhancing the identification process.

• Relationship. Inherent in the S B O M design, relationships are established. The de
fault relationship type is includes, but for clarity, this document advocates for invert
ing the direction of the relationship to included in. This inversion ensures a consistent
representation.

4.2 Syft

Syft 1 is a powerful open-source tool dedicated to enhancing transparency in container se
curity. Specializing in generating Software B i l l of Materials (SBOMs) for container images,
Syft provides a detailed inventory of software components, dependencies, and their re
spective versions. By fostering a clear understanding of the containerized application's
composition, Syft significantly contributes to improving security practices in the dynamic
landscape of containerized environments.

x

https: //github.com/anchore/syft

29

4.2.1 K e y Features and Capabilities

Syft offers a host of features and capabilities that distinguish it in the realm of container
security:

• S B O M Generation. Syft's primary function is generating comprehensive SBOMs,
providing detailed insights into the components, dependencies, and versions within
a container image.

• Support for Multiple Image Formats. Syft is versatile in supporting various
container image formats, ensuring compatibility with a wide range of containerized
applications.

• Integration with C I / C D Pipelines. Syft can be seamlessly integrated into C I / C D
pipelines, enabling automated S B O M generation as part of the software development
lifecycle.

• Detection of Licenses and Vulnerabilities. Beyond generating SBOMs, Syft
helps to identify software licenses associated with components and detecting potential
vulnerabilities, contributing to a holistic security assessment.

4.2.2 Syft S B O M Output

Syft generates a comprehensive Software B i l l of Materials output that provides detailed
information about the components and their relationships within a container image. The
output may be structured as a JSON document with key fields, each serving a specific
purpose. A l l example outputs will be from analysis of the tomcat

2

 image.

Artifacts and Relationships

The S B O M output includes a detailed list of artifacts and their relationships, providing
insights into the container's composition. Each artifact entry includes essential informa
tion, such as Common Platform Enumeration (CPE) details, identification methods, and
relationships with other components within the image. Fields in artifacts section include:

cpes - Common Platform Enumeration entries representing the component.

foundBy - the tool or method that identified the component.

id - a unique identifier of the component.

language - the programming language of the component.

licenses - information about the licenses associated with the component.

locations - paths and layer information where the component is located.

metadata - additional metadata about the component, such as author, version, and
platform.

metadataType - the type of metadata associated with the component (e.g., python-
package) .

2

https: //hub.docker.com/_/tomcat/

30

• name - the name of the component (e.g., Jinja2).

• purl (Package U R L) - a standardized format for expressing metadata about soft
ware packages.

• type - the type of component (e.g., python).

• version - the version of the component (e.g., 2.11.3).

A n example of artifacts specification listing from the tomcat image is shown in Listing 4.1

1
2 "artifacts": [

3 {
4 "cpes": [

5 "cpe:2.3:a:apache:tomcat-annotations-api:2.1.1:*:*:*:*:*:*:*",

6] ,
7 "foundBy": "java-archive-cataloger",

8 "id": "b3436ecc39b02f05",

9 "language": "Java",

10 "licenses": [

n <snip>

12] ,

13 "locations": [

14 {
15 "accessPath": "/usr/local/tomcat/lib/annotations-api.jar",

16 "annotations": {

17 "evidence": "primary"

18 >,
19 "layerlD": "sha256:6b31b525a<snip>",

20 "path": "/usr/local/tomcat/lib/annotations-api.jar"

21 }
22] ,
23 "metadata": {

24 "digest": [

25 {
26 "algorithm": "shal",

27 "value": "4d9f537d2a349621b949485c54aale550febe273"

28 }
29] ,
30 "manifest": {

31 <snip>

32 },
33 "virtualPath": "/usr/local/tomcat/lib/annotations-api.jar"

34 },
35 "metadataType": "java-archive",

36 "name": "annotations-api",

37 "purl": "pkg:maven/org.apache.tomcat-annotations-api/annotations-

api@2.1.1",

38 "type": "Java-archive",

31

39 "version": "2.1.1"

40 >
41]

Listing 4.1: A n artifacts example from the tomcat package.

The artifactRelationships section specifies relationships between artifacts, such as
containment and evidence associations.

Fields in this section include:

• child - the unique identifier of the artifact considered as the child in the relationship.
This points to a specific component within the container image.

• parent - the unique identifier of the artifact considered as the parent in the rela
tionship. This points to another component or the container image itself.

• type - describes the nature of the relationship between the child and parent artifacts.
Common relationship types include:

1. contains - indicates that the parent artifact contains the child artifact.

2. evident-by - highlights a relationship where evidence supporting a claim is
provided by the child artifact.

Example of artif actRelationships from the same tomcat image is shown in Listing 4.2.

l "artifactRelationships": [

2 {

3 "child": "263a32391686f3c9",

1 "parent" : "00085d3c60fed8fd",

5 "type": "evident-by"

6 },
7
8

{
"child": "43efc68c767736ea",

9 "parent" : "051c283e855f0daf",

10 "type": "contains"

11 }
12] ,

Listing 4.2: A n artif actRelationships example from the tomcat package.

Descriptor, Distro, and Schema Information

The S B O M output encapsulates key details about the container, including its descriptor,
underlying distribution, and schema information. This metadata aids in understanding the
context and environment in which the containerized application operates.

• descriptor - contains the name and version of the tool generating the S B O M (e.g.,
syft 0.96.0).

• distro - information about the underlying distribution, including name, version and
relevant URLs.

32

• schema - details about the schema version and U R L used in the S B O M .

Descriptor, distro, files and schema examples from the same tomcat image are shown in
Listing 4.3.

1 "descriptor": {

2 "name": "syft",

3 "version": "0.96.0"

4 } ,
5 "distro": {

6 "bugReportURL": "https://bugs.launchpad.net/ubuntu/",

7 "homeURL": "https://www.ubuntu.com/",

8 "id": "ubuntu",

9 "idLike": [

10 "debian"

11] ,
12 "name": "Ubuntu",

13 "prettyName": "Ubuntu 22.04.3 LTS",

14 "privacyPolicyURL": "https://www.ubuntu.com/legal/

15 terms-and-policies/privacy-policy",

16 "supportURL": "https://help.ubuntu.com/",

17 "version": "22.04.3 LTS (Jammy Jellyfish)",

18 "versionCodename": "jammy",

19 "versionID": "22.04"

20 },
21 " f i l e s " : [

22 {
23 "id":

 M

a582cbdal7469f59",

24 "location": {

25 "layerlD": "sha256:8ceb9643fb36a<snip>",

26 "path": "/etc/alternatives/README"

27 >
28 },
29 {
30 "id":

 M

a23bbaa4efaee7e7",

31 "location": {

32 "layerlD": "sha256:8ceb9643fb36a<snip>",

33 "path": "/etc/apt/apt.conf.d/01-vendor-ubuntu"

34 >
35 >
36] ,
37 "schema": {

38 "url": "https://raw.githubusercontent.com/

39 anchore/syft/main/schema/json/schema-12.0.1.json",

40 "version": "12.0.1"

41 >,

Listing 4.3: Descriptor, distro, files and schema examples from the tomcat package.

33

https://bugs.launchpad.net/ubuntu/
http://www.ubuntu.com/
http://www.ubuntu.com/legal/
http://help.ubuntu.com/
http://raw.githubusercontent.com/

Source Information

The S B O M output delves into details about the source of the container image, includ
ing its identifier, metadata, layers, and user-provided information. This section aids in
understanding the origin, configuration, and context of the container image.

• id - a unique identifier of the container image.

• metadata - additional metadata about the container image, including architecture,
labels, and URLs.

• name - the name of the container image.

• type - the type of the source (e.g., image).

• version - the version or digest of the container image.

Source example from the same tomcat image is shown in Listing 4.4.

l "source": {

2 "id": "5c98b22b571d494eal907b5c<snip>\

3 "metadata": {

4 "architecture": "amd64",

5 "config": "eyJhcmNoaXRKsnip>",

6 "imagelD": "sha256:e7652758<snip>",

7 "imageSize": 453582300,

8 "labels": {

9 "org.opencontainers.image.ref.name": "ubuntu",

10 "org.opencontainers.image.version": "22.04"

11 } ,
12 "layers": [

13 {
14 "digest": "sha256:8ceb9643<snip>",

15 "mediaType": "application/vnd.docker.image.rootfs.

16 diff.tar.gzip",

17 "size": 77845857

18 >
19] ,
20 "manifest": "ewogICAic<snip>",

21 "manifestDigest": "sha256:5c98b22b<snip>",

22 "mediaType": "application/vnd.docker.distribution.

23 manifest.v2+json",

24 "os": "linux",

25 "repoDigests": [

26 "index.docker.io/library/tomcat@sha256:fe38c5d0<snip>"

27] ,
28 "tags": [],

29 "userlnput": "tomcat"

30 },
31 "name": "tomcat",

32 "type": "image",

34

33 "version": "sha256:5c98b22b<snip>f"

34 >

Listing 4.4: A source example from the tomcat package.

4.3 Grype

The open source vulnerability scanner Grype 3 is specifically made for container images. By
utilizing the vulnerability database made available by the vulnerability-as-code project as its
foundation, it enables users to perform comprehensive scans of containerized applications.
Grype guarantees a thorough approach to security assessment by concentrating on finding
vulnerabilities in software dependencies, configurations, and other crucial elements.

4.3.1 K e y Features and Capabilities

Grype excels in providing a range of features that contribute to its effectiveness in container
image scanning:

• Comprehensive Database Integration. Grype's strength lies in its integration
with well-established vulnerability databases, ensuring up-to-date and accurate vul
nerability information.

• Flexible and Extensible. The tool supports multiple image formats and allows for
extensibility, enabling users to tailor scans to their specific needs and adapt to diverse
container environments.

• Integration with C I / C D Pipelines. Grype seamlessly integrates into C I / C D
pipelines, enabling automated and continuous vulnerability assessments throughout
the software development lifecycle.

• Rich Output Formats. Grype offers versatile output formats, including JSON and
SPDX, facilitating easy integration with other tools and platforms.

4.3.2 Grype output

A l l example outputs will be from an analysis of the tomcat
4

 image.
The output of Grype provides detailed information about vulnerabilities and related

artifacts. Outline of the sections present in the JSON output of Grype tomcat image
analysis consists of parts described in the following sections.

Vulnerability Information

• id - C V E identifier for the vulnerability.

• dataSource - source of vulnerability information.

• namespace - namespace providing additional information about the vulnerability.

• severity - severity level of the vulnerability.
3

https: //github.com/anchore/grype
4

https: //hub.docker.com/_/tomcat/

35

• urls - URLs providing additional details or references related to the vulnerability.

• cvss - Common Vulnerability Scoring System metrics if available.

• fix - information about fixes for the vulnerability.

• advisories - advisories related to the vulnerability.

Avulnerability example from the tomcat image is shown in Listing 4.5.

1 "vulnerability": {

2 "id": "CVE-2022-3715",

3 "dataSource": "http://people.ubuntu.com/~ubuntu-security/

4 cve/CVE-2022-3715",

5 "namespace": "ubuntu:distro:ubuntu:22.04",

6 "severity": "Low",

7 "urls": [

8 "http://people.ubuntu.com/~ubuntu-security/cve/CVE-2022-3715"

9] ,
10 "cvss": [] ,

n "fix": {

12 "versions": [] ,

13 "state": "not-fixed"

14 } ,
15 "advisories": []

16 >

Listing 4.5: A vulnerability example from the tomcat image.

Related Vulnerabilities

Information about vulnerabilities related to the main vulnerability. For each related vul
nerability, the fields are the same as for the main vulnerability. A relatedVulnerabilities
example from the same tomcat image is shown in Listing 4.6.

1 "relatedVulnerabilities": [

2 {

3 "id": "CVE-2022-3715",

4 "dataSource": "https://nvd.nist.gov/vuln/detail/CVE-2022-3715",

5 "namespace": "nvd:cpe",

6 "severity": "High",

7 "urls": [

8 "https://bugzilla.redhat.com/show_bug.cgi?id=2126720"

9] ,
10 "description": "A flaw was found in the bash package, where

n a heap-buffer overflow can occur in valid

12 parameter_transform. This issue may lead

13 to memory problems.",

14 "cvss": [

15 {

36

http://people.ubuntu.com/~ubuntu-security/
http://people.ubuntu.com/~ubuntu-security/cve/CVE-2022-3715
https://nvd.nist.gov/vuln/detail/CVE-2022-3715
https://bugzilla.redhat.com/show_bug.cgi?id=2126720

16 "source": "nvd@nist.gov",

17 "type": "Primary",

18 "version": "3.1",

19 "vector": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",

20 "metrics": {

21 "baseScore": 7.8,

22 "exploitabilityScore": 1.8,

23 "impactScore": 5.9

24 },
25 "vendorMetadata": {>

26 >
27]
28 >]

Listing 4.6: A relatedVulnerabilities example from the tomcat package.

Match Details

Information about how the vulnerability was matched in the system.

• type - type of match (e.g., exact-direct-match).

• matcher - matcher used for the match.

• searchedBy - information about the search criteria.

• found - information about the artifact found.

A matchDetails example from the same tomcat image is shown in Listing 4.7.

1 "matchDetails": [

2 {

3 "type": "exact-direct-match",

1 "matcher": "dpkg-matcher",

5 "searchedBy": {

6 "distro": {

7 "type": "ubuntu",

8 "version": "22.04"

9 },
10 "namespace": "ubuntu:distro:ubuntu

11 "package": {

12 "name": "bash",

13 "version": "5.l-6ubuntul"

11 >
15
16 "found": {

17 "versionConstraint": "none (deb)",

18 "vulnerabilitylD": "CVE-2022-3715"

19 }
20 }
21]

37

mailto:nvd@nist.gov

Listing 4.7: A matchDetails example from the tomcat package.

Artifact Information

Information about the software artifact affected by the vulnerability,

id - unique identifier of the artifact,

name - name of the software (e.g., bash, binutils).

version - version of the software,

type - type of the artifact (e.g., deb).

locations - locations of the artifact in the system,

language - programming language associated with the artifact,

licenses - licenses associated with the artifact.

cpes - Common Platform Enumeration (CPE) entries associated with the artifact,

purl - package U R L providing a unique identifier for the artifact,

upstreams - information about upstream sources for the artifact.

A n artifact example from the same tomcat image is shown in Listing 4.8.

1 "artifact": {

2 "id": "66e585599046d91e"
)

3 "name": "bash",

4 "version": "5.l-6ubuntul",

5 "type": "deb",

6 "locations": [

7 {
8 "path": "/usr/share/doc/bash/copyright",

9 "layerlD": "sha256:8ceb9643fb36a8ac<snip>"

10 },
11 {
12 "path": "/var/lib/dpkg/info/bash.conffiles",

13 "layerlD": "sha256:8ceb9643fb36a8ac<snip>"

14 >,
15 <snip>

16] ,
17 "language": "",

18 "licenses": [

19 "GPL-3"

20] ,
21 "cpes": [

22 "cpe:2.3:a:bash:bash:5.l-6ubuntul:*:*:*:*:*:*:*"

23] ,

38

24 "purl": "pkg:deb/ubuntu/bash@5.l-6ubuntul?arch=

25 amd64\u0026distro=ubuntu-22.04",

26 "upstreams": []

27 >

Listing 4.8: A n artifact example from the tomcat package.

Understanding the output structures of image scanning tools is essential when designing
and implementing the Vulntron tool. This knowledge enables the creation of more robust
and efficient security solutions, as it allows for the seamless integration of these tools into
the Vulntron tool framework, thus enhancing its capabilities to accurately identify and
mitigate vulnerabilities in containerized environments.

39

Chapter 5

Existing Tools for Vulnerability
Detection

This chapter looks in-depth at a number of well-known solutions that are essential for
locating, evaluating, and dealing with possible security risks in software systems. The
significance of these tools in protecting digital environments against diverse cyber threats is
emphasized by examining their workings and effectiveness. These tools provide an essential
layer of defense that improves overall cybersecurity resilience by helping to identify and
mitigate vulnerabilities.

5.1 Clair

Clair 1 is an open-source project that offers a tool designed to monitor container security
by performing static analyzes of vulnerabilities within applications and Docker containers.

Using API-driven analysis engines, Clair meticulously examines container layers, iden
tifying and assessing known security flaws. This approach enables the creation of services
that facilitate the continuous monitoring of potential vulnerabilities in containerized envi
ronments.

Clair streamlines the process of building robust security measures, ensuring a vigilant
stance against emerging threats throughout the life cycle of containerized applications. This
Section is derived from [12].

5.1.1 How Clair works

Clair operates by meticulously scanning each layer of a container, identifying potential
vulnerabilities that pose a threat. Leveraging databases such as the Common Vulnerabilities
and Exposures (CVE) , as well as repositories from Red Hat, Ubuntu, and Debian, Clair
provides notifications based on known security flaws.

Given that container layers may be shared across multiple containers, a crucial aspect of
Clair's functionality involves introspection to establish an inventory of packages and match
them against known CVEs .

Automatic detection of vulnerabilities not only enhances awareness but also encourages
the adoption of best security practices within development and operations teams. Clair's
real-time awareness of newly announced vulnerabilities, without the need for rescanning,

x

https: //github.com/quay/clair

40

enables swift notification about existing vulnerable layers. Despite its efficiency, Clair
does not dive into nuanced threat analysis, leaving teams responsible for more in-depth
assessments when specific conditions for vulnerability exploitation are a concern.

5.1.2 Clair and Kubernetes

As an integral component of the open-source Project Quay, Clair seamlessly integrates with
Kubernetes, particularly within the Red Hat OpenShift platform. The Container Security
Operator, a Kubernetes Operator, facilitates Clair's deployment and utilization within Red
Hat Quay.

5.1.3 Red Hat Quay

Red Hat Quay 2 [15] is an enterprise-level container registry service designed to support
cloud-native and DevSecOps development models. It enables the efficient construction,
distribution, and secure deployment of containerized applications in global data center
and cloud environments. Red Hat Quay provides robust security features and scalability,
demanded by modern software development needs.

When integrated with Red Hat OpenShift, the Quay Container Security Operator en
hances the security of container image repositories through comprehensive automation,
sophisticated authentication, and robust authorization systems. This integrates seamless
DevSecOps workflows by enabling automatic security scanning of container images, helping
to identify and mitigate potential security vulnerabilities before they are deployed.

Red Hat Quay is versatile, available as a component of Red Hat OpenShift and as a
standalone option. It provides advanced features that include georeplication to support
distributed environments, continuous security scanning of container images, and extensive
support for rollback capabilities. These features ensure that images are not only distributed
efficiently across multiple locations, but also maintained with high integrity, allowing orga
nizations to revert to previous versions of container images if needed.

A key component of Quay's security framework is Clair described in Section 5.1.
Red Hat Quay can be utilized as a hosted service or as a user-installable software,

providing flexibility according to organizational needs. In either deployment model, Red Hat
Quay, in combination with Clair, ensures a secure, efficient, and highly scalable environment
for containerized applications. This makes it an indispensable tool for enterprises aiming
to leverage the power of containerization while maintaining stringent security standards.

5.2 Trivy

Trivy 4 is an essential security tool, focusing on securing software deployment. As more
companies embrace containers like Docker and Kubernetes, Trivy is an open-source vulner
ability scanner that plays a key role in detecting and fixing security risks early on.

By easily integrating into development pipelines, it assists developers in detecting and
addressing vulnerabilities, ensuring that modern software remains robust and secure. Its
versatility is demonstrated by its ability to scan container images, filesystems, both local
and remote Git repositories, virtual machine images, Kubernetes configurations, and AWS

2

https://www.redhat.com/en/technologies/cloud-computing/quay
3

https: //redhatgov.io/workshops/secure_soitware_iactory/labl7/

https://trivy.dev

41

https://www.redhat.com/en/technologies/cloud-computing/quay
https://trivy.dev

Quay Security Scanner has detected 33 vulnerabilities.

Patches are available for 33 vulnerabilities.

* f .

$ - £
A 3 Critical-level vulnerabilities.

' A 12 High-level vulnerabilities.
A 14 Medium-levelvulnerabilities.

4 Low-level vulnerabilities.

Image Vulnerabilities

& Critical java-1.8.0-ocenjdk-rieadless 1:1.8 0.151 -I.bl2.el7 4 0 l:1.8.0.171-7.bl0.e

& critical Java-liimpenJOk 1:1.6 0.151-I.bl2.el7_4 © 1:1.8.0.171-7.bl0.e

& Critical java-l.B.&openjdkHdevel 1:1.8 0.151-I.bl2.el7_4 C 1:1.8.0.171-7.bl0.e

& High java-l.S.O-ocenjdk 1:1.8 0.151 -I.bl2.el7 4 C l:1.8.0.171-8.bl0.e

_

Fit ;ure 5.1: Clair security scan as a part of the Red Hat Quay 3 .

setups. This wide-ranging support underscores Trivy's relevance in diverse development
and deployment scenarios.

When it comes to scanning, Trivy goes beyond a singular focus. It adeptly identifies OS
packages, software dependencies, and Software B i l l of Materials, providing a transparent
view of the software stack. Its meticulous search extends to known vulnerabilities, including
Common Vulnerabilities and Exposures, allowing for proactive risk mitigation.

Trivy doesn't stop at surface-level scans; it delves deeper into Infrastructure as Code
(IaC) issues and misconfigurations, ensuring the integrity of deployment environments. Ad
ditionally, it proves invaluable in locating sensitive information and secrets, thus fortifying
applications against potential security breaches.

Finally, Trivy extends its scope to software licenses, enabling organizations to maintain
compliance and legal standards within their software ecosystems. A n example Trivy security
scan as a part of Gitlab pipeline is in Figure 5.2.

5.3 Nessus

Nessus6, renowned for its network vulnerability scanning capabilities, extends its function
ality to containers, providing a robust means of identifying and mitigating security risks
within containerized environments.

When utilized as a container scanner, Nessus follows a systematic process to analyze and
evaluate the security posture of container images. The workflow encompasses the following
key steps [20]:

1. Image Ingestion. Ingesting container images from designated repositories or other
sources, including container registries, local repositories, or specified network loca
tions.

2. Static Analysis. Conducts a static analysis of the container image, examining its
file system, configuration files, and metadata to identify potential vulnerabilities or
misconfigurations.

5

https: //aquasecur ity.github.io/tr ivy/v0.48/tutor ials/integr at ions/git lab-ci/
6

https: //www.tenable.com/products/nessus

42

http://-I.bl2.el7
http://-I.bl2.el7
http://www.tenable.com/products/nessus

[(|) pessecT] Pipeline #512386 triggered 27secor.dseg;: ny --^ Nate

Update .gitlab-ci.yml

© 1 job Fortrivy-template-poc in 19 seconds

p Late it

^ 3ce5cbdd |? ;

£^ No related merge requests Found.

Pipeline Meeds Jobs 1 Failed Jobs 1 Tests u Code Quality

jT \ Found 6code quality issues
This report contains all Code Quality issues in the source branch.

• Critical -CVE-Z02O-14343-PyYAML - 5.3.1-PyYAML: incomplete Fix For CVE-2020-1747
in src/requirements-txt

• Critical-CVE-2021-22945-curl-7.74.0-1.3*deb11u1 - curtuse-after-Freeand double-Free in MQTTsending
in nginx:1.21.6 (debian 11.2)

• Major- KSV017: Privileged container
i n ku be rne tes/pod.yml

• Major- D5002: root user
inimage/Dockerfile

• Major-AVD-KUBE-0001: Public ingress should not be allowed via network policies
i n terra Form/netwo rk-poli cy. tF:25

• Major-CVE-20Z1-ZZ946- curl - 7.74.0-1.3+deb11 u1 - curl: Requirement to use TL5 not properly enForcedForlMAPrPOP3randFTP protocols
in nginx:1.21.6 (debian 11.2)

Figure 5.2: Trivy security scan as a part of Gitlab pipeline 5.

3. Dependency Scanning. Examine the image dependencies, such as operating sys
tem packages and software libraries, cross-referencing this information with known
vulnerability databases to identify outdated or insecure components.

4. Vulnerability Detection. Utilizes a comprehensive vulnerability database to de
tect known vulnerabilities within the container image, including those with assigned
Common Vulnerabilities and Exposures identifiers.

5. Compliance Checks. Verifies whether the container image adheres to predefined se
curity and compliance standards, considering organization-specific policies, industry-
specific regulations or best practices for secure container configurations.

6. Configuration Assessment. Assesses configuration settings within the container
image, identifying deviations from security best practices, including settings related
to network configurations, user privileges, and access controls.

7. Report Generation. After completing the analysis, generates a comprehensive
report detailing identified vulnerabilities, misconfigurations, and compliance issues,
serving as a valuable resource for security teams and developers.

8. Integration with Workflows. Integrates with existing C I / C D pipelines and or
chestration tools, facilitating the automation of container security assessments and
ensuring that security checks are integral to development and deployment processes.

C ci-test

0 Project inFormation

Qj Repository

n, Mergerequests 2

a§ CI/CD

Pipelines

Editor

Jobs

Schedules

T
1

 Security &. Compliance

QD Deployments

rj£] Monitor

4$ Infrastructure

fi Packages & Registries

Jdi Analytics

X Snippets

J§t Settings

43

ŷtenable.io" | Container Security > images > image Details

l"ol r u b y
1 1 IMAGE

S RISK SCORE 0 ^
V u l n e r a b i l i t i e s M a i w a r e P a c k a g e I n v e n t o r y I d e n t i f i e d C o n t a i n e r s

MAIWARF
1057 Vulnerabilities

SEVERITY VULNERABILITY RÎ K srnRF RELEASE DATE
ACTIONS [>

CVE-201 8-1000005 9,1 January 24

Image I n f o r m a t i o n
CVE-201 9-12450 9.8 May 29

12f923b29579 02/14/20 G 2 9 CVE-2016-6662 9.8 September 20

02/18/20 02/18/20
CVE 2016-0718 9.8 May 26

K U U i S d CVE-2016-10145 9.8 March 24
lib-ary

G B CVE-2016-7568 9.8 September 28

ruby fog1.8
G S 3 CVE-2016-5690 9.8 December 13

Sha256:a6bcr.4fc5204a1d12afba2272caac1b5... B S D CVE-2017-12883 9.1 September 19

Debian CVE-2015-5297 9.8 July 31

CVE-2016-6303 9.8 September 15

I 4 H £ 1 CVE-201 8-1000007 9.8 January 24

E J J E J SNYK-RUBY-RLIRYGFV15lJPnATE-472643 9.8 November 12

Figure 5.3: A n example of a security scan by Nessus .

By following this methodical approach, Nessus, as a container scanner, empowers orga
nizations to proactively identify and remediate security concerns within their containerized
environments, contributing to a more resilient and secure application ecosystem. A n exam
ple of a security scan done by Nessus is in Figure 5.3.

5.4 J frog Xray

JFrog Xray [5] was unveiled at swampUP on May 23, 2016. Wi th this tool, organizations
can now see into the contents of their software components, which is a major step toward
improving the efficacy of DevOps, InfoSec and development teams, as well as optimizing
the continuous delivery (CD) pipeline.

Wi th the introduction of universal impact analysis by JFrog Xray, companies can now
fully comprehend all of their software packages, binary artifacts, and container images,
regardless of the large number and variety of components used in the software build and
distribution process. Strong features like implications for production and continuous inte
gration environments, a comprehensive dependencies graph that makes it simple to identify
vulnerabilities or compliance issues, and an open A P I that supports integration with dif
ferent component scanning technologies for customized scanning capabilities are just a few
of the insightful information that JFrog Xray offers its users.

JFrog Xray provides radical transparency into every component used within an orga
nization by leveraging integration with vulnerability and license compliance databases like

T

https: //www.tenable.com/blog/tenable-bolsters-container-security-to-capture-open-source-

vulnerabilities

44

http://www.tenable.com/blog/tenable-bolsters-container-security-to-capture-open-source-

<§> JfiugXray

Weico me to JFrog Xray

* i. i DuWl t9fW . • i iT'-fireDicwaSttJiXd »U* 1 2017 11:1 JJO »M W O H J B

ACmml NuiiH H fm bulla dncrc-̂ umpw wit WIM H« 1 JOT? lH*:Mi*M «»HHin

A Cfitkil auW 17 rot Buikl iloi is' -f ijmprt U «MM ALJ 1 ifll 7 11;0Q;31 «W
CVfMNW
«^*t. '.B»ni*M.un 1 1 Ijlli-n n.itiBntj[lin [n u i 1 il-ill i< »rair« IK, Jill
rn+nrrlH'V! *li,cr.W--. w - v w ,

A Cfitkil auW 17 rot Buikl iloi is' -f ijmprt

HVI M-l IUI filT'JS
YAIPL it jiiii if. Mtitiiii' -f"iii *• iT-î (r la TDu.iiir'taeLa itiroujr ind M>Mttw*j urn

Artifact ary luunut InBHM Component!

5MM# Ql^) Q

1 349 3 m cam mo rtt-Odern an mm mom Hann • Nrirrjl

• lOrtimorv, ri|e..jpis>a <o"-.rMyis < Itupidi! A '

« (OmrnoniJaromrnonc.o * himrn*l

§ d*UiTi.llmth Jtl m Ucinrul

Dautuiu spt

7 IV Inures. re-»inlr]! Pauu Sytir

m cam mo rtt-Odern an mm mom Hann • Nrirrjl

• lOrtimorv, ri|e..jpis>a <o"-.rMyis < Itupidi! A '

« (OmrnoniJaromrnonc.o * himrn*l

§ d*UiTi.llmth Jtl m Ucinrul

V ÖfDUvTTpTtrtitpEttinm • Nownw*!

•irr. j. •ii.i:h.i,--f..iiTii-r • hiwmii

Support« T»*fmo|öf*i
tP tfcURiilrcrth *pi m Ntirmul

npm g i m i , ™ £ ' B *T

•? iiebiiratrtf[h:apt •

V :|.-- . ii. .••••• • Kowmal

? il.-l lliT'li .'1 ill' • N(lrrr_.l

Figure 5.4: A n example of a security scan by Jrog Xray

VersionEye 8, Black Duck 9 , and Mend 1 0 . Due to its smooth integration with JFrog Artifac-
tory, organizations can perform a thorough metadata analysis and find interdependencies
throughout their entire data. A n example of a security scan done by JFrog Xray is in Figure
5.4.

8

https: //www.versioneye.com/
9

https://www. synopsys.com/software-integrity/software-composition-analysis-tools/black-

duck-sea.html
1 0

https: //www.mend.io/
l x

https: //www.applicationsecsanta.com/jfrog-xray

45

http://www.versioneye.com/
https://www
http://synopsys.com/sof
http://www.mend.io/
http://www.applicationsecsanta.com/jfrog-xray

Chapter 6

Vulntron

As a part of this thesis, a tool Vulntron will be designed and implemented. In its core
the Vulntron tool is an image S B O M vulnerability scanner and analyzer based on Syft and
Grype, with a reporting UI using the DefectDojo reporting system 1 that will run inside the
Red Hat OpenShift cluster.

6.1 Design

Vulntron tool will operate in two distinct modes.

Kafka mode. Firstly, it will facilitate the creation of a Kafka listener configured to
monitor a specific topic, capturing and consuming messages. Upon detection of a new
image build message, the tool initiates a security scan for the specified image. Once the
scan is complete, the results, accompanied by a timestamp, are stored in the database. In
the event of subsequent image pushes occurring within the next 24 hours, an automatic
rescan is triggered. Alternatively, if the 24-hour timer expires without new image activity,
a rescan will be initiated.

In summary, the Kafka mode is designed to monitor a specific Kafka topic for messages
indicating new image builds. The workflow is as follows:

1. Capture messages signaling the creation of new images.

2. Initiate security scans for the identified images.

3. Store scan results with timestamps in the database.

4. Trigger automatic rescans within a given time frame if new images are pushed or upon
timer expiration.

Automatic mode. In the automatic mode, the Vulntron tool functions autonomously
to monitor and scan images within a designated namespace, without relying on Kafka
messages. It dynamically retrieves information on all images utilized in deployments within
the namespace by employing Red Hat OpenShift A P I interface. The description will be
retrieved using A P I interface similar to the Red Hat OpenShift C L I describe commands.
Subsequently, the tool parses the obtained output and proceeds to perform scans on all

x

https: //www.defectdojo.org/

46

http://www.defectdojo.org/

parsed images. The steps, mirroring those in the Kafka scan, involve storing the scan results
with timestamps in the database. This process ensures a comprehensive and automated
assessment of images within the specified namespace, contributing to a proactive security
stance.

To summarize, the Automatic mode will autonomously scan images within a designated
namespace without relying on Kafka messages but only on the specified cluster, compared
to Kafka mode, that will be more focused on collecting images from optionally more than
one cluster. The Automatic mode workflow is as follows:

1. Utilize the Red Hat OpenShift A P I to retrieve information on images in deployments
within the namespaces within the cluster.

2. Parse the output to identify and capture all images.

3. Configure image scanners that should be used to scan the captured images.

4. Configure notifications and channels that should be used to notify interested teams
(eg. developers, quality engineers, product security team, etc.) about found vulnera
bilities.

5. Conduct image analysis scans for the captured images using the selected scanners.

6. Store scan results in the database, following the same process as in the Kafka Mode.

7. Execute optimization procedures such as vulnerability deduplications and vulnerabil
ity reduction inside the database and skipping scans of already scanned images.

Figure 6.1 shows a high-level overview of the integration of the Vulntron tool inside the
Red Hat OpenShift cluster.

Figure 6.1: A high level overview of the Vulntron tool integration, (created by the author)

47

6.2 Implementation

Implementation was done using Golang vl.21.8 2 with Makefile to leverage the automatic
build, run and clean process. The following steps cover mostly the Automatic mode as the
Kafka mode was postponed, as explained in Section 6.7.

6.2.1 Project structure

A break down of the project file structure within the Vulntron directories with a short
description of each folder or file:

• bin/ Contains executable files after they are build.

— clean dd db Script to clean the database.

— vulntron Main executable for the Vulntron tool.

• config.yaml Configuration file for setting up the project environment.

• deployment .yaml Y A M L file for deploying the application in a containerized envi
ronment.

• Dockerfile Dockerfile to build the production ready image.

• go.mod and go.sum Define the module's properties and dependencies.

• internal/ Application-specific modules.

— config/

* config.go Manages configurations loaded from config.yaml file.

— utils/

* utils.go Provides utility functions used across the project.

— vulntron auto/

* vulntron auto.go Handles the Automatic mode in the Vulntron system.

— vulntron dd /

* vulntron dd.go Manages DefectDojo reporting system A P I calls.

— vulntron grype/

* vulntron grype.go Implements the Grype tool vulnerability scanner used

by the Vulntron tool.

— vulntron kafka/

* vulntron kafka.go Handles the Kafka mode in the Vulntron tool.

— vulntron scanner stats/

* vulntron scanner stats.go Gathers and reports scanning statistics.

— vulntron syft/

* vulntron syft.go Implements the Syft tool scanner for S B O M generation
used by the Vulntron tool.

2

https: //go.dev/doc/devel/release#gol.21.minor

18

— vulntron trivy/

* vulntron trivy.go Implements the Trivy tool scanner for detecting vul
nerabilities used by the Vulntron tool.

. L I C E N S E The license file of the project.

• main.go The main entry point of the application.

• Makefile Scripts to automate the compilation and installation of the project.

• R E A D M E . m d Provides a detailed description of the project, its dependencies, and
how to run it.

• scripts/

— clean dd db.go Go script for cleaning the database, part of the automation
scripts.

6.2.2 Data preparation

The description of the namespace in JSON format can be retrieved from the Red Hat
OpenShift cluster by executing the following command:

$ oc get pod -o json -n <name of namespace>

The JSON output file structure with descriptions of each field:

• apiVersion: (String) Specifies the A P I version, e.g., vl.

• items: (Array) A list of items, each representing a Red Hat OpenShift Pod configu
ration.

— apiVersion: (String) Specifies the A P I version of an item.

— kind: (String) The type of the Red Hat OpenShift resource, e.g., Pod.

— metadata: (Object) Metadata of the Pod.

* name: (String) The name of the Pod.
* namespace: (String) The namespace of the Pod.
* labels: (Object) Key-value pairs that are attached to objects, often used to

organize and to select subsets of objects.
* annotations: (Object) Key-value pairs that store non-identifying auxiliary

data, used by tools and libraries.
— spec: (Object) J S O N list with the specification of the desired behavior of the

Pod.

* containers: (Array) A list of containers included in the Pod.
• name: (String) The name of the container.
• image: (String) The Docker image for the container.
• ports: (Array) The ports exposed by the container.
• env: (Array) Environment variables available to the container.
• resources: (Object) The resources required by the container.
• volumeMounts: (Array) Mount paths for volumes.

49

* volumes: (Array) Volumes that can be mounted by containers.

— status: (Object) Most recently observed status of the Pod.

* phase: (String) The phase of the Pod (e.g., Running).
* conditions: (Array) The current service state of the Pod.
* containerStatuses: (Array) A list of containers and their status.

• containerlD: (String) A unique ID of the container.
• image: (String) The image of the container.
• imagelD: (String) The image of the container with its hash.
• name: (String) The name of the image.
• ready: (Bool) Information if the container is ready to be used.
• started: (Bool) Information if the container has already started.
• state: (Object) The state of the container with the time of start.

* hostIP: (String) IP address of the host to which the Pod is assigned.
* podIP: (String) IP address assigned to the Pod.
* startTime: (String) Start time of the Pod.

Since other deeper level fields are not used in the implementation, they have been
purposefully left out of the previous description. Details are limited to the most important
and relevant components.

In order to facilitate more effective scanning and eliminate the need to pass the entire
JSON file through the program, the implementation uses data structures to store informa
tion about each namespace.

The Podlnfo structure contains the information about each Pod and the structure is
shown in Listing 6.1.

1 type Podlnfo struct {

2 Pod_Name string 'json:"Pod_Name"'

3 Namespace string 'json:"Namespace"'

4 StartTime string 'json:"StartTime"'

5 Containers []Containerlnfo 'json:"Containers"'

6 >

Listing 6.1: Podlnfo structure.

Likewise, information about every container in a Pod is stored in the Containerlnf o
structure that is shown in Listing 6.2.

1 type Containerlnfo struct {

2 Container_Name string 'json:"Container_Name"'

3 Image string 'json:"Image"'

4 ImagelD string 'json:"ImagelD"'

5 >

Listing 6.2: Containerlnfo structure.

Each Podlnfo contains information about the namespace to which it belongs. Names
paces are not implemented as standalone structures. Data about the Pod's name, start
time, and containers are also stored in this structure.

50

Information such as image name, image ID, and container name are all contained in the
structure Containerlnf o that holds details about individual containers. When an image is
tagged as image: latest, it is not helpful for the image scanning process as there is no exact
identification of this image, so both fields Image and ImagelD are included. Each image is
uniquely identified by its hash and image name, which are provided in the ImagelD option.
Figure 6.2 shows the source of each data field that was loaded into the structures.

{}

"apiVersion": ""
"items": [{

"apiVersion":
"kind": 11",
"metadata": {

'"name": "",
"namespace1':
" l a b e l s " : {}
"annotations

}.
"spec": {

"containers"
"name" :
"image": "",
"ports": [{}],
"env": [{}],
"resources": {},
"volumeMounts":

)].
"volumes": [{}]

}.
"status": {

"phase": "",
"conditions": [{}]
"containerStatuses

"containerlD": "
"image": "", —

[{}]

"ready": "",
"st a r t e d " : "
"sta t e " : {}

)].
"hostIP" : "",
aodIP"

}]

type Podlnfo s t r u c t {
Pod_Name s t r i n g '] ssn "Pod_Name"'
Namespace s t r i n g '] son "Namespace"'
StartTime s t r i n g ' j son "StartTime"'
Containers []ContainerInfo

}

"] son "Containers"'

type Containerlnfo s t r u c t {
Container_Name s t r i n g ' j son "Container_Name"'
Image s t r i n g ' j son "Image"1

ImagelD
}

s t r i n g ' j son "ImagelD" 1

Figure 6.2: Relation between the cluster description output and custom data structures,
(created by the author)

6.2.3 Scanning

After the data are ready, the first step is to set up a scanning environment that is specific
to the selected scanning types.

The Vulntron tool is both a vulnerability collector and a vulnerability scanner. It
gathers and filters the results of every test scan and then loads them into the DefectDojo
reporting system. Through this interface, vulnerabilities can be managed, tickets can be
automatically generated and loaded into Jira using webhooks, and notifications about crit-

51

ical vulnerabilities in particular namespaces can be sent automatically to designated Slack
channels.

Modularity

Through the following steps, a new scanning tool may be imported into the Vulntron tool
which makes it easier to automate the execution of scans and loading the results into the
DefectDojo reporting portal. The steps £1X6 ctS follows:

1. Add the necessary configuration for the new scanning tool into config.yaml file.

2. Create an entry inside the config.yaml file within scan_types list in the format
shown in Listing 6.3. The following are fields inside new scanner configuration.

• name (string) - the name of the scan type compatible with the DefectDojo
supported scan types 3.

• engName (string) - the name of the imported engagement. It should be clear
what type of scans this engagement contains. There are no strict naming rules.

• function (string) - the name of the scanning function that must be imported
into the vulntron_auto.go file and must match the schema shown in Listing
6.4. This function should accept two arguments: configuration (which could
require adjustments in other configuration structures within config.yaml) and
image ID (a string containing data about the image to be scanned). The function
must return either an error, if the scanning or any setup steps fail, or a string
that specifies the path to the scan results.

• enabled (bool) A switch that disables the scan type from being executed.

3. Add the entry into scanFunctionMap that will map the real function to the one from
configuration file as shown in Listing 6.5.

If all steps are correctly implemented, the automated scan should recognize the new
scan type, execute the scan on the selected images, and import the scan results under the
selected engagement name within each scanned namespace.

1 scan_types:

2 - name: "Anchore Grype"

3 engName: "Grype_eng"

4 function: "RunGrype"

5 enabled: true

Listing 6.3: A scan type import example.

func RunTrivy(cfg config.Config, imagelD string) (string, error)

Listing 6.4: A scan function signature.

3

https://defectdojo.github.io/django-DefectDojo/integrations/parsers/file/

52

https://defectdojo.github.io/django-DefectDojo/integrations/parsers/file/

var scanFunctionMap = map[string]ScanFunction{

"RunGrype": vulntron_grype.RunGrype,

/ / "RunAnotherScanner": vulntron_other.RunAnotherScanner
}

Listing 6.5: A scan function map example.

6.2.4 DefectDojo reporting

Scan reports are automatically imported into the DefectDojo reporting system. To ensure
that the scans are correctly imported, the Vulntron tool ensures, before each scan, that the
desired settings are set within the DefectDojo instance used.

Environment variables that are needed for the Vulntron tool to operate:

• DEFECT_DOJO_USERNAME Username of the user that will own and import the scans
into DefectDojo reporting system.

. DEFECT_D0J0_PASSW0RD Password of the DEFECT_D0JO_USERNAME user. This value
should be filled inside Secrets and loaded into environment within the Red Hat Open-
Shift cluster.

• DEFECT_D0J0_URL The U R L of the DefectDojo reporting system that recognizes the
user specified above and where the scans results should be uploaded.

. DEFECT_DOJO_SLACK_CHANNEL The slack channel that should be notified by Defect
Dojo reporting system.

• DEFECT_DOJO_SLACK_OAUTH The slack DefectDojo reporting system bot token to ac
cess the notification channel.

DefectDojo internal setup

Using the credentials provided in the environment variables, the Vulntron tool will request
an A P I token on the specified U R L .

After a successful A P I token retrieval, all of the next A P I calls will be performed using
the retrieved A P I token.

The file config.yaml in the section defect_dojo contains a configuration for the De
fectDojo reporting system, which should be set before each scanning session to ensure that
the desired behavior will be configured. The current complete DefectDojo reporting system
configuration is shown in Listing 6.6.

1 defect_dojo:

2 enable_deduplication: true

3 delete_duplicates: true

4 max_duplicates: 0
5 slack_notifications: true

Listing 6.6: The default DefectDojo reporting system configuration.

A l l currently used system settings options are accessible in the UI of DefectDojo re
porting system navigating to System Settings page. There is also an option to change the
settings using an A P I call to GET /api/v2/system_settings/ endpoint.

The settings that are set by default using the Vulntron tool are:

53

• enable deduplication - enable finding duplicate vulnerabilities after importing

automatically by the DefectDojo reporting system.

• delete duplicates - found duplicate vulnerabilities will be removed.

• max duplicates - the number of duplicates to keep before deleting.

• slack notifications - a switch to enable sending Slack notifications. For more
information, refer to Section 6.2.4.

Adding new system settings for the DefectDojo reporting system requires updating the
section above in config.yaml and updating the function UpdateSystemSettings() within
the vulntron_dd. go file to include the newly added configuration.

Internal notifications

The notification or alerts in terms of the DefectDojo reporting system are enabled by
default and can be manually configured using the UI interface by navigating to Settings
-> Notifications on the sidebar.

Slack integration

Slack integration must be installed as an application in the selected Slack workspace fol
lowing the DefectDojo reporting system Slack integration tutorial4.

The O A U T H A P I token and channel name should be stored as a Secret and loaded into
the environment as an environment variable, as mentioned in Section 6.2.4.

The types of selected notifications that should be received and also the types of alerts
that should be shown inside the DefectDojo reporting system is configurable by navigating
to Settings -> Notifications as shown in Figure 6.3.

The types of notifications are customizable for individual users, but for the Vulntron
tool use case, the System notification settings should be changed.

After the Slack notification on-boarding, the automatic step in scanning pipeline takes
care of checking the System Settings of DefectDojo reporting tool, and if the settings were
changed, they are automatically updated to match the configuration from the environment
variables.

A successful on-boarding of the Slack notifications to scan an image using two scanning
tools can be seen in Figure 6.4.

f DefectDojo A P P J : I ^ P M

1 env-ephemeral-dmlfql-a503bdl2-connect (Anchore Grype) results have been uploaded. They can be viewed here: http://localho5t:30S0/test/1981

env-ephemeral-dmlfql-a503bdl2-connect (Trivy Scan] results have been uploaded. They can be viewed here: http://localhost:S0B0/test/19S2

Figure 6.4: A n automatic Slack notifications for importing image scans.

Management scripts

The process of unlinking and removing all scans from all the engagements, and engagements
from product types, takes a long time. It became necessary to automate the entire database
clearing process during the Vulntron tool's development and testing phase to save time
compared to the manual method.

4

https: //support.defectdojo.com/en/articles/8944899-configure-a-slack-integration

54

http://localho5t:30S0/test/1981
http://localhost:S0B0/test/19S2
http://defectdojo.com/en/articles/8944899-configure-a-

Home Application settings Personal notification settings

Personal Notification Settings
Scope O

Personal

These notification settings apply globally to all products
that you have read access to and will be sent to you only.

If yoL wait o i ly not ficat o i s for certa r prod jets you should
disable everything here and enable notifications on those
products.

Event Slack Alert

Product type added D Q
Product added D •
Engagement added D •
Test added D •
Scan added 0 D •
Scan added empty Q • •

Figure 6.3: Notification selection for System administrators.

For this purpose, a script scripts/clean_dd_db.go was created. The script is built
using the command make build-clean-db and can be run using the command from the
root of the project (which is the default location when interacting with a Pod in the Red
Hat OpenShift debugging cluster) ./bin/clean_dd_db.

The script leverages the environment variables similar to the main Vulntron application
and after the command finishes successfully all data should be removed. This process may
take some time to complete.

A n example of logs from the database cleaning process are shown in Figure 6.5.

6.3 Usage

The Vulntron tool was developed to be portable and to be used in the Red Hat OpenShift
cluster as a global image security scanner and reporter, and also locally for individual
security personnel to monitor the selected Red Hat OpenShift cluster from a local computer
and take appropriate actions based on the results.

6.3.1 Local setup

To setup the Vulntron tool locally, the following steps are required:

1. Set up the DefectDojo reporting system.

• Download the DefectDojo reporting system from Gi tHub 5 and install it following
the provided instructions.

5

https: //github.com/Def ectDojo/django-Def ectDojo

55

EBB
Pods Pod details

p vulntron-769d4b5b4b-svfnt c Running

Details Metrics YAML Environment Logs Events Terminal

Connecting to ^ vulntnon

/ # ./app/biri/cleari_dd_db
2024/04/30 14:35:05 Starting deleting product types...
2024/04/30 14:35:05 Product type with ID 501 deleted successfully
2024/04/30 14:35:06 Product type with ID 870 deleted successfully
2024/04/30 14:35:06 Product type with ID 609 deleted successfully
2024/04/30 14:35:12 Product type with ID 840 deleted successfully
2024/04/30 14:35:14 Product type with ID 889 deleted successfully
2024/04/30 14:35:16 Product type with ID 590 deleted successfully
2024/04/30 14:35:41 Product type with ID 1280 deleted successfully
2024/04/30 14:35:46 Product type with ID 695 deleted successfully

Figure 6.5: Database cleaning logs using the clean_dd_db script.

• Start the DefectDojo reporting system on loaclhost and port 8080 using the
command ./dc-up-d.sh postgres-redis.

• Set the local environment variables DEFECT_D0 JO_USERNAME,
DEFECT_D0J0_PASSW0RD, DEFECT_D0J0_URL, DEFECT_D0JO_SLACK_CHANNEL

and DEFECT_D0J0_SLACK_0AUTH as described in Section 6.2.4.

2. Login into the desired Red Hat OpenShift cluster and retrieve a token from a user
or service account. The user or service account should has cluster administrator
privileges on level of listing the Pods and accessing the secrets needed.

3. Set the local environment variables for the Red Hat OpenShift access:

• 0C_T0KEN A n Red Hat OpenShift token used to access the cluster.

• OC_NAMESPACE_LIST A comma separated list of namespaces to be scanned.

• OC_NAMESPACE_REGEX A regex to match the namespaces to be scanned. If not
empty the regex takes precedence before the OC_NAMESPACE_LIST.

4. Update the config.yaml configuration file present in the program root folder to
match the desired criteria.

5. Build the Vulntron tool binary from the root folder with make build.

6. Run the program manually using ./bin/vulntron -config config.yaml.

7. Or run and build the program automatically with make run.

56

A n example of setting all the variables that can be used in the setup steps is shown
in Listing 6.7. This setup will scan all ephemeral namespaces in the selected cluster that
follows the specified regex and store the scans in the DefectDojo reporting system running
on localhost:8080.

export DEFECT_DOJO_URL="http://localhost:8080"
export DEFECT_D0J0_USERNAME="admin"

export DEFECT_D0J0_PASSW0RD="password"

export DEFECT_D0J0_SLACK_0AUTH="<oauth token>"

export DEFECT_DOJO_SLACK_CHANNEL="vulntron-notifications"

export 0C_T0KEN="<Red Hat OpenShift token>"

export OC_NAMESPACE_REGEX=""ephemeral-[a-zA-ZO-9]{6}$"

Listing 6.7: A n example setup of enviroment variables for local deployment.

6.3.2 Red Hat OpenShift Setup

Steps to set up and install the Vulntron tool in the Red Hat OpenShift cluster are similar
to the local setup:

1. Create a new namespace that will store the Pods of the Vulntron tool and the De
fectDojo report portal.

2. Install the DefectDojo reporting system on the desired cluster in the newly created
Vulntron namespace. Installation may be done using Helm charts6 or any other
method mentioned in the installation guide7.

3. Get access to an OpenShift user or service account. The user or service account
should has cluster administrator privileges on level of listing the Pods and accessing
the Secrets needed.

4. Set up the secrets containing all the environment variables mentioned in steps for
a local deployment in Section 6.3.1.

5. Edit the last line of the provided Dockerf i l e in the project root with time interval
that the Vulntron tool should run in. The default value is 2 hours.

6. Update the second part of the Dockerf i l e to contain the binaries needed for addi
tional scanners besides Grype, if they use not only Go libraries but also C L I tools.

7. Build the Vulntron tool image using the provided Dockerf i l e . The Dockerf i l e will
firstly build the binary using the golang: alpine image that contains all the needed
binaries. After the binary is built the whole project is copied to alpine image and
this process will greatly reduce the size of the image from 2GB or more, to less then
200MB.

8. Tag and store the created image on an image storage platform (eg. Quay.io).

9. Edit the deployment. yaml hie in the project root to match the created Secretes from
step 4 and specify the path to the Vulntron tool image.

6

https: //github.com/Def ectDojo/django-Def ectDojo/tree/dev/helm/def ectdojo
T

https://defectdojo. github.io/django-DefectDojo/getting_started/installation/

57

http://localhost:8080
https://defectdojo

10. Login into the Red Hat OpenShift cluster from the local terminal and select the
working Vulntron namespace with DefectDojo reporting system running.

11. Deploy the Vulntron tool to the Red Hat OpenShift cluster using the command oc
apply -f deployment.yaml.

If everything
A n example on a

is set up correctly, the Vulntron tool will begin the scanning
successful deployment is shown in Figure 6.6.

process.

Project: vulntron » Application: All applications •

Display opt ions » Filter by resource » T Name » Find by name... 0 o

©
D defect..ervice i | | | | o vulntrnn J | [DC postqresql | j |

®
D celeryworker ; D celerybeat •

Figure 6.6: Vulntron tool deployed in the Red Hat OpenShift cluster.

6.4 Performance and Resource Management

During the development of the Vulntron tool, a consideration to resource management was
given while deploying within the Red Hat OpenShift cluster. It is important that the tool
does not consume all available resources, as security scanning is not the primary function
of the cluster.

The first scanning strategy was to scan every image in every Pod. This method would
only increase the database size without adding any value, so it was determined to be
inefficient. A more efficient solution was to create a system to search for duplicate images
before scanning.

Another boost in performance was supposed to be seen by using the built-in Golang
concurrency, but this was discarded as concurrency during the scanning phase would be
resource intensive and the processes would be rate limited by the Red Hat OpenShift cluster
management.

The time gain of using concurrency during the Vulntron tool setup phases would be
negligible, so it was omitted as well.

A problem that may occur during the local scanning is that the pulled images are
associated with docker images and that is why they are not cleaned by the Grype scanner.
To solve this issue, it is recommended to remove unused images regularly using the command
docker system prune - a -f. This problem does not occur when the Vulntron tool is

58

deployed inside the Red Hat OpenShift cluster as the deployed image does not contain the
docker binary and the images are cleaned automatically by the scanner.

The monitoring of memory resources during one scan pass is shown in Figure 6.7. On
the left side of the graph the memory usage increases as images are being pulled to be
scanned. Moving to the right, there are dips when the images are being cleaned and the
vulnerability deduplication takes place.

Metrics

Figure 6.7: Memory resource monitoring during one scan.

6.5 Testing

During the whole development phase the testing was being done in both local and ephemeral
cluster environments. The ephemeral cluster is mainly used to test Merge Request build
images (which are created automatically for each new Merge Request) and testing images,
so it was expected that the number of vulnerabilities discovered may be higher than in
a stage or a production environment.

The testing was carried out on weekends and also during peak times to ensure that
the scanning process will not interfere with the regular functionality of the cluster. Peak
times were chosen by the largest number of namespaces reserved, which was more than 100.
Listing 6.8 shows the result of a scan performed during peak time. Observing the memory
and C P U resources shows that the Pod was not being rate-limited based on the fact that
the implementation was built to do the scans sequentially.

2024/05/02 17:13:51 vulntron_scanner_stats.go:36: Scanning complete:

Scanned 452 pods with 582 images using 2 scanning tools

in 49m59.86029193s

2024/05/02 17:13:51 vulntron_auto.go:92: Scanning complete!

Every 7200.0s: /app/bin/vulntron —config /app/config.yaml

Listing 6.8: A scan pass done during peak time.

59

The deployment was observed over an extended period and the measured values were
reviewed with the lead engineers and management. It was concluded that these values are
suitable for the objectives of this project.

6.6 Testing Evaluation

By implementing the Vulntron tool within the Red Hat OpenShift ephemeral cluster en
vironment, the system was configured to conduct a scan of the entire cluster at two-hour
intervals over a span of nearly two weeks, as documented at the time of writing. During
this period, the Vulntron tool utilized two image scanning tools, Grype and Trivy, enabling
the detection of more than 97,000 potential vulnerabilities. The report of this monitoring
is shown in Figure 6.8 as a dashboard view of the DefectDojo UI.

It is important to note that a portion of the detected vulnerabilities were duplicates:
after consolidating these findings, the adjusted total was approximately 51,000 unique vul
nerabilities. This figure does not represent the conclusive count, as a significant number of
these vulnerabilities have either been previously resolved or have been classified under the
'will not fix' category, indicating a deliberate decision to not address these issues due to
various considerations such as risk assessment outcomes or the obsolescence of the affected
components.

6.7 Future Improvements

The implemented part of the Vulntron tool will serve as a base and an example of the
individual scanner capabilities and the DefectDojo reporting portal features. After the
Vulntron tool is approved, it will start to be adopted by specific teams and more new
features will be added.

Kafka mode. There was a lot of interest in the Vulntron tool during its initial design
phase from a team that was keen to use Kafka messages to scan new images. However, the
ongoing dynamic processes at Red Hat had an effect on this team. As such, there has been
a temporary delay in the development of the Kafka mode of Vulntron.

The team is in the process of switching between two versions of Kafka, and the inte
gration of the Vulntron tool cannot be done effectively due to the instability of the current
environment.

Having that in mind, the Vulntron Kafka mode is currently effective in subscribing to
the selected topic and parsing the messages from the subscribed topic. As the scanning
logic was designed to have a slight differences from the Vulntron automatic mode, it is
prepared for future completion by leveraging some functionality from the Automatic mode.

Jira automation. As the automated Slack messages are created during the scanning
process, the automatic creation of Jira tickets is planned for the future. The tool may
be deployed in the production environment, and it is necessary to comply with the Red
Hat internal security compliance structures. Currently, the Vulntron tool is being reviewed
with no end date specified, so that is why the Jira on-boarding was not implemented in
this version.

60

• DEFECT DDJD

M
View Engagi View Engagement Details

51710
Active Engagements

V 423
Closed In Last Seven Days

View Finding Details 0

97057
Last Seven Days

View Finding Details 0

s/ 0
Risk Accepted In Last Seven Days

View Finding Details o

Historical Finding Severity

Weekly activity, displayed by day, of findings you reported.*

• «
11/12 11/19 11/26 12/D3 13/10 13/17 13/31 13/31 01/117 01/1-1 D1.-2"]1:2o 32:1" 32:1 o ZJ2/3o 03/03 03/10 03/17 03/24 03/31 04/07 0=1/14 0-5/21 04/33 05/06 05/12
2023 2023 2023 2023 2023 2023 2023 2023 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024 2024

Week begins on date displayed.

' Weeks are only displayed if findings are available.

Figure 6.8: The DefectDojo vulnerability report of the ephemeral cluster scanning

61

Vulnerability grouping. The point of the last step of the Vulntron tool is to report the
vulnerabilities using the selected channel i.e either a Slack notification or automatic Jira
card creation.

During the testing phase, the scans of more than 1000 Pods yield more than 65000
vulnerabilities in the criticality range from Informational to Critical. It would be unfeasible
to handle that many vulnerabilities and create cards for each of them.

The requirement is to group them by C W E , create a Jira card for each C W E and assign
it to teams that own the vulnerable namespace.

A specific reporting procedure will be discussed after the Vulntron tool is on-boarded
with the Management and Product security teams.

62

Chapter 7

Conclusion

This thesis focuses primarily on the design, development, and implementation of the Vul-
ntron tool as well as the integration of the tool into the available environment within the
Red Hat company using the Red Hat OpenShift. Vulnerability assessment within container
images is a complex field to study as there are many hidden layers that need investigating.
The study of the given subject proved to be very beneficial in the development process
and also studies of the current state of container security resulted in several areas that will
have to be studied and improved in the future, in particular the responsive scanning and
reporting.

Contributions. In general, the main output of this work is the Vulntron tool, which
extends the security initiative of containerized environments by automatically detecting
vulnerabilities and reporting them. The introductory chapters of this thesis contribute
to an overall understanding of containers, container orchestration and container security in
an extensive analysis of the vulnerabilities that affect container images and the effectiveness
of existing tools to manage these vulnerabilities.

Limitations and Future Work. While the Vulntron tool offers a solid framework in the
area of vulnerability assessment, there is still a need for more improvements and features.
Future work may include extending its coverage to other types of vulnerability scanners and
adding more features based on the DefectDojo reporting system, as the implementation of
the Vulntron tool explores only a small part of them. There are also potential upgrade
opportunities in terms of increasing the performance of the Vulntron tool in larger clusters
and more complex environments.

Final Thoughts. Within the software development lifecycle, the increase in container
technology usage requires improvements in security measures in multiple areas. This thesis
has laid the foundation for further research and development in the area of container image
analysis and security, which is really important to ensure that not only the Red Hat products
but also other software products are safe from vulnerabilities and attackers.

63

Bibliography

[1] A B H I S H E K , M . K . ; R A O , D . R. and S U B R A H M A N Y A M , K . Framework to Deploy
Containers using Kubernetes and C I / C D Pipeline. International Journal of Advanced
Computer Science and Applications. The Science and Information Organization,
2022. vol. 13, no. 4. Available at: http://dx.doi.org/10.14569/IJACSA.2022.0130460.

Online; Accessed: Nov 2023.

[2] D U N C A N , J . and O S B O R N E , J . OpenShift in Action. Manning Publications, 2018.
ISBN 9781617294839 .

[3] F R E Y B U R G , P. Module Orchestration of Multitenant Systems. Brno, Czech Republic,
2023. Master's Thesis. Brno University of Technology, Faculty of Information
Technology. Supervisor A L E Š S M R Č K A , P. Available at:
https://www.vut.cz/studenti/zav-prace/detail/142729. Online, Accessed: Apr i l
2024.

[4] H U M A Y U N , M . ; N I A Z I , M . ; J H A N J H I , N . ; A L S H A Y E B , M . and M A H M O O D , S. Cyber
Security Threats and Vulnerabilities: A Systematic Mapping Study. Arabian Journal
for Science and Engineering, Jan 2020, vol. 4 5 . Available at:
https://doi.org/10.1007/sl3369-019-04319-2. Online; Accessed: Dec 2023.

[5] J F R O G . Introducing JFrog Xray: Enhancing Visibility and Security in Software
Component Management. Press Release, 2016 . Available at:
https://www. j frog.com/press-releases/jfrog-introduces-jfrog-xray-

unprecedented-visibility-software-components/. Online, Accessed: Apr i l 2024.

[6] K U B E R N E T E S A U T H O R S . Kubernetes Documentation. 2022 . Available at:
https://kubernetes.io/docs. Online, Accessed: Apr i l 2024.

[7] L O V E , C. and V Y A S , J . Core Kubernetes. Manning Publications, 2022 . ISBN
9781617297557 .

[8] M E L L , P.; S C A R F O N E , K . and R O M A N O S K Y , S. The Common Vulnerability Scoring
System (CVSS) and its Applicability to Federal Agency Systems. IR 7435. NIST,
2007. Available at: https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7435.pdf.

Online; Accessed: Nov 2023.

[9] M O R A V C I K , M . ; S E G E C , P.; K O N T S E K , M . ; U R A M O V A , J . and P A P A N , J . Comparison
of L X C and Docker Technologies. In: 2020 18th International Conference on
Emerging eLearning Technologies and Applications (ICETA). 2020, p. 4 8 1 - 4 8 6 . ISBN
978-1-6654-2226-0 .

64

http://dx.doi.org/10.14569/IJACSA.2022.0130460
https://www.vut.cz/studenti/zav-prace/detail/142729
https://doi.org/10.1007/sl3369-019-04319-2
https://www
https://kubernetes.io/docs
https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.7435.pdf

[10] N A T I O N A L I N S T I T U T E O F S T A N D A R D S A N D T E C H N O L O G Y . Guide for Applying the
Risk Management Framework to Federal Information Systems: A Security Life Cycle
Approach. Special Publication 800-37. U.S. Department of Commerce, National
Institute of Standards and Technology, 2020. Available at:
https: //csrc.nist.gov/publications/detail/sp/800-37/rev-2/f inal. Online,
Accessed: Apr i l 2024.

[11] N T I A M U L T I S T A K E H O L D E R P R O C E S S O N S O F T W A R E C O M P O N E N T T R A N S P A R E N C Y

- F R A M I N G W O R K I N G G R O U P . Framing Software Component Transparency:
Establishing a Common Software Bill of Material (SBOM). National
Telecommunications and Information Administration, November 2019. Available at:
https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf. Online:
Accessed: Nov 2023.

[12] R E D H A T . What is Clair? 2019. Available at:
https://www.redhat.com/en/topics/containers/what-is-clair. Online; Accessed: Dec
2023.

[13] R E D H A T . Container Image Security Vulnerability Whitepaper. 2021. Available at:
https://www.redhat.com/en/resources/container-image-security-vulnerability-

whitepaper. Online, Accessed: Apr i l 2024.

[14] R E D H A T . OpenShift Container Platform Documentation. 2022. Available at:
https://docs.openshift.eom/container-platform/4.15/. Online, Accessed: Apr i l 2024.

[15] R E D H A T . Red Hat Quay Datasheet. 2023. Available at:
https://www.redhat.com/en/resources/quay-datasheet. Online, Accessed: Apr i l 2024.

[16] R E D H A T . What is Vulnerability Management. 2023. Available at:
https://www.redhat.com/en/topics/security/what-is-vulnerability-management.

Online, Accessed: Apr i l 2024.

[17] R I C E , L . Container Security: Fundamental Technology Concepts that Protect
Containerized Applications. O'Reilly Media, 2020. ISBN 9781492056676. Available
at: https://books.google.cz/books?id=74biDwAAQBAJ.

[18] S E R V I C E N O W . What Is Vulnerability Management? 2024. Available at:
https: //www. servicenow.com/products/security-operations/what-is-vulnerability-

management.html. Online, Accessed: Apr i l 2024.

[19] S T A U D E K , J . and H A N Á Č E K , P. Bezpečnost informačních systémů. 1st ed. Praha:
Úřad pro státní informační systém, 2000. ISBN 80-238-5400-3.

[20] T E N A B L E . Nessus Container Security. 2023. Available at:
https://docs.tenable.com/vulnerability-management/Content/ContainerSecurity/

Dashboard.htm. Online; Accessed: Dec 2023.

[21] W O N G , A . Y . ; C H E K O L E , E . G . ; O C H O A , M . and Z H O U , J . On the Security of
Containers: Threat Modeling, Attack Analysis, and Mitigation Strategies. Computers
& Security, 2023, vol. 128, p. 103140. ISSN 0167-4048. Available at:
https: //www.sciencedirect.com/science/article/pii/S0167404823000500. Online;
Accessed: Nov 2023.

65

http://csrc.nist.gov/publications/detail/
https://www.ntia.gov/files/ntia/publications/framingsbom_20191112.pdf
https://www.redhat.com/en/topics/containers/what-is-clair
https://www.redhat.com/en/resources/container-image-security-vulnerability-
https://docs.openshift.eom/container-platform/4.15/
https://www.redhat.com/en/resources/quay-datasheet
https://www.redhat.com/en/topics/security/what-is-vulnerability-management
https://books.google.cz/books?id=74biDwAAQBAJ
http://servicenow.com/products/
https://docs.tenable.com/vulnerability-management/Content/ContainerSecurity/
http://www.sciencedirect.com/science/article/pii/S0167404823000500

