
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

MODELING AND SIMULATION OF EIGRP AND BGP
MODELOVÁNÍ A SIMULACE EIGRP A BGP

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JAN ZAVŘEL
AUTOR PRÁCE

SUPERVISOR Ing. VLADIMÍR VESELÝ, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2021/2022

 Master's Thesis Specification

Student: Zavřel Jan, Bc.
Programme: Information Technology and Artificial Intelligence
Specialization: Computer Networks
Title: Modeling and Simulation of EIGRP and BGP
Category: Networking
Assignment:

1. Analyze EIGRP and BGPv4 routing protocols and study their behavior on Cisco devices.
2. Find out the status of EIGRP and BGP implementation in OMNeT ++ and Cisco.
3. According to the supervisor's recommendation, implement EIGRP and BGP support into the

(ANSA) INET framework of the OMNeT ++ environment.
4. Verify the behavior of the implemented simulation models against the corresponding real

topology and discuss it.
5. Create tutorials to demonstrate the operation of your models.

Recommended literature:
Wehrle, K., Mesut, G., & Gross, J., eds. Modeling and tools for network simulation. Springer
Science & Business Media; 2010.
Rekhter, Y., Li, T., & Hares, S. A border gateway protocol 4 (BGP-4), RFC 4271; 2005.
Bates, T., Chandra, R., Katz, D., & Rekhter, Y. Multiprotocol extensions for BGP-4, RFC
4760, 2007.
Savage, D., Ng, J., Moore, S., Slice, D., Paluch, P., & White, R. Cisco's enhanced interior
gateway routing protocol (EIGRP). RFC 7868; 2016.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Veselý Vladimír, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 18, 2022
Approval date: October 13, 2021

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/24993/2021/xzavre10 Page 1/1

Abstract
Over the last few decades, the Internet has become one of the most important tools for
interpersonal communication. Billions of people use it every day for entertainment, for
work, for education, or for the satisfaction of human contact. It must be acknowledged that
a huge proportion of the population is existentially dependent on its proper functioning.
This is reflected in the ever-increasing demands for higher speeds, lower latency and greater
coverage and stability. Network engineers and architects must keep these aspects in mind
during the design and deployment processes. One way in which the designed topologies can
be tested is through simulation. Simulation uses simulation models that, if they accurately
reflect reality, can provide key information about topologies in a risk-free environment at
a very affordable cost. This paper deals with the analysis and subsequent improvement
of two simulation models of dynamic routing protocols, EIGRP and BGP. These models
can be used to create complex simulation topologies and scenarios in the discrete simulator
OMNeT++.

Abstrakt
Internet se za posledních několik desítek let stal jedním z nejdůležitějších nástrojů pro
mezilidskou komunikaci. Miliardy lidí ho denně používají na zábavu, na práci, na vzdělání
či uspokojení lidského kontaktu. Je nutné si připustit, že na jeho správném fungování je
obrovská část populace existenčně závislá. Toto se odráží na stále se zvětšujících poža-
davcích na vyšší rychlost, nižší zpoždění a větší pokrytí a stabilitu. Síťoví inženýři a ar-
chitekti musí při návrhu a nasazení dbát právě na tyto aspekty. Jedním ze způsobů, kterým
je možné navržené topologie otestovat, je simulace. Simulace využívá simulační modely,
které, pokud přesně odráží realitu, mohou poskytnout klíčové informace o topologiích v
bezpečném prostředí a to za velice přívětivou cenu. Tato práce se zabývá analýzou a násled-
ným vylepšením dvou simulačních modelů dynamických směrovacích protokolů EIGRP a
BGP. Tyto modely mohou být použity k vytvoření komplexních simulačních topologií a
scénářů v diskrétním simulátoru OMNeT++.

Keywords
Dynamic routing protocols, BGP, EIGRP, simulation, OMNeT++, INET

Klíčová slova
Dynamické směrovací protokoly, BGP, EIGRP, simulace, OMNeT++, INET

Reference
ZAVŘEL, Jan. Modeling and simulation of EIGRP and BGP. Brno, 2022. Master’s thesis.
Brno University of Technology, Faculty of Information Technology. Supervisor Ing. Vladimír
Veselý, Ph.D.

Rozšířený abstrakt
Simulace je jeden z populárních způsobů zkoumání síťových protokolů či testování navrže-
ných topologií. Simulace využívají simulační modely daných protokolů. Je však klíčové,
aby tyto modely byly přesné. A právě tímto tématem se zabývá následující diplomová
práce. Hlavním cílem je analyzovat stav simulačních modelů protokolů EIGRP a BGP
pro diskrétní simulační prostředí OMNeT++, vylepšit a rozšířit jejich rozsah, otestovat a
popsat jejich funkcionalitu a v neposlední řadě tyto modely připravit na sloučení s populární
síťovou simulační knihovnou pro OMNeT++ nazývanou INET.

OMNeT++ je open-source simulační knihovna s modulární architekturou, která do-
voluje vytvářet jednoduché moduly a ty poté skládat do komplexnějších celků. Chování
těchto modulů je definováno jejich implementací v jazyce C++ a jedním z primárních
způsobů komunikace mezi jednoduchými nebo složenými moduly je zasílání zpráv. Síťová
simulační knihovna INET pak ve zmíněném simulátoru implementuje celou řadu nejpouží-
vanějších síťových protokolů jako Ethernet, IP, TCP, UDP, či sadu různých aplikačních
protokolů. Tyto simulační modely je pak možné využít k modelování libovolného vlast-
ního nadstavbového protokolu. Zatímco podstatně omezená verze simulačního modelu
směrovacího protokolu BGP je již zahrnuta v samotné knihovně INET, simulační model
EIGRP je implementovaný v knihovně ANSAINET. Prestože je tato knihovna založena na
knihovně INET, jedná se o starší verzi a tudíž bylo nutné EIGRP model upravit na nové
INET API a zároveň s tím odstranit závislosti na funcionalitách, které byly poskytovány
samotnou knihovnou ANSAINET a v INET nemají dvojníka.

Oba zmiňované aplikační protokoly, EIGRP i BGP, se řadí mezi dynamické směrovací
protokoly. Tato rodina protokolů slouží k dynamické synchronizaci směrovacích tabulek
mezi vícero směrovači. Díky použití směrovacích protokolů se případné změny v topologii
dynamicky projevují do obsahů směrovacích tabulek, což výrazně zlehčuje práci síťovým
administrátorům a zlepšuje fungování celé sítě jako celku. Přestože se EIGRP a BGP řadí
mezi tyto protokoly, v reálném prostředí slouží každý k jinému účelu. Zatímco protokol
EIGRP je jeden z protokolů, který zajišťuje směrování uvnitř autonomního systému (AS),
kde jsou všechny směrovače typicky spravovány jedinou organizací, BGP protokol se používá
jako společný protokol pro propojení různých autonomních systémů. Samotné autonomní
systémy jsou typicky pod správou velkých organizací; v rámci České republiky to jsou
například O2 Czech Republic, Seznam, VUT, T-Mobile, Nordic Telecom a dalších přibližně
700 organizací.

EIGRP je dynamický směrovací protokol patřící do rodiny „Interior Gateway Proto-
col“ (IGP), které zajišťují výměnu směrovacích informací v rámci jednoho AS. Narozdíl od
jiných populárních protokolů patřících do této rodiny (jako jsou OSPF či IS-IS, které jsou
označovány jako typ „link-state“), EIGRP je typu „distance-vector“, čili je spíše podobný
směrovacím protokolům jako RIP či IGRP. Směrování protokolů typu „distance-vector“
se často nazývá „routing by rumor“, tedy směrování na základě dohad. Směrovače si in-
dividuálně počítají vlastní nejkratší cestu do cílových sítí bez znalosti celé topologie a
informaci o nejkratší cestě, co znají, sdílí s ostatními. A právě tento koncept je srdcem
EIGRP. To si navíc propůjčuje některé podpůrné koncepty prvně implementované v „link-
state“ protokolech jako například proces ustanovení a udržování sousedů. EIGRP je obecně
vnímáno jako moderní verze „distance-vector“ protokolů. Jeho velkou nevýhodou je velice
omezená podpora mezi jinými výrobci síťových zařízení než je jeho vynálezce Cisco Systems
a to i přestože bylo EIGRP standardizováno.

Dynamický směrovací protokol BGP patří do rodiny „Exterior Gateway Protocol“ (EGP),
které zajišťují výměnu směrovacích informací mezi autonomními systémy. Primárním účelem

je oznámit připojeným autonomním systémům informace o sítích, které jsou dostupné
v nebo skrze lokální autonomní systém. BGP je jediný aktuálně používaný protokol s tímto
účelem. Vytváří lehkou vrstvu abstrakce, jelikož libovolný AS se ostatním jeví jako entita
s jednotným směrovacím plánem, bez ohledu na to, jak je v daném AS přesně implemen-
tované směrování. BGP, na rozdíl od například EIGRP, směruje na základě sady atributů
a nikoliv vzdálenosti. Nejkratší cest k cíli, tj. s nejmenším počtem AS k cíli, tedy obecně
nemusí být nejvhodnější. Tyto atributy jsou oznámovány společně s cílovými sítěmi a slouží
hlavně k výběru mezi více cestami do stejné cílové sítě. Použití atributů ovšem závisí na
každém AS a jeho směrovací politice a tudíž je na každém z nich, jakou cestu do cílové sítě
zvolí a propaguje sousedním AS.

Oba tyto protokoly už jsou v určité formě dostupné v simulátoru OMNeT++. Při
analýze EIGRP modelu bylo nalezeno několik drobných problémů, které způsobovaly mírné
odchylky ve výsledcích simulace. Jedná se například o chybný výpočet metriky, nekonzis-
tetní stav interní databáze cest, či vyžadované přesné pořadí simulačních signálů. Sloučení
s knihovnou INET bylo navíc komplikované faktem, že EIGRP model využíval jednak AN-
SAINET funkcionality, které nejsou v knihovně INET dostupné, a druhak byl založen na
staré verzi samotné knihovny INET, jejíž API se od té doby dočkalo markantních změn.
Simulační model protokolu BGP je sice součástí knihovny INET už poměrně dlouho, avšak
rozsah tohoto modelu je poměrně omezený. V modelu kompletně chyběla podpora pro pro-
tokol IPv6, dále chyběla například funkcionalita oznamování nově nedostupných sítí a model
byl celkově neinteraktivní, takže bylo obtížné experimentovat s dynamicky se měnícími
topologiemi. Některé tyto aspekty byly řešeny v diplomové práci Ing. Adriana Nováka
v roce 2019, avšak ne dokonale. Jeho změny nebyly sloučeny s knihovnou INET a jeho
verze byla navržena ke kompletnímu přepsání.

Jako součást této práce bylo opraveno několik nalezených problémů se simulačním mod-
elem protokolu EIGRP, funkcionalita poskytovaná knihovnou ANSAINET byla přesunuta
do samotného modelu a využití knihovny INET bylo uzpůsobeno novému API. Takto up-
ravený model byl předložen ke sloučení s knihovnou INET, následně přijat a vydán jako
její pevná součást od verze 4.3. Naproti tomuto úspěchu, simulační model BGP vyžadoval
daleko rozsáhlejší změny. Konfigurační proces byl mírně upraven, aby více odrážel kon-
figuraci reálných zařízení. Model byl dále rozšířen o podporu protokolu IPv6 s použitím
generických struktur, některé typy zpráv modelu byly přidány či kompletně přepsány, pop-
ulární typy atributů cest byly taktéž přidány a operační smyčka směrovače, která řeší reakci
BGP procesu na vnější i vnitřní události, byla úplně přepsána. V tomto modelu ovšem stále
chybí některé prvky, které musí být implementovány, než bude model schopen nahradit ak-
tuálního verzi modelu BGP v knihovně INET.

K demonstraci funkcionality obou modelů byly vytvořeny „směrovací tutoriály“, které
popisují a demonstrují základní charakteristiky chování modelovaných protokolů. Chování
modelů v těchto „tutoriálech“ bylo ověřeno proti implementaci na Cisco zařízeních. Každý
„tutoriál“ je navíc opatřen všemi potřebnými konfiguračními a simulačními soubory k jejich
rekonstrukci. Rozšířenou verzi těchto „tutoriálů“ je plánováno publikovat na stránkách
knihovny INET, kde mohou uživatelé simulátoru OMNeT++ a knihovny INET proniknout
do tajů těchto protokolů a zároveň si s jejich pomocí postavit vlastní testovací topologie a
navrhnout vlastní scénáře k experimentování.

Výstupem práce jsou vylepšené simulační modely protokolů EIGRP a BGP a sada
„směrovacích tutoriálů“, která demonstruje jejich funkčnost a vlastnosti. EIGRP model
byl sloučen s knihovnou INET a je nyní věřejně dostupný k experimentování všemi jejími
uživateli. Simulační model protokolu BGP byl přepsán a výsledný model daleko lépe re-

flektuje reálné chování modelovaného protokolu. Protože se i interaktivita modelu značně
zlepšila, je nyní možné na modelu testovat nové scénáře, jako pády linek, pády celých
směrovačů či celkově změny v topologii. V budoucnu je plánováno zveřejnění „směrovacích
tutoriálů“ na stránkách knihovny INET spolu se sloučením takto vylepšeného BGP modelu.

Modeling and simulation of EIGRP and BGP

Declaration
I hereby declare that this Master’s thesis was prepared as an original work by the author
under the supervision of Mr. Ing. Vladimír Veselý Ph.D. I have listed all the literary
sources, publications and other sources, which were used during the preparation of this
thesis.

. .
Jan Zavřel

May 18, 2022

Acknowledgements
I would like to thank my supervisor Vladimír for his undeniably significant role in my
education and for his cultivation of my love of science in general. I also want to thank
my two best friends: František Fiala for his willingness to pilot my WoW character(s) on
numerous occasions and for keeping my overall sanity at manageable levels, and Jakub
Víšek for being the perfect role model for what a good engineer should look like. Last but
not least, I would like to thank my sister Petra for occasionally cutting my hair and Lukáš
Fürle for motivating me to work out more.

I would like to share a recipe for a dish I eat almost every day: Red Lentil Dhal.
Place washed red lentils in a pot, add 2.5 times the weight of the lentils of water, bring to
a boil, reduce the heat to medium, and cook for 15 minutes. Meanwhile, add vegan butter
to a pan and saute some onions. Add copious amounts of garlic and chilli, add lemon juice,
garam masala and season to taste with salt&pepper. When the lentils are cooked, add
them to the pan and stir vigorously. Optionally, vegan milk can also be added to create a
more creamier texture. Serve hot with a Naan or similar flatbread.

Contents

1 Introduction 4
1.1 Structure . 5

2 Routing Protocols 6
2.1 Interior Gateway Protocols . 6

2.1.1 Distance Vector . 7
2.1.2 Link-State . 7

2.2 Exterior Gateway Protocols . 8

3 Enhanced Interior Gateway Routing Protocol 9
3.1 Terminology . 9
3.2 Packets . 10

3.2.1 Packet Types . 10
3.3 Neighbour Discovery . 12

3.3.1 Establishing Neighborship . 12
3.4 Diffusing Update Algorithm . 12

3.4.1 Models . 13
3.4.2 Stub Routers . 13

3.5 Metric Calculation . 14
3.5.1 Classic Metric . 15
3.5.2 Wide Metric . 16

4 Border Gateway Protocol 17
4.1 Messages . 17
4.2 Attributes . 18

4.2.1 Decision process . 19
4.3 Autonomous Systems . 19
4.4 BGP Peering . 22

4.4.1 External BGP . 22
4.4.2 Internal BGP . 22
4.4.3 BGP Peer Finite State Machine . 23

5 OMNeT++ 26
5.1 Framework INET . 26
5.2 Framework ANSAINET . 26
5.3 State of EIGRP Simulation Model . 27

5.3.1 Structure . 27
5.3.2 Issues . 28

1

5.4 State of BGP Simulation Model . 29
5.4.1 Structure . 29
5.4.2 Issues . 30

6 Cisco Configuration 32
6.1 EIGRP . 32

6.1.1 Classic mode . 32
6.1.2 Named mode . 33

6.2 BGP . 34

7 Implementation 36
7.1 EIGRP Implementation Details . 36

7.1.1 Metric Calculation (i1) . 37
7.1.2 Topology Table (i2) . 37
7.1.3 Query/Reply Crash (i2a) . 37
7.1.4 The Order of Signals (i3) . 38
7.1.5 Interface Configuration (i4) . 39
7.1.6 Classification of Address Family (i5) 39
7.1.7 ANSAINET Interface Dependency (i6) 39
7.1.8 Integration of Packets (i7) . 40

7.2 BGP Implementation Details . 41
7.2.1 Configuration of the Simulation Model 41
7.2.2 Support for Multi-Address Family 44
7.2.3 Redesign of Node’s Operation . 46
7.2.4 TCP Operations . 53

7.3 Implementation Conclusion . 54
7.3.1 EIGRP Conclusion . 54
7.3.2 BGP Conclusion . 54

8 Testing 56
8.1 Methodology . 56
8.2 EIGRP Tutorials . 57

8.2.1 Network Command . 57
8.2.2 Establishing Neighbourship and Initial Route Exchange 60
8.2.3 DUAL Calculation . 62

8.3 BGP Tutorials . 65
8.3.1 Establishing Peering . 65
8.3.2 Network Command . 68
8.3.3 Exchanging Updates . 71
8.3.4 Attributes . 75

9 Conclusion 84

Bibliography 86

A Contents of Included Disk Media 89

B Sequence Diagram of EIGRP Dynamic Neighbour Discovery and Initial
Route Exchange 90

2

C Sequence Diagram of BGP Session Establishment 91

D Structure of the BGP Configuration File 92

E Example of BGP configuration file 93

F Relation of the Activate Attribute and IP Address Families 95

3

Chapter 1

Introduction

With the number of people using the Internet quadrupling since 2005 [30], it is now more
important than ever to push for high availability and stability. These properties can be
partially achieved with optimal route selection by network devices on the path to the desired
destination. A combination of static routes with dynamic routing protocols is usually used.
Such an approach enables the router to select optimal paths to various destinations even
after the topology layout changes while having control over specific cases with static routes.
Usage of these protocols allows routers to dynamically exchange routing information and
update their routing tables accordingly when necessary.

One way of getting close with the complex routing protocols is through simulation model
experimentation. If such a model reliably reflects reality, behaviour patterns during critical
scenarios can be observed and analysed within a safe and risk-free environment. The results
can be taken into account during the next iteration of the topology design, leading to a
more stable and optimal solution.

This thesis deals with the implementation of simulation models of two routing protocols.
These simulation models can be used to conduct experiments on topologies in a simulated
environment. Individual experiments can involve various events (e.g., link failures, node
failures, etc.). All observed effects of these events on the topology can be thoroughly
investigated and analysed. It is preferred to simulate such events inside a safe environment
rather than on active devices, as it is cheaper, faster, and more convenient. However, this
requires that the simulation models to be as accurate as possible.

OMNeT++ is an open-source, discrete, and modular C++ simulation library and frame-
work. Its functionality can be extended with additional frameworks (e.g., INET, AN-
SAINET) that provide simulation models for a variety of protocols. This thesis deals with
the implementation of EIGRP and BGP simulation models within OMNeT++.

EIGRP belongs to the family of Interior Gateway Protocols. These protocols are de-
signed to dynamically distribute routing information throughout an autonomous system
(AS) as an alternative to fully static routing. This protocol was designed and developed by
Cisco Systems, Inc. and is described in RFC 7868. EIGRP simulation model was originally
implemented in the ANSAINET framework.

BGP is an Exterior Gateway Protocol and a widely used standard. It is mostly used to
connect ASes that are under different administration. It creates the global routing system
of the Internet and links tens of thousands of ASes together. The current version is BGP-4
and is described in RFC 4271. A basic BGP simulation model is already implemented in
the INET framework.

4

The goal of this thesis is to improve, verify, and integrate the EIGRP and BGP simula-
tion models into OMNeT++’s INET framework. The quality of the models is to be ensured
by a close comparison of all aspects of the model with the actual implementation found on
Cisco devices.

1.1 Structure
∙ Chapter 2 describes the categorisation of dynamic routing protocols and their types.

∙ Chapter 3 provides a basic overview of EIGRP. It focuses on general principles and also
closely describes message types, the neighbour discovery process, metric calculation,
and the used Diffusing Update Algorithm (DUAL).

∙ Chapter 4 contains a brief overview of BGP. It mostly focuses on general usage, use
cases, capabilities and principles. The chapter also includes section on autonomous
systems.

∙ Chapter 5 describes the basic premises of the OMNeT++ simulator and its INET
and ANSAINET frameworks. The chapter also contains a description of the actual
implementation state of existing EIGRP and BGP simulation models.

∙ Chapter 6 presents the basic EIGRP and BGP configuration on Cisco devices. This
configuration will later be used for verification.

∙ Chapter 7 describes the author’s solution to the previously established model defects
and discusses the integration process. While the EIGRP section is quite short, the
BGP section relates a complex process of redesigning a significant portion of the
model that notably extends its functionality.

∙ Chapter 8 contains a set of ‘routing tutorials’ that provide the reader with a detailed
image of how these two protocols operate. An extended version these tutorials is
planned for a publication on the INET website.

∙ Chapter 9 concludes the thesis with a summary of the most important take-away
points. The resulting simulation models and their respective states are reviewed, and
additional plans for the future are stated.

5

Chapter 2

Routing Protocols

The Internet can be viewed as a collection of disjoint sets of routers, and there are two
main types of dynamic routing protocols. The first type, called Interior Gateway Protocols
(IGPs), provides routing within a singular set of routers. The other type, called Exterior
Gateway Protocols (EGPs), provides routing among different sets. These sets often take
form of autonomous systems (AS). These ASes are relatively small components of the
Internet, and each is under the control of a single administrative entity, usually a large
organisation such as an Internet Service Provider (ISP). Routing protocols from the IGP
family, such as EIGRP, OSPF, IS-IS, or RIP, are then often used within these ASes to
dynamically maintain the contents of routing tables. Different ASes can internally use
different IGP protocols or their combination, or even use them in conjunction with static
routes. However, inter-AS connections between neighbouring ASes are operated with an
EGP protocol called the Border Gateway Protocol (BGP). The following Section 2.1 further
expands on this topic. Different usages are demonstrated in Figure 2.1 and different types
of routing protocols are shown in Figure 2.2. Autonomous systems and their relation to
BGP is described in Section 4.3. This section itself is based on [10].

Figure 2.1: Diagram showing different use cases for IGP and EGP protocols.

2.1 Interior Gateway Protocols
The term ‘Interior Gateway Protocols’ refers to a class of dynamic routing protocols that
is used to synchronise routing table entries between routers in the same AS. However, the
use of these protocols does not make static routes obsolete, as specific cases can only be
handled with static routes. An AS can also use multiple IGP protocols if such usage is
favourable. These routing protocols have four main functions:

6

∙ discovery of remote networks;

∙ advertisement of known networks;

∙ calculation of the best paths;

∙ recalculation of the best routes following a change in topology.

Favourable characteristics of IGP protocols include low resource usage, fast convergence,
good scalability, authentication support, and easy extensibility. There are two main types
of IGP protocols: Distance Vector and Link-State.

2.1.1 Distance Vector

Distance Vector is a family of IGPs that advertises routes as a vector of distance and
direction. Distance can vary from a simple hop count to a composite metric with multiple
different factors. The direction is the next-hop or exit interface towards the destination
network. IGRP, EIGRP, and all versions of RIP belong to the IGP family. Routing decisions
are based only on a limited and incomplete knowledge of the full network topology.

IGRP is Cisco’s proprietary distance vector routing protocol. It shares many concepts
with RIP while making some improvements, especially in regards to scalability. It uses a
composite metric and is not limited to 15 hops as opposed to its predecessor. IGRP was
later evolved and improved to EIGRP.

Although EIGRP is officially classified as a distance vector, the community often uses
terms such as hybrid or advanced distance vector. This is because it employs some of the
same features as link-state protocols, such as neighbour discovery and incremental change-
triggered forms of updates. It uses a composite metric that is compatible with IGRP. DUAL
is used to find the best route to destination and thus provides loop-less routes even while
the topology is not fully converged. It supports IPv4 and IPv6 using Protocol Dependent
Modules (PDMs), and its messages use the Type-Length-Value format (TLV), which makes
EIGRP more future-proof. EIGRP is further described in Section 3.

2.1.2 Link-State

While the various distance vector protocols advertise route distance, members of the ‘Link-
State’ protocol family instead advertise link states. Routers keep track of its neighbours
and generate messages with all the necessary information about directly connected links.
The information is distributed throughout the desired area. Each router builds the exact
same topology graph based on interchanged information and independently calculates the
best routes to all destinations. A topology change only causes the routers to exchange a
limited set of incremental updates. IS-IS and OSPF both belong to this protocol family
and internally use Dijkstra’s algorithm to find the shortest path to destination.

7

Figure 2.2: Classification of Dynamic Routing Protocols by Cisco [10].

2.2 Exterior Gateway Protocols
The term ‘Exterior Gateway Protocols’ refers to a class of dynamic routing protocols that
is used to exchange routing information between different ASes. A widely used standard
is the Border Gateway Protocol (BGP), which is classified as a Path Vector protocol.
While numerous attributes influence the best route selection process, the most prominent
attribute is the vector of AS numbers on the path to destination (the path vector). Routing
decisions are generally based on network policies, which means that the shortest path is
not necessarily selected as the best. BGP neighbours are referred to as peers, and there is
no dynamic neighbour discovery: IP addresses of the desired peers must be set explicitly
and must already be reachable prior to the peering process. The current version is BGP-4
and is described in more detail in Section 4.

8

Chapter 3

Enhanced Interior Gateway
Routing Protocol

EIGRP is an IGP dynamic routing protocol. It is officially classified as distance vector but
it is also referred to as being a hybrid between link-state (OSPF, IS-IS) and distance vector
(IGRP, RIP) by the community. This is because it uses many features found in link-state
protocols, such as non-periodical partial routing updates, and the establishment of neigh-
bourships. Although EIGRP remains a distance vector protocol, these beneficial traits allow
it to be viewed as a fairly modern take on distance vector routing. EIGRP was designed
and developed by Cisco Systems, Inc. as an improved version of their previous proprietary
Interior Gateway Routing Protocol (IGRP), thus ’Enhanced’ in the name. EIGRP features
classless addressing and support for variable-length network masks (VLSMs) and classless
interdomain routing (CIDR). EIGRP calculates the distance using a composite metric that
involves up to six different components (more in Section 3.5). It operates directly on top of
the network layer from the ISO/OSI model and the protocol’s original specification supports
IPv4, IPv6, AppleTalk, and IPX by the means of Protocol Dependent Modules (PDMs).
To allow for lossless message exchange with no regard for the used PDM, EIGRP employs a
unique transport protocol called the Reliable Transport Protocol (RTP). Unlike other dis-
tance vector protocols, EIGRP uses stateful neighbourships and incremental routing update
messages, reducing convergence time and saving resources. It uses the Diffusing Update
Algorithm (DUAL) to calculate loopless shortest routes to destinations. EIGRP supports
authentication, equal/unequal load balancing, stub routing to limit unnecessary traffic, and
division of topologies into autonomous systems. These ASes are not to be confused with
BGP’s perspective — from EIGRP’s point of view, these ASes represent separate EIGRP
routing domains.

EIGRP was submitted as an open standard in 2013 and it is most currently described
in informational RFC 7868. This chapter is based on [31, 12, 8, 35, 36, 26].

3.1 Terminology
The following terms are used throughout the chapter:

∙ Destination - Represents one network known by EIGRP. A single destination can be
available via multiple routes.

9

∙ Neighbour - Another EIGRP enabled router with an established neighbourship/adja-
cency.

∙ Next-hop - A neighbouring router that is one hop closer to the destination.

∙ Route - A unique combination of destination and next-hop router.

∙ Reported Distance (RD) - Metric of the path between a next-hop and a destination
as advertised by it.

∙ Computed Distance (CD) - Total metric of the path between the current router and
a destination.

∙ Feasible Distance (FD) - Least known total metric between the current router and
the destination.

∙ Feasibility Condition (FC) - Satisfied if RD < FD. Ensures loop freedom. All routes
that pass FC are loop-free; not all routes that fail FC contain a loop.

∙ Feasible Successor - Any neighbouring router that meets the feasibility condition for
a given destination.

∙ Successor - Any feasible successor for a given destination that also provides the least-
cost path.

∙ Active route state - No feasible successor is known, the router is actively attempting
to compute the least-cost path. Active routes are not installed into the routing table.

∙ Passive route state - Feasible successor is available, the route can be installed into the
routing table.

∙ Stuck-In-Active (SIA) - A destination has been in Active state for an excessive amount
of time.

3.2 Packets
EIGRP uses unicast and multicast messages. It uses the multicast address 224.0.0.10
for IPv4 and the address ff02::a for IPv6. Multicast is used for neighbour discovery and
whenever the message is applicable to multiple recipients.

3.2.1 Packet Types

EIGRP defines five different types of packets, however, some of them have more than one
use. These are as follows:

HELLO Packet

Hello packets are used to discover neighbours on EIGRP enabled interfaces. They are sent
at regular intervals defined by the Hello-Timer. It conveys EIGRP parameters (e.g., K-
values, Hold-Timer value) and AS identifier. The K-values determine which components
are used to calculate the metric. These have to match between neighbours otherwise neigh-
bourship cannot be established. Hold-timer determines the maximum number of seconds

10

between consecutive Hello packets. Receiving a Hello packet resets the Hold-Timer. The
default value is equal to three times the Hello timer. If the Hold-Timer reaches zero then
the neighbour is considered unavailable. Hello packet format is also used for Acknowledge-
ment messages. In any case, Hello packets are not reliably transmitted and do not require
acknowledgement.

QUERY Packets

Query packets are used by DUAL to compute the best path to the destination. Routers use
this message to advertise a transition of a route to Active state due to it missing a feasible
successor. One Query contains one or multiple destinations. After receiving the same
number of Reply packets as the number of sent Query packets, the route is transitioned
back to Passive state. If the period between the Query and its Reply packet exceeds one
half of the SIA time interval, a SIA-Query message is sent. Recipients process SIA-Query
messages in the same way as standard Query messages by ultimately responding with a
Reply or SIA-Reply, respectively. If no response is sent within one half of the SIA interval,
the sender will deem the route as Stuck-In-Active. If a neighbour is considered SIA, the
router deletes all routes from that neighbour from the topology table and subsequently from
the routing table. Additionally, all routes queried from that specific neighbour for which
no response has yet been received are considered unreachable. The router can also reset
the adjacency altogether with the SIA neighbour. Query messages are always transmitted
reliably and require an Acknowledgement.

REPLY Packets

Reply packets are used as response to a Query or SIA-Query. It informs the recipient about
a specific destination’s availability and metric. If a SIA-Query is received, the response
takes form of a SIA-Reply. This reply can specify a metric for the destination. Otherwise,
a set ACTIVE flag indicates that the responding router is in the Active state for the
destination (most likely waiting for a Reply/SIA-Reply from another downstream router).
Reply packets are always reliably transmitted and always acknowledged.

UPDATE Packets

Update packets advertise available destinations. They are exchanged when a new neighbour
is discovered and when a route changes its state from Active to Passive. These messages
are sent as unicast when establishing a neighbourship to determine unicast packet delivery
capabilities and as multicast in normal operation. The first pair of Update packets between
new neighbours is called NULL UPDATE, is always empty and contains a set INIT flag.
Update packets are always transmitted reliably and require an Acknowledgement.

REQUEST Packets

Request packets are used to request specific information from one or more neighbours.
Request packets are used in route server applications. They use unicast and multicast
addresses and are transmitted unreliably.

11

3.3 Neighbour Discovery
When EIGRP is enabled on an interface, it starts periodically sending Hello packets on
a multicast address. These packets carry the router’s settings, and it also announces the
router’s presence on a given link. Neighbour discovery mechanism is analogous to that of
OSPF or IS-IS. If two routers are to be considered neighbours, the following conditions
must be met.

∙ Interfaces have to be EIGRP enabled and not passive.

∙ IPv4 addresses on the interfaces must be in the same network if IPv4 is used. In an
IPv6 network, both routers must use valid link-local addresses.

∙ Routers have to use the same authentication configuration.

∙ K-Values have to match.

∙ Routers have to be in the same AS.

When routers become neighbours, they can start exchanging routes via Update packets.
Information about EIGRP neighbours is stored in Neighbor Table.

3.3.1 Establishing Neighborship

A neighborship between the routers R1 and R2 can be in two states from R1’s perspective.

1. Pending - Router R1 has received a Hello Packet from router R2. Router R1 sends
INIT Update Packet and awaits an acknowledgement. While router R1 has R2 as
pending, it will not send it any Query Packets or other Update Packets until INIT
Update is acknowledged.

2. Up - Router R1 has received an acknowledgement for its INIT Update Packet.

When EIGRP is enabled on an interface, the router starts periodically sending Hello Pack-
ets. The length of the period is defined by the Hello-Timer. If it receives a foreign Hello
packet, it creates a neighbour table entry with the state PENDING and also answers with
its own Hello packet. To ensure that multicast and unicast communication is possible, it
sends an empty unicast Update packet with the INIT flag. If a foreign Update packet with
the INIT flag is received, it is acknowledged. If an acknowledgement is received, the neigh-
bour’s state changes to UP, and the initial route exchange begins. The final Update packet
is marked as EOT. The information acquired during the initial exchange is propagated to
the Topology Table, and routes with the lowest metric are installed to the routing table.

The process of establishing a neighbourship is shown in the diagram in Appendix B.

3.4 Diffusing Update Algorithm
DUAL is a mechanism for handling topology changes. This section uses terminology from
Section 3.1 and provides a brief overview of DUAL. It is an algorithm responsible for
handling events such as:

∙ Expiration of EIGRP neighbour

∙ Change of directly connected interface metric or state

12

∙ Receipt of EIGRP Query, Reply or Update message

Actions of DUAL include the following:

∙ Changes between Passive and Active route states

∙ Installation or removal of routes within the Topology Table

∙ Changes to a route’s metric or successors

DUAL manages each route individually. If DUAL receives a local event (not triggered by
an incoming message) for a passive route, a local computation is performed. If another
feasible successor is known, the route’s metric and/or successor may change, but the route
remains in the Passive state. If no feasible successor is available, local computation is not
possible, and thus the route transfers to the Active state. Changes of a route’s feasible
distance are always propagated to all neighbours via an Update message.

When a route transfers to the Active state, diffusing computation begins by sending
Query messages to EIGRP neighbours, except for the originating source, and ends with
the receipt of all expected Reply messages. DUAL uses a Finite State Machine (FSM) to
track state of routes’ diffusing computation. If a route in the Passive state receives a Query
message and a feasible successor for a given route is available, the route remains in the
Passive state while a Reply is generated. If there is no feasible successor, the router starts
its diffusing computation. Once the computation ends, a Reply message is generated if the
route’s computation was originally triggered by a Query message.

3.4.1 Models

They are multiple ways of modeling DUAL’s behaviour. RFC 7868 [31] itself in Section 3.5
uses a FSM which is easy to implement for a programmer, but could be harder to follow
for a reader. For this reason, Figure 3.1 presents a flow diagram as an alternative, which
visualizes decision paths taken in regards to a destination network, instead of modeling the
underlying state machine.

3.4.2 Stub Routers

Stub routing is a way of limiting the scope of DUAL computation. Routers that are
configured as Stub advertise this status with special TLV within their Hello messages. The
most restricted mode of operation (Receive-only) can be summarized into the following
rules:

1. Stub router neighbours exclude it from DUAL computation by not sending it any
Query Messages.

2. The stub router answers all received Query messages as if the queried destination was
unavailable.

3. The stub router does not advertise any networks.

However, the behaviour of a stub router and its neighbours can be adjusted by config-
uring the stub router with a valid combination of the following attributes:

∙ Receive-only - The most restricted mode of operation.

13

Lost Connectivity to
Successor

Feasible
Successor(s)?Promote to Successor(s)

Install Successor(s) in
RT

Select New
Successor(s)

One or
More New
Routes?

Query Neighbours for
New Route

Install Routes in
TT

Yes No

Remove Destination
Network from TT

Yes

Place Destination Network in
Active State & Remove from

RT

No

Send Update to
Neighbors

End

FC
Met?Yes

Reset FD No

Figure 3.1: Flowchart modeling DUAL.

∙ Connected - The aforementioned rule 3 is not applied when dealing with the stub
router’s directly connected networks.

∙ Static - The aforementioned rule 3 is not applied when dealing with the stub router’s
statically configured routes.

∙ Leak-map - The aforementioned rule 3 is not applied when dealing with a specified
set of networks/routes.

∙ Redistributed - The aforementioned rule 3 is not applied when dealing with routes
redistributed into the stub router’s EIGRP process.

∙ Summary - The aforementioned rule 3 is not applied when dealing with summarized
routes present in the stub router’s EIGRP process.

Depending on the version of IOS, stub routes may or may not generate Query messages.

3.5 Metric Calculation
EIGRP uses a composite metric to evaluate the distance of known routes. It employs up
to six components for its metric calculation. These components are called K-Values or
coefficients. Each coefficient has a value in the range 0 - 254. The metric calculation can be
customized by manipulation of these values. To ensure loopless routes, all EIGRP active
devices in the same EIGRP domain have to share the same K-Values. This is ensured by
advertising them in Hello Packets. EIGRP supports two modes of metric calculation:

14

∙ Classic Metric - Metric calculation can include bandwidth, delay, load and relia-
bility. Calculation is based on IGRP metric. To extend IGRP’s 24bits to 32 bits,
bandwidth and delay are multiplied by 256.

∙ Wide Metric - Metric calculation designed with higher bandwidth networks in mind.
Calculation can include the same components as Classic Metric but can also account
for jitter and energy. Wide metric uses 64-bit values and only works with Named
Configuration on Cisco devices.

K-Value Default Value Description
K1 1 Bandwidth - Minimal interface bandwidth on the path
K2 0 Load - Load of directly connected link
K3 1 Delay - Sum of link-type based constants on the path

K4, K5 0 Reliability - Reliability of directly connected link

K6 0 Jitter - Sum of jitter values on the path
Energy - Sum of milliwatts per kilobit on the path

Table 3.1: EIGRP K-Values.

3.5.1 Classic Metric

Cisco’s EIGRP implementation employs classic metric calculation when classic EIGRP
configuration is used. Figure 3.1 shows the formula for Classic Metric calculation with
non-zero 𝐾5 value.

𝑚𝑒𝑡𝑟𝑖𝑐 = 256 * (𝐾1 *𝐵𝑊 +
𝐾2 *𝐵𝑊

256− 𝐿𝑂𝐴𝐷
+ (𝐾3 *𝐷𝐿𝑌) * (𝐾5

𝑅𝐸𝐿+𝐾4
)) (3.1)

The variables’ meaning is as follows:

∙ 𝐵𝑊 is scaled bandwidth. It is calculated from the lowest bandwidth on any link
to the destination. Value of the minimum bandwidth BwMin in kbps is scaled by a
factor of 107.

𝐵𝑊 =
(107)

𝐵𝑤𝑀𝑖𝑛
(3.2)

∙ 𝐷𝐿𝑌 is scaled delay. It is the sum of link delays along the path to the destination.
Delay on each link is defined by the interface type. Table of these constants can be
found in RFC 7868 in section 5.6.1.2.

𝐷𝐿𝑌 =
𝐷𝑙𝑦𝑆𝑢𝑚

10
(3.3)

∙ 𝐿𝑂𝐴𝐷 and 𝑅𝐸𝐿 are values in range 1 - 255. They represent a percentage of load
and reliability. These values are not measured dynamically and are only measured
when a route is first learned. A value of 255 would represent a fully loaded link or a
100% reliable link. If 𝐾5 is set to 0, then the last fraction in equation 3.1 is set to 1,
resulting in the equation 3.4.

𝑚𝑒𝑡𝑟𝑖𝑐 = 256 * (𝐾1 *𝐵𝑊 +
𝐾2 *𝐵𝑊

256− 𝐿𝑂𝐴𝐷
+𝐾3 *𝐷𝐿𝑌) (3.4)

15

3.5.2 Wide Metric

Classic Metric is not properly scaled for today’s high-speed interfaces and could cause
them to be load balanced in equal-cost manner even when that would not be appropriate.
Wide Metric was introduced to address this issue, allowing the metric calculation to scale
up to an interface bandwidth of 4.2 Tb/s. Although Wide Metric calculation uses 64-
bit arithmetic, the resultant value may be scaled down to 32 bits if necessary, e.g. to a
Classic Metric neighbour. Cisco’s EIGRP implementation only supports Wide Metric usage
in conjunction with Named Mode Configuration, utilizing the following Formula 3.5 and
respective Wide Metric conversion constants:

𝑚𝑒𝑡𝑟𝑖𝑐 = (𝐾1 * 𝑇𝐻𝑅+
(𝐾2 * 𝑇𝐻𝑅)

256− 𝐿𝑂𝐴𝐷
+𝐾3 * 𝐿𝐴𝑇 +𝐾6 * 𝐸𝑋𝑇) * 𝐾5

(𝐾4 +𝑅𝐸𝐿)
(3.5)

where:

∙ 𝑇𝐻𝑅 is the minimum throughput. Similarly to the Classic Metric, these values are
calculated from the minimum interface bandwidth 𝐵𝑊 on the path to the destination.

𝑇𝐻𝑅 =
(107 * 65536)

𝐵𝑊
(3.6)

∙ 𝐿𝐴𝑇 is the total latency. On routes which use low-bandwidth interfaces, calculation
of this value is based on the sum of interface delays on the path to the destination
as in the Classic Metric. 𝐿𝐴𝑇 value is calculated differently on routes with higher
minimum bandwidth interfaces. Equation 3.7 is used if 𝐵𝑊 is less than 1 Gb/s, while
Equation 3.8 is used otherwise:

𝐿𝐴𝑇 =
(𝐷𝐿𝑌 * 65536)

10
(3.7)

𝐿𝐴𝑇 =
(107 * 65536/10)

𝐵𝑊
(3.8)

∙ 𝐸𝑋𝑇 represents Extended Attributes. This metric is currently not used, and
reserved for future extensions. Although there currently are two attributes — Jitter
and Energy — Cisco’s EIGRP does not possess the ability to measure these metric
values.

∙ 𝐿𝑂𝐴𝐷 and 𝑅𝐸𝐿 retain the same meaning as with the Classic Metric.

16

Chapter 4

Border Gateway Protocol

Border Gateway Protocol (BGP) is an Exterior Gateway Protocol primarily designed for
the exchange of network reachability information between different autonomous systems of
the Internet. It is the only widely used EGP protocol at the time of writing.

BGP belongs to the family of Path-Vector protocols as it maintains a vector of au-
tonomous systems that have to be traversed in order to reach a destination. The path-vector
also allows for loop detection and hop counting. Unlike IGP, BGP does not use dynamic
neighbour discovery. Each neighbour, referred to as peer in BGP terminology, must be
explicitly configured. The two peering parties typically first agree on what information do
they plan on sharing with each other. This could entail a definition of destination networks
or a set of expected attributes for exchanged routes: in BGP, a route consists of a destina-
tion network prefix and a collection of attributes, most of which are not mandatory. There
is no single centralized authority dictating which non-mandatory route attributes have to
be specified. Instead, this decision is made according to respective policies of individual
peers or peering relationships.

To ensure reliable transport channel for its messages, BGP leverages TCP and has peers
listen for connections on well-known port 179.

The most current version is BGP-4 as defined in RFC 4271. BGP can be extended
with multiprotocol support (MBGP or MP-BGP). MBGP is also used for services such
as MPLS-based virtual private networks (VPNs). MBGP is defined in RFC 4760. The
following chapter is based on [25, 14, 13, 29, 26].

4.1 Messages
All BGP messages are sent in unicast mode over TCP connections established between
configured BGP peers.

OPEN

Open message type is used to establish a BGP adjacency between two routers. The message
contains mandatory fields like BGP Version, Hold-Timer, BGP Identifier (Router-id), and
AS number. The advertised AS number allows the routers to determine the type of peering
that is being established: either internal (iBGP) or external (eBGP). Peers can choose to
include additional Optional parameters to advertise their extended capabilities, such as a
64-bit router-ID, 32-bit AS identifier or support for various address families. These Optional
parameters use the Type-Length-Value (TLV) format to allow for better extensibility.

17

UPDATE

Update messages are used to advertise or withdraw routes. When advertising routes, the
message consists of one or more Network Layer Reachability Information (NLRI) and of
applicable Path Attributes. NLRI’s identify destination networks while Path Attributes
describe the properties that apply to them. This makes it possible to advertise multiple
routes with identical attributes within a single message.

Routes intended for withdrawal are indicated in a special Withdrawn Routes field of
the UPDATE message. It can be done in conjunction with route advertisement as long as
no prefix is both advertised and withdrawn within a single message.

The format of the message is slightly different when dealing with additional address
families other than IPv4 as the message format, lacking TLV support, is not forwards-
compatible.

NOTIFICATION

Notification messages inform the peer about fatal errors that result in the termination of
both the BGP session and of the underlying TCP connection. The message always specifies
the root cause, such as Message Header error, Open or Update message error, FSM error,
or Hold Timer Expiration error.

KEEPALIVE

Keep-alive messages are used to ensure that a BGP peer is still available and that the
respective TCP connection is still functional. The messages are sent based on an interval.
Receipt of a keep-alive message refreshes the Hold Timer, while its expiration causes the
BGP session to terminate with the Hold Timer Expiration error. The KEEPALIVE message
is also used to acknowledge a received OPEN message.

4.2 Attributes
As already mentioned in the section’s introduction, BGP attributes hold information about
advertised prefixes. They are classified into 4 categories, each of which imposes some
handling and processing requirements:

∙ Well-Known Mandatory - Attributes that must be included with every advertised
prefix and recognised by all implementations of BGP.

– ORIGIN - Defines how the originating BGP router learned about a given prefix.
Possible values are IGP, EGP, or Incomplete (typically via route redistribution).

– AS_PATH - Defines an ordered or unordered sequence of identifiers of ASes that
the update message has traversed.

– NEXT_HOP - Defines the unicast IPv4 address of the router that should be used
as a next-hop.

∙ Well-Known Discretionary - Attributes that may optionally be included in a route
entry and must be recognised by all implementations of BGP.

– LOCAL_PREF - Defines the preference of the received route to internal peers.

18

– ATOMIC_AGGREGATE - Defines the usage of a less specific route to the destination.

∙ Optional Transitive - Attributes that do not have to be recognised by all BGP im-
plementations, but must be passed along to other neighbours even if not understood.

– AGGREGATOR - Defines the last AS number that formed the aggregate route to-
gether with the IP address of the specific router.

∙ Optional Non-Transitive - Attributes do not have to be recognised by all imple-
mentations of BGP. The attribute may only be passed along to other neighbours when
understood.

– MED - Defines the priority of the entry point for external peers.
– MP_REACH_NLRI - Advertises feasible routes of to a peer. Its compatible with

multiple network layers and address families. However, IPv4 are often carried in
separate field.

– MP_UNREACH_NLRI - Withdraws multiple unfeasible routes from service. Its com-
patible with multiple network layers and address families and again, it not gen-
erally used for IPv4.

Different implementations of BGP often support some additional proprietary attributes,
such as WEIGHT in Cisco devices. The behaviour of attributes AS_PATH, NEXT_HOP, LOCAL-
_PREF and MED is demonstrated in Section 8.3.4 of the Testing chapter.

4.2.1 Decision process

While some attributes provide key information that makes the route usable, all attributes
serve as means to compare routes to the same destination between each other. Although
BGP implementations can adhere to the decision process, as stated in the RFC, the most
popular implementation makes slight adjustments to accommodate for a wider variety of
scenarios. The most important steps of the decision process are shown in Figure 4.1. A
very detailed description of the BGP decision process on Cisco devices can be found on
their website [11] and the same goes for Juniper Networks [23].

4.3 Autonomous Systems
The Internet is divided into smaller, more easily manageable networks called autonomous
systems. An AS is essentially a collection or a group of IP prefixes owned by a single
organisation. AS creates a form of abstraction, as from the other AS’s view, an AS provides
a consistent picture of what prefixes are available through it, no matter how precisely it
is accomplished inside the AS itself. These smaller parts are often managed by different
administrative entities and adhere to a custom set of rules and policies. Routing inside
an AS is usually managed by IGP or static routing, while connectivity between ASes is
typically achieved with BGP. Every public AS is identified by a unique public AS number,
however, one public AS can internally consist of multiple private ASes. These are only used
for internal subdivisions and are not advertised via BGP. Public AS numbers are assigned
by the respective Regional Internet Registries, e.g., RIPE NCC for Europe.

There are three main approaches of how an autonomous system may be connected to
other(s):

19

?

Cisco Juniper

lower process preference value

higher LOCAL_PREF

shor ter AS_PATH

lower ORIGIN

lower MED

higher WEIGHT

prefer locally originated

IGP < EGP < Incomplete

default = 100

default = 0

prefer eBGP over iBGP

prefer internal paths

Figure 4.1: Diagram depicting the primary criteria for BGP decision process as implemented
by two prominent networking products vendors. Routes are compared from top downwards.
Steps standardised in RFC 4271 are outlined in orange. AIGP attribute is disregarded.
Information about are sourced from their respective websites [11, 23].

∙ Single-Homed AS (a.k.a. Stub) - The AS is connected to a single external AS that
provides it connectivity to the Internet. Single-Homed ASes can use both private and
public AS numbers. This particular scenario does not necessarily warrant the use of
BGP: the ISP AS typically knows what prefixes are available in the single-homed AS,
the use of any dynamic routing protocol provides some benefits but is not necessary.

Figure 4.2: Diagram of a single-homed AS connection to the ISP. All incoming and outgoing
traffic is going through the ISP.

∙ Multi-Homed Non-Transit AS - AS has multiple Internet gateways. The connec-
tion is provided by multiple ISPs. However, this type of AS does not allow transit

20

traffic: traffic that has a source and a destination outside the AS. Only prefixes local
to the AS are advertised. BGP is also not required in this case.

Figure 4.3: Diagram of a multi-homed non-transit AS connection to ISPs. ISPs advertise
prefixes 𝑃1 and 𝑃2. Non-Transit AS may advertise its own prefixes 𝑃𝑥 if it chooses to.

∙ Multi-Homed Transit AS - AS has multiple gateways to the Internet, while allow-
ing for transit traffic from/to different ASes. BGP is required in this case. eBGP is
used to advertise known prefixes to other ASes, while iBGP is used between routers
inside the AS by the transit routers.

Figure 4.4: Diagram of a multi-homed transit AS connection to ISPs. ISPs advertise
prefixes 𝑃1 and 𝑃2, while non-transit AS advertises its own prefixes 𝑃𝑥 and also prefixes 𝑃1

learnt from ISP1 to ISP2 and vice-versa.

In 2006, it was estimated that around 20-30% of all ASes are transit [37]. The total
number of ASes worldwide is currently 109,966 [24]. Tools like DB-IP1 can be used to
access publicly available pieces of information about ASes, their registered organizations,
and IP prefixes.

1https://db-ip.com/

21

4.4 BGP Peering
BGP recognises two different types of peering (i.e., prefix exchanging): External BGP
(eBGP) and Internal BGP (iBGP). These peering types are each used for a slightly different
purpose and come with their own specifics and restrictions. Although this thesis adheres
to the naming conventions of iBGP and eBGP, the same as Cisco or RFC 8654 [9], Juniper
documentation and other RFCs often use the naming convention of EBGP and IBGP.

4.4.1 External BGP

External BGP peering is formed between neighbours that belong to a different AS. The
main purpose of eBGP is to advertise to the neighbouring AS, what prefixes are available
in the local AS or available through the local AS (if the local AS allows transit traffic).

eBGP peering may often be established between directly connected (L3) BGP-enabled
routers. A situation where peering routers are more than a single hop away from each other
is referred to as multihop eBGP and it may require raising the BGP session’s TTL value
in the IP header on certain implementations. Additionally, multihop eBGP is unavoidable
in certain scenarios, such as if eBGP session is sourced from a loopback interface. Bacause
this behaviour is more commonly associated with iBGP, it is described in the following
iBGP section.

As for attribute handling, eBGP typically overwrites the NEXT_HOP attribute to the
local peering source. This enables the other peer to direct traffic to/through the local AS.
Similarly, the AS_PATH value is prepended with the local AS identifier, to reflect with other
BGP peers the fact that the traffic would flow through the local AS. Depending on the
local configuration, the local AS identifier may be even prepended multiple times, resulting
in a larger overall length of the AS_PATH value. Such technique is used to influence BGP
decision process of the neighbour as the overall length of AS_PATH is one of its factors and
shorter paths are preferable. eBGP does not advertise the LOCAL_PREF attribute as it does
not have any significance to foreign autonomous systems. However, suggestions regarding
locally preferred ingress point(s), with respect to advertised prefixes, may be conveyed using
the MED attribute — which, by contrast, has no local significance.

4.4.2 Internal BGP

Especially in transit ASes that often run BGP on more than one border router, it becomes
necessary to synchronise their routing tables to ensure proper function: the one border
router that receives transit traffic must know where to forward it through the AS in order
to really honour the property of transitivity. In multi-homed scenarios, internal routers need
to choose an egress point for outgoing external traffic, ideally the most optimal one. While
both aforementioned cases can be achieved using IGPs with various degrees of difficulty
and suboptimality, iBGP comes with many benefits that regular IGPs cannot match, such
as scalability or policy-based routing.

iBGP peering is not concerned with neighbours’ direct connectivity, any kind of L3 con-
nectivity suffices, regardless of the underlying type of routing. However, iBGP peers require
full-mesh connectivity, where every iBGP speaker must be peering with each other. This
would entail a total of 𝑁(𝑁−1)

2 peering relationships for 𝑁 running BGP speakers, including
the need to maintain peering configurations on 𝑁 routers, each specifying 𝑁 − 1 neighbour
addresses. Such a connection model is required since iBGP peers do not propagate updates

22

received through iBGP to other iBGP peers. As such, a lack of full-mesh connectivity could
result in inconsistent routing tables across the AS.

In practise, various techniques exist to circumvent the need for full-mesh, such as route
reflectors or confederations. For example, BGP route reflectors work as centralised BGP
speakers that all others peer with, reducing the number of specified neighbour addresses on
each of the 𝑁 routers to a constant. To make this work, route reflectors slightly adjust the
BGP standard when it comes to iBGP behaviour, e.g., disregarding the ban on iBGP-iBGP
propagation of iBGP updates mentioned earlier. BGP Route Reflection is standardised in
RFC 4456 [7].

When configuring iBGP peering relationships, it is common practise to use addresses
associated with loopback interfaces of the two routers, rather than addresses associated
with their network interfaces. In the event of one or more links failing or flapping, this
provides for additional reliability, maintaining the BGP session as long as the peers are still
reachable through some other path.

Generally, iBGP does not alter route attributes such as NEXT_HOP or AS_PATH. This
means that iBGP routes implicitly specify NEXT_HOP address of the foreign eBGP border
router, although any router that the update has passed through might have overwritten the
attribute with its own address. In comparison to eBGP, iBGP propagates the MED attribute
(received via eBGP) and may also add the LOCAL_PREF attribute to influence the selection
of egress point.

4.4.3 BGP Peer Finite State Machine

The purpose of BGP Peer finite state machine (FSM) is to track the state of the peering
session for peers. The exact definition of this FSM differs in the popular literature, as
even the RFC 4217 [29], Section 8 states the following: ‘The data structures and FSM
described in this document are conceptual and do not have to be implemented precisely as
described here...’. Most often, the complexity of the FSM in various literatures is reduced
compared to the version in the RFC. This complexity may be caused by usage of TCP
in combination with peer-to-peer model. Because of the nature of TCP, one entity has
to perform a ‘connect’ operation while the other performs a ‘listen’ operation in order to
establish a TCP connection from one side. However, thanks to the usage of peer-to-peer
model, these entities are coequal, and thus both entities have to perform both of these TCP
operations. And as that results in two separate TCP sockets, one needs to be always closed
after the connection is established. These sockets are reffered to as passive and active. Each
TCP connection has only one active end and one passive end. The passive socket always
listens on port 179, while the active socket uses ephemeral ports. Having two individual
sockets for each peer also means two instances of BGP peer FSM, and paired with the
its large scope as defined in the RFC, it becomes quite a complex problem to determine
the state of peering as a whole. The simplification usually ommits the existance of two
BGP peer FSM instances, avoids the existance of the two sockets and generally streamlines
the transitions. As a result, the whole process can be unnecessarily confusing to anyone
unaware of these facts, if one uses any of the simplified versions to implemented or perfectly
understand this whole process.

On Cisco devices, unless explicitly configured previously, it is not predetermined if peer
will end up with passive or active socket from author’s observations. However, it still uses
two instances of BGP peer FSM.

One of the simplified version of the BGP peer FSM is shown in Figure 4.5.

23

Figure 4.5: BGP neighbor state FSM.

∙ IDLE - Initial state. When BGP is enabled, it initiates a TCP connection and also
starts listening for incoming connections from the remote peer. If any error occurs,
the BGP returns to the IDLE stage. It waits ConnectRetry Timer before trying
again.

∙ CONNECT - BGP process waiting for the TCP connection to be established. If it is
successful, it sends an OPEN message, refreshes ConnectRetry Timer, and changes state
to the OPENSENT state. If it is not successful until ConnectRetry Timer expires, it
changes to the ACTIVE state. In other cases, it returns to the IDLE state.

∙ ACTIVE - BGP is trying to establish a TCP connection with a neighbour. If
successful, it sends an OPEN message, refreshes ConnectRetry Timer, and changes
state to OPENSENT state. If it is not successful, it returns to the state CONNECT
and refreshes ConnectRetry Timer. The oscillation between the states CONNECT
and ACTIVE indicates an error in the TCP connection.

∙ OPENSENT - BGP is waiting for an OPEN message from its peer. If the TCP
connection is closed before that happens, the BGP will return to the ACTIVE state.
When an OPEN message is received, its content is checked. If this check fails, the BGP
sends a NOTIFICATION message and returns to the state IDLE. If the check passes,
the BGP sends a KEEPALIVE message and transfers to the OPENCONFIRM state.

∙ OPENCONFIRM - BGP is waiting for the peer’s NOTIFICATION or KEEPALIVE mes-
sage. If KEEPALIVE is received, the BGP is transferred to the state ESTABLISHED.
If the HOLD TIMER expires or the NOTIFICATION is received, the BGP returns to
the IDLE state.

24

∙ ESTABLISHED - BGP starts to exchange UPDATE messages with its peer. HOLD
TIMER is refreshed with each reception of a UPDATE or KEEPALIVE message. If a
faulty UPDATE or NOTIFICATION message is received or the HOLD TIMER expires,
the BGP is transferred back to the IDLE state.

25

Chapter 5

OMNeT++

OMNeT++ is a discrete C++ simulation library and framework, mostly used for network
simulations [28]. OMNeT++ has a generic modular architecture that allows for a wide
spectrum of simulation types. Each simulation model consists of modules that communi-
cate by messages, and multiple modules can be combined into a single composite module.
Module nesting is not limited, and each module is technically reusable. The behaviour
of each module can be easily customised as they are implemented in C++. The module
hierarchy is defined in the language of OMNeT++ called NED (file extension .ned). The
format for new messages can be defined with message definition files (file extension .msg)
which are translated into fully-fledged C++ classes during compilation.

However, messages are not the only way to achieve communication between simulation
modules. There are also signals that, among other things, can be used as a publish-subscribe
pattern of communication. This is especially useful when the producer and the consumer
do not know about each other.

OMNeT++ is highly portable, as it runs on all common operating systems. It also
provides an Eclipse-based simulation IDE with simulation visualisation. OMNeT++ is free
for non-commercial purposes and is commonly used in education.

Information about OMNeT++ is sourced from OMNeT++ Simulation Manual [27].

5.1 Framework INET
The most popular OMNeT++ framework is INET [21]. It provides a set of implemented
simulation models for the link layer (Ethernet, 802.11), network layer (IPv4, IPv6), trans-
port layer (TCP, UDP) and application layer (RIP, OSPF, HTTP). These simulation models can
be used to create and visualise network simulations, and even implement custom simulation
models of network protocols by utilising the existing ones as building blocks.

INET also provides a module ScenarioManager that can be used to change the param-
eters of the simulation while it is executing. Support for ScenarioManager has to be added
explicitly using a specific base class.

The most current release version is 4.3.7 and it is regularly updated.

5.2 Framework ANSAINET
ANSAINET [5] is an extension of INET. It is being developed at Brno University of Tech-
nology and implements several network protocols, such as HSRP, IS-IS, BABEL, OSPFv3,

26

and many others. It utilises INET’s protocol models and greatly expands the number of
available simulation protocols. Some of these popular models are later merged into INET
itself, such as OSPFv3. Even though ANSAINET’s protocol models often use INET mod-
ules to some degree, some of them are based on old versions or rely heavily on ANSAINET
modules, complicating the merging process.

5.3 State of EIGRP Simulation Model
EIGRP simulation model was created as part of the Master’s thesis by Ing. Jan Bloudíček
in 2014. It was implemented in the ANSAINET framework and, at that point, only sup-
ported IPv4. Thanks to its good design, it was later extended in 2016 for IPv6 by Ing.
Vít Rek. EIGRP routing process is enabled within the module ANSA_EIGRPRouter.ned,
which extends the ANSA_Router.ned node. The most current version is implemented in
ANSAINET 3.4.0, which is based on INET 3.4.0.

The objective of this project was to take the implementation from ANSAINET 3.4.0
as is, integrate it with the most current INET API, verify its functionality, and to fix any
issues. Ultimately, the updated version was accepted and merged into INET itself. As a
result, the model is available to all INET users. It is now considered complete with no
plans for further extensions.

This version of the model is available on ANSAINET GitHub repository [4].

5.3.1 Structure

The original EIGRP implementation was divided into several modules. The single-responsibility
principle (SRP) was met as each module had narrowly defined responsibilities, which were
also summarised by each module’s name. The source files were structured into folders ac-
cording to a single convention. The core of the implementation were the PDMs implemented
in files EigrpIpv4Pdm and EigrpIpv6Pdm. These modules handled all the input events and
interacted with other modules, especially the data structure modules. Because IPv4 and
IPv6 address families in EIGRP’s and INET’s perspective are very similar, the modules
could usually accommodate both with the usage of C++ templates. The module versions
for IPv4 and IPv6 were split only if larger code divergences were needed. The configuration
of the EIGRP process and the IPv6 interfaces was specified in the .xml configuration file.
These were the notable modules:

∙ pdms/EigrpIpv{4|6}Pdm.{h|cc|} - Modules that implemented EIGRP protocol-
dependent behaviour. It handled all input events, such as incoming messages and the
following signals: INTERFACE_STATE_CHANGED, INTERFACE_CONFIG_CHANGED, ROUTE-
_DELETED. It implemented the interface IEigrpPdm for communication with DUAL
and the interface IEigrpModule for communication with DeviceConfigurator.

∙ pdms/EigrpMetricHelper.{h|cc} - Module that implemented the calculation of the
metric for both the Classic and Wide metrics.

∙ EigrpDeviceConfigurator.{h|cc} - Module responsible for loading XML configura-
tion files for IPv6 and IPv4 PDMs. It communicated with the PDMs using the
IEigrpModule interface.

27

∙ EigrpDual.{h|cc} - Module that implemented EIGRP DUAL FSM in accordance
to the FSM specification in RFC 7868 in Section 3.5. It communicated with PDM
through the interface IEigrpPdm.

∙ EigrpRtp.{h|cc} - Module that implemented the RTP transport layer.

∙ messages/EigrpMessage.msg - File with the definitions of EIGRP messages. .msg
files were translated into C++ classes as part of the compilation process.

∙ tables/ - The folder contained a table data structure to keep track of
EigrpDisabledInterfaces and to implement the following tables:

– EigrpInterfaceTable - tracking of enabled interfaces
– EigrpTopologyTable - tracking of routes
– EigrpNeigborTable - tracking of neighbours
– EigrpNetworkTable - tracking of destinations

It also contained a module that implemented EigrpRoute.

5.3.2 Issues

Initial experiments with the protocol model revealed several shortcomings. The following
list includes issues caused by faulty implementation, which are present in the ANSAINET’s
implementation and that had to be resolved prior to merging into INET:

∙ i1 - Flawed metric calculation. This issue occurred when a route spanned interfaces
of different speeds.

∙ i2 - One of the vectors in TopologyTable had a reference counter that did not work.
It was not subtracted when a route was deleted, and thus, appropriate entries from
the topology table were not deleted in some cases.

∙ i2a - Receipt of a message causing a certain route to be deleted, while the same route
was at the time being processed by the RTP module, could cause a simulation crash.

∙ i3 - The input signals required a specific order; otherwise, the protocol model could
loop indefinitely.

Additionally, dependencies on ANSAINET or INET 3.4.0 had to be removed.

∙ i4 - Interface IP configuration was loaded via ANSA-specific class. This method of IP
configuration is not consistent with other simulation models which are implemented
in INET.

∙ i5 - Classification of an address family was fully handled by ANSA. The module
should instead have direct access to the network layer.

∙ i6 - ANSA uses class ANSA_InterfaceEntry to represent an interface and it was
used throughout most of the modules. This class provides some functionality on
top of INET’s InterfaceEntry class. The functionality had to be preserved despite
switching over to the INET variant.

28

∙ i7 - Message creation and dispatching procedures were not compatible with INET
API current at the time.

The aforementioned issues will be further described in the EIGRP Implementation in
Section 7.1.

5.4 State of BGP Simulation Model
BGP4 protocol model has been included in INET for a long time and was originally devel-
oped by the OMNeT++ developers. At that time, the BGP model had many shortcomings,
especially related to BGP UPDATE messages that did not contain all necessary routes, but
also inconsistent FSM states, unsupported message types, and poor recovery capabilities.
All of these shortcomings are described in the Master’s thesis by Ing. Adrián Novák [25].
He started his work in 2018. At the same time, contributor Mani Amoozadeh worked
on his improvements to the BGP protocol model, which were merged into INET later in
2018 [1]. However, the changes made by Ing. Novák were not merged, as their implemen-
tation required another rewrite to be compatible with the new INET and also required
synchronisation with the changes and features that were made by the Mani Amoozadeh
and OMNeT++ developers in the meantime [2].

This version of the model is available on INET GitHub repository [20].
The objective of this work was to take the two available versions (Novák’s version and

the INET version), analyse and test their features and capabilities, and merge them into a
single improved version. Thorough testing was required as major changes were expected to
happen.

5.4.1 Structure

The two protocol model versions were fairly similar in structure. The structure of their
respective modules was consistent with that of the OSPF and RIP protocol models. Notable
parts included the following:

∙ /bgpmessages/ - Folder containing the BgpHeader.msg file describing the BGP mes-
sages. It also contained the module BgpUpdate.{h|cc} that helped calculate size of
attributes.

∙ Bgp.{h|cc} - Module responsible for the handling of timers and initialisation of
BgpRouter. In Novák’s version, modules Bgp and BgpRouter were merged into one.

∙ BgpConfigReader.{h|cc} - Module responsible for the processing of .XML configura-
tion files.

∙ BgpFsm.{h|cc} - Module that implemented the BGP neighbour Finite State Machine
(FSM). This implementation followed the definition of FSM in RFC 4271 [29], Section
8.

∙ BgpRouter.{h|cc} - Module that implemented the core of the BGP process. It
implemented the main operation of BGP and communicated with other modules to
manage TCP, eBGP, and iBGP sessions. It was also responsible for the handling of
received messages.

29

Features INET Version Novák’s version
Cisco-like configuration 7 3

IPv4 3 3

IPv6 7 3

Independent of OSPF 3 7

Initial Prefix Exchange 3 3

UPDATE Message with Multiple NLRIs 7 7

UPDATE Message with Withdrawn Routes 7 3

NOTIFICATION Message 7 7

BGP Table 7 7

Start/Stop/Crash Handlers 7 7

TCP Closed Handler 7 3

Interface State Change Handler 7 7

Routing Table Change Handler 7 7

Local Pref Attribute 7 7

MED Attribute 7 7

Table 5.1: Summary of basic features implemented in the INET Version and Novák’s Ver-
sion.

∙ BgpSession.{h|cc} - Module that implemented session-related methods like sending
messages.

∙ BgpRoutingTableEntry - The module represented a single route to a destination. It
stored the destination prefix and the respective attributes.

5.4.2 Issues

Cross-referencing fixed bugs and added features of INET 4.2 to Novák’s analysis of the 4.0
version revealed that some features implemented in his version were still missing from then
current INET implementation. Although Novák’s version had some notable improvements,
the readability and structure of code suffered quite a bit. And many of the problems with
the INET version remained. IPv6 support was added by excessive and unnecessary copying
of IPv4 methods without leveraging any of the powers of object-oriented programming.
Advertisements of prefixes of an address family different from the address family of the
underlying architecture was also not supported. The interactivity of the model, although
improved, was still hugely limited as only very specific cases were taken into account.
What was essentially created was a very hard-to-maintain code with still only very limited
interactivity and features. Table 5.1 provides a summary of features between the two
versions of the model described above.

Except for the implementation of these features, the following issues had to be solved:

∙ i1 - solve configuration divergences from Cisco;

∙ i2 - rewrite explicit IPv6 methods with generics;

∙ i3 - add missing support for IPv4 over IPv6 and IPv6 over IPv4;

∙ i4 - add support for multiple NLRIs in UPDATE message;

30

∙ i5 - fix message format deviations from the standard;

∙ i6 - add missing OPEN message AS check;

∙ i7 - fix inconsistent TCP sockets;

The aforementioned issues and features are discussed later on in the implementation
Chapter 7 in BGP Section 7.2.

31

Chapter 6

Cisco Configuration

In 2020, Cisco Systems, Inc. had the largest market share in the service provider and enter-
prise routers market and was doing even better in the Ethernet switch segment [16]. In com-
bination with the fact that EIGRP is basically still proprietary to Cisco, both the EIGRP
and BGP models are compared to their Cisco implementation. This chapter presents a
basic configuration for both IPv4 and IPv6. All used Cisco routers ran IOS version 15.4
with the Advance Enterprise Services set of features. The chapter focusses specifically on
the EIGRP and BGP routing processes and requires a proper interface configuration that
is not included. The configuration is based on the information provided by Cisco [12, 13].

6.1 EIGRP
Configuration of EIGRP on Cisco devices is available in two modes. Classic mode is the
old way, having the configuration scattered throughout the router mode. It only supports
using the Classic Metric calculation and as such scales badly on modern high-speed inter-
faces. Configuration of IPv4 and IPv6 is separated. Named mode on the other hand is
the new way of configuration. Commands are entered in a more hierarchical manner, the
mode supports both IPv4 and IPv6 and scales properly on high-speed interfaces with the
usage of Wide Metric.

6.1.1 Classic mode

IPv4

In Global Configuration Mode, the following command enables the EIGRP routing pro-
cess for a given autonomous system.

R(config)# router eigrp <autonomous_system_number>

The network command associates a network with an EIGRP routing process. EIGRP
process is enabled on all interfaces that much such command and even multiple commands
can be entered.

R(config-router)# network <ip_address> [<wildcard_mask>]

To suppress the generation of Hello messages on specific interfaces, the passive-interface
command can be used.

32

R(config-router)# passive-interface <interface_id>

The K-Values can be adjusted with the command metric weights. The K-Values have
to match between routers in order to establish an adjacency.

R(config-router)# metric weights 0 <𝐾1> <𝐾2> <𝐾3> <𝐾4> <𝐾5>

IPv6

IPv6 unicast routing must be enabled manually.

R(config)# ipv6 unicast-routing

Similarly to IPv4, the EIGRP routing process is enabled with the following command.

R(config)# ipv6 router eigrp <autonomous_system_number>

32-bit router-id has to be specified.

R(config-rtr)# eigrp router-id <A.B.C.D>

The K-values can be adjusted the same way as for IPv4.

R(config-rtr)# metric weights 0 <𝐾1> <𝐾2> <𝐾3> <𝐾4> <𝐾5>

Unlike the IPv4 configuration, where the network command is used, the IPv6 EIGRP
process must be enabled in the interface configuration mode of each interface.

R(config-if)# ipv6 eigrp <autonomous_system_number>

Similarly to IPv4, Hello messages can be suppressed on specific interfaces back in the
EIGRP process configuration mode.

R(config-rtr)# passive-interface <interface_id>

Upgrade to Named mode

Both IPv4 and IPv6 Classic configurations can be upgraded to Named with the following
command. This performs a proper conversion, which preserves the current configuration
and allows utilisation of new features.

R(config-router)# eigrp upgrade-cli <instance_name>

6.1.2 Named mode

In Global Configuration Mode, following command enables the EIGRP routing process
with the provided name.

33

R(router)# router eigrp <virtual_instance_name>

Command address-family enters configuration for the specified address family.

R(router-router)# address-family <ipv4|ipv6> autonomous-system
<autonomous_system_number>

Router-id can be specified with following command.

R(router-router-af)# eigrp router-id <A.B.C.D>

The K-Values can be customised in the same way as with the Classic mode. 𝐾6 can
also be included.

R(config-router-af)# metric weights 0 <𝐾1> <𝐾2> <𝐾3> <𝐾4> <𝐾5> <𝐾6>

With the IPv6 address family, there is no network command. All IPv6 interfaces are
enabled for IPv6 EIGRP by default. For the IPv4 address family, the command network
must be used in the same way as with Classic mode.

R(config-router-af)# network <ip_address> [<wildcard_mask>]

The command af-interface enters the interface-specific mode. A unique keyword
default can be used to specify all interfaces.

R(config-router-af)# af-interface <interface_id>|default

The command passive-interface suppresses the generation of Hello messages on a
given interface, while the command shutdown completely removes the interface from the
EIGRP process.

R(config-router-af-interface)# passive-interface
R(config-router-af-interface)# shutdown

6.2 BGP
The BGP configuration process is similar to the Named mode of EIGRP configuration.
Similarly, a single BGP process can accommodate multiple address families.

In Global Configuration Mode, following command enables the BGP routing process for
a given local autonomous system.

R(config)# router bgp <local_AS_number>

32-bit Router-id can be specified with following command.

R(config-router)# bgp router-id <A.B.C.D>

34

Command neighbor specifies a BGP peer. IPv4 and IPv6 peers and their autonomous
system number can be added with the following command. Setting remote_AS_number
the same as local_AS_number identifies iBGP, while different AS numbers identify eBGP.
Multiple neighbours can be specified.

R(config-router)# neighbor <ip_address> remote-as <remote_AS_number>

The use of a specific interface as a source of BGP traffic to a specific peer can be chosen
with the following command.

R(config-router)# neighbor <ip_address> update-source <interface_id>

The configuration for a specific address family can be entered with the following com-
mand.

R(config-router)# address-family <ipv4|ipv6> unicast

An advertised network can be added with the following command. Multiple network
commands can be entered. If such network is to be advertised to BGP peers, an exact
match with the routing table must be found.

R(config-router-af)# network <ip_address> mask <net_mask>

Neighbour peering can be enabled with the following command. If multiple address
families are used, it is a good practise to explicitly disable unwanted peering by the no
version of this command.

R(config-router-af)# neighbor <ip_address> activate

35

Chapter 7

Implementation

The following chapter contains a description of the implementation portion of the work.
Both simulation models, as described in Section 5, are merged into the latest version of the
INET framework.

EIGRP portion is much shorter as the model already included most of the basic features
that make the model interactive during the simulation. The focus is solely on fixing found
issues and migrating to the new INET API.

BGP portion, on the other hand, goes into more detail. It is primarily caused by the lack
of numerous basic features that are commonly found in other models, like RIP or OSPF.
Thereby, the original versions of the model only allow for limited simulation interactivity.
On top of that, the features implemented by Novák, while functional, are poorly designed.

This chapter requires at least basic knowledge from Chapters 3 and 4. Classes, message
definition files, and even individual files, which are mentioned in Chapter 5, are referenced
here.

Messages, names of methods, classes, files or modules are set in monospace while states
of EIGRP routes (Passive or Active) and FSM states in general are set in italic.

The chapter text can hopefully be used by other developers or OMNeT++ enthusiasts
to broaden their knowledge about the functionality of this particular model and INET/OM-
NeT++ in general. The specific meaning of the C++ terminology used in the text can be
found for example in C++ Glossary by Bjarne Stroustrup [32]. The main sources of in-
formation about the internal workings of INET and OMNeT++ are the INET Developer’s
Guide [18] and OMNeT++ Manual [27].

7.1 EIGRP Implementation Details
The following sections describe the results of my efforts to handle the EIGRP simulation
model’s flaws listed in 5.3.2. The issues are addressed in the order in which they were listed
earlier. Additionally, a description of the merging process is included in Section 7.3.1.

The overall quality of the original simulation model is very high, in the author’s opinion.
Half of the issues found, namely i4, i5, i6, i7, are caused by the transition to the new INET
API. Issues i1, i2(a), i3 were not difficult to fix. Overall, most of the work related to this
model was related to the migration process to the new INET API and to the removal of
ANSAINET dependencies. The target INET version was 4.2, the most recent at the time.
The high-level structure of the model was left almost untouched.

36

7.1.1 Metric Calculation (i1)

The metric calculation of a route spanning multiple links with different bandwidths is
flawed. This bug is caused by the usage of the getMax() function instead of getMin()
inside the module EigrpMetricHelper::adjustParam. This function is used to pick a
single bandwidth value from either the value received with the route or the parameters of
the interface the route was received on. As mentioned in RFC 7868 [31] in Section 5.6.1.1,
the bandwidth is the lowest interface bandwidth along the path and not the highest. The
validity of this change was later verified by comparing it with the Cisco implementation.

7.1.2 Topology Table (i2)

The TopologyTable is internally composed of two instances of std::vector: RouteVector
and RouteInfoVector.

∙ RouteVector is a std::vector of EigrpRouteSource instances. It stores all route
sources to all destinations. Each entry is essentially identified by a combination of
a routeInfo, which specifies a particular destination prefix, and a successor. Each
EigrpRouteSource additionally stores route parameters, e.g., metric or next-hop.

∙ RouteInfoVector is a std::vector of EigrpRoute instances. It contains all unique
destinations. Each entry in this vector tracks the state of the DUAL FSM, the number
of successors, the feasible distance, etc.

The relationship model of the entities EigrpRouteSource and EigrpRoute is shown
in Figure 7.1. Each EigrpRouteSource is always associated with a single destination
(EigrpRoute) while each destination (EigrpRoute) requires at least one EigrpRouteSource,
otherwise it can be deleted. For this purpose, EigrpRoute tracks the number of associated
EigrpRouteSource instances.

However, this number is not properly decremented and the entry RouteInfo persists
even if there is no Route with the same destination (issue i2). This could even be observed
during the simulation itself, since RouteInfoVector is one of the WATCHED (i.e., readable
during the simulation) vectors. Unfortunately, resolution of this bug introduced a much
more critical one.

7.1.3 Query/Reply Crash (i2a)

The receipt of a QUERY signifies that a neighbour is in Active state for a specific route
or routes advertised in the message. The message is processed by the RTP and DUAL
modules. Eventually, a REPLY message is generated and sent to the RTP module. The
message is enriched with RTP fields and sent back to the PDM and consequentially to a
neighbour. In the following specific case, the simulation may crash due to the solution of
the issue 2.

1. A QUERY containing route A.B.C.D is received.

2. A REPLY is generated and sent to the RTP module.

3. A new event is raised, removing the last Route for destination A.B.C.D from the
topology table and thus also removing the associated RouteInfo.

4. A REPLY containing route A.B.C.D is received from the RTP module.

37

1..*

Ei gr pRout e

+r out eI d: i nt
+r out eAddr ess: I PAddr ess
+r out eMask: I PAddr ess
+quer yOr i gi n: i nt
+f d: ui nt 64_t
+r d: Ei gr pWi deMet r i cPar
+successor : Ei gr pRout eSour ce
+numSuccessor s: i nt
+r ef er enceCount er : i nt

Ei gr pRout eSour ce

+sour ceI d: i nt
+r out eI d: i nt
+or i gi nat or : I Pv4Addr ess
+next HopI d: i nt
+next Hop: I PAddr ess
+i nt er f aceI d: i nt
+r d: ui nt 64_t
+met r i c: ui nt 64
+met r i cPar ams: Ei gr pWi deMet r i cPar
+r dPar ams: Ei gr pWi deMet r i cPar
+successor : bool
+summar y: bool
+r out eI nf o: Ei gr pRout e

1

Figure 7.1: Class diagram describing the relation between EigrpRouteSource, used by
RouteVector, and EigrpRoute which is used by RouteInfoVector. The most important
class attributes are included. Depicted classes are used as data structures and as their
methods and not important, they are not included in the diagram.

5. During the processing, destination A.B.C.D is not found in the RouteInfoVector and
the simulation crashes (issue i2a).

To fix the aforementioned bug, the reference counter is increased for all destinations
contained in a REPLY that is being sent to the RTP module. After the PDM processes
the REPLY, the counter is decreased back and the appropriate RouteInfo is deleted if its
reference counter reached 0.

7.1.4 The Order of Signals (i3)

The EIGRP simulation model subscribes to three types of signals:

∙ interfaceStateChangedSignal;

∙ interfaceConfigChangedSignal; and

∙ routeDeletedSignal (from RT).

Signals are usually received in batches, which means that a single event can cause multiple
signals to be emitted. For example, an interface shutdown event causes interfaceState-
ChangedSignal to be emitted. At the same time, routeDeletedSignal can be emitted if
the shutdown interface was configured with an IP address, as the formerly directly connected
network may no longer be reachable.

The problem is caused by the fact that the reception of these signals is expected to
happen in a specific order, where routeDeletedSignal is always the last (the EIGRP pro-
cess expects to be informed of an interface shutdown before the removal of a RT route
takes place). If this order is not followed, as is the case with the new INET API, EIGRP
first receives routeDeletedSignal, finds that the interface associated with the deleted RT

38

entry is still active, and attempts to place the route back to the RT. Unknown implemen-
tation details cause the re-added entry to be immediately deleted again, emitting another
routeDeletedSignal and causing an indefinite loop.

To counteract this problem, the model is not allowed to process the deletion of a single
entry multiple times in a sequence. The solution is not ideal but prevents the issue from
manifesting. Signal handling could be rewritten in the future.

7.1.5 Interface Configuration (i4)

EIGRP model, as it exists in ANSAINET version 3.4.0, is configured through an ANSA
specific class MultiNetworkNodeConfigurator that configures the interfaces with IPv4 or
IPv6 address specified in the configuration file. As this class is not available in the INET
framework, the configuration of the simulation model interfaces had to be redone, taking
inspiration from the means of configuration of other similar simulation models, such as
OSPFv2 or RIP.

The solution to IPv4 configuration is the Ipv4NetworkConfigurator module. It is
already used in many examples for other protocols and should be intuitive for INET users.
It assigns per-interface IP addresses, strives to take subnets into account, and can also
optimise the generated routing tables by merging routing entries. It is an ideal substitute
and does not require any code changes.

The IPv6 solution is a more complicated matter. Since the IPv6 configuration has
not yet been standardised in INET, authors of the simulation models employ their own
solutions. This means that the configuration of interfaces (i.e., the settings of individual IP
addresses) is handled by the models themselves during initialisation of the simulation. For
this reason, the EigrpDeviceConfigurator class was extended to allow such an action.

7.1.6 Classification of Address Family (i5)

To allow the EIGRP model to handle both IPv4 and IPv6 traffic, it requires a mechanism
of determining the destination EIGRP PDM. In the case of ANSAINET, the models do not
handle this themselves. The categorisation of traffic is performed by ANSA_MultiNetwork-
Layer multiplexers. From the models’ perspective, no extra work is necessary. However,
such solution does not have an INET counterpart and an explicit splitter module was
needed. The created module registers directly with the network layer on port 88, receives
packets of both address families, and forwards traffic to the appropriate PDM. A new
structure of the EIGRP simulation model is shown in Figure 7.2.

7.1.7 ANSAINET Interface Dependency (i6)

The EIGRP model is built on top of the ANSAINET router module. As such, it employs
special interface modules called ANSA_InterfaceEntry, derived from INET Interface-
Entry (nowadays NetworkInterface). These objects are used to represent a single in-
terface with its own attributes, such as IP address, MAC address, or bandwidth. The
class EigrpInterface creates an abstraction of the interface for the EIGRP process. Since
EIGRP employs multiple parameters (chosen by the K-values), and INET InterfaceEntry
only provides for the bandwidth attribute (as datarate - K1), the remaining attributes (i.e.,
delay, reliability, and load) are stored in ANSA_InterfaceEntry. This is problematic as the
INET interface does not have access to any additional attributes except for the bandwidth.

39

Figure 7.2: Structure of the EIGRP simulation model in INET 4.2 with new splitter. PN
stands for Protocol Number, 88 in case of EIGRP.

There are two solutions to this issue. The aforementioned attributes could be moved
either to INET’s InterfaceEntry, which would make them accessible to other models, or
to EIGRPInterface. Since these attributes are not used by other models, they were moved
to the latter. Every usage of the ANSA_InterfaceEntry class in the code had to be replaced
by InterfaceEntry as well.

7.1.8 Integration of Packets (i7)

INET version 4.0 introduced a new and more standardised way of sending messages to out-
side networks, although composite modules may still use the old way internally. The new
method uses the Packet data structure, which is built on top of chunks. Users define their
own chunk types in the .msg message definition files and describe the desired message for-
mat. Chunks must be constructed with a call to the makeShared method instead of using the
new operator, as was the case in previous versions of INET. The packets themselves can con-
tain several chunks inserted and removed by different protocols as they are passed through
the protocol layers. Chunks can be inserted into a packet with functions insertAtBack or
insertAtFront as well as removed with popAtFront and popAtBack. Packets can be sup-
plemented with metadata via tags, which specify the outermost protocol of the packet, the
outgoing interface, the destination address, the TTL, etc. These metadata were previously
carried in some form of a ControlInfo structure. Message Dispatchers connect modules
and allow automatic dispatch of packets or messages. The DispatchProtocolTag must be
attached to the packet as it allows the dispatcher to direct the message to the intended
recipient.

To adjust the model to this new mechanism, modifications were made to methods
processMsgFromRtp and processMsgFromNetwork and to their helper methods in both
PDMs:

∙ processMsgFromRtp - Helper methods responsible for creating messages (e.g., create-
HelloMsg, createUpdateMsg etc.) were updated to create chunks instead, compute
their size, insert them into newly created Packets and return those. To reflect this
change, Msg in the name signature of the helper methods was replaced by Packet.
The method processMsgFromRtp is responsible for attaching the appropriate tags,
such as the protocol, the destination interface, the TTL, and sending the message to
the outbound gate.

40

∙ processMsgFromNetwork - Similarly, the helper methods, which are responsible for
processing received messages, were changed to work with packets and tags instead.

ControlInfo was completely removed from the code as it had no more use.

7.2 BGP Implementation Details
This section describes my efforts to address the issues found in the BGP simulation model
mentioned in Section 5.4.2. These efforts were then followed by implementation of the
missing features previously shown in Table 5.1. The various approaches taken to deliver
these features are then described as well.

Unlike in the EIGRP section, these issues and missing features were not resolved in
any particular order and as such, the following text is structured differently. The described
issues are sometimes mentioned within the text to point out their relevance to a particular
paragraph.

Furthermore, since there are two other simulation models of BGP for INET, as men-
tioned in Section 5.4, and this work talks about their successes and failures, they are often
mentioned. The version currently in INET 4.3 is called the INET version, while the version
of the model made by Ing. Novák is called Novák’s version.

7.2.1 Configuration of the Simulation Model

One of the first aspects facing the user is the configuration of individual routers. The INET
version uses a more ‘declarative’ approach rather than the ‘imperative’ approach found on
many real devices. Rather than explicitly configuring peers for each router one by one,
the INET version of the BGP model is configured via an XML file whose most significant
elements and attributes are described below. Some default aspects of the BGP model (such
as connectedCheck, ebgpMultihop, and externalPeerStartDelayOffset) can only be specified
via module parameters, which unfortunately decentralises configuration.

1. An array of <AS> elements with required attribute id: defines existence of an au-
tonomous system whose number is specified by the id attribute. Child elements with
tag <Router> and the internalAddr attribute are used to specify IP addresses of
interfaces of routers that are participating in the iBGP process in a given AS. Redis-
tribution is enabled automatically. <Router> elements can contain two types of child
elements:

∙ <Network> with attribute address which inserts resolvable prefixes directly to
the BgpRoutingTable;

∙ <Neighbor> with attributes nextHopSelf and localPreference which are used for
specific iBGP neighbour configuration.

2. An array of <Session> elements with required attribute id: defines an eBGP peering
session between routers specified with exactly two <Router> child elements. These
elements have required attribute externalAddr which specifies an interface of a router
participating in this eBGP peering. Optional child element <Neighbor> with required
attribute address and two optional attributes connectedCheck and ebgpMultihop can
be used to modify eBGP behaviour towards a specified neighbour.

41

Until recently, there also existed a TCP FSM bug [15] that required the configuration
to be loaded from a single file. Originally, BGP nodes would create a global time order of
peer establishment to avoid the possibility of two simulation entities performing two TCP
connect operations at the same simulation time (which the simulation did not properly
support).

With the above style of configuration, there usually only exists a single configuration file,
and all BGP-enabled nodes parse this file to check if any of the internalAddr or externalAddr
attributes match any of their configured IP addresses. Admittedly, users who are not
familiar with configuring BGP on real devices can set up their desired simulation fairly
quickly. However, there are several drawbacks to the aforementioned configuration style of
the BGP model of INET:

∙ single internal address for iBGP;

∙ missing support for MP-BGP and IPv6 configuration and static route insertion;

∙ unfriendliness caused by the combination of module parameters and .xml file;

∙ difficult conversion between model configuration and real-life device configuration;

∙ unfamiliarity to people with a networking background, who are more likely to use
such a model in the first place.

New Configuration File

The following section presents a new style of Cisco-like configuration that supports IPv4
and IPv6, partially removes the dependency on the OSPF module, and extends the set of
supported BGP route attributes with Local_Pref and MED. This new configuration struc-
ture is loosely based on Novák’s version, which itself is based on MP-BGP configuration
on Cisco devices. The following subsection ultimately describes the resulting configuration
experience of this work’s implemented model.

In addition to normal IPv4 configuration, the new format allows for IPv6 configuration,
combination of the two, and even advertisement of IPv4 prefixes over IPv6 infrastructure
or vice versa (issue i3). This behaviour is explained in more detail in the MP-BGP section
later on. Furthermore, the new configuration allows for interface IP address assignments
and for insertion of static routes. Any code related to the calculation of TCP connect
delays was cleaned up, as the previously mentioned TCP bug was fixed after discussion
with the INET’s developers. The structure of the new configuration is shown in Appendix
D. Separation between the global BGP configuration and configuration for a specific address
family closely follows configuration on Cisco devices (issue i1), unlike the solution found
in Novák’s version, which merges everything under specific address family. An example
of the new configuration file is shown in Appendix E. A non-exhaustive list of elements’
connotations is the following:

∙ <TimerParams>: Sets global BGP timers.

∙ <Router>: Represents a single simulation node. The attribute name must match the
desired node name specified in the .NED file. Optionally, the id attribute can be used
to set global (stored in RT) router-id identifier.

∙ <Interface>: Represents the interface identified by the id attribute. This attribute
can also be used to identify a loopback interface.

42

∙ <Ipv{4|6}>: Sets a specific AF IP address.

∙ <Bgp>: Contains BGP settings. The attribute as assigns the BGP process with a
specific AS number.

∙ <Bgp-router-id>: Sets BGP specific 32-bit router-id identifier.

∙ <Neighbor>: Represents a specific peer identified by the attribute address. The
following additional attributes are supported if address family is not specified:

– remote-as: Non-optional attribute that specifies remote peer’s AS number. This
value is used to differentiate between iBGP and eBGP sessions.

– disable-connected-check: disables check of the peer’s IP against RT entries tagged
as directly connected. TTL is not modified.

– ebgp-multihop: Sets the messages’ TTL for the specified neighbour.
– update-source: Sets the peering source to a specific loopback interface.
– local-pref : Sets the local preference attribute for NLRIs which are advertised by

the specified neighbour.
– med: Sets the Multi-Exit-Discriminator attribute for NLRIs which are advertised

to the specified neighbour.

If the address family is specified, a different set of attributes is available:

– activate: Activates or deactivates the peer for a specific address family.
– next-hop-self : Forces change of the next-hop attribute to the local peering source

interface address.

∙ <Address-Family>: Groups configuration for the specific address family specified by
the required attribute id.

∙ <Network>: Enables a prefix, identified by the attribute address, for BGP advertise-
ment. In order to be installed in the BGP table and thus advertised to BGP peers,
the prefix must have an exact match in the RT.

∙ <Route{4|6}>: Adds a static route of the specified prefix, output interface, and next-
hop address to the RT of the given AF.

During the international OMNeT++ Summit in September 20211, the INET develop-
ment team requested that the new configuration format coexists alongside the old format.
This did not include extending the old format with new features; just for it to behave in the
same way as before the introduction of these features. However, the old way of configuration
has not been implemented yet.

MP-BGP Configuration

As mentioned above, the new configuration supports both IPv4 and IPv6 address families
with the same set of features. The advertisement of IPv4 prefixes over IPv4 infrastructure
is the most common and therefore does not require the attribute activate to be specified.
IPv6 always requires explicit activate and so does the advertisement of IPv4 over IPv6

1https://summit.omnetpp.org/2021

43

infrastructure (issue i3). All possible scenarios of the AF configuration are shown in Ap-
pendix F. Since the next-hop attribute value cannot be used as-is if the AF of the advertised
prefixes and of the infrastructure do not match, Cisco devices require a mechanism (e.g.,
route-map), which changes the next-hop to a usable address explicitly. For simplicity, the
implemented BGP model automatically changes the next-hop value to the appropriate AF
address found on the same source interface. If such an address is not found, the next hop
is mapped in the same way as on Cisco devices, as shown in Figure 7.3.

Figure 7.3: Generation of the next-hop address for when advertised AF does not match the
AF of the infrastructure. MS stands for most significant.

7.2.2 Support for Multi-Address Family

This section describes the process of extending the simulation model for IPv6 support. The
configuration was presented in the previous section.

Because the old model was not exactly designed and coded with IPv6 in mind, many
changes were needed. While the code from Adrián Novák’s BGP repository is no doubt
functional, it contains a lot of duplicated code, which, inadvertently and unnecessarily,
bloats the codebase. The goal was to have as few address-family-specific methods as possi-
ble. All IPv6 addresses mentioned are considered global unicast addresses, since that seems
to be the most common scenario. In the future, missing support for link local addresses
could be implemented by changing a couple of methods that specifically look for global
addresses on interfaces. The INET version uses the following IPv4-specific data structures:

∙ BgpRoutingTableEntry: Represents a single route to a destination. It is derived
from Ipv4Route and adds BGP specific class attributes like path attributes (ORI-
GIN, AS_PATH, NEXT_HOP, LOCAL_PREF etc.) while leveraging Ipv4Route’s
attributes for storing destination prefix, its mask, and next-hop. This makes it easy
to install such a route in the RT.

∙ BgpRoutingTable: A std::vector of BgpRoutingTableEntry instances representing
a BGP routing table.

∙ AdvertiseList: A std::vector of Ipv4Address instances created based on the con-
tents of the Network XML elements in the configuration. During node initialisation,
these addresses are installed in BgpTable if they can be matched with an existing RT
entry.

44

∙ PrefixList: A std::vector of BgpRoutingTableEntry instances used to filter routes
based on their AS numbers and prefixes.

To add support for IPv6, the model had to be extended with a few minor data structures
to store different types of routes.

A simple solution would be to create a BgpRoutingTableEntry6 derived from Ipv6Route
to accommodate IPv6 prefixes and to add separate methods for this new type. However,
such a solution would result in code redundancy, as the only difference between IPv4 and
IPv6 BGPRTEntry is in the destination prefix and the next-hop address types. The internal
logic for installing routes to internal structures remains the same.

A valid solution would be to use C++ templates [34], which would allow the code to be
written with generic types, whose functionality can be adapted to IPv4 and IPv6 without
the need for much redundant code. The code written in these templates is used by the
compiler to generate object code for template instances [33], however, it can be difficult to
debug.

Instead of diving into templates, the occurrences of Ipv4Address, which represented the
destination prefix, the next hop address, or the peer’s address, were replaced with a generic
interface for the network address: L3Address [17]. The constructor for L3Address exists
for both IPv4 and IPv6 addresses, and the method getType() returns the type of address
that is used to branch out the code if necessary. The methods toIPv4() and toIPv6(),
returning derived types, are used to encode the address in UPDATE messages and for the
installation in the RT.

The derivative of the Ipv4Route class was removed from BgpRoutingTableEntry and
instead 3 properties were added: destination and nexthop of generic type L3Address to
accommodate missing Ipv4Route attributes, and an unsigned number to store information
on the length of the prefix. With these changes, it is now possible to store either IPv4
or IPv6 BGP route. All methods that work with IPv4 specifically had to be rewritten to
work with L3Address. Fortunately, TCP methods already fully supported the L3Address
interface.

The IPv4 and IPv6 routes could technically be stored in the same data structures, but
keeping them separate makes it cleaner from the router’s perspective. A non-exhaustive
list of added structures includes:

∙ BgpRoutingTable6: A std::vector of BgpRoutingTableEntry to store the best
path for each known IPv6 destination.

∙ AdvertiseList6: A std::vector of Ipv6Route instances to store prefixes and their
prefix lengths configured via Network XML elements.

The type of AdvertiseList was also changed from Ipv4Address to Ipv4Route to allow
for storage of prefix length. Helper methods were rewritten with a generic address type as
well. This includes methods such as isResolvable, isInTable, isDestinationInTable
and others.

To allow routers to exchange information on supported address families, the set of sup-
ported Optional Parameters was extended with capability. Both routers announce their
supported address families through these fields within OPEN messages, and the established
state is only reached if and only if at least one address family is common between the
two peers. Otherwise, a NOTIFICATION message is generated and both the TCP and BGP
sessions are closed. A peer that is not supporting a given address family does not send any
UPDATE messages of that kind. Currently, no other optional parameters are supported.

45

Lastly, the BgpRouter.ned module, which extends the generic router, had to be enabled
for IPv6 and extended by routingTableModule6 adding IPv6 RT. The OSPF module was
disabled as it is does not have any uses. Future work could include implementing proper
support for OSPF, RIP and EIGRP redistribution. In the author’s opinion, these would
bring a lot of value to the simulation model.

MP Path Attributes

Since the UPDATE message format differs for IPv6 prefixes, a method was added to specifi-
cally send IPv6 NLRIs. The following message definitions, which contain the UPDATE mes-
sage attributes MpReachNlri and MpUnreachNlri, were added to the message definition file
BgpHeader.msg, such a snippet is shown in Listing 7.1.
class BgpUpdatePathAttributesMpReachNlri extends BgpUpdatePathAttributes
{

typeCode = MP_REACH_NLRI;
optionalBit = true;
length = 0;

unsigned short AFI @enum(AFITypes) = Ipv6; //2 octets
unsigned char SAFI @enum(SAFITypes) = Unicast; //1 octet
unsigned char NextHopLength = 16;
BgpUpdatePathAttributesNextHop6 nextHop; //16 octet nexthop
unsigned char reserved = 0; //1 octet reserved
BgpUpdateNlri6 NLRI[];

}

class BgpUpdatePathAttributesMpUnreachNlri extends BgpUpdatePathAttributes
{

typeCode = MP_REACH_NLRI;
optionalBit = true;
length = 0;

unsigned short AFI @enum(AFITypes) = Ipv6; //2 octets
unsigned char SAFI @enum(SAFITypes) = Unicast; //1 octet
BgpUpdateNlri6 NLRI[];

}

Listing 7.1: Definitions of MP attributes to carry IPv6 prefixes.

Along with the additions mentioned above to the message definition file, a very minor
deviation in message format (BGP header) was fixed while the file was being reviewed (issue
i5).

7.2.3 Redesign of Node’s Operation

The following section presents a new operation loop that was redesigned to provide a clear
chain of actions for the routes to pass through. This change addresses multiple issues and
missing features, such as various event handlers or missing BGP table.

Many shortcomings of the model became apparent during the process of adding IPv6
support and its initial testing. Although some aspects, such as the initial route exchange,
had just a few minor issues, other aspects, especially behaviour after topology changes, were
either only implemented partially or absent altogether. The following issues are addressed
in this section.

∙ OPEN messages were not validated by the receiver.

46

∙ The BGPTable was missing. Its purpose is to store all received routes and especially
those that were not installed in BgpRoutingTable. If the best route for a given
destination became unavailable, another loop-less route from BGPTable could be used
as a fallback.

∙ No signals are subscribed. This makes the operating node completely oblivious to
any changes to:

a) the state or configuration of an interface;
b) RT additions and deletions by other processes (i.e. routing protocols).

∙ Handler associated with a closure of an active TCP socket is missing (INET version
only).

∙ AdvertiseList, which stores prefixes configured by the network command, only
allows holding routes with an exact match in the RT.

∙ Handling of routes individually instead of in bulk, resulting, for example, in each
Update message containing only a single NLRI prefix. The UPDATE message’s NLRI is
an array, and multiple NLRI prefixes can be grouped, if they share the same attributes.
Withdrawn routes can always be grouped.

OPEN messages are newly checked for the expected AS identifier. If unexpected value is
detected, a NOTIFICATION message is generated and the TCP connection with the peer is
closed (issue i6).

With the introduction of the BGP table structure, the way of managing routes had
to be completely changed. The diagram in Figure 7.4 shows how the three main route
data structures (i.e., AdvertiseList, BgpTable and BgpRoutingTable) interact with each
other. What was essentially created is a chain of consecutive subroutines that takes an
incoming event together with its associated routes, recalculates the contents of these internal
structures accordingly, updates the AF-appropriate RT, and notifies relevant peers about
the changes. The context of the event that triggered the computation is passed through the
chain as Source Session ID. In case of locally originating events, it is set to -1, otherwise
it is set to the Session ID of the peer that triggered it (i.e., events like Initialize,
Start, Interface/RT changed are locally originated while Update Message Received,
TCP Closed and BGP Established need a context with information about the peer that
triggered it).

The following text takes into account only a single address family, but applies to both.

1○ Advertise List

First, advertiseList is populated with prefixes entered by the network command by
configReader class. This only happens once during node initialisation when the config-
uration is read. The newly added routes do not have to be exactly matched in the RT.
This structure is simply used to store configured prefixes. However, this also implies that
new prefixes cannot be easily added to advertiseList during simulation. Once the con-
figuration file parsing process is complete, every prefix in advertiseList is processed into
BgpRoutingTableEntry and marked as valid or invalid, depending on whether the prefix
can be exactly matched in the RT (check operation). A vector of these entries is passed to
update BGPTable. The check operation is executed either after the configuration file has

47

<routes>

Advertise
List

BGP
Table

BGP
Routing
Table

RT

Update
Base

Update Recalculate
<BgpTable>

<added>
<removed>

<BgpRoutingTable>

Interface/RT
Changed

BGP
Established

TCP
Closed

Update
Message
Received

RemoveUpdate

Start

<routes>

Initialize

config.xml
<network>

Config
Reader

Init

<routes>
Update

Check

Check

Update
Message

Create

Create

Send

Update
1 2 3

4

5

<added>
<removed>

<routes>

Figure 7.4: Simplified diagram of the interactions between route data structures. Input
events are highlighted in blue.

been parsed, when the node has started, or when a signal notification regarding Interfaces
or RT has been received.

2○ Update of the BGP table

This subroutine takes a vector of routes as input. Each invalid entry is removed from
BgpTable and each valid entry is checked for presence and added if necessary. The routes
received in UPDATE messages are processed in the same way; both the withdrawn routes
and the NLRI are processed into BgpRoutingTableEntry instances, with the withdrawn
routes also marked as invalid. If an active TCP socket closes, all routes received from that
particular peer are invalidated. With this updated BgpTable, BgpRoutingTable can be
recalculated.

3○ Calculation of the BGP Routing Table

The algorithm for the calculation of BgpRoutingTable is shown in Algorithm 1. It consists
of two separate steps:

1. All BgpRoutingTable entries are checked for:

(a) a presence in BgpTable as they could have been removed in the previous step;
(b) next-hop resolvability in the appropriate RT as an RT change could have trig-

gered recalculation;

If either of these checks fail, the route is:

(a) added to the removedRoutes vector;
(b) removed from BgpRoutingTable.

At the end of this step, the BgpRoutingTable is guaranteed not to contain any routes
not present in BgpTable and the removedRoutes vector contains all these deleted
routes.

2. All BgpTable entries are checked for next-hop resolvability. The same destination
network is then located in the BgpRoutingTable. If no such route is found, the

48

entry is added. Otherwise, if an entry to the same destination is already present,
both entries are passed further to the tieBreakingProcess. If the new route is
better from BGP’s perspective, this results in the new route being added to the
BgpRoutingTable and the old route being removed. If the route was, in fact, added
to the BgpRoutingTable, it is also added to the addedRoutes vector and removed
from the removedRoutes vector if present.

This procedure leaves BgpRoutingTable in sync with BgpTable and also returns two vec-
tors: removedRoutes and addedRoutes, which reflect changes. If the Established state is
newly reached with a particular peer, BgpRoutingTable is only read, and the result of this
operation is the whole table.

4○ Creation of the Update Base

While removedRoutes entries do not require additional processing, since only the prefix
and its length are contained in the final message, the advertisement of addedRoutes entries
requires a calculation of attributes. If the whole BgpRoutingTable is given as input, it is
taken in the same way as the vector addedRoutes. The update base is calculated separately
for each peer after several checks are performed:

∙ Peering is in the Established state;

∙ Source session ID is not the same as the ID of the receiving peer session (Split Hori-
zon);

∙ Either the source or the destination session must be eBGP or the event must be
locally originated.

The following attributes are included in the update message base using the create-
UpdateBase method:

∙ Origin - does not require any processing;

∙ AS_path - generally processed, depending on the type of BGP session with the in-
tended receiver of the message:

– iBGP - does not require processing as the array is just copied;
– eBGP - the array is copied, AS number of the BGP process is prepended;

∙ Next_hop - generally processed, depending on the type of BGP session with the
intended receiver of the message:

– iBGP - Replaced with BGP’s local peering source IP address if the route is
locally originated (i.e., 0.0.0.0 would not make a good next-hop). This can be
overruled if the flag next-hop-self is configured. In that case, the next-hop is
always replaced in the same way.

– eBGP - Set to BGP’s local peering source IP address.

If the BGP’s local peering source IP address and the route are not of the same address
family, the appropriate address family IP address of the same interface is included
instead. If such an address does not exist, BGP’s local peering source IP Address
is mapped into different address families as shown in Figure 7.3 in the configuration
section.

49

∙ Local_pref - copied in the case of iBGP sessions, omitted in the case of eBGP.

∙ MED - copied in the case of iBGP sessions, omitted in the case of eBGP unless config-
ured locally.

The output of the createUpdateBase method, called UpdateBase, is a vector of triplets as
shown in Listing 7.2.
typedef struct {

unsigned char length;
L3Address prefix;

} BgpUpdateNlriBase;

typedef struct {
std::vector<BgpUpdatePathAttributes *> pathAttributes;
L3Address nextHop;
std::vector<BgpUpdateNlriBase *> NLRIs;

} UpdateBaseEntry;

typedef std::vector<UpdateBaseEntry> UpdateBase;

Listing 7.2: Type hierarchy of UpdateBase.

UpdateBase is a vector, which contains a set of unique combinations of path attributes
(pathAttributes and nextHop) together with prefixes (NLRIs) that match such combi-
nation (issue i4). Attributes contained in the pathAttributes vector are AF agnos-
tic (i.e., origin, AS_path, Local_pref, MED). The only attribute that is AF specific
is nextHop and for that reason it is stored separately. This is done in such a way because
BgpUpdatePathAttributes type is auto-generated from the message definition .msg file
which does not include any field which could contain both types of addresses. Neverthe-
less, each item of UpdateBase vector represents one update message for a specific peer. If
removedRoutes are present, they are sent as withdrawn routes or unreach_nlri only in the
first UPDATE message.

5○ Sending of the Update Message

With the calculated peer-specific and AF-specific UpdateBase, the appropriate AF-specific
sendUpdateMessage method of the receiver’s BGPSession instance is called. It takes
UpdateBase and WithdrawnRoutes (stripped down removedRoutes vector) as parame-
ters and constructs and sends an Update Message for each entry in UpdateBase. If the
vector WithdrawnRoutes is present, it is included in the first message only. If UpdateBase
is not present but WithdrawnRoutes is present, then only a single UPDATE message with
WithdrawnRoutes or unreach_nlri is sent.

Signal handlers

Neither the INET version nor Novák’s version employs signal subscriptions. The former
does not even handle an abruptly closed TCP connection, whereas the latter has only a
basic, and in the author’s opinion rather crude, implementation of such a handler directly
in BgpFsm. Furthermore, it has a crucial oversight. The state of connected interfaces that
do not participate in the BGP peering process is ignored even if their networks are inserted
into AdvertiseList and advertised to other peers. Improvements to handlers for TCP
connections are described in one of the following sections, while this section focusses on
signals and their usage for the BGP model.

50

Algorithm 1: UpdateBgpRoutingTable
Data: BgpTable, BgpRoutingTable
Result: removedRoutes, addedRoutes
foreach BgpEntry 𝑟𝑜𝑢𝑡𝑒 ∈ 𝐵𝑔𝑝𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒 do

if !isResovable(𝑟𝑜𝑢𝑡𝑒.getNextHop()) then
𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠.push(𝑟𝑜𝑢𝑡𝑒);
𝐵𝑔𝑝𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒.erase(𝑟𝑜𝑢𝑡𝑒);
continue;

end
𝑓𝑜𝑢𝑛𝑑𝑀𝑎𝑡𝑐ℎ← 𝑓𝑎𝑙𝑠𝑒;
foreach BgpEntry 𝑒𝑛𝑡𝑟𝑦 ∈ 𝐵𝑔𝑝𝑇𝑎𝑏𝑙𝑒 do

if 𝑒𝑛𝑡𝑟𝑦.isSameAs(𝑟𝑜𝑢𝑡𝑒) then
𝑓𝑜𝑢𝑛𝑑𝑀𝑎𝑡𝑐ℎ← 𝑡𝑟𝑢𝑒;
break;

end
end
if !𝑓𝑜𝑢𝑛𝑑𝑀𝑎𝑡𝑐ℎ then

𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠.push(𝑟𝑜𝑢𝑡𝑒);
𝐵𝑔𝑝𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒.erase(𝑟𝑜𝑢𝑡𝑒);

end
end
foreach BgpEntry 𝑒𝑛𝑡𝑟𝑦 ∈ 𝐵𝑔𝑝𝑇𝑎𝑏𝑙𝑒 do

if !isResolvable(𝑒𝑛𝑡𝑟𝑦.getNextHop()) then
continue;

end
if decisionProcess(𝑒𝑛𝑡𝑟𝑦, 𝐵𝑔𝑝𝑅𝑜𝑢𝑡𝑖𝑛𝑔𝑇𝑎𝑏𝑙𝑒) == ROUTE_ADDED then

if 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠.containsDestination(𝑒𝑛𝑡𝑟𝑦) then
𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠.eraseByDestination(𝑒𝑛𝑡𝑟𝑦);

end
𝑛𝑒𝑤𝑅𝑜𝑢𝑡𝑒𝑠.push(𝑒𝑛𝑡𝑟𝑦);

end
end
return 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠, 𝑎𝑑𝑑𝑒𝑑𝑅𝑜𝑢𝑡𝑒𝑠

51

The aforementioned issues greatly limit the use cases for both models, as the simula-
tion of link failures could provide crucial information about the stability of the simulated
topology. Fortunately, the addition of signals itself was a very simple process and, thanks
to the previously explained routine depicted in Figure 7.4, which handles everything from
the recalculation of BGP tables to sending UPDATE messages, it required just a few lines of
additional code.

First, the Bgp class must implement the interface cListener, which requires the imple-
mentation of a single handler method receiveSignal. Second, if the new method is to be
called, some signals have to be subscribed to first. The following self-explanatory signals
were chosen:

∙ routeAddedSignal;

∙ routeDeletedignal;

∙ routeChangedSignal;

for watching for RT changes, while signals

∙ interfaceStateChangedSignal; and

∙ interfaceConfigChangedSignal

are used to look for state or configuration changes on interfaces.
Bgp class subscribes to RT changes because a prefix in the advertiseList can become

exactly matched by the newly added route and thus should be installed in the BGPTable
and potentially advertised to peers. The same goes for newly removed routes. RT is a
node-wide data structure and can be influenced by other routing protocols, for example.

Bgp class subscribes to changes on local interfaces because interface, which provides a
CONNECTED route, thus allowing BGP to advertise such a route, could be shut down,
which should trigger a BGP action.

These signals overlap since a shutdown of an interface triggers both interfaceSta-
teChangedSignal and multiple routeAddedSignal or routeDeletedSignal signals. This
is because the RT is automatically recalculated if the state of a local interface changes.
Thus, subscription to interface changes is not currently impactful, but this could change in
the future. The problem of receiving multiple signals had to be resolved even if only RT
changes are watched.

Since the entire RT can be wiped and repopulated as a result of a single interface
state change, repeated processing of same signals and improper processing of conflicting
signals could cause problems during topology changes. Such changes could cause the model
to handle each signal separately, resulting in high CPU utilisation and strange behaviour
with BGP generating multiple conflicting UPDATE messages, seemingly at the same time.
To combat this, a stagger mechanism is implemented. Instead of processing each signal
individually, only the final state of the RT is processed. A message, which represents a
received signal, is scheduled at the current simulation time by the first received signal.
On subsequent signals, a check for the presence of such message is performed. After all
signals are handled, the node receives the previously scheduled message which triggers a
recalculation of advertiseList which continues to the recalculation of BGP Tables and so
on until every appropriate peer is notified of the changes by UPDATE message(s).

Signals must be unsubscribed from, which is handled by the destructor of Bgp.

52

With the aforementioned additions, the model is able to receive events regarding addi-
tions and deletions to RT, it changes its state accordingly and causes peers to be informed
about the changes. The above was already taken into account in the previous section re-
garding improvements to node’s operation 7.2.3 and thus these events are included in Figure
7.4.

Life Cycle Handlers

Implementing the life cycle abstract class RoutingProtocolBase allows the node to han-
dle node-specific operations such as start, stop and crash during simulation through
scenarioManager. If this interface is not implemented by the module, manipulation with
the node via scenarioManager throws an exception, and thus the simulation fails. Imple-
menting the interface requires the following steps:

(a) handleMessage has to be refactored to handleMessageWhenUp (meaning the node is
UP);

(b) implementation of the following self-explanatory methods:

∙ handleStartOperation;
∙ handleStopOperation;
∙ handleCrashOperation;

All of these methods have to leave the node in a consistent state.

The derivation of the base class RoutingProtocolBase replaces the derivation of c-
SimpleModule as the base class. With these changes, the node can now handle above-
mentioned operations during the simulation via scenarioManager.

7.2.4 TCP Operations

Even though BGP uses TCP to provide a reliable transport layer for its messages, it does
not use the typical client-server model; instead, it uses a peer-to-peer model. This means
that all peers, two in the case of the BGP session, are coequal and equipotent nodes. In
a classic client-server model, the client would perform the TCP connect operation while
the server would perform the TCP listen operation. With BGP, both peers perform both
operations: both are actively listening for the incoming SYN segment, while both are actively
(with reasonable intervals) trying to contact the peer with their own SYN segment. This
means that each peer needs two TCP sockets for every other configured peer. One socket
is used to listen for incoming connections and the other to actively try to connect to the
other peer.

In both versions of the studied BGP models, TCP sockets are stored together with peer-
specific data in an instance of the BgpSession class. All such instances, with each represent-
ing one peer, are stored in the _BGPSessions map as values, while their Session ID is used
as key. Both sockets in each peering instance are created with the create{I|E}bgpSession
methods of the BgpRouter class, that is invoked by the configReader class after the parsing
process of the configuration .xml file is completed.

TCP callbacks are implemented by deriving an abstract class TcpSocket::Receive-
QueueBasedCallback and by setting such a derived class as a callback for TCP sockets.
Both of these sockets use these callbacks. However, there is one problem with the sockets.

53

If the two TCP connections between BGP peers are opened simultaneously, the simu-
lation cannot detect this, and a socket mismatch happens. In such a case, both routers use
activeSocket for outgoing messages and passiveSocket for receiving messages. When
the TCP connection is not initialised simultaneously by both parties, this does not happen
and the initialising party uses the activeSocket and other uses passiveSocket normally.

The following 2 sockets are created for each peer.

∙ activeSocket represent a socket that performs a connect operation. It uses port
number 50,000 raised by the index of the given peer.

∙ passiveSocket is a socket that performs the listen operation. It uses a well-known
port 179.

As mentioned in Section 7.2.3, thanks to the already implemented handler hooked onto
the appropriate TCP callback, BgpTable recalculation is triggered if a TCP connection to a
peer is closed. All routes in BgpTable that were received from the no-longer-available peer
are invalidated and removed, triggering a recalculation of BgpRoutingTable and updating
other peers of the changes.

My additional improvement in TCP socket operations is to stop the activeSocket from
closing if SYN+ACK is not received. This socket has to periodically send SYN segments until
a session is established. Once closed for whatever reason, both sockets must be placed
in the initial state (issue i7). This was accomplished by the introduction of a couple of
self-messages and with more functional callback handlers.

More information about the TCP simulation model can be found in the official INET
Developer’s Guide [18] in Section TCP Socket.

7.3 Implementation Conclusion

7.3.1 EIGRP Conclusion

With all known issues addressed and resolved, the EIGRP simulation model was submitted
to INET via pull request #570 [3] on October 30, 2020. After a few changes from the
INET maintainers, it was merged and subsequently released in INET version 4.3.0. This
simulation model is now a part of the INET framework [19].

7.3.2 BGP Conclusion

The resulting model was redesigned and reimplemented with a goal to provide a better
simulation experience for its users. Most notably, this new version of the model greatly
expands the ways to interact with the simulation by implementing a number of event
handlers that can be invoked while the simulation is executing. This enables simulation of
new scenarios such as as complete node or interface failures. The model also reacts to the
changes of the local routing table. Additionally, the model was extended with complete
IPv6 support via the usage of abstract classes, keeping the overall complexity of the code
base as low as possible. The BGP decision process was extended and some new route
attributes were implemented to allow for more complex routing policies. Moreover, the
NOTIFICATION message was implemented, and the UPDATE message creation process was
rewritten, allowing for more realistic message exchanges. Lastly, the configuration of the
model was modified to more closely follow the configuration process on Cisco devices.

54

However, there are currently still some missing features that will have to be addressed
before the model is submitted for a merge with the INET code base. INET developers have
indicated an interest in these additional features as this model should completely replace
the existing one and thus, should be a clear improvement with all features of its predecessor.
It, for example, includes the old way of configuration so as not to break the already existing
simulations. The serialisation of messages that allows the simulation to output the traffic
as .pcap files also needs to be extended with the new attributes and message formats.

When these additions to the model are complete, the new model together with an
extended version of the ‘BGP routing tutorials’ from Section 8.3 will be submitted via a
pull request to INET. Currently, it is only available on the author’s GitHub repository [6].

55

Chapter 8

Testing

This chapter contains a set of ‘routing protocol tutorials’ as a means of providing a concrete
proof of the validity of the models. This direction was chosen as the resulting text provides
additional educational value. The purpose of these tutorials is to have an extended version
of them published on the INET tutorial website [22], where they can help networking
enthusiasts understand the most important aspects of these specific routing protocols. For
this reason, the tutorials may be written a in different style than the rest of this thesis.

8.1 Methodology
The following routing tutorials are divided into smaller sections, where each section focusses
on an isolated feature or aspect of the protocol/model. Each of these sections may be
composed of multiple scenarios to further demonstrate how the specific feature or aspect
behaves under different conditions.

All tutorials are executed on the created simulation models. The models themselves were
primarily modelled after their corresponding RFCs, but they were also largely influenced
by implementation on Cisco devices. Because of this, each tutorial was also executed
with Cisco binary images within the EVE-ng emulator1. Both changes to the routers’
internal structures and exchanged messages were closely inspected and compared between
the simulation and the emulator. Any discrepancies found between the model and the
Cisco implementation most often lead to an alteration of the simulation model, because in
the author’s opinion, it is more practical for the model to more closely reflect the real-life
implementation of the protocol rather than its specification.

Each tutorial consists of the following:

∙ Reproduction package, which contains all the necessary simulation files and Cisco
configuration files to recreate the featured scenarios in both simulation and Cisco
devices. Captured traffic in form of pcap files is included.

∙ Topology diagram, which shows how the different network devices are interconnected,
as well as the addressing scheme used. In BGP tutorials, the separation of routers
into different autonomous systems is also depicted.

∙ Accompanying text, which explains the behaviour of the protocol for each included
scenario. The text is supported with simulation screenshots and diagrams to assist
the reader in understanding the text.

1https://www.eve-ng.net/

56

Router identifiers and names of the messages are set in monospace while identifiers of
FSM states are set in italic.

OMNeT++ in version 6.0 is used to run the simulation, and the ScenarioManager mod-
ule is used to change the simulation during runtime. The EVE-ng emulator with IOS version
15.7(3)M2 is used to perform the reference measurement. Similarly to ScenarioManager,
embedded event manager can execute applets on IOS routers. All links in the mentioned
topologies are 10 Mbps Ethernets.

8.2 EIGRP Tutorials
There are three EIGRP tutorials in this section, each with its own topology:

1. Network Command - Explains how the network command affects the EIGRP
process, what specific actions are triggered and how to deal with some of its aspects.

2. Establishing Neighbourship and Initial Route Exchange - Explains how EIGRP
routers dynamically discover neighbours and highlights which conditions have to be
met in order for two neighbouring EIGRP routers to exchange routing information,
and additionally, showcases such exchange.

3. DUAL Calculation - Explains how the DUAL recalculates the best path to a des-
tination when changes to the topology occur.

8.2.1 Network Command

The network command has two distinctive purposes: enabling dynamic neighbour discovery
and injecting networks into the local EIGRP database, the topology table. Let us first
explore how this database works and what its purpose is.

EIGRP topology table is data structure created for the purpose of storing EIGRP routes,
both locally originated routes and routes received from a neighbour via an UPDATE. Multiple
routes for a single destination may be known and because of that, they are generally grouped
by their destination. The structure contains feasible and unfeasible routes, and these and
other route traits are tracked via specific tags. The tags convey information about the
feasibility of a route, whether it is a successor route or not, its reported distance, and
computed distance. The destination itself tracks information about its feasible distance
and the number of successors.

Only the best (successor) routes are advertised to EIGRP peers. Additional rules and
constraints regarding the advertisements may be applied (split-horizon with poison-reverse),
which are explained in the DUAL tutorial 8.2.3.

The network command is made up of two parts: the IPAddress prefix and the Wildcard
mask, and its main purpose is to match with the addresses set on the router interfaces. The
Wildcard part of the command defines which bits of the prefix portion must match exactly
with the IP address and which can be variable. If any of the addresses of an interface match
the network command, such addresses and interfaces are processed further, as explained
in the following paragraph. In general, the Wildcard mask can be viewed as an inverted
version of the normal netmask. Every address on any router interface is tested against the
prefix and wildcard mask of every network command. If the prefix, its wildcard mask and
the tested IP address are written bitwise, 0 in the mask means that the bit on the same
index in the prefix has to match the bit on the same index in the tested address, while

57

Network Command Example Matches Notes

<Network>
<IPAddress>10.0.0.1</IPAddress>
<Wildcard>0.0.0.0</Wildcard>
</Network>

10.0.0.1
Matches only IP address

10.0.0.1

<Network>
<IPAddress>10.0.0.0</IPAddress>
<Wildcard>0.0.255.255</Wildcard>
</Network>

10.0.0.1
10.0.1.10
10.0.9.100

Matches the whole subnet of
65,025 addresses

<Network>
<IPAddress>0.0.0.0</IPAddress>
<Wildcard>255.255.255.255</Wildcard>
</Network>

10.0.0.1
192.168.1.10
172.24.9.3

Matches any address

Table 8.1: EIGRP Tutorial 1 - Examples of how the different EIGRP network commands
match IP addresses. The netmasks of the addresses are always ignored.

the bit value of 1 means that the bit on the same index of the address can be variable
and does not have to match the prefix. The result of testing an address against a network
command can be either positive, as the address matches the necessary bits with the prefix,
or negative, if the address does not match the necessary bits. Examples of this behaviour
are shown in Table 8.1.

As mentioned above, a single network command can match multiple addresses on mul-
tiple interfaces. When an IP address of an interface matches any of the network commands,
the EIGRP process executes two important actions:

1. It enables the dynamic neighbour discovery process on that interface. Even if multiple
addresses on a single interface are matched, only a single discovery process is started
with the first matched IP address used as a source for its messages.

2. IP address of that interface gets added to the EIGRP topology table. If multiple IP
addresses on a single interface are matched, EIGRP creates a topology table entry for
each unique network.

This enables the EIGRP process to establish an adjacency with other EIGRP enabled
routers on such interfaces and it also populates the local EIGRP topology table with locally
originated routes, which may be advertised to EIGRP neighbours.

Because the network command can be as general or as specific as necessary and mul-
tiple commands can be used at once, EIGRP enabled interfaces can be precisely specified.
However, there is a downside to the network command. As the aforementioned actions
are tied together, an insertion of a route into EIGRP topology table for the purpose of
advertising it to EIGRP neighbours triggers dynamic neighbour discovery process on its
interface automatically. If such an interface is a LAN interface, where no EIGRP neighbour
will ever be found, the router will continuously waste resources with its Hello messages.
Additionally, such behaviour may be even dangerous, as a malicious device may be set up
on such connection, and if there is a lack of authentication, fake and malicious routes may
be distributed throughout the EIGRP domain. For these two reasons, it is essentially good

58

Figure 8.1: EIGRP Topology 1 - network command.

practice to disable the dynamic neighbour discovery process on interfaces which are not
toward any neighbours. This is accomplished by configuring such interface as a passive
interface. Its network can still be added to the EIGRP topology table, but no EIGRP
neighbourships can be established on the interface.

Topology

To showcase this behaviour, consider the topology with the addressing scheme as depicted
in Figure 8.1. The focus is only on router R1, as we explore the behaviour of the network
command.

1 - Populating EIGRP Databases and Dynamic Neighbour Discovery

Let us now explore what network commands can be entered to insert both LANs’ networks
into the EIGRP topology table and to enable the dynamic discovery of neighbours on
interface towards router R2.

As explained above, the network command is very flexible. To enable EIGRP on router
R1, we can use any of the combination of commands as shown in Listings 8.1, 8.2 and 8.3.
<Network>

<IPAddress>10.2.2.1</IPAddress>
<Wildcard>0.0.0.0</Wildcard>

</Network>
<Network>

<IPAddress>10.1.1.1</IPAddress>
<Wildcard>0.0.0.0</Wildcard>

</Network>
<Network>

<IPAddress>10.0.0.1</IPAddress>
<Wildcard>0.0.0.0</Wildcard>

</Network>

Listing 8.1: EIGRP Tutorial 1 - the most specific network commands.

In Listing 8.1, each interface is matched with a specific command. If any new interfaces
are enabled on router R1, they are not added to the EIGRP process.

59

<Network>
<IPAddress>10.0.0.0</IPAddress>
<Wildcard>0.255.255.255</Wildcard>

</Network>

Listing 8.2: EIGRP Tutorial 1 - a network command matching IP addresses with the first
byte equal to 10.

In Listing 8.2, all interfaces are matched with a single command. If any new interfaces
are enabled on router R1, they are added to the EIGRP process only if their IP address
matches the configured prefix (i.e., first byte must be equal to 10).
<Network>

<IPAddress>0.0.0.0</IPAddress>
<Wildcard>255.255.255.255</Wildcard>

</Network>

Listing 8.3: EIGRP Tutorial 1 - most ambiguous network command.

In Listing 8.3, all interfaces are matched with a single command. If any new interfaces
are enabled on router R1, they are always added to the EIGRP process when they are
assigned with any IP address.

The resulting topology table is shown in Figure 8.2. It contains all directly connected
networks which can be advertised to EIGRP neighbours.

Figure 8.2: EIGRP Tutorial 1 - Resulting topology table of router R1.

However, EIGRP is now actively discovering neighbour on links towards both LANs,
which is not a desirable behaviour, as explain above. To this end, a PassiveInterface
command should be used as shown in Listing 8.4.
...
<PassiveInterface>eth2</PassiveInterface>
<PassiveInterface>eth1</PassiveInterface>

Listing 8.4: EIGRP Tutorial 1 - Usage of PassiveInterface to prevent unnecessary HELLO
messages.

In summary, all connected networks are added to the EIGRP topology table, which en-
ables them to be advertised via EIGRP, but adjacency may be established only on interface
eth0 as the other interfaces are configured as passive.

8.2.2 Establishing Neighbourship and Initial Route Exchange

EIGRP utilizes RTP protocol to reliably transport certain messages. RTP, similar to TCP,
uses two fields: sequence and acknowledge to precisely identify outgoing messages and
verify their receipt, respectively. Acknowledgement can be piggy-backed into any unicast
message or sent on its own. No prior RTP-specific-handshake is necessary.

EIGRP uses HELLO messages to dynamically discover neighbours. At this point, such
message serves a double purpose: it annouces a presence of EIGRP enabled router a on

60

Figure 8.3: EIGRP Topology 2 - Establishing Neighbourship and Initial Route Exchange.

link with a certain subnet and secondly, it conveys sender’s EIGRP parameters, such as its
autonomous system identifier, K-Values, STUB settings, and Hold time.

Some properties and parameters like subnet, autonomous system identifier, and K-
Values must match between the routers if they are to exchange any routing information,
while others like STUB settings and Hold time just alter neighbour’s behaviour towards
the sending router. Routers may exchange routing information only if the neighbourship
is established. Both multicast and unicast reachability is verified before the two EIGRP
routers become neighbours.

When routers exchange routes, each unique destination has its route with the least
metric selected as the successor route and such route may be installed in the routing ta-
ble. Successor’s computed distance is saved as a feasible distance, which separates known
routes for each destination into feasible and unfeasible by the feasibility condition. Feasible
distance is not increased until DUAL recalculation is necessary. If all feasible routes are
for whatever reason unavailable, DUAL tries to find a new feasible successor. This usually
entails a reset of feasible distance.

After the neighbourship is established between the EIGRP routers, HELLO messages are
still sent periodically to let the receiving router know that the sender is still active. The
receipt of the HELLO message refreshes Hold Timer for the specific neighbour. If it were to
reach zero, the neighbour would be considered unavailable, and all the routes received from
that neighbour would be deleted.

Topology

The topology to showcase this behaviour, as well as the addressing scheme, is shown in Fig-
ure 8.3. Each router is configured to dynamically discover neighbours on the link toward the
other router, and the network towards the LAN is properly matched with a network com-
mand so that it can be advertised to the other router and paired with PassiveInterface
command.

1 - Initial Route Exchange

This tutorial focusses on the neighbour discovery process and on the initial synchronisation
of routing databases.

When EIGRP starts the dynamic neighbour discovery process, it starts to periodically
send HELLO messages on a multicast address 224.0.0.10. The interval between consecutive
messages is determined by Hello Interval, implicitly set to 5 seconds.

When receiving a foreign HELLO message from an unknown neighbour, its parameters
are checked, and if they are valid, a new entry in the local Neighbor table is created for
this specific neighbour. The state of this entry is set to Pending and an empty UPDATE
message with the INIT flag is sent to that specific neighbour. This serves to verify the
unicast reachability of the neighbour. When the forein UPDATE message with the INIT flag
is received, it is acknowledged. When an acknowledgement of sent INIT UPDATE message is

61

Figure 8.4: EIGRP Tutorial 2 - Exchanged messages between routers R1 and R2.

Figure 8.5: EIGRP Tutorial 2 - Final states of EIGRP topology tables of routers R1 and
R2.

received, the state of the sending neighbour is locally set to Up state. When this happens,
the neighbourship is considered established, and the initial exchange of routing information
can commence. It takes the form of even multiple UPDATE messages, each of which may carry
multiple routes. The last sent UPDATE message contains a EOT flag to signify that all routes
have been sent. In this specific case, routers exchange empty UPDATE message with the INIT
flag, then they exchange another set of UPDATE messages with EOT flag routing information
about the directly connected LAN and finally, as they both apply the split-horizon with
poison-reverse rule, also mentioned later on in the DUAL tutorial 8.2.3. As a result of
this mechanism, each router sent UPDATE multicast message to advertise destinations that
have a successor on that interface as unavailable.

The general sequence diagram of this exchange is shown in Appendix B. The traffic
between the router is shown in Figure 8.4 and the final state of the EIGRP topology tables
of both routers is shown in Figure 8.5. Router R1 learnt to reach destination 10.0.2.0/24,
while router R2 learnt the same about destination 10.0.1.0/24.

8.2.3 DUAL Calculation

DUAL is an algorithm used by EIGRP to recalculate the best loopless route to a destination.
DUAL is generally very conservative, if a route is deemed as loopless by DUAL, it is always
loopless, however, a loopless route may be rejected under certain circumstances as it could
potentially contain a loop from DUAL perspective.

As mentioned in the previous tutorial, DUAL recalculation is triggered whenever no
feasible successor for a route is available. The goal of DUAL is to find the new successor

62

Figure 8.6: EIGRP Topology 3 - DUAL Calculation.

route with the least distance, this usually requires a reset of feasible distance to a new
value.

DUAL FSM in instantiated for each destination individually, states of this FSM for
different destinations do not affect each other. A destination can be either in the passive
state, when the feasible successor is known, or in the active state, while the DUAL is
actively trying to find a new successor.

DUAL uses the QUERY message to convey a transition of a specific destination to an
Active state to its neighbours. When a QUERY message is received from a neighbouring
router for a destination, the recipient removes route through the sender to such destination
from the EIGRP topology table if present, and if it still has a feasible successor, a REPLY
carrying the local metric for this destination is sent. Otherwise, if no feasible successor for
this destination is known, the destination transitions to Active state and QUERY messages
are sent to neighbours. When a router has no suitable neighbours to send QUERY to, or all
REPLY messages are received, a REPLY is sent back to the sender of QUERY, if the calculation
was triggered by receiving such QUERY. Destination is either newly available through some
neighbour or, if not, removed from the EIGRP topology table completely. UPDATE messages
are sent to all neighbours whenever the distance to a destination changes.

As an additional means of routing loop prevention, EIGRP uses the rule split-horizon
with poison-reverse. Routes sourced from a neighbour are never advertised back to the same
neighbour, and destinations are advertised as unreachable towards their current successors.

Topology

To demonstrate the aforementioned behaviour, the topology consists of three routers and
three LANs. All routers are configured to advertise all connected networks. The topology,
as well as the addressing scheme are depicted in Figure 8.6.

1 - Recalculation of Routes on R1

The topology is initially converged. To observe how DUAL recalculates the new best path
to the destination, let us disconnect the link between router R1 and R2 and observe, what
messages are sent by router R1 to R3 and what changes are made to the R1 EIGRP topology
table. The initial EIGRP topology table of router R1 is shown in Figure 8.7.

63

Figure 8.7: EIGRP Tutorial 3 - The initial state of EIGRP topology tables of router R1
when the link between router R1 and R2 is still connected.

Figure 8.8: EIGRP Tutorial 3 - Exchanged traffic between routers R1 and R3 after the link
between routers R1 and R2 was disconnected.

When the link is disconnected, router R1 originates a QUERY message advertising Ac-
tive states for routes 10.0.12.0/30, 2.0.0.0/24. Router R3 responds with a REPLY that
contains R3’s information about given routes. This message contains a metric for route
2.0.0.0/24. It also advertises 10.0.12.0/30 as unreachable because it has already re-
ceived QUERY from router R2. In addition, router R3 advertises route 10.0.12.0/30 as
unreachable to R1, as its distance on router R3 changed to infinity. As router R3 became
the successor for routes 2.0.0.0/24 and 10.0.23.0/30, R1 applies the poison-reverse rule
and advertises these destinations as not available to R3. Finally, router R3 is advertising
route 10.0.12.0/30 in the Active state via a QUERY. This message is caused by the arrival
of a QUERY from router R2. Router R1 responds with a REPLY with infinite metric as no
such destination is present in the EIGRP topology table and no additional neighbours exits.
This captured traffic is shown in Figure 8.8.

The resulting EIGRP topology table of router R1 is shown in Figure 8.9. Destination
10.0.12.0/30 was deleted, a route to destination 10.0.2.0/24 was recalculated.

Figure 8.9: EIGRP Tutorial 3 - The initial state of EIGRP topology tables of router R1
when the link between router R1 and R2 is still connected.

64

In the current state of the model, DUAL shows a slight deviation from the expected
behaviour, as the destination 10.0.23.0/30 on route R1 also transitioned into the Active
state even when a feasible successor was present when the link was disconnected. This only
happens when there are multiple successors for a route and only resulted in an unnecessary
inclusion of destination 10.0.23.0/30 in the initial QUERY message.

8.3 BGP Tutorials
There are four BGP tutorials in this section, each with its own topology:

1. Establishing Peering - Explains how BGP leverages TCP, how the BGP peer FSM
transitions between different states and even explores scenarios where the BGP process
is misconfigured.

2. Network Command - Explains how the network command injects routes into BGP
databases and showcases conditions that have to be met in order for the route to be
advertised to BGP peers.

3. Exchanging Updates - Explains how prefixes are advertised and why they can
be eventually withdrawn. This tutorial also showcases how BGP can use multiple
different address families at once.

4. Attributes - Explains the purpose of the most important BGP attributes and show-
cases how they are advertised or changed.

8.3.1 Establishing Peering

The main goal of this tutorial is to showcase the process of establishing peering between
BGP-enabled routers and to also demonstrate how BGP and the underlying TCP deal with
configuration errors.

Topology

To showcase how BGP is establishing peering with its neighbours, we need just two BGP-
enabled routers and a single link connecting them, on which we can observe exchanged
messages. This topology, together with the address scheme, AS, and interface identifiers,
is shown in Figure 8.10.

eBGP

Figure 8.10: BGP Topology 1 - Establishing Peering.

65

1 - Valid Configuration

In this first case, the both BGP routers have a valid configuration, in regards to information
shown in Figure 8.10. If both routers are started at the same time in the simulation, the
resulting traffic is exactly mirrored by both nodes. Even though communication in such
case is still technically valid, its irreproducible on real devices and thus the start of router
R1 is delayed by 0.5 seconds. A sequence diagram of the traffic between the routers is
shown in Appendix C and exact captured traffic is shown in Figure 8.11.

The first thing we can observe is the ARP/NDP traffic as both routers are trying to find
MAC address of the neighbour. Information about peer’s specific MAC address is necessary,
as all messages are sent as unicast. This is in contrast to some IGP protocols like EIGRP
or OSPF, which use multicast for neighbour discovery and thus do not require information
about each other’s specific MAC addresses. TCP handshake follows a successful matching
of IP address to MAC address. It takes form of three consecutive segments: SYN, SYN+ACK,
ACK. The initiating party, R1 in this case, sends a TCP segment containing its Sequence
Number together with a SYN flag to initiate the handshake. R1’s BGP FSM for router R2
transitions from IDLE state to CONNECT state.

The receiving party, R2, responds with a segments containing its own Sequence Number
together with the received Sequence Number increased by one in the Acknowledgement
Number field. This message is accompanied with two flags: SYN and ACK. R2’s BGP FSM
for router R1 stays in the ACTIVE state until the handshake is completed.

As a last step, the receiving party of this segment, R1, acknowledges this message with
its own message. It contains the Sequence Number as received in the previous message
in the Acknowledgement Number field. To reflect the fact that the previous message was
received, the generated message also contains the received Sequence Number increased by
one in the Acknowledgement Number field. This message contains flag ACK. R1’s BGP FSM
for router R2 can now transition from CONNECT state to OPENSENT state.

When this last message is sent by R1, the reliable TCP transport channel is regarded as
open and functional by any application layer protocol, BGP in this case. R1’s BGP FSM
for router R2 transitions from CONNECT state to OPENSENT state. On the other hand,
R2 needs to wait for the last ACK message. When this happens, R2’s BGP FSM for router
R1 can now also transition from ACTIVE state to OPENSENT state.

What essentially happened was that each TCP participating party informed the other
party of the randomly generated Sequence Number, that will be used as the initial value
of counting transmitted application layer bytes. Each reliably transmitted message with
new application layer data will require a receipt of the TCP segment containing Acknowl-
edgement Number increased by the number of transmitted application layer bytes to be
considered delivered.

As for the BGP communication, routers exchange OPEN messages. Each checks the
received OPEN message for expected values regarding AS identifier. Since they are correct,
each router generates KEEPALIVE message as acknowledgement. When this message is
received, the BGP FSM for the peer transitions to the ESTABLISHED state. BGP routers
are now able to advertise routes though the means of UPDATE messages.

2 - Invalid IP Configuration

One common way of BGP misconfiguration is to assign a BGP process with neighbour with
an incorrect IP address. In this case, BGP process of router R2 was configured with a non-

66

Figure 8.11: BGP Tutorial 1 - Exchanged messages between routers R1 and R2.

existing BGP neighbour 10.0.0.10 while the BGP process of R1 was left in an unchanged
configuration with neighbour 10.0.0.2. All other aspects were left unchanged.

In the case of Cisco implementation, the communication in this case fails on the three-
way handshake during the initialisation of reliable transport channel. While router R1
initiates the three-way handshake with its SYN segment, router R2 responds with TCP
segment containing RST and ACK. It signalizes that it received the message with ACK flag
and Acknowledgement Number, but since it is expecting a different source address (i.e.,
10.0.0.1), it is resetting the connection with RST flag. These two messages are repeating
every roughly 10 seconds. The BGP FSM state for neighbour R2 oscillates between ACTIVE
state, as it tries to connect, and IDLE state as RST segments are received. R1, on the other
hand, is not generating SYN segments to establish connection with neighbour 10.0.0.10 is
it lacking information about L2 MAC-address of the destination. Even if ARP table entry
with R1’s MAC address is provided as a 10.0.0.10’s MAC address, R1 never processes such
a message and routes it back onto the same link towards R2 instead. TTL of such message
is quickly exceeded.

However, the communication in OMNeT++ is slightly different. Because of the limits
of INET TCP model, source IP address of the incoming connection (i.e., received SYN)
cannot be verified for matching the locally configured peer and thus the connection is
always accepted. After context of the non-initiating node switches to the BGP process, it
verifies if the IP address on the other side of the the TCP connection corresponds with the
locally configures one and if it does not match, then it resets the listening socket. Since the
implementation of the BGP peer FSM in the simulation is slightly different then the one
implemented on Cisco devices, the state of the peering oscillates between IDLE, CONNECT
and ACTIVE states. This discrepancy of the implementation is explicitly allowed by the
RFC 4271 [29] (Section 8, BGP Finite State Machine).

In either scenario, BGP peer FSM does not reach the ESTABLISHED state and thus
no routing information is exchanged.

3 - Invalid AS Configuration

Another common instance of BGP misconfiguration is assigning a neighbour with incorrect
AS identifier. What could essentially happen is that one neighbour could view the peering

67

as iBGP while the counterparty would view the peering as eBGP. In such case, the BGP
would not function properly as the two types of peering are far from being equivalent. To
this end, OPEN message contains a field to advertise the local AS number, which the recipient
can verify for the expected locally configured AS value for that specific peer. If the received
AS identifier is unexpected, NOTIFICATION message carrying Bad Peer AS error code is
generated. The peering, as well as the TCP transport channel, are subsequently reset. As
TCP closes, it generates FIN, ACK segments to indicate that no additional application data
will be sent from their side (FIN). As the connection is reset, the routers will eventually try
to establish the peering again. BGP peer FSM on both sides goes from the initial IDLE
state though most of the state to eventually reach OPENSENT or OPENCONFIRM state
before going back to the IDLE state.

Since ESTABLISHED state is not reached by either party, no routing information is
exchanged.

8.3.2 Network Command

The network command is currently the only implemented way to directly inject routes into
the local BGP process. Such injected routes may be advertised to configured BGP peers.
Network command, unlike other techniques mentioned in the following paragraph, provides
precise control over the advertised routes as each network command represents exactly one
BGP route.

Another theoretical and not yet implemented way of locally injecting routes into the
BGP process may be accomplished with some flavour or form of route redistribution. In
contrast to the network command, redistribution usually involves a vector of routes that is
created from the routing table and only includes routes from a specified source. The source
may specify only directly connected routes, statically configured routes, or even routes
learnt through a specific IGP protocol. This vector of routes is inserted into the local BGP
route database (i.e., BGP table or its equivalent), and individual routes may be advertised
to BGP peers.

In order for any prefix entered via the network command to be advertised to locally
configured BGP peers, it has to match the following criteria:

1. prefix and its mask must exactly match any entry in the local routing table;

2. next-hop of the previously mentioned entry must be resolvable (the ability to be
resolved of individual routing table entries is not enforced in the simulation).

If the next-hop found in the routing table through the exact match implies that the
route is directly connected (i.e., is equal to 0.0.0.0), it is replaced by a local BGP peering
source (i.e., IP address of the interface which the BGP uses a source for the connection
for each peer). Otherwise, the next-hop is copied and used as route’s default next-hop
attribute.

The network command is composed of two parts: address and mask, as shown in Listing
8.5. Together, they represent a specific destination network, and from the context of BGP,
such specified network should be advertised to configured peers.
<Network address="1.1.1.1" mask="255.255.255.255"/>

Listing 8.5: BGP Tutorial 2 - Example of network command.

68

Figure 8.12: BGP Topology 2 - network command.

Topology

To showcase the aforementioned behaviour, we need just a single router R1. This router is
configured according to the Figure 8.12: it has one loopback (logical/virtual) interface lo0
that is assigned with the following IPv4 addresses:

∙ 1.0.0.1/8

∙ 2.0.0.1/16

∙ 3.0.0.1/24

In addition, a static route for the prefix 4.0.0.0/8 is configured on the router as well.

1 - Populating BGP Databases

The BGP process of router R1 is configured with the four network statements as shown in
Listing 8.6. Let us observe, how these statements changed the BGP route databases.
...
<Address-family id="Ipv4">

<Network address="1.0.0.0" mask="255.0.0.0"/>
<Network address="2.0.0.0" mask="255.255.0.0"/>
<Network address="3.0.0.0" mask="255.255.255.0"/>
<Network address="4.0.0.0" mask="255.255.0.0"/>...

Listing 8.6: BGP Tutorial 2 - Used network command.

Routing Table

Routing table stores information about reachable networks, their prefixes, next-hop ad-
dresses, output interfaces, and their metric. It initially contains all destinations available
through any local interface and can be extended with static (locally configured) or dynamic
(learned via some dynamic routing protocol) routes. Routing table is not a BGP-specific
structure and is accessable router-wide.

When the simulation is initialised, the networks on the directly connected links are
installed in the routing table. They can be identified by the C (as for Connected) code at
the beginning of the entries. The static route is also installed by the BGP module in the
routing table, and is identified by the S code. The general state of the routing table is
shown in Figure 8.13.

69

Figure 8.13: BGP Tutorial 2 - state of routing table.

Advertise List

Advertise list stores all prefixes configured by the network command. There are only two
rules that each route must obey in order to be placed in this list:

a) entry must be a valid IPv4/IPv6 address; and

b) entry has to be unique.

The prefixes contained in this list do not necessarily have to be advertised to BGP peers.
This structure only reflects the content of the configuration .xml file, so that when the
BGP process for whatever reason needs to access the configured prefixes, it does not have
to parse the input file and it uses this list instead.

Since all prefixes entered by the network command obey these rules, they are all placed
in this structure. Advertise list is shown in Figure 8.14.

Figure 8.14: BGP Tutorial 2 - state of BGP advertise list.

BGP Table

BGP table stores all routes received through BGP and all routes from Advertise List
that exactly match any entry in the routing table. A presence of a route in the BGP table
does not imply that it is advertised to BGP peers, however, every route advertised through
BGP must be present in this table.

Since only routes 2.0.0.0/16 and 4.0.0.0/8 could exactly match a routing table entry,
they are the only routes installed in the BGP table, as shown in Figure 8.15.

Figure 8.15: BGP Tutorial 2 - state of BGP table.

BGP Routing Table

BGP routing table stores only the best route to each destination, as a single destination can
be available with multiple routes. Routes are evaluated according to local policies, and only

70

the routes in this table may be advertised to BGP peers. Locally configured routes (i.e.,
configured by the network command under this specific router) are always advertised to all
BGP peers. However, there are some constraints placed by the BGP standard that prohibit
the advertisement of certain routes learnt through BGP from other peers depending on the
type of BGP session it was learned from. BGP routing table is shown in Figure 8.16.

Figure 8.16: BGP Tutorial 2 - state of BGP routing table.

Since BGP routing table is composed of the best routes from BGP table to each desti-
nation, it contains both routes 2.0.0.0/16, 4.0.0.0/8. What is a important detail is that
the initial next-hop attribute for these routes is different. Because network command for
route 2.0.0.0/16 matched against a routing table entry flagged as directly connected, it
copied next-hop of 0.0.0.0 which is meaningless as a next-hop. If this route were to be
advertised to other BGP peers, its next-hop attribute would always be set to the source
of peering process for each particular neighbour. Route 4.0.0.0/8 in contrast to route
2.0.0.0/16 matched against a routing table entry with a remote next-hop and as such, it
would use its address as a default value for the next-hop attribute. Depending on the type
of peering, this attribute could be, again, changed to the BGP peering source.

8.3.3 Exchanging Updates

BGP uses UPDATE messages as a vessel for route advertisements and withdrawals. The
two peers always synchronise their databases when they reach the ESTABLISHED state
with each other and after the fact, they only exchange incremental updates: introducing
new prefixes or changing or completely removing previously advertised prefixes. Routes are
always advertised together with their attributes, which may be changed by the sender or
even the receiver. A single UPDATE message can advertise multiple prefixes as long as their
attributes are the same. On the other hand, withdrawal of routes is announced only by
prefixes and generally speaking, a single UPDATE message can both advertise prefixes and
withdraw different ones at the same time.

The routes received in the UPDATE message are installed in the BGP table and only the
best route for each destination in the BGP table is installed in the BGP routing table.
Any change to the BGP table requires a recalculation of the BGP routing table. If an
event occurs that causes the BGP routing table to completely remove some destination, an
UPDATE message that withdraws this destination prefix is sent to the appropriate peers.

Topology

To properly demonstrate the BGP route advertisements and withdrawals, we need at least
a few routers with BGP peering. The topology, as well as the addressing scheme is shown
in Figure 8.17. Routers R0 and R3 both participate in internal peering with R1 and R2,
respectively, while routers R1 and R2 participate in eBGP peering with each other. Each
router is enabled to advertise all connected links through BGP. For example, router R1
is configured with three network commands for prefixes: 10.1.1.0/24, 10.0.0.0/24 and
2001:1111::/64. To showcase the capabilities and quirks of Multiprotocol BGP, IPv4 and
IPv6 prefixes are advertised over IPv4 peering connection. Since the focus is on the content

71

eBGPiBGP iBGP

Figure 8.17: BGP Topology 3 - Exchanging Updates.

Figure 8.18: BGP Tutorial 3 - Initial synchronisation of BGP databases between internal
peers R0 and R1.

of the BGP messages, the TCP segments that do not include any new application data are
ignored. General state of the topology is mentioned at the start of both following segments.

1 - Advertising Prefixes

All BGP peering is initially shut down. Before enabling eBGP peering between routers
R1 and R2, let us first enable iBGP peering and observe which routes are exchanged be-
tween internal peers R0 and R1. Since IPv4 and IPv6 are enabled on both devices, they
announce this as two separate capabilities to each other in the OPEN message. Since they
clearly have IPv4 and IPv6 address families in common, peering eventually reaches the
ESTABLISHED state on both sides and both routers can exchange prefixes from their re-
spective BGP routing tables via UPDATE messages. Both routers send four UPDATE messages:
one UPDATE message advertising IPv4 prefix 10.1.1.0/24 (router R1 also advertises prefix
10.0.0.0/24), one UPDATE message advertising IPv6 prefix 2001:1111::/64 and two End-
of-RIB messages (EoR) to indicate to the peer the completion of the initial routing update
after the session is established for each address family. An analogous exchange could be
observed between internal peers R2 and R3. This initial exchange is shown in Figure 8.18.

The content of the BGP databases of router R1 is shown in Figure 8.19. Routes from
the aforementioned UPDATE message exchange were installed in the BGP table for both
address families. Because of this, router R1 has two entries for each prefix. One is directly
connected, and one is learnt from R0. Since the locally originated route is preferred, it is
installed in the BGP routing table. This is true for both IPv4 and IPv6. This is again
analogous on all other routers.

72

Figure 8.19: BGP Tutorial 3 - states of BGP tables and BGP routing tables respectively
on router R1 after the initial exchange with router R0.

Note that on router R1, the IPv6 route received to destination 2001:1111::/64 from
router R0 has a valid next-hop address 2001:1111::2. Although IPv4 peering was used
to exchange IPv6 reachability information, the IPv6 route is usable without additional
manipulation. However, this does not have to be true for all BGP real-life implementations.
IPv6 route always needs an IPv6 next-hop address. Since IPv4 was used to establish
peering, BGP can set its IPv4 address as the next-hop attribute for the originated route
10.1.1.0/24. Some implementations of BGP (e.g., Cisco) always use the same address
family for the next-hop attribute as the address family the peering is established on if the
next-hop attribute has to be changed. It would encode the IPv4 address in IPv6 format to
create a next-hop attribute, which, most likely, would not be a valid address. It serves as
an indication that the next hop should be changed explicitly, via a route-map, for example.
However, in the this model, the need to always explicitly change the next-hop attribute for
all routes transmitted over a different address family is removed. During the calculation of
the next-hop attribute, the router locates the interface used as the next-hop and searches
its configuration for the same address family next-hop address as is the address family of
the advertised prefix. If such an address exists, it is used as next-hop. If multiple suitable
addresses are present on the interface, the behaviour is not defined. If the address of the
correct address family is not found on the interface, the next-hop address is encoded into the
different address family. However, currently there are no means to change such a next-hop.

With iBGP sessions established in both ASes, let us connect them and observe the initial
IPv4 and IPv6 route advertisement over the IPv4 connection between routers R1 and R2.
Because the address family capabilities are the same, the ESTABLISHED state is reached
on both sides. Each peer is now going to advertise the content of its BGP routing table via
UPDATE messages. There are again four UPDATE messages, one for route advertisement and
one empty to signal that all routes have been sent for each address family. Since there are
no valid IPv6 addresses for eBGP peering sources between routers R1 and R2, the next-hop
attribute for IPv6 routes contains unusable addresses as they are just encoded versions of
IPv4 addresses used as peering sources.

As all IPv4 routes contained in the UPDATE message were installed in the BGP table and
subsequently in the BGP routing table on both R1 and R2, these routes can be advertised to
the iBGP peers on both sides. However, IPv6 routes were not installed in the BGP routing
table, as their next-hop attributes were not resolvable in the local routing table for reasons
explained earlier. The contents of all BGP databases on router R1 is shown in Figure 8.20.
Note that IPv6 route to destination 2001:2222::/64 is in the BGP table but not in the
BGP routing table.

73

Figure 8.20: BGP Tutorial 3 - states of BGP tables and BGP routing tables respectively
on router R1 after the initial exchange with router R2 is complete.

2 - Withdrawing Prefixes

Route withdrawal is a mechanism utilised by BGP that enables one router to inform its
peer that a previously advertised prefix is no longer available through BGP and such route
should be removed from internal BGP databases. Unlike prefix advertising, withdrawn
routes are announced only as prefixes and do not carry route attributes. They are also
announced via the UPDATE message in a special field.

A router can withdraw a route for the following reasons:

∙ receipt of UPDATE message with withdrawn route from a peer that previously ad-
vertised the such a route when no usable alternative route to a given destination is
available;

∙ TCP connection to a peer is closed, causing all received routes installed in the BGP
routing table from this peer to be withdrawn if no usable alternative route exists;

∙ a change of routing table that causes:

a) locally originated route to no longer exactly match any entry in routing table;
or

b) next-hop for a route to be no longer resolvable;

while no usable alternative route is present in the BGP table.

A receipt of a withdrawn route signals that the sender removed the destination from
its BGP routing table. However, a route to such destination can still be present in the
sender’s BGP table, as BGP table stores even unusable routes. Nevertheless, the recipient
of a route withdraw message always removes the particular route from both the BGP table
and the BGP routing table. This withdrawal is propagated to other BGP peers via the
withdrawn routes field if and only if such a route was installed in the BGP routing table
and no other usable route for such destination exists in the BGP table. If there is a viable
fallback route in the BGP table, the route for that specific destination is merely replaced
in the BGP routing table and instead of withdrawal, peers are notified of this change by a
regular UPDATE message, re-advertising the route with new attributes.

74

Figure 8.21: BGP Tutorial 3 - states of BGP tables and BGP routing tables respectively
on router R1 after the peering with router R2 is closed.

To showcase route withdrawal, the previously converged topology is changed by remov-
ing a link between routers R1 and R2. The initial state of the router R1 is the same as in
Figure 8.20.

When the link is removed, router R1 detects that the interface towards its peer R2 is
not usable and considers the TCP connection closed. This mirrors the behaviour of Cisco
devices. Router R1 then updates its BGP table by removing routes it received from router
R2, recalculates the BGP routing table and notifies its only peer, router R0.

The UPDATE messages it sends are withdrawing two IPv4 routes: 10.0.0.0/24 and
10.2.2.0/24. Since router R0 has route 10.2.2.0/24 in its BGP routing table and no
alternative route is available in the BGP table, the route is removed, same goes for route
10.0.0.0/24. Additionally, router R1 removes IPv6 route to destination 2001:2222::/64
from its BGP table but since no changes to IPv6 BGP routing table occurred on router
R1, no additional withdrawals via UPDATE messages are performed. The final state of BGP
databases on router R1 is shown in Figure 8.21.

3 - Incompatible Address Families

Since the advertised address family is somewhat (see the next-hop attribute above) inde-
pendent of the address family used for the peering itself, let us observe what transpires if
each peer wants to exchange reachability information for a different address family. Router
R1 is configured to only advertise the IPv4 address family and router R2 is configured
to only advertise the IPv6 address family. The routers exchange their supported address
families with OPEN messages and each checks the capabilities advertised by the counter-
party. Since there is no address family in common, the peering has no purpose, and thus a
NOTIFICATION message is generated by both devices and the TCP connection is closed. No
prefixes were exchanged, and routers will periodically try to establish peering again, but
unless the configuration changes, that will never happen.

8.3.4 Attributes

Each BGP route is made up of two parts: prefix and attributes. While the prefix iden-
tifies the destination network, attributes convey additional information about the route.
Attributes are generally variable, and their presence or absence depends on the policy of
individual autonomous systems and their managing entities. However, a trio of attributes
must be conveyed for each route. These are called Well-Known Mandatory attributes
and are the following: ORIGIN, defining how the route was originally learnt by BGP, AS_PATH
specifying a sequence of AS numbers that the route has traversed, and NEXT_HOP defining
an address which should be used as a next-hop to reach the destination specified by the

75

eBGP

iBGP iBGP

eBGP

Figure 8.22: BGP Topology 4 - BGP Attributes.

prefix of the BGP route. An additional attribute called LOCAL_PREF is required similarly
to Well-Known Mandatory and must be present for each route, but only in scenarios
where routes are exchanged between internal BGP peers (iBGP). All other attributes are
regarded as Optional.

Topology

The following sections focus on the general meaning of each attribute, why, when, and how
it can change, and what to generally look out for when debugging undesirable behaviour.
For this purpose, the topology, depicted in Figure 8.22, consists of four routers separated
into two autonomous systems.

1 - Next-hop

As stated above, NEXT_HOP is a Well-Known Mandatory BGP route attribute that must
be advertised for each route. Its purpose is to inform the recipient in which direction to send
traffic to reach the destination advertised in the route. Generally speaking, this address
does not have to be directly connected, but must be resolvable by the recipient if such a
route is to be used and installed in the routing table. BGP routes whose next-hop addresses
are not resolvable are not considered viable and are not advertised to other BGP peers.

NEXT_HOP attribute is always set when the route is locally originated, i.e., created locally
by network command or redistribution. BGP route is always created from an entry in the
routing table. Type of the entry that the BGP route is created from defines the initial
value for its NEXT_HOP attribute. The next-hop address from the routing table entry which
the route is created from is always copied. At this point, it contains either some remote
next-hop address of another router or it is equal to 0.0.0.0, meaning that the destination
is directly connected on some local interface.

When a route is received via the UPDATE message, it always contains a remote address.
This route is always placed in the BGP table. However, if it is to be installed in the BGP
routing table and advertised to other BGP peers, its NEXT_HOP attribute must be resolvable.

76

Figure 8.23: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R2.

When a route is advertised to an iBGP peer and the NEXT_HOP attribute is a remote
address, it is just copied and sent to the neighbour. However, if the NEXT_HOP attribute is
equal to 0.0.0.0, it must be changed, since 0.0.0.0 translates to directly-connected, which
could not be true for the receiving neighbour, rendering the route unusable. For this reason,
it is always changed to the local BGP peering source address, so either to the address of the
’physical’ (eth) interface used to communicate with said peer or to the address of a local
loopback (lo) interface, which is configured to act as a source for such connection. The
change in the peering source can be achieved via the usage of the local-source attribute
and a loopback identifier. The change of the NEXT_HOP attribute can also be enforced for a
specific neighbour by specifying the attribute next-hop-self.

In contrast to iBGP, a route advertised through eBGP always changes the NEXT_HOP
attribute to the local peering source of the sender.

So, generally speaking, when an AS learns a BGP route through eBGP, the NEXT_HOP
attribute contains an address of the remote eBGP router from a remote AS. Such route is
redistributed through the local AS without any changes to the NEXT_HOP attribute. And
finally, this can be changed if the local eBGP router in the local AS, that receives such a
route, uses a next-hop-self configuration attribute for its iBGP neighbours. In that case,
the NEXT_HOP attribute changes to the peering source for each iBGP connection.

Because of the aforementioned behaviour, setting a next-hop-self attribute for a spe-
cific neighbour is only used in iBGP scenarios where the neighbour that is receiving the
route through iBGP would not know where the original next-hop is.

Let us consider the topology shown in Figure 8.22 without the link between R1 and R3.
In this specific case, each router has only a single network command configured: routers R1,
R2 are configured to advertise network 10.0.12.0/24 while routers R3, R4 are configured
to advertise network 10.0.34.0/24. Since the link between R1 and R3 is not present, the
two autonomous systems are connected only by the link between routers R2 and R4.

When the topology is converged, let us inspect the BGP table and BGP routing table
of routers R2 and R1. BGP databases of R2 are shown in Figure 8.23. Firstly, destination
10.0.12.0/24 is available both locally, with next-hop 0.0.0.0, and through R1, with
next-hop 10.0.12.1, which is the peering source address of R1. Secondly, destination
10.0.34.0/24 is available via next-hop 10.0.24.2 which is the peering source address of
router R4, that is directly connected. Both networks are reachable and destination network
10.0.34.0/24 is installed in the local routing table.

Let us now inspect the same BGP structures on router R1, which has established iBGP
peering with router R2. These structures are shown in Figure 8.24. Firstly, destination
10.0.12.0/24 is available again both locally and via R2. On the other hand, destination
10.0.34.0/24 is present in the BGP table but it is not installed in the BGP routing table.
Hence, the destination is not available and any traffic going to that destination would

77

Figure 8.24: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R1.

not be routed. This is because router R2 did not alter the NEXT_HOP attribute of route
to destination 10.0.34.0/24 and advertised address 10.0.24.2 as a next-hop. However,
since router R1 does not know where such next-hop is, the route could not be installed in
the BGP routing table. Such route would never be used or even advertised to any other
router.

If the route to destination 10.0.34.0/24 is to be made usable, either router R2 alters
the NEXT_HOP attribute to some address that is known, or router R1 must learn how to
reach the network 10.0.24.0/24. Both of these solutions are achievable purely by BGP.

Solution 1 - next-hop-self One solution is to make the router R2 change the NEXT_HOP
attribute for the neighbour R1 to its peering source, which is known by router R1. This is
accomplished by adding the command shown in Listing 8.7 to the address-family-specific
configuration of R2.
...
<Address-family id="Ipv4">...

<Neighbor address="10.0.12.1" next-hop-self="true"/>
</Address-family>

Listing 8.7: BGP Tutorial 4 - configuration of next-hop-self on router R2.

As a result, all IPv4 routes advertised to neighbour R1 will have their NEXT_HOP attribute
changed to address 10.0.12.2. The resulting BGP databases of router R1 are shown in
Figure 8.25. Destination 10.0.34.0/24 is now installed in both routing tables and is
reachable through next-hop 10.0.12.2/24.

Figure 8.25: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R1 after the configuration of next-hop-self on router R2.

Solution 2 - Advertise Network Another solution is to not change the NEXT_HOP
attribute itself, rather let router R1 know how to reach the network 10.0.24.0/24. This
can be accomplished via multiple ways: any IGP protocol running on both R1 and R2
with said network being advertised, via BGP or even with static routing. To achieve this

78

via BGP, network 10.0.24.0/24 has to be inserted into BGP through redistribution or
network command on router R2. This cannot be accomplished on R4 as this would result
in the exact same situation. This command is shown in Listing 8.8. It inserts network
10.0.24.0/24 into R2’s BGP databases thus allowing it to advertise the prefix to router
R1 via iBGP.
...
<Address-family id="Ipv4">...

<Network address="10.0.24.0" mask="255.255.255.0"/>
</Address-family>

Listing 8.8: BGP Tutorial 4 - configuration of additional network on router R2.

This expands the BGP databases of all devices in the topology by route 10.0.24.0/24,
and it makes route 10.0.34.0/24 reachable by R1 as shown in Figure 8.26.

Figure 8.26: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R1 after the addition of network command on router R2.

2 - AS Path

AS_PATH is another Well-Known Mandatory BGP route attribute that has two main
purposes: loop detection and route selection. To understand how this is accomplished, let
us first take a look at what the AS_PATH attribute looks like.

AS_PATH takes the form of a vector of AS identifiers and it can be composed out of
ordered (i.e., sequence) vector and/or unordered (i.e., set) vector. Generally, by means of
these vectors, this attribute informs the receiver which ASes the route has traversed and
these same ASes will generally have to be traversed in order to reach said destination. The
attribute usually includes the ordered vector as each AS prepends its own AS identifier into
the AS_PATH which eventually creates the sequence. However, if a BGP router executes
route aggregation (i.e., summarizes multiple prefixes with a single, less specific one), it
removes all of AS_PATH sequences and instead, creates an unordered set which contains all
unique identifiers present in any of the aggregated routes. Essentially, it is preserving the
information about which ASes any of the aggregated routes have traversed. When such
route is advertised to external BGP peers, a new sequence is created. In such scenario,
the AS_PATH attribute consists of one unordered set, describing which ASes were traversed
by any of the aggregated routes prior to the aggregation, and one ordered sequence, which
determines which ASes the route has traversed since the aggregation.

One of the two main purposes of the AS_PATH attribute is loop detection. When a route
is received via the BGP UPDATE message, the local router checks if its own AS identifier is
not already present in any of the AS_PATH attribute vectors. If it is, the route is discarded

79

Figure 8.27: BGP Tutorial 4 - routes to destination 10.0.12.0/24 as known by routers R2
and R4 respectively.

before being installed in any BGP database, as it signifies a routing loop has occurred.
Otherwise, the route is processed as usual and is installed in the BGP table.

The second main purpose of the AS_PATH attribute is to serve as a route selection
criterion. The length of the attribute is one of the most influential aspects of breaking
the ties between routes to a same destination. Each AS identifier in the ordered sequence
contributes by one towards the overall size, however, the whole unordered set always counts
as a one, regardless of how many ASes are in the set. Routes with lower overall length are
preferred.

The AS_PATH attribute is always prepended with the local AS identifier when the route
is being advertised via eBGP. When the route is originated, or even received via either
iBGP or eBGP, the AS_PATH is not altered. This means that if a route originated in the
local AS is being advertised via iBGP, the AS_PATH attribute can be completely empty.
Finally, when eBGP advertises a BGP route, the local AS identifier can be prepended
multiple times. This technique is used to influence the recipient’s BGP decision process
if there are multiple ingress points into the local AS. This can be accomplished because
shorter AS_PATH attributes are preferred, as mentioned earlier.

To showcase this behaviour, let us look at the BGP tables, and more specifically, the
BGP routes to destination 10.0.12.0/24 on routers R2 and R4 on a converged topology
shown in Figure 8.22. This route on both routers is shown in Figure 8.27.

Router R2 knows two routes to destination 10.0.12.0/24: one is locally originated and
the second is learned through R1. Both routes originate in the local AS, and thus both have
an empty AS_PATH attribute. Once the route is, however, advertised over eBGP to router
R4, the AS_PATH attribute is prepended with the AS identifier of R2, i.e., 100.

3 - Local Preference

The LOCAL_PREF attribute is one of the Well-Known Discretionary attributes. It may be
included in the route and it must be understood by all BGP implementations. Its general
purpose is to make certain routes more locally preferable than others. This may include
scenarios when a local AS wants to use a certain egress point whenever possible, as it maybe
provides greater speeds or lower latency or cost. As this attribute is never advertised over
eBGP, but must be included in any advertised route over iBGP, router that receives routes
over eBGP often offsets the LOCAL_PREF attribute value before redistributing the route
throughout the local AS to advocate for that route’s preference. This attribute is only
taken into account if, of course, there are multiple routes to a single destination.

The LOCAL_PREF attribute is defined as the one with the greatest influence on the BGP
decision process by BGP RFC 4271; real implementations, however, most often employ
some purely local attribute that supersedes LOCAL_PREF attribute (i.e., WEIGHT on Cisco
devices). The default value is 100, the higher, the better.

80

Figure 8.28: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R1.

Figure 8.29: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R2.

As a demonstration, let us consider the topology shown in Figure 8.22. All links are
connected and next-hop-self is configured towards the internal peer on all routers. Without
any changes to the LOCAL_PREF attribute, let us inspect the BGP databases of routers R1
and R2 and examine their preferred route to destination 10.0.34.0/24. BGP databases of
router R1 are shown in Figure 8.28, while R2’s databases are shown in Figure 8.29.

Router R1 prefers router R3 as a next-hop to reach destination 10.0.34.0/24 and simi-
larly, router R2 prefers router R4 as a next-hop. This is because both routes have the same
LOCAL_PREF of 100, AS_PATH length of 1, ORIGIN code of IGP and a default MED of 0. To
break ties for these routes, BGP prefers routes learnt through eBGP over routers learnt
through iBGP. For this reason, router R1 prefers the route from R3 and router R2 the route
from R4.

Now, let us say that we want to use the link between routers R1 and R3 even on router R2
to reach the destination network 10.0.34.0/24 and that we can only alter the configuration
of the routers in AS 100. Altering the LOCAL_PREF attribute is the perfect option here. As
the higher LOCAL_PREF attribute of a route makes it more preferable, we even have a choice:
lowering LOCAL_PREF attribute value on router R2 for routes received from R4 or raising the
LOCAL_PREF attribute value on router R1 for routes received from R3. The latter could be
a better option, considering that if we add another connection between the autonomous
systems, we would spare ourselves the need to lower the LOCAL_PREF attribute value there
as well. The additional configuration of LOCAL_PREF attribute is shown in Listing 8.9. It
configures router R1 to set the LOCAL_PREF attribute of all routes received from neighbour
10.0.13.2 to 110.
...
<Neighbor address="10.0.13.2" local-pref="110"/>

Listing 8.9: BGP Tutorial 4 - setting of LOCAL_PREF attribute to all routes received from
neighbor 10.0.13.2.

81

With this change, let us again inspect the BGP databases of R2. This is shown in
Figure 8.30. Router R2 now newly uses the router R1 as a next-hop to reach destination
10.0.13.2.

Figure 8.30: BGP Tutorial 4 - states ofthe BGP table and the BGP routing table respec-
tively on router R2 when LOCAL_PREF attribute is configured.

In summary, AS uses the LOCAL_PREF attribute to make some specific local AS egress
point more preferable locally.

4 - Multi Exit Discriminator

Multi Exit Discriminator attribute, MED for short, is a Optional Non-Transitive BGP
route attribute. This means that it does not have to be recognised by all BGP implemen-
tations and is passed along with the route only if understood. Similarly to the LOCAL_PREF
attribute, the purpose of the MED attribute is to influence the BGP decision process by
making some certain routes more preferable. However, instead of influencing the decision
process in the local AS, it is used to influence the decision process of the remote AS. Unlike
the LOCAL_PREF attribute, the MED attribute is added to the route by the sending eBGP
peer and not by the recipient. Routers can be configured to alter the MED attribute for
routes as they are advertised to a specific neighbour. If configured locally for a specific
eBGP peer, the attribute is advertised only through eBGP for that specific peer but never
through iBGP. The eBGP recipient of a route with the MED attribute, on the other hand,
advertises this attribute to iBGP peers. However, it is never advertised outside of the bor-
ders of the receiving AS. MED attribute has a smaller priority when it comes to the BGP
decision process, so the locally set preference set via LOCAL_PREF attribute supersedes the
MED attribute. Essentially, MED attribute is used to ‘suggest’ LOCAL_PREF-like value to a
neighbouring AS. Such neighbouring AS can but does not have to adhere to such a ‘sugges-
tion’ as it can override the MED attribute with the higher-priority LOCAL_PREF attribute
or ignore the MED completely, as it is purely optional.

Unlike the LOCAL_PREF attribute, the default value is 0, and a lower value makes the
route more preferable. MED attribute is only relevant when there are multiple ingress points
to the local AS as a means to set a specific one as more preferable than others.

Let us now showcase this behaviour on the topology shown in Figure 8.22. All links are
connected and next-hop-self is configured towards the internal peer on all routers. Without
any changes to the MED attribute, let us inspect the BGP databases of routers R3 and R4
and examine their preferred route to destination 10.0.12.0/24. BGP databases of router
R3 are shown in Figure 8.31 and R4’s are shown in Figure 8.32.

As was the case initially with the LOCAL_PREF attribute, router R3 prefers R1 as a next-
hop while R4 prefers router R2 as a next-hop to reach destination 10.0.12.0/24. Let us
now influence the decision process of AS 200 by only changing configuration in AS 100.

82

Figure 8.31: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R3.

Figure 8.32: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R4.

This configuration is shown in Listing 8.10. It configures router R2 to set the MED attribute
of all routes advertised to neighbour 10.0.24.2 to 50.
...
<Neighbor address="10.0.24.2" MED="50"/>...

Listing 8.10: BGP Tutorial 4 - setting of MED attribute to all routes advertised to neighbour
10.0.24.2.

If we now inspect the BGP databases of router R4, as shown in Figure 8.33, the next-hop
value of route 10.0.12.0/24 changed from R2 to R3, meaning that router R4 will now route
traffic through the link connection between routers R1 and R3.

Figure 8.33: BGP Tutorial 4 - states of the BGP table and the BGP routing table respec-
tively on router R4 after MED attribute is configured.

In summary, AS uses the MED attribute to make some specific local AS ingress point
more preferable for the neighbouring AS.

83

Chapter 9

Conclusion

This Master’s thesis discussed two simulation models of dynamic routing protocols, EIGRP
and BGP. To provide the reader with the necessary theoretical background, the first few
sections described the protocols themselves, highlighting the most notable features and use
cases. Furthermore, subsequent chapters provided the reader with the necessary context
regarding the previous state of their simulation models. The structures of these models,
as well as their issues, were listed in order. The next chapters described the origin and
resolution of the mentioned issues.

EIGRP model proved to be of high quality. The problems were fairly minor, and most of
the work focussed on integration with the new INET API. The resulting simulation model
was submitted, merged with the INET code base, and subsequently released in INET v4.3.

As for the BGP model, the initial goal was to combine the two already available versions,
Novák’s version and the INET version. However, their assessments showed that both had
some fatal flaws. If these two versions were just merged together, the resulting model would
be largely inferior to other simulation models present in INET. Among other things, there
would be a lot of redundant code difficult to maintain, and the model’s capability to react to
topology changes would still be very limited. Due to these findings, a considerable portion
of the BGP simulation model was rewritten. Novák’s version of the model was used only
as a reference, and the INET version served as a new base. The resulting model more
closely reflects the behaviour of real BGP implementations and allows for more complex
simulation scenarios as well. This model has yet to be submitted for a merge into the INET
framework.

A set of ‘routing tutorials’ was created as a means to verify the validity of both simula-
tion models. An extended version of these tutorials is planned for publication on the INET
website, where they can be easily accessed by the OMNeT++/INET community. Addi-
tionally, these tutorials provide the reader with a detailed understanding of the protocols’
and models’ behaviour. Each tutorial is accompanied by a reproduction package, allowing
the reader to verify the findings. As an additional value, this work shows how these two
protocols can be configured on Cisco devices.

The EIGRP portion of my work was presented by myself and my supervisor at the
OMNeT++ Community Summit 20201 and was in a form of contribution part of the Student
Conference Excel@FIT 20212. Discussion around the BGP model held a special ‘hackathon’

1https://summit.omnetpp.org/archive/2020
2https://excel.fit.vutbr.cz

84

session during the OMNeT++ Community Summit 20213 and it was also in a form of a
contribution present at Excel@FIT 2022.

In conclusion, the two created simulation models are superior to their predecessors.
One of them has already been merged with the popular framework INET and the other is
missing only a few minor features requested by the INET maintainers. When these issues
are resolved, this new model, together with the ‘routing tutorials’ will be submitted as
well.

3https://summit.omnetpp.org/archive/2021

85

Bibliography

[1] Amoozadeh, M. Pull request #381 - Bgp improvements [online]. 2018 [cit.
2022-05-12]. Available at: https://github.com/inet-framework/inet/pull/381.

[2] ANSAINET. Pull request #452 - BGPv4 additional implementation [online]. 2019
[cit. 2022-05-12]. Available at: https://github.com/inet-framework/inet/pull/452.

[3] ANSAINET. Pull request #570 - ANSAINET EIGRP [online]. 2020 [cit. 2022-05-12].
Available at: https://github.com/inet-framework/inet/pull/570.

[4] ANSAINET. ANSAINET EIGRP Simulation Model [online]. 2022 [cit. 2022-05-12].
Available at: https://github.com/kvetak/ANSA/tree/
aebe5bb25777da8fadd99ae62da893ff7bfc0b11/src/ansa/routing/eigrp.

[5] ANSAINET. ANSAINET Framework [online]. 2022 [cit. 2022-05-12]. Available at:
https://ansa.omnetpp.org/.

[6] ANSAINET. BGP Simulation Model [online]. 2022 [cit. 2022-05-12]. Available at:
https:
//github.com/AwziNihilist/inet/tree/topic/ANSA-BGP/src/inet/routing/bgpv4.

[7] Bates, T., Chan, E. and Chandra, R. BGP Route Reflection: An Alternative to
Full Mesh Internal BGP (IBGP) [Internet Requests for Comments]. RFC 4456. RFC
Editor, 2006. 1-12 p. Available at: https://datatracker.ietf.org/doc/html/rfc4456.

[8] Bloudicek, J. Modelation of Routing Protocol EIGRP. Brno, CZ, 2014. Master’s
Thesis. Brno University of Technology, Faculty of Information Technology. Available
at: https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=119392.

[9] Bush, R., Patel, K. and Ward, D. Extended Message Support for BGP [Internet
Requests for Comments]. RFC 8654. RFC Editor, 2019. Available at:
https://datatracker.ietf.org/doc/html/rfc8654.

[10] Cisco Networking Academy. Introduction to Routing Dynamically, Chapters
3-13 [online]. Mar 2014 [cit. 2022-05-12]. Available at:
https://www.ciscopress.com/articles/article.asp?p=2180210.

[11] Cisco Systems Inc. BGP Best Path Selection Algorithm [online]. 2016 [cit.
2022-05-12]. Available at: https://www.cisco.com/c/en/us/support/docs/ip/border-
gateway-protocol-bgp/13753-25.html.

[12] Cisco Systems Inc. IP Routing: EIGRP Configuration Guide [online]. Feb 2018
[cit. 2022-05-12]. Available at: https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/
iproute_eigrp/configuration/15-mt/ire-15-mt-book.html.

86

https://github.com/inet-framework/inet/pull/381
https://github.com/inet-framework/inet/pull/452
https://github.com/inet-framework/inet/pull/570
https://github.com/kvetak/ANSA/tree/aebe5bb25777da8fadd99ae62da893ff7bfc0b11/src/ansa/routing/eigrp
https://github.com/kvetak/ANSA/tree/aebe5bb25777da8fadd99ae62da893ff7bfc0b11/src/ansa/routing/eigrp
https://ansa.omnetpp.org/
https://github.com/AwziNihilist/inet/tree/topic/ANSA-BGP/src/inet/routing/bgpv4
https://github.com/AwziNihilist/inet/tree/topic/ANSA-BGP/src/inet/routing/bgpv4
https://datatracker.ietf.org/doc/html/rfc4456
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=119392
https://datatracker.ietf.org/doc/html/rfc8654
https://www.ciscopress.com/articles/article.asp?p=2180210
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/support/docs/ip/border-gateway-protocol-bgp/13753-25.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_eigrp/configuration/15-mt/ire-15-mt-book.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_eigrp/configuration/15-mt/ire-15-mt-book.html

[13] Cisco Systems Inc. IP Routing: BGP Configuration Guide [online]. Sep 2019 [cit.
2020-12-31]. Available at:
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/
xe-16/irg-xe-16-book/configuring-a-basic-bgp-network.html.

[14] Halabi, S. Internet Routing Architecture. 2nd ed. Cisco Press, 2000. ISBN
1-57870-233-X.

[15] Hornig, R. TCP simultaneous open don’t work [online]. 2015 [cit. 2022-05-12].
Available at: https://github.com/inet-framework/inet/issues/92.

[16] IDC. Global Ethernet Switch and Router Markets Deliver Mixed Results in Q2 2020
[online]. Sep 2020 [cit. 2020-12-31]. Available at:
https://www.idc.com/getdoc.jsp?containerId=prUS48943122.

[17] INET. L3Address Generic Interface [online]. 2017 [cit. 2022-05-12]. Available at:
https://doc.omnetpp.org/inet/api-old/doxy/classinet_1_1_l3_address.html.

[18] INET. Developer’s Guide [online]. 2022 [cit. 2022-04-18]. Available at:
https://inet.omnetpp.org/docs/developers-guide.

[19] INET. EIGRP Simulation Model [online]. 2022 [cit. 2022-05-12]. Available at:
https://github.com/inet-framework/inet/tree/master/src/inet/routing/eigrp.

[20] INET. INET BGPv4 Simulation Model [online]. 2022 [cit. 2022-05-12]. Available at:
https://github.com/inet-framework/inet/tree/
bd9bfcb90ca1dcdbdbb8d9c252f432d80889251d/src/inet/routing/bgpv4.

[21] INET. INET Framework [online]. 2022 [cit. 2022-05-12]. Available at:
https://inet.omnetpp.org.

[22] INET. INET Tutorials [online]. 2022 [cit. 2022-05-12]. Available at:
https://inet.omnetpp.org/docs/tutorials/.

[23] Juniper Networks, Inc. Understanding BGP Path Selection [online]. 2021 [cit.
2022-05-12]. Available at: https://www.juniper.net/documentation/us/en/software/
junos/vpn-l2/bgp/topics/concept/routing-protocols-address-representation.html.

[24] Maigron, P. World - Autonomous System Number statistics [online]. 2022 [cit.
2022-05-12]. Available at: https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/
RIR_Delegations/World/ASN-ByNb.html.

[25] Novak, A. Modeling and Simulation of BGP. Brno, CZ, 2019. Master’s Thesis.
Brno University of Technology, Faculty of Information Technology. Available at:
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=197475.

[26] Odom, W. CCNA Routing and Switching 200-125 Official Cert Guide Library. 1st
ed. 2016 [cit. 2022-05-12]. 1-1600 p. ISBN 978-1-58720-581-1.

[27] OpenSim Ltd. OMNeT++ Simulation Manual [online]. 2022 [cit. 2022-05-12].
Available at: https://doc.omnetpp.org/omnetpp/manual/.

[28] OpenSim Ltd. Simulator OMNeT++ [online]. 2022 [cit. 2022-05-12]. Available at:
https://omnetpp.org.

87

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/configuring-a-basic-bgp-network.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bgp/configuration/xe-16/irg-xe-16-book/configuring-a-basic-bgp-network.html
https://github.com/inet-framework/inet/issues/92
https://www.idc.com/getdoc.jsp?containerId=prUS48943122
https://doc.omnetpp.org/inet/api-old/doxy/classinet_1_1_l3_address.html
https://inet.omnetpp.org/docs/developers-guide
https://github.com/inet-framework/inet/tree/master/src/inet/routing/eigrp
https://github.com/inet-framework/inet/tree/bd9bfcb90ca1dcdbdbb8d9c252f432d80889251d/src/inet/routing/bgpv4
https://github.com/inet-framework/inet/tree/bd9bfcb90ca1dcdbdbb8d9c252f432d80889251d/src/inet/routing/bgpv4
https://inet.omnetpp.org
https://inet.omnetpp.org/docs/tutorials/
https://www.juniper.net/documentation/us/en/software/junos/vpn-l2/bgp/topics/concept/routing-protocols-address-representation.html
https://www.juniper.net/documentation/us/en/software/junos/vpn-l2/bgp/topics/concept/routing-protocols-address-representation.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www-public.imtbs-tsp.eu/~maigron/RIR_Stats/RIR_Delegations/World/ASN-ByNb.html
https://www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=197475
https://doc.omnetpp.org/omnetpp/manual/
https://omnetpp.org

[29] Rekhter, Y., Li, T. and Hares, S. A Border Gateway Protocol 4 (BGP-4) [Internet
Requests for Comments]. RFC 4271. RFC Editor, 2006. 1-104 p. Available at:
https://tools.ietf.org/html/rfc4271.

[30] Roser M., Ritchie H., Ortiz-Ospina E. The Internet’s history has just begun.
Our World in Data [online]. 2015. Available at:
https://ourworldindata.org/internet.

[31] Savage, D., Ng, J., Moore, S., Slice, D., Paluch, P. et al. Cisco’s Enhanced
Interior Gateway Routing Protocol (EIGRP) [Internet Requests for Comments]. RFC
7868. RFC Editor, 2016. 1-104 p. Available at:
https://tools.ietf.org/html/rfc7868.

[32] Stroustrup, B. Bjarne Stroustrup’s C++ Glossary [online]. 2012 [cit. 2022-05-12].
Available at: https://www.stroustrup.com/glossary.html.

[33] Sun Microsystems, Inc. Compiling C++ Templates [online]. 2000 [cit. 2022-05-12].
Available at: https://docs.oracle.com/cd/E19957-01/806-3572/Templates.html.

[34] The C++ Resources Network. C++ Templates [online]. 2020 [cit. 2022-05-12].
Available at: https://www.cplusplus.com/doc/oldtutorial/templates/.

[35] Veselý, V., Bloudíček, J. and Ryšavý, O. Proceedings of the 4th International
Conference on Simulation and Modeling Methodologies, Technologies and
Applications (SIMULTECH 2014). In:. Wien, Austria: [b.n.], 2014, p. 50–58 [cit.
2022-05-12]. ISBN 978-989-758-045-1.

[36] Veselý, V., Rek, V. and Ryšavý, O. Enhanced Interior Gateway Routing Protocol
with IPv4 and IPv6 Support for OMNeT++. In:. 2015, p. 65–82 [cit. 2022-05-12].
ISSN 2194-5357.

[37] Zhang, B., Kambhampati, V., Massey, D., Oliveira, R., Pei, D. et al. A secure
and scalable Internet routing architecture (SIRA). Pisa, Italy: [b.n.], 2006 [cit.
2022-05-12].

88

https://tools.ietf.org/html/rfc4271
https://ourworldindata.org/internet
https://tools.ietf.org/html/rfc7868
https://www.stroustrup.com/glossary.html
https://docs.oracle.com/cd/E19957-01/806-3572/Templates.html
https://www.cplusplus.com/doc/oldtutorial/templates/

Appendix A

Contents of Included Disk Media

File / Folder Description
thesis.pdf Copy of this thesis in PDF format.

/src Folder containing INET 4.3 with both simulation models.
/tutorials/omnet/ Folder containing tutorial simulation files for OMNeT++.
/tutorials/cisco/ Folder containing tutorial Cisco configuration files.

readme.md Short description of contents.

Table A.1: Contents of the included disk media.

89

Appendix B

Sequence Diagram of EIGRP
Dynamic Neighbour Discovery and
Initial Route Exchange

eth0: up

eth0:
IPv4: 10.0.0.1

R1
eth0:
IPv4: 10.0.0.2

R2

EIGRP Neighbor Table:
R1: pending

EIGRP Neighbor Table:
R2: up

EIGRP Neighbor Table:
R1: up

EIGRP Neighbor Table:
R2: up

Init ial route
exchange

Hello Packet (224.0.0.10)

Hello Packet (224.0.0.10)

Hello Packet (224.0.0.10)

Hello Packet (224.0.0.10)

Update Packet [INIT] (10.0.0.1)

Update Packet [INIT] (10.0.0.2)

Acknowledgement (10.0.0.1)

Acknowledgement (10.0.0.2)

Update Packet [EOT] (10.0.0.1)

Update Packet [EOT] (10.0.0.2)

Acknowledgement (10.0.0.2)

Acknowledgement (10.0.0.1)

eth0: up

Figure B.1: Sequence diagram of the EIGRP neighbour establishing process. Acknowl-
edgements to received messages can be piggybacked into any unicast message to the given
neighbour. However, this diagram shows explicit acknowledgements.

90

Appendix C

Sequence Diagram of BGP Session
Establishment

R1

IPv4: 10.0.0.1
eth0:

R2

IPv4: 10.0.0.2
eth0:

BGP START

SYN

RST + ACKBGP START

SYN (Seq: n, Ack: 0)

SYN + ACK (Seq: m, Ack: n+ 1)

ACK (Seq: n+ 1, Ack: m+ 1)

OPEN (AS: 200, HT: 180, ID: 2.2.2.2)

OPEN (AS: 100, HT: 180, ID: 1.1.1.1)

KEEPALIVE

KEEPALIVE

BGP Peer FSM:
R1: IDLE

BGP Peer FSM:
R1: ACTIVE

BGP Peer FSM:
R1: CONNECT

BGP Peer FSM:
R1: OPENSENT

BGP Peer FSM:
R1: OPENCONFIRM

BGP Peer FSM:
R1: ESTABLISHED

BGP Peer FSM:
R2: CONNECT

BGP Peer FSM:
R2: OPENSENT

BGP Peer FSM:
R2: OPENCONFIRM

BGP Peer FSM:
R2: ESTABLISHED

BGP Peer FSM:
R2: IDLE

Figure C.1: Sequence diagram modeling a example of TCP and BGP communication be-
tween routers R1 and R2 as implemented in the BGP model. All TCP segments without any
application data (i.e., TCP Acknowledgements) or retransmissions are disregarded after the
three-way handshake is complete.

91

Appendix D

Structure of the BGP
Configuration File

BGPConfig

TimerParams

connectRetryTime

holdTime

keepAliveTime

startDelay

node

Devices

Router

Interfaces

Interface

Ipv4

Ipv6

Bgp

Bgp

Neighbor

Address-Family

Neighbor

Network

Route

Route6

92

Appendix E

Example of BGP configuration file

<BGPConfig>

<!-- optional Global BGP Timers -->
<TimerParams>

<connectRetryTime>120</connectRetryTime>
<holdTime>180</holdTime>
<keepAliveTime>60</keepAliveTime>
<startDelay>

<node id="R2">0.5</node>
</startDelay>

</TimerParams>

<!-- List of routers -->
<Devices>

<!-- Single device BGP configuration -->
<Router name="R1" id="1.1.1.1">

<Interfaces>
<Interface id="lo0">

<!-- IP + mask -->
<Ipv6 address="2001:db8::1/64"/>
<Ipv4 address="1.1.1.1" mask="255.255.255.255"/>

</Interface>
</Interfaces>
<!-- BGP specific settings -->
<Bgp as="100">

<Bgp router-id="11.11.11.11"/>
<Neighbor address="10.0.0.2" remote-as="200"/>
<Neighbor address="10.0.0.2" disable-connected-check="true"/>
<Neighbor address="10.0.0.2" ebgp-multihop="2"/>
<Neighbor address="10.0.0.2" update-source="lo0"/>
<Neighbor address="10.0.0.2" local-pref="150"/>
<Neighbor address="10.0.0.2" MED="10"/>
<!-- IPv4 settings -->
<Address-family id="Ipv4">

<Neighbor address="10.0.0.2" activate="true"/>
<Neighbor address="10.0.0.2" next-hop-self="true"/>
<Network address="1.1.1.1" mask="255.255.255.255"/>

</Address-family>

93

<!-- IPv6 settings -->
<Address-family id="Ipv6">

<Neighbor address="10.0.0.2" activate="true"/>
<Neighbor address="10.0.0.2" next-hop-self="true"/>
<Network address="2001:db1::/64"/>

</Address-family>
</Bgp>
<!-- Static routes -->
<Route prefix="10.0.0.0" mask="255.0.0.0" int="eth0" nexthop="10.0.0.1"/>
<Route6 prefix="2001:db8::/64" int="eth0" nexthop="2001:db8:11::1"/>

</Router>
</Devices>

</BGPConfig>

94

Appendix F

Relation of the Activate Attribute
and IP Address Families

<!-- IPv4 infrastructure -->...
<Neighbor address="{ipv4_peer}".../>

<!-- Start advertisement of IPv4 prefixes-->
<!-- Implicit -->

<!-- Stop advertisement of IPv4 prefixes-->
<Address-family id="Ipv4">

<Neighbor address="{ipv4_peer}" activate="false"/>...
</Address-family>

<!-- Start advertisement of IPv6 prefixes -->
<Address-family id="Ipv6">

<Neighbor address="{ipv4_peer}" activate="true"/>...
</Address-family>

<!-- Stop advertisement of IPv6 prefixes -->
<!-- Implicit -->

<!-- IPv6 infrastructure -->...
<Neighbor address="{ipv6_peer}".../>

<!-- Start advertisement of IPv4 prefixes-->
<Address-family id="Ipv4">

<Neighbor address="{ipv6_peer}" activate="true"/>...
</Address-family>

<!-- Stop advertisement of IPv4 prefixes-->
<Address-family id="Ipv4">

<Neighbor address="{ipv6_peer}" activate="false"/>...
</Address-family>

95

<!-- Start advertisement of IPv6 prefixes -->
<Address-family id="Ipv6">

<Neighbor address="{ipv6_peer}" activate="true"/>...
</Address-family>

<!-- Stop advertisement of IPv6 prefixes -->
<Address-family id="Ipv6">

<Neighbor address="{ipv6_peer}" activate="false"/>...
</Address-family>

96

	Introduction
	Structure

	Routing Protocols
	Interior Gateway Protocols
	Distance Vector
	Link-State

	Exterior Gateway Protocols

	Enhanced Interior Gateway Routing Protocol
	Terminology
	Packets
	Packet Types

	Neighbour Discovery
	Establishing Neighborship

	Diffusing Update Algorithm
	Models
	Stub Routers

	Metric Calculation
	Classic Metric
	Wide Metric

	Border Gateway Protocol
	Messages
	Attributes
	Decision process

	Autonomous Systems
	BGP Peering
	External BGP
	Internal BGP
	BGP Peer Finite State Machine

	OMNeT++
	Framework INET
	Framework ANSAINET
	State of EIGRP Simulation Model
	Structure
	Issues

	State of BGP Simulation Model
	Structure
	Issues

	Cisco Configuration
	EIGRP
	Classic mode
	Named mode

	BGP

	Implementation
	EIGRP Implementation Details
	Metric Calculation (i1)
	Topology Table (i2)
	Query/Reply Crash (i2a)
	The Order of Signals (i3)
	Interface Configuration (i4)
	Classification of Address Family (i5)
	ANSAINET Interface Dependency (i6)
	Integration of Packets (i7)

	BGP Implementation Details
	Configuration of the Simulation Model
	Support for Multi-Address Family
	Redesign of Node's Operation
	TCP Operations

	Implementation Conclusion
	EIGRP Conclusion
	BGP Conclusion

	Testing
	Methodology
	EIGRP Tutorials
	Network Command
	Establishing Neighbourship and Initial Route Exchange
	DUAL Calculation

	BGP Tutorials
	Establishing Peering
	Network Command
	Exchanging Updates
	Attributes

	Conclusion
	Bibliography
	Contents of Included Disk Media
	Sequence Diagram of EIGRP Dynamic Neighbour Discovery and Initial Route Exchange
	Sequence Diagram of BGP Session Establishment
	Structure of the BGP Configuration File
	Example of BGP configuration file
	Relation of the Activate Attribute and IP Address Families

