
Mendel University in Brno
Faculty of Business and Economics

Data path definition in software
defined networks

Bachelor Thesis

Thesis supervisor:
Ing. Martin Pokorný, Ph.D. Jan Zima

Brno 2016

2

3

Thesis assignment.

4

My thanks belong to God for His faithfulness, to my supervisor, Ing. Martin Pokor-
ný, Ph.D., for his patient counseling, to my family for their constant support, and
last but not least to my girlfriend for her encouragement.

6

Statutory declaration
Herewith I declare that I have written my final thesis: Data path definition in
software defined networks
by myself and all sources and data used are quoted in the list of references. I
agree that my work will be published in accordance with Section 47b of Act
No. 111/1998 Sb. On Higher Education as amended thereafter and in accordance
with the Guidelines on the Publishing of University Student Theses.
I am aware of the fact that my thesis is subject to Act No. 121/2000 Sb., the Copy-
right Act and that the Mendel University in Brno is entitled to close a licence
agreement and use the results of my thesis as the “School Work” under the terms
of Section 60 para. 1 of the Copyright Act.
Before closing a licence agreement on the use of my thesis with another person
(subject) I undertake to request for a written statement of the university that the
licence agreement in question is not in conflict with the legitimate interests of the
university, and undertake to pay any contribution, if eligible, to the costs associated
with the creation of the thesis, up to their actual amount.

In Brno on December 31, 2016 ..

8

9

Abstract

Zima, J. Data path definition in software defined networks. Bachelor thesis. Brno,
2016.

This thesis is concerned with visualization of OpenFlow-based software-defined net-
works, and definition of arbitrary traffic paths. For this purpose, an application
called Visdan has been developed. It provides a visualization of the connected net-
work, and allows the user to define custom traffic paths in the network using the
graphical visualization. This work provides a broad explanation of OpenFlow-based
networks and may serve as an introduction into software-defined networking. Vis-
dan is an example of one of the approaches to programming applications for such
networks.

Key words

software defined networking, sdn, openflow, visualization, path definition

Abstrakt

Zima, J. Definice datových cest v softwarově definovaných sítích. Bakalářská práce.
Brno, 2016.

Tato závěrečná práce se zabývá viualizací softwarově definovaných sítí založených
na OpenFlow a definicí vlastních datových cest. Za tímto účelem byla vyvinuta ap-
likace s názvem Visdan. Ta poskytuje vizualizaci připojené sítě a umožňuje uživateli
definovat vlastní datové cesty v síti pomocí zmíněné grafické vizualizace. Tato práce
nabízí obsáhlý popis sítí založených na OpenFlow, a může tak sloužit jako úvod do
softwarově definovaných sítí. Visdan je ukázkou jednoho z přístupů k programování
aplikací pro tyto sítě.

Klíčová slova

softwarově definované sítě, sdn, openflow, vizualizace, definice cesty

10

CONTENTS 11

Contents
1 Introduction 13

1.1 Aim and objectives . 13

2 Reviews 15
2.1 Previous academic works . 15
2.2 Existing applications . 20
2.3 Summary . 23
2.4 Information sources . 23
2.5 Documentation . 28

3 Foundation 31
3.1 Current networking . 31
3.2 Software-defined networking . 33
3.3 Tools . 48

4 Application design 57
4.1 Models of communication with the network 57
4.2 Application architecture . 59
4.3 Model layer . 60
4.4 View layer . 63
4.5 Controller layer . 64

5 Implementation 68
5.1 Data retrieval . 68
5.2 Data visualization . 74
5.3 Path definition . 78
5.4 Graphical user interface realization 80

6 Testing 84
6.1 Virtual network infrastructure . 84
6.2 Scenario 1: network visualization . 84
6.3 Scenario 2: link utilization . 88
6.4 Scenario 3: path definition via OpenFlow v. 1.0 89
6.5 Scenario 4: path definition via OpenFlow v. 1.3 90

7 Evaluation 93

8 Conclusion 95

9 Bibliography 96
9.1 Literature review . 96
9.2 Cited sources . 100

12 CONTENTS

Appendices 107

A Digital appendices 108

B OpenFlow Specification v. 1.3.0 109
B.1 Extensible match support . 109
B.2 Multiple flow tables . 110
B.3 Multiple flow tables illustration . 111
B.4 Groups . 114
B.5 Meters . 116
B.6 Other improvements . 117

C Mininet commands 119
C.1 Starting attributes . 119
C.2 CLI commands . 121

D HPE VAN SDN Controller REST API – Used structures 122
D.1 Data retrieval . 122
D.2 Data pushing . 127

E Network data – algorithms 130
E.1 Loading data . 130
E.2 Updating data . 133

F Tree-like data structure – algorithms 138
F.1 Creation . 138
F.2 Drawing . 140

G Mininet testing topology 143
G.1 Custom topology . 143
G.2 Default topology . 144

1 INTRODUCTION 13

1 Introduction
Networking as it is usually done today has not significantly changed since the design
settled down years ago. But as computing evolves, so does the way networks are
used. Unfortunately, the development of networking technologies has been lagging
behind compared to other technologies, such as server systems.
In modern cloud environments, a user asks for needed resources (for example com-
puting power or storage space) and does not have to be concerned with how the
resources are provisioned. Current networking devices are not meant for such appli-
cations, because they are based on rather static configurations, while the internet,
where the user activity is ever-growing and ever-changing, is very dynamic.
Researchers have over time worked on various projects leading to better network
automation, but none has got as much attention as software-defined networking
has. The term software-defined networking or software-defined networks (SDN) is
quite new and has been around for only a few years. Even though there is not
an accepted-by-all definition of SDN and there are more approaches, networking is
finally getting transformed into what the users need it to be.
The users need to focus more on the problems that are to be solved than on the
ways of implementing the solutions. This approach to network control requires new
tools for both automated operation and manual management of the network.
This thesis is concerned with facilitating basic management tasks performed by
network administrators. It has been carried out in cooperation with the networking
work group of Department of Informatics of Faculty of Business and Economics at
Mendel University in Brno. It should serve as an introduction into the vibrant world
of software-defined networking, and also show one way software-defined networks can
be programmed.

1.1 Aim and objectives
The aim of this thesis is to create a software application that would provide a read-
able graphical visualization of a connected OpenFlow-based software-defined net-
work, show the utilization of links between devices, and allow the user to conve-
niently define a custom traffic path between two end nodes in the network using
a user-friendly graphical interface.
A review of source literature for and existing solutions concerned with the de-
fined problem or relevant issues has to be worked out. To introduce the reader
into software-defined networking and means involved in the thesis, a technological
overview should be provided. Before implementing the application itself, user re-
quirements have to be analyzed, and an application design has to be carried out
based on the requirements. The application is then to be implemented according to
the design. It has to be tested and its functionality verified in a virtual network,

14 1 INTRODUCTION

and, if possible, in a physical network as well. At the end, the achieved results and
their usefulness should be discussed.

2 REVIEWS 15

2 Reviews
In this chapter, reviews that had to be done are described:
• a review of previous academic works
• a review of existing applications that serve a purpose similar to the one intended

for the project of this thesis
• a review of useful information sources
• a review of relevant documentation

Before starting the work, it was necessary to build an informational base for studying
related technologies and techniques. It was also necessary to search for existing
solutions to find out whether it is meaningful to carry out the thesis project with
the stated goals and whether any works exist that could be followed up.

2.1 Previous academic works
2.1.1 Sources

In the beginning, I searched for theses from Czech universities, which are listed
on the website of Czech Ministry of Education, Youth, and Sports (Ministerstvo
školství, mládeže a tělovýchovy, 2016). Many of the universities use the Czech
central theses database (http://theses.cz), but since not all of them offer study
programs concerned with computer science, I was only interested in theses from the
following universities:
• Banking Institute College (Bankovní institut vysoká škola)
• College of Entrepreneurship and Law (Vysoká škola podnikání a práva)
• College of Polytechnics Jihlava (Vysoká škola polytechnická Jihlava)
• Comenius University in Bratislava (Univerzita Komenského v Bratislave)
• Czech University of Life Sciences Prague (Česká zemědělská univerzita v Praze)
• Charles University (Univerzita Karlova)
• Jan Evangelista Purkyně University in Ústí nad Labem (Univerzita Jana Evan-

gelisty Purkyně v Ústí nad Labem)
• Masaryk University (Masarykova univerzita)
• Mendel University in Brno (Mendelova univerzita v Brně)
• Palacký University Olomouc (Univerzita Palackého v Olomouci)
• Silesian University in Opava (Slezská univerzita v Opavě)
• Tomas Bata University in Zlín (Univerzita Tomáše Bati ve Zlíně)
• University of Defence (Univerzita obrany)

16 2 REVIEWS

• University of Economics, Prague (Vysoká škola ekonomická v Praze)
• University of Finance and Administration (Vysoká škola finanční a správní)
• University of Hradec Králové (Univerzita Hradec Králové)
• University of Chemistry and Technology, Prague (Vysoká škola chemicko-

technologická v Praze)
• University of Ostrava (Ostravská univerzita)
• University of South Bohemia in České Budějovice (Jihočeská univerzita

v Českých Budějovicích)
• University of West Bohemia (Západočeská univerzita v Plzni)
• VŠB – Technical University of Ostrava (Vysoká škola báňská - Technická uni-

verzita Ostrava)
From schools not using this database, but also offering relevant study programs,
these make their theses publicly available:
• Brno University of Technology (Vysoké učení technické v Brně)

https://dspace.vutbr.cz/
• College of Logistics (Vysoká škola logistiky)

http://katalog.vslg.cz/eng/baze.htm
• Czech Technical University in Prague (Česke vysoké učení technické v Praze)

https://dspace.cvut.cz/
• European Polytechnic Institute (Evropský polytechnický institut)

https://www.edukomplex.cz/index.php/home/zaverecne-prace
• University of Pardubice (Univerzita Pardubice)

http://dspace.upce.cz/
As for the remaining universities, these may also have relevant theses in their
archives, but do not make them publicly available:
• Karel Englis College (Vysoká škola Karla Engliše)
• Metropolitan University Prague (Metropolitní univerzita Praha)
• Technical University of Liberec (Technická univerzita v Liberci)
• Unicorn College (Unicorn College)
• University of New York in Prague (University of New York in Prague)

I also searched the Slovak central theses database (http://cms.crzp.sk). For all
of these registers, I used following keywords to find relevant theses:
• software defined networking
• software defined networks
• sdn

2.1 Previous academic works 17

• openflow
For a more general search and also to find theses from foreign universities, I used
Google (https://www.google.com) to search the internet with the following key-
words:
• software defined networking thesis
• software defined networking visualization thesis
• software defined networking path thesis
• software defined networking path definition thesis
• openflow thesis

Since keywords software defined networking thesis and openflow thesis are very gen-
eral for global searching and produce results from diverse areas, more efforts were
put in examining the more specific keywords. I always investigated at least the first
50 results of each search. None of the found papers is older than 5 years since the
relevant technologies have been on the rise during the past few years.

2.1.2 Results

Interactive Monitoring, Visualization, and Configuration of OpenFlow-
Based SDN – Pedro Heleno Isolani
Isolani (2015) is concerned with the impact of SDN control traffic and SDN-specific
metrics on the overall network performance. First, he analyzes the control traffic and
then designs and implements a management tool, which serves mainly for network
visualization and monitoring of resource usage and control channel load.
SDN Interactive Manager, an application created as an outcome of this work, uses
the D3.js JavaScript library for network visualization, which also depicts the level
of control or data traffic on individual switches. This technique might be used to
quickly identify which paths are highly-utilized and which have free capacity. The
application also provides interactive charts with network statistics showing online
resource usage.
The application was created for a specifically modified version of the Floodlight
controller. The source code of the application is available, but it does not seem
to be under active development anymore. Except for network visualization, which
might serve for inspiration, the features of this application are at this point of no
significant use for my project.
Extension of SDN platform available at FIIT STU – Michal Palatinus
Palatinus (2015) contributes to Unifycore, an existing project that builds a GPRS
network architecture on software-defined networking, with a management tool. He
designs and implements a web-based manager that, in a basic manner, provides net-
work visualization, management of flow entries, switch statistics, and a few other

18 2 REVIEWS

functions related to specifics of the GPRS network. The thesis is written in Slo-
vak.
The visualization is realized using the vis.js JavaScript library, but it does not pro-
vide any interactions with the network. Flow entries are defined in a low-level man-
ner by manually setting all match rules and actions. The application also provides
traffic statistics for switches and their interfaces.
Since the relevant outcomes are elementary in their functionality, this thesis does
not seem to offer much to base my project upon.
ViewNet: A Visualization Tool for Software Defined Networks – Prerna
Ramachandra
Ramachandra (2014) has as well decided to create a visualization tool for software
defined network. Unfortunately, the thesis is not freely available, and it seems
that the project has been discontinued because I have not been able to find any
information about the application.
Interactive Visualization of Software Defined Networks – Andreas
Schmidt
Schmidt (2013) is concerned with interactive monitoring of software-defined net-
works. He proposes an architecture of an application, implements it, and evaluates.
The application provides an interactive visualization of the monitored network to-
gether with detailed information and statistics for connected devices.
The application called SDN-Visualization has two parts. A server side, which coop-
erates with the controller, and a client side, which uses the server side to approach
the network. It was designed for the Floodlight controller, but can be extended to
support other controllers. The source code of the application is available, but it
does not seem to be under active development anymore.
The visualization is realized through the D3.js library, but while it is effective, it
does not seem very useful for interaction with the network. On the other hand, the
way the detailed statistics are done might be potentially made use of in my project
as well as the two-tier architecture design.
To better orient in the variety of available OpenFlow controllers and other support
tools, the following thesis comes in handy:
Review of Available Tools for Control Plane of Software Defined Net-
works – Matej Leitner
Leitner (2015) presents a review of currently available controllers and other support
tools operating the control plane of a software defined network. Open-source as well
as commercial products are described and then separately compared. In the end, an
experiment is performed to test a controller and a configuration tool with a virtual
network. The thesis is written in Slovak.
As for other theses related to SDN, their topics include, for example, implementation
of firewall, failure recovery, or defense against DDoS attacks, while some of them

2.1 Previous academic works 19

only present SDN as a technology with results of simple experiments. Considering
possible future extensions of my project, I found two topics particularly interesting –
load balancing and high-level policy declaration. I mention theses concerned with
these topics below, but do not describe specific useful parts since these features are
not actual for my thesis at this point.
Following theses deal with load balancing, which might be used for automation of
network control:
Load Balancing in OpenFlow Networks – Petr Marciniak
Marciniak (2013) is concerned with implementing a tool for load balancing in Open-
Flow networks. He explains the best current load balancing practices and proposes
several algorithms for the software-defined approach to load balancing – a Floyd-
Warshall algorithm with adjusted weights and two variants of Dijkstra’s shortest
path algorithm. These algorithms are implemented and evaluated.
Dynamic Load Balancing in Software-Defined Networks – Martí Boada
Navarro
Navarro (2014) aims to exploit the means of SDN in order to utilize network resources
efficiently. He describes a load balancing algorithm called MPLS Dynamic Load
Balancing and then presents his modification of this algorithm, which makes better
use of the advantages and specific features of SDN. The algorithm is implemented,
tested, and the results are evaluated.
Path Computation Enhancement in SDN Networks – Tim Huang
Huang (2015) focuses on load balancing in data center networks and its specifics. He
proposes a path computation algorithm for learning all shortest paths in a network
and a path selection algorithm for choosing the best of these paths. The choice
is influenced by the congestion status of the individual paths. The algorithms are
implemented and their results analyzed. The thesis is also concerned with hybrid
SDN networks and proposes a solution to support their proper operation.
Load Balancing in Real Software Defined Networks – Gonçalo Miguel
Alves Semedo
Semedo (2014) proposes an approach of combining several load balancing algorithms
in order to achieve better efficiency. Depending on the type of the user request, the
best server is chosen and then the best path to this server is determined. Semedo
distinguishes three user request types - requiring low latency, high bandwidth, or
a server with a lot of available processing power. The final solution is tested in
a large-scale testing network environment with real equipment and users, and the
testing is then evaluated.
CAFFEINE: Congestion Avoidance for Fairness & Efficiency in Network
Entities – Pattanapoom Phinjirapong
Phinjirapong (2015) makes use of the capabilities of SDN and creates an algorithm
for dynamic routing with the goal to fully and evenly utilize network capacity. His
algorithm, CAFFEINE, constantly monitors the network state and then finds the

20 2 REVIEWS

path with maximum available bandwidth. To find this path, a modified widest path
algorithm constrained by path lengths is used. In the end, the solution is tested and
evaluated.
Dynamic and performance driven control for OpenFlow networks – Tim
Herinckx
Herinckx (2013) focuses on creating a load balancing mechanism with dynamic mul-
tipath routing. Based on the information about utilization of links, his algorithm
temporarily reroutes certain flows to unburden the affected links. When necessary,
the algorithm can decompose flow entries in switches and consequently route the
flows more granularly over different paths. After the emergency situation is over,
the flow entries get aggregated into more general rules again. Performance of this
solution is measured and evaluated.
For more convenient implementation of requests, there are authors proposing net-
work management based on declaring high-level policies instead of low-level flow
entries. Following theses are concerned with this issue:
A Network Control Language for OpenFlow Networks – Dávid Antolík
Antolík (2013) focuses on developing a proprietary language for high-level decla-
ration of policies in OpenFlow-driven networks. The specification of the control
language and its elements is followed by implementation of its interpreter. The
solution is then tested and evaluated. The thesis is written in Slovak.
Using Software-Defined Networking to Improve Campus, Transport and
Future Internet Architectures – Adrian Lara
Lara (2015) focuses in his dissertation on making use of SDN on several levels of net-
working. After an introduction to SDN and OpenFlow, he presents a policy-based
security management tool for networks of campus scale, a framework for dynamic
network provisioning at WAN scale, and at the Internet scale is concerned with intra-
domain cut-through switching and inter-domain routing using cut-through switch-
ing.

2.2 Existing applications
2.2.1 Sources

I searched for software tools that would provide a visualization of a software-defined
network or the ability to define custom flow paths. First I explored HPE SDN
App Store (Hewlett Packard Enterprise, 2016b), which is currently the only known
gathering place for SDN applications, but it is limited to applications designed for
the HPE SDN VAN Controller or newly also the OpenDaylight controller. Then
I used Google (https://www.google.com) to search the internet with the following
keywords:
• openflow visualization

2.2 Existing applications 21

• openflow path definition
• openflow flow management application
• openflow flow manager
• software defined networking visualization
• software defined networking path definition
• software defined networking flow management application
• software defined networking flow manager

2.2.2 Results

Avior
Avior (Marist SDN Lab, 2016) is a web-based management tool for OpenFlow net-
works. As for the main functionality, it provides a basic topology visualization,
a static flow-entry pusher, and dynamic statistics about the connected controller,
switches, and end-nodes. The application is intended to support any controller (cur-
rently supports Floodlight and OpenDaylight) and to work on any platform. The
source code of the application is available, but it does not seem to be under active
development anymore.
Regarding functionality relevant to this thesis, the provided network visualization
is simple without any interactions. The flow-entry pusher serves as a convenient
interface for the low-level operation, but it does not provide any abstraction. I do
not therefore see much in this application to make use of for my project.
Brocade Flow Manager
Brocade Flow Manager (Brocade, 2016a) is an application tailored for Brocade SDN
Controller and it integrates into the graphical user interface of the controller. As for
its main functionality, it provides a visualization of the network topology, detailed
information about switches, management of their flow entries, and the ability to
define custom data paths in the visualization. Since this application is a commercial
product, the source code is not available.
This application is a commercial product and its source code is not available. It
could therefore serve only as an inspiration for my project, but not as something to
build upon.
HPE Network Visualizer
HPE Network Visualizer (Hewlett Packard Enterprise, 2016a) is an application tai-
lored for HPE SDN VAN Controller and it integrates into the graphical user in-
terface of the controller. The application offers real-time network monitoring and
dynamic traffic capture for brisk problem diagnosis and fixing. A topology monitor
is also provided as one of the features. It mainly visualizes the connected network,
displays detailed information about its devices, and allows for tracing packet flows

22 2 REVIEWS

between nodes. Since this application is a commercial product, the source code is
not available.
This application is a commercial product and its source code is not available. It
could therefore serve only as an inspiration for my project, but not as something to
build upon.
Hyperglance
Hyperglance (Hyperglance, 2016) is a professional commercial software for inte-
grated monitoring and management of various platforms, such as cloud, virtualiza-
tion, or networking, running on technologies like Amazon Web Services, Open Stack,
or VMware vSphere. It provides complex visualization, statistics, diagnostics, and
management tools for all controlled resources and across them. In current version
4.1, the application is accessible through a web browser and does not need any client
software, but this version does not yet support SDN. For SDN, an older thick-client
version 3.5 must be used that has support for HPE SDN VAN Controller and for
the OpenDaylight controller. Since this application is a commercial product, the
source code is not available.
This application is a commercial product and its source code is not available. It
could therefore serve only as an inspiration for my project, but not as something to
build upon.
Infinite Flow Manager
Infinite Flow Manager (Infinite Computer Solutions, 2016) is a single-purpose appli-
cation with user-friendly GUI that allows management of flow entries in switches –
viewing, adding, and removing. It is a web-based application that can be used with
various controllers. The source code of the application is available for the basic ver-
sion. A Pro version of the application exists that should also provide a visualization
of the network topology and a few other features, but it is not freely available.
Since the only functionality of the available version of the application is pushing
flow-entries into switches, there is not much I might make use of in my work.
JSFlowViz
JSFlowViz (Wallaschek, 2014) is a simple application that visualizes OpenFlow net-
works and dataflows. It is designed as a plugin for the Beacon controller. The source
of the application is available, but it is not under active development anymore and
is meant only as a proof-of-concept, not for production use.
This application offers only a basic functionality with possible bugs because of the
ceased development. Therefore it does not look as a significant contribution for my
project.

2.3 Summary 23

2.3 Summary
Concerning academic works, there are researchers who have tackled the issue of
visualization of software-defined networks and come up with solutions of various
level of complexity. However, none of the ones I found has used the visualized
network topology to manipulate paths for data flows. Some researchers have been
concerned with controlling traffic and changing its routes, but on a dynamic and au-
tomated level that only allows limited human intervention. On the other hand, this
functionality might be well utilized to support decisions and actions of network ad-
ministrators. Other researchers have focused on developing high-level approaches to
programming software-defined networks. Such solutions might beneficially comple-
ment the approach of defining data paths using the network topology visualization,
for example when defining policies with a rather global effect.
As for existing software applications, visualization has interested several developers,
who have usually used it as a gateway for numerous monitoring or management in-
struments. It is also common that SDN controllers implement a simple visualization
module in their graphical user interface. As for the definition of data paths, Infinite
Flow Manager provides the functionality of manipulating flow entries in switches in
a very simple way, but does not provide any kind of visualization of the network.
Two of the applications – Hyperglance and Brocade Flow Manager – accommodate
both visualization and its utilization for manipulation of the data path. Hyper-
glance is a fairly complex project, whose functionality and cost overly exceed the
needs expressed for this thesis. Brocade Flow Manager provides the main requested
functionality, but it cannot be used with any other controller than its parent one
nor can its source code be accessed for inspiration.
Overall, I conclude that it is meaningful to carry out this thesis and its project as
intended. I have not found a project that would be concerned with both visualization
and interactive data path definition while at the same time being open for others
to investigate it and improve. Additionally, there are projects that could be used in
the future to help enhance the functionality of the proposed application in order to
make it a more mature management tool for network administrators.

2.4 Information sources
To find books concerned with software-defined networking and relevant subjects,
I searched the Amazon store (https://www.amazon.com) with following key-
words:
• software defined networking
• sdn
• openflow

24 2 REVIEWS

I found quite many books and based on their descriptions and tables of content tried
to categorize them for better orientation.

2.4.1 Books theoretically-oriented, with a broad range of related topics

Software Defined Networks: A Comprehensive Approach – Paul Görans-
son and Chuck Black
Göransson and Black (2014) explain the background of SDN together with the needs
for its inception and provide technical details and practical examples. They discuss
the integration of SDN technologies into networks and the choice and development
of its applications. The book also helps make a deliberate decision and explain the
benefits and risks to non-technical managers.
Software Defined Networking (SDN): Anatomy of OpenFlow Volume I –
Doug Marschke, Jeff Doyle and Pete Moyer
Marschke and his colleagues (2015) are concerned with what SDN is and its im-
portance today, but mostly with its protocols - especially OpenFlow. They present
the history of this protocol and its current status along with its outlook and use
cases. Typical use cases are also provided for software defined networks based on
technologies other than OpenFlow.
SDN: Software Defined Networks: An Authoritative Review of Network
Programmability Technologies – Thomas D. Nadeau and Key Gray
Nadeau and Gray (2013) bring a practical view on SDN. They begin with a broad
description of the key principle of separated data and control planes, and then
continue with other fundamental parts of this networking concept such as OpenFlow,
controllers, or programmability. The book includes several use cases for various
scenarios.
Software Defined Networking (SDN) – a definitive guide – Rajesh Kumar
Sundararajan
Sundararajan (2013) offers a presentation of the SDN technology, situations for
which it is suitable, and practical reasons for using it as a solution in those situations.
This book aims to present the information in a clear and simple way, and therefore
also includes an explanation of different technological terms.

2.4.2 Books theoretically-oriented, primarily focused on specific subjects

SDN: Defining a Strategic, Business-Focussed Architecture – James J
Connolly
Connolly (2015) focuses on SDN in relation to business needs of network operators
and gives an overview of the many capabilities that are becoming possible. He
explains the new technological concepts, adds business reasons for the change, and
discusses what benefits SDN brings to solving identified business problems. The

2.4 Information sources 25

book also contains chapters on networking components and how they can contribute
to the business.
SDN and NFV Simplified: A Visual Guide to Understanding Software
Defined Networks and Network Function Virtualization – Jim Doherty
Doherty (2016) takes a very specific story-telling approach. Using illustrations and
visual expressions as the first means of communications, he wants to explain to
people who are not networking experts why SDN and NFV matter, how they work,
where they are used, and what problems they solve.
Software Defined Networking: Design and Deployment – Patricia A.
Morreale and James M. Anderson
Morreale and Anderson (2014) provide a perspective on business and technology
motivations for considering SDN solutions. The book addresses SDN principles
and OpenFlow, explains the importance of virtualization of servers and networks,
and discusses the impact of SDN implementation on service providers, legacy net-
works, and network vendors. It also investigates the initial SDN implementation at
Google.
Introduction to Software Defined Networking – OpenFlow & VxLAN –
Vishal Shukla
Shukla (2013) concentrates on two SDN implementations – OpenFlow and VxLAN.
He gives an overview of SDN and then explains the principles of these technologies
and their essential parts, such as events, or packets. The book is intended for
educational purposes and therefore contains detailed explanations as well as case
studies for both considered implementations.
Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud –
William Stallings
Stallings (2015) points out five mutually related key technologies that are changing
modern networks – SDN, NFV, QoE, IoT, and Cloud. First, he provides a review of
current network ecosystems and the challenges they have to face, and then advances
with a comprehensive description of each of the elect technologies. An analysis of
emerging security issues follows as well as a discussion of networking careers.

2.4.3 Books practically-oriented, with a greater portion of examples

Software Defined Networking with OpenFlow – Siamak Azodolmolky
Azodolmolky (2013) provides an introduction to OpenFlow with the focus on its
essential building blocks. The book covers the basics of setting up a laboratory
environment or developing sample applications, and in addition offers an insight
into existing controllers and available open-source resources.
SDN, Openflow, and Open vSwitch: Pocket Primer – Thomas F. Herbert
Herbert (2014) in his book presents SDN and discusses the transformation it causes
in traditional networking. The introduction is followed by an exploration of the

26 2 REVIEWS

internals of SDN switch and controller implementations, which is accompanied by
practical examples and detailed illustrations. The book also includes a DVD with
instructional videos and sample source code.
Network Innovation through OpenFlow and SDN: Principles and De-
sign – Fei Hu
Hu (2014) addresses the principles and design of a software defined network. He
gives an introduction of basic principles of SDN, OpenFlow, and their applications
and then moves on to explain the design process. He shows how to create networks
that are easy to design, more economical to build and maintain, and more flexible
than the traditional ones. The book also presents network attacks that could occur
in OpenFlow networks together with possible solutions to overcome them.
OpenFlow Cookbook – Kingston Smiler. S
Smiler. S (2015) deeply focuses on OpenFlow with development being the core
subject. In 110 recipes to design and develop OpenFlow switches and controllers, the
book approaches SDN from a low-level standpoint. It touches all aspects necessary
for implementing the control software for these devices and provides example source
code in every part.
SDN and OpenFlow for beginners with hands on labs – Vivek Tiwari
Tiwari (2013) brings a concise and practical approach to learning SDN. He explains
what it is, how it works, what the relationship between SDN and OpenFlow is,
and how it affects networks. Practical guidance and hands-on experience through
various lab tasks are also included.

2.4.4 Chosen books

From all these books I had to choose a few that would serve as the initial guides and
help me orient in the various elements and approaches of software-defined network-
ing. Based on the descriptions and user reviews at Amazon, I chose one theoretically-
oriented and one practically-oriented:
Software Defined Networks: A Comprehensive Approach – Paul Görans-
son and Chuck Black
Göransson and Black (2014) bring a complex approach to SDN, in which they cover
all elementary aspects and many more in a easily readable form. These chapters are
key to grasp the essentials of software-defined networking:
• Chapter 4 – is concerned with the principles and operation of SDN and its

components.
• Chapter 5 – in great detail describes the building blocks of OpenFlow 1.0 and

explains the changes and additions in subsequent versions of the specification
up to version 1.3.

2.4 Information sources 27

• Chapter 6 – presents alternative approaches to SDN that also tend to improve
networks, but are not derived from the concepts behind OpenFlow-based SDN.

• Chapter 10 – is devoted to SDN applications. The basic kinds of applications
are distinguished, and a sample application is explained with parts of the source
code. Also, some controllers are introduced as well as a few use cases for SDN
applications.

In other chapters, the interested reader can find more about current networking
and the evolution that led to SDN, about the use of SDN in various environments,
about what impacts it has on businesses and what are its prospects, and there is
also a review of organizations influencing the development of SDN and a review of
available open-source components.
Software Defined Networking with OpenFlow – Siamak Azodolmolky
Azodolmolky (2013) provides an introduction to OpenFlow and the tools used for
application development. He covers the basics of OpenFlow, implementations of
switches and controllers, preparation of laboratory environment, breaks down two
sample applications, and the last chapters are devoted to network slicing, OpenFlow
in cloud computing and to a review of open-source resources.
Unfortunately, I have not found this book very useful. It is sometimes difficult to
orient in – the introduction to OpenFlow is uneasy to comprehend as it is short
and quickly jumps into low-level details, and the practical part contains only a few
examples, which are basically only explained examples shipped with particular soft-
ware.

2.4.5 Other sources

To find recent news or explanations of various technologies or technological terms,
the following websites provide useful content related not only to software-defined
networking:
SDxCentral
SDxCentral (SDNCentral, 2016) is a portal focused on software-defined infrastruc-
ture technologies. News, research, and analyses are concerned with topics like
SDN, NFV, or cloud and there is also a comprehensive database of resources for
them.
TechTarget
TechTarget (2016) is a platform that connects technology buyers with the technical
content they seek and providers of the technology. Its sub-websites bring a diverse
spectrum of materials focused on a specific topic that are written by experts in that
field. Relevant to this thesis is mainly the SearchSDN site.
Concerning the programming side of the thesis, the following book and website form
priceless resources:

28 2 REVIEWS

Dive Into Python 3 – Mark Pilgrim
As a base for the implementation of the application, the book of Mark Pilgrim
(2009) provides a comprehensive guide through all the basic elements of Python 3.
It uses many sample code snippets accompanied by explanations to offer a practical
and enjoyable approach. To the reader’s advantage, the book is licensed under the
Creative Commons license, which means it is freely available.
Stack Overflow
Stack Overflow (Stack Exchange, 2016) is a community platform for sharing knowl-
edge among programmers that is based upon a questions-and-answers style. Solu-
tions or suggestions for many common problems may be found in the answers.

2.5 Documentation
OpenFlow
In the technical library of Open Networking Foundation (2016a), many important
or useful papers may be found. The following are relevant to this thesis:
• OpenFlow Switch Specification – defines the requirements for an OpenFlow

switch as well as the OpenFlow protocol and its messages.
• SDN Architecture – is concerned with the architecture of software-defined net-

working as viewed by ONF.
HPE VAN SDN Controller
In the information library of Hewlett Packard Enterprise (2016c), datasheets, spec-
ifications, and guides for its products can be accessed. The following documents re-
garding the controller are essential, and their content fully reflects their name:
• HPE VAN SDN Controller Installation Guide
• HPE VAN SDN Controller Administrator Guide
• HPE VAN SDN Controller Troubleshooting Guide
• HPE VAN SDN Controller Programming Guide
• HPE VAN SDN Controller REST API Reference
• HPE VAN SDN Controller Java API Reference

Documents regarding additional HPE SDN applications for the controller are also
present in the library.
Mininet documentation
Mininet’s documentation (Mininet, 2016) provides introductory materials as well as
more thorough ones. Following sections are useful for easy beginning:
• Download – this page is concerned with installation options and their descrip-

tions.

2.5 Documentation 29

• Introduction to Mininet – presents the essentials of what Mininet is and how it
works. It also contains an introduction to the Python API.

• Walkthrough – serves as a basic demonstration of Mininet. Many commands
are shown and explained on examples.

• Mininet Python API Reference – is a documentation of the Python API, which
comes in handy when writing custom Python scripts for advanced functionality.

Python documentation The documentation for Python 3 (Python Software Foun-
dation, 2016) is complex and consists of several parts. The essential sections
are:
• Python Setup and Usage – documents how to install Python on different plat-

forms and how to use its command line.
• Tutorial – provides an informal introduction to basic features that are most

common in Python programs. Although going through all the sections is ad-
visable for a Python newcomer, I would consider the following subsections as
fundamental:

– An Informal Introduction to Python
– More Control Flow Tools
– Data Structures
– Classes

• Library reference – represents a more comprehensive manual to Python. It
includes the exact syntax and semantics of the language.

Because Python usually uses programming-style conventions that sometimes signifi-
cantly differ from those of other language, the style guide might come handy (Reitz,
2016).
For an interactive and more enjoyable approach to learning Python, Codecademy
(2016) offers practical online courses.
HP SDN Client documentation
The documentation (Tucker, 2014) for this Python module consists of three main
parts:
• Installation – describes the possible ways of installing the module.
• Quickstart – explains how to put the module to use.
• API Documentation – provides an overview of all methods and data types. The

methods are briefly described together with their attributes.
Unfortunately, the documentation misses examples except for the short introduc-
tion.
Qt/PyQt documentation
The documentation of Qt (The Qt Company, 2016a) is comprehensive and covers

30 2 REVIEWS

every part of the framework from several points of view. Key to this work is the
section on widget-based user interfaces (The Qt Company, 2016b) and the pages
to which it leads. Particular classes will be mentioned in the description of the
development process, and the interested reader can easily find their specification in
the documentation.
As for PyQt documentation (Riverbank Computing, 2015), it refers to the docu-
mentation of Qt when it comes to class references since the syntax is essentially the
same. Concerning the specifics of PyQt, the following sections of the documentation
should be seen:
• Installing PyQt5
• Support for Signals and Slots – signals and slots are a key Qt feature for com-

munication between objects. This section explains how they are used in PyQt.

3 FOUNDATION 31

3 Foundation
3.1 Current networking
3.1.1 Architecture

The networking of these days is almost exclusively based upon the TCP/IP protocol
architecture. It defines a stack of four layers of protocols (Microsoft, 2016):
• Network interface layer – provides the means for transmitting signals over

various mediums between hardware devices. Its protocols are not defined by
the architecture since TCP/IP should be independent of the low-level access
methods and be able to connect different network types.

• Internet layer – takes care of getting data packets from one end node to another
by routing them over and between physical networks. The only protocol used
for transferring data is IP.

• Transport layer – establishes a communication between two end hosts. It
uses either the TCP protocol for connection-oriented and reliable communica-
tion, or the UDP protocol for much simpler and faster, but connectionless and
unguaranteed communication.

• Application layer – provides applications with the access to services of lower
layers. It defines protocols applications use to exchange data, such as HTTP,
FTP, SMTP, and many more.

For a more comprehensive approach to network communication, there is OSI Ref-
erence Model. Through its seven layers, it precisely describes the interaction of
hardware and software components, and how each of them involves in the commu-
nication (Kozierok, 2005b).
More information on both TCP/IP and OSI architectures can be found in The
TCP/IP Guide (Kozierok, 2005a).

3.1.2 Traffic control

For traffic control, mostly the bottom layers of the OSI model are involved. Layer 1
is concerned with sending data as signals over physical media and is not engaged in
traffic control. Layer 2 is concerned with connecting hardware devices and transmit-
ting data between them. Its information about network interface addresses is used
for forwarding traffic in local networks. Layer 3 is concerned with dividing networks
into subnetworks and connecting them. Its information about logical addressing is
used for routing the traffic across networks (Microsoft, 2014). Higher-level infor-
mation, such as application port numbers or even application data, may also be
used for forwarding decisions, usually in specific applications like firewalls or load
balancers (Göransson and Black, 2014, p. 17).

32 3 FOUNDATION

There are two elementary kinds of devices used for directing traffic in or between
networks – switches and routers. Switches are based on a specifically designed
hardware (application-specific integrated circuits – ASICs) and typically used for
connecting devices in Layer 2, where the destination address of a packet is the only
information influencing its output interface. Due to the hardware implementation
of the functionality, when a data packet arrives at an interface, the switch is able
to perform the lookups in the forwarding table at line rate, which ensures quick
forwarding of the packet (Differences between Layer …, 2016).
Routers are commonly based on a specialized software running on general-purpose
chips and are typically used for connecting networks in Layer 3. To find the best way
to the destination network of a packet, routers use routing protocols that take care
of cooperation of networking devices and consequently fill the routing table of the
router. Unfortunately, the software nature of routers makes the traffic processing
slower and the transmission of packets is then delayed (Differences between Layer …,
2016).
There are also switches capable of handling Layer 3 or even Layer 4 information.
The first time a multilayer switch encounters a packet with a particular source-
destination pattern, it uses software routing functions to process it and then caches
the result. The next time a packet with the same source-destination pattern arrives
at the switch, a quick hardware lookup in the cache is made to determine how
to handle the packet (Gijare, 2004). Designed for backbone switches with high
demands, there are also more advanced technologies, like Cisco Express Forwarding,
that do not use a cache, but instead translate the whole routing table into a form
processable by hardware forwarding mechanisms. This allows even for the first
packet to be processed by hardware (Cisco, 2016).
Not considering the implementation details and additional functions, switches and
routers work basically with the same goal – they analyze a certain part of the packet
header to determine where to send the packet. For the sake of simplicity, in this
work, I will use the name switch for networking devices that direct traffic.

3.1.3 Drawbacks

Contemporary networks have several stumbling blocks in both their management
and their operation, which make it challenging to control them. As for network
management, networking devices have to be configured on a per-device basis using
vendor-specific proprietary interfaces. While network administrators need to define
high-level policies and apply them over the whole network, these interfaces only
allow low-level configuration of individual devices (Kim and Feamster, 2013). And
although tools for centralized management exist, they serve rather for monitoring
of the network than for its configuration as a whole (Rouse, 2013).

3.2 Software-defined networking 33

Concerning network operation, typical networking devices use routing protocols to
fill their forwarding tables, but may also allow for network administrators to man-
ually configure additional rules. These rules may, for example, provide application
port filtering or different treatment for particular quality-of-service classes. Unfortu-
nately, there is no protocol to automatically distribute these more complex policies
over the network (Göransson and Black, 2014, p. 17).
With packet forwarding based only on destination addresses or statically defined
rules, the network cannot react to the dynamics of the traffic or to the occurring ab-
normalities. Be it peak loads, applications with high demands for Quality of Service,
or applications requiring high bandwidth, with the static setting, the network has no
instruments to appropriately utilize its resources unless equipped with specialized
devices like load balancers.
To be fitted for demands of modern deployments, in both campuses and data centers,
a network should provide means for automation, so it could react to occurring events
on its own and efficiently use available resource while ensuring resilience. Such
network should also be virtualized in order to provide a high-level abstraction for
convenient management of the network regardless of the underlying physical layer
and its specifics (Göransson and Black, 2014, p. 32–34).
Software-defined networking, further described in the next chapter, is bound to bring
a solution to the various problems networking is facing today.

3.2 Software-defined networking
This thesis is based upon Open SDN, an approach that is most often connected
with software-defined networking and which is sometimes also called revolutionary.
It emerged from Clean Slate Program at Stanford University and was created as
a solution to today’s networking problems and demands with current technological
advancement in mind while forgetting about the legacy network design and its con-
straints (Clean Slate Design …, 2016). It is a non-proprietary approach promoted
by Open Networking Foundation (ONF), an organization responsible for the de-
velopment of this approach and its standards. Members of the foundation include
technological leaders such as Google, Facebook, Yahoo!, Microsoft, and other. More
information about ONF can be found on its website (Open Networking Foundation,
2016b) or in What is ONF? (Open Networking Foundation, 2016c).
Sections dedicated to this approach are followed by brief descriptions of two alter-
native approaches.

3.2.1 Characteristics and principles

Open SDN is based on four principles (Göransson and Black, 2014, p. 59–61). The
first is a separation of the forwarding plane (also called data plane), which takes

34 3 FOUNDATION

care of traffic processing, from the control plane, which examines the network and
defines rules for forwarding decisions of the data plane. This is a prerequisite for the
second principle – logically centralized control – that subsequently leads to simpler
networking devices. Such devices are deprived of their own intelligence as they only
follow rules defined by the central control plane. The third principle is network
programmability.
Shenker (2011) stated that Open SDN is all about three abstractions – of distri-
bution, forwarding, and configuration, which allow convenient automation of the
network. These abstractions provide the programmer with a global view of the net-
work independent of its complex nature, allow unified control of networking devices
from different vendors and with various functionality, and enable the programmer
to focus more on the goals than on the way a physical network will implement them,
which is the purpose of virtualization.
The last principle is openness of interfaces. Since standard and non-proprietary in-
terfaces pose no obstacles, they help create competition and encourage both vendors
and the community to develop new solutions. This should eventually accelerate the
development and innovation of networking technologies.
More details about the architecture of Open SDN can be found in its specification
(Open Networking Foundation, 2016d, p. 12–22).

3.2.2 Components

A software-defined network, as viewed by this approach, has tree main components
or layers as depicted in Figure 1. An infrastructure layer comprised of networking
devices, a control layer represented by a logically centralized controller, and an
application layer with network applications (Göransson and Black, 2014, p. 61–64).
These components are further explained in following sections.

3.2.3 OpenFlow

Concerning this section, I based as much information as possible on offical materials
by ONF and extended it primarily by information from the book Software Defined
Networks: A Comprehensive Approach (Göransson and Black, 2014), which provides
insightful explanations.
The OpenFlow standard is a key product of Open Networking Foundation and the
first standard for the southbound interface. It defines the communication interface
between the control plane and the data plane that allows direct access to and manip-
ulation of the forwarding layer of networking devices (Open Networking Foundation,
2016e).
The standard and its elements are described in OpenFlow Switch Specification. The
specification covers the functional requirements of an OpenFlow-capable network-

3.2 Software-defined networking 35

Figure 1: Open SDN architecture. Inspired by Figure 1 from Software-Defined Networking:
The New Norm for Networks (Open Networking Foundation, 2012a, p. 7)

ing device, the OpenFlow channel used for communication between a switch and
a controller, and the OpenFlow protocol that defines this communication.
Several versions of the OpenFlow specification have been released. Version 1.0.0 was
the first version meant to be implemented by vendors. It represents the elementary
functionality and is production-ready. Versions preceding 1.0.0 were purely exper-
imental and not meant for production (Open Networking Foundation, 2009, p. 1).
Another milestone version was version 1.3.0. It brought important new features and
was designated as another stable release to be employed by software and hardware
vendors. Versions 1.1.0 and 1.2.0 have not been widely implemented and the same
applies for versions succeeding 1.3.0 at the time of writing (Kerner, 2012).
Due to the research nature of OpenFlow, many new features were added in the
released versions, but there was little concern over backward compatibility in the
beginning (Göransson and Black, 2014, p. 86). It should not be so for new versions
of the specification as commercial deployments are not a rarity anymore, but current

36 3 FOUNDATION

SDN products can be found marketed as supporting OpenFlow v. 1.0 and v. 1.3, not
v. 1.3 and earlier. Therefore, careful consideration should be given to the choice of
the appropriate version for an application.
In the following section, I will introduce the essential functionality of OpenFlow
v. 1.0.0. A summary of major innovations that have been added up to OpenFlow
v. 1.3.0 can be found in Appendix B.

3.2.4 OpenFlow Specification v. 1.0.0

OpenFlow Switch Specification defines a term “OpenFlow Switch”, which represents
functionality required of or proposed for an OpenFlow-enabled forwarding device.
The OpenFlow Switch has two main components – a traffic processing logic and
a secure channel to communicate with a controller (Open Networking Foundation,
2009, p. 2).
An Openflow switch may be implemented in either hardware, or software (Görans-
son and Black, 2014, p. 64–68). It must implement features stated by the speci-
fication as required, but does not have to implement optional features. A switch
may be OpenFlow-only or OpenFlow-enabled (also called OpenFlow-hybrid) in case
it accommodates traditional packet-processing functions as well (Open Networking
Foundation, 2009, p. 3, 6; Göransson and Black, 2014, p. 84).
Every switch is uniquely identified by a Datapath ID (DPID). DPID is a 64-bit
identifier, where the lower 48 bits are the MAC address of the switch, and the top 16
bits are left for the implementer. For example, the top bits could serve to identify
multiple virtual switches residing on a single physical switch (Open Networking
Foundation, 2009, p. 25).
Traffic processing
The rules for forwarding decisions are stored in a flow table in the form of flow entries.
A flow entry consists of several fields. The main fields, ensuring the forwarding
functionality, are header fields (also called match fields) and actions.
Match fields define a pattern against which an incoming packet is compared. Either
all of them are set to a specific value or some of them may be set to ANY, which
behaves like a wildcard and matches any value. Following list encompasses all match
fields available in this version of OpenFlow (Open Networking Foundation, 2009,
p. 2–4; Göransson and Black, 2014, p. 89):
• Input port
• Ethernet source addresses
• Ethernet destination address
• Ethernet frame type
• VLAN ID

3.2 Software-defined networking 37

• VLAN priority (VLAN PCP field)
• IPv4 source addresses (possibly subnet masked)
• IPv4 destination address (possibly subnet masked)
• IP protocol
• IP Type of Service (ToS) bits
• TCP/UDP source port or ICMP type
• TCP/UDP destination port or ICMP code

Every flow entry is associated with zero or more actions that form an action list. An
action list designates what should happen with a matching packet. Some actions are
required to be implemented in the switch, while other actions are optional. Possible
actions are (Open Networking Foundation, 2009, p. 3, 6–7; Göransson and Black,
2014, p. 90–92):
• Forward – forward the packet to a physical port or to a virtual port. Required

virtual ports are:
– ALL – send the packet out all interfaces except the incoming one.
– CONTROLLER – encapsulate the packet and send it to the controller for

further processing by a proper application.
– IN_PORT – send the packet out the incoming interface. This action is

useful for example with wireless ports, where data is received from one user
and then sent to another user through the same port. On the other hand,
it must be used carefully as it may create unintended loopbacks.

– LOCAL – send the packet to the local OpenFlow control software. This
action is used when OpenFlow messages from the controller are received on
a regular port that receives packets from the network as well. The local
OpenFlow control software serves to process messages from the controller
and react on them accordingly.

– TABLE – process the packet using the normal OpenFlow packet-processing
pipeline. This action is only for PACKET-OUT messages (described later)
sent from the controller and indicates that the packet should be matched
against the flow table and then treated according to the matching flow entry.

Optional virtual ports are:
– FLOOD – flood the packet along the minimum spanning tree, not including

the incoming interface.
– NORMAL – process the packet using traditional forwarding techniques as

a usual switch. This action may be implemented in an OpenFlow-hybrid
switch.

38 3 FOUNDATION

• Drop (required) – drop all matching packets. This action automatically applies
for flow entries with no specified actions.

• Enqueue (optional) - send the packet to a specific queue of a particular port.
Queues are associated with different priorities and serve to achieve the desired
Quality of Service.

• Modify-Field (optional) – modify certain header fields of the packet.

Figure 2: Elementary forwarding possibilities for a processed packet. Black solid lines
represent the destinations. Gray dashed lines represent data communication – from the
input port to the processing pipeline and then between the pipeline and the controller in
case of an unmatched packet or a packet destined to the controller. Inspired by Figure
5.7 from Software Defined Networks: A Comprehensive Approach (Göransson and Black,
2014, p. 90)

From other fields of a flow entry, priority, idle timeout, hard timeout, and counters
are elementary to know for basic comprehension.
Priority is a 16-bit number (0-65 535) that influences the order in which flow entries
are evaluated. When matching the incoming packet, the processing logic aims to
find a match with the highest priority. Exact matches, that is flow entries with all
match fields set to a specific value and with no use of wildcards, are always the
highest priority since they are unambiguous and the priority field is irrelevant for
them. On the other hand, matches with wildcards need to have a priority defined
in case more flow entries match the same packet. If multiple flow entries match
a packet and have the same priority, the choice of the winning flow entry is up to
the switch. An unmatched (missed) packet is forwarded to the controller (Open
Networking Foundation, 2009, p. 9, 27–28).

3.2 Software-defined networking 39

Idle timeout defines a period of inactivity after which the flow entry expires. In-
activity represents the time when the flow entry has not matched any incoming
packet. Hard timeout defines a fixed lifetime of the flow entry after which it expires
regardless of its activity. Both timeouts are a 16-bit number (0-65 535) representing
time in seconds (Open Networking Foundation, 2009, p. 15, 27–28).
Counters provide various statistics per table, per flow, per port, and per queue. The
records may include, for example, packet lookups, packet matches, received packets,
transmitted bytes, receive errors, and more (Open Networking Foundation, 2009,
p. 3, 5).
Traffic processing illustration
To illustrate the matching process, I will use a simple scenario with the network
topology depicted in Figure 3. There are three switches interconnected in a tree,
all of them are connected to an OpenFlow controller, and each leaf switch has two
end-nodes connected. The root switch A has two flow entries A1 and A2 in the flow
table, which are described in Table 1 and Table 2.

Figure 3: Example of the matching process – network topology.

40 3 FOUNDATION

Flow entry A1 matches traffic between two network interfaces – port 4 of switch
A and port 1 of switch B – in case it arrives at port 4 and then sends it out through
port 8. Due to the timeouts, this entry is temporary and will expire either after 60
seconds of inactivity or after 600 seconds from its inception. Flow entry A2 matches
traffic between two logical nodes – B1 and C1 – and sends it to the controller for
further processing. This entry never disappears at it has both timeouts set to zero.
Header fields that are not mentioned in the flow entries are wildcarded and corre-
sponding packet information is therefore irrelevant for the matching process.

Table 1: Example of the matching process – flow entry A.

Header fields
Input port 4
Ethernet source address 00:16:ea:e5:2d:80
Ethernet destination address 00:1f:16:11:b2:6e

Actions
Forward Physical port 8

Priority 55 000
Idle timeout [seconds] 60
Hard timeout [seconds] 600

Table 2: Example of the matching process – flow entry B.

Header fields
IPv4 source address 192.168.11.201
IPv4 destination address 216.58.214.227

Actions
Forward Virtual port CONTROLLER

Priority 60 000
Idle timeout [seconds] 0
Hard timeout [seconds] 0

Table 3 then depicts a packet coming into the switch A, where flow entries A1 and
A2 are configured. Concerning the match fields defined in these flow entries, both
entries would match this packet, but according to their priorities, flow entry A2
would be the first to be evaluated and therefore the one used for the processing of
the packet.
Secure channel
The secure channel is the interface that connects an OpenFlow switch with an Open-
Flow controller for configuration and management purposes. The communication is
typically encrypted using TLS, even though unencrypted TCP connections are also

3.2 Software-defined networking 41

Table 3: Example of the matching process – incoming packet.

Header fields
Ethernet source address 00:16:ea:e5:2d:80
Ethernet destination address 00:1f:16:11:b2:6e
IPv4 source address 192.168.11.201
IPv4 destination address 216.58.214.227
IP protocol TCP
TCP source port 50213
TCP destination port 80

Input port 4

possible. The connection between a controller and a switch may be out-of-band or
in-band. Out-of-band means a dedicated management port is used for the commu-
nication, which is not processed by the data plane of the switch. In-band, on the
other hand, means a regular port is used for the communication and the data plane
has to forward the packets to the internal OpenFlow control software (Göransson
and Black, 2014, p. 86–87; Open Networking Foundation, 2009, p. 9, 12–13).
Between a controller and a switch, three types of messages are interchanged, each
having several sub-types: symmetric, asynchronous, and controller-to-switch.
Symmetric messages are sent without solicitation in either direction, i.e. from the
controller to the switch or from the switch to the controller, and have following
sub-types (Open Networking Foundation, 2009, p. 11; Göransson and Black, 2014,
p. 94):
• HELLO – is exchanged between the switch and the controller as the connection

is being established. It also serves to determine the highest common supported
version of OpenFlow.

• ECHO – may be sent from either side and must be replied to by the other
side. It serves to check the liveness of the connection and to measure latency or
bandwidth.

• VENDOR– is provided as a standard way for experiments or proprietary exten-
sions.

Asynchronous messages are sent from the switch to the controller in reaction to
occurred events without the controller soliciting them. There are four sub-types for
asynchronous messages (Open Networking Foundation, 2009, p. 10–11; Göransson
and Black, 2014, p. 94):
• PACKET_IN – is sent whenever there is a packet that does not match any flow

entry or that matches a flow entry with the action set to forward the packet to
the controller.

42 3 FOUNDATION

• FLOW_REMOVED – is sent when a flow entry expires due to its timeouts,
either idle or hard, or when a flow entry is removed by a FLOW_MOD message.
In the FLOW_MOD message, there is a flag that determines whether the switch
should or should not send the FLOW_REMOVED message when a flow entry
is removed.

• PORT_STATUS – is sent when a change in the port configuration state occurs.
It may be a configuration change carried out by an administrator or a change
in the physical medium, such as a change in the spanning tree, if spanning tree
is supported by the switch.

• ERROR – is used by the switch to notify the controller of problems.
Controller-to-switch messages are sent from the controller to the switch and may
or may not require a reply. Their sub-types can be divided into several categories
(Open Networking Foundation, 2009, p. 10; Göransson and Black, 2014, p. 94):
• Switch configuration messages

– FEATURES_REQUEST/REPLY – the request message is sent by the con-
troller during the establishment of the connection between the controller and
the switch. In the reply, the switch specifies its capabilities and supported
features.

– GET_CONFIG_REQUEST/REPLY – is sent by the controller to retrieve
the actual configuration parameters from the switch.

– SET_CONFIG – is used by the controller to set configuration parameters
in the switch. The switch does not reply to this message.

• Controller command messages
– PACKET_OUT – serves to send a data packet, received or created, to the

switch for forwarding. The packet may be directly sent out a specific port
or it may be processed in the flow table.

– FLOW_MOD – is crucial for the data plane programming of networking
devices. Using this message, the controller adds, modifies, and deletes flow
entries in a switch.

– PORT_MOD – is used to modify the state of an OpenFlow-managed port.
Different behavior may be configured regarding spanning tree protocol1 and
treating packets. A port may also be taken down administratively.

1An OpenFlow switch may optionally support 802.1D Spanning Tree Protocol (STP). It is
then expected to process STP packets locally before performing a lookup in the flow table. More
details can be found in sections 4.5 (Open Networking Foundation, 2009, p. 13) and 5.2.1 (Open
Networking Foundation, 2009, p. 17) of the OpenFlow specification.

3.2 Software-defined networking 43

• Statistic messages
– STATS_REQUEST/REPLY – is sent by the controller to retrieve the statis-

tics gathered by counters in the switch.
• Barrier messages

– BARRIER_REQUEST/REPLY – is sent by the controller to ensure
that particular commands have been executed. If a switch receives
a BARRIER_REQUEST message, it must execute all commands received
prior to the message before it can continue executing any commands
received afterwards. Upon completing the execution, the switch sends
a BARRIER_REPLY message to the controller.

• Queue configuration messages
– QUEUE_GET_CONFIG_REQUEST/REPLY – serves to query the switch

for queues configured on a port and their parameters. The queue configu-
ration itself is not a part of the OpenFlow protocol and is provided by an
unspecified external instrument.

Figure 4: Example of the secure channel communication that takes place after estab-
lishing the TCP connection between the switch and the controller. Solid lines represent
symmetric messages, dotted lines represent controller-to-switch messages, and dashed lines
represent asynchronous messages. Inspired by Figure 5.8 from Software Defined Netowrks:
A Comprehensive Approach (Göransson and Black, 2014, p. 93).

44 3 FOUNDATION

More information and details regarding OpenFlow v. 1.0.0 can be found in its com-
plete specification (Open Networking Foundation, 2009).

3.2.5 Controller

In the middle layer of the architecture is a controller, whose structure is depicted
in Figure 5. The controller is a software that serves as a central control point that
overlooks the network and through which applications can access and manage the
network.
When the controller is said to be a central point of the network, it is only meant
to be logically centralized. The controller software is typically deployed on a high-
performance server machine, but to distribute the load or to ensure high availability
and resilience, more servers may be involved and connected in various topologies
(Göransson and Black, 2014, p. 121–126).
The controller is responsible for following tasks (Göransson and Black, 2014,
p. 70):
• Device discovery – the controller takes care of the discovery of switches and

end-user devices, and their management.
• Network topology tracking – the controller investigates the links intercon-

necting devices in the network and keeps a view of the underlying resources.
• Flow management – the controller maintains a database mirroring the flow

entries configured in the switches it manages.
• Statistics tracking – the controller gathers and keeps per-flow statistics from

the switches.
It is important to emphasize that the controller does neither control the network in
any way nor does it replace any networking devices. Even the basic switching or
routing functionality has to be provided by specific applications that approach the
network through the controller (Göransson and Black, 2014, p. 72).
Communication with networking devices is realized through a southbound interface,
for which Open SDN promotes the OpenFlow protocol. This interfaces is used
to configure and manage the switches and to receive messages from them. The
connection is realized via a secure channel and depending on the setting is either
encrypted or unencrypted. Details on the secure channel were explained in previous
sections (Göransson and Black, 2014, p. 69).
Applications communicate with the controller using a northbound interface.
Through this interface, they retrieve information about the network and send their
requests, while the controller uses it to share information about occurring events.
Depending on the implementation, the interface may be low-level, providing a uni-
fied access to individual devices, or high-level, abstracting much of the underlying
layer and rather presenting the network as whole. There is no standard for the

3.2 Software-defined networking 45

northbound interface and every controller implements its own APIs – be it Java
API, Python API, REST API or else. This current lack of a standard northbound
interface makes it difficult to create controller independent applications (Göransson
and Black, 2014, p. 69–70).

Figure 5: Elements of the SDN controller. Inspired by Figure 4.5 from Software Defined
Networks: A Comprehensive Approach (Göransson and Black, 2014, p. 69).

More on the concepts regarding SDN controller can be found in the SDN Architec-
ture specification (Open Networking Foundation, 2016d, p. 22–36).

3.2.6 Applications

The application layer is at the top of the architecture. As was mentioned before,
the controller itself does not control the network in any way – it only provides an
abstracted approach, applications are therefore crucial to the operation of the whole
network. Applications communicate with the controller through a northbound in-
terface and are responsible for carrying out the functionality present in traditional

46 3 FOUNDATION

networking devices, such as Layer 2 switching, Layer 3 routing, and other. Ap-
plications are also used for management purposes, for example, a graphical user
interface for the controller would be implemented as an SDN application (Görans-
son and Black, 2014, p. 72–73).
There are two kinds of applications – reactive and proactive. Reactive applications,
simply said, react to events occurring in the network. For that reason, they need to
be notified of those events by the controller. These applications are typically written
in the native language of the controller and register listeners in the controller to be
asynchronously, i.e. without requests, informed of all events. There are three basic
kinds of listeners (Göransson and Black, 2014, p. 213):
• Switch Listener – receives notifications about added or removed switches, or

about a change in the port status of a switch.
• Device Listener – receives a notification whenever an end-user device is added,

removed, moved to another switch, or when its IP address or VLAN membership
changes.

• Message Listener – is informed of all packets the controller receives.

Figure 6: An illustration of a reactive application. Application A reacts to a newly
connected switch by configuring it with a basic set of flow entires. Application B processes
an unmatched packet sent to the controller and decides to flood it out all interfaces.

When the application receives a message about an event, it may take a proper
action. A typical reaction might be one of the following (Göransson and Black,
2014, p. 213–214):
• Packet-specific action – the switch is told what to do with the particular package,

whether to drop it or to forward it to a specific port.
• Flow-specific action – in this case, the application programs a new flow entry

into the switch. The next time the switch encounters a packet from the same
flow, it will process it on its own using the new flow entry.

Proactive applications, as opposed to reactive applications, have no listening func-
tionality. Their methods may be evoked by external events or they may make
periodical calls to the northbound interface. Requests sent to the controller mainly
serve to either receive data or program switches. The controller itself has no means
for contacting a proactive application (Göransson and Black, 2014, p. 215).

3.2 Software-defined networking 47

While reactive APIs are typically low-level and close to the OpenFlow protocol,
proactive APIs may vary in the degree of abstraction they provide. The API may
be as well quite low-level, for example allowing flow entry configuration on individual
switches, or it may be high-level, shielding the implementation details and providing
a view in the form of a virtual network (Göransson and Black, 2014, p. 215).
A proactive application may, for example, be used to push general flow entries to
switches when a virtualization service informs about a migration of a virtual machine
(Göransson and Black, 2014, p. 215). Another use case may be a monitoring tool
that periodically retrieves information about the network and processes it.

Figure 7: An illustration of a proactive application. Application A is evoked by an ex-
ternal event – a traffic monitor informs it about a congested link. Based on the received
information, application A defines a temporary alternative path for the affected traffic.
Application B sends a request for statistics and then receives a reply, which it can further
process.

3.2.7 SDN via APIs

This approach, sometimes also called evolutionary, strives to enhance software con-
trol and programmability of networks by exploiting the existing network infrastruc-
ture devices. The same traditional switches are employed, the control plane remains
distributed over individual devices, but their software is improved to support more
powerful APIs. The switches are then controlled either on a per-device basis or via
a controller (Göransson and Black, 2014, p. 74–75).
While conventional means like CLI or SNMP may be engaged, they are best suited
for rather static configurations. Modern APIs such as RESTful API, appropriate
for dynamic and automated control, therefore come into play. Applications running
above the controller may then make use of the extended APIs and provide a certain
degree of the desired programmability and automation. The set of features provided
by the APIs is dependent upon the particular implementation of each vendor since
these solutions are proprietary (Göransson and Black, 2014, p. 74–76).
More details on this approach can be found in the book of Göransson and Black
(2014, p. 74–76, 130–135).

48 3 FOUNDATION

3.2.8 SDN via hypervisor-based overlay networks

In this approach, the existing physical infrastructure is left completely untouched
and instead a virtual overlay network is established above it. Suited for virtualized
environments, this overlay network is comprised of virtual machines (VMs), virtual
switches running on hypervisors, and a controller (Göransson and Black, 2014, p. 76–
77).
The communication between VMs is realized through MAC-in-IP tunneling. The
packet a VM wants to send to another VM is taken from Ethernet header inward and
at a virtual switch encapsulated within another IP datagram, as depicted in Table 4.
The switch, also called a virtual tunnel endpoint, than sends the encapsulated packet
over the underlying physical network to the virtual switch that is connected to the
destination VM. At this point, that is at the other end of the virtual tunnel, the
packet is decapsulated and the inner datagram is delivered to the corresponding VM
according to its headers. This way, the virtual machines work in an isolated reality
behaving as if they were connected by a normal network and do not know anything
about what is happening on the outside (Göransson and Black, 2014, p. 77).

Table 4: MAC-in-IP packet encapsulation.

Outer Ethernet
header

Outer IP
header

Tunneling
protocol header

Inner Ethernet
header

Inner IP
header

Inner IP
payload

The controller is responsible for keeping necessary networking information about all
virtual switches and the end-nodes connected to them in order to ensure connec-
tivity between all virtual machines in a particular virtual network (Göransson and
Black, 2014, p. 136). Numerous virtual networks can separately operate on the same
physical network (Göransson and Black, 2014, p. 78).
As for the MAC-in-IP tunneling mechanism, there are several technologies in use and
each vendor supports one or more of them in their solutions based on this approach.
For the main three technologies – VXLAN, NVGRE, and STT – they all work on
the same principal and differ only in the implementation of this method (Göransson
and Black, 2014, p. 77. 152–155).
More details on SDN via hypervisor-based overlay networks can as well be found in
the book of Göransson and Black (2014, p. 76–78, 135–139).

3.3 Tools
3.3.1 HPE VAN SDN Controller

Virtual Application Networks (VAN) SDN Controller, a product of Hewlett Packard
Enterprise (HPE), is a commercial SDN controller well-designed to serve in de-
manding environments like campuses or data centers (Hewlett Packard Enterprise,
2016a).

3.3 Tools 49

HPE VAN SDN Controller, latest version 2.7.10 at the time of writing, supports
OpenFlow v. 1.0 and v. 1.3, Netconf, and SNMP protocols for southbound commu-
nication, which is used to control connected networking devices. As for northbound
interfaces, there is a RESTful HTTPS interface brining an abstract representation
of the network to external (proactive) applications, and for reactive applications
there is a native Java API allowing the applications to run within the controller.
The controller provides a graphical user interface for the controller administration
(Hewlett Packard Enterprise, 2016a).

Figure 8: HPE SDN VAN Controller GUI – OpenFlow Monitor.

This controller was used in previous experiments of the networking work group
(Pokorný and Zach, 2015) and is employed in this work to continue in the preceding
efforts because it also conforms to potential future needs. In case a deployment of
SDN is considered in the university network, this controller solution is suited for
such environments and its producer can provide adequate support.

50 3 FOUNDATION

According to the support matrix (Hewlett Packard Enterprise, 2016b, p. 5), the
controller requires a well-equipped machine (2.2 GHz x86-64 4-core processor, 8 GB
RAM available to the controller, 75 GB of disk space) even for development and
test deployments, but it can function under worse conditions for less demanding
scenarios. With growing demands for controller operation, the demands for server
performance grow as well.
The controller software is provided in two forms (Hewlett Packard Enterprise, 2016c,
p. 5):
• as a virtual appliance, which is prepared for immediate usage with everything

preinstalled, from HPE Linux operating system to concrete packages.
• as a Debian package for installation on Ubuntu Linux.

The installation process is well documented in the Installation Guide (Hewlett
Packard Enterprise, 2016c).

Figure 9: HPE SDN VAN Controller GUI – OpenFlow Topology.

3.3 Tools 51

When the controller is installed and running, there are a few useful places for man-
agement and experimentation (Hewlett Packard Enterprise, 2016d, p. 21; Hewlett
Packard Enterprise, 2016e, p. 10):
• https://controller-IP-address:8443 – graphical administration of the con-

troller.
– OpenFlow Monitor – an overview of all switches connected to the controller

provides detailed information about the switch, its ports and defined flow
entries and groups. This tool is captured in Figure 8.

– OpenFlow Topology – a simple visualization of the connected network that
displays not only the network topology, but may also provide elementary
information about end-nodes and switches such as port identifiers, MAC ad-
dresses, IP addresses and other. It can also show the shortest path between
two selected end-nodes computed using the Dijkstra algorithm. This tool is
captured in Figure 9.

• https://controller-IP-address:8443/api – RSdoc, an interactive online
documentation of the REST API. If authenticated, the user can access and
manipulate real controller data, therefore it should be used carefully in order to
not cause undesired changes. The REST API Reference (Hewlett Packard En-
terprise, 2016e, p. 10–11) provides instructions on how to authenticate through
RSdoc.

• https://controller-IP-address:8443/sdn/v2.0/models – REST API JSON
data model, which presents all possible JSON objects and their attributes that
can be used in the communication via the REST API.

3.3.2 REST and RESTful API

Representational State Transfer (REST) is an architectural style for application
interfaces. It defines a set of constraints an interface must comply with to be called
RESTful. RESTful APIs are to provide simple and clean access to resources and
their manipulation (Fredrich, 2013, p. 6).
Every resource is accessible through its identifier – URI – and a client may read or
manipulate the resource using messages. It is important to note that only a rep-
resentation of the resource is given to the client, for example, a server does not
send the whole database, but only a, for example, XML representation of particular
records. When a client holds the representation of a resource, it contains enough
information for manipulation of the resource on the server if the client has adequate
permissions. Similarly, each message includes information describing how to process
it, for example by specifying a media type (Fredrich, 2013, p. 7).
While the architecture demands no particular transfer protocol to be used, HTTP
is advantageously used in most cases. Its request methods GET, POST, PUT,

52 3 FOUNDATION

and DELETE provide all the elementary operations for reading or manipulating
resources (Fredrich, 2013, p. 11–14):
• GET - is used for retrieving information and its request body is empty.
• POST - is used for creating a new record, for which the server decides the new

URI. The request body contains the data of the new record.
• PUT - is used for updating an existing record or creating a new record, for which

the user specifies the URI. The request body contains the data of the modified
or new record.

• DELETE - is used for removing an existing record based on the provided URI
and its request body may therefore stay empty.

It is worth noting that different APIs may implement these HTTP methods in
a slightly different manner, the corresponding documentation should therefore al-
ways be investigated.
For the representation of resources, there are as well no restrictions on the chosen
format. Typically a general-purpose standard format is used such as HTML, XML,
or JSON for simple processing, but any other format may be used that best suites
the particular data (Fredrich, 2013, p. 7).
Simple communication over a RESTful API is captured in Figure 10 and Figure 11
in the form of extracts from Wireshark, a network protocol analyzer. In Figure 10,
an HTTP request is made. It uses the GET method for reading, and approaches
a resource available under URI /get of server httpbin.org. The request message
has no body. In Figure 11 a response is received. Content type application/json
declares that the resource is represented as a JSON object, and the resource repre-
sentation itself can be seen in the body of the response message.

Figure 10: RESTful API – HTTP GET request.

3.3.3 Python

Python is an interpreted high-level programming language that is built around ob-
jects and rich data structures with dynamic typing and binding. Python programs

3.3 Tools 53

Figure 11: RESTful API – HTTP response with a JSON object.

are slower than those written in languages like Java or C++, but the code of equiva-
lent programs is significantly shorter. As such, it is well suited for example for rapid
application development. Nonetheless, it is a full-fledged programming language
with a wide palette of standard as well as third-party libraries and it can be used for
a broad range of applications (Python Software Foundation, 2016b; Van Rossum,
1997).
Python was chosen as the base programming language for this thesis not only for its
simplicity and high-level programming approach, but also because of the existence
of HP SDN Client – a library that provides bindings for the REST API of the
HPE controller. It makes the interaction with the controller simple by covering
the HTTP requests and the data in readable and easy-to-use methods and data
structures (Tucker, 2014). Version 3 of Python was chosen in order to build the
project on the newest version, even though it is still making its way to replace the
widely-spread version 2 and compatibility issues may appear.

3.3.4 Graphical user interface (GUI) framework

When choosing the GUI framework, I had only little experience with creating graph-
ical interfaces and did not know in advance all elements that might be needed in the
project. Also, I could not have guessed whether it would be feasible to implement all
features in a particular framework without having sufficient prior experience with
it.
Therefore, I looked for a framework that would be under active-development, multi-
platform, well-established, and with sufficient documentation and learning resources.
Preferably, I also wanted to gain knowledge of a framework that I could use in
future projects, possibly with other programming languages. To create the first
list of possible choices, I used an overview of GUI frameworks for Python (GUI
Programming in Python, 2016).

54 3 FOUNDATION

From the beginning, I filtered out frameworks that are obsolete or intended for
a very specific and narrow usage, and then ended up with these remaining frame-
works:
• Kivy – is an open-source Python library that allows rapid development of appli-

cations with innovative user interfaces. The framework is mostly concerned with
the graphical interface part of applications and as such provides native support
of many inputs and devices, allowing creation of multi-touch applications. It can
run the same program on Windows, Linux, macOS, Android, and iOS without
any code modifications (Kivy, 2016a). Kivy supports Python 3 except for iOS
build tools that require Python 2.7. (Kivy, 2016b).

• PyGObject – is a set of Python bindings for the GNOME software platform
(Projects/PyGObject, 2016). The platform encompasses the GTK+ framework
for user interfaces as well as components, for example, for networking, data
access, multimedia, communication, and other (McCance et al., 2016). While
GNOME as a whole is targeted at Linux distributions (GNOME, 2016), GTK+
is multi-platform and may be used on Linux as well as Windows and macOS (The
GTK+ Team, 2016). PyGObject supports Python 3 (1. Installation, 2016).

• PyQt – is a library of Python bindings for the Qt application framework. Qt
is mostly known as a graphical user interface (GUI) framework, but it also
includes modules, for example, for networking, databases, threads, multimedia,
web browsing, and more. PyQt runs on the same platforms as Qt - mainly
Windows, Linux, macOS, iOS, and Android. PyQt supports Python 3 and the
latest version of Qt – 5.7 (Riverbank, 2016).

• PySide – is similar to PyQt, but it is an officially supported Python binding
for Qt. It works on Linux, Windows, macOS and Maemo. PySide supports
Python 3, but it is currently available only for Qt version 4.8, which is no
longer supported (Shaw, 2014), and bindings for version 5 are under development
(PySide, 2016; PySide FAQ, 2016).

• Tkinter – is a Python interface for the Tk GUI toolkit, which is integrated
with the Tcl programming language. Tkinter is considered to be the standard
Python GUI package (Python Software Foundation, 2016a; Tkinter, 2014). It
offers a range of commonly used elements, which can be further extended by
various extensions (Roseman, 2015). As for supported platforms, Tkinter is
available for most Unix platforms (including Linux and macOS) and Windows
systems (Python Software Foundation, 2016a). As a standard package, Tkinter
is available in Python 3.

• wxPython – is a Python binding for the wxWidgets library (wxPython, 2016).
wxWidgets covers not only the area of graphical interfaces, but also many other
parts of application development, such as file manipulation, audio and video
playback, multithreading, HTML rendering, and more (wxWidgets, 2016). wx-
Python can be used on Window as well as Unix-like systems, be it Linux, macOS,

3.3 Tools 55

or any other (wxPython, 2016). wxPython does not currently support Python
3, even though a new generation of the project is under development (How to
install wxPython; ProjectPhoenix, 2015).

Of this list, I removed PySide and wxPython right away – PySide for supporting
only an outdated version of Qt and wxPython for not supporting Python 3, on which
I wanted to build my project. Then I excluded Kivy and Tkinter because they both
deal only with graphics. Also, Kivy can be used only with Python and Tkinter does
not seem to offer advanced GUI elements. In the end, I chose PyQt over PyGObject
because of the bias the GNOME platform has for Linux systems.
Qt, ported to Python through PyQt, is a mature and advanced application frame-
work suitable for a wide range of applications, including very demanding ones, that
can be run on all major platforms of today. Qt offers an extensive documentation
and once learned through PyQt, the gained experience can then be used with the
authentic Qt, which is based on C++ (The Qt Company, 2016).

3.3.5 VirtualBox

VirtualBox is an open-source virtualization platform that enables a computer to run
multiple operating systems at once. Such software is called a hypervisor. VirtualBox
is a hosted hypervisor, which means that it needs an operating system to run on
compared to bare-metal hypervisors running directly on the server. It can run on any
standard operating system – Windows, Linux, Mac, or Solaris (Oracle Corporation,
2016).
VirtualBox is a useful tool in the development process as it allows creation of sepa-
rate workspaces, which run only the required programs and do not in any way collide
with the hosting operating system. It also comes in handy when an environment
with multiple computers is desired, be it a server and a client, or a cluster of equal
machines.
Management of virtual machines is simple using the provided graphical user inter-
face. To create a new virtual machine, the user only has to allocate the required
space for a virtual disk image, configure parameters such as number of CPU cores
or amount of RAM, then mount the installation media, install the operating system
and use it just as a regular system would be used.

3.3.6 Mininet

Mininet is an open-source network emulator that creates a virtual network with
hosts, switches, controllers, and links. It runs on Linux as it utilizes a standard Linux
feature of network namespaces that allows individual processes to have separate
network interfaces, routing tables, and ARP tables. The hosts can also run standard
Linux network applications (Mininet Team, 2016a).

56 3 FOUNDATION

Mininet supports SDN and uses OpenFlow-enabled virtual switches. It can be con-
veniently used to run complex topologies with applications using real code, which
can be later easily transferred to hardware with little or no modifications. It is
controlled through a CLI and also offers a Python API for creating networks and
experimenting. With its capability to emulate various kinds of networks, Mininet is
a real-world-like test environment for networking (Mininet Team, 2016a).
Mininet can be either installed on an existing Linux operating system or an official
virtual machine with the necessary packages preinstalled may be used (Mininet
Team, 2016b).
Elementary Mininet commands and their usage are described in Appendix C.

4 APPLICATION DESIGN 57

4 Application design
In this chapter I conceptually describe how I designed the application, for which
I will from now on use a code name Visdan for the purpose of clarity. Different
models of interaction between Visdan and a network are introduced, followed by the
application architecture, whose parts are then examined in detail.

4.1 Models of communication with the network
Visdan approaches the network through a controller (HPE VAN SDN Controller,
as mentioned before), but there are several different ways how the cooperation with
the controller may be accomplished. In the following sections I introduce three
application models I was considering for Visdan.

4.1.1 Application residing in the controller

In this case, the application is based on the native Java API and implemented to
operate directly in the controller. It registers listeners for events regarding changes
in the topology and immediately reflects them in the visualization. Residing right
in the center of activity, the application does not generate any traffic when querying
the controller for network topology or statistics. Also, its graphical user interface
is integrated straight into the administration interface of the controller. When used
simultaneously by more users, their created data is stored in the same place and
therefore synchronized among all of them.
On the other hand, the application is tailored for a particular controller and its
native API, which makes it difficult if not even impossible to adjust it for another
controller.

4.1.2 Application with an intermediate server

This approach adds an extra server in between the application and the controller.
The role of the server is to periodically collect data from the controller about network
topology and statistics, and to process application requests and hand them over to
the controller. The server uses the REST API available for external applications,
which makes it possible to add communication modules for other controllers that
also provide the REST API.
The application itself then connects to the server using an appropriate communi-
cation interface and uses it to retrieve the necessary data or to push requests for
changes in the network. With all information stored on the server side, multiple
instances of the application can run at the same time and access the same data,
including the data created by other users.

58 4 APPLICATION DESIGN

As for the disadvantages, this setting creates a significant amount of network traffic
since the server needs to download all the data from the controller and then every
instance of the application downloads it again from the server. At least for the
server, it is necessary to always download the whole network database and then
investigate it for possible changes. The server could then accommodate a service
that would provide the applications only with updates. The same functionality
could be possibly deployed also on the controller as a native application with an
appropriate API for access from the outside.

4.1.3 Standalone application

In this scenario, the application exists independently of the controller or any other
component. It exploits the REST API to retrieve the required data from the con-
troller or to push it back, which allows it to be extended to support other controllers
with the REST API. Requiring no prior preparation, the application can be instantly
used in any environment where necessary.
However, this isolation leads to several shortcomings. Since every instance of the
application runs completely separately, each of them has to periodically request data
from the controller concerning network topology and statistics. This burdens not
only the network, as was the case in the second model, but also the controller itself
as all requests are directed to it. But as was mentioned previously, an application
could be implemented to run in the controller and through a special interface provide
information on network updates, which could decrease the amount of produced
traffic. Also, any information created by users in their application remains in that
particular instance and can by no means be synchronized with other individual
instances.

4.1.4 The chosen model

The first model provides the best performance, but is limited for use with one spe-
cific controller. The second model can be potentially used with various controllers,
but adds an extra component, an intermediate server. The third model is flexible
concerning deployment, but burdens the network substantially.
I have in the end decided to implement Visdan using the third model despite all its
flaws. Key arguments for the decision were openness for other controllers, indepen-
dence of any additional elements, and more straightforward development. Created
in such manner, Visdan should be well suited for an experimental environment,
although it would not fit into a production setting because of the performance is-
sues.

4.2 Application architecture 59

Figure 12: A scheme of the application models and how they operate relative to the
controller. Application 1 stands for the application residing in the controller, Application
2 stands for the application with an intermediate server, and Application 3 stands for the
standalone application. The thickness of the connections represents the traffic load each
application model creates.

4.2 Application architecture
I have chosen the MVC (Model-View-Controller) architecture as a foundation for
the design of Visdan. MVC separates an application into three distinct sections (or
layers), each concerned with a different functionality. Of the many variations of the
MVC architecture, I have decided for the one with a passive Model and a passive
View. The roles of each section are following (Borini, 2016):
• Model – encompasses data resources, that is interfaces to databases, file sys-

tems, specific hardware, etc., and business logic that processes or creates data.
A passive Model provides no notifications about changes in the data, and always
has to be inquired again. The Model has no connections to the View or to the
Controller.

• View – provides a user interface, typically graphical, which presents data and
allows the user to interact with and modify the data. A passive View serves only
for presentation, and has no knowledge of the data it presents or the meaning of
user interactions. All logic concerned with the View should be in the Controller.
The View has no connections to the Model.

60 4 APPLICATION DESIGN

• Controller – serves as an intermediary between the Model and the View. It
requests data from the Model and uses it to fill the View. If it is necessary
to keep track of changes in the data, the Model has to be inquired repeatedly.
The Controller receives event notifications from the View and takes appropriate
actions. It may change particular data in the Model or alter the View in reaction
to a user operation.

The communication between the individual sections is depicted in Figure 13. Be-
cause Visdan uses the rich Qt framework to build the graphical user interface, some
of the View logic may stay in the View instead of being moved to the Controller,
for example input validation in form fields.

Figure 13: A sequence diagram capturing how the communication between the Model, the
Controller, and the View is realized. Inspired by the illustration from section 2.3.2. Passive
View from Understanding Model-View-Controller (Borini, 2016).

Class diagrams present in the following sections are rather conceptual and do not
contain all methods and attributes present in the final implementation. Only the
ones crucial for understanding of the functionality and cooperation between objects
are mentioned. Also, classes of the same name may appear in more layers, because
the layers will be put in separate namespaces in the implementation.

4.3 Model layer
As mentioned before, the Model layer provides access to data resources and functions
for their processing. In Visdan, it takes care of the communication with the network
controller, retrieving network data, and storing user-defined data related to the
network. Its class diagram is depicted in Figure 14.
NetworkData aggregates network-related data from both the SDN controller and
the user. Since it should be possible to use Visdan with various controllers, an inter-

4.3 Model layer 61

Figure 14: A class diagram of the Model layer.

face Network (described later in greater detail) was designed to allow for a unified
approach to all controllers. To add support for another controller, a module imple-
menting the interface has to be included, but no other changes have to be done in
Visdan.
Other than the data retrieved from the controller, NetworkData stores user-defined
information about hierarchy levels assigned to particular datapaths, names given to
particular datapaths or nodes, and defined network paths.
DefinedPath is a data container that contains parameters of a defined path, which
has a user-defined local name. Match fields common for all datapaths, involved
in the path, are stored in a dictionary. At this point, following match fields are
considered: IPv4 source and destination addresses, IP protocol (TCP or UDP), and
IP protocol port numbers.
Fields specific for each datapath are stored in a dictionary. The fields include data-
path DPID, negotiated OpenFlow version, and input and output ports for matched
packets. These dictionaries are stored in an array, whose order reflects the order of
datapaths in the path.
Flow-entry configuration parameters priority, idle timeout, and hard timeout are
also stored as well as the timestamp of when the path was defined.

4.3.1 Network controller interface: data structure

The Network interface, as mentioned before, serves as a base for implementa-
tion of concrete interfaces for communication with various controllers. Figure 15
presents a class diagram of the abstract Network class accompanied by additional
data structures it makes use of. Every interface has to implement methods regarding
connection to the controller, data retrieval, and data pushing.

62 4 APPLICATION DESIGN

Figure 15: A class diagram of the Network interface used for communication with a con-
troller, and additional data structures used by the interface.

In order to always provide Visdan with network data in the same format regardless
of the actual connected controller, a set of data structures was designed that are to
be used by the interfaces without any changes.
Datapath contains information about a datapath, and has two dictionaries for its
active ports – one stores references to connected datapaths and nodes, and the other
keeps traffic statistics in the PortStats containers. Node represents an end-user
device, and contains a reference to its parent datapath. Link stores references to two
interconnected devices – be it two datapaths, or a datapath and a node. Update
serves as a return object given by Network when inquired for network changes.
It contains references to added or removed datapaths or nodes, and connected or
disconnected links. It describes the differences between the actual and the last saved
state of the network.
Operation of algorithms for loading and updating data from the network through
the controller is described in Appendix E.
Data structures used from the REST API of the HPE VAN SDN Controller are
described in Appendix D.

4.4 View layer 63

4.4 View layer
The View Layer is concerned with presenting various data and control elements to
the user. As for Visdan, this is realized through a graphical interface. A design
for the layout of the application window is depicted in Figure 16, while its class
diagram is depicted in Figure 17. The structure of the classes closely corresponds to
the structure of the graphical interface and how the elements are put together. All
the classes subclass classes of the Qt framework and are configured and customized
for the needs of Visdan.

Figure 16: A layout of the graphical user interface of Visdan.

Window represents the application window, and is the core element that contains
and positions the key components.
In the center, there is View that provides network visualization, the main func-
tionality of Visdan. The view itself does not contain any data, but needs to have
a particular scene attached, which it then displays. Scene is independent of View,
and works like a canvas on which various elements may be drawn. These elements
are represented by classes Datapath, Node, Link, and Stats. When a change
occurs in the scene, the associated view is automatically refreshed. The view also
captures mouse events from the user, which allows for the canvas elements to be,
for example, arbitrarily moved by dragging or selected by clicking.
On the right side, there is Sidebar. The sidebar serves as a home for different panels,
which can be switched using a tab bar on the top. As for now, there are four pan-
els. Connection provides a form to choose the desired controller interface, fill the
necessary information, and connect to the controller. Detail presents extended in-
formation about a datapath or a node. PathDefinition presents a tabular overview
of the elements already chosen for the path, and then provides a form to configure

64 4 APPLICATION DESIGN

Figure 17: A class diagram of the View Layer.

the details of the path definition once the choosing is complete. SaveLoad allows
the user to export or import custom-defined data to or from an external file.
Below the view, there are defined paths. DefinedPaths offers a tree-structured list
of user-defined paths, in which each item may be unpacked to show the particular
elements involved in the path. The path may also be deleted from the list.
Alert is an auxiliary class that is used when it is necessary to show warning or
question dialogs to the user.

4.5 Controller layer
The Controller layer is to ensure the connection between the Model layer and the
View layer, and to provide appropriate reactions to user inputs. In Visdan, neither
the Model layer nor the View layer keep direct references to the Controller layer, but
the Controller layer keeps direct references to both of them. However, to inform the
Controller layer about any occurring user events, the View layer has to be connected

4.5 Controller layer 65

to it. Visdan utilizes a feature called signals and slots of the Qt framework for this
purpose.
Signals and slots can be well exploited to realize the communication between the
View layer and the Controller layer, which is schematically depicted in Figure 18.
Signals are emitted by various elements in the View layer in reaction to a change
or a user action. They may be plain or carry some values. For example, a text
form field (Qt class QTextEdit) emits a signal every time its content changes (signal
textChanged()). Slots are functions or methods that may be evoked by signals
connected to them. For example, the previously mentioned text field has a slot that
clears its content (slot clear()), which might, for example, be evoked in reaction
to a user clicking the Cancel button.

Figure 18: A schema of the communication between the View layer and Controller layer
as realized through signals and slots. The signal createTree() has been emitted, and the
slot layout_tree() is evoked and changes the visualization to a tree layout.

As for Visdan, there is a class Controller (as depicted in the class diagram in Figure
19), which provides slots for all concerned signals emitted by objects in the View
layer and takes care of having the corresponding objects and methods process the
events and react on them. It keeps a reference to Window, the main window of the
graphical interface, to NetworkData, the aggregate class of the Model layer, and to
Path and Layout, which are described below.
UpdateWorker is an auxiliary class that is used to run network updates in a sep-
arate thread. This is to prevent the graphical interface being stuck while processing
changes in the network.
Path keeps track of the current path definition. It records the datapaths and nodes
selected by the user for the path, and manages the table in the PathDefinition panel,
in which the so far selected elements are listed.
Layout serves to transform the data retrieved from a network controller into a visu-
alization useful to and easily readable by a user. Once processed, graphical elements

66 4 APPLICATION DESIGN

corresponding to the network elements are added to the scene in the View layer.
By default, the graphical elements are arranged in a randomly generated graph
structure. If the user defines a hierarchy level distribution or core for at least one
datapath, the visualization may be transformed into a tree-like structure. Because
the information provided by the user may be concerned only with a part of the
connected network, elements that are not included by the tree are positioned using
the graph algorithm. This may happen, for example, when there are two separate
networks connected to the controller, but the user designates the hierarchy only for
one of them.
Auxiliary classes TreeDatapath and TreeNode are used to create a tree-like data
structure necessary for the drawing itself. This data structure is not actually a tree,
even though it takes some of it characteristics. There are two facts in which it
mainly differs. Firstly, it may have more than one root element (for example a core
switch doubled for high availability), and secondly, it keeps only one predecessor for
each datapath, although in reality it may be connected to more elements superior in
the hierarchy. This is because every element has to belong to one specific sub-tree
of a particular datapath. The second difference relates only to the data structure,
in the visualization all links are depicted.
The Translation class is a data container with several dictionaries that store the
relations between network elements and their graphical counterparts.
Algorithms that are used to create the tree-like data structure for visualization and
draw it are described in Appendix F.

4.5 Controller layer 67

Figure 19: A class diagram of the Controller layer. Not all attributes and methods are
shown, but only an excerpt for elementary understanding of the purpose of the classes.

68 5 IMPLEMENTATION

5 Implementation
This chapter describes how key features of Visdan are implemented. Relevant ex-
cerpts from the source code are explained, the whole application code is then present
in the digital appendices.

5.1 Data retrieval
5.1.1 Connecting to the controller

Since Visdan uses the REST API, it does not keep a permanent connection to
the controller. Instead, the connection is based on requests. In the beginning, it
is necessary to obtain an authentication token, which is checked by the controller
every time a request is made. The controller keeps information about issued tokens
and allows access to its resources only if the token is valid.
All communication with the controller is carried out by the network interface module
interfaces.hpe through its class Network. To approach the controller, the module
hp-sdn-client is used. In the code it is imported as hp, which is then used as a prefix
when objects and methods of this module are called.

Soure code 1: Connecting to the controller.
class Network(base.BaseNetwork):

...
def connect(self, server, user, password):

Obtain an authentication token
auth = hp.XAuthToken(server=server, user=user, password=password)
Keep a reference to the API accessed with the token
self._api = hp.Api(controller=server, auth=auth)

5.1.2 Loading data

To load network data from the controller into the application, it is necessary to
retrieve the whole section of network data and then process each of its elements in
a cycle. As for datapaths, the required information is saved in a Datapath object,
which is then stored in its superior Network object.

Soure code 2: Loading datapaths (method load – part 1).
class Network(base.BaseNetwork):

...
def load(self):

Retrieve datapaths from the controller
datapaths = self._api.get_datapaths()

for dp in datapaths:
Save the datapath

5.1 Data retrieval 69

self._datapaths[dp.dpid] = base.Datapath(dp.dpid, dp.device_ip,
dp.negotiated_version)

...

As for nodes, the required information is stored in a Node object, but also the
connection between the node and its parent datapath has to be stored. In Node,
a reference to the parent Datapath object is kept together with the port number.
As well a reference to Node is kept in Datapath. Information about the connection
is also stored in a Link object. Both Node and Link then have to be saved in
Network.

Soure code 3: Loading nodes (method load – part 2).
...
Retrieve nodes from the controller
nodes = self._api.get_nodes()

for n in nodes:
Obtain the Datapath object for the parent datapath
parent = self._datapaths[n.dpid]
Save the node
node = base.Node(n.mac, n.ip, parent, n.port)
self._nodes[n.mac] = node
Connect the node to its parent datapath
parent.connect(n.port, node)
Save the link
link = base.Link(parent, node)
self._links.add(link)

...

As for links, information about the connection is stored in a Link object as well as
in the involved datapaths, which have to be mutually connected. Link is then saved
in Network as mentioned before.

Soure code 4: Loading links (method load – part 3).
...
Retrieve links from the controller
links = self._api.get_links()

for l in links:
Save the link
link = base.Link(self._datapaths[l.src_dpid],

self._datapaths[l.dst_dpid])
self._links.add(link)
Mutually connect the involved datapaths
self._datapaths[l.src_dpid].connect(l.src_port,

self._datapaths[l.dst_dpid])
self._datapaths[l.dst_dpid].connect(l.dst_port,

self._datapaths[l.src_dpid])

70 5 IMPLEMENTATION

5.1.3 Updating data

Data updates make use of the functionality used for loading data. All network data
is downloaded again and then compared with the data saved in the Network object.
This is done periodically, and the involved processes have to run in separate threads
to not block the graphical interface.
In the beginning of the algorithm, datapaths and nodes are retrieved, and several
sets are initialized. All new elements (devices or links) are added to these sets, which
are at the end compared with the original content of Network to find and remove
elements that are not present in the network anymore.
The Update object stores information about changes in the network. It has four lists
– add, remove, connect, and disconnect. Whenever a datapath or a node is added
or removed, its object is added to the corresponding list in order to to be added
to or removed from the visualization. In the same manner, links are added to lists
connect and disconnect.

Soure code 5: Preparing network update (method update – part 1).
class Network(base.BaseNetwork):

...
def update(self, interval):

Initialize the container for updates
update = base.Update()

Retrieve datapaths from the controller
datapaths = self._api.get_datapaths()
Retrieve nodes from the controller
nodes = self._api.get_nodes()

Prepare sets that will serve to compare the new network state to the
original state
new_dpids = set()
new_macs = set()
new_links = set()
...

In the next step, retrieved datapaths are iterated, and a Datapath object is created
for each one. If a datapath with the same DPID already exists in Network, the old
and the new object are compared. In case there are any differences, that is any
parameter has changed, the old Datapath object is removed. In the same way the
new object is then added to Network. DPIDs stored in Network are then compared
with the set of new DPIDs, and any leftovers are removed.

Soure code 6: Updating datapaths (method update – part 2).
...
Iterate retrieved datapaths
for dp in datapaths:

new = base.Datapath(dp.dpid, dp.device_ip, dp.negotiated_version)

5.1 Data retrieval 71

new_dpids.add(dp.dpid)

Is this datapath (with the same DPID) already stored?
Does the new object differ from the original object?
Remove the original datapath if it differs from the new one.
if dp.dpid in self._datapaths and self._datapaths[dp.dpid] != new:

update.remove.append(self._datapaths[dp.dpid])
del self._datapaths[dp.dpid]

Save the datapath in case it is not stored
Also applies if it was removed in the previous step
if dp.dpid not in self._datapaths:

update.add.append(new)
self._datapaths[dp.dpid] = new

Remove datapaths that were in the original network state, but are not
in the new state
leftover_dp = self._datapaths.keys() - new_dpids
for i in leftover_dp:

update.remove.append(self._datapaths[i])
del self._datapaths[i]

...

Nodes are compared in exactly the same way, there is only one difference. Since
nodes are connected to datapaths, they have to be disconnected to free the port
before they are removed. When a new Node is added, it has to be connected to
its parent Datapath and a Link object has to be created, as it was when loading
nodes.
Soure code 7: Updating nodes (method update – part 3).

...
Iterate retrieved nodes
for n in nodes:

new = base.Node(n.mac, n.ip, self._datapaths[n.dpid], n.port)
new_macs.add(n.mac)

Is this node (with the same MAC address) already stored?
Does the new object differ from the original object?
Remove the original node if it differs from the new one.
if n.mac in self._nodes and self._nodes[n.mac] != new:

self._nodes[n.mac].parent.disconnect_device(self._nodes[n.mac])
update.remove.append(self._nodes[n.mac])
del self._nodes[n.mac]

Save and connect the node in case it is not stored
Also applies if it was removed in the previous step
if n.mac not in self._nodes:

self._nodes[n.mac] = new
update.add.append(new)
new.parent.connect(n.port, new)

72 5 IMPLEMENTATION

link = base.Link(new.parent, new)
new_links.add(link)
Save the link in case it is not already stored
if link not in self._links:

self._links.add(link)
update.connect.append(link)

Remove and disconnect nodes that were in the original network state,
but are not in the new state
leftover_n = self._nodes.keys() - new_macs
for i in leftover_n:

self._nodes[i].parent.disconnect_device(self._nodes[i])
update.remove.append(self._nodes[i])
del self._nodes[i]

...

Next, datapaths in the new network state are iterated in order to update their links
with other datapaths and to update their port statistics. For every link it is checked
whether the other datapath is connected to the checked datapath and whether the
port is the same as it was before. If the connection is the same, the other datapath
cannot be connected to the same port again because it would erase statistics of this
port.
Ports are then checked for leftovers, and any port connected to a Datapath object
is cleared because it is not connected anymore. In case the port was connected to
a Node object, the port would be preserved. Connections between datapaths and
nodes are not included in links downloaded from the controller, and were therefore
handled separately in the previous section of the algorithm. For every active (not
cleared) port of the datapath, port statistics are then downloaded and updated.

Soure code 8: Updating datapath links and port statistics (method update – part 4).
...
Iterate datapaths in the new state
for dpid in self._datapaths:

Retrieve links for this datapath from the controller
links = self._api.get_links(dpid)
Prepare a set that will serve to compare the connected ports on
this datapath from the new network state to the ones from
the original state
new_ports = set()
for li in links:

Find out whether this datapath is in the link as source
or as destination
if dpid == li.src_dpid:

this = li.src_dpid
this_port = li.src_port
other = li.dst_dpid
other_port = li.dst_port

else:
this = li.dst_dpid

5.1 Data retrieval 73

this_port = li.dst_port
other = li.src_dpid
other_port = li.src_port

link = base.Link(self._datapaths[li.src_dpid],
self._datapaths[li.dst_dpid])

new_links.add(link)
new_ports.add(this_port)

Connect the datapaths
In case the other datapath has been already connected and
its port has not changed, do not connect the datapaths again
if (self._datapaths[this].port_of_device(

self._datapaths[other]) != this_port):
self._datapaths[li.src_dpid].connect(

li.src_port, self._datapaths[li.dst_dpid])
self._datapaths[li.dst_dpid].connect(

li.dst_port, self._datapaths[li.src_dpid])

Save the link in case it is not already stored
if link not in self._links:

self._links.add(link)
update.connect.append(link)

Clear ports that were connected to a datapath in the old state,
but are not anymore in the new state
leftover_p = self._datapaths[dpid].ports_devices.keys() - new_ports
for p in leftover_p:

if isinstance(self._datapaths[dpid].ports_devices[p],
base.Datapath):

self._datapaths[dpid].disconnect_port(p)

Retrieve port statistics from the controller
stats = self._api.get_port_stats(dpid)
for s in stats:

Update port statistics for each active port.
The check is necessary because a local port for out−of−band
switch−controller communication would not be included in
the ports, but would have its statistics.
if s.port_id in self._datapaths[dpid].ports_stats:

self._datapaths[dpid].update_port_stats(s.port_id,
interval, s.rx_bytes, s.tx_bytes)

...

For the last step, new and old Link objects are compared and leftovers removed.
At this point, the updating process is finished and the Update object containing all
changes is returned to the calling process.

Soure code 9: Updating datapath links and port statistics (method update – part 5).
...
Remove links that were in the original network state, but are not

74 5 IMPLEMENTATION

in the new state
leftover_li = self._links - new_links
for i in leftover_li:

update.disconnect.append(i)
self._links = new_links

return update

5.2 Data visualization
5.2.1 Graph

Visualization of network data is realized by class Layout. It employs a library
networkX, which provides graph data structures and algorithms that operate on
them. It is necessary to transform the retrieved network data into a graph in order
to make it possible to run a positioning algorithm on this data. At first, nodes and
edges have to be added to the graph.

Soure code 10: Adding nodes and edges to the graph (method graph_create – part 1).
class Layout:

...
def graph_create(self, net_elements, net_links):

Iterate datapaths and nodes
for net_element in net_elements:

Create a graphical element for the network element
grph_element = self.create_graphical_element(net_element)
Add the graphical element to the graph
self.graph.add_node(grph_element)

Initialize a~list for graphical links
grph_links = []
Iterate links
for net_link in net_links:

Create a graphical link for the network link
grph_link = self.create_graphical_link(net_link)
Add to the graph an edge connecting graphical counterparts of the
connected network elements
grph_element1 = grph_link.source
grph_element2 = grph_link.destination
self.graph.add_edge(grph_element1, grph_element2)
Add the link to a~list of graphical links
grph_links.append(grph_link)

...

Once the graph data structure is established, it is possible to generate positions for
every vertex. A Fruchterman-Reingold force-directed algorithm is used to distribute
the nodes in a manner that respects their mutual connections and positions them
accordingly. By default, the nodes are positioned in a box of size [0, 1] x [0, 1],

5.2 Data visualization 75

which is not useful when the scene, on which the graphical elements are placed,
uses real pixel dimensions. Therefore, a scale factor is used, which was determined
experimentally and is based on the number of nodes in the graph.

Soure code 11: Calculating positions of graph nodes (method graph_create – part 2).
...
scale = 100 * math.pow(1.15, self.graph.number_of_nodes())
self.positions = nx.spring_layout(self.graph,

scale=scale)
...

With the positions calculated, it only remains to place the graphical elements on
the scene at these positions. The positioning algorithm returns a dictionary where
nodes serve as keys, and for values are used arrays with 2 values representing x and y
coordinates. When all graphical elements are settled, graphical links may be added
to connect them.

Soure code 12: Calculating positions of graph nodes (method graph_create – part 3).
...
for grph_element in self.positions:

self.scene.add_element(grph_element, self.positions[grph_element])

for grph_link in grph_links:
self.scene.add_link(grph_link)

5.2.2 Tree

If the user declares particular datapaths as distribution or core, these may serve
as root elements for a tree-like structure, into which the visualization may be
transformed. A breadth-first search algorithm is used to create a supplementary
data structure using TreeDatapath and TreeNode objects based on the specified
roots.

Soure code 13: Creating a tree-like data structure.
class Layout:

...
def tree(self, net_treetop):

top = True
row = set(net_treetop)
passed = set()
next_row = set()
predecessors = {}
tree_roots = []
while len(row) != 0:

Get next Datapath object in the row
net_datapath = row.pop()
Mark it is as processed

76 5 IMPLEMENTATION

passed.add(net_datapath)

Obtain a graphical element for the given network datapath
grph_datapath = self.translation.element_to_graphical[net_datapath]
Create a tree representation of the datapath
tree_datapath = TreeDatapath(grph_datapath)
If the first layer is being processed, save the tree object into
a list of root tree objects
if top:

tree_roots.append(tree_datapath)

Iterate devices connected to the datapath
for device in net_datapath.ports_devices.values():

If the device is a datapath, add it to the next row unless it
is already there or unless it has been already processed or is
about to be processed in this row.
if isinstance(device, data.interfaces.Datapath):

if device not in (passed | row | next_row):
next_row.add(device)
A tree object for the datapath will be created once it is
processed by the main cycle. The relationship between
these datapaths will have to be stored
when both of them have a tree object. For now, it is
temporarily stored in predecessors dictionary.
predecessors[device] = tree_datapath

If the device is a node, a TreeNode object is created
immediately and connected to parent TreeDatapath.
elif isinstance(device, data.interfaces.Node):

Obtain a graphical element for the given network node
grph_node = self.translation.element_to_graphical[device]
Create a tree representation of the node
tree_node = TreeNode(grph_node)
Connect it to its parent datapath
tree_datapath.nodes.append(tree_node)

At this point, the relationships between datapaths are finalized.
Parent TreeDatapath is connected to this Tree Datapath as.
a predecessor. This TreeDatapath is added to successors of parent
TreeDatapath.
if net_datapath in predecessors:

tree_datapath.predecessor = predecessors[net_datapath]
predecessors[net_datapath].successors.append(tree_datapath)

If the row has been processed
if len(row) == 0:

Every row except for the first one is not considered a root row
top = False
The next row is taken to be processed
row = next_row
next_row = set()

...

5.2 Data visualization 77

Now, when the tree data structure is prepared, it can be processed through a depth-
first search algorithm, which positions the graphical elements in such a way, that the
result looks like a tree. In the algorithm, positions are calculated in matrix fields,
which are an the end converted to real coordinates.

Soure code 14: Drawing the tree-like data structure.
class Layout:

...
def tree(self, net_treetop):

...
Set initial coordinates
pos = Coords(0, 0)
Iterate root elements
for root in tree_roots:

Process every root through the depth−first search algorithm
The final position is used as the initial position for the next
neighboring root
pos = self.tree_draw(root, pos)

def tree_draw(self, root, start_pos):
If the element is a datapath
if isinstance(root, TreeDatapath):

Obtain the element dimensions in matrix units
width, height = gui.scene.SceneMatrix.element_matrix_size(

root.grph_element)

Calculate the initial position for the next row based on the height
of the element plus spacing
succ_y = start_pos.y + height + 7
succ_pos = Coords(start_pos.x, succ_y)
Define horizontal end position in case there are no successors
end_x = start_pos.x + width
Iterate successors of this datapath
for succ in root.successors:

The end position is used as the initial position for the
next successor
succ_pos = self.tree_draw(succ, succ_pos)
Keep the farthest end x coordinate
end_x = max(end_x, succ_pos.x)

Compensation for spacing after the last element of the sub−tree
end_x = end_x - 5 if end_x > (start_pos.x + width) else end_x

Keep the position of the first node
first = succ_pos
Iterate nodes connected to this datapath
for i, node in enumerate(root.nodes, start=1):

succ_pos = self.tree_draw(node, succ_pos)
end_x = max(end_x, succ_pos.x)
Nodes are positioned in a~grid with tree nodes on a~row
if i % 3 == 0:

node_width, node_height = (

78 5 IMPLEMENTATION

gui.scene.SceneMatrix.element_matrix_size(
node.grph_element))

new_y = succ_pos.y + node_height + 3
succ_pos = Coords(first.x, new_y)

When all successors and nodes are processed, the sub−tree of
this datapath is completely drawn. The datapath is then centered
above its sub−tree.
offset_x = int(math.floor((end_x - start_pos.x - width)/2))
position = Coords(start_pos.x + offset_x, start_pos.y)

Convert matrix coordinates to real coordinates
new_scene_pos = gui.scene.SceneMatrix.pos_to_scene(position)
Position the graphical element on the scene
root.grph_element.setPos(new_scene_pos.x, new_scene_pos.y)
self.positions[root.grph_element] = (new_scene_pos.x,

new_scene_pos.y)

Return the end coordinates with spacing included
end_pos = Coords(end_x + 5, start_pos.y)
return end_pos

If the element is a~node, it is only placed on the scene using the
initial coordinates and its end coordinates are returned.
elif isinstance(root, TreeNode):

new_scene_pos = gui.scene.SceneMatrix.pos_to_scene(start_pos)
root.grph_element.setPos(new_scene_pos.x, new_scene_pos.y)
self.positions[root.grph_element] = (new_scene_pos.x,

new_scene_pos.y)

width, height = gui.scene.SceneMatrix.element_matrix_size(
root.grph_element)

end_pos = Coords(start_pos.x + width + 1, start_pos.y)
return end_pos

5.3 Path definition
When a traffic path is selected and configured in the graphical interface, it has
to be decomposed into individual flow entries that are then pushed to particular
datapaths. This decomposition takes place in class NetworkData. Controller takes
data from the path definition form and hands it over to NetworkData.
Mandatory fields are priority, idle timeout, and hard timeout. Optional fields are
IP protocol and TCP or UDP source and destination port numbers.

Soure code 15: Decomposing a path.
class NetworkData:

...
def add_path(self, src, dst, datapaths, mandatory, optional):

5.3 Path definition 79

...
Count datapaths
dp_count = len(datapaths)
Set the source end node as the preceding device for the first datapath
pred = src
Iterate datapaths involved in the path
for index in range(dp_count):

Set current datapath
curr = datapaths[index]
Check if this datapaths is the last one
If yes than the succeeding device is the destination end node
if index == dp_count-1:

succ = dst
else:

succ = datapaths[index+1]

Input port = port where the preceding device is connected
in_port = curr.port_of_device(pred)
Output port = port where the succeeding device is connected
out_port = curr.port_of_device(succ)

Send the flow entry definition to the network interface
self.net_controller.add_flow(curr, src.ip, dst.ip,

in_port, out_port, mandatory['priority'],
mandatory['idle_timeout'], mandatory['hard_timeout'],
**optional)

Set the current datapath as preceding
pred = curr

...

In the network interface, the flow entry data is converted into a structure required
by the API, which is then pushed to the specified datapath.

Soure code 16: Pushing a flow entry into a datapath.
class Network(base.BaseNetwork):

...
def add_flow(self, datapath, src_ip, dst_ip, in_port, out_port,

priority, idle_timeout, hard_timeout, **kwargs):
Prepare match fields of the flow entry
match_args = {}
match_args['ipv4_src'] = src_ip
match_args['ipv4_dst'] = dst_ip
match_args['eth_type'] = 'ipv4'
match_args['in_port'] = in_port

Add IP protocol field if it equals to TCP or UDP
if kwargs['ip_protocol'] is enums.IpProtocol.tcp:

match_args['ip_proto'] = 'tcp'
Add TCP source port if given

80 5 IMPLEMENTATION

if kwargs['tcp_src']:
match_args['tcp_src'] = kwargs['tcp_src']

Add TCP destination port if given
if kwargs['tcp_dst']:

match_args['tcp_dst'] = kwargs['tcp_dst']
elif kwargs['ip_protocol'] is enums.IpProtocol.udp:

match_args['ip_proto'] = 'udp'
Add UDP source port if given
if kwargs['udp_src']:

match_args['udp_src'] = kwargs['udp_src']
Add UDP destination port if given
if kwargs['udp_dst']:

match_args['udp_dst'] = kwargs['udp_dst']

Convert match fields to the Match datatype of hp−sdn−client
match = hp.datatypes.Match(**(match_args))
Create an action using the Action datatype of hp−sdn−client
action = hp.datatypes.Action(output=out_port)

Prepare configuration parameters of the flow entry
flow_args = {}
flow_args['priority'] = priority
flow_args['idle_timeout'] = int(idle_timeout)
flow_args['hard_timeout'] = int(hard_timeout)

Construct messages using the Flow datatype of hp−sdn−client
Construct a message for OpenFlow v. 1.0
if datapath.of_version == "1.0.0":

Version 1.0.0 uses Actions
flow = hp.datatypes.Flow(match=match, actions=action, **flow_args)

Construct a message for OpenFlow v. 1.3
else:

Version 1.3.0 uses Instructions with Actions inside
instruction = hp.datatypes.Instruction(apply_actions=action)
flow = hp.datatypes.Flow(match=match, instructions=[instruction],

**flow_args)

Push the flow entry to the datapath
self._api.add_flows(datapath.dpid, flow)

5.4 Graphical user interface realization
Concerning the graphical user interface, it was realized according to the design
concept. It uses standard window and form elements for most of the functions. As
for network elements drawn on the canvas, their graphics is simple yet functional.
A few illustration follow.

5.4 Graphical user interface realization 81

Figure 20: Vidan application window. The complete screenshot is attached in digital
appendices.

Figure 21: Detail of network visualization. Elements with an extra frame are selected in
the defined path. The complete screenshot is attached in digital appendices.

82 5 IMPLEMENTATION

Figure 22: Detail of path definition. The table provides an overview of network elements
that have been selected so far. The complete screenshot is attached in digital appendices.

Figure 23: Detail of path definiton. The form serves for configuration of the path. The
complete screenshot is attached in digital appendices.

5.4 Graphical user interface realization 83

Figure 24: Detail of the overview of defined paths, which is presented using a tree structure.
The complete screenshot is attached in digital appendices.

84 6 TESTING

6 Testing
In this chapter I describe how I tested Visdan, the developed application. The main
purpose of the testing is to find out whether Visdan fulfills stated goals and performs
the tasks as expected:
• visualize the connected network
• measure link utilization
• allow traffic path definition

Scenarios described in following sections were tested with this background:
• Client

– Ubuntu 14.04 desktop
– Python 3.4.3

• Server
– Ubuntu 14.04 server
– HPE VAN SDN Controller 2.7.10
– Mininet 2.2.1
– Open vSwitch 2.0.2

6.1 Virtual network infrastructure
A network is necessary to test the functionality of Visdan. I used Mininet to create
a virtual network for this purpose. The topology is depicted in Figure 25 – it is
a standard binary tree topology. It does not contain any loops so it could be used
without the Spanning Tree Protocol running on the switches. Nevertheless, it can
be well used to test all the required functionality.
Two ways for creating this topology in Mininet are described in Appendix G.

6.2 Scenario 1: network visualization
For this functionality, it is required that all devices present in the network are
visualized on the canvas in Visdan. While switches are directly connected to the
controller and managed by it, end hosts have to be discovered based on their activity.
By default, Mininet hosts do not generate any activity, so for example a pingall
command has to be executed to make the hosts send ARP requests and the con-
troller register the hosts. Node discovery is a responsibility of the controller, so the
controller should have a module that equips switches with flow entries to handle
ARP packets.

6.2 Scenario 1: network visualization 85

Figure 25: The topology of the virtual testing network. It is a standard binary tree
topology comprised of 7 switches (1 core switch S1, 2 distribution switches S2–S3, and 4
access switches S4–S7) and 8 end hosts (H1–H8). There is a single link connecting each
pair of devices.

Once the network is alive and connected to the controller with all end hosts discov-
ered, the application is started and connected to the controller. A random graph
as captured in Figure 26 is presented. All network devices defined in the topology
are present. When the switch S1 is designated as core and switches S2 and S3 are
designated as distribution, their icons change and it is possible to let Visdan trans-
form the visualized network into a tree structure. The transformed visualization is
captured in Figure 27. It corresponds with the defined topology of the connected
network.

86 6 TESTING

Figure 26: The connected network visualized as a random graph. The complete screenshot
is attached in digital appendices.

6.2 Scenario 1: network visualization 87

Figure 27: The connected network with defined hierarchy levels, visualized as a binary
tree. The complete screenshot is attached in digital appendices.

88 6 TESTING

6.3 Scenario 2: link utilization
To measure the utilization of links, it is necessary to generate traffic between hosts
that should be of a known rate and therefore comparable with the values presented
by Visdan. For this purpose, the following command was executed in Mininet:

h6 ping -s 10000 h2
It means that every second a packet of 10 000 bytes should be sent from host H6
(IP address 10.0.0.6) to host H2 (IP address 10.0.0.2) and then back as as a reply.
This equals to the rate of 80 000 bits per second (bps) or 80 kilobits per second
(kbps).
The network with the ping command running is captured in Figure 28. The flow rate
of data transmitted from hosts (TX) and between switches was 81.968 kbps. The
flow rate of data received at hosts (RX) is 82.074 kbps. Considering the overhead
and inaccuracy caused by variable delays in data transfer, the utilization of links is
measured correctly.

Figure 28: Utilization of the links when a ping command is running between two end
hosts. Host H6 is captured in the left part, host H2 is captured in the right part. The
complete screenshot is attached in digital appendices.

6.4 Scenario 3: path definition via OpenFlow v. 1.0 89

6.4 Scenario 3: path definition via OpenFlow v. 1.0
The testing network topology provides only one way to each switch and the em-
ployed virtual switches are capable of working in the hybrid mode, i.e. capable of
forwarding packets in the traditional manner. In this situation, packets can be for-
warded between any two hosts because of the flow entries installed in the switches
by default by the controller. But the path definition functionality can still be tested.
The default flow entry that ensures normal (legacy) packet processing has priority
0, so if a specific path was defined with a higher priority, matched packets would be
processed by its created flow entries.
For this scenario, a path from host H5 to host H8 was defined as described in Table
5 as well as the same path the other way, that is from host H8 to host H5. All
switches in the network were communicating with the controller through OpenFlow
v. 1.0.

Table 5: Parameters of the defined testing path for Scenario 3.

Source end host: H5 (IP address 10.0.0.5)
Destination end host: H8 (IP address 10.0.0.8)
Priority: 20 000
Idle timeout: 0
Hard timeout: 1 800
Involved switches: S3 (DPID 00:00:00:00:00:00:00:03)

S6 (DPID 00:00:00:00:00:00:00:06)
S7 (DPID 00:00:00:00:00:00:00:07)

To generate traffic on this path, the following command was executed in
Mininet:

h5 ping -s 1024 -c 50 h8
This ping sends 50 packets in each direction with the total size of 51 200 bytes plus
the overhead. In Figure 29 and Figure 30, the affected flow entries of switch S3
are captured as presented in the graphical administration of the HPE VAN SDN
Controller in section OpenFlow Monitor. Figure 29 captures the state before the
ping was executed, and Figure 30 captures the state after its execution. The amount
of transmitted packets did not change for the flow entry with priority 0 and output
action NORMAL, which provides the legacy forwarding in case there are no matching
flow entries. The counters of the two flow entries of the defined paths correspond
to the number of packets generated by the ping command and their total expected
size.

90 6 TESTING

Figure 29: An extract from the flow table on switch S3 before executing the ping com-
mand. The columns are following: priority, transmitted packets, transmitted bytes, match
fields, and action. Taken from OpenFlow Monitor from the graphical administration of
the HPE VAN SDN Controller. The complete screenshot is attached in digital appendices.

Figure 30: An extract from the flow table on switch S3 after executing the ping command.
The columns are following: priority, transmitted packets, transmitted bytes, match fields,
and action. Taken from OpenFlow Monitor from the graphical administration of the HPE
VAN SDN Controller. The complete screenshot is attached in digital appendices.

6.5 Scenario 4: path definition via OpenFlow v. 1.3
This scenario is similar to Scenario 3. The main difference is that all switches in the
network were communicating with the controller through OpenFlow v. 1.3. In this
version of OpenFlow, the message to define a flow entry in a switch has a different
structure compared to OpenFlow v. 1.0.
A path from host H1 to host H7 was defined as described in Table 6 as well as the
same path the other way, that is from host H7 to host H1.
To generate traffic on this path, the following command was executed in
Mininet:

h7 ping -s 1024 -c 10 h1
This ping sends 10 packets in each direction with the total size of 10 240 bytes plus
the overhead. In Figure 31 and Figure 32, the affected flow entries of switch S1 are
captured. Figure 31 captures the state before the ping was executed, and Figure
32 captures the state after its execution. The amount of transmitted packets did
not change for the flow entry with priority 0 and output action NORMAL, which
provides the legacy forwarding in case there are no matching flow entries. The

6.5 Scenario 4: path definition via OpenFlow v. 1.3 91

counters of the two flow entries of the defined paths correspond to the number of
packets generated by the ping command and their total expected size.

Table 6: Parameters of the defined testing path for Scenario 4.

Source end host: H1 (IP address 10.0.0.1)
Destination end host: H7 (IP address 10.0.0.7)
Priority: 12 000
Idle timeout: 0
Hard timeout: 800
Involved switches: S1 (DPID 00:00:00:00:00:00:00:01)

S2 (DPID 00:00:00:00:00:00:00:02)
S3 (DPID 00:00:00:00:00:00:00:03)
S4 (DPID 00:00:00:00:00:00:00:04)
S7 (DPID 00:00:00:00:00:00:00:07)

Figure 31: An extract from the flow table on switch S1 before executing the ping com-
mand. The columns are following: priority, transmitted packets, transmitted bytes, match
fields, and instructions with actions. Taken from OpenFlow Monitor from the graphical
administration of the HPE VAN SDN Controller. The complete screenshot is attached in
digital appendices.

92 6 TESTING

Figure 32: An extract from the flow table on switch S1 after executing the ping command.
The columns are following: priority, transmitted packets, transmitted bytes, match fields,
and instructions with actions. Taken from OpenFlow Monitor from the graphical admin-
istration of the HPE VAN SDN Controller. The complete screenshot is attached in digital
appendices.

7 EVALUATION 93

7 Evaluation
Visdan is a software application that is to facilitate a certain area of network man-
agement. It is meant to actively watch the network and present its state to the user.
At this point, when the application has been developed and tested, I conclude that
the chosen application model does not fit the needs very well.
Visdan is developed as a proactive application that queries the controller, but to
which the controller does not send anything on its own. While it is possible to
periodically download the complete state of the network as it is done in Visdan, it not
only creates extra traffic, but also brings synchronization problems. It may happen
that a network device disconnects in the middle of the updating process, which
causes trouble. In case the application was built as reactive with event listeners
registered in the controller, there would be no synchronization problems because
the application would react directly to received event notifications.
Also, when it comes to the management of user-defined traffic paths, it is not easily
possible to keep track of defined flow entries and their state. Using the REST API
of the HPE VAN SDN Controller, it is only possible to download all configured flow
entries of a particular switch, but there is no way to inquire the controller for the
state of one specific flow entry. The processing of the great amount of downloaded
flow entries from several switches might consume network and computing resources
to a considerable extent, and therefore does not seem to be a fitting solution. Rather
it would again be reasonable to listen to events about flow entries and react upon
them.
Concerning the network visualization, the employed graph positioning algorithm
provides a decent service, but it usually still requires the user to customize the
visualization. It is probably rather meant for structures where the visualization
does not have to be perfect (nodes can overlap and such), but has to provide an
information as a whole. An appropriate positioning algorithm should be specifically
tailored for this application and provide a complete and usable visualization of the
network without any user inputs.
As for the implementation itself, Visdan utilizes a hp-sdn-client library, which makes
many things easier. But it does not seem to be under development anymore unlike
the REST API of the HPE VAN SDN Controller, which undergoes changes as the
controller evolves. It therefore does not appear as something to rely on in applica-
tions using one of the latest versions of the controller. Also, when the support for
a newer version of OpenFlow is integrated into the controller, there may be new
features the library would not cover at all.
But despite the fact that the way Visdan is created may not be the best, it is not just
an experimental application developed to test some features. It does function and is
therefore a tool that might be well used when experimenting with software-defined
networks, even though only through the HPE VAN SDN Controller at this point.

94 7 EVALUATION

To be used in a production environment, its functionality would likely have to be
improved and extended to cover more areas of network management.

8 CONCLUSION 95

8 Conclusion
The primary goal of this work was to develop an application that would provide
a readable graphical visualization of a connected OpenFlow-based software-defined
network, show the utilization of links between devices, and allow the user to con-
veniently define a custom traffic path between two end nodes in the network using
a user-friendly graphical interface. Based on further analyzed user requirements,
such application, called Visdan, was developed.
Visdan is able to visualize an OpenFlow-based network managed by the HPE VAN
SDN Controller. There is a random visualization, but if the user provides informa-
tion about hierarchy levels in the network, the visualization may be transformed into
a tree structure respecting the network hierarchy. Elementary information about
each network devices, such as unique identifier or IP address, is also presented.
On every link, that is between every two devices, the utilization of the link is dis-
played. It is presented as the rate of received and transmitted kilobits per second
for one device of the link. These statistics are regularly updated together with the
whole network visualization.
As for the path definition functionality, it allows the user to choose the path by
clicking on desired network devices in the visualization. Once the path is complete,
the user can set certain parameters. Visdan then automatically distributes adequate
flow entries over involved switches.
While not a primary goal, also important were the literature review and the techno-
logical overview. This is because of the cooperation with the networking work group
of Department of Informatics of Faculty of Business and Economics at Mendel Uni-
versity in Brno, whom this thesis should help to get acquainted with software-defined
networking. Therefore these chapters have been worked out extensively.
This thesis was meant as the first swallow and its outcomes might beneficially serve
someone in his or her learning of and experimenting with software-defined network-
ing. The developed application might serve as an inspiration for similar projects
because a software tool of this kind has a potential to find its place among network
administrators.

96 9 BIBLIOGRAPHY

9 Bibliography
Sources mentioned only in chapter Reviews are listed below in section Literature
review. Sources from which actual information was cited are listed in section Cited
sources.

9.1 Literature review

ANTOLÍK, Dávid. A Network Control Language for OpenFlow Networks. Brno,
2013. Bachelor thesis. Brno University of Technology, Faculty of Information
Technology, Department of Information Systems. Available at:
https://www.vutbr.cz/www_base/
zav_prace_soubor_verejne.php?file_id=118755.

AZODOLMOLKY, Siamak. Software Defined Networking with OpenFlow: Get
hands-on with the platforms and development tools used to build OpenFlow network
applications. Birmingham, UK: Packt Publishing, 2013. ISBN 978-1-84969-872-6.

Brocade Communications Systems. Brocade Flow Manager Brocade [online].
Brocade Communications Systems, © 2016a [viewed 2016-11-15]. Available at:
http://www.brocade.com/en/products-services/software-networking/
sdn-controllers-applications/flow-manager.html.

CODECADEMY. Python Codecademy [online]. Codecademy, © 2016 [viewed
2016-11-15]. Available at: https://www.codecademy.com/learn/python.

CONNOLY, James J. SDN: Defining a Strategic, Business-Focussed
Architecture. Edited by Sonja RUILE. North Charleston: CreateSpace, 2015. ISBN
978-1-5085-4283-4.

DOHERTY, Jim. SDN and NFV Simplified: A Visual Guide to Understanding
Software Defined Networks and Network Function Virtualization. Upper Saddle
River, NJ: Pearson Education, Inc., 2016. ISBN 978-0-13-430640-7.

HERBERT, Thomas F. SDN, Openflow, and Open vSwitch. Herndon, VA:
Mercury Learning Information, 2014. ISBN 978-1-937585-45-7.

HERINCKX, Tim. Dynamic and performance driven control for OpenFlow
networks. Ghent, 2013. Master thesis. Ghent University, Faculty of Engineering
and Architecture, Department of Information Technology. Available at:
http://lib.ugent.be/fulltxt/RUG01/002/033/156/
RUG01-002033156_2013_0001_AC.pdf.

HEWLETT PACKARD ENTERPRISE. HPE Network Visualizer: Free Trial.
SDN App Store [online]. Hewlett Packard Enterprise, © 2016a [viewed 2016-11-15].
Available at:
https://marketplace.saas.hpe.com/sdn/content/net-visualizer-trial.

9.1 Literature review 97

HEWLETT PACKARD ENTERPRISE. SDN App Store. HPE [online].
Hewlett Packard Enterprise, © 2016b [viewed 2016-11-15]. Available at:
https://marketplace.saas.hpe.com/sdn.

HEWLETT PACKARD ENTERPRISE. HPE Networking Information
Library Hewlett Packard Enterprise [online]. Hewlett Packard Enterprise, © 2016c
[viewed 2016-11-15]. Available at: http://www.hpe.com/info/sdn/infolib.

HU, Fei. Network Innovation through OpenFlow and SDN: Principles and Design.
Boca Raton, FL: Taylor Francis, 2014. ISBN 978-1-4665-7209-6.

HUANG, Tim. Path Computation Enhancement in SDN Networks. Ontario,
2015. Master thesis. Ryerson University. Available at:
http://digital.library.ryerson.ca/islandora/object/RULA%3A4465/
datastream/OBJ/download/
Path_computation_enhancement_in_SDN_networks.pdf.

HYPERGLANCE. Hyperglance: Visual IT Simplicity via Interactive 3D
Topology [online]. Hyperglance, © 2016 [viewed 2016-11-15]. Available at:
https://www.hyperglance.com/.

INFINITE COMPUTER SOLUTIONS. Flow Manager. GitHub [online].
Latest commit 2016-08-25 [viewed 2016-11-15]. Available at:
https://github.com/InfiniteCS/flowmanager.

ISOLANI, Pedro Heleno. Interactive Monitoring, Visualization, and
Configuration of OpenFlow-Based SDN. Porto Alegre, 2015. Master thesis. Federal
University of Rio Grande do Sul, Institute of Informatics. Available at:
http://www.lume.ufrgs.br/bitstream/handle/10183/127452/
000974184.pdf.

ISOLANI, Pedro Heleno and Juliano Araujo WICKBOLDT. SDN
Interactive Manager. GitHub [online]. Latest commit 2015-11-26 [viewed
2016-11-15]. Available at:
https://github.com/ComputerNetworks-UFRGS/AuroraSDN.

LARA, Adrian. Using Software-Defined Networking to Improve Campus,
Transport and Future Internet Architectures. Lincoln, 2015. Dissertation.
University of Nebraska-Lincoln, The Graduate College. Available at:
http://digitalcommons.unl.edu/cgi/
viewcontent.cgi?article=1109&context=computerscidiss.

LEITNER, Matej. Review of Available Tools for Control Plane of Software
Defined Networks . Brno, 2015. Bachelor thesis. Masaryk University, Faculty of
Informatics. Available at: http://is.muni.cz/th/396543/fi_b/bc.pdf.

MARCINIAK, Petr. Load Balancing in OpenFlow Networks. Brno, 2013.
Master thesis. Brno University of Technology, Faculty of Information Technology,

98 9 BIBLIOGRAPHY

Department of Information Systems. Available at:
https://www.vutbr.cz/www_base/
zav_prace_soubor_verejne.php?file_id=118981.

MARIST SDN LAB. Avior 2.0. GitHub [online]. Latest commit 2016-04-18
[viewed 2016-11-15]. Available at:
https://github.com/1PhoenixM/avior-service.

MARSCHKE, Doug, Jeff DOYLE and Pete MOYER. Software Defined
Networking (SDN): Anatomy of OpenFlow. Raleigh, NC: Lulu, 2015. ISBN
978-1-4834-2723-2.

MININET. Documentation – mininet/mininet Wiki. GitHub [online]. Last
reviewed 2016-08-20. Available at:
https://github.com/mininet/mininet/wiki/Documentation.

MORREALE, Patricia A. and James M. ANDERSON. Software Defined
Networking: Design and Deployment. Boca Raton, FL: CRC Press, 2014. ISBN
978-1-4822-3863-1.

Ministerstvo školství, mládeže a tělovýchovy. Přehled vysokých škol
v ČR. MŠMT ČR [online]. Ministerstvo školství, mládeže a tělovýchovy,
© 2013–2016 [viewed 2016-11-09]. Available at:
http://www.msmt.cz/vzdelavani/vysoke-skolstvi/
prehled-vysokych-skol-v-cr-3.

NADEAU, Thomas D. and Kenneth GRAY. SDN: Software Defined
Networks. Sebastopol, CA: O’Reilly Media, 2013. ISBN 978-1-4493-4230-2.

NAVARRO, Martí Boada. Dynamic Load Balancing in Software-Defined
Networks. Aalborg, 2014. Master thesis. Aalborg University, Department of
Electronic Systems. Available at:
http://projekter.aau.dk/projekter/files/198529981/
Marti_Boada_Master_Thesis.pdf.

OPEN NETWORKING FOUNDATION. Technical Library. Open Networking
Foundation [online]. Open Networking Foundation, © 2016a [viewed 2016-11-15].
Available at:
https://www.opennetworking.org/sdn-resources/technical-library.

PALATINUS, Michal. Extension of SDN platform available at FIIT STU.
Bratislava, 2015. Bachelor thesis. Slovak University of Technology, Faculty of
Informatics and Information Technologies. Available at:
http://www.crzp.sk/crzpopacxe/
openURL?crzpID=53621&crzpSigla=stubratislava.

PHINJIRAPONG, Pattanapoom. CAFFEINE: Congestion Avoidance For
Fairness & Efficiency In Network Entities. State College, 2015. Master thesis. The

9.1 Literature review 99

Pennsylvania State University, The Graduate School, School of Science,
Engineering, and Technology. Available at:
https://etda.libraries.psu.edu/files/final_submissions/11208.

PILGRIM, Mark. Dive Into Python 3 [online]. © 2009 [viewed 2016-11-15].
Available at: http://www.diveintopython3.net.

PYTHON SOFTWARE FOUNDATION. Overview. Python 3.5.2
documentation [online]. Python Software Foundation, © 2001–2016 [viewed
2016-11-15]. Available at: https://docs.python.org/3/.

RIVERBANK COMPUTING PyQt5.7 Reference Guide. PyQt5 Reference
Guide [online]. Riverbank Computing, © 2015 [viewed 2016-11-15]. Available at:
http://pyqt.sourceforge.net/Docs/PyQt5.

THE QT COMPANY Qt 5.7 Qt Documentation [online]. The Qt Company,
© 2016a [viewed 2016-11-15]. Available at: http://doc.qt.io/qt-5.

THE QT COMPANY Widget-based User Interfaces Qt Documentation [online].
The Qt Company, © 2016b [viewed 2016-11-15]. Available at:
http://doc.qt.io/qt-5/topics-ui.html#widget-based-user-interfaces.

RAMACHANDRA, Prerna. ViewNet: A Visualization Tool for Software
Defined Networks. Princeton, 2014. Undergraduate senior thesis. Princeton
University, Department of Computer Science. Available at:
http://arks.princeton.edu/ark:/88435/dsp01k643b1344.

REITZ, Kenneth. PEP 8: the Style Guide for Python Code [online]. [viewed
2016-11-15]. Available at: http://pep8.org.

SEMEDO, Gonçalo Miguel Alves. Load Balancing in Real Software Defined
Networks. Lisbon, 2014. Master thesis. University of Lisbon, Faculty of Sciences,
Department of Informatics. Available at:
http://www.di.fc.ul.pt/ñuno/THESIS/GoncaloSemedo_master14.pdf.

SCHMIDT, Andreas. Interactive Visualization of Software Defined Networks.
Saarbruecken, 2013. Bachelor thesis. Saarland University, Faculty of Natural
Sciences and Technology I, Department of Computer Science. Available at:
https://www.on.uni-saarland.de/publications/
IVOSDN_Andreas_Schmidt.pdf.

SCHMIDT, A., P. S. TENNIGKEIT, and M. KARL. SDN-Visualization.
GitHub [online]. Latest release 2015-08-18 [viewed 2016-11-15]. Available at:
https://github.com/UdS-TelecommunicationsLab/SDN-Visualization.

SDNCENTRAL. SDxCentral [online]. SDNCentral, © 2016 [viewed 2016-11-15].
Available at: https://www.sdxcentral.com.

100 9 BIBLIOGRAPHY

SHUKLA, Vishal. Introduction to Software Defined Networking - OpenFlow &
VxLAN. North Charleston: CreateSpace, 2013. ISBN 978-1-48267-813-0.

SMILER. S, Kingston. OpenFlow Cookbook: over 110 recipes to design and
develop your own OpenFlow switch and OpenFlow controller. Birmigham, UK:
Packt publishing, 2015. ISBN 978-1-78398-794-8.

STACK EXCHANGE. Stack Overflow [online]. Stack Exchange, © 2016 [viewed
2016-11-15]. Available at: https://www.stackoverflow.com.

STALLINGS, William. Foundations of Modern Networking: SDN, NFV, QoE,
IoT, and Cloud. Indianapolis, IN: Addison-Wesley Professional, 2015. ISBN
978-0-13-417539-3.

SUNDARARAJAN, Rajesh K. Software Defined Networking (SDN) -
a definitive guide. Amazon Digital Services LLC, 2013. Kindle Edition. ASIN
B00D5V02E0.

TECHTARGET. Global Network of Information Technology Websites and
Contributors TechTarget [online]. TechTarget, © 2016 [viewed 2016-11-15].
Available at: http://www.techtarget.com/network.

TIWARI, Vivek. SDN and OpenFlow for beginners with hands on labs. Amazon
Digital Services LLC, 2013. Kindle Edition. ASIN B00EZE46D4.

TUCKER, Dave. HP SDN Client 1.1.1 documentation. HP SDN Client [online].
Hewlett-Packard Development Company, © 2014 [viewed 2016-11-15]. Available at:
http://hp-sdn-client.readthedocs.io.

WALLASCHEK, Felix. JSFlowViz – A simple OpenFlow Visualization for
Beacon. GitHub [online]. Latest commit 2014-12-10 [viewed 2016-11-15]. Available
at: https://github.com/wallaschek/JSFlowViz.

9.2 Cited sources

1. Installation. Python GTK+ 3 Tutorial 3.4 documentation [online]. [viewed
2016-11-20]. Available at:
http://python-gtk-3-tutorial.readthedocs.io/en/latest/install.html.

BORINI, Stefano. Introduction. Understanding Model-View-Controller [online].
[viewed 2016-12-05]. Available at:
https://www.gitbook.com/book/stefanoborini/modelviewcontroller/
details.

CISCO. Cisco Express Forwarding Overview Cisco [online]. Cisco, 2014 [viewed
2016-11-18]. Available at:

9.2 Cited sources 101

http://www.cisco.com/c/en/us/td/docs/ios/12_2/switch/
configuration/guide/fswtch_c/xcfcef.html.

Clean Slate Design for the Internet [online]. © 2016 [viewed 2016-08-05]. Available
at: http://cleanslate.stanford.edu.

FREDRICH, Todd. RESTful Service Best Practices: Recommendations for
Creating Web Services. [online]. August 2, 2013 [viewed 2016-11-20]. Available at:
https://github.com/tfredrich/RestApiTutorial.com/raw/master/media/
RESTful%20Best%20Practices-v1_2.pdf.

GIJARE, Nandan. What is the difference between a router and a Layer 3
switch? SearchNetworking [online]. TechTarget, 2004 [viewed 2016-08-05].
Available at: http://searchnetworking.techtarget.com/answer/
What-is-the-difference-between-a-router-and-a-Layer-3-switch.

GNOME. Getting GNOME. GNOME [online]. The GNOME Project,
© 2005–2016 [viewed 2016-11-20]. Available at:
https://www.gnome.org/getting-gnome.

GÖRANSSON, Paul and Chuck BLACK. Software Defined Networks:
A Comprehensive Approach. Amsterdam: Morgan Kaufmann, 2014. ISBN
978-0-12-416675-2.

GUI Programming in Python. Python Wiki [online]. Last reviewed 2016-11-05
[viewed 2016-08-05]. Available at:
https://wiki.python.org/moin/GuiProgramming.

HEWLETT PACKARD ENTERPRISE. HPE VAN SDN Controller Software
[online]. Revision 3. Hewlett Packard Enterprise, March 2016a. [viewed
2016-11-20]. Available at:
http://h20195.www2.hpe.com/v2/getpdf.aspx/4AA4-9827ENW.pdf.

HEWLETT PACKARD ENTERPRISE. HPE VAN SDN Controller and
Applications Support Matrix [online]. Hewlett Packard Enterprise, September
2016b. [viewed 2016-11-20]. Available at:
http://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c05040231.

HEWLETT PACKARD ENTERPRISE. HPE VAN SDN Controller 2.7
Installation Guide [online]. Edition 2. Hewlett Packard Enterprise, March 2016c.
[viewed 2016-11-20]. Available at:
http://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c05028139.

HEWLETT PACKARD ENTERPRISE. HPE VAN SDN Controller 2.7
Administrator Guide [online]. Hewlett Packard Enterprise, March 2016d. [viewed
2016-11-20]. Available at:
http://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c05028095.

102 9 BIBLIOGRAPHY

HEWLETT PACKARD ENTERPRISE. HPE VAN SDN Controller 2.7
REST API Reference [online]. Hewlett Packard Enterprise, March 2016e. [viewed
2016-11-20]. Available at:
http://h20566.www2.hpe.com/hpsc/doc/public/display?docId=c05040230.

How to install wxPython. wxPyWiki [online]. Last reviewed 2015-08-11 [viewed
2016-11-20]. Available at:
https://wiki.wxpython.org/How%20to%20install%20wxPython.

KERNER, Sean Michael. OpenFlow Protocol 1.3.0 Approved Enterprise
Networking Planet [online]. QuinStreet, May 17, 2012 [viewed 2016-10-12].
Available at: http://www.enterprisenetworkingplanet.com/nethub/
openflow-protocol-1.3.0-approved.html.

KIM, Hyojoon and Nick FEAMSTER. Improving Network Management
with Software Defined Networking. IEEE Communications Magazine [online].
2013, vol. 51, no. 2, p. 114-119 [viewed 2016-10-12]. DOI
10.1109/MCOM.2013.6461195. ISSN 0163-6804. Available at:
http://ieeexplore.ieee.org/document/6461195/.

KIVY. Kivy: Cross-platform Python Framework for NUI Development [online].
[viewed 2016a-11-20]. Available at: https://kivy.org.

KIVY. FAQ. Kivy 1.9.2-dev0 documentation [online]. [viewed 2016b-11-20].
Available at: https://kivy.org/docs/faq.html.

KOZIEROK, Charles M. The TCP/IP Guide [online]. © 2001-2005a [viewed
2016-08-05]. Available at: http://www.tcpipguide.com/free.

KOZIEROK, Charles M. The Open System Interconnection (OSI) Reference
Model. The TCP/IP Guide [online]. © 2001-2005b [viewed 2016-08-05]. Available
at: http://www.tcpipguide.com/free/
t_TheOpenSystemInterconnectionOSIReferenceModel.htm.

MCCANCE Shaun et al. GNOME application development overview.
GNOME Developer Center [online]. GNOME Foundation [viewed 2016-11-20].
Available at: https://developer.gnome.org/platform-overview/unstable.

MININET TEAM. Mininet Overview. Mininet [online]. Mininet Team,
© 2016a [viewed 2016-11-20]. Available at: http://mininet.org/overview.

MININET TEAM. Download/Get Started With Mininet. Mininet [online].
Mininet Team, © 2016b [viewed 2016-11-20]. Available at:
http://mininet.org/download.

MININET TEAM. Mininet Walkthrough. Mininet [online]. Mininet Team,
© 2016c [viewed 2016-11-20]. Available at: http://mininet.org/walkthrough.

9.2 Cited sources 103

MININET. mininet/node.py at master mininet/mininet GitHub [online]. Lines
34–37, 1541–1554. Last reviewed 2016a-06-04 [viewed 2016-11-20]. Available at:
https://github.com/mininet/mininet/blob/master/mininet/node.py.

MININET. Documentation – mininet/mininet Wiki. GitHub [online]. Last
reviewed 2016b-08-20 [viewed 2016-11-20]. Available at:
https://github.com/mininet/mininet/wiki/Documentation.

MININET. mn – create a Mininet network. Ubuntu Manpage [online]. [viewed
2016c-11-20]. Available at:
http://manpages.ubuntu.com/manpages/xenial/en/man1/mn.1.html.

MICROSOFT. TCP/IP Protocol Architecture. TechNet [online]. Microsoft,
© 2016 [viewed 2016-08-05]. Available at:
https://technet.microsoft.com/en-us/library/cc958821.aspx.

MICROSOFT. The OSI Model’s Seven Layers Defined and Functions Explained.
Microsoft Support [online]. Microsoft, © 2016. Last reviewed 2014-06-13 [viewed
2016-10-12]. Available at: https://support.microsoft.com/en-us/kb/103884.

Differences between Layer 2, 3, 4 Switching / Multilayer Switching / Layer 3
Routing. networkPCworld [online]. [viewed 2016-08-05]. Available at:
http://www.networkpcworld.com/differences-between-layer-2-3-4-
switching-multilayer-switching-layer-3-routing/.

NOX. noxrepo/nox: The NOX Controller. GitHub [online]. Last reviewed
2012-05-12 [viewed 2016-11-20]. Available at: https://github.com/noxrepo/nox.

OPENFLOW SWITCH CONSORTIUM. OpenFlow Tutorial. OpenFlow Wiki
[online]. OpenFlow Switch Consortium, © 2011a [viewed 2016-11-20]. Available at:
http://archive.openflow.org/wk/index.php/OpenFlow_Tutorial.

OPENFLOW SWITCH CONSORTIUM. What is OpenFlow? OpenFlow
[online]. OpenFlow Switch Consortium, © 2011b [viewed 2016-12-05]. Available at:
http://archive.openflow.org/wp/learnmore/.

OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification
[online]. Open Networking Foundation, 2009. Version 1.0.0 [viewed 2016-08-05].
Available at: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf.

OPEN NETWORKING FOUNDATION. Software-Defined Networking: The
New Norm for Networks [online]. Open Networking Foundation, 2012a [viewed
2016-08-05]. Available at:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/white-papers/wp-sdn-newnorm.pdf.

104 9 BIBLIOGRAPHY

OPEN NETWORKING FOUNDATION. OpenFlow Switch Specification
[online]. Open Networking Foundation, 2012b. Version 1.3.0 [viewed 2016-10-12].
Available at: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf.

OPEN NETWORKING FOUNDATION. Open Networking Foundation
[online]. Open Networking Foundation, © 2016b [viewed 2016-08-05]. Available at:
http://www.opennetworking.org.

OPEN NETWORKING FOUNDATION. What is ONF? Open Networking
Foundation [online]. Open Networking Foundation [viewed 2016c-08-05]. Available
at: https://www.opennetworking.org/images/stories/downloads/
about/onf-what-why-2016.pdf.

OPEN NETWORKING FOUNDATION. SDN Architecture [online]. Open
Networking Foundation, 2016d. Issue 1.1 [viewed 2016-08-05]. Available at:
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/technical-reports/
TR-521_SDN_Architecture_issue_1.1.pdf.

OPEN NETWORKING FOUNDATION. OpenFlow. Open Networking
Foundation [online]. Open Networking Foundation, © 2016e [viewed 2016-08-05].
Available at: https://www.opennetworking.org/sdn-resources/openflow.

ORACLE CORPORATION. Chapter 1. First steps. Oracle VM VirtualBox ®:
User Manual [online]. Oracle Corporation, © 2004–2016 [viewed 2016-08-05].
Available at: http://www.virtualbox.org/manual/ch01.html.

OPEN VSWITCH. ovs-testcontroller – simple OpenFLow controller for testing.
Ubuntu Manpage [online]. [viewed 2016-11-20]. Available at:
http://manpages.ubuntu.com/manpages/xenial/en/man8/
ovs-testcontroller.8.html.

POKORNÝ, Martin and Petr ZACH. First Educational Steps in SDN
Application Development. Acta Universitatis Agriculturae et Silviculturae
Mendelianae Brunensis [online]. 2015, vol. 63, no. 6, p. 2093–2099 [viewed
2016-08-05]. DOI 10.11118/actaun201563062093. ISSN 1211-8516. Available at:
http://acta.mendelu.cz/63/6/2093.

ProjectPhoenix. wxPyWiki [online]. Last reviewed 2015-01-15 [viewed 2016-11-20].
Available at: https://wiki.wxpython.org/ProjectPhoenix.

Projects/PyGObject. GNOME Wiki! [online]. The GNOME Project, © 2005–2015.
Last reviewed 2016-02-23 [viewed 2016-11-20]. Available at:
https://wiki.gnome.org/Projects/PyGObject.

PySide. Qt Wiki [online]. Last reviewed 2016-06-05 [viewed 2016-11-20]. Available
at: https://wiki.qt.io/PySide.

9.2 Cited sources 105

PySide FAQ. Qt Wiki [online]. Last reviewed 2016-06-05 [viewed 2016-11-20].
Available at: https://wiki.qt.io/PySide_FAQ.

PYTHON SOFTWARE FOUNDATION. 25.1. tkinter – Python interface to
Tcl/Tk. Python 3.6.0b4 documentation [online]. Python Software Foundation,
© 2001–2016. Last reviewed 2016a-11-01 [viewed 2016-11-20]. Available at:
https://docs.python.org/3.6/library/tkinter.html.

PYTHON SOFTWARE FOUNDATION. What is Python? Executive
Summary. Python.org [online]. Python Software Foundation, © 2001–2016b [viewed
2016-08-05]. Available at: https://www.python.org/doc/essays/blurb/.

RIVERBANK. What is PyQT? Riverbank [online]. Riverbank Computing,
© 2016 [viewed 2016-11-20]. Available at:
https://www.riverbankcomputing.com/software/pyqt/intro.

ROSEMAN, Mark. Tk Tutorial. TkDocs [online]. Mark Roseman, © 2007–2015
[viewed 2016-11-20]. Available at: http://www.tkdocs.com/tutorial/.

ROUSE, Margaret. What is network management system? WhatIs.com
[online]. TechTarget, 2013 [viewed 2016-10-12]. Available at:
http://whatis.techtarget.com/definition/network-management-system.

NIPPON TELEGRAPH and TELEPHONE CORPORATION. Getting
Started. Ryu 4.8 documentation [online]. Nippon Telegraph and Telephone
Corporation, © 2011–2014 [viewed 2016-11-20]. Available at:
https://ryu.readthedocs.io/en/latest/getting_started.html#what-s-ryu.

SHAW, Andy. Qt 4.8.x Support to be Extended for Another Year. Qt Blog
[online]. The Qt Company, November 27, 2014 [viewed 2016-11-20]. Available at:
http://blog.qt.io/blog/2014/11/27/
qt-4-8-x-support-to-be-extended-for-another-year/.

SHENKER, Scott. The Future of Networking, and the Past of Protocols.
[presentation]. Stanford University: Open Networking Summit, October 18–19,
2011 [viewed 2016-08-05]. Recording available at:
https://youtu.be/YHeyuD89n1Y.

THE GTK+ TEAM. GTK+ Features. The GTK+ Project [online]. The GTK+
Team, © 2007–2016 [viewed 2016-11-20]. Available at:
https://www.gtk.org/features.php.

THE QT COMPANY. Cross-platform development. Qt for developers by
developers [online]. The Qt Company, © 2016 [viewed 2016-11-20]. Available at:
https://www.qt.io/developers/.

Tkinter. Python Wiki [online]. Last reviewed 2014-06-08 [viewed 2016-11-20].
Available at: https://wiki.python.org/moin/TkInter.

106 9 BIBLIOGRAPHY

TUCKER, Dave. HP SDN Client 1.1.1 documentation. HP SDN Client [online].
Hewlett-Packard Development Company, © 2014 [viewed 2016-11-15]. Available at:
http://hp-sdn-client.readthedocs.io.

VAN ROSSUM, Guido. Comparing Python to Other Languages. Python.org
[online]. Python Software Foundation, 1997 [viewed 2016-08-05]. Available at:
https://www.python.org/doc/essays/comparisons/.

WXPYTHON. What is wxPython? wxPython [online]. [viewed 2016-11-20].
Available at: https://www.wxpython.org/what.php.

WXWIDGETS. Overview. wxWidgets [online]. wxWidgets, © 2016 [viewed
2016-11-20]. Available at: http://wxwidgets.org/about/.

Appendices

108 A DIGITAL APPENDICES

A Digital appendices
On the attached CD, following content may be found:
• Application Visdan - its source code and generated API documentation. To run

the application, it is necessary to have following libraries installed together with
their dependencies:

– hpsdnclient
– networkx
– PyQt5

• Algorithm flow charts in full resolution
• Screenshots of the graphical user interface in full resolution
• Screenshots from the testing in full resolution

B OPENFLOW SPECIFICATION V. 1.3.0 109

B OpenFlow Specification v. 1.3.0
Through OpenFlow versions 1.1.0, 1.2.0, up to 1.3.0, many features were added or
enhanced. Some of the changes are significant, some are hidden in details. In the
following sections, I will describe the ones I consider most significant for essential
knowledge.

B.1 Extensible match support
In the first versions of OpenFlow, the flow match structure in a flow entry was a fixed
list of match fields that could either have a certain value or have the wildcard flag
set (Open Networking Foundation, 2009, p. 20–21). Since the range of match fields,
some of them even overloaded, was hardcoded in the data structure, the matching
logic in switches also had to be tailored to the predefined set of packet header fields.
This approach was inflexible and did not allow for easy extension of supported
match fields (Open Networking Foundation, 2012b, p. 99; Göransson and Black,
2014, p. 106–107).
Fortunately, the rigid data structure was replaced and match fields are now described
using the OpenFlow Extensible Match (OXM) format. OXM is a type-length-value
format, which means that a fixed-length header indicates the type of the match field
and the length of the value, which is of variable size depending on the type of the
match field (Open Networking Foundation, 2012b, p. 39–40).

Table 7: OpenFlow Extensible Match header fields.

oxm_type
oxm_class oxm_field oxm_hasmask oxm_length

As shown in Table 7, the type is comprised of a class and a field. There are cur-
rently two classes – OpenFlow basic class, which encompasses all standard fields,
and Experimenter class, which is meant for further experiments. Using this type
identification, every logical match field has its own unique type and there is no more
a need for overloading. There is also a hasmask flag in the OXM header, which indi-
cates whether the match field uses a bitmask or not. If a mask is used, it follows the
match field value and is of the same length (Open Networking Foundation, 2012b,
p. 39–41).
The flow match structure used in a flow entry may have zero or more OXM match
fields (Open Networking Foundation, 2012b, p. 38). If a match field is not present,
it is automatically wildcarded, so a flow entry with no match fields matches every
packet (Open Networking Foundation, 2012b, p. 40).
Not only is the matching logic more flexible now and can be implemented in switches
without regards to particular match fields, but also the standard list of match fields
has greatly expanded. The full list is present in the specification (Open Networking

110 B OPENFLOW SPECIFICATION V. 1.3.0

Foundation, 2012b, p. 44–45), but one of the most important is the support of IPv6
header fields. The extensible matching also brings another advantage – the same
fields that can be matched can also be modified when a packet is processed by the
flow entry (Open Networking Foundation, 2012b, p. 99; Göransson and Black, 2014,
p. 107–108).

B.2 Multiple flow tables
A major advancement in packet processing was introduced by the addition of multi-
ple flow tables. A packet may be matched in one table, applied certain actions, and
then sent to next table for further treatment. This allows more sophisticated packet
processing because a packet may be modified several times under various conditions
in each flow table (Göransson and Black, 2014, p. 99).
Flow entries are now assigned instructions and every packet is associated with an
action set, which is empty in the beginning. An instruction may add or remove
actions from the action set, or dispatch the packet to one of the following flow
tables. The action set is then carried with the packet between the tables. When
the pipeline reaches its end, i.e. the packet is in the last table or there is not an
instruction to send it to another table, the actions from the action set are executed
in an order specified by the protocol (Open Networking Foundation, 2012b, p. 16,
18; Göransson and Black, 2014, p. 99–101).
Except for the packet, its ingress port and action set, there is also a metadata field
carried between the tables. Metadata is a 64-bit register that carries arbitrarily
defined state and that can be used as a match field. When writing to or matching
against the metadata field, a mask must be used to indicate which bits are to be
modified (Open Networking Foundation, 2012b, p. 7, 44).
There are following types of instructions, some of them are required to be imple-
mented in a switch, while other are optional (Open Networking Foundation, 2012b,
p. 16, 18):
• Meter (optional) – direct the packet to a specified meter (meters will be de-

scribed later in this chapter). The packet may be dropped in the meter and its
processing be therefore quit at this point.

• Apply-Actions (optional) – immediately apply a list of specific actions without
affecting the action set of the packet.

• Clear-Actions (optional) – immediately clear the action set of the packet.
• Write-Actions (required) – add the specified actions into the action set of the

packet. If an action of the same type is already present, it is overwritten.
• Write-Metadata (optional) – write the metadata into the metadata field. Af-

fects only the bits specified by the mask.

B.3 Multiple flow tables illustration 111

• Goto-Table (required) – point out the next table for the packet processing.
The id of the table must be greater than the current id. This instruction cannot
be used for flow entries in the last flow table.

A flow entry may only have one instruction of each type in its instruction set and
they are executed in the order mentioned in the list above. As well an action set
of a packet may include only one action of each type. In case more actions of the
same type need to be applied, the Apply-Actions instruction may be used (Open
Networking Foundation, 2012b, p. 18).
Actions can be divided into categories listed below, again some are required and
some optional for implementation. Each category includes several more specific
action types (Open Networking Foundation, 2012b, p. 19–21).
• Output (required) – forward the packet to a specified port, be it a physical

port, a reserved virtual port, or a switch-defined logical port.
• Set-Queue (optional) – set the queue ID for the packet. This action is used in

combination with the Output action as it determines the particular queue of the
output port of the packet. This queue then influences scheduling and forwarding
of the packet.

• Drop (required) – packets with no output actions in their action set are dropped.
• Group (required) – process the packet through the specified group (groups are

described in the next section).
• Push-Tag/Pop-Tag (optional) – push or pop a VLAN, MPLS, or PBB tag.

The outer-most tag is popped and a new tag is pushed into the outer-most place.
• Set-Field (optional) – modify values of specific fields in the packet header.

Set-Field actions are identified by the field type, more Set-Field actions may
therefore be in an action set, but only one for each field.

• Change-TTL (optional) – modify IPv4 Time To Live, IPv6 Hop Limit, or
MPLS Time To Live in the packet.

An OpenFlow switch has to accommodate at least one flow table, more flow tables
are optional (Open Networking Foundation, 2012b, p. 10–21). While the implemen-
tation of this functionality is feasible in software switches, it is challenging to realize
the multiple flow tables in hardware (Göransson and Black, 2014, p. 109).

B.3 Multiple flow tables illustration
An example follows to better illustrate the enhanced matching process. Its figures
are only extracts of real entities and contain only information necessary for the
illustration.
• Table 8 depicts a packet coming into a switch.

112 B OPENFLOW SPECIFICATION V. 1.3.0

• Table 9 represents the first flow table in the pipeline – with id 0 – and one of
its flow entries. When a packet matches this flow entry, the flow entry adds
a Set-Field action for IPv4 destination address into its action set and modifies
its metadata field.

• Table 10 depicts the altered packet, which is then sent to a flow table with id 3
because of the Goto-Table instruction present in the matched flow entry.

• Table 11 represents the flow table with id 3. In case of a matched packet, its
flow entry adds a Set-Field action for Ethernet source address into the action
set of the packet and then sends the packet out to group with id 17 for further
processing and final output.

• Table 12 depicts the packet after passing through the two flow tables. If there
were the Goto-Table instruction, the packet would be passed to another flow
table in this state. Since this instruction was not present in the last matched
flow entry, the action set of the packet is executed.

• Table 13 depicts the packet after the application of all actions of its action set.

Table 8: Example of multiple flow tables – incoming packet.

Header fields
Ethernet source address 00:01:02:aa:bb:11
Ethernet destination address 00:01:02:ef:ce:1a
IPv4 source address 192.168.131.56
IPv4 destination address 192.168.131.202
TCP source port 50555
TCP destination port 22

Input port 7
Metadata 0x0000000000000000
Action set
empty

B.3 Multiple flow tables illustration 113

Table 9: Example of multiple flow tables – flow entry in flow table 0.

Match fields
IPv4 source address 192.168.131.*
TCP destination port 22

Instructions
Write-Actions Set-Field:

IPv4 destination address = 192.168.131.1
Write-Metadata value: 0x0000000000000A00

mask: 0x0000000000000F00
Goto-Table 3

Table 10: Example of multiple flow tables – the packet altered in flow table 0.

Header fields
Ethernet source address 00:01:02:aa:bb:11
Ethernet destination address 00:01:02:ef:ce:1a
IPv4 source address 192.168.131.56
IPv4 destination address 192.168.131.202
TCP source port 50555
TCP destination port 22

Input port 7
Metadata 0x0000000000000A00

Action set
Set-Field IPv4 destination address = 192.168.131.1

Table 11: Example of multiple flow tables – flow table 3.

Match fields
Input port 7
Metadata value: 0x0000000000000A00

mask: 0xFFFFF00000000F0F
TCP destination port 22

Instructions
Write-Actions Set-Field:

Ethernet src. address = 00:01:02:aa:c1:22
Group 17

114 B OPENFLOW SPECIFICATION V. 1.3.0

Table 12: Example of multiple flow tables – the packet altered in flow tables 0 and 3.

Header fields
Ethernet source address 00:01:02:aa:bb:11
Ethernet destination address 00:01:02:ef:ce:1a
IPv4 source address 192.168.131.56
IPv4 destination address 192.168.131.202
TCP source port 50555
TCP destination port 22

Input port 7
Metadata 0x0000000000000A00

Action set
Set-Field IPv4 destination address = 192.168.131.1
Set-Field Ethernet src. address = 00:01:02:aa:c1:22
Group 17

Table 13: Example of multiple flow tables – the packet with applied actions.

Header fields
Ethernet source address 00:01:02:aa:c1:22
Ethernet destination address 00:01:02:ef:ce:1a
IPv4 source address 192.168.131.56
IPv4 destination address 192.168.131.1
TCP source port 50555
TCP destination port 22

Sent to group 17 for further processing and output.

B.4 Groups
Groups provide a framework for configuring symbolic output paths in flow entries.
A flow entry may have the output port constantly set to a particular group, while the
final output for the packet may vary depending on the setting of the group. A typical
use case for groups is multicast since they allow forwarding one packet out multiple
interfaces, but there are also other ways to use them as described below.
Groups are defined in a group table using group entries. Each group entry has
a unique identifier, a type, counters, and one or more action buckets. An action
bucket contains actions to perform on a packet and additional parameters depending
on the group type. The last action is an output action (Open Networking Founda-
tion, 2012b, p. 14; Göransson and Black, 2014, p. 101–102).

B.4 Groups 115

There are four group types, some of them must be implemented in a switch, some
of them do not have to (Open Networking Foundation, 2012b, p. 14–15):
• All (required) – when a packet is forwarded to this group, it is cloned for every

action bucket and all buckets are executed. This group type provides multicas-
t/broadcast functionality.

• Select (optional) – only one bucket in the group is executed for each packet. The
selection of the bucket is based on a selection algorithm, but the implementation
of the algorithm is switch-specific and not a part of OpenFlow. OpenFlow
provides bucket weights that may be used as a criterion in the selection process.
An exemplary use case for this group type is primitive load balancing, when the
action buckets take turns in processing packets and equally share the load.

• Indirect (required) – in this group, only one bucket may be defined. It allows
multiple flow entries to be configured for the same output port. This group
type is meant for fast and efficient convergence because only one entry has to be
updated in case the next hop changes, while normally a number of flow entries
proportional to the number of involved switches would have to be updated.

• Fast failover (optional) – the first live action bucket in the group is executed.
Buckets in this group are watched for liveness and evaluated in the defined order.
In case a link goes down, the switch can swiftly change the forwarding to the
next bucket in the row. If no buckets are alive, the packets are dropped.

Figure 33: An illustration of a group table with group entries and their action buckets.
Inspired by Figure 5.13 from Software Defined Networks: A Comprehensive Approach
(Göransson and Black, 2014, p. 102).

116 B OPENFLOW SPECIFICATION V. 1.3.0

B.5 Meters
Meters (or per-flow meters) are an OpenFlow instrument for implementing various
operations to help ensure the desired Quality of Service. Meters are associated with
particular flow entries and measure the rate of packets flowing through. A meter
may be attached to more flow entries, than it measures their aggregate rate. Packets
are then treated in accordance to the current measured rate. To provide broader
functionality, meters can be combined with queues that, on the other hand, are
attached to ports (Open Networking Foundation, 2012b, p. 15).
Meters are defined in a meter table using meter entries, which have a unique iden-
tifier, meter bands, and counters. Each meter entry may have one or more meter
bands. A meter band specifies the rate at which it applies and how the affected
packets should be handled. Packets are processed only by one meter band and the
choice depends on the current measured meter rate. A meter band with the highest
configured rate that is lower than the current rate is chosen. In other words, the rate
works as a threshold and the meter band applies when the threshold is exceeded. If
the current rate is lower than the configured rate of any meter band, no meter band
is applied (Open Networking Foundation, 2012b, p. 15).
A meter band has a band type, a rate, counters, and type-specific arguments. The
rate may be expressed in kilobits per second or packets per second and defines
the lowest rate at which the meter band applies. There are currently no band
types required to be implemented in a switch and two optional band types (Open
Networking Foundation, 2012b, p. 15–16):
• Drop – discard the packet.
• DSCP remark – decrement the drop precedence of the DSCP field in the IP

header of the packet, which means the packet will more likely be dropped in
case of queue congestion (Göransson and Black, 2014, p. 112).

In Figure 34, a simple meter table with two meters is depicted. Packets 1A and 1B
belong to a flow entry associated with meter 1 and are processed by meter bands
that have the highest configured rate that is lower than the current measured rate.
Or in other words, the packets are processed by the highest meter band whose
threshold rate have been crossed. Packet 2A belongs to a flow entry associated with
meter 2 and is not processed by the meter band because the current measured rate
is lower than the rate set for the band. In other words, the threshold has not been
crossed.
Meter-level counters are updated for all packets processed by the meter, while meter-
band-level counters are updated only when the band is used (Göransson and Black,
2014, p. 112).
Although the functionality of meters is basic at this point, it can be supposed that
the functionality could be greatly enhanced in following versions of OpenFlow and

B.6 Other improvements 117

more means for ensuring Quality of Service could then be available (Göransson and
Black, 2014, p. 111).

Figure 34: An illustration of a meter table with meter entries and their meter bands.
Inspired by Figure 5.16 from Software Defined Networks: A Comprehensive Approach
(Göransson and Black, 2014, p. 111).

B.6 Other improvements
As was mentioned before, there have been many improvements over the evolution
of OpenFlow, but not all of them can be given attention in this work. A few more
are briefly mentioned in this section.
VLAN and MPLS are fully supported. There are actions for adding, removing, and
modifying VLAN tags and MPLS labels in packet headers. Multiple levels of tags
can also be handled (Open Networking Foundation, 2012b, p. 98; Göransson and
Black, 2014, p. 102–103).
To ensure high availability, it was specified in greater detail how a switch may
be connected to multiple controllers. Controllers now take roles – equal, master,
or slave. Equal and master controllers may fully control the switch. Either all
controllers are equal or there is one master and the other controllers are slaves.
A slave controller may retrieve information from the switch, but it cannot modify
its state (Göransson and Black, 2014, p. 108; Open Networking Foundation, 2012b,
p. 26–27). A controller can also define what particular messages it wants to receive
from a switch, so that unnecessary load is not created (Göransson and Black, 2014,
p. 112; Open Networking Foundation, 2012b, p. 103).
Previously, it was expected that all interfaces of a switch were physical. It is now
possible for a switch to define arbitrary virtual ports that, for example, represent

118 B OPENFLOW SPECIFICATION V. 1.3.0

a Link Aggregation Group (LAG) or a tunnel. Packets may then be forwarded
to these switch-defined virtual ports (Open Networking Foundation, 2012b, p. 98;
Göransson and Black, 2014, p. 103).
As for small, but practical changes, a duration field was added to statistics for easy
calculations of packet and byte rate from corresponding counters. On the other
hand, it is now possible to disable counters for certain flow entries in order to boost
flow-handling performance (Open Networking Foundation, 2012b, p. 104).
More information and details regarding OpenFlow v. 1.3.0 and the preceding changes
can be found in the complete specification (Open Networking Foundation, 2012b) or
in a more talkative way in the book of Göransson and Black (2014, p. 99–116).

C MININET COMMANDS 119

C Mininet commands
As for the basic usage, Mininet can be started from a terminal, but it needs superuser
privileges to work. The command is following:

sudo mn

C.1 Starting attributes
Several options and attributes may be added to the command (Mininet, 2016c). The
following ones are relevant for the work of this thesis:
• --controller – defines the controller used to control the virtual network.

A controller residing on a remote server may be connected using the follow-
ing setting, which requires designating the IP address of the server:

– remote,ip=controller-IP-address.
Available for direct installation and use with Mininet, there are as well local
controllers:

– ref - OpenFlow 1.0 reference controller simply turns the switches it manages
into L2-MAC learning switches. It does not provide a northbound API
(OpenFlow Switch Consortium, 2011a).

– ovsc - Open vSwitch controller (ovs-testcontroller, formerly known as ovs-
controller) has the same main function as the reference controller, but since
it is still worked on, its capabilities are broader. For example, it experimen-
tally supports OpenFlow v. 1.3 or allows pushing arbitrary flow entries into
switches. This controller is not intended for production deployments (Open
vSwitch, 2016).

– ryu – Ryu is an open-source controller written in Python that provides
well-defined API for applications. It is under active development and fully
supports OpenFlow up to version 1.5 (Nippon Telegraph and Telephone
Corporation, 2014).

– nox – NOX was the first OpenFlow controller and it served as a basis for
a number of research projects. It provides a C++ API for OpenFlow v. 1.0
(NOX, 2012; Göransson and Black, 2014, p. 247).

The network can also be started without a controller using the following option:
– none

• --topo – is used to create a network from a topology template, which can be
further customized by additional parameters. Following topology templates are
shipped with Mininet:

– single,k=2 – a single switch connected to k hosts.

120 C MININET COMMANDS

– reversed,k=2 – a single switch connected to k hosts, but with reversed
ports, which means that the lowest-numbered host is connected to the
highest-numbered switch port.

– minimal – one switch with two hosts.
– linear,k=2,n=1 – a linear topology with k switches, each having n hosts.
– torus,x,y,n=1 – a 2D torus topology with specified x and y dimensions

of the torus. Minimal allowed dimension is 3x3 switches with each switch
having n nodes. This topology requires careful preparation as it creates
loops and has to be used with Spanning Tree Protocol.

– tree,depth=1,fanout=2 – a tree topology with depth levels of switches,
each having fanout of hosts.

Every topology, except for the torus, can be used without specifying any pa-
rameters since all of them have predefined default values.

• --switch – defines the switch software used for the virtual switches. By default,
Open vSwitch is used, which is an open-source production-quality multilayer
virtual switch. Open vSwitch has full OpenFlow v. 1.3 support since version
2.3, for lower versions, only experimental OpenFlow v. 1.3 support is provided
and not enabled by default. In case a lower version of Open vSwitch is used on
the system, the support of OpenFlow v. 1.3 can be enabled by these attributes:

– ovs,protocols=OpenFlow13
• --custom – reads classes from Python script files provided as attributes. Using

this option, for example custom topologies may be imported, which may then
be used by the option --topo.

When the command sudo mn is used with no options, the network is started with
a default setting. As for the default controller, one of the internal controllers is
to be used if available – OpenFlow reference controller or Open vSwitch controller
(Mininet, 2016a). As for the default topology, the minimal topology is used, and as
for the default switch, Open vSwitch is used (Mininet Team, 2016c).
In the following examples of the starting command, various options are com-
bined:

sudo mn --custom campus_river.py,campus_park.py --topo groundfloor
sudo mn --controller remote,ip=192.168.0.12
--switch ovs,protocols=OpenFlow13 --topo tree,depth=3

In the first command line, two Python script files are imported and a custom topol-
ogy groundfloor is used for building the network. The default controller and switch
software are used. In the second command line, a remote controller is connected to
control the network, which is created from the tree topology template with 3 levels

C.2 CLI commands 121

of switches. As for the switch software, Open vSwitch is used with OpenFlow v. 1.3
enabled.
For other possible options, the interested reader is encouraged to investigate the
manual page – through the command man mn or online at Ubuntu Manpage (Mininet,
2016c) – and the Mininet documentation (Mininet, 2016b).

C.2 CLI commands
When the network is prepared and the CLI is ready, several commands can be
executed. The following are the basic ones for elementary operation:
• help – lists all available CLI commands. It can also provide a brief help for

a specific command if used as - help command.
• exit – destroys the virtual network and exits Mininet.
• net – lists all network connections.
• dump – dumps information about all nodes.
• pingall – performs a ping between all hosts, that is from each host to every

other host.
• link node1 node2 [up/down] – brings up or down a link between the two

specified nodes.
• switch switch-name [start/stop] – starts or stops the designated switch.
• xterm node1 node2 ... – starts an xterm terminal window for each of the

given nodes.
• gterm node1 node2 ... – starts a gnome terminal window for each of the

given nodes.
The commands xterm and gterm allow direct manipulation of the nodes. Commands
may also be sent to specific nodes from the CLI, as if they were executed through
a specific terminal window, by first stating the desired node and then the command
for it to execute, for example:

h1 ping h4
h2 ifconfig h2-eth1 10.0.0.32/8 up

When necessary, the names of the nodes are automatically replaced by the inter-
preter for corresponding IP addresses, such as in the ping command.

122 D HPE VAN SDN CONTROLLER REST API – USED STRUCTURES

D HPE VAN SDN Controller REST API – Used struc-
tures

In this chapter I describe the resources from the REST API of the HPE VAN SDN
Controller that I used in the application to retrieve or push data to the network
through the controller. Messages that are received or pushed are thoroughly ex-
plained for every resource.
For both data retrieval and data pushing, the base address for resource identifiers
is always following:

https://controller-IP-address:8443
The content of messages interchanged between an application and the REST API
is in the JSON format.

D.1 Data retrieval
D.1.1 Datapaths

Because a switch as a networking device may be comprised of different components,
the name datapath is used throughout the OpenFlow specification and OpenFlow
messages to point to the fast packet forwarding part (OpenFlow Switch Consortium,
2011b). This term will be used in the following chapters to preserve unity.
To retrieve information about datapaths, the following resource must be accessed
at the controller:

GET /sdn/v2.0/of/datapaths
A message of the following structure is then received. Descriptions of the items are
taken from the REST API JSON data model mentioned in chapter 3.3.1:
{

"datapaths": [
{

Datapath identifier
"dpid": "00:00:00:00:00:00:00:01",
Highest common supported version of the OpenFlow protocol
in the datapath and the controller
"negotiated_version": "1.3.0",
Time when the datapath successfully connected to the controller
"ready": "2016-11-27T17:22:53.257Z",
Time when the last message was received from the datapath
"last_message": "2016-11-27T17:23:20.558Z",
Maximum number of packets the datapath can buffer at once
"num_buffers": 256,

D.1 Data retrieval 123

Maximum number of flow tables supported by the datapath
"num_tables": 254,
Manufacturer description
"mfr": "Nicira, Inc.",
Hardware version
"hw": "Open vSwitch",
Software version
"sw": "2.0.2",
Serial number
"serial": "None",
Datapath description
"desc": "None",
Datapath IP address via the main connection
"device_ip": "192.168.0.89",
Datapath TCP port via the main connection
"device_port": 36834,
Datapath capabilities
"capabilities": [

Statistics for flow entries
"flow_stats",
Statistics for flow tables
"table_stats",
Statistics for datapath ports
"port_stats",
Statistics for datapath queues
"queue_stats"

]
}

]
}
Concerning items necessary for the application, dpid and device_ip are used
to identify the datapath in both the visualization and OpenFlow messages, and
negotiated_version serves to choose the appropriate messages for communica-
tion.

D.1.2 Nodes

Nodes represent end-user devices connected to switches. To retrieve their data, the
following resource must be accessed at the controller:

GET /sdn/v2.0/net/nodes
A message of this structure is then received:

124 D HPE VAN SDN CONTROLLER REST API – USED STRUCTURES

{
"nodes": [
{

Node IP address
"ip": "10.0.0.2",
Node MAC Address
"mac": "22:51:c1:54:43:04",
Node VLAN identifier
"vid": 0,
Parent datapath DPID
"dpid": "00:00:00:00:00:00:00:01",
Parent datapath port to which the node is connected
"port": 2

}
]

}
For the application, ip and mac are used to identify the node itself, and dpid and
port are used to indicate its relationship with the parent datapath.

D.1.3 Links

Links represent connections only between datapaths and do not include connections
between datapaths and nodes, which are expressed in the data available in the
resource nodes.
To retrieve data for all links, the following resource must be accessed at the con-
troller:

GET /sdn/v2.0/net/links
To retrieve data for links that connect to a particular datapath, the DPID of this
datapath has to be provided in the resource address:

GET /sdn/v2.0/net/links?dpid={dpid}
A message of this structure is then received:
{

"links": [
{

Source datapath DPID
"src_dpid": "00:00:00:00:00:00:00:01",
Source datapath port
"src_port": 1,
Destination datapath DPID
"dst_dpid": "00:00:00:00:00:00:00:02",

D.1 Data retrieval 125

Destination datapath port
"dst_port": 3,
"info": {

Link type (directLink, multihopLink, tunnel)
"link_type": "directLink"

}
},
{
"src_dpid": "00:00:00:00:00:00:00:02",
"src_port": 3,
"dst_dpid": "00:00:00:00:00:00:00:01",
"dst_port": 1,
"info": {

"link_type": "directLink"
}

}
]

}
To identify connections between datapaths, src_dpid, src_port, dst_dpid, and
dst_port are used in the application. There may be two records for every connec-
tion – one from point A to point B, and another from point B to point A, but there
may also be only one of these records.

D.1.4 Port statistics

Traffic statistics are based on data gathered from datapath port counters. To retrieve
corresponding data, the following resource has to be accessed at the controller:
To retrieve statistics for ports of a particular datapath, the DPID of this datapath
must be provided in the resource address:

GET /sdn/v2.0/of/stats/ports?dpid={dpid}
A message of the following structure is then received. Descriptions of the items are
taken from the OpenFlow Switch Specification (v. 1.3.0 quote):
{

"stats": [
{
Datapath DPID
"dpid": "00:00:00:00:00:00:00:01",
Datapath OpenFlow protocol version
"version": "1.3.0",
"port_stats": [

{

126 D HPE VAN SDN CONTROLLER REST API – USED STRUCTURES

Datapath port number
"port_id": 1,
Number of received packets
"rx_packets": 39,
Number of transmitted packets
"tx_packets": 177,
Number of received bytes
"rx_bytes": 3582,
Number of transmitted bytes
"tx_bytes": 12774,
Number of packets dropped by RX
"rx_dropped": 0,
Number of packets dropped by TX
"tx_dropped": 0,
Number of receive errors (a~super-set of more specific
receive errors, should be greater than or equal to
the sum of rx_*_err values)
"rx_errors": 0,
Number of transmit errors
"tx_errors": 0,
Number of collisions
"collisions": 0,
Time the port has been alive in seconds
"duration_sec": 652,
Time the port has been alive in nanoseconds
beyond duration_sec
"duration_nsec": 690000000,
Number of receive CRC errors
"rx_crc_err": 0,
Number of receive frame alignment errors
"rx_frame_err": 0,
Number of packets with RX overrun
"rx_over_err": 0

},
{
"port_id": 4294967294,
...

}
]

}
]

}

D.2 Data pushing 127

To measure the utilization of links between datapaths, rx_bytes and tx_bytes are
used in the application. Except for standard ports, a port number 4294967294 may
also appear in the statistics. This port is a local port used for the out-of-band
communication between the switch and the controller.
Items present in messages for datapaths and port statistics depend on the partic-
ular switch. For a different switch, different items might appear depending on the
implementation of optional features. The interested reader is encouraged to inves-
tigate the REST API JSON data model mentioned in chapter 3.3.1 for details on
all possible parameters and values of the messages.

D.2 Data pushing
D.2.1 Flow entries

Flow entries work as forwarding rules in the datapaths they are installed to. They
may be accessed only for a specific datapath, its DPID therefore always has to be
provided in the address that is used to access and modify the resource:

POST /sdn/v2.0/of/datapaths/{dpid}/flows
The message for the controller is different for OpenFlow v. 1.0 and for OpenFlow
v. 1.3. because of the changes in the flow_mod message throughout the evolution
of the OpenFlow protocol.
For OpenFlow v. 1.0, the structure of the message to be sent to the controller is
following:
{

"flow":{
Flow entry priority
"priority":30000,
Flow entry idle timeout
"idle_timeout":60,
Flow entry hard timeout
"hard_timeout":600,
Match fields
"match":[
IPv4 source address
{"ipv4_src":"192.168.2.12"},
IPv4 destination address
{"ipv4_dst":"192.168.22.135"},
Datapath input port
{"in_port":4},
Ethernet frame type - EtherType
{"eth_type":"ipv4"},

128 D HPE VAN SDN CONTROLLER REST API – USED STRUCTURES

IP protocol
{"ip_proto":"tcp"},
TCP source port
{"tcp_src":50550},
TCP destination port
{"tcp_dst":80}

],
Actions
"actions":[

Output action with datapath output port
{"output":"1"}

]
}

}
For OpenFlow v. 1.3, the structure of the message to be sent to the controller is
following:
{

"flow":{
"priority":50000,
"idle_timeout":0,
"hard_timeout":0,
"match":[

{"ipv4_src":"192.168.191.43"},
{"ipv4_dst":"216.58.211.4"},
{"in_port":7},
{"eth_type":"ipv4"},
{"ip_proto":"udp"},
{"udp_src":50123},
{"udp_dst":517}

],
Instructions
"instructions":[

{
Apply Actions
"apply_actions":[
Output action with datapath output port
{"output":"12"}

]
}

]
}

}

D.2 Data pushing 129

Depending on the configuration of the path defined in the application, match fields
regarding IP protocol and TCP/UDP ports may or may not be present.

130 E NETWORK DATA – ALGORITHMS

E Network data – algorithms
E.1 Loading data
Once the interface is connected to a controller, data about the network can be
downloaded and necessary information stored in the data structures. In Figure 35,
loading of datapaths is depicted. First, all datapaths are retrieved, and then they
are one by one processed in a cycle, where required information is taken and saved in
the Datapath object. A reference to this object is then kept in the Network object,
which aggregates all the data structures.
Figure 36 depicts loading of nodes, which is similar to the process of loading data-
paths. Since a node is always connected to a particular datapath, the information
about their relationship has to be stored. Connections are made between the Node
and Datapath objects, and also a Link object capturing the relationship is created.
The new Node and Link objects then have to be added to the Network object as
well.
Figure 37 is concerned with processing links. While the Link object may connect two
datapaths or a datapath and a node, the link retrieved from the controller always
connects two datapaths. Based on this link, the source and destination Datapath
objects are connected and a Link object capturing the connection is created. The
Link object is then added to the Network object.

Figure 35: Loading datapaths – a flowchart of the process.

E.1 Loading data 131

Figure 36: Loading nodes – a flowchart of the process.

132 E NETWORK DATA – ALGORITHMS

Figure 37: Loading links – a flowchart of the process.

E.2 Updating data 133

E.2 Updating data
To present to the user the most recent state of the network, Visdan periodically
inquires the network controller to find out about any occurred changes. In Figure 38,
the process of updating datapaths is depicted. First, all datapaths are downloaded
from the controller and one by one checked in a cycle. If a datapath exists in the
original network state that has the same identifier (DPID) as the checked datapath,
their objects are compared. If any attributes changed, the objects are not equal and
the original datapath is removed. In case the checked datapath is not present in
the original network state, which also applies to the case of removing the original
datapath, it is saved. All datapaths that are left from the original network state,
but are not present in the new network state (that is in the updated one), are
removed.
Steps related to saving a datapath are the same as described in the previous section in
Figure 35. When removing a datapath, these steps have to be undone. It means that
the Datapath object has to be removed from the Network object and its reference
lost.
Figure 39 depicts the process of updating nodes, which is essentially the same as for
the datapaths. Since the links retrieved from the controller are concerned only with
connecting datapaths, links between nodes and their parent datapaths cannot be
checked in the same operation. A node therefore has to be individually disconnected
from its parent datapath when being removed. As it was for datapaths, the Node
object then has to be removed from the Network object and its reference lost. Steps
for saving a new node are the same as described in Figure 36.
Figure 40 is concerned with updating links between datapaths, and their port statis-
tics. In a cycle, each of the datapaths present in the new network state is taken.
First, links connected to this datapath are download. For each link, the other dat-
apath is connected to this datapath and the link is saved as described in Figure 37.
The datapath is then checked whether it has any ports that used to be connected
to another datapath, but are not anymore, and these ports are cleared. When the
datapath has a new object, it will not have any vacated ports. Statistics for all
active ports on the datapath are then downloaded, and the port statistics stored in
the PortStats objects are updated with recent data for each port.
It is not possible to merge these two datapath cycles into one. The first cycle ensures
that there is an object representation for every datapath. It would be possible to
check the links during the first cycle, but a missing object for the other datapath
would cause problems.
As the last step, depicted in Figure 41, the Link objects that are no more valid are
removed.
During the whole updating process, information about added or removed datapaths
or nodes, and connected or disconnected links is gathered in the Update object in

134 E NETWORK DATA – ALGORITHMS

the form of references to the involved objects. The Update object is then returned
as a result of the update function.

Figure 38: Updating datapaths – a flowchart of the process.

E.2 Updating data 135

Figure 39: Updating nodes – a flowchart of the process.

136 E NETWORK DATA – ALGORITHMS

Figure 40: Updating datapath links and port statistics – a flowchart of the process.

E.2 Updating data 137

Figure 41: Removing invalid links – a flowchart of the process.

138 F TREE-LIKE DATA STRUCTURE – ALGORITHMS

F Tree-like data structure – algorithms
F.1 Creation
The process of creating the tree-like data structure is depicted in Figure 42. To
create the structure, it is necessary to have one or more live core or distribution
datapaths, which serve as roots for the tree. These datapaths are then processed in
a breadth-first search. For every datapath a TreeDatapath object is created and the
corresponding graphical object is assigned. It is also necessary to connect the new
TreeDatapath object with its predecessor TreeDatapath object. Next, the devices
connected to the datapath are processed. If the device is a datapath, it is added
to the queue for the next row in the tree unless it is already there or unless it has
been already processed, which means it would be on the same or previous row. If
the device is a node, a TreeNode object is directly created for it, the corresponding
graphical object is assigned, and the object is added to its parent TreeDatapath
object.

F.1 Creation 139

Figure 42: Creating the tree-like structure – a flowchart of the process.

140 F TREE-LIKE DATA STRUCTURE – ALGORITHMS

F.2 Drawing
Once the data structure is complete, it may be used for drawing, whose process is
depicted in Figure 43. In the beginning, the initial position is defined. The tree
roots are then iterated and for each of them a depth-first search is performed, which
is further described below. Once the search is done, it returns a position, where the
sub-tree of the root ended, that is used to set the new initial position for the next
root. When all roots are processed and the tree is drawn, elements that are not
included in the tree are added to the tree visualization using the graph algorithm
that is used to create the plain graph.
The algorithm of the previously mentioned depth-first search is depicted in Figure
44. If the given object is a TreeDatapath, the algorithm begins with processing its
sub-tree. The initial position for its successors is set and the succeeding datapaths
as well as connected nodes are processed, again using the depth-first search. The
position returned from the search is then set as the initial position for the next
successor or node. Once the sub-tree of the datapath is completely processed, its
graphical element is placed on the scene in a position such that it is above the
sub-tree vertically and in its center horizontally. The end position of the sub-tree
is then returned to serve as the initial position for the neighboring sub-tree. If the
processed object is a TreeNode, its graphical element is placed on the scene and the
end position is returned.

F.2 Drawing 141

Figure 43: Drawing the tree-like structure – a flowchart of the process.

142 F TREE-LIKE DATA STRUCTURE – ALGORITHMS

Figure 44: Depth-first search – a flowchart of the process.

G MININET TESTING TOPOLOGY 143

G Mininet testing topology
G.1 Custom topology
The topology depicted in Figure 25 can be created as a custom topology. The
Mininet command is following:

sudo mn --controller=remote,ip=192.168.1.89 --custom=~/topo.py
--topo=visdan1

Soure code 17: topo.py
#!/usr/bin/python

from mininet.net import Mininet
from mininet.topo import Topo

class VisdanOne(Topo):
def build(self):

core1 = self.addSwitch('s1')
dist1 = self.addSwitch('s2')
dist2 = self.addSwitch('s3')
accs1 = self.addSwitch('s4')
accs2 = self.addSwitch('s5')
accs3 = self.addSwitch('s6')
accs4 = self.addSwitch('s7')

self.addLink(core1, dist1, port1=1, port2=1)
self.addLink(core1, dist2, port1=2, port2=1)
self.addLink(dist1, accs1, port1=2, port2=1)
self.addLink(dist1, accs2, port1=3, port2=1)
self.addLink(dist2, accs3, port1=2, port2=1)
self.addLink(dist2, accs4, port1=3, port2=1)

host1 = self.addHost('h1')
host2 = self.addHost('h2')
host3 = self.addHost('h3')
host4 = self.addHost('h4')
host5 = self.addHost('h5')
host6 = self.addHost('h6')
host7 = self.addHost('h7')
host8 = self.addHost('h8')

self.addLink(accs1, host1, port1=2)
self.addLink(accs1, host2, port1=3)
self.addLink(accs2, host3, port1=2)
self.addLink(accs2, host4, port1=3)
self.addLink(accs3, host5, port1=2)
self.addLink(accs3, host6, port1=3)
self.addLink(accs4, host7, port1=2)
self.addLink(accs4, host8, port1=3)

144 G MININET TESTING TOPOLOGY

topos = {'visdan1': lambda: VisdanOne()}

G.2 Default topology
The same topology can be generated using the default topologies using the following
command:

sudo mn --controller=remote,ip=192.168.1.89 --topo=tree,depth=3

