
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

OSLC ADAPTER FOR SOFTWARE ANALYSIS
ADAPTÉR OSLC PRO ANALÝZU SOFTWARU

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. ONDŘEJ VAŠÍČEK
AUTOR PRÁCE

SUPERVISOR ALEŠ SMRČKA, Ing., Ph.D.
VEDOUCÍ PRÁCE

BRNO 2021

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academie year 2020/2021

M a s t e r ' s T h e s i s S p e c i f i c a t i o n |||||||||||||||||||||||||
23337

Student: Vašíček Ondře j , Bc.
Programme: Information Technology and Artificial Intelligence
Specializatio Software Verification and Testing
n:
Title: OSLC Adapter for Sof tware Ana lys is
Category: Software analysis and testing
Assignment:

1. Study OSLC standard, in particular Automation domain defined by OSLC.
2. Analyse the requirements for tools for automatic analysis of software. Design an OSLC

adapter for integration of static and dynamic analysers of software.
3. Implement the adapter design in the previous step.
4. Verify the basic functionality of the adapter using automated tests. Demonstrate the

usefulness of the adapter on different analysers of software (e.g. ANaConDA, Perun,
Valgrind, pylint).

Recommended literature:
• OASIS Standardisation Group. Open Services for Lifecycle Collaboration. https://open-

services.net/
• FIEDOR Jan, MUŽIKOVSKÁ Monika, SMRČKA Aleš, VAŠÍČEK Ondřej a VOJNAR Tomáš.

Advances in the ANaConDA Framework for Dynamic Analysis and Testing of Concurrent
C/C++ Programs. In: Proceedings of 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis. New York: Association for Computing Machinery,
2018, s. 356-359. ISBN 978-1-4503-5699-2.

Requirements for the semestral defence:
• The first two steps.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Smrčka Aleš, Ing., Ph.D.
Head of Department: Hanáček Petr, doc. Dr. Ing.
Beginning of work: November 1, 2020
Submission deadline: May 19, 2021
Approval date: January 15, 2021

Master's Thesis Specification/23337/2020/xvasic25 Page 1/1

https://open-
http://services.net/
https://www.fit.vut.cz/study/theses/

Abstract
The goal of this work is to provide an easy way of adding an O S L C compliant interface to
an analysis tool . Such an interface allows tools to be easily integrated w i t h other tools or
systems, allows them to be used remotely due to its web based nature, and allows them to be
easily connected wi th a database for persistency and queries. Th is is achieved by designing
and creating an O S L C adapter using Ecl ipse L y o that is universal enough to accommodate
the functionality of most analysis tools. Th is is done by using the O S L C Automat ion
domain interface and by leveraging the current command-line interfaces of analysis tools.
Th is work provides an introduct ion to O S L C , Eclipse L y o , and other related topics; defines
requirements and differences of analysis tools; covers the design process of the adapter and
the factors that impacted design decisions; and finally, presents the implemented adapter
and evaluates it by using an automated test suite and then experiments w i th a set of different
analysis tools. The most important evaluation indicator is that the current version of the
adapter is already being used in practice to add an O S L C interface to four analysis tools:
A N a C o n D A , Perun, Spectra (all three developed by V e r i F I T) ; and H i L i T E (Honeywell).

Abstrakt
Cílem t é t o p r á c e je poskytnout s n a d n ý způsob , jak rozšíř i t ana lyzačn í n á s t r o j o r o z h r a n í
splňující standard O S L C . Takové r o z h r a n í umožňu je jednoduchou integraci n á s t r o j ů s j i nými
nás t ro j i nebo sys témy, umožňu je jejich vzdá lené použ i t í skrze webové s lužby a umožňu je je
j e d n o d u š e propojit s d a t a b á z í pro d a t a b á z o v é dotazy a pro p e r z i s t e n t n í u ložení dat. Toto
je dosaženo n á v r h e m a i m p l e m e n t a c í O S L C a d a p t é r u p o m o c í sady n á s t r o j ů Eclipse L y o .
A d a p t é r použ ívá jako r o z h r a n í d o m é n u O S L C Automat ion a je d o s t a t e č n ě un iverzá ln í na to,
aby skrze toto r o z h r a n í pok ry l funkcionali tu vě tš iny ana lyzačn í ch n á s t r o j ů za p o m o c í jejich
s távaj ících r o z h r a n í na př íkazové ř ádce . Tato p r á c e poskytuje ú v o d k O S L C , Eclipse L y o
a souvisej íc ím k o n c e p t ů m . Dá le tato p r á c e definuje p o ž a d a v k y a odl i šnos t i r ůzných analyza
čních n á s t r o j ů a diskutuje n á v r h a d a p t é r u a faktory, k t e r é ovl ivni ly n á v r h o v á r o z h o d n u t í .
A nakonec prezentuje i m p l e m e n t o v a n ý a d a p t é r a jeho v y h o d n o c e n í p o m o c í automatizo
vané tes tovac í sady a p o m o c í e x p e r i m e n t ů s ř a d o u ana lyzačn í ch n á s t r o j ů . Ne jvýznamně j š í
ukazatel h o d n o c e n í v y t v o ř e n é h o a d a p t é r u je to, že už teď je p o u ž í v á n v praxi pro p ř i d á n í
O S L C r o z h r a n í k n á s t r o j ů m A N a C o n D A , Perun, Spectra (všechny t ř i vyví jené na V e r i F I T)
a H i L i T E (Honeywell).

Keywords
O S L C , O S L C Adapter , O S L C Provider , O S L C Server, O S L C Consumer, O S L C Client ,
O S L C Automat ion , Eclipse Lyo , tool integration, software analysis and verification, A N a
C o n D A , Facebook Infer, Perun

Klíčová slova
O S L C , O S L C a d a p t é r , O S L C producent, O S L C server, O S L C konzument, O S L C klient,
O S L C Automat ion , Ecl ipse Lyo , integrace n á s t r o j ů , verifikace a a n a l ý z a software, A N a
C o n D A , Facebook Infer, Perun

Reference
V A Š Í Č E K , O n d ř e j . OSLC Adapter for Software Analysis. Brno , 2021. Master 's thesis.
Brno Universi ty of Technology, Facul ty of Information Technology. Supervisor Aleš Sm
rčka, Ing., P h . D .

Rozšířený abstrakt
A n a l y z a č n í n á s t r o j e pro verifikaci a validaci p r o g r a m ů (tzv. a n a l y z á t o r y) jsou vě t š inou vyví
jeny s v l a s t n í m j e d n o ú č e l o v ý m r o z h r a n í m specif ickým pro funkcionalitu d a n é h o nás t ro j e .
M é n ě pozornosti bývá čas to věnováno rychlé učící kř ivce použ i t í a n a l y z á t o r u a jeho inte
graci s j i nými nás t ro j i nebo sys témy. D ů s l e d k e m je n á r o č n á integrace a n a l y z á t o r ů , k t e r á
vyžadu je ind iv iduá ln í p ř í s t u p pro k a ž d ý n á s t r o j . Tento p r o b l é m p o m á h a j í řeši t s t a n d a r d n í
rozhran í , k t e r é umožňu j í v ý r a z n ě snazš í integraci n á s t r o j ů podporu j í c í s te jný standard.
O S L C (Open Services for Lifecycle Collaborat ion) je jeden z t ě c h t o s t a n d a r d ů , k t e r ý se
zač íná rozš i řovat a bý t využ íván jak ve v ý z k u m n ý c h projektech, tak i v p r ů m y s l u [9].

Cí lem t é t o p r á c e je poskytnout s n a d n ý z p ů s o b , jak rozšíř i t (nejen) a n a l y z a č n í ná s t ro j e
o r o z h r a n í splňující standard O S L C . Takové r o z h r a n í umožňu je jednoduchou integraci
n á s t r o j ů s j i nými nás t ro j i nebo sys témy, umožňu je jejich vzdá lené použ i t í skrze webové
s lužby a umožňu je je j e d n o d u š e propojit s d a t a b á z í pro d a t a b á z o v é dotazy a pro perzis
t e n t n í u ložení dat. Podporuje tedy lepší automatizaci , integraci, ud rž i t e lnos t a p ř í p a d n ě
t a k é p ř enos t i t e l nos t . Toto je dosaženo n á v r h e m a i m p l e m e n t a c í O S L C a d a p t é r u , k t e r ý
je konf igurovate lný tak, aby by l schopen poskytnout funkcionali tu vě tš iny ana lyzačn ích
n á s t r o j ů za p o m o c í jejich s távaj íc ích r o z h r a n í na p ř íkazové ř ádce . A d a p t é r b y l v y t v o ř e n
za p o m o c í sady n á s t r o j ů Eclipse L y o , je j ímž cí lem je usnadnit v y t v á ř e n í O S L C se rverů a
k l ientů . M o d e l a d a p t é r u by l v y t v o ř e n p o m o c í n á s t r o j e L y o Designer a zák lad jeho k ó d u
vygene rován p o m o c í n á s t r o j e L y o Code Generator a knihovny O S L C 4 J s v y u ž i t í m refer
enčních m o d e l ů s t a n d a r d n í c h d o m é n v L y o Domains a knihovny pro komunikaci s d a t a b á z í
L y o Store.

R o z h r a n í a d a p t é r u použ ívá s t a n d a r d n í d o m é n u O S L C Automat ion , jejíž h l avn í pří
pady uži t í jsou s p o u š t ě n í t e s t ů , nasazován í softwaru a kompilace softwaru. Hlavn í zdroje
tvoř íc í toto r o z h r a n í jsou A u t o m a t i z a č n í P lány , A u t o m a t i z a č n í P o ž a d a v k y a Automat iza
ční Výsledky. A u t o m a t i z a č n í P l á n y reprezen tu j í jednotky automatizace p o s k y t o v a n é O S L C
serverem. A u t o m a t i z a č n í P o ž a d a v k y jsou to, co kl ient i vy tvá ř í , když chtějí p o ž á d a t a prove
den í n ě k t e r é z nab ízených jednotek automatizace. A u t o m a t i z a č n í Výs ledky reprezen tu j í
výs ledek p roveden í jednotky automatizace.

A b y mohl bý t a d a p t é r ř á d n ě nav ržen , bylo n u t n é nejdř íve definovat p o ž a d a v k y různých
ana lyzačn ích n á s t r o j ů za p o m o c í e x p e r i m e n t ů se z á s t u p c i d y n a m i c k ý c h i s t a t i ckých analyza
čních n á s t r o j ů . P o ž a d a v k y obsahuj í kroky, k t e r é už iva te l p rovád í s a n a l y z a č n í m n á s t r o j e m
p řed s p u š t ě n í m analýzy, př i s p u š t ě n í analýzy, v p r ů b ě h u ana lýzy a po ana lýze . N á v r h
a d a p t é r u a jeho funkcionality by l pak ř ízen tak, aby splni l všechny definované p o ž a d a v k y
a by l tak použ i t e lný pro co nejvíce ana lyzačn í ch ná s t ro jů .

A d a p t é r by l rozdě len na dva p o d - a d a p t é r y pro oddě len í dvou odl i šných p ř í p a d ů uži t í
p o t ř e b n ý c h pro použ i t í a n a l y z a č n í h o n á s t r o j e . P r v n í m p o d - a d a p t é r e m je a d a p t é r kom
pilační , k t e r ý se s t a r á o p řenos s o u b o r ů S U T 1 na a n a l y z a č n í server, o jejich s p r á v u a o
jejich kompilaci . D r u h ý m a komplexně j š ím p o d - a d a p t é r e m je a d a p t é r ana lyzačn í , k t e r ý se
s t a r á o s p o u š t ě n í ana lýzy a o s p r á v u výs ledků . I když oba p o d - a d a p t é r y m u s í sdílet čás t
souborového s y s t é m u pro p řenos výs ledků kompilace pro ana lýzu , mohou běže t v o d d ě l e n é m
pros t ř ed í , a tedy m í t sn ížené n á r o k y na ú d r ž b u a aktualizace.

A n a l y z a č n í p o d - a d a p t é r je konf igurovate lný tak, aby b y l schopen poskytovat funkcional
i tu vě tš iny ana lyzačn ích n á s t r o j ů . Konfigurace a d a p t é r u pro použ i t í k o n k r é t n í h o analyza
čního n á s t r o j e se p rovád í v y t v o ř e n í m A u t o m a t i z a č n í h o P l á n u pro d a n ý n á s t r o j , k t e r ý defin-

1 System Under Test

uje v s t u p n í parametry a n a l y z a č n í h o n á s t r o j e a zá roveň ř íká a d a p t é r u , jak a n a l y z a č n í n á s t r o j
s p o u š t ě t . A d a p t é r po př i je t í A u t o m a t i z a č n í h o P o ž a d a v k u pro s p u š t ě n í a n a l ý z y od klienta,
k t e r ý obsahuje v s t u p n í parametry analýzy, zpracuje v s t u p n í parametry do podoby ře tězce ,
k t e r ý je pak exekuován p o m o c í n a t i v n í h o t e r m i n á l u a n a l y z a č n í h o serveru tak, aby byly
všechny parametry specifikované klientem provedeny s te jně jako na př íkazové řádce .

A d a p t é r obsahuje parametry pro kontrolu b ě h u analýzy, jako n a p ř í k l a d časový l imi t
běhu , parametry pro v y t v á ř e n í konf iguračních s o u b o r ů pro b ě h a n a l y z a č n í h o nás t ro j e ,
parametry pro n a s t a v e n í p r o m ě n n ý c h p r o s t ř e d í nebo j inou p ř í p r a v u p ř e d nebo po b ě h u
ana lýzy a parametry pro kontrolu tvorby v ý s t u p ů ana lýzy . Výs ledky ana lýzy jsou složeny
ze s t a n d a r d n í c h v ý s t u p ů , v y t v o ř e n ý c h nebo modif ikovaných s o u b o r ů a ze s é m a n t i c k y vyšších
v ý s t u p ů a n a l y z a č n í h o nás t ro j e , jako je n a p ř í k l a d detekce chyby. S t a n d a r d n í v ý s t u p y jsou
vždy součás t i A u t o m a t i z a č n í c h Výs ledků p r o d u k o v a n ý c h ana lýzou . Soubory vy tvo řené
nebo modif ikované a n a l ý z o u mohou bý t p ř i d á n y jako výs ledek a n a l ý z y p o m o c í r egu lá rn ího
v ý r a z u nad jejich r e l a t ivn í cestou a j m é n e m . Vyšší v ý s t u p y ana lyzačn ích n á s t r o j ů mohou
bý t v y t v o ř e n y v ý s t u p n í m i filtry, k t e r é mohou uživate lé v y t v á ř e t p o m o c í plug-in s y s t é m u
a d a p t é r u . Takový filtr m á na vs tupu veškeré s távaj ící v ý s t u p y ana lýzy a m ů ž e je l ibo
volně upravovat, p r o h l e d á v a t nebo upravovat jejich obsah a nebo v y t v á ř e t nové v ý s t u p y se
specif ickým v ý z n a m e m . A d a p t é r je dá le p r o p o j e n ý s d a t a b á z í , k t e r á umožňu je pe r z i s t en tn í
uložení všech zd ro jů a poskytuje funkcionalitu d a t a b á z o v ý c h d o t a z ů nad zdroji .

Vy tvo řený a d a p t é r v n a š e m t e s tován í p o k r ý v á všechny p o ž a d a v k y ana lyzačn ích n á s t r o j ů
definované v t é t o p rác i a by l o t e s tován p o m o c í a u t o m a t i z o v a n é tes tovac í sady na platfor
m á c h L i n u x i Windows . B y l y provedeny m a n u á l n í experimenty s p o u ž i t í m a d a p t é r u s
ana lyzačn ími nás t ro j i A N a C o n D A , Facebook Infer, Perun, Valgr id , a G r e p 2 pro ověření
jejich použ i t e lnos t i . A d a p t é r je j iž p o u ž í v á n pro n á s t r o j e A N a C o n D A , Perun a Spectra v
r á m c i v ý z k u m n é skupiny V e r i F I T . Dá le jeden z v ý z k u m n í k u z t é t o skupiny vyvíjí plug-in
pro vývojové p r o s t ř e d í Eclipse, k t e r ý bude a d a p t é r použ íva t pro s p o u š t ě n í ana lýzy p ř í m o
z vývojového p ros t ř ed í . A nakonec je a d a p t é r a k t u á l n ě využ íván ve firmě Honeywell v
kombinaci s jejich n á s t r o j e m H i L i T E . Honeywell b y l zdrojem někol ika už i t ečných p o d n ě t ů
k vy lepšen í a d a p t é r u a oceňuje jednoduchou rozš i ř i te lnos t a konfigurovatelnost a d a p t é r u .

Možnos t i dalš ích vy lepšen í a d a p t é r u jsou n a p ř í k l a d komplexnějš í s y s t é m pro řazen í
p o ž a d a v k ů do front s m o ž n o s t í p r io r i tn ích p o ž a d a v k ů , rozš í řené možnos t i autentizace a
b e z p e č n o s t n í aspekty použ i t í a d a p t é r u v n e p ř á t e l s k é m p ros t ř ed í . N á p a d y pro dalš í p r ác i v
t é t o oblasti jsou n a p ř í k l a d vy tvo řen í k o o r d i n a č n í h o a d a p t é r u 3 , k t e r ý by agregoval někol ik
ana lyzačn ích serverů s běžíc ími a n a l y z a č n í m i a d a p t é r y a distr ibuoval mezi ně p o ž a d a v k y
na zák l adě d o s t u p n ý c h ana lyzačn ích n á s t r o j ů nebo vyvažování zá těže ; a nebo vy tvo řen í
už iva te lského r o z h r a n í pro a d a p t é r p o m o c í s a m o s t a t n é webové aplikace, k t e r á by poskyt la
př ívě t ivé r o z h r a n í pro l idské klienty (oproti s t r o j o v ý m k l i e n t ů m) .

2 Grep lze považovat za nejjednodušší možnou formu statické analýzy. Zároveň ukazuje použitelnost
adaptéru s Unixovými utilitami.

3 master adaptéru

OSLC Adapter for Software Analysis

Declaration
I hereby declare that this Master 's thesis was prepared as an original work by the author
under the supervision of Aleš Smrčka , Ing., P h . D . Supplementary information was provided
by Jan Fiedor, Ing., P h . D . I have listed a l l the l i terary sources, publications and other
sources, which were used dur ing the preparation of this thesis.

O n d ř e j Vašíček
M a y 12, 2021

Acknowledgements
I would like to thank my supervisor Aleš Smrčka , Ing., P h . D . and my main consultant
Jan Fiedor, Ing., P h . D . A d d i t i o n a l help and consulting was provided by Prof. T o m á š
Vojnar, Ing., P h . D . ; Bohuslav K ř e n a , Ing., P h . D . ; and M g r . T o m á š K r a t o c h v í l a . This
work was supported by the T A Č R A u F o V e r project 4 and the H2020 E C S E L Arrowhead
Tools project 5 . A special thanks to my girlfriend for proofreading this work, and for her
unwavering support and plentiful encouragements.

4 TAČR AuFoVer - https://www.vutbr.cz/en/rad/projects/detail/29833
5H2020 ECSEL Arrowhead Tools - https://www.fit.vut.ez/research/project /1299 / .en

https://www.vutbr.cz/en/rad/projects/detail/29833
https://www.fit.vut.ez/research/project/1299/.en

Contents

1 Introduction 4
1.1 Mot iva t ion and Objectives 4
1.2 Approach and Cont r ibu t ion of the Thesis 5
1.3 Result 5
1.4 Document Structure 6

2 Background 7
2.1 Software Analys is and Verification 7
2.2 Tool Integration 7
2.3 Current State 8

3 O S L C — O p e n Services for Lifecycle collaboration 10
3.1 Foundat ion technologies of O S L C 10

3.1.1 R E S T 10
3.1.2 R D F 10
3.1.3 L inked D a t a 11

3.2 Overview of O S L C 11
3.2.1 O S L C Core Doma in 12

3.3 O S L C Automat ion D o m a i n 14
3.3.1 Au tomat ion P l a n 15
3.3.2 Au tomat ion Request 15
3.3.3 Au tomat ion Result 15

3.4 Eclipse Lyo 16
3.4.1 O S L C 4 J 16
3.4.2 Lyo Designer 16
3.4.3 L y o Domains 17
3.4.4 L y o Store 17
3.4.5 L y o R I O 17
3.4.6 Lyo Test Suite 17

4 Defining Analysis Tool Requirements 18
4.1 General Requirements for Analys is Execut ion 18

4.1.1 Ini t ia l Setup 18
4.1.2 Pre-Analys is Execut ion 19
4.1.3 O n Analys is Ini t ia t ion 19
4.1.4 Dur ing Analys is Execut ion 20
4.1.5 Post-Analysis Execut ion 20

4.2 Tool Type Specific Requirements 21

1

4.2.1 Dynamic Analys is 21
4.2.2 Static Analys is 22
4.2.3 Stateful Analys is or Combina t ion of Tools 22
4.2.4 Other Tools 23

4.3 Limi ta t ions 23

5 O S L C Adapter Design 25
5.1 Architecture — Separating Analys is and Compi la t ion 25
5.2 Doma in M o d e l of B o t h Adapters 29
5.3 M a p p i n g O S L C Automat ion Resources to Act ions 29
5.4 Compi la t ion Adapter 31
5.5 Analys is Adapter 32
5.6 S U T Representation and Life Cyc le 35

6 Implementation 36
6.1 Adapter Core 36

6.1.1 Execut ing Commands F r o m Java 37
6.1.2 Processing Requests 39

6.2 Universal ly Fulf i l l ing Too l Requirements 39
6.2.1 S U T Creat ion 41
6.2.2 S U T as Workspaces 42
6.2.3 Analysis Au tomat ion Plans and their Configurat ion 43
6.2.4 Analysis execution 47
6.2.5 C o m m o n Analys i s Input Parameters 48
6.2.6 Po l l ing for Execut ion State and Cancel l ing Execut ion 50
6.2.7 Analys is Output Contr ibut ions 50
6.2.8 Analys is P lug - in Output Fi l ters 51
6.2.9 Special Requirements 52

6.3 Persistency and Resource Management 52
6.4 Security and Authent ica t ion 55

7 Experiments and Evaluat ion 56
7.1 Case Studies 56

7.1.1 A N a C o n D A 56
7.1.2 Valgr ind 64
7.1.3 Facebook Infer 67

7.2 Usage in Pract ice 72

8 Conclusion 73

Bibl iography 74

A Repository and Usage Guide 78

B Detailed Example of Running Analysis 79
B . l Creat ing an S U T 79

B . l . l G E T the S U T creation Automat ion P l a n 80
B.1.2 Request S U T creation 82
B . l . 3 Retrieve the Au tomat ion Result 85

2

B.1.4 Retrieve the created S U T 88
B.2 Execut ing analysis 89

B.2.1 G E T the analysis execution Au tomat ion P l a n 89
B.2.2 Request analysis execution 96
B.2.3 Retrieve the Au tomat ion Result 98

C Container For G i t L a b C I 104

3

Chapter 1

Introduction

This chapter briefly discusses the motivat ion and the objectives of this work, the approach
taken to achieve these objectives, and summarizes the results of this work.

1.1 Motivat ion and Objectives

In my bachelor's thesis [40] an O S L C adapter for the A N a C o n D A framework [13] [11] was
created. The previously created adapter was a useful addi t ion that enabled A N a C o n D A to
be integrated and then used in cooperation wi th Honeywell . Furthermore, O S L C support is
a valued feature i n international research projects like A u F o V e r [5] and Arrowhead Tools [4].
Therefore, it was decided that similar O S L C adapters would be useful for other tools devel
oped at our university. The original O S L C adapter was modified to work wi th a different
analysis tool, Perun [14], i n my Project Pract ice [41] to get more experience working wi th
O S L C and to learn about the differences between adapters for different tools. The results
showed that there was very l i t t le difference i n the two adapters, because both tools are used
through a command-line interface and their main differences are command-line parameters,
which essentially boils down to executing a different string when running the tool . Th is led
to the idea of creating one adapter that is universally usable for a l l analysis tools i n that it
adapts the O S L C interface to a command-line interface while providing features needed by
analysis tools. Analys is tools can then have different command-line parameters and differ
ent analysis outputs which can be processed differently through the adapter's configuration.

A standardized O S L C interface is useful for an analysis tool because it allows the tool
to be easily integrated w i t h other systems which support the same standard. This makes
the tool more l ikely to be adopted by new users and adds new potential use cases. O S L C ,
specifically, was chosen because it is a long-running open project w i th inputs from the indus
t ry itself, and lately it is becoming popular and adopted by a growing number of systems,
such as I B M Ra t iona l D O O R S or At lass ian J I R A (See [9] for a full l is t) . Other advantages
that come wi th an O S L C interface are an easy way of adding persistency and a web based
interface which can then be used remotely. A web interface can be very useful for analysis
tools since it allows them to be offered to users as services, and also because it allows tools
to be setup and deployed at a server for users to uti l ize instead of forcing users to set up
the tool on their own machines.

4

The objective of this work is to create an adapter that provides an O S L C interface for
any command-line analysis tool without the need to modify the tool nor the adapter, w i th
the exception of necessary configuration. The targeted group of users for the adapter are
analysis tool developers who want to add an O S L C interface to their tool , or tool integration
developers who want to integrate an analysis tool w i t h their system using O S L C . The
adapter is not meant to be used direct ly by human clients to run analysis since it only has
a R E S T interface which is more suitable for machine clients (who can then provide a user
friendly interface).

1.2 Approach and Contribution of the Thesis

The way to add an O S L C interface to a tool that is natively not a web applicat ion is by
creating an adapter which implements one of the O S L C domains. Th is is the case for a l l
the analysis tools considered i n this work. Therefore, an O S L C adapter 1 , was designed
and implemented using the O S L C Automat ion domain, which is meant for use cases, such
as test execution, deployment, or compilat ion. The adapter itself is actually a toolchain
of two sub-adapters in order to separate two distinct functionalities required to use an
analysis tool . The first one is the Compi la t ion sub-adapter 2 for transferring the S U T to
be analyzed to the analysis server and compil ing i t . A n d the second one is the Analys is
sub-adapter 3 for executing analysis on previously prepared S U T s and managing its results.
The Analys is sub-adapter leverages command-line interfaces of the adapted analysis tool
and is configurable to be able to accommodate as wide a range of analysis tools as possible.

In order to design the adapter properly, the usage requirements, similarities, and differ
ences of various analysis tools needed to be examined. This provided an understanding of
what functionality needs to be provided by the universal adapter. Tools used as representa
tives for the requirements study and testing include A N a C o n D A [11], Facebook Infer [10],
Va lgr ind [39], Perun [14], grep, H i L i T E , and Spectra [36].

The adapter was designed and implemented using Ecl ipse L y o which is a set of tools and
resources that supports O S L C adapter creation. Namely, L y o Designer and Code Generator
were used to model the adapter's domains and capabilities and to subsequently generate
the code skeleton of the adapter. The code skeleton consists of O S L C compliant interface
A P I endpoints and classes for domain resources. Reference domain models were used from
Lyo Domains, and L y o Store was used for database communicat ion. The code skeleton was
then filled w i th a l l the appl icat ion logic needed for the adapter's required functionality.

1.3 Result

The adapter's functionality was verified by an automated system test suite and by exper
imental integration of the tools considered in the requirements study. The implemented
adapter was found to sufficiently provide a l l ma in functionalities of a l l the tested tools in
our experiments. The adapter also works on both L i n u x and Windows and is connected to
a database to provide persistent storage of resources and query capabilities. More impor
tantly, the adapter is already being used i n practice i n four use cases to provide an O S L C
interface for A N a C o n D A , Perun, Spectra (all three developed by V e r i F I T) ; and H i L i T E

deferred to as the OSLC Universal Analysis Adapter, the OSLC adapter, or the adapter
2referred to as the Compilation adapter or the Compilation sub-adapter
3referred to as the Analysis adapter or the Analysis sub-adapter

5

(Honeywell). Furthermore, a V e r i F i t researcher is developing an Ecl ipse plugin which plans
to use the O S L C Universal Analys is Adapter to allow analyses to be executed directly from
the Ecl ipse I D E .

1.4 Document Structure

This work consists of eight chapters. Chapter 1 introduces the motivat ion, objectives,
proposed solutions and results of this work. Chapter 2 briefly covers general areas that
this work relates to and presents the current state of things at the t ime of making this
work. Chapter 3 provides a basic introduct ion to topics that needed to be studied for
this work - O S L C and Ecl ipse L y o (first point of the assignment). Chapter 4 defines
analysis tool requirements which are then used to design capabilities of the O S L C Universal
Analysis Adapter in Chapter 5 (second point of the assignment). Chapter 5 covers the
adapter's architecture and design using the models created wi th Ecl ipse L y o Designer,
and provides a design perspective on accommodating analysis tool requirements defined
i n Chapter 4 (second point of the assignment). Chapter 6 describes important parts of
the adapter's implementat ion and its features (third point of the assignment). Chapter 7
contains experiments including three case studies and the adapter's evaluation (fourth point
of the assignment). Chapter 8 concludes this work.

Append ix A lists U R L s for a public repository containing the adapter implemented in
this work and parts of its W i k i pages. Append ix B shows a detailed example of running
analysis using A N a C o n D A , including full sized X M L files for completeness. A p p e n d i x C
contains a configuration file for G i t L a b C I which can be used as inspirat ion for running
a docker container to test the adapter.

G

Chapter 2

Background

This chapter introduces broad contexts for this work, including a summary of the current
state of things at the t ime of working on this thesis.

2.1 Software Analysis and Verification

Various analysis algorithms were created and are being used to make the process of error
t racking and identification easier. Different types of analysers use different approaches to
detect errors, focus on different kinds of errors, and have different characteristics depending
on the a lgor i thm they use. A n ideal analyser would have good performance and give sound,
accurate results. To be considered accurate, an analyser needs to avoid reporting false neg
atives (not reporting an error that is present i n the analysed program) and false positives
(reporting an error that is not present i n the analysed program). There are two main kinds
of analysers: static and dynamic.

Static analysers use formal methods to analyse a program's source code without execut
ing i t . They a im to be sound and thus report no false negatives, i.e. i f the analyser reports
no errors then there really are no errors of that k ind i n the analysed program. However,
current static analysers are plagued by reporting a large number of false positives and by
having unusable performance while analysing real life systems. A s a result, they often have
to sacrifice some soundness to be usable.

Dynamic analysers, on the other hand, work by observing events i n a program's execu
t ion. They are typical ly better at reporting no false positives since they can only report
an error if they see it happen i n the execution trace of the analysed program. However,
dynamic analysis introduces significant overhead to the execution of the analysed program,
and for an error to be detected it might be required to analyse a large number of program
executions. To get better performance or to detect errors more reliably, analysers can use
extrapolation which can sometimes lead to false positives.

2.2 Tool Integration

Integrating tools can make their use much more convenient and user friendly. For example,
having email integration i n a bug tracking system can automatical ly distribute notifica
tions to programmers who need to fix them. Or , integrating a bug tracking system into an
enterprise solution that, among others, contains a change management system that allows
bugs to be easily l inked wi th the changes that resolved them or caused them. Wi thou t

7

a standardized interface, the only way of integrating existing applications is by creating
an adapter on a tool to tool basis. Th is makes it quite difficult and t ime-consuming to
integrate tools because the adapter's creator needs to have good knowledge of the imple
mentation of both tools being integrated, and the programmer needs to implement a specific
adapter for every integration case, possibly even making changes to one of the tools in the
process. Should the programmer decide to switch out the integrated tool w i t h a different
one, a whole new adapter would need to be created specifically for the new tool . To avoid
creating adapters on a tool to tool basis, there needs to be a standardized interface. W i t h
a standardized interface, the only adapter a tool needs is the standard interface adapter.
The tool can even use the standard interface natively without the need for an adapter.
There should be no extra work required to integrate tools through the standardized inter
face in the ideal case. However, creating a perfect standard interface is not possible due to
tools having different functionalities and input parameters. A feasible, useful approach is
to define a standard communicat ion protocol and information representation, leaving the
actual contents of the interface extendable or customizable for each tool . This way, the
only th ing the programmer needs to do to integrate two tools is to translate the semantics
of their interfaces.

2.3 Current State

A s of the t ime of working on this thesis, there already were two O S L C adapters for two
analysis tools implemented and working at our university, as was briefly mentioned i n the
motivat ion of this work (Section 1.1)

The first one is an O S L C adapter for the A N a C o n D A framework [13] [11] which allows
A N a C o n D A to be used as a regular dynamic analysis tool through an O S L C Automat ion
interface. Th is adapter was created using Ecl ipse L y o and is connected wi th a database
for persistency, but has very l imi ted addi t ional features and a very simple bu i ld system
which requires the S U T 1 to consist of a single file and to be transferred to the server again
for every analysis. It was created in my bachelor thesis [40] and was successfully used to
experimentally deploy A N a C o n D A in Honeywell and contributed to the A Q U A S project [3]
and the A u F o V e r project [5].

The second O S L C adapter was created for Perun [14], a performance analysis tool ,
by modifying the existing A N a C o n D A adapter in [41] making design decisions w i t h the
universal adapter in mind . Perun is t ight ly coupled wi th the G i t versioning system, and its
analyses are meant to follow up on each other. For example, analysing a series of commits
and comparing them to look for performance degradation or improvements. Th is means the
adapter needs to mainta in S U T resources separately from analysis requests so that multiple
analysis requests can be executed on the same S U T wi th the same context. To manage
S U T resources and to take care of compilat ion a l l together, the adapter was separated into
an Analys is adapter and a Compi la t ion adapter. The adapter was acceptance tested by the
developers of Perun and contributed to the Arrowhead Tools project [4].

1 system under test

8

Other Analysis Tool Candidates for A d d i n g an O S L C Interface

There are s t i l l more tools that need an O S L C interface bo th at our university and outside
of i t . Examples of such tools are:

• Spectra [36] - A past-time L T L verification tool developed at V e r i F I T .

• Facebook Infer [10] - A static analysis tool used at V e r i F I T to create static analysers.

• Va lgr ind [39] - A dynamic analysis and instrumentat ion too l commonly used by de
velopers.

• RoadRunner [16] - A dynamic analysis framework for Java.

9

Chapter 3

OSLC Open Services for
collaboration Lifecycle

This chapter introduces O S L C (Open Services for Lifecycle collaboration) [25] and its core
concepts along wi th the underlying technologies 1 . The introduct ion focuses on explaining
aspects of O S L C that are used in this work and therefore necessary to know to understand
this work. For more information or a more detailed explanation refer to the O S L C Web
site [25].

3.1 Foundation technologies of O S L C

Before O S L C itself is introduced, it is important to know the three main technologies that it
is bui l t on top of. Th i s section names those technologies and provides a very quick overview
of what they are.

REST (REpresentat ion State Transfer) [15] is an architectural style for Web based appli
cations which is main ly used to enable communicat ion between computer systems. R E S T
is resource-based, meaning it works wi th things rather than actions. Resources are repre
sented and transferred using serializable formats like J SON or XML. A REST API consists
of endpoints identified by URIs2 to which it is possible to send different types of HTTP
requests to perform certain actions. R E S T defines seven constraints: uniform interface,
statelessness, client-server architecture, cacheability, layered system, and code on demand
(optional). The most important one to understand for O S L C is the uniform interface.
R E S T defines four types of operations for resources: create, read, update, delete. These
operations correspond to H T T P request types: POST, GET, PUT, DELETE.

3.1.2 R D F

RDF (Resource Descr ipt ion Framework) [33] is a data model for Web applications. D a t a is
organized into triplets of subject-predicate-object which create relations between resources.
B o t h resources and relations (properties) are identified by U R I s which are used to represent
them in triplets. R D F can have mult iple representations, such as turtle [6], RDF/XML, or

l rThe bulk of this chapter has been taken from my bachelor's thesis [40] with modifications and updates.
2 Unique-Resource-Identifier

3.1.1 R E S T

10

RDF/JSON. Databases for persistent storage of R D F subject-predicate-object triplets are
called triplestores. Triplestores [46] are opt imized for storing triplets and querying triplets
using a specialized query language, SPARQL [17].

3.1.3 L i n k e d D a t a

Linked Data [45] is a set of rules defining how to publish and connect data on the Web for
the data to be machine-readable and easily connected wi th its context. The ult imate goal of
L inked D a t a is for the whole Web to be accessible as a single global database. L inked D a t a
has four basic rules: „1) Use URLs as names for things 2) Use HTTP URIs, so that people
can look up those names. 3) When someone looks up a URI, provide useful information,
using the standards (RDF, SPARQL). 4) Lnclude links to other URLs, so that they can
discover more things." [1]

3.2 Overview of O S L C

O S L C [25] is an OASLS Open Project focused on interoperabili ty of software tools through
out the whole software development lifecycle. O S L C promotes a federated architecture
where every tool manages its own resources and others can interact w i t h them without
knowing the internal implementat ion of the managing tool . A key aspect of O S L C is spec
ifying only the min ima l amount needed for a part icular integration scenario, so that the
standard is easy to adopt and usable for as wide range of integration CctS6S ctS possible. A s
a result, O S L C specifications contain min ima l obligatory requirements for standard confor
mance, and then contain many other requirements for further opt ional extensions. O S L C
uses self-describing RESTful APLs [15, Chapter 5], R D F data representation, and the con
cept of L inked Da ta . Each artifact in O S L C is a H T T P resource identified by a U R I that
can be interacted wi th using CRUD (Create, Read, Update , Delete) H T T P requests. Each
resource has an R D F representation, such as RDF/XML, XML, or JSON. F inal ly , resources
can be l inked together by U R I identified relations.

O S L C specifications are divided based on integration scenarios into domains, such
as Quality Management, Requirements Management, Change Management, or Architec
ture Management3. Domains can be imagined as definitions of standardized interfaces.
They define resources and vocabularies that an interface should use as its elements. In or
der to define the basic communicat ion protocol and rules there is the OSLC Core domain.
Specifications define requirements w i th three levels of importance - MUST, SHOULD, and MAY.
For a tool to be compliant to the specification, it needs to satisfy a l l requirements marked
as M U S T . K e y elements of O S L C specifications are usage rules and patterns for H T T P
and R D F , resource shapes and constraints, resource representation, resource operations,
resource discovery, resource querying, and authentication. Figure 3.1 shows the layered
architecture of O S L C .

Currently, the latest version of the O S L C specification is 3.0 including O S L C Core
3.0 released in September 2020, but some domains are s t i l l only at version 2.0 or 2.1.
A l l specifications are designed to be backward-compatible. Th is work focuses on O S L C
Automat ion 2.1 (latest version) and O S L C Core 3.0.

3For OSLC domain specifications refer to [30]

11

Domains of interest that
maintain separation of concerns
and establish collaborative value
streams through integration

Discoverability through
minimal, discoverable, self-
describing capabilities to enable
application integration

Reducing Variability through
self-describing, semantically
rich, linked data resources
leveraging HATEOAS

Address Complexity through
HTTP and REST as the standard
mechanism for distributed,
loosely coupled APIs

OSLC Domains Vocabularies Constraints

RM DM CCM QM Automation

OSLC Core Resource Preview Query

Discovery Delegated Ul Attachments

LDP Containers, Accept-Post Link Relations Paging

Open-World Assumptions JSON-LD Turtle Patch

HTTP POST GET PUT DELETE REST

Authentication Resource MIME Types Content Negotiation

OSLC Change
Management 3.0, and
OSLC Configuration
Managament 1.0
Specifications, OASIS

OSLC Core 3.0
Specification, OASIS

LDP 1.0 Specification,
LDP.next Working Group,
W3C

HTTP 1.1 Specification,
IETF

Figure 3.1: O S L C layered architecture (source: [28], remade)

3.2.1 O S L C C o r e D o m a i n

The Core domain [26] specifies the basics needed by a l l other domains. It specifies how to
use H T T P , R D F , resources i n a standardized way and what features are required for a l l do
mains. It also defines error responses, resource paging, authentication, resource operations,
common vocabulary, resource previews, delegated U I dialogs and others.

Resource Shapes

O S L C is based around Resources that are uniquely identified by U R I s . These resources
need to have a well defined type which is determined by a U R I of a Resource Shape.
Resource Shapes are R D F resources containing a list of Properties and information about
those properties, such as occurrence, value type, or allowed values. Shapes, properties
and resources are organized into X M L namespaces which are defined as a tuple of namespace
prefix and namespace U R I . Most resource properties are opt ional which is determined by
their occurrence. A resource might have just one or two properties w i th an occurrence
of exactly-one or one-or-many, and the remaining properties w i l l have occurrences of
zero-or-one or zero-or-many, which makes them optional.

Basic Capabilities

Basic operations defined for resources are C R U D operations: Create, Read, Update, Delete.
Each of these operations is a separate capability, and a resource w i l l typical ly support only
some of them depending on the applicat ion domain specification and the actual imple
mentation. Creat ing a resource is performed by sending a POST request to a dedicated
creation factory U R I . The P O S T request body has to contain the resource to be created
wi th a l l the required properties based on the resource's resource shape. The body repre
sentation can be R D F / X M L , J S O N , or X M L depending on the specific implementation.
Reading a resource is performed by sending a GET request to the resource's U R I . The
request should use the Accept header to specify what k ind of resource representation is
requested. U p d a t i n g a resource is performed by sending a PUT request to the resource's
U R I w i th the changed resource i n the request body, same as wi th resource creation P O S T
requests. The typica l way of updat ing a resource is reading the resource, modifying the

12

Service
Provider
Catalog

Lists Lists

May
reference

others
May offer

Selection Ul.

Service

May offer
fCreation Ul

provide

Delegated Ul
Dialog

Resource
Shape

May ?
provide

_ z .

May
provide

Query
Capability

1
Provides

base URI for
±

\ May
^provide

Creation
Factory

Creates

Query Resource

Figure 3.2: O S L C Server elements and their relations (source: [26], remade)

response body, and then sending it back i n the update request. Deleting a resource is
performed by sending a DELETE request to the resource's U R I . The response to any of
the C R U D requests w i l l use a H T T P status code, such as 200 OK, 201 Created, 400 Bad
Request, 404 Not Found, or 405 Method Not Allowed.

O S L C Server, O S L C Client, and Resource Discovery

There are two types of O S L C applications, clients and servers. A n OSLC Server1 is a server
that manages O S L C resources from at least one domain and implements a set of operations
as capabilities for the managed resources. A n OSLC Client"' consumes the server's ser
vices by manipula t ing the server's resources through the server's capabilities. A client can
discover what resources and capabilities are provided by a server using Resource Discov
ery. One way of implementing resource discovery is through a service provider catalogue.
A Service Provider Catalogue is a bootstrap point for resource discovery and the only point
that needs to be known to the client. The catalogue contains a list of service providers.
A Service Provider contains a set of services. A Service is a set of capabilities and their
U R I s . See Figure 3.2 for a graphical representation of the above described resources and
their relations.

W h e n an O S L C client wants to consume services provided by an O S L C server, a l l it
needs to know is the U R I of the service provider catalogue. F r o m there it can navigate to
any of the provided capabilities, such as resource creation factories or query capabilities.
Resources can be created by sending a P O S T request to a creation factory wi th the resource

4Formerly called Provider in OSLC Core 2.0 which was deprecated and replaced with Server in 3.0
5Formerly called Consumer in OSLC Core 2.0 which was deprecated and replaced with Client in 3.0

13

ReportsOn

> f

Automation Produced By^ Automation Executes Automation
Result Request Plan

Figure 3.3: O S L C Automat ion resources and their relations [27]

to be created specified i n the request's body. The body of a creation P O S T request can
be filled i n based on a resource shape which should be provided by the O S L C server for a l l
managed resources. Once a resource is created the client can read, update, or delete the
resource by sending G E T , P U T , or D E L E T E requests to the resource U R I , provided that
the O S L C server supports a l l of those capabilities for that part icular resource. Querying
for resources can be done by sending a G E T request to the query capabil i ty U R I .

Query Capabi l i ty

Query capabil i ty is used to list a l l resources or to find a subset of resources like i n conven
t ional database queries. It has its own U R I to which GET requests need to be sent w i th
an Accept header set to determine the requested resource representation. Sending a G E T
request w i th no parameters w i l l result i n receiving a list of a l l resources, typical ly divided
into pages of a smaller amount of resources to avoid oversized responses. The request pa
rameters page and l i m i t are used to cycle through pages or change the page size. The
O S L C Query Syntax specification [34] defines query parameters that can be added when
using query capabilities to filter the results. The specification defines parameters, such as
oslc.where, oslc.searchTerms, oslc.orderBy, or oslc.select.

Delegated U I Dialogs

One of the seven constraints of R E S T f u l A P I s is the opt ional constraint code on demand.
O S L C defines this functionality as two delegated U I dialogs: selection dialog and creation di
alog. The purpose of these two dialogs does not need to be further explained as it is impl ied
in their names. They should be implemented using a combination of H T M L <if rame> and
JavaScript to allow integrating tools to use the integrated tool's specific U I as part of their
own U I .

3.3 O S L C Automation Domain

The O S L C Automat ion domain [27] is the one this work focuses on because it is the one
the adapter w i l l be using for its interface. Th is domain is meant for integration scenarios
involving tools like analysis tools, bu i ld tools, or deployment tools. The basic concept of
automation is a tool that is capable of performing a certain action. A user of that tool then
wants to request an execution of that action and fetch the results of its execution. The core
resources of the O S L C Automat ion domain are Automation Plans, Automation Requests
and Automation Results. The i r relations are shown in Figure 3.3.

14

3.3.1 A u t o m a t i o n P l a n

Automat ion Plans represent the units of automation available for execution. Thei r main
role is to define input parameters for Au tomat ion Requests using parameterDef i n i t i o n ref
erence properties. Parameter Definitions use the resource shape oslc:properties [26]
which are resources wi th properties, such as name, allowed values, occurrence, value
type, or default values making them similar to definitions of regular command-line pa
rameters. The required capabil i ty for Au tomat ion Plans is only G E T (reading the resource),
and then a selection dialog capabil i ty is recommended. Parameter Definitions have no re
quired or recommended capabilities. A basic scenario would be an O S L C server w i th a single
predefined Au tomat ion P l a n that can be viewed by O S L C client, and used as a guide for
creating Au tomat ion Requests s imilar to a — h e l p command-line parameter.

3.3.2 A u t o m a t i o n Reques t

Automat ion Requests are created by O S L C clients to request execution of an Au toma
t ion P l a n . The most important properties of a request are inputParameter, state,
desiredState, and executesAutomationPlan reference. Input parameter properties rep
resent parameters submit ted as inputs of the Au tomat ion Request and they reference
Parameter Instance resources whose properties include name, value, and description,
making them similar to command-line arguments passed as parameters. Each input param
eter has to match a Parameter Defini t ion defined i n the referenced executed Au tomat ion
P l a n . The required capabilities for Au tomat ion Requests are G E T and P O S T (reading
and creating the resource), and then a creation dialog capabil i ty is recommended. W h e n
creating a request the O S L C client needs to choose an Au tomat ion P l a n and provide input
parameters for the Au tomat ion Request based on parameter definitions of the Au tomat ion
P l a n . After the Au tomat ion Request is created, the O S L C server w i l l create an Au tomat ion
Result . It is the client's responsibili ty to po l l for the result based on the Au tomat ion Re
quest's state which can be new, inProgress, queued, complete, canceling, or canceled.

3.3.3 A u t o m a t i o n Resu l t

Automat ion Results are produced by the O S L C server based on an Au tomat ion Request.
The most important part of a result is its contribution properties which reference vari
ous artifacts that were produced by the Au tomat ion Request execution, such as text out
put logs, binary files, graphs, or images. The contr ibution resource should have a t i t l e ,
a description, and a type. Other important properties of an Au tomat ion Result are
verdict, state, producedByAutomationRequest, and reportsOnAutomationPlan. The
state has the same values as the Au tomat ion Request state, and these two states should
be somewhat consistent. The verdict property represents the result itself and the possible
values are unavailable, passed, failed, warning or error. A n Au tomat ion Result refer
ences the same input parameters as the originating Au tomat ion Request, and also contains
new output parameters. Output Parameters represent input parameters which had their
values changed during execution or represent parameters added by the O S L C server during
execution. The required capabil i ty for Au tomat ion Results is G E T (reading the resource),
and the recommended capabilities are P U T (updating the resource) and a selection dialog.
The update capabil i ty is used to allow other agents, other than the O S L C server, to add
contributions to the result i n the case that there are any; or, its used to cancel execution
of an Au tomat ion Request by updat ing its desiredState property.

15

3.4 Eclipse Lyo

Eclipse L y o [19] is an eclipse project focused on making the process of adopting O S L C
easier. It consists of the O S L C 4 J S D K , L y o Designer, and many other components, such
as L y o Store, reference implementations, or a test suite for specification compliance.

3.4.1 O S L C 4 J

O S L C 4 J [19] is a Java toolkit for developing O S L C servers and clients. It contains Java
object annotations for O S L C attributes and U I previews, support for service provider and
resource shape documents, libraries for developing servers and clients, sample applications,
and a test suite. Two alternatives to O S L C 4 J are currently available or being devel
oped. O S L C 4 N e t is a toolki t for . N E T environments, and O S L C 4 J S is a set of projects for
JavaScript applications.

3.4.2 L y o Des igner

Lyo Designer [19] is an Ecl ipse plugin meant for development of O S L C servers and clients.
The designer consists of two parts: L y o Toolchain Designer and L y o Code Generator.

Lyo Toolchain Designer is a graphical modeling tool buil t w i th Ecl ipse Sirius. It is
capable of modeling O S L C domains, O S L C vocabularies, O S L C toolchains, and adapter
interfaces. Mode l ing a domain is done by creating a Domains Specification Diagram, cre
ating a domain in i t , creating the domain's resource shapes and properties, and then con
figuring their properties such as domain prefix (X M L namespace), property occurrences,
value types, or representations. A Toolchain Model consists of adapter interfaces and their
relations. E a c h adapter can provide or consume certain resources. Consumed resources
can be resources provided by one of the other adapter interfaces creating a connection be
tween the two adapters and forming a toolchain. Each adapter interface needs to have its
internal structure modeled by an adapter interface diagram. Adapter Lnterface Diagram is
a tree graph wi th a service provider catalogue as its root. M u l t i p l e service providers can
be created, and each service provider can have mult iple services. Services are what holds
resource capabilities. Available capabilities are: basic capabilities (read, update, delete) in
form of a separate service , creation factory, query capability, and selection and creation
dialogs. Th is work uses the latest version of the designer which is 4.0. 6

Lyo Code Generator [8] can generate code using O S L C 4 J based on the models created
wi th the designer. For the modeled domains the generator generates annotated classes for
al l resources and their resource shapes. For the modeled adapter, a l l the required logic
to run a working Maven Web applicat ion is generated including the Maven project itself.
A n d for a l l the modeled capabilities, the generator creates placeholder functions to be
implemented by the user, which are called when the adapter receives a H T T P request on
the corresponding capabili ty 's U R L The generator places designated blocks i n the generated
code designed to protect user added code from being lost dur ing the generation process.
Th is allows the adapter to be developed iteratively. The generator also creates a basic Web
U I , however, the generated methods are annotated as deprecated since L y o Designer 2.4
and only provide basic browsing functionality without modifications. Since L y o Designer
4.0, a Swagger U I [35] is generated for the modeled adapter which can be used as a fully
capable R E S T client replacement for using the adapter.

6Previously created adapter's for ANaConDA and Perun were based on Lyo Designer 2.4

16

To create a single adapter the user needs to model a l l managed domains wi th a l l their
resources and relations. Then, the actual adapter interface has to be modeled by adding
managed resources and creating service providers, services, and a l l the required capabilities
for the managed resources. Once everything is modeled, it is possible to generate code
based on the models to fi l l i n the previously created O S L C 4 J project. Then, the last steps
remaining are populat ing the service provider catalogue (service provider infos function),
and implementing applicat ion logic inside placeholder functions for resource capabilities.

3.4.3 L y o D o m a i n s

Lyo Domains [21] is a G i t repository containing models and generated classes of a l l the
O S L C applicat ion domains. The reference domains can be used directly by impor t ing the
generated classes, or they can be impor ted as models into L y o Designer to generate the
classes manually, modifying them beforehand if needed.

3.4.4 L y o Store

Lyo Store [23] is a l ibrary for persistent storage of O S L C resources i n a triplestore. Three
different storage types are supported: in-memory, on-disk, and SPARQL. The original func
t ional i ty was only to perform basic operations wi th resources (C R U D) . However, eventually
experimental implementat ion of the query capabil i ty based on the O S L C Query Syntax [34]
was added, and it is s t i l l being developed. The query capabil i ty is currently only available
for the S P A R Q L storage type. W h e n used w i t h L y o Designer, L y o Store makes it easy to
add persistence and query capabilities to an O S L C server.

3.4.5 L y o R I O

Lyo R I O [22] is a set of sample implementations of the O S L C specifications meant as
min ima l implementations to be used as a reference for full implementations. It features
sample servers and clients to experiment wi th .

3.4.6 L y o Test Suite

Lyo provides a test suite [24] used to verify whether a tool or adapter is compliant w i th
the O S L C specifications. The test suite is based on J U n i t , and provides tests for most
domains. The tests are tai lored for the sample implementations of O S L C servers available
in L y o R I O , and then there are some community made application-specific tests. The test
suite covers a l l resource shapes, a l l basic capabilities, and optionally even a simple version
of the query capability. However, there is no need to use the test suite when using L y o
Designer since it already generates O S L C compliant code.

17

Chapter 4

Defining Analysis Tool
Requirements

In order to design an universal adapter, usage requirements of different analysis tools need to
be examined. This chapter discusses what requirements need to be fulfilled by the adapter
during various stages of analysis in general; what special requirements different types of
tools have, and what l imitat ions the adapter has. A summary of how these requirements
are fulfilled by the adapter is listed i n Section 6.2. Tools used as representatives for the
requirements study include:

• A N a C o n D A [11] - dynamic analysis,

• Va lgr ind [39] - dynamic analysis,

• Perun [14] - dynamic analysis and G i t integration,

• Facebook Infer [10] - static analysis,

• Grep - very simple static analysis and general U N I X ut i l i ty representative,

• H i L i T E - test case generation,

• Spectra [36] - dynamic analysis.

4.1 General Requirements for Analysis Execution

This section examines different stages of analysis execution — setup, before, in i t ia t ion,
during, and after. We tr ied to cover a l l requirements needed for an analysis tool to be used
properly as if the user was working directly w i th a command-line.

4.1.1 In i t ia l Se tup

To prepare the analysis executor, the analysis tool first needs to be installed. This step is
only performed once, typical ly by the system administrator (not an adapter client). The
process of instal l ing the tool itself does not need to be covered by the adapter's O S L O
interface. However, since the adapter is universal it needs to have customizable configu
rat ion which allows the system administrator to register the newly installed tool w i t h the
adapter so that the adapter knows what the tools interface looks like and can then provide
its analysis capabilities to clients.

18

4.1.2 P r e - A n a l y s i s E x e c u t i o n

Once a specific analysis of a S U T is planned, the S U T needs to be transferred to the
analysis server and prepared for analysis. Th is functionality is its own automation scenario
and has its own adapter i n our solution. The two requirements mentioned in this section
both require their own output logs, input parameters, and can have different outcomes.
Tha t is why they have been moved into their own adapter which is separated from analysis
execution. More details on the actual solution w i l l be provided in Chapter 5.

Transfer the S U T to the server

Files of the S U T need to be transferred to the server which is running the O S L C adapter.
A variety of ways to transfer a S U T need to be supported to accommodate different client
use cases, such as cloning a G i t repository or downloading the S U T from a general U R L ,
direct upload of the S U T , and path to a S U T which the client transferred to the server
through its own means. The adapter needs to provide as many of these transfer options as
possible. In addit ion, the process of fetching the S U T might fail, e.g. due to a connection
issue. This means the adapter needs to provide logs of the S U T transfer process so that
users can look at them to see errors.

Bui ld ing the S U T

The S U T might need to be compiled depending on the k ind of S U T and analysis tool .
Typ ica l ly a S U T would be a folder containing a number of source files and an included
bui ld solution, such as a Makefile, a bu i ld script, Gradle, or Maven . The bu i ld process is
performed by executing a bu i ld command that uses one of the mentioned bui ld solutions.
Thus, the adapter needs to allow clients to submit any bui ld command and then be able to
execute i t . In addit ion, the process of bui ld ing the S U T might produce outputs that need
to be available to users so they can check whether the bu i ld process went as expected, and
the bu i ld process could fail which means the adapter needs to represent the compilat ion
result somehow.

4.1.3 O n A n a l y s i s In i t ia t ion

Once a S U T is ready on the analysis server and there is a part icular analysis to be executed,
the user might need to modify the configuration of the analysis tool for the specific analysis
and then start the analysis execution.

Configure the analysis tool

The analysis tool might have parameters that can be configured that change the tools
behavior during the analysis. For example, A N a C o n D A has configurable noise-injection 1

or locat ion information verbosity through a configuration file. Such configuration files can
be located in the S U T directory or might only be located inside of the tool's directories.
The adapter needs to provide a way to create and modify these configuration files i n the
S U T directory for each analysis execution. However, changing configuration files located
in the tool's directories can prove difficult, since it might collide w i th other concurrent
analyses that share the same configuration file and need different configuration.

1Inserting sleep into the program's execution to enforce less common thread interleavings.

19

Analysis tools can also be configurable using environment variables, so the adapter needs
to provide a way to set environment variables for executing analysis.

Discover the analysis tool's parameters

A new user who has never used an analysis tool might need to look up its usage typical ly
using a — h e l p parameter. The adapter needs to provide a way to discover input parameters
either by executing the analysis tool w i th a — h e l p parameter or by having the tools
interface entirely described in the tool's Au tomat ion P l an .

Specify Too l Input Parameters and Execute Analysis

Execut ing the analysis itself is usually performed by cal l ing the analysis tool w i th certain
command-line arguments. The adapter needs to allow clients to submit any input parame
ters as they would on a command-line and properly interpret commands which can contain
quotes, wildcards, etc. The adapter should also check whether the submitted input param
eters are correct or not to avoid cal l ing the analysis tool only to get an error result due to
incorrect input parameters. Often, users would also want to execute analysis w i th a timeout
i n case it deadlocks or just runs longer than acceptable, or the user might want to execute
the analysis mult iple times and aggregate the final result, or the user might want to queue
up mult iple different analysis runs i n a sequence. The adapter should provide such features
too, either through its own input parameters or by al lowing users to run their own custom
scripts as the analysis launch command.

4.1.4 D u r i n g A n a l y s i s E x e c u t i o n

Once the analysis has been started, a command-line user could see the analysis progress in
real t ime and would be able to abort the analysis if needed.

M o n i t o r analysis status

Moni to r ing the analysis progress can be useful for the user to get information on how much
time is left or i f the tool already reported any errors, etc. The adapter should allow users to
po l l for the status of the analysis execution, ideally providing the latest state of the tool 's
outputs as well.

Cancel execution

A user might decide that an analysis was started by accident, or w i th the wrong input
parameters, or is taking too long, and can decide to abort the analysis. The adapter should
allow users to abort analysis execution as well .

4.1.5 P o s t - A n a l y s i s E x e c u t i o n

After the analysis finishes, the user wants to browse and process the outputs of the analysis,
get information about the analysis run , such as the to ta l time, or prepare for more analysis
runs.

20

Get analysis outputs

The m a i n reason for performing an analysis is getting the analysis too l outputs. Typ ica l ly
the standard output, standard error output, and return code. B u t analysis tools can also
produce new files w i th outputs, graphs, or other artifacts. The adapter needs to allow users
to retrieve a l l possible analysis too l outputs including a l l newly produced files. A user might
even want to retrieve the whole S U T directory to use it elsewhere wi th the modifications
produced by the analysis tool (e.g. modified source codes).

Get information about execution run

The adapter needs to provide information about the analysis run, such as the to ta l running
time, the resources used, etc.

Persist analysis outputs

The user might want to save analysis results persistently into a database. The adapter
could provide this functionality for users using a persistent database.

Examine analysis outputs

Typica l ly an analysis tool would produce an output which contains ind iv idua l reports of
issues found i n the S U T during the analysis. Users might then, for example, only be
interested in analysis results which contain logs that d id find issues in the S U T . Therefore,
the adapter should allow users to query contents of analysis outputs or otherwise post-
process them to produce other aggregated results.

R u n follow up analysis

The user might want to run a new analysis on top of the current analysis results, for example,
when using mult iple tools which use each other's outputs. Th is means the adapter needs
to provide a way of running mult iple analyses wi th the same analysis context.

Clean up

If S U T s retain a l l modifications made to them by analysis, there might be scenarios where
a new analysis might require the S U T to be clean, w i th new fresh context which should also
be achievable i n the adapter. This could be achieved by a cleaning operation on a S U T or
by cloning clean S U T .

4.2 Tool Type Specific Requirements

The previous section focused on general requirements needed by most tools. T h i s section
focuses on specific requirements of different types of tools.

4.2.1 D y n a m i c A n a l y s i s

Dynamic analysis (Section 2.1) tools perform analysis by monitor ing the execution of a S U T .
Dynamic analysis tools that were considered i n this work include A N a C o n D A , Valgr ind ,
and Spectra. The i r special requirements come from the need to execute the analysed S U T .

21

B u i l d the S U T

In order for a S U T to be executable it needs to be compiled or otherwise prepared after
being transferred to the analysis server. A need to bu i ld the S U T was already mentioned
in the previous section as a general requirement but is pointed out here again because it
is specific to dynamic analysis tools. The adapter needs to provide a way to bu i ld even
the most complex S U T ' s by using their intended bu i ld systems. In addit ion, a dynamic
analysis tool might need to compile the S U T in its own specific way (which is the case wi th
Spectra). W h i c h means the adapter needs to allow clients to skip the in i t i a l bu i ld process
when creating a S U T at the server and push it back to the analysis tool level which comes
later.

Use the S U T launch command

The analysis tool needs to be able to launch a S U T in order to be able to analyse its
execution. Th is means the tool typical ly expects the launch command of the S U T to be
passed as one of its input arguments. Thus, the adapter needs to have the S U T launch
command saved as one of the S U T resource's properties so that analysis can then look it
up later.

4.2.2 Stat ic A n a l y s i s

Static analysis (Section 2.1) tools perform analysis by scanning the S U T ' s source codes.
Unl ike dynamic analysis tools, they do not need the S U T to be compiled and can even
require it not to be compiled so that they can bu i ld it themselves to see which source files
are needed. Static analysis tools that are considered i n this work include Facebook Infer
and Grep.

Knowledge of the S U T build command

The analysis tool needs to know which source files is the S U T made out of. In the case of
Facebook Infer, this is achieved by supplying the S U T bu i ld command to it as one of its
input arguments. The adapter needs to represent the S U T bu i ld command as one of the
S U T ' s properties so that analysis tools can look it up later.

Bui ld ing the S U T might not be required

Static analysis tools do not need the S U T to be compiled and ready to launch. They might
even be usable on a fragment of a S U T which is not compilable on its own. The adapter
needs to allow clients to supply a bu i ld command wi th the S U T but skip the in i t i a l bu i ld
process while creating the S U T on the server in case the bu i ld is not possible at a l l or not
desirable.

4.2.3 Stateful A n a l y s i s or C o m b i n a t i o n of Too l s

Some analysis tools might need mult iple analyses to be performed i n succession on a single
instance of a S U T . Tools like Perun, for example, can analyse whether performance has
degraded across mult iple commits, which means performance analysis needs to be performed
on each commit and then an aggregating analysis needs to be executed on the previous

22

results. Another option is using a combination of tools which depend on each other's
outputs.

Keeping S U T context for multiple analysis executions

Analysis tools might need to perform mult iple analyses on the same S U T . R E S T f u l in
terfaces are stateless, however, the analysis server manages stateful resources like a S U T
resource i n our case. Th is allows the adapter to use one S U T resource i n mult iple analysis
executions either by physically running a l l analyses in the same directory, or by managing
analysis context as an artifact that can be transferred between directories.

4.2.4 O t h e r Too l s

Some tools, which might even be considered as a whole different type of tool other than
analysis tools, are tools that do not necessarily analyse a S U T as an applicat ion but, for
example, generate test cases instead. The i r analysis input might be a general artifact like
a set of requirements to transform.

Generic artifact as the analysis input

In case of a tool that does not analyse applications it might not be possible to describe its
input artifacts using S U T properties like bu i ld command or launch command. The adapter
needs to allow artifacts of any type or shape to be transferred to the server for analysis.
The process of transferring artifacts to the analysis server, however, s t i l l might be complex
and needs its own result and log of outputs.

4.3 Limitations

Using an analysis tool through a stateless R E S T f u l interface has its l imitat ions. These are
discussed in this section.

Interactive Tools

A n analysis tool could require continuous interaction from the user to, for example, control
analysis decisions. The adapter does not support these tools since creating support for
passing inputs to an execution thread would require excessive work, and we d id not find
any tools that would require such functionality. Typ ica l ly analysis is started using one
command and then fully executes without further interaction.

Tool configuration outside of its input parameters

Analysis tools can have configuration files that alter their behavior. In the case of A N a -
C o n D A there is an input parameter that allows users to specify a path to the configuration
file which is to be used instead of the default one that is located i n the tool's directories.
However, if an analysis tool does not provide a similar way to specify a new configuration
file for each analysis execution, then the tool itself needs to be modified before each analysis
execution. The adapter can provide a way for clients to configure the tool itself prior to
executing analysis, but there might be issues when requesting more then one analysis exe
cution wi th different configurations at the same time. This functionality might be provided

23

by the adapter i f there is a way to, for example, only ever execute one analysis using a given
tool at a time.

Running multiple instances of a S U T or an analysis tool

Analysis , or even running applications, can be l imi ted by the hardware capabilities of the
analysis server. For example, an analysis tool might use a M a t l a b dis t r ibut ion as part of
its analysis process, which is a fairly expensive applicat ion to run, which might result in
a requirement to only ever execute one instance of the analysis tool to keep its performance
at a reasonable level. Some applications might not even be able to run i n mult iple instances
at a l l due to various reasons. Th is includes S U T ' s to be analysed and not just analysis tools.

Tools without a command-line interface

In case an analysis tool only has a graphical user interface or can otherwise not be used on
its own through a command-line, then it can not be used by the adapter. Such tools first
need an adapter that allows them to be used as standalone command-line tools.

24

Chapter 5

OSLC Adapter Design

A s mentioned i n the previous chapters, the O S L C adapter created i n this work was designed
to be universal for a l l command-line analysis tools. This chapter focuses on the design of
the adapter. It presents design diagrams and explains design decisions in regard to the
analysis tool requirements defined i n the previous chapter.

Eclipse L y o was used to model the adapters domain, toolchain, and capabilities. The
created models can be found throughout this chapter. For a description on how to model
using Ecl ipse L y o and what diagrams are used, see my bachelor's thesis [40], L y o W i k i [20],
or the O S L C Developer Guide [29].

5.1 Architecture — Separating Analysis and Compilation

Analysis tool usage requirements include two main areas - compilat ion and analysis. These
are both mentioned as example integration scenarios for the O S L C Automat ion domain.
The Au tomat ion domain (explained i n Section 3.3) was picked as the domain used to model
our adapter's interface. Au tomat ion Plans represent functionality provided by the adapter
which is the compilat ion of S U T s and different kinds of analysis in our case. Au tomat ion
Requests are what clients create to request execution of any of the provided Au tomat ion
Plans. Au tomat ion Results represent outputs produced by request executions.

Due to compilat ion and analysis being two different integration scenarios, it was decided
to split the designed adapter into two sub-adapters to form a toolchain (two cooperating
O S L C servers w i th separate interfaces). Hav ing two separate interfaces is useful because
it avoids mix ing two unrelated usage scenarios in one place, which could cause unwanted
confusion i n the interface. Hav ing a standalone compilat ion server allows for it to potential ly
be replaced i n the future by a more complete compilat ion and deployment system created
by someone else, and it also allows us to use the Compi la t ion adapter on its own i n case
there is a suitable use case for it i n the future. Figure 5.1 shows the resources making up
the interfaces of the two adapters.

The two adapter's are designed to run on the same server so that the Compi la t ion
adapter can be used to create S U T ' s on the server and the Analys is adapter can then
access them to execute analysis. Figure 5.2 shows an overview of the adapter's deployment.
The left part represents a client that is using the adapter's functionality. The typica l way
to interact w i t h the adapter is direct ly using its interface through a R E S T client (ideally
by integrating it w i th another application) or the Swagger U I buil t i n w i th the adapter. In
the future, however, there could be other ways of using the adapter, such as through a user

25

1" VeriFit Analysis
lAutomationPlan

lAutomationRequest

lAutomationResult

(Contribution

SUTl

1" VeriFit Compilation

AutomationPlanl

ISUT
AutomationRequestl

AutomationResult

Figure 5.1: Toolchain diagram showing the two adapters. P stands for produces and C
stands for consumes. Made wi th Eclipse L y o

friendly web applicat ion or through an I D E plugin (displayed in yellow). The right part
shows the analysis server running the O S L C adapter consisting of the Analys is adapter
and the Compi la t ion adapter. S U T ' s are created and managed by the Compi la t ion adapter
and used by the Analys is adapter. Analys is tools need to be setup on the same server so
that the Analys is adapter can use them to execute analysis. A n d both the Analys is and
Compi la t ion adapter use a database to store their resources. The arrows i n the middle
(displayed i n blue) represent communicat ion between the client and the adapter. The first
step is always creating a S U T on the server using the Compi la t ion adapter. The second
step is to execute analysis on the previously created S U T .

Figure 5.3 shows a high-level system sequence diagram of the complete O S L C adapter.
There are three main parts i n the sequence. Fi rs t , a new client which has never used the
adapter before w i l l need to discover its interface through the Service Provider Catalogue.
Second part is creating a S U T using the Compi la t ion adapter. A n d the last part is executing
analysis using the Analys is adapter. Interaction wi th both the Compi la t ion adapter and the
Analysis adapter looks very similar because they both use the O S L C Automat ion interface.
B o t h interactions consist of creating a request, pol l ing for its state, and then getting the
final result. Before executing analysis, the Analys is adapter needs to retrieve the S U T
resource to be analysed from the Compi la t ion adapter.

26

I does not have to be
on the same server

Client

REST client

(B>
Swagger Ul [one o f]

2.2. Results of the analysis

Eclipse plugin

user interface app

T T 0
Future
options

2. Execute analysis on an SUT
and manage results

1. Transfer SUT and
manage SUTs

1.1. Results of SUT transfer
and compilation

Server

Adapter Analysis tools
exec I

Analysis

store

exec on

2.1 get SUT

store

Compilation SUTs

manage -

SPARQL
triplestore

System

C o m p i l a t i o n

o p t / r - - |d iscover API a n d r e s o u r c e s h a p e s r-

A n a l y s i s

n d i s c o v e r AP I a n d r e s o u r c e s h a p e s

l o o p /

r e q u e s t SUT c r e a t i o n

pol l p r o g r e s s

g e t r e s u l t

L\
create SUT

r n r e q u e s t a n a l y s i s o f an SUT

l o o p /

g e t SUT

po l l p r o g r e s s

g e t r e s u l t

N
analyse SUT

Figure 5.3: High-level system sequence diagram of the Universal Analys is Adapter .

28

5.2 Domain Mode l of Bo th Adapters

A s mentioned before, the interface of both adapters is modeled after the O S L C Au toma
t ion domain. The domain model created i n Eclipse L y o is shown i n Figure 5.4. A l l the
Automat ion domain resources have been impor ted from L y o Domains (see Section 3.4.3)
w i th smal l modifications to make the generated code fit our use case. Modifications to the
imported resources a l l are wi th in the standard's specifications.

One resource relation from the Au tomat ion Request to the Au tomat ion Result called
producedByAutomationRequest was added to make it easier for clients to locate A u
tomation Results without using query capabilities. Our adapter can afford using a re
lat ion i n this direction because it only uses Au tomat ion Requests and Results on a one
to one basis where there is always exactly one Au tomat ion Result for each Request. A n
other addi t ion is a resource shape for Parameter Definitions, which is modeled after the
oslc:Property resource as defined by the standard wi th two modifications — adding a prop
erty f i t : commandlinePosition and adding a property f i t : valuePref ix. These are then
used in the Analys is adapter to define tool interfaces i n Au tomat ion Plans (more informa
t ion i n Section 6.2.3). Next , a resource shape for Contributions was created wi th properties
recommended by the specification, except for our own custom property called f i t : f ilePath
that is used i n Contr ibut ions which represent files created during execution. A n entirely
new resource f i t :SUT was created i n our own domain namespace. This resource is used to
represent S U T resources as described in the previous section and w i l l be described in more
detail i n Section 5.6. A new relation from the Au tomat ion Result to the S U T resource was
added. It is called createdSUT and is s imilar to the contribution relation used for Con
tr ibutions. This allows the S U T resource to be more easily retrieved from the Au tomat ion
Result by looking up the crea tedSUT property instead of checking a l l the Cont r ibu t ion
resources. The created S U T is, however, also referenced through a Cont r ibu t ion resource
for standard compliance.

The parameter Instance resource had a f oaf :name property instead of the oslc :name
property (this is l ikely a typo i n L y o Domains) . The allowedValue and defaultValue
properties of ParameterDefinition resources had value types Resource (i.e. a general l ink
to any resource) which were changed to String. The standard says the value type can be
any resource based on the value of the valueType property defined i n the same Parameter-
Definition resource. Properties inputParameter, outputParameter, contribution, and
parameterDef i n i t i o n had their representation changed from Resource to LocalResource
which allows the generated code to actually display these properties as local resources. A n d
finally, the rdf: value property inside Contribution resources was changed to String from
XMLLiteral as the standard allows any values and XMLLiteral has semantic restrictions.

5.3 Mapping O S L C Automation Resources to Actions

A n important concept to know i n order to properly understand the adapter created in
this work is how the O S L C Automat ion resources translate to actions, which a user would
otherwise perform wi th an analysis tool directly. To demonstrate this, we provide an
example of using A N a C o n D A i n Figure 5.5. A N a C o n D A [13] [11] is a dynamic analysis tool
w i th a command-line interface. It is executed using a run. sh script w i th various parameters.
The only important ones for this demonstration are a — h e l p parameter which is used to
show a list of a l l possible parameters, analyser parameter which is used to specify which
analyser to use, binary parameter which stands for the S U T launch command, and input

29

3
era'
i-í
0
01
£•
O
o

o
o

cr
vi
cr
o

t3

P
o

•5'
X

t-1

d

00 O

Configuration
General
Project Configuration

2 Automation (oslcauto)

AutomationPlan

dcterms:created: DateTime
dcterms:description: XMLLiteral
dcterms:identifier: String
dcterms:modified: DateTime
rdf:type: Resource []
dcterms:subject: String []
dcterms:title: XMLLiteral
oslc:instanceShape: Resource []
oslc:serviceProvider: Resource []
usesExecutionEnvironment: Resource []
futureAction: Resource []
dcterms.creator: Person []
dcterms:contributor: Person []

executesAutomationPlan

AutomationRequest

dcterms:created: DateTime
dcterms:description: XMLLiteral
dcterms:identifier: String
dcterms:modified: DateTime
rdf:type: Resource []
dcterms:title: XMLLiteral
oslc:instanceShape: Resource []
oslc:serviceProvider: Resource []
state: Resource []
desiredState: Resource
dcterms.creator. Person []
dcterms:contributor: Person [] ,

Property Constraints

parameterDefinition: ParameterDefinition []
usesExecutionEnvironment: Resource []
futureAction: Resource []
state: Resource []
desiredState: Resource
inputParameter: Parameterlnstance []
executesAutomationPlan: AutomationPlan
verdict: Resource []
contribution: Contribution []
outputParameter: Parameterlnstance []
producedByAutomationRequest: AutomationRequest
reportsOnAutomationPlan: AutomationPlan
producedAutomationResult: AutomationResult
producedByAutomationRequest: AutomationRequ

producedByAutomationRequest

T 0..1
producedByAutomationRequest

Local: inputParameter

producedAutomationResult

reportsOnAutomationPlan

jmationF

I 0..1

Local: parameterDefini t ion

Pa ra mete rDefi n itio n

dcterms:description: XMLLiteral
dcterms:title: XMLLiteral
oslc:allowedValue: String []
oslc:defaultValue: String
oslc:allowedValues: Resource
oslc:hidden: Boolean
oslc:isMemberProperty: Boolean
oslc:name: String
oslc:maxSize: Integer
oslc:occurs: Resource
oslc:range: Resource []
oslc:readOnly: Boolean
oslc:representation: Resource
oslc:valueType: Resource []
oslc:valueShape: Resource
fit:commandlinePosition: Integer
oslc:propertyDefinition: Resource
fit:valuePrefix: Strim

AutomationResult

dcterms:created: DateTime
dcterms:identifier: String
dcterms:modified: DateTime
rdf:type: Resource []
dcterms:subject: String []
dcterms:title: XMLLiteral
oslc:instanceShape: Resource []
oslc:serviceProvider: Resource []
state: Resource []
desiredState: Resource
verdict: Resource []
dcterms.creator. Person []
dctermsicontributor. Person [1 ,

Local: outputParameter

0..»

Local: inputParameter

Parameterlnstance

rdf:value: String
dcterms:description: XMLLiteral
rdf:type: Resource []
oslc:instanceShape: Resource []
oslc:serviceProvider: Resource []
oslc:name: String ,

createdSUT T T

Local: contr ibut ion

Contribution

dcterms:title: XMLLiteral
dcterms:description: XMLLiteral
rdf:type: Resource []
rdf:value: String
dcterms:created: DateTime
oslcvalueType: Resource []
dcterms:modified: DateTime
fit:filePath: String
dcterms.creator: Person []

^ VeriFit Universal Analysis (fit)

Configuration
General
Project Configuration

Property Constraints

launchCommand: XMLLiteral
buildCommand: XMLLiteral
SUTdirectoryPath: XMLLiteral
createdSUT: SUT
comma ndlinePosition: Integer
filePath: String
compiled: Boolea
valuePrefix: Strini

SUT

launchCommand: XMLLiteral
buildCommand: XMLLiteral
dcterms:title: XMLLiteral
dcterms:description: XMLLiteral
dcterms:created: DateTime
dcterms:modified: DateTime
dcterms:identifier: String
SUTdirectoryPath: XMLLiteral
compiled: Boolea
dcterms.creator: Person []

ANaConDA
command line

run.sh --help run.sh <analyser> <binary> <input> read output.log run.sh --help run.sh <analyser> <binary> <input> read output.log

OSLC Automation get Automation Plan create Automation Request get Automation Result get Automation Plan create Automation Request get Automation Result

Figure 5.5: M a p p i n g actions performed when using an analysis tool to O S L C Automat ion
domain resources.

which stands for S U T input parameters. Runn ing A N a C o n D A w i t h the — h e l p parameter
translates to getting the Au tomat ion P l a n defined by the Analys is adapter since it contains
information about a l l possible input parameters that can be used to run analysis. Then ,
running A N a C o n D A wi th the other three parameters translates to creating an Au tomat ion
Request w i th the appropriate input parameters i n the Analys is adapter since it causes the
adapter to execute analysis and produce a result. F ina l ly , reading the output produced by
A N a C o n D A (from the standard output or from a file) translates to getting the Au tomat ion
Result produced by the Analys is adapter since it contains Cont r ibu t ion resources that
represent a l l analysis outputs produced by the execution.

Creat ing a S U T resource translates to the O S L C Automat ion domain i n a similar way.
To learn what input parameters are available when creating a S U T , clients need to get the
Automat ion P l a n of the Compi la t ion adapter. Then , to request a S U T to be created, clients
need to create an Au tomat ion Request in the Compi la t ion adapter w i th the appropriate
input parameters. F ina l ly , to retrieve the created S U T resource (or just a l ink to i t) , clients
need to get the Au tomat ion Result produced by the Compi la t ion adapter.

5.4 Compilation Adapter

The first of the two sub-adapters which form the toolchain created in this work is the
Compi la t ion adapter. A s outl ined in Section 5.1, its main purpose is to create and manage
S U T ' s . Hav ing a separate Compi la t ion adapter is useful because it makes the interface
cleaner, allows us to potential ly replace the Compi la t ion adapter w i t h a more complete
solution i n the future, and allows us to reuse it to provide compilat ion capabilities in other
use cases or systems.

Capabil i t ies provided by the Compi la t ion adapter are shown in Figure 5.6 which was
modeled i n Eclipse L y o . The adapter contains a single service provider w i th a single service
that holds a l l of its capabilities. Managed resources are resources from the Au tomat ion
domain — Automat ion Plans, Au tomat ion Requests, and Au tomat ion Results; and our
custom S U T resource. Capabil i t ies provided for a l l the Au tomat ion resources were defined
based on the standard's specification [27] so that a l l the capabilities marked as MUST and
SHOULD (i.e. required and recommended) are available to clients. Query capabilities and
selection dialogs are defined for a l l resources even though the standard only requires them for
some resources. The adapter provides these capabilities for a l l resources because of optional
persistency and because their implementation is covered by L y o Store (see Section 3.4.4).

Au tomat ion Plans are a read-only resource wi th a read capabil i ty (hidden under Au-
tomationPlans i n the diagram), a query capability, and a selection dialog.

Au tomat ion Request is the only resource that clients can create wi th a creation factory
capabil i ty or a creation dialog. Au tomat ion Requests have a l l basic capabilities (read,

31

update, delete), a query capability, and a selection dialog to allow clients to browse past
requests. The update capabil i ty is defined by the standard as a way to cancel execution of
an Au tomat ion Request, and the delete capabil i ty was included in the adapter as a way to
manage persistent resources.

Au tomat ion Result is again a mainly read-only resource for clients w i t h a read capability,
a query capability, and a selection dialog. Au tomat ion Results, however, also have an update
capabil i ty defined by the standard to allow agents (other than the adapter that might take
part i n the automation execution) to contribute to the result, and a delete capabil i ty was
again included i n the adapter for managing persistent resources

S U T resources described i n Section 5.6 are the main products of this adapter's au
tomation and were defined for this adapter specifically, therefore there are no standard
requirements for them. Capabil i t ies defined for S U T ' s i n the adapter are a read capability,
an update capability, a delete capability, a query capability, and a selection dialog. The
delete capabil i ty was, again, included for persistent resource management, and the update
capabil i ty is meant to allow users to modify S U T properties like its bu i ld command or its
launch command.

The Compi la t ion adapter has a single Au tomat ion P l a n defined. The Au tomat ion P l a n
represents the only unit of automation provided by the Compi la t ion adapter which is creat
ing a S U T resource. Input parameters of the Au tomat ion P l a n allow clients to pick a way
of transferring the S U T ' s files to the Compi la t ion adapter and to specify parameters of the
S U T , such as the bu i ld command and the launch command. More details are provided later
in Section 6.2.

5.5 Analysis Adapter

The Analys is adapter is the second and more complex one of the two sub-adapters which
form the toolchain created in this work. Its purpose is to execute analysis in a universal
way so that any analysis tool can be used through the adapter. Capabil i t ies provided by the
Analysis adapter are shown i n Figure 5.7 which was created i n Eclipse L y o . The adapter has
a single service provider w i th a single service which contains a l l the adapter's capabilities.
Resources from the Au tomat ion domain have the same capabilities as was also the case
wi th the Compi la t ion adapter, so to avoid repeating the same information, please refer to
the previous Section 5.4.

The differences are that S U T resources are not managed by the Analys is adapter and
thus have no capabilities defined by the Analys is adapter. S U T resources are instead con
sumed by the Analys is adapter which can be seen in the top left part of the diagram.
Another difference is that the Analys is adapter provides capabilities for Cont r ibu t ion re
sources. A read capabil i ty allows clients to download files produced by analysis, an update
capabil i ty allows clients to modify them, and a delete capabil i ty allows clients to delete
them.

Automat ion Plans i n the Analys is adapter correspond to analysis tools which are adapted
by the adapter. Pr imar i ly , there is one Au tomat ion P l a n for each analysis tool . The input
parameters of the Au tomat ion P l a n are divided into two groups. F i rs t are the common
input parameters for a l l Au tomat ion Plans that control general features of the Analys is
adapter itself, which are not directly related to a specific analysis tool . These include pa
rameters, such as execution timeout, reference to the S U T resource to be analysed, and
adding files produced by the analysis as Contr ibut ions. In the second group are analysis
tool parameters which are defined specifically for each analysis tool by the server admin

32

TO
0
01
f?
G
o

o
p a p

o l-(
o p t3 p

X

p a
o

•5'
X

Configuration
General
Server Configuration
Project Configuration
Authentication

00 00

Service
Provider

serviceProviders

in the adapter's configuration. These parameters define the interface of the specific anal
ysis tool by direct ly corresponding to possible values to be inserted to specific positions
on the command-line as arguments while launching analysis. More details are provided in
Section 6.2.

5.6 S U T Representation and Life Cycle

SUTs have been mentioned mult iple times previously as a very important part of the adapter
toolchain. They are created and managed by the Compi la t ion adapter and then used by
the Analys is adapter. The interaction between the two adapters was shown i n the high
level version of the system sequence diagram i n Figure 5.3. W h e n an analysis of a S U T is
requested, the Analys is adapter gets the S U T resource to be analysed from the Compi la t ion
adapter and uses its properties to execute analysis.

The S U T resource has non-functional properties like t i t le, description, identifier, cre
ation and last modification timestamps, and a creator reference. The most important
property of a S U T is its SUTdirectoryPath which is a file system path to the S U T direc
tory. Th is is where the S U T w i l l be transferred to once created and also where the S U T
w i l l be compiled. The same directory is also used to run analyses on the specific S U T .
Other properties include buildCommand and launchCommand which hold commands that
should be used to compile and launch the S U T respectively. The last property compiled
is a boolean flag which says whether the S U T has been compiled (i.e. is ready to run).

The lifecycle of a S U T resource can be seen in Figure 5.8. A t first, the S U T creation
request is created i n the Compi la t ion adapter which is represented by the to be processed
state. Once the Compi la t ion adapter creates a worker thread for the created request, its
state changes to creation in progress. Depending on the result of the S U T fetching and
compilat ion process, the S U T resource is either created and published to the client or the
S U T resource is deleted as failed. S U T creation can also be canceled by the client prior
to finishing. After creation, a S U T resource is clean unt i l a first analysis is executed on it
by the Analys is adapter. S U T resources work as workspaces for analysis executions, and
analysis can make modifications to them. A potential future addi t ion to the lifecycle is
a way to clean a S U T to restore it to its in i t i a l state (shown in yellow) which would allow
clients to get a clean S U T without creating a whole new one.

to be [processing started] ^ creation in [creation success] SUT ready,
processed

J
progress clean

[creation failed]
or cancel request analysis executed

(SUT ready,
dirty

clean SUT

Figure 5.8: S U T lifecycle diagram

35

Chapter 6

Implementation

This chapter covers important parts of the adapter's implementation, especially in regard
to accommodating a l l analysis tool requirements defined in Chapter 4.

6.1 Adapter Core

The base code of the adapter was generated using L y o Code Generator based on models
created wi th L y o Designer which were described i n Chapter 5. The generated code is
a Java web applicat ion managed using Maven [38] w i th generated classes for a l l domain
resources, a service provider catalogue for A P I discovery, and wi th R E S T A P I endpoints
for modeled capabilities using J A X - R S . Basic visualizat ion of the interface is also generated
as a web page using javascript, which allows clients to browse the adapter's interface and
the provided resources. However, it does not provide a complete way to create resources
without a R E S T client. Since L y o 4.0, the generated code includes a Swagger U I [35]
which visualizes a l l available endpoints and their resource types and descriptions. The
Swagger U I also allows resources to be created and queried the same way a R E S T client
like Pos tman [32] would. A l l generated endpoints support mult iple resource representation
formats, namely R D F / X M L , J S O N , turtle, and for retrieving resources also H T M L .

In our case, there are two separate Maven projects one for each sub-adapter. Then , there
is a th i rd Maven project which contains a l l resources shared by both adapters including the
generated domain classes. The adapter runs using Maven Jet ty [7] p lugin and is packaged
wi th a set of scripts to bu i ld and run the whole adapter as a toolchain including a database.
A S P A R Q L triplestore, Apache Jena Fuseki [37], deployed i n a Jetty server dis t r ibut ion is
packaged w i t h the adapter to provide persistent storage and query capabil i ty without the
need to setup a whole fresh database server. The adapter also uses jSEM [12] (Simple
Extension Manager for Java) a l ibrary that allows Java classes to be easily looked up
and used dynamically. j S E M is used to allow users to define their own output filters.
Scripts packaged wi th the adapter also take care of configuration by copying files from
a single configuration directory into their appropriate places on the bu i ld and startup of
the adapter. These include configuration of host addresses and ports for both sub-adapters
and the database, S P A R Q L endpoints for the sub-adapter to connect to the database,
persistency settings, basic authentication settings, and other internal settings of each sub-
adapter. The adapter comes wi th scripts for both L i n u x and Windows and was developed
and tested on both operating systems.

36

To provide a clearer idea of what communicat ion wi th the adapter looks like, refer to
Figure 6.1. It is a low level version of Figure 5.3. Au tomat ion Requests are created by
sending a P O S T request containing an Au tomat ion Request resource to one of the sub-
adapters which results i n starting either a S U T creation process or an analysis process.
The adapter's reply to such a P O S T request w i l l be an Au tomat ion Request resource wi th
al l the properties set as the adapter created the resource. Some properties are ignored
when specified by the user because they should semantically be determined by the adapter,
like a creation and last modification t imestamp, U R I of the resource, identifier of the
request, or state of the request. The identifier of the created Au tomat ion Request w i l l
match the last part of the resource's U R I and it is a serial number set by a counter that
increments w i th each new Automat ion Request. The state of the created Au tomat ion
Request should be new, but i n practice it w i l l mostly be either inProgress or queued,
because the adapter starts processing a l l requests immediately which means that even the
first client response w i l l contain a state other than new for opt imizat ion reasons. After an
Automat ion Request has been created, the adapter w i l l start executing the required unit of
automation (i.e. analysis or compilat ion depending on the sub-adapter). Clients then have
to po l l the Au tomat ion Request resource by sending G E T requests to its U R I to check its
state property, which w i l l be updated by the adapter throughout its execution. Clients
need to keep pol l ing the Au tomat ion Request un t i l a resource is returned wi th its state set
as complete (or canceled in case a client has requested a cancellation). Note that clients
can choose to po l l the Au tomat ion Request or its associated Au tomat ion Result as both of
these resources have the same state property. Au tomat ion Results can be identified i n three
ways. The first one, and the only one defined by the standard, is by querying a l l Au tomat ion
Results to find the one which contains a l ink property to the desired Au tomat ion Request
(producedByAutomationRequest property). Th is adapter gives clients two more options
to identify Au tomat ion Results associated w i t h their request. F i r s t , Au tomat ion Results
w i l l have the same identifier as their associated Au tomat ion Request which means the last
part of their U R I w i l l be the same ID number. Th is allows clients to directly ,{juess" the
Automat ion Result U R I by copying the I D . A second more proper way is a custom property
producedAutomationResult, which is part of a l l Au tomat ion Requests and links to their
associated Au tomat ion Result . Au tomat ion Results need to be retrieved by clients by
sending a G E T request to their U R I in order to see outputs of the execution. The verdict
property signifies the result of execution from the point of view of the adapter (determined
by exceptions being thrown during execution or the return code of the execution). A n d the
Automat ion result w i l l contain inl ined Cont r ibu t ion resources wi th outputs of the execution
(e.g. standard output, return code, created files, etc.).

6.1.1 E x e c u t i n g C o m m a n d s F r o m J a v a

A n important functionality of bo th sub-adapters is executing a command submitted by
a client. The a im of the adapter is to allow commands to be executed through it exactly
the same way as they would be direct ly through a command-line. This means interpreting
wildcards, quotes, escape sequences, pipes, mult iple commands on one line, etc. To achieve
this the adapter needs to execute submitted commands using the native shell of the server
it is running on, which is currently assumed to be bash for L i n u x and powershell for W i n
dows. The local shell can be easily executed from Java using ProcessBuilder. A minor issue
wi th executing any command submit ted by a client is that a command can contain multiple
posit ional arguments which would need to be passed as ind iv idua l parameters to Process-

37

System

C o m p i l a t i o n A n a l y s i s

r*-i POST : A u t o m a t i o n R e q u e s t r-i

l o o p /

Automat ion Reques t :
- state #new
- link to Auto.Result

GET : A u t o . R e q u e s t o r Resu l t r-\

Auto. Request or Result:
- state #inProgress / #complete

GET : A u t o m a t i o n Resu l t n

Auto. Result:
- verdict #passed / #failed
- state #complete

n POST : A u t o m a t i o n R e q u e s t

L\
create SUT

l o o p /

Automat ion Reques t :
- state #new
- link to Auto.Result

r h GET : SUT <
SUT

GET : A u t o . R e q u e s t o r Resu l t

Auto.Request or Result:
-state #inProgress / #complete

GET : A u t o m a t i o n Resu l t

Auto. Result:
- verdict #passed / #failed
- state #complete

t\
analyse SUT

Figure 6.1: Low-level system sequence diagram of the Universal Analys is Adapter .

38

Builder . A solution for bash was to use bash -c as the first parameter, and the whole
command to execute as the second parameter. However, a s imilar solution had issues wi th
preserving quotes i n powershell. The current solution does not execute commands directly,
but rather pastes them into a script file followed by an exit $? or exit $LastExitCode
first and then executes the created script file. This solution wi th an added catch clause
works well for powershell. A l though for bash, to preserve functionality the script to execute
w i l l contain a bash -c $1 and the command string to execute needs to be passed as a pa
rameter to the script. Th is way, execution of mult iple commands on one line or w i th quotes
or wildcards is possible using both powershell and bash. This allows clients to copy-paste
commands they would normally use to compile S U T s or to run their analysis tool directly
into the adapter. The executed script w i l l be created i n the S U T directory so it can be
viewed by clients when debugging their execution i n case of any issues. ProcessBuilder also
allows environment variables to be set before starting execution, which is then used by the
adapter to set environment variables supplied by clients when requesting analysis.

6.1.2 P r o c e s s i n g Requests

The way client requests are processed is given by Ecl ipse L y o and its generated code.
A l l client requests received by the adapter through its R E S T f u l A P I are processed using
J A X - R S to deserialize O S L C resource objects and passed to stub methods generated by
Lyo Code Generator. Each such method corresponds to one of the A P I endpoints which
provide C R U D functionalities for O S L C resources. Most of these methods return an O S L C
resource object which is then serialized and returned to the client as a response to their
request.

Each request is handled i n a separate thread which means mult iple request handlers
can run concurrently at the same time. GET, UPDATE, and DELETE requests a l l perform their
entire functionality before they return a response to the client. This means verifying that
the request is well formed; interacting wi th the database to either get, update, or delete
a resource; and then returning a result to the client. Au tomat ion Request POST requests
are handled differently because their function is to start execution of a unit of automation
(analysis, or compilat ion) . The fist step is to verify that the request is val id which means
checking that a l l input parameters and properties have the right values. If the request is
not val id, then an error response is returned to the client i n the form of an oslc: Error
resource shape and an appropriate response code. Then, a new Automat ion Request re
source and a matching Au tomat ion Result resource are created and saved i n the database,
and a new thread is spawned that takes care of the actual automation execution. F ina l ly ,
an Au tomat ion Request w i th state inProgress or queued is returned to the client as a re
sponse. The created thread then performs the requested unit of automation independently
of the adapters A P I and other client requests and updates the Au tomat ion Request and
Automat ion Result resources in the database to state complete once finished.

6.2 Universally Fulfilling Tool Requirements

This section discusses analysis tool requirements defined i n Chapter 4 and presents how the
O S L C Universal Analys is Adapter fulfills those requirements. A s a reminder, Figure 6.2
summarizes the requirements defined in Chapter 4. The numbering used in the figure w i l l
be used as reference i n the following sections.

39

1. General Requirements for Analys is Execut ion

(a) In i t ia l Setup

(b) Pre-Analys is Execut ion

i . Transfer the S U T to the server

i i . Compi le the S U T

(c) O n Analys is Ini t ia t ion

i . Configure the analysis tool

i i . Discover the analysis tool's parameters

i i i . Specify analysis input parameters

iv. Execute analysis tool

(d) Dur ing Analys is Execut ion

i . Mon i to r analysis status

i i . Cancel execution

(e) Post -Analysis Execut ion

i . Get analysis outputs

i i . Get information about execution run

i i i . Persist analysis outputs

iv. Examine analysis outputs

v. R u n follow up analysis

v i . C lean up

2. Tool Type Specific Requirements

(a) Dynamic Analys is (A N a C o n D A , Valgrind)

i . B u i l d the S U T

i i . Use the S U T launch command

(b) Static Analys is (Facebook Infer, grep)

i . Knowledge of the S U T bu i ld command

i i . Bu i ld ing the S U T might not be required

(c) Stateful Analys is or Combina t ion of Tools (Perun)

i . Keeping S U T context for mult iple analysis executions

(d) Other Tools / Test Case Generat ion (H i L i T E)

i . Generic artifact as the analysis input

(Section 6.2.3)

(Section 6.2.1)

(Section 6.2.5)

(Section 6.2.3)

(Section 6.2.4)

(Section 6.2.4)

(Section 6.2.6)

(Section 6.2.7

(Section 6.2.7

(Section 6.3

(Section 6.3

(Section 6.2.2

(Section 6.2.2

(Section 6.2.9

(Section 6.2.1

(Section 6.2.3

(Section 6.2.3

(Section 6.2.1

(Section 6.2.2

(Section 6.2.1

Figure 6.2: Tool requirements summary. The l inks to sections on the right side identify
sections which describe how the adapter fulfills these requirements.

40

6.2.1 S U T C r e a t i o n

Requirements l.b are related to creating a S U T resource and are handled by the C o m p i
lat ion adapter. The Compi la t ion adapter has a single Au tomat ion P l a n which has input
parameters that control both S U T transfer to the server and compilat ion of the S U T .

Firs t group of input parameters control the way the S U T is transferred to the server.
There are mult iple parameters w i th different values which the client can choose from, only
ever using one of them at a t ime. These parameters are named source*type* and include
a G i t repository U R L to clone, a generic U R L to directly download from, a base64 encoded
string containing the S U T itself, or a file system path to a file already present on the
server. A full list of these parameters is shown below or can be found at the adapter's W i k i
page [43].

1. sourceGit - S U T files w i l l be cloned from a G i t repository using the repository U R L 1

2. sourceUrl - S U T files w i l l be direct ly downloaded from a U R L . The downloaded
artifact w i l l often be a Z I P file which needs to be unpacked after downloading.

3. sourceFilePath - S U T files w i l l be retrieved directly from the server's file system us
ing a file path. Th is source option is meant for S U T source files which were transferred
to the adapter's server through other means (e.g. using an enterprise deployment sys
tem).

4. sourceBase64 - S U T file w i l l be transferred as part of the Au tomat ion Request as
a base64 encoded string. The parameter's value expects a strict value format w i th
the relative file pa th and name on the first line and the base64 string start ing at the
second line.

The second group of input parameters specify properties of the S U T resource to be cre
ated. These are parameters which correspond to the S U T ' s properties, namely its launch
command and its bu i ld command. The S U T buildCommand should contain a string repre
senting a command to be used to compile the S U T and is directly executed by the C o m
pilat ion adapter. The S U T launchCommand is used by the Analys is adapter when running
analysis on the S U T , for example, when using a dynamic analysis tool which needs to exe
cute the S U T . Note that both of these properties and their corresponding input parameters
are opt ional to accommodate S U T ' s that might not have a launch command or a bu i ld
command (requirement 2.d). However, these parameters can s t i l l be useful even for such
S U T ' s to hold information other than a launch command or a bu i ld command, even though
this would somewhat violate their intended semantics.

The th i rd and final group are parameters controll ing the transferring and compilat ion
process. These currently include two parameters. A boolean parameter unpackZip which
tells the adapter whether to unzip the transferred S U T before compilat ion. A n d another
boolean parameter compile which is used to toggle compilat ion to allow clients to skip
compilat ion i n case the created S U T does not need to be compiled, e.g. when running
static analysis (requirement 2.b.ii).

The Compi la t ion adapter uses Java libraries to transfer S U T files. However, performing
compilat ion has to be done through executing a string using shell to cover a l l possible
compilat ion methods a S U T can use. The S U T buildCommand supplied through automation

1 Currently, only public repositories are supported.

41

input parameters is used as the str ing to be executed to compile the S U T (more detail on
executing commands i n Section 6.1.1). This way clients can use any compilat ion method
accessible through a regular command-line, such as Make, Maven, gcc, or a custom script.

Output Contr ibut ions of S U T creation are divided into two parts. The first part is
output of the S U T transfer process which has its own text output log as one Cont r ibu t ion
resource. For example, such Cont r ibu t ion resources can contain outputs produced by G i t
while cloning a repository. The second part is the outputs of the S U T compilat ion process.
These are divided into two Cont r ibu t ion resources — one for stdout and one for stderr.
Contribut ions contain meaningful outputs even if there was an error dur ing the S U T cre
ation process. For example, a Cont r ibu t ion could contain the message of an exception that
was thrown or the error output of executing a Makefile.

The result of the S U T creation process is represented i n the oslc_auto: verdict prop
erty i n the corresponding Au tomat ion Result . Possible values that the Compi la t ion adapter
uses are unavailable, passed, failed, and error. The verdict is unavailable i f S U T cre
ation d id not finish yet. Verdicts f a i l e d and error bo th represent unsuccessful outcomes
of the S U T creation process. Verdict error is used when there are any exceptions thrown
during the S U T creation process. It means that there was an internal error in the C o m
pilat ion adapter, the bu i ld command of the S U T was invalid, or the S U T transfer process
failed. Verdict f a i l e d is used when the Compi la t ion process returns non-zero, signifying
that the S U T bu i ld command was correct but the bu i ld process d id not finish successfully,
e.g. due to syntax errors in the source code. Verdict passed is used when the Compi la
t ion process is successfully completed wi th no errors. A n S U T resource is created only i f
the verdict value is passed. The Au tomat ion Result of a successful S U T creation process
contains a createdSUT property which holds a l ink to the newly created S U T resource.

6.2.2 S U T as W o r k s p a c e s

Currently, the adapter created in this work uses S U T resources as workspaces, as was
mentioned i n Section 5.6. This means that each S U T resource corresponds to a directory
which is created on the server during S U T creation. The path to the directory is stored in
the SUTdirectoryPath property of each S U T resource. S U T files get transferred into this
directory and the bu i ld command is executed in this directory.

W h e n an analysis is requested, the Analys is adapter reads the S U T directory property
and executes analysis directly inside of i t . Thus, a l l modifications made to the S U T directory
including S U T file modifications or new files have a permanent effect on the S U T resource.
This allows clients to run mult iple analyses on the same S U T wi th in the same context, e.g.
when one analysis produces files which are required by the other analysis (accommodating
requirement 1. e. v). A downside of this solution is that S U T resources w i l l get dirty and
need to be cleaned for use cases where a clean S U T is required for each analysis. Currently,
the only way to achieve this is by creating a whole new S U T resource (the only way to
fulfill requirement 1. e. vi).

Some analysis tools might need files produced by an analysis to be modified before
running a follow up analysis. Th is is the case w i t h Perun [14] which needs to run an
init command first, and only then can it execute analysis. Furthermore, files produced
by the in i t ia l iza t ion command might need to be modified before executing analysis. To
provide this functionality, the Analys is adapter allows users to send U P D A T E requests
wi th an octet stream data type to Cont r ibu t ion resources which represent files to directly

42

overwrite contents of those files. Similarly, clients can also download Cont r ibu t ion files
directly as octet streams.

6.2.3 A n a l y s i s A u t o m a t i o n P l a n s a n d the ir C o n f i g u r a t i o n

Requirement 1. a „Ini t ia l Setup" needs to be performed directly by an administrator of
the server which runs the adapters. The admin installs an analysis tool which is to be
used through the O S L C Universal Analys is Adapter . Runn ing analysis is handled by the
Analysis adapter which needs to be configured to be able to provide functionality of the
new analysis tool . A s mentioned in Section 5.5, the Analys i s adapter pr imar i ly contains
one Au tomat ion P l a n for each analysis tool . These Au tomat ion Plans need to be created
by the admin of the analysis server through the adapter's configuration.

Having one Au tomat ion P l a n for each tool seems to be the best solution for a logically
well-defined interface. Au tomat ion Plans correspond to units of automation provided by an
automation server, and in the case of the Analys is adapter, units of automation correspond
to different analysis tools. Clients can then browse available Au tomat ion Plans to see what
analysis tools are available and look at their properties to learn what input parameters
they accept. Th i s is how the Analys is adapter fulfills requirement l . c . i i . Note that it
can be useful to define mult iple Au tomat ion Plans for a single analysis tool as this allows
Automat ion Plans to work as pre-prepared templates for running a specific type of analysis
using that tool by using default values. Th is would allow the adapter to, for example, have
the most common uses of an analysis to be defined as separate Au tomat ion Plans w i th no
input parameters needed from clients.

Au tomat ion Plans are loaded from a configuration directory which contains definitions
of a l l Au tomat ion Plans for a l l configured analysis tools. The admin of the server needs
to create Au tomat ion Plans for every tool that is to be adapted by the Analys is adapter.
Basic properties of the Au tomat ion P l a n , such as identifier, name, description, or creator
need to be defined using an X M L representation of the actual Au tomat ion P l a n in an . rdf
file. A n example of such rdf file for A N a C o n D A is shown i n Figure 6.3. The Au tomat ion
P l a n identifier is very important and has to be unique because it is used to make the U R I of
the Au tomat ion P l a n , which is used by clients to l ink Au tomat ion Requests to Au tomat ion
Plans.

The ma in functional part of the actual Au tomat ion P l a n resource is its parameter defini
tions, which define Au tomat ion Request input parameters, and the interface of the analysis
tool . Parameter definitions are local resources which means they are embedded directly
inside of their Au tomat ion P l a n and do not have their own U R I s or capabilities defined for
them. Thei r most important properties are their name which identifies them and is used
to match them wi th input parameters submitted w i t h Au tomat ion Requests, and their
occurrence which determines whether an input parameter is required or optional . Other
useful properties include default Value which is a value that is used for an input parameter
if a client does not use that parameter explicit ly, and allowedValue which allows a set of
values to be enumerated inside of an Au tomat ion P l a n which are then used to restrict what
values a client can use for those input parameters when creating an Au tomat ion Request.
There are three types of parameter definitions which can be defined in the Analys is adapter
when adding an analysis tool .

The first group are parameter definitions which define the command-line interface of
the analysis tool represented by the Au tomat ion P l a n . These parameter definitions are
identified by having a f i t : commandlinePosition property. Values submit ted as input pa-

43

1 <oslc auto:AutomationPlan>
2 <dcterms:identifier>anaconda</dcterms:identifier>
3
4 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
5 <oslc:name>config</oslc:name>
6 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
7 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l<

/fit:commandlinePosition>
8 <fit:valuePrefix rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> config

< / fit:valuePrefix>
9 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>

10
11 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
12 <oslc:name>analyser< / oslc:name>
13 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">2<

/fit:commandlinePosition>
14 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Exactly—one"/>
15 <oslc:allowedValue>atomrace< / oslc: alio wed Value >
16 <oslc:allowedValue>fasttrack< / oslc: allowed Value >
17 </oslcauto:ParameterDefinition> </oslc auto:parameterDefinition>
18
19 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
20 <oslc:name>launchSUT< / oslc:name>
21 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">3<

/fit:commandlinePosition>
22 <oslc:defaultValue>True< / oslc:default Value >
23 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
24 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
25
26 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
27 <oslc:name>executionParameters</oslc:name>
28 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
29 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">4<

/fit:commandlinePosition>
30 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
31 </oslc_auto: AutomationPlan>

Figure 6.3: Example of an Au tomat ion P l a n definition inside of an anaconda.rdf file used
to configure the Analys is adapter to run A N a C o n D A . The Au tomat ion P l a n contains four
parameter definitions. The first one at lines 4-9 is an optional parameter specifying a path
to a configuration directory. The second parameter at lines 11-17 is a compulsory parameter
used to pick one of the available analysers. The th i rd parameter at lines 19-24 is a special
parameter which instructs the adapter to place the S U T launch command at the specified
command-line posit ion. The fourth parameter at line 26-30 is an optional parameter used
as inputs for the executed S U T . Note that for space reasons non-functional properties like
titles and descriptions were omitted.

44

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.org/2001/XMLSchema%23string
http://www.w3.org/2001
http://open�services.net/ns/core%23Exactly�one%22/
http://www.w3.org/2001
http://open�services.net/ns/core%23Zero�or�One%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001

rameters when requesting analysis are then combined into a string based on their command-
line positions by the Analys is adapter. The whole str ing containing a l l parameter values
is then prefixed by the analysis tool launch command to form a string to be executed
when launching analysis. These parameter definitions can also have an optional property
f i t :valuePref ix which holds a string prefix which should be combined wi th the parameter
value before combining it w i th a l l other parameters. This allows non-posit ional parameters
to be used, for example, a parameter which should look like this on the command-line -
— a r g argValue. Such a parameter would have a prefix value of „ —arg " and clients
would then submit only the „argValue". The simplest and most universal way to define
input parameters of an Au tomat ion P l a n is to have a single input parameter w i th a string
data type. The value of such an input parameter would then hold a free string of any
command-line arguments for the analysis tool . However, a better way to define input pa
rameters is having mult iple input parameters that correspond to actual arguments i n the
analysis tool's interface. B y defining data types, mult ipl ic i ty , allowed values, or default
values, the adapter can then check whether submit ted input parameters are val id and re
tu rn an error without even launching the analysis tool , instead of going through the whole
execution process only to get an error output from the analysis tool .

The second group of parameters are special input parameters which can be defined in an
Automat ion P l a n and are recognized by the Analys is adapter and thus processed differently.
These are parameters, such as S U T bui ld command or S U T launch command, which also
have a f i t : commandlinePosition property, that instruct the Analys is adapter to lookup
the launch command or the bu i ld command of the analysed S U T . It then automatical ly
inserts them on a specified command-line posit ion so that the client does not have to
look these up themselves. Values of these parameters are boolean toggles for enabling or
disabling placement of their respective command on the command-line. These parameters
£1X6 cl quality of life feature to fulfill requirements 2 . a . i i and 2.b. i .

The th i rd group of parameters are common parameters which are used for a l l analysis
tools and control behavior of the Analys is adapter. These are added to a l l Au tomat ion
Plans after they are loaded from the adapter's configuration. These input parameters
control features of the Analys is adapter itself which are unrelated to analysis tools, such as
an execution timeout, or general processing of files produced by the analysis (for example,
a regular expression to match files to be added as Contr ibut ions or creating a downloadable
zip archive of a l l output files). These parameters are described i n Section 6.2.5. They can
be manually defined in the tools Au tomat ion P l a n configuration as well by using the same
parameter definition name. This allows default values of these common parameters to be
customized. W h e n the adapter loads Au tomat ion P l a n configuration and finds a redefinition
of one of the common input parameters, it w i l l only take the custom default value and use
it to overwrite the buil t i n default value.

The last part of defining an Au tomat ion P l a n is configuring properties that w i l l not
be part of the actual Au tomat ion P l a n resource. These are located i n a .properties
file w i th the same name as the .rdf file containing the Au tomat ion P l a n . A n example
of such a file is shown i n Figure 6.4. The most important configuration property is the
toolLaunchCommand, launch command of the analysis tool which needs to be specified so
that the Au tomat ion P l a n knows how to launch the analysis tool . Other properties to con
figure include queuing pol icy (onelnstanceOnly) or default arguments for the analysis tool
(toolSpecif icArgs). Tha t need to be included on the command-line for every analysis
execution i n order to make the tool work w i t h the Analys is adapter by, for example, re-

45

1 # Ful l path to the tool executable
2 # I M P O R T A N T : Use double backslash on windows! (\\ instead of just \)
3 toolLaunchCommand=/path/to/anaconda/run.sh
4
5 # Arguments to always use on the command—line when launching the tool
6 #toolSpecificArgs= no—color
7
8 # If set to true, then only one AutomationRequest executing this AutomationPlan will be

running at a—time and the
9 # remaining ones will be placed in a—queue.

10 oneInstanceOnly=False

Figure 6.4: Example properties definition inside of a anaconda.properties file used to
configure the Analys is adapter to run A N a C o n D A . There are three properties. The first
one at line 3 tells the adapter how to execute the analysis tool . The second one at line
6 holds parameters that always need to be included on the command-line, which is not
applicable for A N a C o n D A . The th i rd one at line 10 tells the adapter that any number of
A N a C o n D A instances can run at the same time.

moving colors from outputs which can cause problems wi th X M L encoding of tool outputs
or by making the tool non-interactive.

Demonstrat ion of representing tool parameters

To demonstrate what can be done using Parameter Definitions defined above, let's have
a look at a few examples of typica l types of analysis tool input parameters and how to
define them using Parameter Definitions.

The easiest type of parameter is a fixed posi t ional parameter without any value re
strictions. Imagine a script w i t h this interface „ . / s c r i p t <argl> [arg2]", where both
parameters have no value restrictions and the second one is optional . Parameters for this
script would be defined using two Parameter Definitions. The first one would be named
argl, would have command-line posi t ion 1, and occurrence exactly-one. Optional ly, a de
fault value could be defined and the occurrence changed to zero-or-one which would result
w i th the default value being used when a client does not supply this parameter, which makes
sure that there w i l l always be a value while the parameter is opt ional for clients. The second
parameter would be named arg2, and would have command-line posit ion 2 and occurrence
zero-or-one. Values submitted by clients for these parameters would then be placed at
their corresponding command-line positions in the executed string.

Parameters w i th value restrictions can be defined using allowed value properties. A n
example of a script „. /script <mode>", where mode is a parameter which only allows single
digit values of 1 to 3. The Parameter Defini t ion for this parameter would be named mode,
and would have command-line posit ion 1, occurrence exactly-one, and three allowedValue
properties, each wi th one of the allowed values 1, 2, and 3. Values submitted by clients
for such parameters are checked by the adapter and rejected wi th an error if they do not
match any of the allowed values.

The second type of parameters are option flags which do not have a fixed command-line
posit ion. Imagine a script w i th this interface „ . / s c r i p t [options] <argl>", where argl
is a simple posi t ional argument just like in the first example w i t h command-line posit ion

46

2, and options represents a number of opt ional flags. These optional flags are — f l a g l ,
— f lag2=value. B o t h of these option flags w i l l have their own Parameter Definitions named
after one of the options and wi th occurrences zero-or-one. The tr ick to define flags like
these is to then define the same command-line posit ion for a l l of them, i n which is 1 i n our
case. This causes values of these parameters to be placed on to the command-line in random
order relative to each other, but at the right posit ion relative to other parameters at other
positions. The second tr ick needed is usage of a value prefix, i n our case — f lag2=, which
makes it so that when a client submits a value, what actually gets placed on the command-
line is —flag2=value. The first parameter — f l a g l is more specific in that it does not take
any value, so its semantics are only about submit t ing or not submit t ing this parameter.
To achieve this behavior we can use a value prefix — f l a g l and a single allowed value for
this parameter, w i th the value being empty (eg. an empty x m l value property). Th is w i l l
only allow clients to submit an empty value for this parameter or to submit this parameter
without a value property a l l together. W h a t gets placed on the command-line i n this case
is „ — f l a g l " where the ending space represents the empty value of this parameter.

The final and th i rd type of parameters are parameters which for any reason can not be
defined using the approaches demonstrated above. A n y type of parameter can be repre
sented like this ./script <arguments>, where arguments w i l l be represented by a param
eter definition which is expected to contain any string. The value of such an argument can
then, for example, contain „ — f l a g l —flag2=value" which is effectively two parameters
submitted using a single parameter definition.

A very important th ing to note is that the str ing constructed from parameters submitted
by clients is then executed using native shell. Th is means the string is processed exactly as
if it was pasted directly into the command-line, meaning actual posit ional arguments are
separated by spaces (which are inserted by the adapter automatical ly between parameters)
and quotes need to be used to pass values wi th spaces as a single parameter.

A l imi ta t ion of this approach is defining parameters for tools w i th branching inter
faces or nested interfaces. Imagine a script that has these two launch options „ . / s c r i p t
commandl [optionsl] <argl>" and „ . / s c r i p t command2 [options2] <arg2>". There
are two main commands commandl and command2, which unfortunately each have different
options and different posi t ional sub-parameters. There is currently no way to logically de
fine such an interface using a single Au tomat ion P l a n while keeping the definition clean (ie.
not hacking the definition). The way to do this would be to define Parameter Definitions for
al l possible parameters normally based on their command-line positions. However, clients
could then use commandl w i th sub-parameters or options which belong to command2, which
would result in the analysis tool report ing an error. The only way to define such an interface
cleanly would be to define a separate Au tomat ion P l a n for each of the main commands.
The first one would only allow users to use commandl sub-parameters and options, and the
same for the second one wi th command2. However, this approach separates the analysis tool
into two Au tomat ion Plans which can make it harder to identify Au tomat ion Results that
were created by the same tool .

6.2.4 A n a l y s i s execut ion

Specifying input parameters and launching analysis (requirements l . c . i i i , l . c . iv) are closely
t ied w i t h previous sections 6.2.4 and 6.2.3 which describe how commands are executed by
the adapter and how input parameters (which form the command to execute) are defined.

47

Specifying input parameters and executing analysis is performed by creating Au toma
t ion Requests that execute a selected Au tomat ion P l a n . To specify input parameters,
clients need to add input parameter properties to the new Automat ion Requests. Every
input parameter has to match a Parameter Defini t ion from the executed Au tomat ion P l a n
by having the same name. A s described before i n Section 6.2.3, Parameter Definitions can
have a command-line posit ion property which tells the adapter that their values should be
used on the command-line when executing the analysis tool . The Analys is adapter sim
ply takes a l l input parameter values which correspond to such Parameter Definitions and
concatenates them into a single str ing to be executed. Th is string is then prefixed by the
tool launch command and tool default arguments defined in tool properties which were
described in Section 6.2.3 and executed as was described i n Section 6.1.1. Note that the
adapter can be instructed to omit the analysis tool launch command to allow more flexibil
i ty when launching commands. Th is is needed for Spectra [36] which is a dynamic analysis
tool which compiles the S U T itself to inject analysis elements into it and the S U T is then
executed on its own without Spectra.

Analysis is executed by the Analys is adapter in separate threads which means multiple
analyses can run at the same time. Analys is tools can be configured to only ever allow
one instance of them to run at a t ime. The adapter keeps a F I F O queue for each such
analysis too l in which requests are kept and subsequently executed one at a t ime. A more
complex queuing system could be added in the future i f needed to, for example, allow
priori ty requests or set of tools which are restricted to only ever run one at a t ime.

6.2.5 C o m m o n A n a l y s i s Input P a r a m e t e r s

A s mentioned in Section 6.2.3, Au tomat ion Plans defined for analysis tools in the Analys is
adapter get extended by a number of common input parameter definitions which control
the adapter's behavior rather than the analysis tool interface. This section names a l l the
common input parameters since they represent features of the adapter that are important
to cover some of the analysis tool requirements from Chapter 4. Most of these parameters
are optional and have default values which can be modified by redefining the parameter
when configuring an Au tomat ion P l a n for an analysis tool . In the future there w i l l l ikely
be more features added as new common input parameters to, for example, allow analysis to
be executed mult iple times, scheduling execution, setting pr ior i ty of requests, or any other
feature that might be needed.

L i n k to S U T — S U T

The most important parameter added to a l l Au tomat ion Plans is a l ink to a S U T resource.
This is how clients te l l the adapter what S U T to analyse which also determines what
directory the analysis is going to get executed in .

Execut ion timeout — timeout

The timeout input parameter is self-explanatory and allows clients to specify a t ime l imi t
for the analysis execution. If the t ime l imi t runs out the analysis is terminated and the
oslc auto:verdict of the result w i l l be failed.

18

Match ing output files — outputFi leRegex

Analysis execution can produce or modify files. These files might need to be of interest to
clients and thus the adapter needs a way of knowing what files to include i n Au tomat ion
Results as Contr ibut ions . More on analysis outputs i n section 6.2.7. The input parameter
holds a regular expression which the adapter uses to match files inside of the S U T directory.
A n y file that was modified during analysis and matches the regular expression w i l l be
included Cont r ibu t ion for clients to see.

Creat ing a Z I P file of all output files — zipOutputs

A use case for the Analys is adapter can be to execute analysis and then retrieve a l l of the
files produced by it as a single Z I P file to process manual ly by a client. For this purpose there
is a boolean flag parameter which when set to true results i n a special Cont r ibu t ion being
included i n the Au tomat ion Result which represents a Z I P file containing a l l the output
files matched by the regular expression for outputs described i n the previous paragraph.
The Z I P file can then be directly downloaded using its U R L

Processing outputs — outputFi l ter

This parameter controls a feature described in section 6.2.7. In short, to give clients more
control over analysis outputs the Analys is adapter features plug-in filters which can be
created by users to process Cont r ibu t ion resources. There can be mult iple filters available
for an Au tomat ion P l a n and clients need to pick one when creating an Au tomat ion Request.

Analysis run configuration files — confFile and confDir

These parameters give clients a way to configure analysis tools using configuration files.
For example, to allow A N a C o n D A clients to configure noise injection. A n analysis tool
can have an input parameter i n its native interface that specifies a path to a configuration
directory to use when launching analysis. Clients of the adapter can achieve this i n two
ways.

The first opt ion is the confFile parameter which allows clients to specify a file name
and its contents when requesting analysis, and then the Analys is adapter w i l l create the file
in the S U T directory before executing analysis. The filename can include a directory which
w i l l be created automatically, and this parameter can be used mult iple times to create
mult iple configuration files.

The second opt ion is the confDir parameter which allows clients to submit a base64
encoded zip file and a path to a directory. The Analys is adapter then creates the requested
directory inside of the S U T directory and unzips the base64 encoded file into i t .

However, these two parameters only allow configuration of tools which have a way to
specify a path to a configuration file or directory when launching analysis. If the configu
rat ion file needs to be located outside of the S U T directory, clients need to use a feature
described i n the next paragraph.

Actions before and after analysis — beforeCommand, a f terCommand

To ensure clients can perform any needed configuration for an analysis run, the adapter
allows a command to be specified to run just before and just after executing analysis. Th is
allows clients to, for example, change a configuration file which is located in the root folder

49

of an analysis tool before analysis or to move an analysis tool log file into the S U T directory
after analysis so as to include it as an analysis output. Each of these commands w i l l have its
own standard output and standard error output Cont r ibu t ion resource i n the Au tomat ion
Result .

If the before command fails (i.e. return non-zero), then analysis w i l l not be executed
which allows the before command to be used as a way to create condit ional analysis runs.
For example, a before command can check whether the compiled S U T can even be launched
at a l l to avoid start ing up an expensive analysis tool only for the analysis to fail immediately.
Similarly, i f the analysis fails, the after command w i l l not be executed.

Note that currently, the beforeCommand can not be used to set environmental variables
before analysis because it is executed in a separate shell. To set environmental variables,
clients need to use the feature described in the next paragraph.

Setting environment variables — envVariable

Some analysis tools can be configurable using environment variables. The envVariable
parameter allows clients to set environment variables when requesting analysis. Th is pa
rameter can be used mult iple times to set mult iple variables.

6.2.6 P o l l i n g for E x e c u t i o n State a n d C a n c e l l i n g E x e c u t i o n

Requirements 1. d are covered directly by the nature of the O S L C Automat ion domain
through the Analys is adapter. Once an Au tomat ion Request was created, clients can po l l
its oslc_auto: state property by getting the Au tomat ion Request to monitor the state
of analysis execution. The same property w i th a consistently matching value is i n the
corresponding Au tomat ion Result which also contains a oslc_auto: verdict property that
holds information about the execution's outcome once it finishes. These properties allow
clients to monitor the execution state. Currently, the adapter only adds analysis outputs
to the Au tomat ion Result after execution finishes which means there is no way to see
par t ia l outputs during execution. This feature could potential ly be added i n the feature
if needed, however, this would l ikely require optimizations i n database communicat ion to
avoid performance issues.

Canceling execution is defined by the standard using a P U T request to update the
desiredState property of an Au tomat ion Request dur ing its execution. B y updat ing the
desiredState property to canceled clients can request the adapter to cancel execution of
an Au tomat ion Request. The Analys is adapter also allows clients to delete Au tomat ion
Requests which causes them to be canceled first and then deleted.

6.2.7 A n a l y s i s O u t p u t C o n t r i b u t i o n s

This section discusses requirements 1. e in the Analys is adapter. Outputs of executing
analysis by the Analys is adapter are more complicated than in the case of the Compi la
t ion adapter because they can be very different depending on the specific analysis tool
that is being executed. Cont r ibu t ion resources that are common for a l l analysis tools are
stdout, stderr, returnCode, executionTime, and statusMessage which are always pro
duced when executing a command. The stdout, stderr and returnCode contributions con
ta in direct outputs of the analysis execution. W h e n a beforeCommand or an afterCommand
is used, then there w i l l also be standard output Contr ibut ions for each of the commands.
The executionTime Cont r ibu t ion contains the to ta l execution t ime of analysis i n millisec-

50

onds, and the statusMessage contains information from the adapter about the execution
process.

However, analysis tools can produce files such as images, tables, text logs, or other
artifacts. In order to include these as Contr ibut ions of an Au tomat ion Result , the Analys is
adapter needs to know which files to include. Th is is achieved through an input parameter
of the analysis process which holds a regular expression that is used to match file names of
files modified during analysis execution (see Section 6.2.5). The adapter then takes a snap
shot of the modification times of a l l files i n the analysed S U T directory before executing
analysis, and then again after executing analysis. A l l files modified during analysis that
match the specified regular expression are then added as Contr ibut ions. A l l Contr ibut ions
that represent a file produced by analysis contain a f i t : f i l e P a t h property which contains
a path to the represented file. Depending on the file type detected by Java, Contr ibut ions
w i l l have their valueType set to string for text files or base64binary for binary files. Or ig
inally, the adapter included contents of a l l files direct ly as values of Cont r ibu t ion resources.
However, this turned out to not be always desired especially when using persistent storage
of resources and running analysis which produces very large files (e.g. A N a C o n D A can
produce gigabytes worth of outputs). For this reason, the Analys is adapter was extended
wi th a plug-in system for user defined output filters described in Section 6.2.8. The adapter
comes wi th a number of predefined output filters, such as a filter that loads contents of
stdout and stderr files, or a filter that loads contents of a l l non-binary files.

Cont r ibu t ion resources have a G E T capabil i ty defined for an octet stream accept
header which allows clients to directly download Cont r ibu t ion files.

6.2.8 A n a l y s i s P l u g - i n O u t p u t F i l t e r s

Clients might need full control over Cont r ibu t ion resources produced during analysis, es
pecially when using persistent storage of resources. The idea is to run a l l Contr ibut ions
through a filter which transforms them i n any way to fit the clients use case. The filters
need to allow clients to process Cont r ibu t ion resources i n any way, so a plug-in system was
added to the Analys is adapter using the j S E M [12] l ibrary that allows users to program
their own output filters using Java.

Output filters can be defined by the server admin, and then picked by clients when
executing analysis. The output filter is placed at the end of the Au tomat ion Result creation
process after a l l Cont r ibu t ion resources have been created. A l l Cont r ibu t ion resources
produced by analysis execution get passed as an in /ou t parameter to the output filter
represented as a set of key-value maps containing entries name and value. The inputs can
then be processed i n any way by the output filter, including deleting some Contr ibut ions,
changing their names or values, extracting information from the inputs to create a new
outputs, etc.

To define an output filter users need to create two files i n the P lug inF i l t e r configuration
directory of the adapter. The first one of the files is a .properties file which is used by
j S E M to identify plug-in classes. A n example of such a file is shown in Figure 6.5. There are
three properties to define. F i rs t is the interface which is being implemented by the plug-in:
this property w i l l be the same for a l l output filters. Second is the class which implements
the output filter; users need to change the last part of the qualified pa th to match their
custom class. T h i r d is a property which holds the name of the Au tomat ion P l a n this output
filter is meant for. The second file which needs to be defined is a Java class file containing
implementation of the output filter. A n example of a class definition is shown i n Figure 6.6

51

1 # do not change this value
2 implements=cz.vutbr.fit.group.verifit.oslc.analysis.outputFilters.IFilter
3
4 # class with implementation of the filter change the last part only to match your .Java file
5 class=pluginFilters.customPluginFilters.ExamplePluginFilter
6
7 # says which tool is this filter meant for needs to match an AutomationPlan identifier
8 tool=anaconda

Figure 6.5: Example properties defined for a plug-in output filter designed for A N a C o n D A

(imports have been removed to save space). The class needs to implement two interfaces
- IF i l te r and IEx tens ion 2 . The IExtension interface is required by j S E M , and the IFi l ter
interface is required for an output filter. The IFi l te r interface defines a f i l t e r function
which has a single parameter which is a list of maps. E a c h member of the list represents one
Cont r ibu t ion as a map of key-value pairs. The keys in each map correspond to Cont r ibu t ion
resource properties - t i t l e , value, valueType, f ilePath, and description. The fi lePath
map element holds a path to a file represented by the Cont r ibu t ion and can be used to
load the contents of the file or modify the file. Once an output filter is defined, it w i l l be
loaded by the Analys is adapter dur ing its bu i ld process 3 and its name w i l l be added as
one of the allowed values for the outputFilter parameter (defined i n Section 6.2.5) of the
Automat ion P l a n which the filter was defined for.

The Analys is adapter comes wi th a number of predefined output filters which are avail
able for a l l Au tomat ion Plans . These currently include filters for loading content of stdout
and stderr, loading contents of a l l non-binary files, and removing a l l file values. The default
output filter loads contents off a l l non-binary files. Note that filters can be chained to form
more complex filters, however, currently the only way to do this is by defining a new filter
which chains other filters internally. In the future, there could be an input parameter when
creating analysis which would allow a number of filters to be chained together.

6.2.9 Spec ia l R e q u i r e m e n t s

Requirements 2. l isted for different analysis tool types have mostly been covered i n the
previous sections already.

Bu i ld ing the S U T is covered i n Section 6.2.1 just as skipping compilat ion. K n o w i n g and
using the S U T launch command or the S U T bui ld command is provided by having a S U T
resource which can be read by clients and contains properties holding the two commands.
O n top of that, the Analys is adapter provides extra functionality to retrieve the S U T
launch command or bu i ld command automatical ly from the S U T resource and insert it
to the command-line when launching analysis, as was explained in Section 6.2.3. Keeping
context for mult iple analysis executions comes from leaving outputs produced by analysis
in the analysed S U T directory as mentioned in Section 6.2.2. Final ly , using generic artifacts
as a S U T can be done just by instruct ing the Analys is adapter to not perform compilat ion
and not supplying a launch command and a bu i ld command i f desired.

2cz.vutbr.fit.group.verifit.jsem.IExtension; cz.vutbr.fit.group.verifit.oslc.analysis.outputFilters.IFilter;
3 Unfortunately, in its current state the Analysis adapter has to be re-compiled in order for plug-in filters

to update.

52

1 public class ExamplePluginFilter implements IFilter, IExtension {
2
3 f inal String name = "raceDetectedFilter";
4
5 public void filter(List<Map<String, String>> inoutContributions) {
6
7 / / run Contributions through a builtin parser to load stdout and stderr file contents
8 new AddStdoutAndStderrValues().filter(inoutContributions);
9

10 / / look for data race detection reports in stdout
11 Boolean dataRaceFound = false;
12 for (Map<String, String> contrib : inoutContributions) {
13 String title = contrib.get("title");
14 if (title.equals("stdout")) {
15 String contentsOfTheStdout = contrib. get ("value");
16 if (contentsOfTheStdout.contains("Data race detected at")) {
17 dataRaceFound = true:
18 }
19 }
20 }
21
22 / / create a contribution representing the result (based on the stdout contents)
23 Map<String, String> contrib = new HashMap<String, String>();
24 contrib.put("id", "example_id");
25 contrib.put("title", "DataRaceDetected");
26 contrib. put ("description", "Holds the result of data race analysis.");
27 contrib.put("value", dataRaceFound.toStringQ);
28 contrib.put("valueType", "http://www.w3.Org/2001/XMLSchema#boolean");
29 inoutContributions.add(contrib);
30 }
31 }

Figure 6.6: Example of class file definition for an output filter for A N a C o n D A that loads
stdout and stderr file contents, looks for a data race report i n stdout, and creates a new
Cont r ibu t ion which says whether a data race was reported or not.

53

http://www.w3.Org/2001/XMLSchema%23boolean

6.3 Persistency and Resource Management

The adapter toolchain created i n this work uses a S P A R Q L triplestore database to store
al l O S L C resources. The triplestore is required for the adapter to function. L y o Store [23]
is used to communicate wi th the database and the database is a Apache Jena Fuseki [37]
dis tr ibut ion deployed in a Jet ty [7] server. L y o Store also provides query capabilities using
O S L C Query Syntax [34] for resources when connected to a triplestore. Users should be able
to use their own triplestore just by configuring the adapter to use its S P A R Q L endpoints.

The triplestore can be configured to use persistent storage of resources which can be
useful for archiving analysis results. If persistency is not enabled, the adapter w i l l delete a l l
resources on each restart. To enable persistency, users need to create a persistent dataset
in the triplestore and configure the Compi la t ion adapter to persist S U T directories i n its
configuration file. The adapter uses a bookmark Au tomat ion Request resource to keep track
of the latest issued Au tomat ion Request ID to be able to resume creating new IDs after
restarts when using persistency. W h e n using persistent storage of resources, clients need
a way to manage the persistent database. One way to do this, which can be useful for non-
persistent storage as well, is a configuration parameter of the adapter called keep l a s t N
which defines a window size that determines how many Au tomat ion Requests should be
kept i n the database. A l l Au tomat ion Requests older then the window size w i l l be deleted
automatical ly along wi th a l l their associated resources and files. A second way to manage
the database is through resource delete and update capabilities.

Clients can pick one of two approaches when deleting resources. The first opt ion is
deleting resources one by one, cherry-picking exactly which resources to delete and which
to keep. This allows clients to have full control over what gets deleted, but can also lead
to broken l inks. For example, when a client chooses to only delete an Au tomat ion Request
and leave its associated Au tomat ion Result in the database, the Au tomat ion Result w i l l
contain a l ink to the deleted Au tomat ion Request which w i l l return a not found error
response when followed. The second option is using a cascade parameter set to true when
deleting a resource. This w i l l cause the adapter to delete a l l associated resources at the
same time to make sure that the database stays consistent w i t h no broken links. Cascading
resources are Au tomat ion Request, Au tomat ion Results, S U T s for the Compi la t ion adapter:
and Au tomat ion Request, Au tomat ion Results, and Contr ibut ions for the Analys is adapter.
Cascade deleting any of these w i l l result i n a l l the other ones getting deleted as well, w i th
the exception of deleting Contr ibut ions which do not support cascading to other resources
because they do not contain a l ink to their associated Au tomat ion Result . Delet ing a S U T
resource w i l l result i n its directory getting physically deleted on the server as well . Note
that S U T directories are currently used as analysis workspaces which means deleting a S U T
directory w i l l also delete a l l files produced during analyses of that S U T . Similarly, deleting
a Cont r ibu t ion resource which represents a file w i l l result i n that file being physically deleted
as well.

Upda t ing resources can only be done once their execution has finished. This means
Automat ion Result , Contr ibut ions, and S U T s can never be updated while their associated
Automat ion Request has not yet finished. However, Au tomat ion Requests themselves can
be updated even during execution but only if the update request contains a state property
set to canceled. Such update requests are used to cancel execution of Au tomat ion Requests
as described i n Section 6.2.6. Once execution finishes, a l l resources can be updated. B u t not
al l properties are allowed to be updated because changing them would break adapter logic,
such as changing the i d e n t i f i e r or state of an Au tomat ion Request, or changing the

54

createdByAutomationRequest property of an Au tomat ion Result . Properties which can
be updated are t i t l e , description, creator, contributor, and extendedProperties.
For Au tomat ion Requests it is also the desiredState property. For S U T s it is also their
buildCommand and launchCommand. For Contr ibut ions it is also their value, valueType
and filePath. Note that Contr ibut ions which represent a file also accept octet stream
update requests to update file contents as mentioned i n Section 6.2.2.

Every resource created by either of the sub-adapters is immediately stored i n the
database, and every resource requested from the adapter by clients is retrieved from the
adapter. This approach was chosen because performance of the adapter itself was not a pr i
ority during implementation, because an analysis run can easily take hours which means
slower response times from the adapter due to database communicat ion should not be an
issue. Should this become a problem in the future, the adapter could be refactored to cache
resources i n memory to reduce database communication.

6.4 Security and Authentication

The adapter comes w i t h an inherent security issue since it allows any S U T to be executed
on the analysis server. Furthermore, clients can basically execute any command they want
on the analysis server as well . Th is means the adapter can not be used safely to provide
functionality to un-trusted clients. However, this security issue comes from the very nature
of the adapter use case and there is l i t t le that can be done to improve i t . The best we can
do when dealing wi th un-trusted clients is to run the adapter in a container which can be
easily wiped to its original state i n case of a rogue client.

There is another security issue rooted i n update and delete capabilities of Cont r ibu
t ion resources in the Analys is adapter which are meant to give clients as much control as
possible over Contr ibut ions . Some Cont r ibu t ion resources can represent files through their
f i l e P a t h property and this property can be updated by clients. Should a client update
a file path of a Cont r ibu t ion to e.g. „ / " on L i n u x and then request deletion of the Cont r i
but ion resource, the adapter would then t ry to delete the entire root folder of the server.
To prevent this from happening, the adapter does not allow Cont r ibu t ion resources to be
updated to paths which are outside of the analysed S U T directory and does not allow files
outside of the S U T directory to be deleted either. However, this does not prevent a rogue
client from setting a S U T launch command to something like rm - r f / or uploading a S U T
which performs a similar action.

The adapter currently supports Basic Authent ica t ion using a single username and pass
word which needs to be defined i n the adapter's configuration. The O S L C standard also
defines authentication using O A u t h , however, this feature was not yet implemented i n the
adapter due to t ime constraints and because it is currently not required. The adapter runs
on H T T P by default, but can be configured to run on H T T P S . T h i s is just a question of en
abling H T T P S in the Jet ty plugin which runs the adapter, see the adapters W i k i page [43]
for details. Users can also run the adapter in their own container w i th its own H T T P S
settings.

55

Chapter 7

Experiments and Evaluation

The adapter's functionality was verified by an automated test suite using Pos tman [32]
collections that contain over 700 H T T P requests. The test suite contains system tests
that cover the core functionality and error handling of the adapter, features required to
fulfill requirements defined in Chapter 4, and basic usage scenarios of a l l the tested analysis
tools. It can be executed using Pos tman [32] by impor t ing the collections or direct ly from
the command-line using Newman [31]. The adapter includes a test script which executes
al l tests, and uses G i t L a b C I to execute tests automatical ly using a L i n u x docker image
(The G i t L a b C I configuration file can be found i n A p p e n d i x C) .

Further manual experiments were performed by executing analysis using A N a C o n D A ,
Perun, Valgr ind , Grep, and Facebook Infer to make sure these tools can be used through
the adapter. Section 7.1 goes into detail of using A N a C o n D A , Valgr ind , and Facebook Infer
through the adapter.

The adapter covers a l l the requirements described i n Chapter 4. Due to al lowing clients
to execute almost any command on the server based on their custom Automat ion Plans
wi th custom input parameters, the adapter should be able to provide functionality of any
unix style command-line ut i l i ty. Persistence of resources is available through configuration
of the triplestore and the adapter offers capabilities for maintaining the persistent database.

7.1 Case Studies

To demonstrate that the Universa l Analys is Adapter does allow both dynamic analysis
tools and static analysis tools to be used, this section presents a case study of using the
adapter to run analysis using A N a C o n D A and Valgr ind (dynamic analysis), and using
Facebook Infer (static analysis). A l l examples of X M L files included i n these case studies
have been significantly str ipped down due to their size. Examples of full X M L files for
A N a C o n D A can be found i n Append ix B .

7.1.1 A N a C o n D A

Command-l ine interface of A N a C o n D A [13] [11] looks like this:

tools/run.sh [optional parameters] <analyser> <sut> <sut inputs>

Opt iona l parameters include —time, — c o n f i g <dir>, —run-type <type>, —help, and
a few others.

56

Firs t , let us look at the configuration that needs to be created by the server admin . The
Automat ion P l a n is shown i n Figure 7.1 and its accompanying properties file is shown in
Figure 7.2. These figures are similar to figures used as examples i n Section 6.2.3.

Parameters Defined i n the Au tomat ion P l a n correspond to parameters which make up
A N a C o n D A ' s command-line interface. Lines 4 and 11 represent non-posit ional optional
parameters which a l l have command-line posit ion 1 to be placed in a random order before
the other parameters. The conf i g parameter uses a value prefix and also accepts values so
that the str ing placed on the command-line w i l l look like „valuePref ix input Value". The
time parameter is a flag that does not accept values, which is represented by a value prefix
and a single empty allowed value. This results in the string placed on the command-line
containing only the prefix which is the flag itself. Lines 19, 28, and 35 represent posit ional
parameters which have no value prefixes, and some have a restricting set of allowed values.
The launchSUT parameter (line 28) is a special parameter which w i l l cause the adapter to
fetch the S U T launch command and place it at the specified command-line posit ion.

The properties file defined for A N a C o n D A i n Figure 7.2 specifies a path to its launch
script and disables queuing of requests.

W i t h configuration complete, let us look at how an Au tomat ion Request is created to
request analysis execution. F i rs t a S U T resource needs to be created using the Compi la t ion
adapter which is shown i n Figure 7.3.

Input parameters used are: sourceUrl (line 6) to specify a S U T source, buildCommand
(line 14) to set the S U T bu i ld command, launchCommand (line 18) to set the S U T launch-
Command , and unpackZip (line 10) to instruct the adapter to unzip the downloaded S U T .
The request also needs a l ink to the executedAutomationPlan (line 4) to identify which
unit of automation should be executed. The adapters response w i l l contain an Au tomat ion
Request w i th a producedAutomationResult property which can be used to G E T the A u
tomation Result associated wi th this request. The Au tomat ion Result w i l l contain output
parameters which hold default values used by the adapter for opt ional input parameters
which were not specified when creating the Au tomat ion Request. In this case there w i l l
be one output parameter, compile=true. A n y other source* parameter could be used in
stead of the sourceUrl parameter according to the client's needs. Available S U T source*
parameters are listed in Section 6.2.1.

57

1 <oslc auto:AutomationPlan>
2 <dcterms:identifier>anaconda</dcterms:identifier>
3 <oslc auto:parameterDefinition> <oslc auto:ParameterDefinition>
4 <oslc:name>config</oslc:name>
5 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
6 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l</f i t

:commandlinePosition>
7 <fit:valuePrefix rdf:datatype= "http://www.w3.Org/2001/XMLSchema#string"> config < /

fit:valuePrefix>
8 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
9 </oslc_auto:ParameterDefinition> </oslc auto:parameterDefinition>

10 <oslc auto:parameterDefinition> <oslc auto:ParameterDefinition>
11 <oslc:name>time</oslc:name>
12 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
13 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l</f i t

:commandlinePosition>
14 <fit:valuePrefix rdf:datatype= "http://www.w3.Org/2001/XMLSchema#string"> time </fit

:valuePrefix>
15 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
16 < oslc: allowed Value >< / oslc: allowed Value >
17 </oslc auto:ParameterDefinition> </oslc auto:parameterDefinition>
18 <oslc auto:parameterDefinition> <oslc auto:ParameterDefinition>
19 < oslc: name >analyser</oslc:name>
20 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Exactly—one"/>
21 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">2</fit

:commandlinePosition>
22 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
23 <oslc:allowedValue>atomrace< / oslc: alio wed Value >
24 <oslc:allowedValue>fasttrack2</oslc: alio wed Value >
25 < oslc: alio wed Value >tx—monitor</oslc:allowedValue>
26 </oslc auto:ParameterDefinition> </oslc auto:parameterDefinition>
27 <oslc auto:parameterDefinition> <oslc auto:ParameterDefinition>
28 <oslc:name>launchSUT< / oslc:name>
29 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
30 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">3</fit

:commandlinePosition>
31 <oslc:readOnly rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</oslc:

readOnly>
32 <oslc:defaultValue>True< / oslc:defaultValue>
33 </oslc auto:ParameterDefinition> </oslc auto:parameterDefinition>
34 <oslc auto:parameterDefinition> <oslc auto:ParameterDefinition>
35 <oslc:name>executionParameters</oslc:name>
36 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
37 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">4</fit

:commandlinePosition>
38 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
39 <oslc:defaultValue></oslc:defaultValue>
40 </oslc auto:ParameterDefinition> </oslc auto:parameterDefinition>
41 </oslc auto:AutomationPlan>

Figure 7.1: anaconda.rdf file used i n our experiments w i th A N a C o n D A . The file had
to be significantly str ipped down to fit on one page. Parts that were omit ted include
enclosing <rdf> tags xmlns definitions, most opt ional input parameters, and non-functional
properties like titles and descriptions.

58

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.Org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.Org/2001/XMLSchema%23string
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://open�services.net/ns/core%23Exactly�one%22/
http://www.w3.org/2001
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.org/2001/XMLSchema%23boolean%22%3etrue%3c/oslc
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e4%3c/fit
http://www.w3.org/2001/XMLSchema%23string%22/

1 toolLaunchCommand=/path /to/anaconda / run. sh
2 one!nstanceOnly=False

Figure 7.2: anaconda.properties file used i n our experiments w i th A N a C o n D A .

1 P O S T T O : http://host:port/compilation/services/resources/createAutomationRequest
2 <oslc_auto:AutomationRequest>
3 <dcterms:title>anaconda test</dcterms:title>
4 <oslc auto:executesAutomationPlan rdf:resource="http://host:port/compilation/services/

resources/automationPlans/O" />
5 <oslc auto:inputParameter> <oslc auto:ParameterInstance>
6 <oslc:name>sourceUrl< / oslc:name>
7 <rdf: value>http: //www.stud.fit. vutbr.cz/~xvasic25/bank.zip< / rdf: value >
8 </oslc_auto:ParameterInstance> </oslc_auto:inputParameter>
9 <oslc auto:inputParameter> <oslc auto:ParameterInstance>

10 <oslc:name>unpackZip</oslc:name>
11 <rdf:value>true</rdf:value>
12 </oslc auto:ParameterInstance> </oslc auto:inputParameter>
13 <oslc auto:inputParameter> <oslc auto:ParameterInstance>
14 <oslc:name>buildCommand</oslc:name>
15 <rdf:value>make</rdf:value>
16 </oslc auto:ParameterInstance> </oslc auto:inputParameter>
17 <oslc auto:inputParameter> <oslc auto:ParameterInstance>
18 <oslc:name>launchCommand</oslc:name>
19 <rdf:value>./bank</rdf:value>
20 </oslc auto:ParameterInstance>
21 </oslc_auto:inputParameter> </oslc_auto:AutomationRequest>

Figure 7.3: S U T creation Au tomat ion Request example.

59

http://host:port/compilation/services/resources/createAutomationRequest
http://host:port/compilation/services/
http://www.stud.fit
http://vutbr.cz/~xvasic25

W i t h a S U T resource created, let us look at how to request analysis execution using
A N a C o n D A . The Au tomat ion Request sent to the adapter by a client is shown in Figure 7.4.

Input parameters used from A N a C o n D A ' s interface are time (line 10), config (line
13), analyser (line 27), and executionParameters (line 31); and common adapter input
parameters used are confDir (line 17) to create a configuration directory, outputFilter
(line 23) to select an output filter, and SUT (line 6) to l ink to the S U T resource to be
analysed. The string executed by the Analys is adapter w i l l look like this:

tools/run.sh —time — c o n f i g ./anacondaConf atomrace ./bank

The time and config parameters w i l l be placed i n a nondeterministic order w i th their
prefix values right after A N a C o n D A launch command; followed by the S U T launch com
mand fetched from the S U T resource automatical ly; ending wi th S U T execution parameters.
The conf Dir parameter w i l l cause an anacondaConf directory to be created in the S U T
directory and filled w i th configuration files which w i l l then be used by A N a C o n D A . A n d the
outputFilter parameter w i l l cause Cont r ibu t ion resources to be processed using a custom
plug-in filter specially for A N a C o n D A (described later). The created Au tomat ion Request
w i l l again contain output parameters w i th default values of parameters not specified by the
client. These w i l l include outputFileRegex= . " (match nothing), timeout=0 (no t imeout),
zipOutputs=false, toolCommand=true (use tool launch command), and launchSUT=True
(place the S U T launch command at a specified command-line position).

For this example, the only interesting Contr ibut ions inside the Au tomat ion Result pro
duced by analysis execution are its standard outputs, its return code, and a custom con
t r ibut ion produced by the output filter. Figure 7.5 shows an Au tomat ion Result resource
wi th a l l properties omit ted except for the Cont r ibu t ion resources of interest.

The Au tomat ion Result has a state property (line 2) and a verdict property (line
3) which indicate that the execution was completed successfully. The Au tomat ion Result
would also include the entire standard output (line 4) produced by A N a C o n D A (only a part
is shown here for space reasons) during analysis that w i l l contain analysis reports which
clients are looking for when using A N a C o n D A . Other Contr ibut ions include stderr (line
16) and returnCode (line 12) There is a custom Cont r ibu t ion produced by the custom
output filter (line 22) which holds a boolean value representing whether a data race was
detected.

60

1 P O S T T O : http://host:port/analysis/services/resources/createAutomationRequest
2 <oslc_auto:AutomationRequest>
3 <dcterms:title>Analysis with ANaConDA</dcterms:tit le>
4 <oslc auto:executesAutomationPlan rdf:resource="http://host:port/analysis/services/resources

/automationPlans/anaconda" / >
5 <oslc auto:inputParameter><oslc auto:ParameterInstance>
6 <oslc:name>SUT</oslc:name>
7 <rdf: value>http: //host :port / compilation / services / resources / sUTs / *ID * < / rdf: value >
8 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
9 <oslc auto:inputParameter><oslc auto:ParameterInstance>

10 <oslc:name>time</oslc:name>
11 </oslc auto:ParameterInstance></oslc auto:inputParameter>
12 <oslc auto:inputParameter><oslc auto:ParameterInstance>
13 < oslc: name >config</ oslc: name >
14 <rdf:value>./anacondaConf< / rdf:value>
15 </oslc auto:ParameterInstance></oslc auto:inputParameter>
16 <oslc auto:inputParameter><oslc auto:ParameterInstance>
17 <oslc:name>confDir</oslc:name>
18 <rdf:value>anacondaConf
19 *base64encoded configuration directory*
20 </rdf:value>
21 </oslc auto:ParameterInstance></oslc auto:inputParameter>
22 <oslc_auto:inputParameter><oslc_auto:ParameterInstance>
23 <oslc:name>outputFilter< / oslc:name>
24 <rdf: value> AnacondaRaceDetection< / rdf:value>
25 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
26 <oslc_auto:inputParameter><oslc_auto:ParameterInstance>
27 <oslc:name>analyser< / oslc:name>
28 <rdf: value>atomrace< / rdf:value>
29 </oslc auto:ParameterInstance></oslc auto:inputParameter>
30 <oslc auto:inputParameter><oslc auto:ParameterInstance>
31 <oslc:name>executionParameters</oslc:name>
32 <rdf:value></rdf:value>
33 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
34 </oslc_auto: AutomationRequest>

Figure 7.4: Analys is execution Au tomat ion Request example for A N a C o n D A .

61

http://host:port/analysis/services/resources/createAutomationRequest
http://host:port/analysis/services/resources

1 <oslc_auto:AutomationResult rdf:about="http://localhost:8080/analysis/services/resources/
automationResults / *ID *" >

2 <oslc_auto:state rdf:resource="http://open—services.net/ns/auto#complete"/>
3 <oslc_auto:verdict rdf:resource="http://open—services.net/ns/auto#passed"/>
4 <oslc_auto:contribution> <oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/

services / resources / contributions / *ID *—stdout" >
5 <rdf:value>ANaConDA 0.4 20200202 (git fc5f069-dirty)
6 using libdie 0.3 20200202 (git 95d8ccd)
7
8 Write—Read race detected on memory address 0x55e2a3a35160
9

10 </rdf:value>
11 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
12 <oslc_auto:contribution><oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/

services/resources/contributions / *ID *—returnCode" >
13 <rdf:value>0</rdf:value>
14 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
15 < / oslc_auto: C o n t r i b u t i o n X / oslc_auto:contribution>
16 <oslc_auto:contribution><oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/

services / resources / contributions / *ID *—stderr" >
17 <rdf:value>0.85user O.lOsystem 0:00.95elapsed 100%CPU (Oavgtext+Oavgdata 56372

maxresident)k
18 0inputs+32outputs (0major+42875minor)pagefaults Oswaps
19 </rdf:value>
20 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
21 < / oslc_auto: C o n t r i b u t i o n X / oslc_auto:contribution>
22 <oslc_auto:contribution><oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/

services / resources / contributions / *ID *—race_detected" >
23 <rdf:value>true</rdf:value>
24 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
25 < / oslc_auto: C o n t r i b u t i o n X / oslc_auto:contribution>
26 </oslc_auto:AutomationResult>

Figure 7.5: Analys is execution Au tomat ion Result example showing Contr ibut ions of inter
est for A N a C o n D A . Most properties, such as name, description, valueType, etc. have been
omit ted to save space.

62

http://localhost:8080/analysis/services/resources/
http://open�services.net/ns/auto%23complete%22/
http://open�services.net/ns/auto%23passed%22/
http://localhost:8080/analysis/
http://www.w3.org/2001/XMLSchema%23string%22/
http://localhost:8080/analysis/
http://www.w3.org/2001/XMLSchema%23integer%22/
http://localhost:8080/analysis/
http://www.w3.org/2001/XMLSchema%23string%22/
http://localhost:8080/analysis/
http://www.w3.org/2001/XMLSchema%23boolean%22/

1 implements=cz.vutbr.fit.group.verifit.oslc.analysis.outputFilters.IFilter
2 class=pluginFilters.customPluginFilters.AnacondaRaceDetection
3 tool=anaconda

Figure 7.6: Output filter properties file for the A N a C o n D A output filter

A custom output filter was defined for A N a C o n D A which searches contents of standard
output contributions and creates a new contr ibution. The output filter needs to be defined
first and then it can be used using the outputFilter input parameter when creating the
Automat ion Request for executing analysis. Figure 7.6 shows the properties file defining
the output filter plug-in for j S E M . L ine 1 w i l l always be the same when defining a filter.
Line 2 names the filter class. A n d line 3 specifies which tool is the filter meant for.

Figure 7.7 shows the main f i l t e r function of the defined output filter. The output
filter function first calls a bu i l t - in filter (line 4) which loads contents of standard output
Cont r ibu t ion files and then searches stdout for a data race report from A N a C o n D A (lines
5-14). Then , a new Cont r ibu t ion resource is added to the current ones (lines 15-21) which
holds a boolean value representing whether a data race report was found or not. The
output filter class also needs to specify a name for the filter (line 2) which w i l l be used as
its identifier for clients.

1 public class AnacondaRaceDetection implements IFilter, IExtension {
2 final String name = "AnacondaRaceDetection";
3 public void fhter(List<Map<String, String>> inoutContributions) {
4 new AddStdoutAndStderrValues().nlter(inoutContributions);
5 Boolean dataRaceFound = false;
6 for (Map<String, String> contrib : inoutContributions) {
7 String title = contrib.get("title");
8 if (title.equals("stdout")) {
9 String contentsOfTheStdout = contrib.get("value");

10 if (contentsOfTheStdout.contains("race detected on memory address")) {
11 dataRaceFound = true:
12 }
13 }
14 }
15 Map<String, String> contrib = new HashMap<String, String>();
16 contrib.put("id", "race_detected");
17 contrib.put("title", "DataRaceDetected");
18 contrib. put ("description", "Holds the result of data race analysis.");
19 contrib.put("value", dataRaceFound.toStringQ);
20 contrib.put("valueType", "http://www.w3.Org/2001/XMLSchema#boolean");
21 inoutContributions.add(contrib);
22 }
23 }

Figure 7.7: Class definition for the A N a C o n D A output filter

63

http://www.w3.Org/2001/XMLSchema%23boolean

7.1.2 V a l g r i n d

The command-line interface of Va lgr ind [39] looks like this:

valgrind [options] <sut> <sut inputs>

The last two parameters are the same as for A N a C o n D A — sut expects a S U T launch
command, and sut inputs are parameters to be passed to the S U T . Va lgr ind has a number
of options which are non-posit ional arguments, some of which are just flags, some need
values, and some need values but only allow a few specific ones. A n Automat ion P l a n
which defines the full interface wi th a l l options would not fit on one page so Figure 7.8 only
shows part of the defined Au tomat ion P l an .

Parameter definitions which were excluded are some of the [options] . These are rep
resented using the other-options parameter (line 11) which can be used to submit any
option as a string. These could also be easily defined by copy pasting similar ones which
are included and adjusting their names and other properties. The tool parameter (line 16)
is used to select one of the analysers offered by Valgr ind and should be placed at command-
line posit ion 1 w i th a l l other non-posit ional option parameters. Th is parameter only allows
a given set of values, which are helgrind and memcheck i n our testing, and needs a value
prefix —tool= to be passed properly to the command-line (as e.g. —tool=helgrind).
The launchSUT parameter (line 24) is used to represent the <sut> parameter from V a l
grind's interface and w i l l cause the S U T launch command to be placed at command-line
posit ion 2. The executionParameters (line 30) is used to represent the <sut inputs>
parameter from Valgr ind 's interface and is used to pass parameters to the executed S U T
at the last command-line posit ion. F ina l ly , the help parameter (line 4) is defined i n this
example to demonstrate how to represent such parameters using an empty allowed value
and a value prefix.

The properties file defined for Va lgr ind is very similar to A N a C o n D A , just w i th a dif
ferent path to the tool launch command (line 1). Shown in Figure 7.9

1 toolLaunchCommand=/usr/bin/valgrind
2 one!nstanceOnly=False

Figure 7.9: valgrind.properties file used i n our experiments w i th Valgr ind .

Before executing analysis, a S U T resource needs to be created using the Compi la t ion
adapter. Th is can be done i n exactly the same way as was shown i n Section 7.1.1 and w i l l
result in obtaining a S U T resource U R I which w i l l be used as one of the input parameters
for requesting analysis.

64

1 <oslc auto:AutomationPlan>
2 <dcterms:identifier>valgrind</dcterms:identifier>
3 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
4 < oslc: name >help</oslc:name>
5 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
6 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l</f i t

:commandlinePosition>
7 <nt:valuePrefix rdf:datatype=''http://www.w3.org/2001/XMLSchema#string''>-h</fit:

valuePrefix>
8 < oslc: allowed Value >< / oslc: allowed Value >
9 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>

10 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
11 < oslc: name > ot her—opt ions < / oslc: name >
12 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
13 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l</f i t

:commandlinePosition>
14 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
15 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
16 <oslc:name>tool</oslc:name>
17 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
18 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">l</f i t

:commandlinePosition>
19 <fit:valuePrefix rdf:datatype= "http://www.w3.Org/2001/XMLSchema#string"> tool=</

fit:valuePrefix>
20 <oslc:allowedValue>helgrind< / oslc:allowedValue>
21 < oslc: alio wed Value >memcheck< / oslc:allowedValue>
22 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
23 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
24 <oslc:name>launchSUT< / oslc:name>
25 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">2</fit

:commandlinePosition>
26 <oslc:defaultValue>True< / oslc:defaultValue>
27 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
28 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
29 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
30 <oslc:name>executionParameters</oslc:name>
31 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
32 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001 /XMLSchema#int">3</fit

:commandlinePosition>
33 <oslc:defaultValue></oslc:defaultValue>
34 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
35 </oslc auto:AutomationPlan>

Figure 7.8: valgrind.rdf file used in our experiments w i th Va lgr ind . The file had to be
significantly str ipped down to fit on one page. Parts that were omit ted include enclosing
<rdf> tags xmlns definitions, most opt ional option flags, and non-functional properties like
titles and descriptions.

65

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.org/2001/XMLSchema%23string''%3e-h%3c/fit
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001
http://www.w3.Org/2001/XMLSchema%23string
http://www.w3.org/2001
http://open�services.net/ns/core%23Zero�or�One%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001

1 P O S T T O : http://host:port/analysis/services/resources/createAutomationRequest
2 <oslc_auto:AutomationRequest>
3 <dcterms:title>Valgrind analysis request</dcterms:title>
4 <oslc auto:executesAutomationPlan rdf:resource="http://host:port/analysis/services/resources

/automationPlans/valgrind" / >
5 <oslc auto:inputParameter><oslc auto:ParameterInstance>
6 <oslc:name>SUT</oslc:name>
7 <rdf: value>http: //host :port / compilation/services / resources / sUTs/*ID* < / rdf:value>
8 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
9 <oslc auto:inputParameter><oslc auto:ParameterInstance>

10 <oslc:name>tool</oslc:name>
11 <rdf: value>helgrind< / rdf:value>
12 </oslc auto:ParameterInstance></oslc auto:inputParameter>
13 <oslc auto:inputParameter><oslc auto:ParameterInstance>
14 <oslc:name>executionParameters</oslc:name>
15 <rdf:value>"Hello World!"</rdf:value>
16 </oslc auto:ParameterInstance></oslc auto:inputParameter>
17 </oslc_auto:AutomationRequest>

Figure 7.10: Analys is execution Au tomat ion Request example for Valgr ind .

The next step is to P O S T an Au tomat ion Request to the Analys is adapter to request
execution of analysis using Valgr ind . Example of such a request w i t h input parameters for
Valgr ind is shown i n Figure 7.10.

Input parameters used i n the request are: SUT (line 6) as a l ink to the S U T to an
alyze; tool (line 10) which tells Va lgr ind which one of its analysis tools to use; and
executionParameters (line 14) which holds input parameters for the analysed S U T . Some
default input parameter values w i l l be used and included i n the created Au tomat ion Re
quest as output parameters. These w i l l include outputFileRegex= ." (match nothing),
timeout=0 (no t imeout), zipOutputs=false, toolCommand=true (use tool launch com
mand), and launchSUT=True (place the S U T launch command at a specified command-line
position). A n output filter could be defined similar to the one defined for A N a C o n D A in
Section 7.1.1, however its contents are not included here to save space.

The string executed by the adapter buil t out of a l l the input parameters w i l l look like
this:

/usr/bin/valgrind —tool=helgrind ./sut MHello World!"

The Au tomat ion Result created for this analysis request w i l l look very similar to the one
shown for A N a C o n D A i n Section 7.1.1. The only difference for Va lgr ind w i l l be different
standard outputs and no custom contributions since no custom output filter was used. A n
example of what the standard output properties would look like for Va lgr ind is shown in
Figure 7.11.

66

http://host:port/analysis/services/resources/createAutomationRequest
http://host:port/analysis/services/resources

1 <oslc_auto:contribution> <oslc_auto: Contribution rdf:about="http://host:port/analysis/
services/resources/contributions/*ID*—stderr">

2 <rdf:value>==11869== Helgrind, a—thread error detector
3 ==11869== Copyright (C) 2007-2017, and G N U G P L ' d , by OpenWorks L L P et al.
4 ==11869== Using Valgrind—3.13.0 and Lib V E X ; rerun with —h for copyright info
5 ==11869== Command: ./sut "Hello World!"
6 ==11869==
7 ==11869==
8 ==11869== For counts of detected and suppressed errors, rerun with: —v
9 ==11869== Use history—level=approx or =none to gain increased speed, at

10 ==11869== the cost of reduced accuracy of conflicting—access information
11 ==11869== E R R O R S U M M A R Y : 0 errors from 0 contexts (suppressed: 0 from 0)
12 </rdf:value>
13 </oslc_auto:Contribution></oslc_auto:contribution>
14 <oslc_auto:contribution> <oslc_auto:Contribution rdf:about="http://host:port/analysis/

services / resources / contributions / *ID *—stdout" >
15 <rdf:value>Hello World!
16 </rdf:value>
17 </oslc_auto:Contribution></oslc_auto:contribution>

Figure 7.11: Standard output Cont r ibu t ion resources contained i n an Au tomat ion Result
produced by Valgr ind . Most properties, such as name, description, valueType, etc. have
been omit ted to save space.

7.1.3 F a c e b o o k Infer

The last case study i n this work is Facebook Infer [10] which differs from the previous two
in that it is a static analysis tool . The command-line interface of Facebook Infer looks
roughly like this:

infer [sub-command] [options] [— sut build]

, where [sub-command] stands for optionally specifying one of the Infer sub-commands,
such as run, analyze, or capture; and sut build stands for optionally supplying the
bui ld command of the analysed S U T . Infer has a large number of opt ional [options]
parameters so we decided to not define each of them as a separate parameter definition
because that would take a long time. Fortunately though, a l l opt ion parameters should be
accepted by a l l sub-commands so the entire Infer's interface could be defined by defining
a separate parameter definition for each option the same way we d id for A N a C o n D A in
Section 7.1.1 and for Va lgr ind in Section 7.1.2. The Au tomat ion P l a n used for Infer i n our
experiments is shown in Figure 7.12.

The sub-command parameter (line 12) is defined at command-line posit ion 1 and has
a number of allowed values defined. The help parameter (line 5) defined for Infer is special
in that Infer displays help information as paged by default (e.g. using less on L inux)
which causes it to not be encodable inside of a Cont r ibu t ion resource. To make help output
non-paged, the value prefix defined for the help parameter needs to actually contain two
commands: „ —help—help-format plain". Defining value prefixes this way can be useful
i n other scenarios as well . The options (line 23) parameter represents a l l Infer options to
be submitted as a single string to save space. Every single option should be defined as its
own parameter definition as mentioned before. Since Infer performs static analysis, it needs

67

http://host:port/analysis/
http://host:port/analysis/

1
2 <oslc auto:AutomationPlan>
3 <dcterms:identifier>infer</dcterms:identifier>
4 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
5 <oslc:name>help</oslc:name>
6 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
7 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</

fit: commandlinePosition>
8 <fit:valuePrefix rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> help

help—format plain</fit:valuePrefix>
9 <oslc:allowedValue></oslc:allowedValue>

10 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
11 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
12 < oslc: name > sub—command < / oslc: name >
13 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
14 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l</

fit: commandlinePosition>
15 <oslc:allowedValue>analyze< / oslc: allowed Value >
16 <oslc:allowedValue>capture</oslc:allowedValue>
17 <oslc:allowedValue>compile< / oslc:allowedValue>
18 <oslc:allowedValue>run< / oslc:allowedValue>
19 <oslc:allowedValue></oslc:allowedValue>
20
21 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
22 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
23 <oslc:name>options< / oslc:name>
24 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
25 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2</

fit: commandlinePosition>
26 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
27 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
28 <oslc auto:parameterDefinition><oslc auto:ParameterDefinition>
29 <oslc:default Value>False< / oslc:defaultValue>
30 <oslc:name>SUTbuildCommand< / oslc:name>
31 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
32 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3</

fit: commandlinePosition>
33 <fit:valuePrefix rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> </fit:

valuePrefix>
34 </oslc auto:ParameterDefinition></oslc auto:parameterDefinition>
35 </oslc auto:AutomationPlan>

Figure 7.12: infer.rdf file used in our experiments w i th Facebook Infer. The file had to
be significantly str ipped down to fit on one page. Parts that were omit ted include enclosing
<rdf> tags xmlns definitions, most opt ional option flags, and non-functional properties like
titles and descriptions. The options parameter represents a l l Infer options as a free string
to save space.

68

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e2%3c/
http://www.w3.org/2001/XMLSchema%23string
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el%3c/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e2%3c/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e3%3c/
http://www.w3.org/2001/XMLSchema%23string

1 toolLaunchCommand=/usr/local/bin/infer
2 one!nstanceOnly=False

Figure 7.13: i n f e r .properties file used i n our experiments w i th Facebook Infer.

to use the S U T bu i ld command which can be done using the SUTbuildCommand parameter
(line 30). Th is is a special parameter which instructs the adapter to insert the S U T bui ld
command at a specified command-line posit ion. Th is parameter is not always used so its
default value is set to false and can be supplied by clients to set it to true. A l so a prefix
value „— " is needed i n order for the S U T bui ld command to be properly processed by
Infer. Th is causes a bu i ld command make to be placed on the command-line as „ — make".

The properties file defined for Facebook Infer is shown i n Figure 7.13 and only differs
from the other tools in having a different launch command (line 1).

P r io r to execution analysis a S U T resource needs to be created using the Compi la t ion
provider i n almost the same way as i n Section 7.1.1. The one difference (apart from picking
a different example S U T) is that we need to use the compile input parameter set to false.
This w i l l instruct the Compi la t ion adapter to not compile the S U T so that Infer can launch
the bu i ld process itself to track which source files to analyse.

Once a S U T has been created, clients can request analysis. A n Au tomat ion Request for
analysing a S U T using Facebook Infer is shown i n Figure 7.14.

Infer interface parameters used i n this request are: sub-command (line 10) to choose an
Infer sub-command to run, and options (line 14) to pass the — r e a c t i v e option. Adapter
common parameters used are: SUT (line 6) a l ink to the S U T to analyse; SUTbuildCommand
(line 18) set to true to insert the S U T bu i ld command into the executed string; and a pair
of parameters zipOutputs (line 22) and outputFileRegex (line 26). The zipOutputs pa
rameter set to true instructs the adapter to create a Z I P file containing a l l file contributions
of the analysis and add it as a new Cont r ibu t ion resource to the Au tomat ion Result . In
order for this parameter to have any effect, the outputFileRegex parameter needs to be
used wi th value . * i n f e r - o u t . * to instruct the adapter to match a l l files created or mod
ified dur ing analysis as contributions. Th is is needed for Facebook Infer because analysis
produces an infer-out directory which contains analysis results which might be important
for the client. Some default input parameter values w i l l be used and included i n the created
Automat ion Request as output parameters. These w i l l include timeout=0 (no timeout) and
toolCommand=true.

The string executed by the adapter buil t out of a l l the input parameters w i l l look like
this:

/usr/local/bin/infer run — r e a c t i v e — make

The Au tomat ion Result produced by the adapter w i l l again be s imilar to the one created
in Section 7.1.1. The ma in differences w i l l be contents of the standard output contribu
tions, and a number of contributions representing files created or modified dur ing analysis
including a Z I P file containing a l l of them. Interesting Cont r ibu t ion resources are shown in
Figure 7.15.

69

1 P O S T T O : http://host:port/analysis/services/resources/createAutomationRequest
2 <oslc_auto:AutomationRequest>
3 <dcterms:title>Infer analysis request</dcterms:title>
4 <oslc auto:executesAutomationPlan rdf:resource="http://host:port/analysis/services/resources

/automationPlans/infer" / >
5 <oslc auto:inputParameter><oslc auto:ParameterInstance>
6 <oslc:name>SUT</oslc:name>
7 <rdf: value>http: //host :port / compilation/services / resources / sUTs/*ID* < / rdf:value>
8 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
9 <oslc auto:inputParameter><oslc auto:ParameterInstance>

10 <oslc:name>sub—command < / oslc: name >
11 <rdf:value>run</rdf:value>
12 </oslc auto:ParameterInstance></oslc auto:inputParameter>
13 <oslc auto:inputParameter><oslc auto:ParameterInstance>
14 <oslc:name>options< / oslc:name>
15 <rdf: value > reactive< / rdf:value>
16 </oslc auto:ParameterInstance></oslc auto:inputParameter>
17 <oslc auto:inputParameter><oslc auto:ParameterInstance>
18 <oslc:name>SUTbuildCommand</oslc:name>
19 <rdf:value>true</rdf:value>
20 </oslc auto:ParameterInstance></oslc auto:inputParameter>
21 <oslc auto:inputParameter><oslc auto:ParameterInstance>
22 <oslc:name>zipOutputs< / oslc:name>
23 <rdf:value>True</rdf:value>
24 </oslc_auto:ParameterInstance></oslc_auto:inputParameter>
25 <oslc_auto:inputParameter><oslc_auto:ParameterInstance>
26 <oslc:name>outputFileRegex< / oslc:name>
27 < r df: value >. * infer—out. * < / rdf: value >
28 </oslc auto:ParameterInstance></oslc auto:inputParameter>
29 </oslc_auto: AutomationRequest>

Figure 7.14: Analys is execution Au tomat ion Request example for Facebook Infer.

70

http://host:port/analysis/services/resources/createAutomationRequest
http://host:port/analysis/services/resources

1 <oslc_auto:contribution> <oslc_auto:Contribution rdf:about="http://host:port/analysis/
services / resources / contributions / *ID *—stderr" >

2 <rdf:value>javac Resources.java Pointers.java Hello.java
3 Summary of the reports
4

6 N U L L _ D E R E F E R E N C E : 1
7 </rdf: value >
8 </oslc_auto:Contribution></oslc_auto:contribution>
9 <oslc_auto:contribution> <oslc_auto:Contribution rdf:about="http://host:port/analysis/

services / resources / contributions / *ID *—stdout" >
10 <rdf:value>Capturing in make/cc mode...
11 Found 3 (out of 3) source files to analyze in ...
12 Hello.java starting
13 Pointers.java starting
14 Resources.java starting
15 Pointers.java D O N E
16 Resources.java D O N E
17 Hello.java D O N E
18
19 Analysis finished in 622mss
20
21 Found 3 issues
22
23 Hello.java:28: error: N U L L _ D E R E F E R E N C E
24 object 'a' last assigned on line 26 could be null and is dereferenced at line 28.
25 26. Pointers.A a = Pointers.mayReturnNull(rng.nextInt());
26 27. / / F I X M E : should check for null before calling methodQ
27 28. > a.methodQ;

30
31
32 </rdf:value>
33 </oslc_auto:Contribution></oslc_auto:contribution>
34 <oslc_auto:contribution><oslc_auto:Contribution rdf:about="http://host:port/analysis/services

/ resources / contributions / *ID *—zipedOutputs" >
35 <fit:filePath>path/to/adapter/compilation/SUT/*ID*/outN.zip</fit:filePath>
36 </oslc_auto:Contribution></oslc_auto:contribution>

Figure 7.15: Standard output Cont r ibu t ion resources and file contributions contained i n an
Automat ion Result produced by Facebook Infer. Mos t properties, such as name, descrip
t ion, valueType, etc. have been omit ted to save space.

R E S O U R C E _ L E A K : 2

28
29

29. }
30.

71

http://host:port/analysis/
http://host:port/analysis/
http://host:port/analysis/services

The *ID*-zipedOutputs Cont r ibu t ion (line 34) is the one that was created by the
zipOutputs parameter. It can be directly downloaded by sending a G E T request to its
U R I w i th an Accept header set to application/octet-stream.

7.2 Usage in Practice

The most important indicator of the adapter's functionality and usefulness is that the
adapter is being used in practice wi th four different analysis tools.

Honeywell uses the adapter for automated test case generation and other analyses using
their tool , H i L i T E , through a web client and as part of their requirements verification tool .
The ma in argument for using the adapter was its support for mult iple platforms including
Windows while providing an O S L C interface because a server was needed that would auto
mate test case generation on the Windows platform. Another useful aspect of the adapter
was the web based nature of the interface which allows analysis and test case generation
tools to be provided as services. Cooperat ion wi th Honeywell brought mult iple improvement
ideas to the adapter's development and motivated improvements to the adapter's usability,
such as better bu i ld and run scripts. Honeywell really appreciates the simple extensibili ty
and configurability of the adapter and extensive support from the author to solve a l l issues.
The adapter's powershell scripts successfully went through Honeywell 's cyber security au
dit . O n l y one unused variable $ U S R P A T H was detected for removal. Honeywell plans to
fund future adapter extensions to add:

1. a more complex queuing system to allow priorities for automation requests,

2. improved architecture to make the adapter secure to also handle export control ar t i
facts and external customers — l imi t S U T and execution commands, and a fail-safe
system to remain secure even when the client is compromised,

3. extend existing basic authentication to support external customers and licensing,

4. complete cyber security audit.

The V e r i F I T research group [2] from B U T F I T is using the adapter to prepare an
analysis server running A N a C o n D A , Spectra, Perun, and more i n the future. Such analysis
server is a contr ibut ion to the A u F o V e r [5] project and is enabled by the adapter created
in this work.

Furthermore, an Eclipse plugin for executing analysis from the I D E using the adapter
is currently being developed by a V e r i F I T member. Th is w i l l allow the adapter to be used
directly from the Ecl ipse I D E to run analysis which could see the adapter getting even more
use cases in the future.

72

Chapter 8

Conclusion

This work provided an introduct ion to O S L C , par t icular ly to its Au tomat ion domain, and
to Eclipse L y o , par t icular ly to L y o Designer and L y o Code Generator.

The goal of this work was to provide a way of adding an O S L C interface to a software
analysis tool . Th is was achieved by designing and implementing an O S L C adapter which
can be configured to be used wi th most command-line analysis tools. In order to design
the adapter and its functionality property, a list of analysis tool requirements had to be
created based on experiments w i th a number of different analysis tools. The adapter was
designed as a toolchain of two sub-adapters to separate two distinct Au tomat ion scenarios:
S U T management and analysis execution. The Analys is adapter can be configured to work
wi th most command-line analysis tools and provides features that fulfill a l l analysis tool
requirements in our experiments, including resource persistency and queries.

The functionality of the adapter is backed up by an automated test suite both on L i n u x
and Windows, and manual experiments were conducted wi th a number of different analysis
tools to verify their usabil i ty w i th the adapter. The most important achievement i n my
opinion is that the adapter created in this work is already being used i n Honeywell w i th
positive feedback, and the adapter is also being used or experimented wi th i n two different
use cases by researchers from the V e r i F I T group. This work also contributes to the projects
A u F o V e r [5] and Arrowhead Tools [4], and a paper was published at E x c e l @ F I T 2021 [44].

The implemented adapter does cover a l l analysis tool requirements defined i n this work,
and i n our experiments a l l analysis tools were fully usable through the adapter. Since the
tested tools included representatives of both dynamic and static analysis, I am confident
that the adapter is well able to work wi th almost any command-line analysis tool , however,
it would not be right to c la im that the adapter can work wi th all analysis tools because
that would require first hand experience wi th all analysis tools which I do not have the
expertise nor the t ime for.

Possible future improvements to the adapter include suggestions from Honeywell , such
as a more complex queuing system which supports pr ior i ty requests, more authentication
options, and security. Other future ideas include a proper user interface using a standalone
web applicat ion to provide the adapter's functionality to human clients more conveniently
(and not just machine clients); and a coordinator adapter1 which would aggregate multiple
servers running the current adapter as workers i n a single interface and distribute analysis
between them based on available analysis tools, load balancing, or other policies.

1 formerly a master adapter

73

Bibliography

[1] B E R N E R S L E E , T . Linked Data [online]. 2006 [cit. 2021-27-04]. Available at:
https://www.w3.org/Designlssues/LinkedData.html.

[2] Automated Analysis and Verification Research Group - VeriFLT [online], [cit.
2021-27-04]. Available at: h t tp://www . f i t .vu tbr .cz / research /groups /ver i f i t / .

[3] AQUAS: Aggregated Quality Assurance for Systems [online]. 2017 [cit. 2021-27-04].
Available at: https://www .fit .vut.cz/research/project/1041/.

[4] H2020 ECSEL Arrowhead Tools - Arrowhead Tools for Engineering of Digitalisation
Solutions [online]. 2019 [cit. 2021-27-04]. Available at:
https://www.f i t . v u t . c z / r e s e a r c h / p r o j ect/1299/.

[5] TACR AuFoVer - Automating Formal Verification [online]. 2019 [cit. 2021-27-04].
Available at: https://www .vutbr.cz/en/rad/projects/detail/29833.

[6] C A R O T H E R S , G . , P R U D ' H O M M E A U X , E . , B E C K E T T , D . and B E R N E R S L E E , T . RDF

1.1 Turtle. 2014 [cit. 2021-27-04]. Available at:
http://www.w3.org/TR/2014/REC-turtle-20140225/.

[7] E C L I P S E F O U N D A T I O N . Eclipse Jetty [online], [cit. 2021-27-04]. Available at:
https://www .eclipse.org/j e t t y / .

[8] E L K H O U R Y , J . L y o code generator: A model-based code generator for the
development of O S L C - c o m p l i a n t tool interfaces. SoftwareX. 2016. D O I :
10.1016/j.softx.2016.08.004.

[9] E L K H O U R Y , J . An Analysis of the OASLS OSLO Lntegration Standard, for a
Cross-disciplinary Lntegrated Development Environment : Analysis of market
penetration, performance and prospects. 978-91-7873-525-9. K T H , Mechatronics,
2020. 55 p. Q C 20200430.

[10] F A C E B O O K , I N C . Facebook-Lnfer. [cit. 2021-27-04]. Available at:
h t t p s : / / f b i n f er .com/.

[11] F I E D O R , J . ANaConDA Framework [online], [cit. 2021-27-04]. Available at:
h t tp ://www . f i t .vu tbr .cz / research /groups /ver i f i t / t o o l s / a n a c o n d a / .

[12] F I E D O R , J . JSEM - Simple Extension Manager for Java [online], [cit. 2021-27-04].
Available at: h t t p s : / / p a j d a . f i t . v u t b r . c z / v e r i f i t / j s e m .

74

https://www.w3.org/Designlssues/LinkedData.html
http://www.fit.vutbr.cz/research/groups/verifit/
https://www.fit.vut.cz/research/project/1041/
https://www.f
https://www.vutbr.cz/en/rad/projects/detail/29833
http://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.eclipse.org/j
https://fbinf
http://www.fit.vutbr.cz/research/groups/verif
https://pajda.fit.vutbr.cz/verifit/jsem

[13] F I E D O R , J . and V O J N A R , T . A N a C o n D A : A Framework for Ana lys ing
Mul t i - threaded C / C + + Programs on the B ina ry Level . In: Q A D E E R , S .
and T A S I R A N , S . , ed. Runtime Verification. Ber l in , Heidelberg: Springer Be r l i n
Heidelberg, 2013, p. 35-41. I S B N 978-3-642-35632-2.

[14] F I E D O R , T . Perun [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t hub . com/ t f i edo r /pe run .

[15] F I E L D I N G , R . T . REST: Architectural Styles and the Design of Network-based
Software Architectures. Irvine, C A , U S A , 2000. Doctora l dissertation. Univers i ty of
California, Irvine. Available at:
h t t p : / / w w w . i c s . u c i . e d u / ~ f i e l d i n g / p u b s / d i s s e r t a t i o n / t o p . h t m .

[16] F L A N A G A N , C . and F R E U N D , S . RoadRunner, [cit. 2021-27-04]. Available at:
https:/ /github.com/stephenfreund/RoadRunner.

[17] H A R R I S , S. and S E A B O R N E , A . SPARQL 1.1 Query Language. 2013 [cit. 2021-27-04].
Available at: https://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

[18] L E T K O , Z . , V O J N A R , T . and K R E N A , B . A tomRace : D a t a Race and A t o m i c i t y
V io l a t i on Detector and Healer. In: Proceedings of the 6th Workshop on Parallel and
Distributed Systems: Testing, Analysis, and Debugging. New York , N Y , U S A :
Associat ion for Comput ing Machinery, 2008. P A D T A D '08. D O I :
10.1145/1390841.1390848. I S B N 9781605580524. Available at:
https://doi.org/10.1145/1390841.1390848.

[19] Eclipse Lyo [online], [cit. 2021-27-04]. Available at: https://www .eclipse.org/lyo/.

[20] Lyo Designer Wiki [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t h u b . c o m / e c l i p s e / l y o . d e s i g n e r / w i k i .

[21] Lyo Domains [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t h u b . c o m / e c l i p s e / l y o . d o m a i n s / .

[22] Lyo RIO [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t h u b . c o m / e c l i p s e / l y o . r i o .

[23] Lyo Store [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t h u b . c o m / e c l i p s e / l y o . s t o r e .

[24] Lyo Test Suite [online], [cit. 2021-27-04]. Available at:
h t t p s : / / g i t h u b . c o m / e c l i p s e / l y o . t e s t s u i t e .

[25] Open Services for Lifecycle Collaboration [online], [cit. 2021-27-04]. Available at:
h t t p s : / / o p e n - s e r v i c e s . n e t / .

[26] Open Services for Lifecycle Collaboration Core Specification Version 2.0 [online], [cit.
2021-27-04]. Edited by John Arwe. 30 May 2013. Available at:
h t t p s : / / a r c h i v e . o p e n - s e r v i c e s . n e t / b i n / v i e w / M a i n / O s l c C o r e S p e c i f i c a t i o n . h t m l .

[27] OSLC Automation Version 2.1 Part 1: Specification [online], [cit. 2021-27-04]. Edited
by Fabio Ribeiro. 03 March 2019. OASIS Working Draft 01. Available at:
h t tps : / / r awgi t . com/oas i s - t c s /os lc -domains /mas te r / au to /au tomat ion-spec .h tml .

75

https://github.com/tfiedor/perun
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://github.com/stephenfreund/RoadRunner
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1145/1390841.1390848
https://www.eclipse.org/lyo/
https://github.com/eclipse/lyo.designer/wiki
https://github.com/eclipse/lyo.domains/
https://github.com/eclipse/lyo.rio
https://github.com/eclipse/lyo.store
https://github.com/eclipse/lyo.testsuite
https://open-services.net/
https://archive.open-services.net/bin/view/Main/OslcCoreSpecif
https://rawgit.com/oasis-tcs/oslc-domains/master/auto/automation-spec.html

[28] OSLC Core Version 3.0. Part 1: Overview [online], [cit. 2021-27-04] . Edited by Jim
Amsden. 31 May 2018 . OASIS Committee Specification Draft 0 3 / Public Review Draft 03 .
Available at: http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/csprd03/par
t1-overview/oslc-core-v3.0-csprd03-partl-overview.html.

[29] OSLC Developer Guide [online], [cit. 2021-27-04] . Available at:
https://oslc.github. i o/developing-oslc-applications/.

[30] OSLC Specifications [online], [cit. 2021-27-04] . Available at:
https://open-services.net/specifications/.

[31] P O S T M A N . Newman [online], [cit. 2021-27-04] . Available at:

https://www.npmj s.com/package/newman.

[32] P O S T M A N . Postman [online], [cit. 2021-27-04] . Available at:

https://www.getpostman.com/.

[33] R D F W O R K I N G G R O U P . Resource Description Framework (RDF) [online]. 2 0 0 4 .

2 0 1 4 [cit. 2021-27-04] . Available at: https://www.w3.org/RDF/.

[34] R Y M A N , A . Open Services for Lifecycle Collaboration Core Specification Version 2.0
Query Syntax [online], [cit. 2021-27-04] . Available at:
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery.

[35] S M A R T B E A R . Swagger [online], [cit. 2021-27-04] . Available at: https://swagger . i o / .

[36] S M R Č K A , A . Testos - Spectra [online], [cit. 2021-27-04] . Available at:

https://www.fit.vutbr.cz/research/groups/verifit/tools/testos-spectra/.cs.

[37] T H E A P A C H E S O F T W A R E F O U N D A T I O N . Apache Jena Fuseki [online], [cit.

2021-27-04] . Available at: https://jena.apache.org/documentation/fuseki2/.

[38] T H E A P A C H E S O F T W A R E F O U N D A T I O N . Apache Maven [online], [cit. 2021-27-04] .

Available at: https://maven.apache.org/.

[39] V A L G R I N D ™ D E V E L O P E R S . Valgrind [online]. [cit. 2021-27-04] . Available at:

https://valgrind.org/.

[40] V A Š Í Č E K , O . OSLC Adapter for ANaConDA Framework [Brno Universi ty of
Technology, Facul ty of Information Technology. Supervisor Ing. Aleš Smrčka , Ph .D .] .
Brno , C Z , 2 0 1 9 . Bachelor's thesis. Vysoké učen í technické v Brně , Fakul ta
informačních technologi í .

[41] V A Š Í Č E K , O . OSLC Adapter for Perun [FIT V U T v Brně] . 2 0 2 0 . P r o j e k t o v á praxe,
Brno .

[42] V A Š Í Č E K , O . Universal OSLC Analysis Adapter - GitLab [online]. 2 0 2 0 . 2 0 2 1 [cit.
2021-27-04] . Available at:

https://paj da.f i t . v u t b r . c z / v e r i f i t / o s l c - g e n e r i c - a n a l y s i s .

[43] V A Š Í Č E K , O . Universal OSLC Analysis Adapter - Wiki [online]. 2 0 2 0 . 2 0 2 1 [cit.
2021-27-04] . Available at:

https://pajda.fit.vutbr.cz/verifit/oslc-generic-analysis/-/wikis/home.

7 6

http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/csprd03/par
https://oslc.github.io/developing-oslc-applications/
https://open-services.net/specifications/
https://www.npmj
https://www.getpostman.com/
https://www.w3.org/RDF/
https://archive.open-services.net/bin/view/Main/OSLCCoreSpecQuery
https://swagger.io/
https://www.fit.vutbr.cz/research/groups/verifit/tools/testos-spectra/.cs
https://jena.apache.org/documentation/fuseki2/
https://maven.apache.org/
https://valgrind.org/
https://paj
https://pajda.fit

[44] V A Š Í Č E K , O . O S L C Adapter for Software Analys is . In: [Excel@FIT 2021. Brno
Universi ty of Technology, Facul ty of Information Technology.]. 2021 [cit. 2021-27-04].
Available at: http://excel.fit.vutbr.cz/submissions/2021/017/17.pdf.

[45] W 3 C . Linked Data [online], [cit. 2021-27-04]. Available at:
https://www.w3.org/standards/semanticweb/data.

[46] Triplestore [online], [cit. 2021-27-04]. Available at:
https://en.wikipedia.org/wiki/Triplestore.

77

http://excel.fit.vutbr.cz/submissions/2021/017/17.pdf
https://www.w3.org/standards/semanticweb/data
https://en.wikipedia.org/wiki/Triplestore

Appendix A

Repository and Usage Guide

The adapter's repository is publ ic ly available at the faculty G i t L a b [42]:

• Pub l i c repository https: //pajda. f i t . v u t b r . cz/verif it/oslc-generic-analysis

For a detailed usage guide which explains configuration options, a l l input parameters and
features, u t i l i ty scripts etc. please refer to the adapter's W i k y [43].

• W i k y page https://pajda.fit.vutbr.ez/verifit/oslc-generic-analysis/-/w
ikis/home

• A copy of the Wiky is also included wi th the adapter i n the t u t o r i a l s directory

Par t icu lar ly the Tutorial section which shows a l l steps of using the adapter including screen-
shots and examples ready to be copy-pasted.

• Configuration: https: / /pa j da. f i t .vutbr. cz/verif it/oslc-generic-analysis/-
/wikis/Tutorial/1.-Configuration

• B u i l d and run: https://pajda.fit.vutbr.cz/verifit/oslc-generic-analysis
/-/wikis/Tutorial/2.-BuiId-and-Run

• Running analysis: https://pajda.fit.vutbr.cz/verifit/oslc-generic-analys
is/-/wikis/Tutorial/3.-Analysis-Using-SwaggerUI

The Usage Guide section which explains a l l input parameters, analysis tool configuration,
and output filter configuration.

• Basics and input parameters: https://pajda.fit.vutbr.cz/verifit/oslc-gene
ric-analysis/-/wikis/Usage-Guide/1.-Basics

• Analys is tool definition: https: //pa j da. f i t .vutbr. cz/verif it/oslc-generic-an
alysis/-/wikis/Usage-Guide/2.-Analysis-Tool-Definition

• Output filter definition: https://pajda.fit.vutbr.cz/verifit/oslc-generic-an
alysis/-/wikis/Usage-Guide/3.-Plugin-Output-Filters

A n d the Setup Guide section which briefly introduces how to setup and run the adapter.

• Instalation and configuration: https://pajda.fit.vutbr.cz/verifit/oslc-gene
ric-analysis/-/wikis/Setup-Guide/Installation-and-Configuration

• Running: https://pajda.fit.vutbr.cz/verifit/oslc-generic-analysis/-/wik
is/Setup-Guide/Running

78

https://pajda.fit.vutbr.ez/verifit/oslc-generic-analysis/-/w
https://pajda.fit.vutbr.cz/verifit/oslc-generic-analysis
https://pajda.fit.vutbr.cz/verifit/oslc-generic-analys
https://pajda.fit.vutbr.cz/verifit/oslc-gene
https://pajda.fit.vutbr.cz/verifit/oslc-generic-an
https://pajda.fit.vutbr.cz/verifit/oslc-gene
https://pajda.fit.vutbr.cz/verifit/oslc-generic-analysis/-/wik

Appendix B

Detailed
Analysis

Example of Running

This appendix contains a simple but complete example of running analysis using the adapter
created in this work. The example uses default adapter configuration which means that
ports 8080, 8081, and 8082 w i l l be used and hostname localhost. The example shows
how to run an analysis of an S U T using A N a C o n D A [11] including full X M L contents of
al l resources or responses used in the process for completeness. Unfortunately, most X M L
files span mult iple pages due to their size and that is why they are only included i n this
appendix.

The example consists of these steps:

1. Creat ing an S U T

(a) G E T the S U T creation Au tomat ion P l a n

(b) Request S U T creation by P O S T i n g an Au tomat ion Request to the Compi la t ion
adapter

(c) Retrieve the Au tomat ion Result of S U T creation

(d) Retrieve the created S U T resource

2. Execut ing analysis

(a) G E T the analysis execution Au tomat ion P l a n

(b) Request analysis execution by P O S T i n g an Au tomat ion Request to the Analys is
adapter

(c) Retrieve the Au tomat ion Result of the analysis

Before an analysis can be executed, an S U T needs to be transferred to the analysis server
and compiled. This process consists of four steps: getting an Au tomat ion P l a n to learn
about input parameters, creating an Au tomat ion Request to request S U T creation, pol l ing
the Au tomat ion Result un t i l its finished, and finally getting the created S U T resource.

B . l Creating an S U T

79

B . l . l G E T the S U T creat ion A u t o m a t i o n P l a n

In order to learn how to create Au tomat ion Requests for creating S U T s , clients first need to
see what the Au tomat ion P l a n looks like. The Compi la t ion adapter currently has a single
Automat ion P l a n which has identifier 0 (zero). Th is Au tomat ion P l a n can be retrieved by
sending a G E T request to the U R I of the Au tomat ion P l a n . Au tomat ion P l a n U R I s look
like this:

http://host:port/compilation/services/resources/automationPlans/*ID*

To retrieve the S U T creation Au tomat ion P l a n , send a G E T request w i th an Accept header
to:

http://localhost:8081/compilation/services/resources/automationPlans/O

The adapter's response w i l l contain the requested Au tomat ion P l a n which is described and
shown below. In case the Au tomat ion P l a n is not found, most l ikely because of an incorrect
U R I , then the adapter w i l l respond wi th code 400 Not Found. The Au tomat ion P l a n
defines a l l input parameters for Au tomat ion Requests using ParameterDefinit ion resources.
The most important parameters for a basic example are: one of the source* parameters
to choose a way of transferring a S U T to the server (lines 34, 43, 52, 61); launchCommand
to specify an S U T launch command to be used for analysis (line 90); and buildCommand to
specify an S U T bu i ld command to be used to compile the S U T (line 25). Then there are
other functional parameters to control the S U T creation process such as compile (line 80)
and unpackZip (line 70).

1 <! H E A D E R : Accept=application/rdf+xml
2 R E S P O N S E C O D E : 200 O K >
3
4 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
5 <rdf:RDF
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dcterms="http://purl.org/dc/terms/"
8 xmlns:oslc data=" http: / / open—services.net/ns/servicemanagement /1.0/"
9 xmlns:oslc="http://open—services. net/ns/core#"

10 xmlns:foaf=" http: //xmlns.com/foaf/0.1 /#"
11 xmlns:fit="http: / / fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
12 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
13 xmlns:oslc_auto="http://open—services. net/ns/auto#">
14
15 <oslc_auto:AutomationPlan rdf:about="http://localhost:8081/compilation/services/resources/

automationPlans/0" >
16 <dcterms:identifier>0</dcterms:identifier>
17 <dcterms:creator rdf:resource="https://pajda.fit.vutbr.cz/xvasic"/>
18 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021 - 0 4 - 26T18:06:11.694Z </dcterms:created>
19 <dcterms:title rdf:parseType="Literal">SUT Deploy</dcterms:title>
20 <dcterms:description rdf:parseType="Literal">Download and compile an S U T on the server

so it can be executed later.Use exactly one of the "source.*" parameters.</dcterms:
description>

21 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
2021-04-26T18:06:11.694Z</dcterms:modified>

22

80

http://host:port/compilation/services/resources/automationPlans/*ID*
http://localhost:8081/compilation/services/resources/automationPlans/O
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services
http://fit.vutbr.cz/group/verifit/oslc/ns/universal�
http://www.w3.org/2000/01/rdf-schema%23
http://open�services
http://localhost:8081/compilation/services/resources/
https://pajda.fit.vutbr.cz/xvasic%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime

23 <oslc_auto:parameterDefinition>
24 <oslc_auto:ParameterDefinition>
25 <oslc:name>buildCommand</oslc:name>
26 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
27 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
28 <dcterms:description rdf:parseType="Literal">How to build the SUT. The specified

command will be launched from the root directory of the downloaded SUT.
Examples: make | ./build.sh | gcc —g —o my sut. If this command is missing or
empty then compilation will not be performed (e.g. for static analysis tools)</
dcterms:description>

29 </oslc auto:ParameterDefinition>
30 </oslc auto:parameterDefinition>
31
32 <oslc auto:parameterDefinition>
33 <oslc auto:ParameterDefinition>
34 <oslc:name>sourceUrl< / oslc:name>
35 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
36 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
37 <dcterms:description rdf:parseType="Literal">The SUT will be downloaded from a U R L .

Example: https://pajda.fit.vutbr.cz/xvasic/oslc—generic—analysis.git</dcterms:
description>

38 </oslc auto:ParameterDefinition>
39 </oslc auto:parameterDefinition>
40
41 <oslc auto:parameterDefinition>
42 <oslc auto:ParameterDefinition>
43 <oslc:name>sourceBase64< / oslc:name>
44 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
45 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
46 <dcterms:description rdf:parseType="Literal">The SUT is encoded in base64 as this

parameter's value. I M P O R T A N T the value needs to specify a filename (to match
with buildCommand). The filename should be on the first line of the value, then the
base64 encoded file as the second line (separated by a "\n"</dcterms:description>

47 </oslc auto:ParameterDefinition>
48 </oslc auto:parameterDefinition>
49
50 <oslc auto:parameterDefinition>
51 <oslc auto:ParameterDefinition>
52 <oslc:name>sourceFilePath</oslc:name>
53 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
54 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
55 <dcterms:description rdf:parseType="Literal">The SUT will be copied from a path in

the filesystem.</dcterms:description>
56 </oslc auto:ParameterDefinition>
57 </oslc auto:parameterDefinition>
58
59 <oslc auto:parameterDefinition>
60 <oslc_auto:ParameterDefinition>
61 <oslc:name>sourceGit< / oslc:name>
62 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
63 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
64 <dcterms:description rdf:parseType="Literal">The SUT will be retrieved from a Git

repository. </dcterms:description>
65 </oslc auto:ParameterDefinition>

81

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
https://pajda.fit.vutbr.cz/xvasic/oslc�
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/

66 </oslc auto:parameterDefinition>
67
68 <oslc _auto:parameterDefinition>
69 <oslc auto:ParameterDefinition>
70 <oslc:name>unpackZip</oslc:name>
71 <oslc:defaultValue>false</oslc:defaultValue>
72 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
73 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
74 <dcterms:description rdf:parseType="Literal">Set this parameter to "true" to have the

adapter unpack the SUT using ZIP after fetching it.</dcterms:description>
75 </oslc auto:ParameterDefinition>
76 </oslc auto:parameterDefinition>
77
78 <oslc auto:parameterDefinition>
79 <oslc auto:ParameterDefinition>
80 <oslc:name>compile< / oslc:name>
81 <oslc:defaultValue>true</oslc:defaultValue>
82 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
83 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
84 <dcterms:description rdf:parseType="Literal">Set this parameter to "false" to disable

SUT compilation.</dcterms:description>
85 </oslc auto:ParameterDefinition>
86 </oslc auto:parameterDefinition>
87
88 <oslc auto:parameterDefinition>
89 <oslc auto:ParameterDefinition>
90 <oslc:name>launchCommand</oslc:name>
91 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
92 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
93 <dcterms:description rdf:parseType="Literal">How to launch the SUT once its build.

The specified command will be launched from the root directory of the downloaded
SUT. Examples: make run | ./run.sh | ./my sut</dcterms:description>

94 </oslc auto:ParameterDefinition>
95 </oslc auto:parameterDefinition>
96
97 </oslc auto:AutomationPlan>
98 </ rdf :RDF>

B.1 .2 Reques t S U T creat ion

To request an S U T to be created, a client needs to P O S T an Au tomat ion Request to the
adapter's creation factory. The Au tomat ion Request creation factory is:

http://host:port/compilation/services/resources/createAutomationRequest

The full request is described and shown below. A n example S U T to be analysed using
A N a C o n D A is a Bank example which performs concurrent transactions on a bank account
without proper synchronization and then checks whether the final balance is as expected.
The example S U T can be retrieved from a U R L hosted at my student website using the
sourceUrl input parameter (line 16). The downloaded file is a zip file so the adapter needs
to unpack it first which is controlled by the unpackZip input parameter (line 23) set to true.
The example is compiled using make, so the buildCommand (line 30) w i l l be set to make:

82

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://host:port/compilation/services/resources/createAutomationRequest

and the launchCommand (line 37) w i l l be set to . /bank. A n d the executesAutomationPlan
property (line 12) needs to contain a l ink to the Au tomat ion P l a n to be executed.

1 <! H E A D E R : Content—Type=application/rdf+xml, Accept=application/rdf+xml >
2
3 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
4 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:dcterms="http://purl.org/dc/terms/"
6 xmlns:oslc="http://open—services.net/ns/core#"
7 xmlns:oslc_auto="http://open—services. net/ns/auto#">
8
9 <oslc_auto:AutomationRequest>

10 <dcterms:title>analysis test</dcterms:title>
11 <dcterms:description>analysis test</dcterms:description>
12 <oslc auto:executesAutomationPlan rdf:resource="http://localhost:8081/compilation/

services/resources/automationPlans/0" / >
13
14 <oslc_auto:inputParameter>
15 <oslc_auto:ParameterInstance>
16 <oslc:name>sourceUrl< / oslc:name>
17 <rdf:value>http://www.stud.fit.vutbr.cz/~xvasic25/bank.zip</rdf:value>
18 </oslc_auto:ParameterInstance>
19 </oslc_auto:inputParameter>
20
21 <oslc auto:inputParameter>
22 <oslc auto:ParameterInstance>
23 <oslc:name>unpackZip</oslc:name>
24 <rdf:value>true</rdf:value>
25 </oslc_auto:ParameterInstance>
26 </oslc_auto:inputParameter>
27
28 <oslc_auto:inputParameter>
29 <oslc auto:ParameterInstance>
30 <oslc:name>buildCommand</oslc:name>
31 <rdf:value>make</rdf:value>
32 </oslc auto:ParameterInstance>
33 </oslc auto:inputParameter>
34
35 <oslc_auto:inputParameter>
36 <oslc auto:ParameterInstance>
37 <oslc:name>launchCommand</oslc:name>
38 <rdf:value>./bank</rdf:value>
39 </oslc_auto:ParameterInstance>
40 </oslc_auto:inputParameter>
41 </oslc_auto:AutomationRequest>
42 < / rdf :RDF>

The adapter w i l l respond wi th the same Au tomat ion Request resource enriched wi th
more properties and a U R L The response is described and shown below. If the Au tomat ion
Request submitted by client is not valid, then the adapter w i l l return a response wi th
code 400 Bad Request and an oslc: Error resource wi th a meaningful error message. The
created Au tomat ion Request contains a l l the specified input parameters (lines 27-53) and
properties (lines 16-18); and some extra properties added by the adapter (lines 20-25), such
as creation and modification tags, a state, and an identifier. The most important property

83

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://open�services.net/ns/core%23
http://open�services
http://localhost:8081/compilation/
http://www.stud.fit.vutbr.cz/~xvasic25/bank.zip%3c/rdf:value

is usually the producedAutomationResult property (line 23) which holds a l ink to the
Automat ion Result created for this request. The next step is to retrieve this Au tomat ion
Result using the U R I stored i n this property.

1 < ! — R E S P O N S E C O D E : 201 Created — >
2
3 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
4 <rdf:RDF
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:dcterms="http://purl.org/dc/terms/"
7 xmlns:oslc data=" http: //open—services.net/ns/servicemanagement /1.0/"
8 xmlns:oslc="http://open—services.net/ns/core#"
9 xmlns:foaf=" http: //xmlns.com/foaf/0.1 /#"

10 xmlns:fit="http: / / fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
11 xmlns:rdfs="http://www.w3.org/2000/01/rdf— schema#"
12 xmlns:oslc_auto="http://open—services.net/ns/auto#">
13
14 <oslc_auto:AutomationRequest rdf:about="http://localhost:8081/compilation/services/

resources / automationRequests /1" >
15
16 <oslc auto:executesAutomationPlan rdf:resource="http://localhost:8081/compilation/

services / resources / automationPlans/0" / >
17 <dcterms:title rdf:parseType="Literal">analysis test</dcterms:title>
18 <dcterms:description rdf:parseType="Literal">analysis test</dcterms:description>
19
20 <dcterms:identifier> 1 </dcterms:identifier>
21 <oslc_auto:state rdf:resource="http://open—services.net/ns/auto#inProgress"/>
22 <oslc_auto:desiredState rdf:resource="http://open—services.net/ns/auto#complete"/>
23 <oslc_auto:producedAutomationResult rdf:resource="http://localhost:8081/compilation/

services / resources / automationResults /1" / >
24 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:37:36.974Z</dcterms:modified>
25 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:37:36.974Z</dcterms:created>
26
27 <oslc_auto:inputParameter>
28 <oslc_auto:ParameterInstance>
29 <oslc:name>unpackZip</oslc:name>
30 <rdf:value>true</rdf:value>
31 </oslc_auto:ParameterInstance>
32 </oslc_auto:inputParameter>
33
34 <oslc_auto:inputParameter>
35 <oslc_auto:ParameterInstance>
36 <oslc:name>launchCommand</oslc:name>
37 <rdf:value>./bank</rdf:value>
38 </oslc_auto:ParameterInstance>
39 </oslc_auto:inputParameter>
40
41 <oslc auto:inputParameter>
42 <oslc auto:ParameterInstance>
43 <oslc:name>buildCommand</oslc:name>
44 <rdf: value > make < / rdf: value >
45 </oslc_auto:Parameter!nstance>

81

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services.net/ns/core%23
http://fit.vutbr.cz/group/verifit/oslc/ns/universal�
http://www.w3.org/2000/01/rdf�
http://open�services.net/ns/auto%23
http://localhost:8081/compilation/services/
http://localhost:8081/compilation/
http://open�services.net/ns/auto%23inProgress%22/
http://open�services.net/ns/auto%23complete%22/
http://localhost:8081/compilation/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime

46 </oslc_auto:inputParameter>
47
48 <oslc_auto:inputParameter>
49 <oslc auto:ParameterInstance>
50 <oslc:name>sourceUrl< / oslc:name>
51 <rdf:value>http://www.stud.fit.vutbr.cz/~xvasic25/bank.zip</rdf:value>
52 </oslc auto:ParameterInstance>
53 </oslc auto:inputParameter>
54
55 </oslc_auto: AutomationRequest>
56 </ rdf :RDF>

B.1 .3 R e t r i e v e the A u t o m a t i o n Resu l t

After an Au tomat ion Request was created, clients need to po l l for the Au tomat ion Result
using the U R I found in the producedAutomationResult property of the created Au toma
t ion Request. Clients need to po l l the result and look at its state property so see if the
execution finished which is signified by value complete. Au tomat ion Results which are not
yet complete w i l l not contain any Cont r ibu t ion resources so an example of such resource
can be skipped. The Au tomat ion Result can be retrieved by sending a G E T request to
its U R I . Below is an example of a complete Au tomat ion Result . The Au tomat ion Result
contains a l l the input parameters (lines 29-55) as well as output parameters (line 59). Out
put parameters are parameters which the adapter added automatical ly using their default
values. Then there are Cont r ibu t ion resources (lines 64-135) which contain the stdout
(line 127) and stderr (line 66) outputs of the compilat ion, its returnCode (line 118), total
ExecutionTime (line 109), and statusMessages (line 85) from the adapter. The most im
portant property for the Compi la t ion adapter is the createdSUT property (line 17) which
holds a l ink to the S U T resource.

1 <! H E A D E R : Accept=application/rdf+xml
2 R E S P O N S E C O D E : 200 O K >
3
4 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
5 <rdf:RDF
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dcterms="http://purl.org/dc/terms/"
8 xmlns:oslc data=" http: / / open—services.net/ns/servicemanagement /1.0/"
9 xmlns:oslc="http://open—services.net/ns/core#"

10 xmlns:foaf="http://xmlns.com/foaf/0.1/#"
11 xmlns:fit="http: / / fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
12 xmlns:rdfs="http://www.w3.org/2000/01 /rdf-schema#"
13 xmlns:oslc_auto="http://open—services.net/ns/auto#">
14
15 <oslc_auto:AutomationResult rdf:about="http://localhost:8081 /compilation/services/resources

/ automationResults/1" >
16
17 <fit:createdSUT rdf:resource="http://localhost:8081/compilation/services/resources/sUTs/1"

/>
18 <oslc_auto:verdict rdf:resource="http://open—services.net/ns/auto#passed"/>
19 <oslc_auto:state rdf:resource="http://open—services.net/ns/auto#complete"/>
20
21 <dcterms:identifier>l</dcterms:identifier>

85

http://www.stud.fit.vutbr.cz/~xvasic25/bank.zip%3c/rdf:value
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services.net/ns/core%23
http://xmlns.com/foaf/0.1/%23
http://vutbr.cz/group/verifit/oslc/ns/universal�
http://www.w3.org/2000/01
http://open�services.net/ns/auto%23
http://localhost:8081
http://localhost:8081/compilation/services/resources/sUTs/1
http://open�services.net/ns/auto%23passed%22/
http://open�services.net/ns/auto%23complete%22/

22 <oslc_auto:desiredState rdf:resource="http://open—services.net/ns/auto#complete"/>
23 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:52:18.824Z</dcterms:created>
24 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:52:19.129Z</dcterms:modified>
25 <dcterms:title rdf:parseType="Literal">Result — analysis test</dcterms:title>
26 <oslc_auto:producedByAutomationRequest rdf:resource="http://localhost:8081/compilation/

services / resources / automationRequests/1" / >
27 <oslc_auto:reportsOnAutomationPlan rdf:resource="http://localhost:8081/compilation/

services / resources / automationPlans/0" / >
28
29 <oslc_auto:inputParameter>
30 <oslc auto:ParameterInstance>
31 <oslc:name>unpackZip</oslc:name>
32 <rdf:value>true</rdf:value>
33 </oslc_auto:ParameterInstance>
34 </oslc_auto:inputParameter>
35
36 <oslc_auto:inputParameter>
37 <oslc auto:ParameterInstance>
38 <oslc:name>buildCommand</oslc:name>
39 <rdf:value>make</rdf:value>
40 </oslc auto:ParameterInstance>
41 </oslc auto:inputParameter>
42
43 <oslc_auto:inputParameter>
44 <oslc auto:ParameterInstance>
45 <oslc:name>launchCommand</oslc:name>
46 < rdf: value >./bank </rdf: value >
47 </oslc_auto:ParameterInstance>
48 </oslc_auto:inputParameter>
49
50 <oslc auto:inputParameter>
51 <oslc auto:ParameterInstance>
52 <oslc:name>sourceUrl< / oslc:name>
53 <rdf:value>http://www. stud. fit. vutbr.cz/~xvasic25/bank.zip</rdf:value>
54 </oslc_auto:ParameterInstance>
55 </oslc_auto:inputParameter>
56
57 <oslc_auto:outputParameter>
58 <oslc_auto:ParameterInstance>
59 <oslc:name>compile< / oslc:name>
60 <rdf:value>true</rdf:value>
61 </oslc auto:ParameterInstance>
62 </oslc_auto:outputParameter>
63
64 <oslc_auto:contribution>
65 <oslc_auto:Contribution>
66 <dcterms:title rdf:parseType="Literal">stderr</dcterms:title>
67 < rdf: value ></ rdf: value >
68 <fit :filePath> / path/to/universal—analysis—adapter / compilation / SUT / 3 / .adapter /

stderr compilation_1 </fit:filePath>
69 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

86

http://open�services.net/ns/auto%23complete%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime
http://localhost:8081/compilation/
http://localhost:8081/compilation/
http://www
http://www.w3.org/2001/XMLSchema%23string%22/

70 <dcterms:description rdf:parseType="Literal">Error output of the compilation.</
dcterms:description>

71 </oslc_auto:Contribution>
72 </oslc_auto:contribution>
73
74 <oslc_auto:contribution>
75 <oslc_auto:Contribution>
76 <dcterms:title rdf:parseType="Literal">Fetching Output</dcterms:title>
77 <rdf:value># currently only shows error messages</rdf:value>
78 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
79 <dcterms:description rdf:parseType="Literal">Output of the program fetching process.<

/dcterms:description>
80 </oslc_auto:Contribution>
81 </oslc_auto:contribution>
82
83 <oslc_auto:contribution>
84 <oslc_auto:Contribution>
85 <dcterms:title rdf:parseType="Literal">statusMessage</dcterms:title>
86 <rdf:value>SUT fetch successful
87 Executing: make
88 as: /bin/bash ./.adapter/exec_compilation_l.sh "make"
89 In dir: S U T / 3
90 Compilation completed successfully
91 SUT resource created
92 </rdf:value>
93 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
94 <dcterms:description rdf:parseType="Literal">Status messages from the adapter about

the execution.</dcterms:description>
95 </oslc_auto:Contribution>
96 </oslc_auto:contribution>
97
98 <oslc_auto:contribution>
99 <oslc_auto:Contribution>

100 <dcterms:title rdf:parseType="Literal">SUT</dcterms:title>
101 <rdf:value>http: //localhost:8081/compilation/services/resources/sUTs/l</rdf:value>
102 <oslc:valueType rdf:resource="http://localhost:8081/compilation/services/resourceShapes

/ s U T " / >
103 <dcterms:description rdf:parseType="Literal">Created S U T resource. Also linked to by

the createdSUT property.</dcterms:description>
104 </oslc_auto:Contribution>
105 </oslc_auto:contribution>
106
107 <oslc_auto:contribution>
108 <oslc_auto:Contribution>
109 <dcterms:title rdf:parseType="Literal">executionTime</dcterms:title>
110 <rdf:value>200</rdf:value>
111 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
112 <dcterms:description rdf:parseType="Literal">Total execution time of the analysis in

milliseconds.</dcterms:description>
113 </oslc_auto:Contribution>
114 </oslc_auto:contribution>
115
116 <oslc_auto:contribution>
117 <oslc_auto: Contribution>

87

http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://localhost:8081/compilation/services/resourceShapes
http://www.w3.org/2001/XMLSchema%23string%22/

118 <dcterms:title rdf:parseType="Literal">returnCode</dcterms:title>
119 <rdf:value>0</rdf:value>
120 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
121 <dcterms:description rdf:parseType="Literal">Return code of the execution. If non—zero

, then the verdict will be # failed. </dcterms:description>
122 </oslc auto:Contribution>
123 </oslc_auto:contribution>
124
125 <oslc_auto:contribution>
126 <oslc_auto:Contribution>
127 <dcterms:title rdf:parseType="Literal">stdout</dcterms:title>
128 <rdf:value>g-H Wall —ansi —pedantic —g —c src/bank.cpp
129 g-H lm —pthread —o bank bank.o
130 </rdf:value>
131 <fit :filePath> / path/to/universal—analysis—adapter / compilation / SUT / 3 / .adapter /

stdout_compilation _1 < / nt:fhePath>
132 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
133 <dcterms:description rdf:parseType="Literal">Standard output of the compi la t ions /

dcterms:description>
134 </oslc_auto:Contribution>
135 </oslc_auto:contribution>
136
137 </oslc_auto:AutomationResult>
138 </ rdf :RDF>

B.1 .4 R e t r i e v e the created S U T

The last step of the S U T creation process is retrieving the actual created S U T resource
by sending a GET request to the U R I found i n the createdSUT property of the received
Automat ion Result . Th is step can technically be skipped because only the S U T U R I is
needed to execute analysis, not the actual contents of the S U T resource. The S U T resource
w i l l contain the specified launch command (line 18) and bu i ld command (line 19), a path to
its directory (line 21), a boolean flag about being compiled (line 20), and other properties.

1 <! H E A D E R : Accept=application/rdf+xml
2 R E S P O N S E C O D E : 200 O K >
3
4 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
5 <rdf:RDF
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dcterms="http://purl.org/dc/terms/"
8 xmlns:oslc data=" http: / / open—services.net/ns/servicemanagement /1.0/"
9 xmlns:oslc="http://open—services.net/ns/core#"

10 xmlns:foaf="http://xmlns.com/foaf/0.1/#"
11 xmlns:fit="http://fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
12 xmlns:rdfs="http://www.w3.org/2000/01 /rdf-schema#"
13 xmlns:oslc_auto="http://open—services. net/ns/auto#">
14
15 <fit:SUT rdf:about="http://localhost:8081/compilation/services/resources/sUTs/l">
16
17 <dcterms:identiner>l</dcterms:identifier>
18 <nt:launchCommand rdf:parseType="Literal"> ./bank</nt:launchCommand>
19 <nt:buildCommand rdf:parseType="Literal">make</nt:buildCommand>

88

http://www.w3.org/2001/XMLSchema%23integer%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services.net/ns/core%23
http://xmlns.com/foaf/0.1/%23
http://fit.vutbr.cz/group/verifit/oslc/ns/universal�analysis%5e
http://www.w3.org/2000/01
http://open�services
http://localhost:8081/compilation/services/resources/sUTs/l

20 <fit:compiled rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</fit:
compiled >

21 <fit:SUTdirectoryPath rdf:parseType="Literal">/path/to/universal—analysis—adapter/
compilation / S U T / K /fit: SUTdirectoryPath>

22
23 <dcterms:title rdf:parseType="Literal">SUT — analysis test</dcterms:title>
24 <oslc_auto:producedByAutomationRequest rdf:resource="http://localhost:8081/compilation/

services / resources / automationRequests/1" / >
25 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021 - 0 4 - 26T18:52:19.111Z </dcterms:modified>
26 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:52:19.111Z</dcterms:created>
27
28 </fi t :SUT>
29 </rdf :RDF>

B.2 Executing analysis

After an S U T was created and the client knows the U R I of the S U T , then analysis can be
executed using the Analys is adapter. The process of executing analysis consists of these
steps: getting an Au tomat ion P l a n for an analysis tool , creating an Au tomat ion Request to
execute analysis, and getting the produced Au tomat ion Result . The overall process is very
similar to the S U T creation process because it also uses the Au tomat ion domain. F r o m the
user input perspective the only differences are endpoint U R I s , input parameters used wi th
Automat ion Requests, and different Contr ibut ions in the Au tomat ion Result .

B.2 .1 G E T the analysis execut ion A u t o m a t i o n P l a n

In order to learn how to create Au tomat ion Requests for executing analysis, clients first need
to see what the Au tomat ion P l a n looks like. The Analys is adapter contains Au tomat ion
Plans for different analysis tools based on user configuration. In this example we w i l l be
using A N a C o n D A which has an Au tomat ion P l a n defined wi th identifier anaconda. Th is
Automat ion P l a n can be retrieved by sending a G E T request to the U R I of the Au tomat ion
P l a n . Au tomat ion P l a n U R I s look like this:

http://host:port/analysis/services/resources/automationPlans/*ID*

To retrieve the S U T creation Au tomat ion P l a n , send a G E T request w i th an Accept header
to:

http://localhost:8080/analysis/services/resources/automationPlans/anaconda

The adapter's response w i l l contain the requested Au tomat ion P l a n which is described and
shown below.

In case the Au tomat ion P l a n is not found, most l ikely because of an incorrect U R I ,
then the adapter w i l l respond w i t h code 400 Not Found. The Au tomat ion P l a n defines
al l input parameters for Au tomat ion Requests using ParameterDefini t ion resources. Input
parameters specific to A N a C o n D A ' s interface a l l have a commandlinePosition property
and can be found towards the start of the request (lines 25-149), and input parameters
common to the adapter do not have commandlinePosition properties and can be found
after the A N a C o n D A parameters (lines 151-256).

89

http://www.w3.org/2001/XMLSchema%23boolean%22%3etrue%3c/fit
http://localhost:8081/compilation/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime
http://host:port/analysis/services/resources/automationPlans/*ID*
http://localhost:8080/analysis/services/resources/automationPlans/anaconda

A N a C o n D A has a number of opt ional non-posit ional parameters which are a l l set to be
placed on command-line posit ion 1. There is a number of flags without values represented as
Parameter Definitions w i th value prefixes and allowed values set to empty, which makes it so
that clients can only ever specify these parameters w i th no or empty values and the adapter
then only places their value prefixes on the command line. These are help (line 38), verbose
(line 49), p r o f i l e (line 86), and time (line 98). Then , there is a number of non-positional
parameters which need a value represented by Parameter Definitions w i th value prefixes and
some of them have a restricted set of allowed values. These are conf i g (line 27), threads
(line 78), run-type (line 61). The last three arguments for the A N a C o n D A interface are
posit ional arguments w i th their own command-line positions. These are analyser (line 110)
wi th specific allowed values, launchSUT (line 131) a special parameter for placing the S U T
launch command at the command-line, and executionParameters (line 142).

The rest of Parameter Definitions are parameters included in a l l Au tomat ion Plans by
the adapter. These are SUT (line 242) a l ink to the S U T resource to analyse, timeout
(line 153) a t ime l imi t for execution, afterCommand (line 163) a command to execute be
fore analysis, beforeCommand (line 233) a command to execute after analysis, confFile
(line 172) configuration file to be created i n the S U T directory, confDir (line 251) configu
rat ion directory to be created i n the S U T directory, outputFilter (line 181) output filter
selection, envVariable (line 194) for setting environmental variables, outputFileRegex
(line 203) for matching new or modified files as contributions, zipOutputs (line 213) for
creating a zip of a l l contr ibut ion files, and toolCommand (line 223) for toggling use of the
analysis tool launch command.

1 <! H E A D E R : Accept=application/rdf+xml
2 R E S P O N S E C O D E : 200 O K >
3
4 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
5 <rdf.RDF
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dcterms="http://purl.org/dc/terms/"
8 xmlns:oslc data=" http: / / open—services.net/ns/servicemanagement /1.0/"
9 xmlns:oslc="http://open—services.net/ns/core#"

10 xmlns:foaf="http://xmlns.com/foaf/0.1/#"
11 xmlns:fit="http://fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
12 xmlns:rdfs="http://www.w3.org/2000/01 /rdf-schema#"
13 xmlns:oslc_auto="http://open—services. net/ns/auto#">
14
15 <oslc_auto:AutomationPlan rdf:about="http://localhost:8080/analysis/services/resources/

automationPlans / anaconda" >
16
17 <dcterms:identifier>anaconda</dcterms:identifier>
18 <dcterms:title rdf:parseType="Literal">ANaConDA</dcterms:title>
19 <oslc_auto:usesExecutionEnvironment rdf:resource="https://pajda.fit.vutbr.cz/anaconda/

anaconda" / >
20 <dcterms:description rdf:parseType="Literal">Analyse an SUT using ANaConDA</dcterms:

description>
21 <dcterms:creator rdf:resource="https://pajda.fit.vutbr.cz/xvasic"/>
22 <dcterms:modified rdf.datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:06:22.259Z</dcterms:modified>
23 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T18:06:22.259Z</dcterms:created>
24

90

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services.net/ns/core%23
http://xmlns.com/foaf/0.1/%23
http://fit.vutbr.cz/group/verifit/oslc/ns/universal�analysis%5e
http://www.w3.org/2000/01
http://open�services
http://localhost:8080/analysis/services/resources/
https://pajda.fit.vutbr.cz/anaconda/
https://pajda.fit.vutbr.cz/xvasic%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime

25 <oslc auto:parameterDefmition>
26 <oslc auto:ParameterDefmition>
27 <oslc:name>config</oslc:name>
28 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
29 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
30 <fit:valuePrefix> config </fit:valuePrefix>
31 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
32 <dcterms:description rdf:parseType="Literal">A path to a directory containing

A N a C o n D A settings</dcterms:description>
33 </oslc auto:ParameterDefmition>
34 </oslc auto:parameterDefinition>
35
36 <oslc auto:parameterDefinition>
37 <oslc auto:ParameterDefinition>
38 <oslc:name>help</oslc:name>
39 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
40 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
41 <oslc:allowedValue> < / oslc:allowedValue>
42 <fit:valuePrefix> help< / fit:valuePrefix>
43 <dcterms:description rdf:parseType="Literal">Print the script usage</dcterms:

description>
44 </oslc auto:ParameterDefmition>
45 </oslc auto:parameterDefinition>
46
47 <oslc auto:parameterDefinition>
48 <oslc auto:ParameterDefinition>
49 <oslc:name>verbose< / oslc:name>
50 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
51 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
52 <oslc:allowedValue> < / oslc:allowedValue>
53 <fit:valuePrefix> verbose </fit:valuePrefix>
54 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
55 <dcterms:description rdf:parseType="Literal">Print detailed information about what the

script is doing</dcterms:description>
56 </oslc auto:ParameterDefinition>
57 </oslc auto:parameterDefinition>
58
59 <oslc auto:parameterDefinition>
60 <oslc_auto:ParameterDefinition>
61 <oslc:name>run—type</oslc:name>
62 <fit:valuePrefix> run—type </fit:valuePrefix>
63 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
64 <dcterms:description rdf:parseType="Literal">Execute the program in ANaConDA, P I N

or no framework (native run)</dcterms:description>
65 <oslc:allowedValue>anaconda< / oslc: allowed Value >
66 <oslc:allowedValue>pin< / oslc:allowedValue>
67 <oslc:allowedValue>native< / oslc:allowedValue>
68 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
69 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
70 </oslc auto:ParameterDefmition>

91

http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/

71 </oslc _auto:parameterDefinition>
72
73 <oslc auto:parameterDefinition>
74 <oslc auto:ParameterDefinition>
75 <oslc:name>threads</oslc:name>
76 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
77 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
78 <fit:valuePrefix> threads </fit:valuePrefix>
79 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#int"/>
80 <dcterms:description rdf:parseType="Literal">A number of threads the analysed

program should utilize</dcterms:description>
81 </oslc auto:ParameterDefinition>
82 </oslc auto:parameterDefinition>
83
84 <oslc auto:parameterDefinition>
85 <oslc auto:ParameterDefinition>
86 <oslc:name>profile</oslc:name>
87 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
88 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
89 <oslc:allowedValue> < / oslc:allowedValue>
90 <fit:valuePrefix> profile </fit:valuePrefix>
91 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
92 <dcterms:description rdf:parseType="Literal">Profile the program being analysed using

the oprofile profiler</dcterms:description>
93 </oslc auto:ParameterDefinition>
94 </oslc auto:parameterDefinition>
95
96 <oslc auto:parameterDefinition>
97 <oslc auto:ParameterDefinition>
98 <oslc:name>time</oslc:name>
99 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">l

</fit:commandlinePosition>
100 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
101 <oslc:allowedValue></oslc:allowedValue>
102 <fit:valuePrefix> time </fit:valuePrefix>
103 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
104 <dcterms:description rdf:parseType="Literal">Measure the execution time of the

program being analysed</dcterms:description>
105 </oslc auto:ParameterDefinition>
106 </oslc auto:parameterDefinition>
107
108 <oslc auto:parameterDefinition>
109 <oslc auto:ParameterDefinition>
110 <oslc:name>analyser</oslc: name >
111 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
112 <oslc:allowedValue>simple—contract—validator < / oslc: alio wed Value >
113 <oslc:allowedValue>statistics—collector < / oslc: alio wed Value >
114 <oslc:allowedValue>eraser< / oslc: allowed Value >
115 <oslc:allowedValue>data—printer < / oslc: allowed Value >
116 <oslc:allowedValue>tx—monitor < / oslc: alio wed Value >
117 <oslc:allowedValue>contract—validator < / oslc: alio wed Value >
118 <oslc:allowedValue>fasttrack2< / oslc:allowedValue>

92

http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://www.w3.org/2001/XMLSchema%23int%22%3el
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://www.w3.org/2001/XMLSchema%23string%22/

119 <oslc:allowedValue>atomrace< / oslc:allowedValue>
120 <oslc:allowedValue>hldr—detector < / oslc:allowedValue>
121 <oslc:allowedValue>data—validator < / oslc: alio wed Value >
122 <oslc:allowedValue>param—contract—validator < / oslc:allowedValue>
123 <dcterms:description rdf:parseType="Literal">Specify what analyser to use</dcterms:

description>
124 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Exactly—one"/>
125 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">2

</fit:commandlinePosition>
126 </oslc auto:ParameterDefinition>
127 </oslc auto:parameterDefinition>
128
129 <oslc auto:parameterDefinition>
130 <oslc auto:ParameterDefinition>
131 <oslc:name>launchSUT</oslc: name >
132 <oslc:readOnly rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean">true</

oslc:readOnly>
133 <oslc:defaultValue>True< / oslc:defaultValue>
134 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">3

</fit:commandlinePosition>
135 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
136 <dcterms:description rdf:parseType="Literal">If set to true, This parameter definitions

tells the Automation Plan to place the SUT launch command at this command line
position</dcterms:description>

137 </oslc auto:ParameterDefinition>
138 </oslc auto:parameterDefinition>
139
140 <oslc auto:parameterDefinition>
141 <oslc auto:ParameterDefinition>
142 <oslc:name>executionParameters< / oslc:name>
143 <oslc:defaultValue></oslc:defaultValue>
144 <fit:commandlinePosition rdf:datatype="http://www.w3.org/2001/XMLSchema#int">4

</fit:commandlinePosition>
145 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
146 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
147 <dcterms:description rdf:parseType="Literal">Set the execution parameters for the

analyzed program. Write down all parameters as you would in a console.</dcterms:
description>

148 </oslc auto:ParameterDefinition>
149 </oslc auto:parameterDefinition>
150
151 <oslc auto:parameterDefinition>
152 <oslc auto:ParameterDefinition>
153 <oslc:name>timeout</oslc: name >
154 <oslc:defaultValue>0</oslc:defaultValue>
155 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
156 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
157 <dcterms:description rdf:parseType="Literal">Timeout for the analysis. Zero means no

timeout.< / dct erms :description>
158 </oslc auto:ParameterDefinition>
159 </oslc auto:parameterDefinition>
160
161 <oslc auto:parameterDefinition>
162 <oslc auto:ParameterDefinition>

93

http://open�services.net/ns/core%23Exactly�one%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e2
http://www.w3.org/2001/XMLSchema%23boolean%22%3etrue%3c/
http://www.w3.org/2001/XMLSchema%23int%22%3e3
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23int%22%3e4
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23integer%22/

163 <oslc:name>afterCommand</oslc:name>
164 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
165 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
166 <dcterms:description rdf:parseType="Literal">A command to run just after analysis is

executed. </dcterms:description>
167 </oslc auto:ParameterDefinition>
168 </oslc auto:parameterDefinition>
169
170 <oslc auto:parameterDefinition>
171 <oslc auto:ParameterDefinition>
172 <oslc:name>confFile< / oslc:name>
173 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—many"/>
174 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
175 <dcterms:description rdf:parseType="Literal">Creates a configuration file inside of the

SUT directory before running analysis. Can be used multiple times create multiple
conf files.Format for this parameter: "conf_file_name\nconf_file_txt_contents"</
dcterms:description>

176 </oslc auto:ParameterDefinition>
177 </oslc auto:parameterDefinition>
178
179 <oslc auto:parameterDefinition>
180 <oslc auto:ParameterDefinition>
181 <oslc:name>outputFilter</oslc:name>
182 <oslc:defaultValue>default< / oslc:defaultValue>
183 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
184 <oslc:allowedValue>default</oslc:allowedValue>
185 <oslc:allowedValue>removeAUFileValues< / oslc:allowedValue>
186 <oslc:allowedValue>AnacondaRaceDetection</oslc:allowedValue>
187 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
188 <dcterms:description rdf:parseType="Literal">Use this parameter to select which output

filter should be used to processContributions of this Automation Request.
AllowedValues are loaded based on defined PluginFilters.</dcterms:description>

189 </oslc auto:ParameterDefinition>
190 </oslc auto:parameterDefinition>
191
192 <oslc auto:parameterDefinition>
193 <oslc auto:ParameterDefinition>
194 <oslc:name>envVariable< / oslc:name>
195 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—many"/>
196 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
197 <dcterms:description rdf:parseType="Literal">Environment variable to be set for

execution. Can be used multiple times for multiple variables.Expected value format: "
variable name\nvariable value" </dcterms:description>

198 </oslc auto:ParameterDefinition>
199 </oslc auto:parameterDefinition>
200
201 <oslc auto:parameterDefinition>
202 <oslc auto:ParameterDefinition>
203 <oslc:name>outputFileRegex< / oslc:name>
204 <oslc:defaultValue> .^< / oslc:defaultValue>
205 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
206 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

94

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�many%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�many%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/

207 <dcterms:description rdf:parseType="Literal">Files that change during execution and
match this regex will be added as contributions to the Automation Result. The regex
needs to match the whole filename.</dcterms:description>

208 </oslc auto:ParameterDefinition>
209 </oslc auto:parameterDefinition>
210
211 <oslc_auto:parameterDefinition>
212 <oslc_auto:ParameterDefinition>
213 <oslc:name>zipOutputs</oslc:name>
214 <oslc:defaultValue>false</oslc:defaultValue>
215 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
216 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
217 <dcterms:description rdf:parseType="Literal">If set to true, then all file contributions

will be ZIPed and provided as a single zip contribution</dcterms:description>
218 </oslc auto:ParameterDefinition>
219 </oslc auto:parameterDefinition>
220
221 <oslc_auto:parameterDennition>
222 <oslc_auto:ParameterDennition>
223 <oslc:name>toolCommand</oslc:name>
224 <oslc:defaultValue>true</oslc:defaultValue>
225 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
226 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
227 <dcterms:description rdf:parseType="Literal">Used to omit the analysis tool launch

command while executing analysis. True means the tool will be used and False means
the tool command will not be used. (eg. "./tool ./sut args" vs "/sut args").</

dcterms:description>
228 </oslc auto:ParameterDefinition>
229 </oslc auto:parameterDefinition>
230
231 <oslc_auto:parameterDennition>
232 <oslc_auto:ParameterDennition>
233 <oslc:name>beforeCommand< / oslc:name>
234 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>
235 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
236 <dcterms:description rdf:parseType="Literal">A command to run just before analysis is

executed. </dcterms:description>
237 </oslc auto:ParameterDefinition>
238 </oslc auto:parameterDefinition>
239
240 <oslc_auto:parameterDefinition>
241 <oslc_auto:ParameterDennition>
242 <oslc:name>SUT</oslc:name>
243 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Exactly—one"/>
244 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
245 <dcterms:description rdf:parseType="Literal">Refference to an SUT resource to analyse.

SUTs are created using the compilation provider.</dcterms:description>
246 </oslc auto:ParameterDefinition>
247 </oslc auto:parameterDefinition>
248
249 <oslc_auto:parameterDefinition>
250 <oslc_auto:ParameterDennition>
251 <oslc:name>confDir< / oslc:name>
252 <oslc:occurs rdf:resource="http://open—services.net/ns/core#Zero—or—One"/>

95

http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://open�services.net/ns/core%23Zero�or�One%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Exactly�one%22/
http://www.w3.org/2001/XMLSchema%23string%22/
http://open�services.net/ns/core%23Zero�or�One%22/

253 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
254 <dcterms:description rdf:parseType="Literal">Creates a configuration directory inside of

the SUT directory before running analysis from a base64 encoded string.Format for
this parameter: "path to unzip to\nbase64 encoded zip file"</dcterms:
description>

255 </oslc auto:ParameterDefinition>
256 </oslc auto:parameterDefinition>
257
258 </oslc auto:AutomationPlan>
259 </ rdf :RDF>

B.2 .2 Reques t analysis execut ion

To request an analysis using A N a C o n D A to be executed, a client needs to P O S T an A u
tomation Request to the adapter's creation factory. The Au tomat ion Request creation
factory is:

http://host:port/analysis/services/resources/createAutomationRequest

A n example analysis using A N a C o n D A on the previously created Bank example uses
atomrace [18] to detect data races i n the bank execution. The full request is described
and shown below. Important input parameters used specific to A N a C o n D A are: analyser
(line 23) to specify an analyser to use, and executionParameters (line 30) to pass param
eters to the S U T C o m m o n adapter input parameters used are: outputFilter (line 16) to
select a custom output filter to create A N a C o n D A specific Contr ibut ions, and SUT (line 37)
which holds a l ink to the previously created S U T to be analysed. The adapter w i l l respond
wi th the same Au tomat ion Request resource enriched wi th more properties and a U R L

1 <! H E A D E R : Content—Type=application/rdf+xml, Accept=application/rdf+xml >
2
3 <?xml version="1.0" encoding="utf-8" ?>
4 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
5 xmlns:dcterms="http://purl.org/dc/terms/"
6 xmlns:oslc="http://open—services.net/ns/core#"
7 xmlns:oslc_auto="http://open—services.net/ns/auto#">
8
9 <oslc_auto:AutomationRequest>

10 <dcterms:title>Anaconda atomarace bank analysis</dcterms:title>
11 <dcterms:description>...</dcterms:description>
12 <oslc_auto:executesAutomationPlan rdf:resource="http://localhost:8080/analysis/services/

resources/automationPlans/anaconda" />
13
14 <oslc auto:inputParameter>
15 <oslc auto:ParameterInstance>
16 <oslc:name>outputFilter< / oslc:name>
17 <rdf:value>AnacondaRaceDetection< / rdf:value>
18 </oslc auto:ParameterInstance>
19 </oslc_auto:inputParameter>
20
21 <oslc auto:inputParameter>
22 <oslc_auto:ParameterInstance>
23 <oslc:name>analyser< / oslc:name>
24 <rdf: value>atomrace< / rdf:value>

96

http://www.w3.org/2001/XMLSchema%23string%22/
http://host:port/analysis/services/resources/createAutomationRequest
http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://open�services.net/ns/core%23
http://open�services.net/ns/auto%23
http://localhost:8080/analysis/services/

25 </oslc auto:ParameterInstance>
26 </oslc_auto:inputParameter>
27
28 <oslc_auto:inputParameter>
29 <oslc auto:ParameterInstance>
30 <oslc:name>executionParameters< / oslc:name>
31 <rdf.value>"Hello World!"</rdf:value>
32 </oslc auto:ParameterInstance>
33 </oslc auto:inputParameter>
34
35 <oslc auto:inputParameter>
36 <oslc_auto:ParameterInstance>
37 <oslc:name>SUT</oslc:name>
38 <rdf: value>http: //localhost: 8081 / compilation / services / resources / sUTs /1 < / rdf: value >
39 </oslc_auto:ParameterInstance>
40 </oslc_auto:inputParameter>
41
42 </oslc_auto: AutomationRequest>
43 </ rdf :RDF>

The adapter's response is described and shown below. If the Au tomat ion Request
submitted by client is not val id, then the adapter w i l l return a response w i t h code 400
Bad Request and an oslc:Error resource wi th a meaningful error message. The created
Automat ion Request contains a l l the specified input parameters (lines 27-53) and properties
(lines 16-18), and then some properties added by the adapter (lines 20-25) such as creation
and modification tags, a state, and an identifier. The most important property is usually
the producedAutomationResult property (line 23) which holds a l ink to the Au tomat ion
Result created for this request. The next step is to retrieve this Au tomat ion Result using
the U R I stored i n this property.

1 < ! — R E S P O N S E C O D E : 201 Created — >
2
3 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
4 <rdf.RDF
5 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
6 xmlns:dcterms="http://purl.org/dc/terms/"
7 xmlns:oslc data=" http: //open—services.net/ns/servicemanagement /1.0/"
8 xmlns:oslc="http://open—services. net/ns/core#"
9 xmlns:foaf=" http: //xmlns.com/foaf/0.1 /#"

10 xmlns:fit="http: / / fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
11 xmlns:rdfs="http://www.w3.org/2000/01/rdf— schema#"
12 xmlns:oslc_auto="http://open—services. net/ns/auto#">
13
14 <oslc_auto:AutomationRequest rdf:about="http://localhost:8080/analysis/services/resources/

automationRequests /1" >
15
16 <dcterms:title rdf:parseType="Literal">Anaconda atomarace bank analysis</dcterms:title>
17 <dcterms:description rdf:parseType="Literal" >...</dcterms:description>
18 <oslc_auto:executesAutomationPlan rdf:resource="http://localhost:8080/analysis/services/

resources / automationPlans / anaconda" / >
19
20 <dcterms:identifier> 1 </dcterms:identifier>
21 <oslc_auto:state rdf:resource="http://open—services.net/ns/auto#inProgress"/>
22 <oslc_auto:desiredState rdf:resource="http://open—services.net/ns/auto#complete"/>

97

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services
http://vutbr.cz/group/verifit/oslc/ns/universal�
http://www.w3.org/2000/01/rdf�
http://open�services
http://localhost:8080/analysis/services/resources/
http://localhost:8080/analysis/services/
http://open�services.net/ns/auto%23inProgress%22/
http://open�services.net/ns/auto%23complete%22/

23 <oslc_auto:producedAutomationResult rdf:resource="http://localhost:8080/analysis/services
/ resources / automationResults/l "/>

24 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
2021-04-26T19:44:07.599Z</dcterms:modified>

25 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">
2021-04-26T19:44:07.599Z</dcterms:created>

26
27 <oslc_auto:inputParameter>
28 <oslc auto:ParameterInstance>
29 <oslc:name>SUT</oslc:name>
30 <rdf:value>http: //localhost:8081/compilation/services/resources/sUTs/l</rdf:value>
31 </oslc auto:ParameterInstance>
32 </oslc_auto:inputParameter>
33
34 <oslc_auto:inputParameter>
35 <oslc auto:ParameterInstance>
36 <oslc:name>analyser</oslc:name>
37 <rdf:value>atomrace< / rdf:value>
38 </oslc_auto:ParameterInstance>
39 </oslc_auto:inputParameter>
40
41 <oslc auto:inputParameter>
42 <oslc auto:ParameterInstance>
43 <oslc:name>outputFilter</oslc:name>
44 <rdf:value> AnacondaRaceDetection< / rdf: value >
45 </oslc auto:ParameterInstance>
46 </oslc_auto:inputParameter>
47
48 <oslc_auto:inputParameter>
49 <oslc auto:ParameterInstance>
50 <oslc:name>executionParameters</oslc:name>
51 <rdf:value>"Hello World!"</rdf:value>
52 </oslc_auto:ParameterInstance>
53 </oslc_auto:inputParameter>
54
55 </oslc_auto: AutomationRequest>
56 </ rdf :RDF>

B.2 .3 R e t r i e v e the A u t o m a t i o n Resu l t

After an Au tomat ion Request was created, clients need to po l l for the Au tomat ion Result
using the U R I found in the producedAutomationResult property of the created Au toma
t ion Request. Clients need to po l l the result and look at its state property so see if the
execution finished which is signified by value complete. Au tomat ion Results which are not
yet complete w i l l not contain any Cont r ibu t ion resources so there is no need to shows an
example. Here is an example of a complete Au tomat ion Result instead. The Au tomat ion
Result can be retrieved by sending a G E T request to its U R I . The result is described and
shown below. The Au tomat ion Result contains a l l the input parameters (lines 28-61) as well
as output parameters (lines 63-89). Output parameters are parameters which the adapter
added automatical ly using their default values. Then, there are Cont r ibu t ion resources
(lines 91-187) which contain the stdout (line 93) and stderr (line 141) outputs of the
analysis, its returnCode (line 130), to ta l executionTime (line 153), and statusMessages

98

http://localhost:8080/analysis/services
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime

(line 164) from the adapter. The status message includes the exact string executed by
the adapter which is useful i n case the execution failed due to an inval id executed string.
The vedict (line 17) property w i l l be passed or f a i l e d based on the return code of the
analysis, or it can be error in case of exceptions during the execution process i n the
adapter. The custom output filter used for A N a C o n D A , created a custom Cont r ibu t ion
called DataRaceDetected (line 180) wi th a value of true which holds the semantic result
of the executed analysis as defined by clients dur ing configuration.

1 <! H E A D E R : Accept=application/rdf+xml
2 R E S P O N S E C O D E : 200 O K >
3
4 <?xml version="1.0" e n c o d i n g s U T F - 8 " ? >
5 <rdf.RDF
6 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
7 xmlns:dcterms="http://purl.org/dc/terms/"
8 xmlns:oslc data=" http: / / open—services.net/ns/servicemanagement /1.0/"
9 xmlns:oslc="http://open—services.net/ns/core#"

10 xmlns:foaf="http://xmlns.com/foaf/0.1/#"
11 xmlns:fit="http: / / fit.vutbr.cz/group/verifit/oslc/ns/universal—analysis^"
12 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
13 xmlns:oslc_auto="http://open—services. net/ns/auto#">
14
15 <oslc_auto:AutomationResult rdf:about="http://localhost:8080/analysis/services/resources/

automationResults /1" >
16
17 <oslc_auto:verdict rdf:resource="http://open—services.net/ns/auto#passed"/>
18 <oslc_auto:state rdf.resource="http://open—services.net/ns/auto#complete"/>
19
20 <dcterms:identifier> 1 </dcterms:identifier>
21 <oslc_auto:desiredState rdf:resource="http://open—services.net/ns/auto#complete"/>
22 <dcterms:title rdf:parseType="Literal">Result — Anaconda atomarace bank analysis</

dcterms:title>
23 <oslc_auto:reportsOnAutomationPlan rdf.resource="http://localhost:8080/analysis/services/

resources / automationPlans / anaconda" / >
24 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:52.925Z</dcterms:created>
25 <dcterms:modified rdf.datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
26 <oslc_auto:producedByAutomationRequest rdf:resource="http://localhost:8080/analysis/

services / resources / automationRequests/1" / >
27
28 <oslc_auto:inputParameter>
29 <oslc auto:ParameterInstance>
30 <oslc:name>executionParameters< / oslc:name>
31 <rdf:value>"Hello World!"</rdf:value>
32 </oslc auto:ParameterInstance>
33 </oslc auto:inputParameter>
34
35 <oslc_auto:inputParameter>
36 <oslc_auto:ParameterInstance>
37 <oslc:name>SUT</oslc:name>
38 <rdf.value>http: //localhost:8081/compilation/services/resources/sUTs/l</rdf:value>
39 </oslc_auto:ParameterInstance>
40 </oslc_auto:inputParameter>

99

http://www.w3.org/1999/02/22-rdf-syntax-ns%23
http://purl.org/dc/terms/
http://services.net
http://open�services.net/ns/core%23
http://xmlns.com/foaf/0.1/%23
http://vutbr.cz/group/verifit/oslc/ns/universal�
http://www.w3.org/2000/01/rdf-schema%23
http://open�services
http://localhost:8080/analysis/services/resources/
http://open�services.net/ns/auto%23passed%22/
http://open�services.net/ns/auto%23complete%22/
http://open�services.net/ns/auto%23complete%22/
http://localhost:8080/analysis/services/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23dateTime
http://localhost:8080/analysis/

41
42 <oslc auto:inputParameter>
43 <oslc auto:ParameterInstance>
44 <oslc:name>analyser</oslc:name>
45 <rdf:value>atomrace< / rdf:value>
46 </oslc auto:ParameterInstance>
47 </oslc_auto:inputParameter>
48
49 </oslc_auto:inputParameter>
50 <oslc auto:ParameterInstance>
51 <oslc:name>outputFileRegex</oslc:name>
52 <rdf:value>.^</rdf:value>
53 </oslc_auto:ParameterInstance>
54 </oslc_auto:inputParameter>
55
56 <oslc auto:inputParameter>
57 <oslc auto:ParameterInstance>
58 <oslc:name>outputFilter</oslc:name>
59 <rdf:value> AnacondaRaceDetection< / rdf: value >
60 </oslc_auto:ParameterInstance>
61 </oslc auto:inputParameter>
62
63 <oslc_auto:outputParameter>
64 <oslc auto:ParameterInstance>
65 <oslc:name>launchSUT< / oslc:name>
66 <rdf:value>True</rdf:value>
67 </oslc_auto:ParameterInstance>
68 </oslc_auto:outputParameter>
69
70 <oslc_auto:outputParameter>
71 <oslc auto:ParameterInstance>
72 <oslc:name>zipOutputs</oslc:name>
73 < rdf: value > false </rdf: value >
74 </oslc_auto:ParameterInstance>
75 </oslc_auto:outputParameter>
76
77 <oslc_auto:outputParameter>
78 <oslc auto:ParameterInstance>
79 <oslc:name>timeout< / oslc:name>
80 <rdf:value>0</rdf:value>
81 </oslc_auto:ParameterInstance>
82 </oslc_auto:outputParameter>
83
84 <oslc_auto:outputParameter>
85 <oslc_auto:ParameterInstance>
86 <rdf:value>true</rdf:value>
87 <oslc:name>toolCommand</oslc:name>
88 </oslc_auto:ParameterInstance>
89 </oslc_auto:outputParameter>
90
91 <oslc_auto:contribution>
92 <oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —stdout" >
93 <dcterms:title rdf:parseType="Literal">stdout</dcterms:title>

100

http://localhost:8080/analysis/services/resources/

94 <rdf:value>ANaConDA 0.4 20200202 (git fc5f069-dirty)
95 using libdie 0.3 20200202 (git 95d8ccd)
96
97 Bank week started.
98 i : 0 Account(id=0,baiance=0,synchronized=l)
99 i : 1 Account (id=l,balance=0,synchronized=l)

100 i : 2 Account(id=2,balance=0,synchronized=0)
101 i : 3 Account(id=3,balance=0,synchronized=0)
102 Data race on memory address 0x55d216b26160 detected
103 Thread 4 written to <unknown>
104 accessed at line 85 in file /path/to/universal—analysis

cpp
105 Thread 3 written to <unknown>
106 accessed at line 85 in file /path/to/universal—analysis

cpp
107
108 Thread 4 backtrace:
109
110 Thread created at <unknown>
111
112 Thread 3 backtrace:
113
114 Thread created at <unknown>
115
116 End of the week.
117 Bank records = 937, accounts balance = 1161.
118 E R R O R : records don't match !!!
119 </rdf:value>
120 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
121 <fit :fhePath> / path/to/universal—analysis—adapter / compilation / SUT /1 / .adapter /

stdout_analysis_l < / fit:filePath>
122 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
123 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
124 <dcterms:description rdf:parseType="Literal">Standard output of the analysis.</

dcterms:description>
125 </oslc_auto:Contribution>
126 </oslc_auto:contribution>
127
128 <oslc_auto:contribution>
129 <oslc_auto: Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —returnCode" >
130 <dcterms:title rdf:parseType="Literal">returnCode</dcterms:title>
131 <rdf:value>0</rdf:value>
132 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
133 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
134 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
135 <dcterms:description rdf:parseType="Literal">Return code of the execution. If non—zero

, then the verdict will be # failed. </dcterms:description>
136 </oslc_auto:Contribution>
137 </oslc_auto:contribution>

—adapter / compilation / SUT /1/src/bank.

—adapter / compilation / SUT /1/src/bank.

101

http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://localhost:8080/analysis/services/resources/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23integer%22/
http://www.w3.org/2001/XMLSchema%23dateTime

138
139 <oslc_auto:contribution>
140 <oslc_auto: Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —stderr" >
141 <dcterms:title rdf:parseType="Literal">stderr</dcterms:title>
142 <rdf:value></rdf:value>
143 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
144 <fit :filePath> / path/to/universal—analysis—adapter / compilation / SUT /1 / .adapter /

stderr_analysis_l < / fit:filePath>
145 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
146 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
147 <dcterms:description rdf:parseType="Literal">Error output of the analysis.</dcterms:

description>
148 </oslc_auto:Contribution>
149 </oslc_auto:contribution>
150
151 <oslc_auto:contribution>
152 <oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —executionTime" >
153 <dcterms:title rdf:parseType="Literal">executionTime</dcterms:title>
154 <rdf:value>1032</rdf:value>
155 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
156 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#integer"/>
157 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
158 <dcterms:description rdf:parseType="Literal">Total execution time of the analysis in

milliseconds. </dcterms:description>
159 </oslc_auto:Contribution>
160 </oslc_auto:contribution>
161
162 <oslc_auto:contribution>
163 <oslc_auto:Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —statusMessage" >
164 <dcterms:title rdf:parseType="Literal">statusMessage</dcterms:title>
165 <rdf:value>Executing analysis: /path/to/anaconda/tools/run.sh atomrace ./bank "Hello

World!"
166 as: /bin/bash ./.adapter/exec_analysis_l.sh "/path/to/anaconda/tools/run.sh atomrace . /

bank "Hello World!""
167 In dir: /path/to/universal—analysis—adapter/compilation/SUT/1
168 Analysis completed successfully
169 File Contributions added
170 </rdf:value>
171 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
172 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>
173 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
174 <dcterms:description rdf:parseType="Literal">Status messages from the adapter about

the execution.</dcterms:description>
175 </oslc_auto:Contribution>
176 </oslc_auto:contribution>

102

http://localhost:8080/analysis/services/resources/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://localhost:8080/analysis/services/resources/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23integer%22/
http://www.w3.org/2001/XMLSchema%23dateTime
http://localhost:8080/analysis/services/resources/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23string%22/
http://www.w3.org/2001/XMLSchema%23dateTime

177
178 <oslc_auto:contribution>
179 <oslc_auto: Contribution rdf:about="http://localhost:8080/analysis/services/resources/

contributions /1 —race_detected" >
180 <dcterms:title rdf:parseType="Literal">DataRaceDetected</dcterms:title>
181 <rdf:value>true</rdf:value>
182 <dcterms:modified rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:modified>
183 <oslc:valueType rdf:resource="http://www.w3.org/2001/XMLSchema#boolean"/>
184 <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">

2021-04-26T19:53:53.986Z</dcterms:created>
185 <dcterms:description rdf:parseType="Literal">Holds the result of data race analysis.</

dcterms:description>
186 </oslc_auto:Contribution>
187 </oslc_auto:contribution>
188
189 </oslc_auto:AutomationResult>
190 </ rdf :RDF>

103

http://localhost:8080/analysis/services/resources/
http://www.w3.org/2001/XMLSchema%23dateTime
http://www.w3.org/2001/XMLSchema%23boolean%22/
http://www.w3.org/2001/XMLSchema%23dateTime

Appendix C

Container For GitLab CI

The adapter repository includes a . g i t l a b - c i .yml file which is used by G i t L a b C I to
automatical ly execute the adapter's test suite. The file can also be used as instructions
for creating your own container to test the adapter. The required steps are starting wi th
a maven:3.6.3-jdk-8 docker image, instal l ing Newman and its dependencies, and then
cloning the adapter's repository.

This is what the .gitlab-ci.yml file looks like:

1 # how to in local docker:
2 # run the image:
3 # $ docker run —it entrypoint /bin/bash maven:3.6.3—jdk—8
4 #
5 # install newman:
6 % apt—get update && apt—get install —y nodejs npm && npm install —g newman
7 #
8 clone repository
9 # $ git clone https://pajda.fit.vutbr.cz/verifit/oslc—generic—analysis.git

10
11 image: maven:3.6.3—jdk—8
12
13 Cache downloaded dependencies and plugins between builds.
14 cache:
15 paths:
16 — .m2/repository
17
18 stages:
19 - build
20 - test
21
22 build:
23 stage: build
24 script: /bin/bash ./build.sh
25
26 test—start:
27 stage: test
28 script: /bin/bash ./dev_tools/ci_test_start.sh
29
30 test—newman—core:
31 stage: test
32 before_script:

104

https://pajda.fit.vutbr.cz/verifit/oslc�

33 — apt—get update
34 — apt—get install —y nodejs npm
35 — npm install —g newman
36 script: /bin/bash ./dev_tools/ci_test_suite.sh
37
38 test—newman—keepLastN:
39 stage: test
40 before_script:
41 — apt—get update
42 — apt—get install —y nodejs npm
43 — npm install —g newman
44 script: /bin/bash ./dev_tools/ci_test_keep_last_n.sh

Lines 1-9 give instructions on how to start a docker container locally. L ine 11 specifies
the base image to use. Lines 13-16 enable cache-ing of downloaded Maven artifacts to
avoid downloading them for each test. Lines 18-20 specify G i t L a b C I stages to be executed.
Lines 22-24 represent the first test which is bui ld ing the adapter. Lines 26-28 represent
testing if the adapter starts correctly. Lines 30-36 run the main test suite. Lines 38-44 run
a secondary test suite for different configuration.

105

