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Abstract 

 
In the case of plants, high temperatures are one of the commonest environmental 

stress factors.  Their impact however depends on the intensity and duration of the heat 

stress (HS). Although plants have developed various strategies for avoiding/tolerating 

high temperatures, serious HS results in irreversible heat damage. Recovery from less 

serious HS, nonetheless may be more important than the HS itself under time-varying 

field conditions.  

In the first chapter of the thesis, the most significant structural and functional 

changes caused by elevated temperatures are summarized for both light and dark phases 

of the photosynthetic process. Considerable attention is also given to the reversibility of 

these changes as these provide clues to the phenomenon of heat tolerance.  

The experimental part, based on two publications, focuses on study of heat stress 

effects and the reversibility of the resultant changes. The use of a variety of heating 

regimes (T-jump and linear heating with various heating rates) and comparison of their 

impact, formed the major part of the work. 

The first experimental part deals with the reversibility of the fluorescence 

temperature curve (FTC) measured using four different heating/cooling rates (0.5, 1, 2 

or 3 °C min-1). The degree of fluorescence irreversibility after the heating/cooling cycle, 

a set of tangents of selected linear parts of the FTC and a denaturation model of 

transforming a photosystem II (PSII) from being fully functional into to an adversely 

changed one, were used for detailed evaluation of the measured data. A fully reversible 

response of PSII function as reflected in the reversibility of chlorophyll fluorescence, 

was found for maximal temperatures (Tm) of linear heating up to 42 °C. A partially 

reversible response occurred up to temperatures between 52 and 59 °C depending on the 

heating/cooling rate (from 0.5 to 3 °C min-1). We applied the model to calculate 

activation energies (Ea) of this initial increase in the fluorescence irreversibility 

separately for each heating rate. Four different approaches led to values of from 30 to 

50 kJ mol-1, and these decreased slightly with the increasing heating rate. The 

assumptions used for the Ea evaluation suggest that the unrecoverable part of 

fluorescence changes is caused by irreversible closure of certain PSII reaction centers 

(i.e. the accumulation of QA
-). 

The second part of the thesis deals with the impact of linear and temperature-

jump heat stress on light-induced chloroplast movement. The leaf segments were either 
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linearly (2 °C min-1) heated up to Tm or incubated for 5 min in a water-bath at the same 

temperature. The changes in light-induced chloroplast movement caused by the HS 

pretreatment were detected after the particular heating regime at 25 °C using a method 

of time-dependent collimated transmittance (CT). For each sample, the chlorophyll a 

fluorescence rise (FLR) was also measured to determine changes in PSII function 

caused by the HS and for comparison of sensitivity of the two methods. To evaluate the 

effect of the HS regime on the samples more accurately, we calculated 6 fluorescence 

parameters from the JIP-test and 4 transmittance parameters (amplitudes and rates of 

chloroplast translocation for both accumulation as well as avoidance response). The HS 

began to inhibit the chloroplast movement at lower stress temperatures (40 - 42 °C) than 

PSII function, as reflected in the FLR curves (42 - 45 °C). This difference in sensitivity 

of CT and FLR was higher for the T-jump than for the linear HS, indicating the 

importance of the applied heating regime. For the highest Tm (45 °C), the motility of 

chloroplasts was almost completely inhibited. We tentatively propose that the inhibition 

of chloroplast movement at higher temperatures may enhance the shielding function of 

the exposed upper layer of chloroplasts and help protect other chloroplasts located 

deeper inside the leaf from photoinhibitory damage. Moreover, measurement of 

collimated transmittance changes, caused by light-induced chloroplast movement, 

proved to be a sensitive method for use too, in the early detection of the adverse effects 

of elevated temperatures. 
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1. INTRODUCTION 

 

Plant photosynthetic reactions take place in chloroplasts. These organelles 

contain an internal system of interconnected membranes – thylakoids, the site of 

photosynthesis. The main pigment-protein complexes are embedded within thylakoid 

membranes separating an inner aqueous phase, lumen, from outer stroma (Fig 1). High 

temperatures can alter the composition of the main components of the thylakoid 

membrane, lipids and proteins, as well as the spatial reorganization of the pigment-

protein complexes. 

 

 

Figure 1. Pigment-protein complexes and photosynthetic linear electron transport in thylakoid membrane 

(reprinted from Blankenship 2002 with permission
1
). Each complex is composed of several subunits and 

a large number of cofactors. The linear electron flow begins at the oxygen-evolving complex (OEC) by 

extracting electrons from water and continues via photosystem II, cytochrome b6f complex and 

photosystem I to Ferredoxin (Fd). Ferredoxin carries the electron to the enzyme, ferredoxin NADP+ 

oxidoreductase which reduces NADP+ to NADPH. The electrochemical gradient of protons (H+) 

generated within this process is used for the synthesis of ATP and, molecular oxygen (O2) is released into 

the atmosphere. 

 
 
                                                           
1  With the kind permission of Wiley-Blackwell publishers, reprinted from Blankenship RE (2002) 
Molecular mechanisms of photosynthesis. Blackwell, London. Page 9, Figure 1.4. 
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These structural changes can impair the normal photosynthetic functions. For a 

more comprehensive understanding of plant reactions, this chapter summarizes the 

features of heat stress (HS) impact on the plant photosynthetic apparatus in more detail 

than those determined by papers listed in the Experimental part. Additional information 

can be found in related reviews by Berry and Björkman (1980), Weis and Berry (1988); 

Bukhov and Mohanty (1999); Carpentier (1999), Georgieva (1999), Wahid et al. (2007) 

and Allakhverdiev et al. (2008). 
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1.1. HEAT-INDUCED STRUCTURAL CHANGES IN CHLOROPLASTS 
 

1.1.1.  Thylakoid membrane composition 
 

Plant membranes comprise a lipid bilayer and are formed mainly by 

monogalactosyl-diacylglycerols (MGDG) digalactosyldiacylglycerols (DGDG), 

sulphoquinovosyldiacylglycerels (SQDG) and the phospolipids, in particular 

phosphatidylglycerol – PG. The relative content of these lipids is about 45-50% 

(MGDG), 25-30% (DGDG), approximately 10% (SQDG) and around 13% (PG) in the 

case of PG (Harwood et al. 1994). Several membrane lipids, mainly DGDG, SQDG and 

phospolipids form the lipid bilayer. In contrast, MGDG belongs to the family of non-

bilayer-forming lipids, i.e. after isolation from higher plants it forms non-bilayer 

structures - usually inverted cylindrical micelles (Quinn and Williams 1985; Williams 

1988). 

 
 
1.1.1.1. Changes in thylakoid membrane lipid composition 
 

The fluidity of the thylakoid membrane is vital for maintaining the proper 

function of the lipid bilayer. It can be described as the relative diffusional motion of 

molecules within the membrane (Vigh et al. 1998) and its overall fluid character is due 

to its fatty acid saturation and the ratio of MGDG/DGDG. A heat-induced increase in 

molecular motion of membrane lipids causes increase in membrane fluidity (see Los 

and Murata 2004 for review) and this can lead to disintegration of the membrane. The 

subsequent plant acclimation reactions are a decrease in the MGDG/DGDG ratio (Süss 

and Yordanov 1986; Dörmann 2005; Chen et al. 2006) and increase in the incorporation 

of saturated fatty acids into the thylakoid membrane (Süss and Yordanov 1986; 

Larkindale and Huang 2004). These changes result in decreased membrane fluidity, i.e. 

in preservation of membrane properties. Higher growth temperature has also been 

shown to increase saturation in leaf lipids (Pearcy 1977) and reduce the MGDG/DGDG 

ratio (Wang and Lin 2006). However, the former findings contrast with the 

cyanobacterium-related study of Gombos et al. (1994) who showed that the desaturation 

of membrane lipids can to some extent stabilize photosynthesis under HS conditions. 

It has been observed that some carotenoids, apart from their light collecting and 

quenching functions, can increase the thermostability of the photosynthetic apparatus 

against heat stress, due to decrease in membrane fluidity (see Havaux 1998 for review). 
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This role is attributed mainly to zeaxanthin accumulation and its interaction with the 

lipid phase of the thylakoid membranes (Havaux and Gruszecki 1993; Havaux et al. 

1996; Tardy and Havaux 1997). A similar effect to increasing the thermostability of the 

thylakoid membrane is attributed to isoprene (2-methyl, 1,3,-butadiene), a compound 

emitted from the photosynthesising leaves of many plant species  (Sharkey et al.  

2001b). 

 
 
1.1.1.2. Changes in protein composition 
 
1.1.1.2.1. Denaturation of protein complexes in thylakoid membrane 
 

More severe heat stress can result in the denaturation of existing proteins. For 

identification of the thermal denaturation of all main thylakoid protein complexes, a 

variety of approaches have been used but mainly differential scanning calorimetry 

(DSC) and electrophoretic methods. 

Endothermic transition during DSC measurement occurring at about 42 °C has 

been attributed to OEC disruption (Cramer et al. 1981). Thompson et al. (1986; 1989) 

observed this transition in spinach photosystem II (PSII) membranes at 48 °C. 

It is widely accepted that the D1 protein in PSII is very vulnerable to light stress. 

However, it seems to be very sensitive to high temperatures as well. Heat treatment of 

spinach thylakoids (40 °C for 30 min) resulted in cleavage of the D1 protein and 

production of 23 kDa N-terminal fragments whereas the D2 protein, a subunit of 

cytochromes b559, CP43, CP47, and LHCII did not cleave under the same HS 

(Yoshioka et al. 2006). It is assumed that a filamentation of temperature-sensitive 

protease is involved in the primary cleavage of the D1 protein and the well-known 

degradation process of this protein under light stress is similar to that induced by HS 

(Yoshioka et al. 2006). 

Smith and Low (1989) observed that during calorimetric scans (DSC) of 

chloroplast membranes, denaturation of the whole PSII reaction centre complex 

occurred at around 60 °C. Shi et al. (1998) detected denaturation of the PSII core 

complex using the Fourier transform-infrared spectroscopy at similar temperatures 

(from 55 °C to 65 °C after 3 min incubation). Further analysis of DSC scans revealed 

that at the same temperature of around 60 °C, the core complex antennae of PS II, CP43 

and CP47 was also denaturated (Smith and Low 1989). Interestingly, circular dichroism 

spectroscopy measurement showed that CP47 is more thermally stable than CP43 
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(Wang et al. 1999). These authors detected heat-induced denaturation of CP43 and 

CP47 after 5 min heat treatment at 50 °C and 63 °C, respectively.  

The denaturation of the LHCII in spinach chloroplast membranes, determined by 

DSC at standard linear heating rate 1 °C min-1, took place at 76 °C (Smith et al. 1989). 

This is in line with the complete degradation of LHCII observed in barley leaves 

between 70 and 80 °C (Lípová et al. 2010). The corresponding temperatures for 

irreversible denaturation (around 72 °C) have also been reported in the case of LHCII 

macroaggregates (Krumova et al. 2005). The temperature shifted from 69 °C to 74 °C 

with increase in scanning rate from 0.125°C min-1 to 2 °C min-1 showing the importance 

of absorbed heat.  

Recently was investigated degradation of PSI. The PSI cores partially 

dissociated from light-harvesting complexes of PSI (LHCI) around 60 °C and formed 

aggregates (Lípová et al. 2010). Denaturation of PSI core polypeptides started at around 

70 °C (Hu et al. 2004; Lípová et al. 2010) and they were completely degraded around 

90 °C (Lípová et al. 2010). LHCI subunits were found to be more stable than PSI (Hu et 

al. 2004). Although the content of LHCI proteins began to decrease at a similar 

temperature, they were still present in the samples even at 100 °C. Further, a transition 

centred at around 65 °C has been shown to originate from denaturation of the CF1 

subunit of thylakoid ATPase (Smith et al. 1986; Nolan et al. 1992).  

It has been shown that DSC transitions in pea thylakoids are reversible (Nolan 

and Vickers 1989; Nolan et al. 1992). Nolan and Vickers (1989) examined thylakoid 

membranes of cucumbers and peas during both heating and subsequent cooling scans in 

order to observe reversibility. Whereas cucumber thylakoids exhibited almost no 

reversibility, thylakoids of peas had reversible transitions at 50 °C and 68 °C. The 

results indicate that the calorimetric profiles of thylakoids from different plants can 

vary. Interestingly, at high temperatures, the granal thylakoids of pea denature 

irreversibly, whereas reversible transitions reflect changes in components associated 

with stromal thylakoids (Nolan et al. 1992). 

 
 
1.1.1.2.2. Heat shock proteins 
 

Plants respond to elevated temperatures by inducing the synthesis of a group of 

proteins called heat-shock proteins (HSPs). Expression of HSPs is increased when 

plants are exposed to high temperatures (see Wang et al. 2004; Efeoğlu 2009 for recent 
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reviews) but can also be triggered by exposure of plant tissue to other environmental 

stress factors, for example starvation (Zarsky et al. 1995), virus infection (Aranda et al. 

1996; 1999), light stress (Stapel et al. 1993), metal toxicity (Orzech and Burke 1988) 

and even low temperatures (Sabehat et al. 1998). The increase in HSP synthesis is 

induced primarily by the so-called heat shock factor (see review by Nover et al. 1996). 

There are five main conserved classes of plant HSPs (named according to their 

molecular weights): HSP100, HSP90, HSP70, HSP60 and small (17 to 30 kDa) HSPs 

(Waters et al. 1996). HSPs are usually synthesized in the cytosol and subsequently 

transported into chloroplasts (Vierling et al. 1986; Carpentier 1999). 

 
 
1.1.1.2.2.1.  Synthesis of heat shock proteins 
 

HSP expression correlates with cellular resistance to high temperatures and the 

accumulation of HSPs leads to increased thermotolerance (Lin et al. 1984; Lindquist 

and Kim 1996; Maestri et al. 2002; Jinn et al. 2004; Charng et al. 2006). A particularly 

important HSP for induced thermotolerance seems to be HSP104 (Lindquist and Kim 

1996).  

HSPs allow plants to reduce the impact of HS in several ways that are, however, 

still the subject of research. One of the main features of HSPs is their chaperone 

function. As molecular chaperones, the HSPs play a critical role in protein folding and 

coping with proteins denatured by heat or other stresses. This function is attributed 

mainly to the HSPs of a family of 60, 70 and 90 kDa (Carpentier 1999). Moreover, 

HSPs prevent aggregation of already denatured proteins or induce a refolding of stress-

denatured ones (Lee et al. 1995; Wang et al. 2004). Other HSPs can assist if the protein 

aggregation has already taken place. In particular, HSP104, in coaction with additional 

specific chaperones, promotes the refolding of aggregated proteins and in this way 

assists the plant with inactive proteins (Glover and Lindquist 1998). 

Apart from their chaperone functions, some HSPs may be associated with the 

thylakoid membranes (Süss and Yordanov 1986; Glaczinsky and Klopstech 1988; 

Carpentier 1999; Tsvetkova et al. 2002). For the pea, the binding temperature begins 

between 36 °C and 40 °C and incubation at 42 °C for 15 min is sufficient to induce the 

binding (Glaczinsky and Klopstech 1988). The association can regulate membrane 

fluidity and preserve membrane integrity during thermal stress (Tsvetkova et al. 2002). 

Süss and Yordanov (1986) suggested that interactions of HSPs with the outer 
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chloroplast envelope membrane might enhance formation of the DGDG species leading 

to increased thermotolerance due to decrease in membrane fluidity at elevated 

temperatures (see Section 1.1.1.1.). 

It has been observed that small chloroplast HSPs (20-30 kDa) directly protect 

the thermolabile photosystem II under HS (Schuster et al. 1988; Stapel et al. 1993; 

Heckathorn et al. 1998). As a consequence, the electron transport chain from the donor 

side of PSII to the acceptor side of PSI was found to be preserved during HS treatment 

at 47 °C for 2 min (Heckathorn et al. 1998). The protective function of HSPs seems to 

be particularly important under the combined effects of light and heat stress (Schuster et 

al. 1988; Stapel et al. 1993). Further, an important role in photoprotection and 

reparation of PSII under photoinhibitory conditions is attributed to HSP70 (Schroda et 

al. 1999; 2001).  

Although plant HSPs in most studies are detected within several hours, the 

formation of HSPs in cells may be more flexible, e.g. 10-15 min - treatment at 

temperatures of about 40 °C is sufficient for triggering (Nover and Scharf 1984) or even 

accumulation (Moisyadi and Harrington 1989) of HSPs in cells. Heat shock response 

depends not only on maximal stress temperature but also on applied temperature 

regimes. A gradual temperature increase (0.5 °C min-1 to 50 °C) permits far greater 

amounts of protein synthesis (including HSPs) than sudden heat shock (Howarth 1991). 

A similar positive effect on amount of synthesized HSPs was observed in the case of 

sample pre-incubation at moderately elevated temperatures (36 °C) before exposure to 

high temperatures (Ginzburg and Salomon 1986). The authors suggested that this effect 

could be due to an induction process, most probably the synthesis of heat shock mRNA, 

which is more sensitive to HS than the protein synthesis itself. Thus, if this induction is 

allowed, HSPs synthesis can follow at a more elevated temperature, resulting in the 

development of heat tolerance. 

 
 
1.1.1.2.2.2. The role of HSP in recovery from HS 
 

Some HSPs directly prevent irreversible heat-inactivation of other proteins under 

supraoptimal temperatures (e. g. Lee and Vierling 2000). The reversibility of HSP levels 

is characterized by decrease in their expression after restoration of the system to 

physiological temperature. The persistence of HSPs has been determined for example in 

pea leaves by Chen et al. (1990) and DeRocher et al. (1991). They investigated the 
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expression of small HSPs after a combined heating regime. HSP18.1 had a half-time of 

37±8 h (DeRocher et al. 1991), which is quite similar to the 52±12 h half-life estimated 

for the chloroplast-localized HSP 21 (Chen et al. 1990). In addition, HSP 21 fully 

recovered to its initial level after about 7 days. Since the half-life of these proteins is 

long, they may play an important role during recovery (Chen et al. 1990; DeRocher et 

al. 1991). Interestingly, the levels of the HSP22 proteins from maize disappeared after 

heat stress more rapidly, with a half-life time about 4h and were undetectable after 21 h 

of recovery (Lund et al. 1998). For some HSPs, the duration of this period can be 

dependent on light intensity, as has been shown in the case of HSP 23 (Debel et al. 

1994).  

Synthesized HSPs play an important role in plants throughout these periods 

because the cells exposed to another heat shock are better protected from the effects of 

high temperatures. These HSPs also improve the recoverability under non-stress 

conditions. Forreiter et al. (1997) used firefly luciferase as a reporter of chaperone 

activities in vivo. HSP90 accelerated the luciferase renaturation during recovery. HSP70 

had anologous effects if coexpressed with HSP17.6, showing that HSPs can assist in 

normalization of cellular functions during recovery from stress (Forreiter et al. 1997). 

Similar experiments have shown that sHSPs also improve the recovery process (Lee and 

Vierling 2000). Based on extensive genetic studies in yeast, a crucial role for plant 

recovery after different stress treatments is attributed to HSP104 (see Nover and Scharf 

1997 for review). 

Heat induced recompartmentalization of the chloroplast matrix that ensures 

effective transport of ATP from thylakoid membranes towards those sites where HSPs 

are being formed, is proposed as a metabolic strategy of plant recovery from heat stress 

(Süss and Yordanov 1986).  

HS induces the expression of HSPs as well as decrease in normal protein 

expression including production of both photosystems and photosynthetic electron 

transport chain components (Süss and Yordanov 1986). High temperatures reversibly 

and irreversibly inhibited the synthesis of standard chloroplast protein in heat adapted 

and non-adapted bean plants, respectively (Süss and Yordanov 1986). These authors 

suggested that the inability to accumulate significant amounts of HSPs was due to rapid 

inactivation of the photosynthetic apparatus as a reason for their results. The 

experiments carried out by Nover and Scharf (1984) focused on the reversibility of 

proteins synthesized under standard conditions at room temperatures. They showed that 
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recovery at 25 °C was slow after 2 h at 39 °C, whereas an immediate recovery was 

observed in the preinduced culture (15 min at 40 °C followed by a 3-h incubation at 25 

°C) after the second heat shock (1 h at 41 °C followed by 25 °C for 1 h). The response 

to repeated HS with respect to HSPs has been detected in millet seedlings as well 

(Howarth 1991). Full recovery occurred after 4 days under a regime of daily high T 

treatment of 2h at 50 °C followed by incubation for 22h at 35 °C. 

The dark phase of photosynthesis is considered particularly sensitive to HS (see 

Section 1.2.2.1). Demirevska-Kepova et al. (2005) have reported that the high stability 

of Rubisco under HS in light may be related to the elevated levels of Rubisco binding 

protein, which is required for the assembly of the Rubisco holoenzyme. Since an 

increase in Rubisco activase and Rubisco binding protein was observed under 24-h HS 

and subsequent recovery in light, the results support the function of Rubisco binding 

protein as an HSP. The combination of high temperature and darkness had a severe 

effect on the investigated proteins and the damage caused by HS was unrecoverable. 

Taken together, although the role of many HSPs has not been fully elucidated, many 

can significantly improve the HS-related recoverability of plants. 

 
 

1.1.2. Structural organization of thylakoid membrane 
 

Pigment-protein complexes inside chloroplasts are arranged into stacked and 

unstacked regions called granal and stromal thylakoids, respectively. These regions are 

differentially enriched in photosystem I and II complexes (Fig. 2). Photosystem II is 

found almost exclusively in the appressed grana regions, whereas PSI and ATP synthase 

are found primarily in the non-appressed stromal regions (see Allen and Forsberg 2001 

for review). 

 
 
1.1.2.1. Reorganization of thylakoid membrane under HS 
 

Heat stress alters the normal distribution of pigment-protein complexes. 

Temperatures above 35 °C caused detachment of PSII cores from LHCII and their 

lateral migration from the grana regions out into the stromal region, leaving behind the 

LHCII in appressed zone (Weis 1984; Sundby and Andersson 1985; Sundby et al. 

1986). An analogous process is known to take place under strong light conditions, when 

some of the LHCII associated with the PSII core (i.e. in so-called State 1) are 
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phosphorylated, detached from PSII reaction center and connected to PSI (State 2), 

which results in increasing the PSI absorption cross-section (Allen and Forsberg 2001). 

As elevated temperatures usually accompany high light intensities, Sundby et al. 

(Sundby and Andersson 1985; Sundby et al. 1986) suggested that the temperature-

dependent segregation of PSII from LHCII could be a regulatory mechanism to prevent 

overexcitation and subsequent damage of PSII due to high light intensities 

 

 

 

Figure 2. Spatial distribution of main pigment-protein complexes in chloroplast (reprinted from 

Blankenship 2002 with permission
2
). Thylakoid membranes inside chloroplasts are formed into stacks 

called grana, which are connected by nonstacked membranes called stroma. Photosystem II is located in 

the stacked membranes while photosystem I in unstacked regions. For more details see text. 

  

The normal morphology of grana stacks in thylakoid membranes is usually 

distorted under HS (Armond et al. 1980; Gounaris et al. 1983; 1984). Measurements 

using freeze-fracture electron microscopy showed that incubation of bean chloroplasts 

for 5 min at 35 - 45 °C causes complete destacking of grana (Gounaris et al. 1983; 

1984). Loosening of grana was also observed after linear heating (4 °C min-1) up to 55 

°C and was accompanied by swelling of the thylakoids (Ilík et al. 1995b). 

                                                           
2 With the kind permission of Wiley-Blackwell publisher reprinted from Blankenship RE (2002) 
Molecular mechanisms of photosynthesis. Blackwell, London. Page 135, Figure 7.8. 
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The normal lipid bilayer (Fig.1) can exist in different states denoted as liquid 

crystal phase or gel lamellar phase (Williams 1988). Enhanced temperature is one of the 

factors causing the phase transitions from these phases to the inverted hexagonal phase. 

Treatment of bean chloroplasts above 45 °C caused phase-separation of non-bilayer 

lipids from membranes into aggregates of cylindrical inverted micelles (Gounaris et al. 

1983; 1984). 

 
 
1.1.2.2. Reversibility of structural changes in membranes 
 

The above-mentioned detachment of PSII cores from LHCII was, up to 5 min 

incubation at 40 °C, almost fully reversible upon lowering the temperature (Sane et al. 

1984; Sundby and Andersson 1985; Sundby et al. 1986). Both the heat-induced 

destacking as well as the phase-separation after incubations at temperatures higher than 

45 °C were irreversible (Gounaris et al. 1983). 

Heat has also been reported to induce aggregation of LHCII (Gounaris et al. 

1984; Tang et al. 2007). Tang et al. (2007) observed in vivo and in vitro aggregation of 

LHCII caused by HS 10 min incubation at 35 °C or higher. An observed linear 

relationship between the formation of LHCII aggregates and NPQ represents LHCII 

aggregation as a protective mechanism to dissipate excess excitation energy. This heat-

induced aggregation was reversible and caused probably by specific association 

between hydrophobic domains of different LHCII. 

 There is wide agreement that the reversible changes in the membrane structure 

precede the irreversible effects. These HS-induced modifications in different membrane 

properties reflecting injury, acclimation and recovery processes, are closely linked 

together and can occur simultaneously (Santarius and Weis 1988). 
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1.2. IMPACTS OF HIGH TEMPERATURE ON PHOTOSYNTHETIC FUNCTIONS 
 

1.2.1. Effects of heat stress on components within thylakoid membrane 
 
1.2.1.1. Oxygen-evolving complex 
 

The oxygen-evolving complex (OEC) is located approximately at the 

membrane–lumen interface and is functionally connected with the PSII reaction centre. 

The OEC consists of a cluster of four manganese atoms, which catalyse the oxygen 

evolution, Ca2+ and Cl- cofactors and three extrinsic proteins of 17, 23, 33 kDa (PsbQ, 

PsbP, PsbO, respectively) which are associated with the lumenal surface of the PSII 

reaction center and form the OEC (Fig. 3). This complex uses light energy trapped by 

PSII to extract electrons from water for the photosynthetic electron transfer chain and to 

produce molecular oxygen which is released into the atmosphere (see e.g. Goussias et. 

al 2002; Barber 2004; Renger and Kühn 2007). 

 
 
1.2.1.1.1. Inactivation of oxygen evolution 

 
OEC is generally considered one of the most sensitive components of the 

photosynthetic electron transport chain to HS conditions. The loss of two of the four 

manganese atoms results in the complete loss of oxygen-evolving activity (Nash et al. 

1985). Heat treatment also causes release of the 33, 23 and 17 kDa proteins from PSII 

(Nash et al. 1985; Enami et al. 1994; Yamane et al. 1998; Barra et al. 2005). The release 

of the 17 kDa protein is most probably responsible for the heat-induced loss of the 

essential Ca2+ ion from the manganese complex (Barra et al. 2005). Ca2+ ion release has 

been also suggested as a first step in the heat-jump response of OEC (Pospíšil et al. 

2003). The binding of the 17 kDa and 23 kDa protein has been shown to enhance the 

binding kinetics of the Ca2+ cofactor (Ghanotakis et al. 1984). According to Nash et al. 

(1985) the removal of the 23 and 17 kDa proteins from PSII particles causes only slight 

decrease in the heat stability of OEC. 

In contrast, the 33 kDa protein seems to be essential for oxygen evolution. In 

particular, the 33 kDa protein is known to stabilize the manganese cluster (Nash et al. 

1985; Rivas and Heredia 1999; Kuwabara et al. 2003). It has been shown that heat-

inactivation of oxygen evolution is directly related to release of the 33 kDa protein 

(Enami et al. 1994). Its separation with high concentration of CaCl2 or urea also always 
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results in a large decrease in the OEC activity (Miyao and Murat 1983; Ono and Inoue 

1984). Release of this protein is easier in the absence of LHCII as has been shown in the 

case of chlorina-f2 mutant (Havaux and Tardy 1997). 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic structure of photosystem II (PSII) and its electron transport chain within the 

thylakoid membrane. Only major subunits of PSII (indicated in some cases by molecular masses, in other 

cases by name) are shown. Electron extracted from water reduces redox-active tyrosine residue (YZ) that 

then reduces the paired-chlorophyll and species P680, the primary electron donor in the photosystem II 

reaction center. The electron continues via pheophytin (Pheo) to the first (QA) and the second (QB) 

quinone electron acceptor in PSII and further, as indicated in Fig. 1. 

 

The effects of HS on OEC have also been investigated in many studies using 

chlorophyll a fluorescence rise (FLR). This curve is characterized by increase in 

fluorescence intensity from minimum to maximal yield via several peaks known as O, J, 

I and P. It mainly reflects gradual accumulation of reduced first (QA) and second (QB) 

quinone electron acceptors or following electron carriers in thylakoid membrane (for 

reviews see Lazár 1999; 2006; Lazár and Schansker 2009). Under HS conditions the 

shape of FLR is markedly changed and a new rapid K-peak usually appears (Fig. 4). 

The appearance of the K-step in the FLR the curve is attributed mainly to inhibition of 

the oxygen evolving complex (Guissé et al. 1995; Lazár et al. 1997; Srivastava et al. 
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1997; Strasser 1997). It has been shown that a decrease of rate constant of the J-P 

increase and suppression of amplitude of the J-P phase reflects the inhibition of OEC 

activity as well (Pospíšil and Dau 2000) because of the incomplete reduction of the 

electron transport chain. 

The thermostability of OEC can be improved by abscisic acid (ABA) treatment 

(Li et al. 2003), glycinebetaine or bicarbonate (Klimov et al. 2003). 

Digalactosyldiacylglycerol (DGDG) has also been shown to stabilize OEC through the 

better binding of extrinsic proteins (Sakurai et al. 2007). 

 

 
 

Figure 4.  Chlorophyll fluorescence induction curves of tobacco leaf segments measured at 25 °C (curve 

a) and at 50 °C (curve b) after linear heating at the rate of 2 °C min-1. Exciting light 3000 µmol (photons) 

m−2s−1 of red light (650 nm). The x-axis of the graph is logarithmic. 

 
 
1.2.1.1.2. Recovery of oxygen-evolving complex 
 

The post-HS recovery ability of the water-splitting complex has been 

documented in several studies. The flash induced oxygen evolution of intact spinach 

chloroplasts was decreased at high temperatures (5 min treatment), but it showed partial 

recovery when the samples were cooled down and incubated at 25 °C in the dark 

(Yamane et al. 1998). The yield of oxygen evolution was fully reversible (relative to 25 
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°C) only up to about 38 °C. Čajánek et al. (1998) obtained similar results with barley 

leaves when partial decrease in oxygen evolution after 10 min incubation at 37,5 °C was 

found to be mostly reversible within 10 min at 30 °C, and at 42,5 °C irreversible. The 

quantum yield of oxygen evolution during 2h recovery from heat shock (36.5 °C or 40.5 

°C for 15 min) was irreversible with reference to control in intact leaves (Havaux 

1993a). 

A higher degree of recovery of oxygen-evolving activity can also occur in 

samples stressed at even higher temperatures (up to 50 °C) but much longer periods of 

incubation at room temperature are usually necessary. If barley leaves were subjected to 

heat pulses at 50 °C for 40 s, the oxygen evolving activity was almost fully reversible 

after 48 h recovery in the light at growing temperature (Tóth et al. 2005). In darkness, 

recovery did not occur. The results contrast with measurements carried out by Havaux 

et al. (1987), who observed that the oxygen evolution of tobacco leaves can be 

completely restored from 3-min incubation at 48 °C after 24 h incubation at room 

temperature in the dark.  

One of the main features of OEC reversibility resides in the action of 33 kDa 

protein. This manganese-cluster stabilizing protein, which is usually released during 

heat treatment, can rebind again to its functional site when the samples are cooled down 

to room temperature after heat stress in vitro (Yamane et al. 1998). The 33 kDa protein 

itself seems to relatively stable under high temperatures because its secondary structure 

which was completely lost during severe HS, returned to a state similar to that of an 

unheated one after lowering the temperature (Lydakis-Simantiris et al. 1999). Even in 

this case, the 33 kDa protein was capable of rebinding to PSII and the activity of OEC 

was restored. Also the initial content of OEC extrinsic proteins in the sample could be 

recovered. It took about 3 days in maize leaves (in the case of 23 kDa protein) and 4 

days  (for 17 and 33 kDa proteins) after exposure of plants to two successive 20h 

periods at 45 °C (Heckathorn et al. 1997). However, only partial recovery of water 

oxidation capacity was found in wheat leaves (Mohanty et al. 1987). After 10 min at 45 

°C and 47 °C and for the following 3 days at 25 °C, the samples reached only about 

20% and 60% of control values.   

These recovery experiments confirm the proclaimed fragility of OEC: a few 

minutes incubation at temperatures higher than about 45 °C leads to longer recovery 

times and more sophisticated repair mechanisms generally need to be involved. 
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1.2.1.2. Reaction center of PSII 
 

The photosystem II core complex acts as an electron transfer domain, which 

facilitates the light driven charge separation leading to water oxidation in OEC and to 

the reduction of plastoquinone pool. It is a large multi-subunit protein complex 

containing more than 20 polypeptide subunits. Five major transmembrane subunits are 

D1, D2, cyt b559, core antennae CP43 and CP47 (Fig. 3). The D1 and D2 proteins bind 

the primary electron donor of PSII (P680), pheophytin, tyroines Z (YZ) and D (YD) and 

quinones QA, QB (see reviews by Goussias et al. 2002; Vassiliev and Bruce 2008). 

 
 
1.2.1.2.1. Heat-induced inhibition of the PSII core function 

 
The acceptor side of PSII is generally considered more stable under HS than 

OEC but it is still one of the most sensitive parts of the photosynthetic machinery (Berry 

and Björkman 1980; Havaux 1993a, Carpentier 1999; Allakhverdiev et al. 2008).  

More severe HS leads to denaturation of PSII components, especially the fragile 

D1 protein (see Section 1.1.1.2.1.). However, even mild HS is sufficient to trigger the 

inhibition of electron transport (ET), the most important functional change in PSII. It 

has been shown that HS induces inhibition of ET at the acceptor side of PSII, 

concretely, the electron transfer from primary (QA) to secondary (QB) quinone electron 

acceptor of PSII (Bukhov et al. 1990; Cao and Govindjee 1990). Cao and Govindjee 

(1990) have suggested that this functional inhibition may be connected with a structural 

change in D1 and D2 proteins. This is in line with the Fourier transform infrared 

spectroscopy measurement carried out by De Las Rivas and Barber (1997). Their 

experiments showed main conformational transition of PSII core proteins at around 42 

°C, which may correlate with the well-known sensitivity of the reaction center of PSII 

to HS as well as to photoinhibitory conditions (De Las Rivas and Barber 1997). The 

impairment in electron transfer from QA to QB could be related to a shift in the redox 

potential of QA (Ducruet and Lemoine 1985, Bukhov et al. 1990).  Later experiments 

carried out on linearly heated tobacco thylakoids confirmed this view (Pospíšil and 

Tyystjärvi 1999). The heat-induced inhibition of electron transport is related to increase 

in the midpoint potential of the QA/QA- couple from the standard value of -80 mV at 25 

°C to +40 mV at 50 °C. HS-induced structural changes in D1 and D2 proteins of PSII 

could be a reason for the conversion of primary quinone electron acceptor QA from low 

to high potential form (Pospíšil and Tyystjärvi 1999).  
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There are a number of factors that can improve the thermostability of PSII. For 

instance, high concentration of osmolyte (sucrose or glycinebetaine) allows the 

stabilization of the PSII core complex together with the OEC (Allakhverdiev et al. 

1996; 2008). If HS has already inactivated the OEC, ascorbate might protect the PSII 

core due to donation of electrons instead of OEC (Tóth et al. 2009). Treatment by ABA 

as well as NaCl also enhances the thermostability of PSII (Ivanov et al. 1992; Chen et 

al. 2004). Analogously, protection by bicarbonate against thermoinactivation of the 

acceptor side of PS II has been reported at temperatures of 42–50 °C as well (Pospíšil 

and Tyystjärvi 1999). 

 
 
1.2.1.2.2. Chl fluorescence and PSII core under HS measured by its means 
  

The light absorbed by the photosynthetic apparatus, drives the electron transport 

within the thylakoid membrane. However, a minor fraction of captured light is emitted 

as fluorescence (F), which presents a competing process as deactivation of excited 

pigments. Its measurement provides a useful diagnostic way for studying the functional 

state of the photosynthetic apparatus (see Krause and Weis 1991; Lazár 1999; Sayed 

2003 for review). This experimental method is rapid, relatively sensitive, non-

destructive and it has been extensively used to detect and understand HS-induced 

changes in the plant photosynthetic apparatus.  

In contrast to the low-temperature chlorophyll (Chl) fluorescence signal, where a 

substantial part of the emission comes from PSI (Krause and Weis 1991), the 

fluorescence measured at room (and supraoptimal) temperature originates presumably 

from chlorophyll a molecules in PSII (Stahl et al. 1989; Krause and Weis 1991). The 

part of the fluorescence emission ascribed to PSI can be significant, especially in the 

case of wavelengths of approximately 700 nm and higher (Pfündel 1998; Agati et al. 

2000). Despite the fact that this should be taken into account, it is generally considered 

that chlorophyll fluorescence reflects mainly the emission from PSII (Lazár 1999).  

There are two extreme states of the PSII reaction center. The minimal 

chlorophyll fluorescence intensity, designated as F0, is measured if the reaction centers 

of PSIIs are „open“ (i.e. QA is oxidized). If the fluorescence level is maximal (FM) the 

reaction centers are „closed“ (i.e. QA is reduced). Thermal inhibition of PSII is reflected 

by a decrease in variable portion of Chl fluorescence (FV = FM-F0) and the potential 

quantum yield of photochemical reaction of PSII (FV/FM) associated with the 
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photochemical activity of the photosystem (e.g. Krause and Weis 1991). The decline in 

FV might arise from F0 increase and simultaneous FM decrease (Briantais et al. 1996; 

Pospíšil et al. 1998; Wen et al. 2005). The FV/FM ratio in particular has become an 

important parameter which under optimal physiological conditions was found to reach 

the value of about 0.83 (Björkman and Demmig 1987).  

Heat injury of the photosynthetic apparatus is associated with a pronounced rise 

in the intensity of Chl fluorescence under low exciting light (Schreiber & Berry 1977). 

The basal fluorescence (F0) is physiological parameters that have been shown to 

correlate with heat tolerance (Havaux 1993b; Yamada et al. 1996).  

The principle of the F0 rise consists of several events and it has been shown that 

the main causes differ from species to species (Yamane et al. 2000). The main reason 

for heat-induced rise in F0 is generally considered to be accumulation of reduced QA 

resulting from inhibition of electron transport from QA to QB and associated blocking of 

the reaction center of PS II (Schreiber and Armond 1978; Cao and Govindjee 1990; 

Pospíšil and Nauš 1998; Kouřil et al. 2004). The shift in redox potential of QA 

mentioned above (see Section 1.2.1.2.1.) is probably the cause of the inhibition and the 

consequence of this effect is also known as conversion of QB-reducing PS II centres to 

QB-non-reducing PSII centres (Guenther and Melis 1990; Klinkovský and Nauš 1994). 

In DCMU-treated leaves, where QB is displaced from the QB pocket of D1 protein in PS 

II, the accumulation of QA
- is probably due to thermal inhibition of the S2 state of OEC 

and QA
- (Kouřil et al. 2004). 

An alternative explanation for the F0 increase after exposure of samples to high 

temperatures revolves around the separation of LHCII from the PSII core (Schreiber 

and Armond 1978; Yamane et al. 1995; 1997). However, this interpretation was later 

disputed in relation to the decreased absorption cross-section of the fluorescing PSII 

core which is detached from its antenna (Pospíšil and Nauš 1998; Kouřil et al. 2004). 

The higher back electron transfer from QB
- (Kouřil et al. 2004) or from PQ pool 

(Bukhov et al. 1990; Sazanov et al. 1998; Yamane et al. 2000) to QA may also 

contribute to the HS-induced F0 increase. A later effect, reduction of QA through the PQ 

pool in the dark, has been found to be the main cause in species such as potato, tobacco 

and others (Yamane et al. 2000). 

The overwhelming majority of authors have used abrupt temperature change for 

investigation of heat stress effects. However, the dependence of fluorescence intensity 

on linearly increasing temperature, usually designated as the fluorescence temperature 
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curve (FTC), has been used for monitoring PSII as well (e.g. Schreiber and Berry 1977; 

Pospíšil and Nauš 1998; Kuropatwa et al. 1992; Nauš et al. 1992a; 1992b; Nauš and Ilík 

1997; Ilík et al. 1995a; 1995b; 2000; 2003; Kouřil et al. 2004; Lípová et al. 2010).  

 
Figure 5. Typical course of fluorescence temperature curve (FTC) of barley leaf with its first (M1) and 

second (M2) maximum reached during linear heating (0,5 °C min-1). Approximate positions of the critical 

temperature of the main fluorescence increase (TC) and intervals of critical temperatures of irreversible 

fluorescence changes (TC1 and TC2) are marked according to Nauš and Ilík (1997). 

 

Two characteristic maxima of FTC can usually be distinguished (Fig. 5). The 

heat-induced enhancement of fluorescence intensity to the first one (M1) is caused 

mainly by the above-discussed blockage of electron transport from QA to QB. The 

second maximum (M2) probably originates in highly fluorescing Chl a molecules, 

which are released from the chlorophyll-containing protein complexes denaturing at 55–

60 °C (Ilík et al. 2003). 

The temperature of the fluorescence increase to M1, also designated as the 

critical temperature (TC), has been used as an indicator of the thermal stability of the 

thylakoid membrane (e.g. Havaux et al. 1988; Taub et al. 2000; Ducruet et al. 2007). 

Following the high temperature hardening of plants, the TC shifts to higher temperatures 

(Smilie and Nott 1979, Havaux 1993b, Lazár and Ilík 1997). In addition, good 

correlations were found between TC and the temperature of the K peak in the FLR curve 

(Fig. 4 curve b) on progressive HS incubation (Lazár and Ilík 1997) and between TC and 

the leaf temperature at which the capacity for photosynthetic CO2 fixation begins to 

decline (Seemann et al. 1984). 
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1.2.1.2.3. Recovery of the acceptor side of PSII 
 
1.2.1.2.3.1. Recovery following abrupt temperature changes 
 

As mentioned above, Chl fluorescence is a valuable probe of the photosynthetic 

apparatus. There are a number of studies, in which fluorescence parameters were used 

(mostly FV/FM or variables characterizing the fluorescence quenching) for monitoring 

the recovery of PSII (Havaux 1993a; Briantais et al. 1996; Yamane et al. 1997; 1998; 

Tsonev et al. 1999; Tóth et al. 2005; Nishiyama et al. 2006). The HS-treatment of PSII 

results in an increase in F0, decrease in FM and concomitant decrease in variable 

fluorescence (FV) accompanied by inhibition of PSII activity. The quenching of FM has 

been reported to be irreversible, while the increase in F0 was partially reversible 

(Briantais et al. 1996). Two overlapping phenomena probably contribute to the F0 

increase. A moderate and reversible increase in F0, beginning at 30 °C, which is 

probably caused by a partially reversible decrease in the quantum yield of PSII 

photochemistry, and a major F0 increase starting at around 40 °C and probably 

originating from an irreversible decrease in connection of small chlorophyll-protein 

complex to the rest of the PSII (Briantais et al. 1996).  

The reversibility of PSII function detected by fluorescence techniques has also 

been monitored together with CO2 assimilation parameters (Crafts-Brandner and Law 

2000; Sharkey et al. 2001a; Haldimann and Feller 2004; Sinsawat et al. 2004; Kim and 

Portis 2005; Zhang and Sharkey 2009). The fluorescence parameters mostly recovered 

within a relatively short period (up to one hour) following incubation for 10 – 30 min at 

temperatures of around 40 °C or slightly higher.  

In some cases, usually after application of more severe HS, a much longer period 

(one day or more) was required for full recovery (Karim et al. 1999; Tóth et al. 2005; 

Kreslavski 2008; 2009). A model for such recovery of PSII disrupted by HS has been 

suggested (Tóth et al. 2005). The process involves degradation of damaged PSII units 

and de novo synthesis of the PSII core. It takes 48 h and is possible only in the light, not 

in the dark (Tóth et al. 2005). The exposure of heat-stressed samples to moderate light 

during HS is known to be advantageous for the photosynthetic apparatus, especially 

PSII (Havaux et al. 1991; Kreslavski 2009) while strong light exposure increases the 

adverse impacts of HS (e.g. Al-Khatib and Paulsen 1989, Kreslavski et al. 2008). 

It seems that the low light is also required for recovery in the case that de novo 

synthesis to replace damaged proteins does not take place. Nishiyama et al. (2006) have 
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observed inactivation of PSII by moderately high temperatures (41 °C for 20 min), 

which was reversed upon transfer of soybean cells back to 25 °C. The reversible heat-

induced inactivation might involve perturbation of the manganese cluster and the 

recovery required light, but not the synthesis of proteins (mainly D1) de novo 

(Nishiyama et al. 2006). This was designated as the first (reversible) step while the 

second step, induced by incubation at a temperature of 45 °C or higher, was irreversible. 

It remains to be determined whether irreversible inactivation by high temperatures is 

due to critical damage to the PSII complex itself or to the repair mechanism (Nishiyama 

et al. 2006). However, the samples were monitored only within 100 min and thus the 

recovery process described by Tóth et al. (2005) probably did not take place. However, 

the sequence proposed by Nishiyama et al. (2006), i.e. the first reversible event caused 

by changes at the donor side of PSII followed by an irreversible step(s), was suggested 

earlier by Yamane et al. (1998).  

Recently, Kreslavski et al (Kreslavski et al. 2009) explained the absence of 

significant recovery of photosynthetic activity in wheat seedlings after 20-min 

incubation at 44 °C due to presumably greater formation of reactive oxygen species 

with respect to lower stress temperatures, at which the recovery of samples took place. 

For this reason, along with the importance of light, a prooxidant-antioxidant balance 

might play a crucial role in the complete recovery of the photosynthetic apparatus from 

heat-induced inactivation of PSII (Kreslavski et al. 2009). 

 
 
1.2.1.2.3.2. Recovery following gradual heating  
 
  The enhanced dark QA reduction reflected by increased fluorescence during 

linear heating of darkened spinach leaves to 40 °C was found to be largely reversible 

after the leaves were returned to 20 °C (Bukhov et al. 1999). The reversibility of FTC 

was also investigated during linear heating followed by spontaneous cooling (Nauš et al. 

1986) or under a combined regime of linear heating and incubation at a given 

temperature (Nauš et al. 1992a). The critical temperatures of the fluorescence 

temperature curve, TC1 and TC2 (Fig. 5), were postulated earlier in the temperature 

regions 45-48 °C and 53-55 °C, respectively (Nauš et al. 1992a). Lowering the 

temperature of the sample after reaching a temperature below TC1 or TC2 regions leads 

to a partially reversible transition of F to the preceding level (at 30 °C or M1 

respectively). Irreversible structural changes of the photosynthetic apparatus 
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corresponding to individual parts of the FTC have been recently identified (see Section 

1.1.1.2.1 and Lipová et al. (2010)). 

 
 
1.2.1.3. Photosystem I  
 

Linear electron transport in the thylakoid membrane is enabled through the 

consecutive action of both photosystems: PSII and PSI (Fig. 1). Photosystem I is a 

multisubunit protein complex located in the thylakoid membranes which receives 

electrons from plastocyanin and reduces NADP+ to NADPH through a system of 

electron carriers. Excitation energy is transferred to P700, the primary electron donor 

and the subsequent charge separation and electron transport lead to the reduction of 

ferredoxin. For further information on PSI structure and function see detailed reviews 

by Chitnis (2001), Hihara and Sonoike (2001) and Jensen et al. (2007). 

 
 
1.2.1.3.1. PSI function at elevated temperatures 
 
 It has been known for some time that PSI function is more thermostable than 

that of PSII (Berry and Björkman 1980; Havaux 1993a). In line with this view, several 

other studies have shown that denaturation of PSI components generally takes place at 

higher temperatures than those of PSII (see Section 1.1.1.2.1.).  

The photosynthetic performance of PSII is reduced at supraoptimal temperatures 

(see Section 1.2.1.2.1.). Interestingly however, the level of PSI photochemical activity 

was reported to increase (at temperatures around 35°C or higher) as measured in terms 

of O2 uptake (Armond et al. 1978; Gounaris et al. 1983; Thomas et al. 1986; Mohanty et 

al. 1987). These experiments were mostly based on monitoring PSI-mediated ET from 

artificial electron donor (2,6-dichlorophenolindophenol) to acceptor (methylviologen). 

It has been proposed that the stimulation by HS is due to a conformational change at the 

level of the cyt b6f complex resulting in creation of new reducing sides or greater 

affinity for the artificial electron donors (Boucher et al. 1990; Thomas et al 1986). 

However, the inactivation of PSI-mediated O2 uptake was later ascribed to decline in 

the activity of membrane-bound superoxide dismutase or its release from the membrane 

(Lajkó et al. 1991; Boucher and Carpentier 1993). Apart from oxygen uptake 

measurements, a higher rate of light-induced P700 oxidation at temperatures up to 50 

°C suggested higher activity of PSI (Ivanov and Velitchkova 1990). The increase was 
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ascribed to an increase in the PSI absorption cross-section due to heat-induced structural 

reorganization of membrane complexes (see Section 1.1.2.1.). Moreover, no stimulation 

of PSI activity was observed in the case of thylakoid membranes incubated at 48 °C 

with NADP+ as terminal electron acceptor (Lajkó et al. 1991). The presupposed absence 

of real increase in ET activity was confirmed by measurement of gradual decline in 

energy storage in PSI at temperatures higher than 40 °C (Velitchkova and Carpentier 

1994).   

 
 
1.2.1.3.2. Cyclic ET around PSI and its role in recovery 
 

Under certain stress conditions, cyclic electron transport around PSI can take 

place. In this process, the electrons are returned from NADPH (or ferredoxin) back to 

the donor side of PSI via plastoquionone, cyt b6f and plastocyanin (see Joliot and Joliot 

2006 for a review). This might prevent photoinhibition of PSII and provide extra ATP 

(Fork and Herbert 1993; Joliot and Joliot 2006).  

An increase in this electron flow is a frequently reported effect of moderate HS 

on photosynthetic reactions (Havaux 1996; Bukhov et al. 1999; 2000). The regulation of 

cyclic ET around PSI may help plants to tolerate high temperatures by maintaining 

thylakoid proton gradient and it can assist with non-radiative dissipation of excess 

photon energy under the combined effects of high light and HS (Jin et al. 2009). In 

addition, the transmembrane proton gradient generated by cyclic ET, protects the 

thylakoid membrane itself from heat-induced damage (Zhang and Sharkey 2009). The 

cyclic ET also indirectly facilitates the reparation of heat-induced damage, because it 

supplies enough energy for synthesis of cytoplasmic, chloroplastic as well as heat shock 

proteins through the production of ATP molecules (Bukhov et al. 2000). This was 

confirmed by observation of a higher rate of cyclic ET during recovery from HS 

(Kreslavski et al. 2008). 

 
 

1.2.2. Photosynthetic CO2 assimilation 
 

In the first stage of photosynthesis, light-dependent reactions collect the light 

energy and generate the energy-storage molecules ATP and NADPH (Fig. 1). These 

products are used to capture and reduce carbon dioxide which is converted into organic 

compounds during the second photosynthetic stage. This dark phase of photosynthesis 
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(Calvin cycle) takes place in chloroplast stroma. Ribulose-1,5-bisphosphate 

carboxylase/oxygenase (RuBisCO) is a key enzyme used in the Calvin cycle to catalyse 

the first major step in carbon fixation (e.g. Blankenship 2002). 

 
 
1.2.2.1. Effects of high temperature on CO2 assimilation 
 

It has been considered for many years that PSII, especially its donor side, is the 

primary target of high temperature effects (see part 1.2.1.1.). However, several studies 

have suggested that net CO2 assimilation rate (PN) is the most sensitive photosynthetic 

process in plants (for review see Salvucci and Crafts-Brandner 2004a). The PSII 

function, as measured by some basic chlorophyll fluorescence parameters (F0, FM or 

maximal quantum yield of PSII photochemistry FV/FM), appears to be more stable 

towards moderately elevated temperatures than CO2 assimilation (Feller et al. 1998; 

Crafts-Brandner and Law 2000; Crafts-Brandner and Salvucci 2002; Tang et al. 2007). 

Although the CO2 assimilation rate can be limited by the electron transport rate in PSII 

(Wise et al. 2004) or by the cellular content of extrinsic proteins in OEC (Heckathorn et 

al. 1997), the inhibition of Rubisco activity is usually considered as a basis for the lower 

PN at moderately elevated temperatures (Weis 1981a; Law and Crafts-Brandner 1999; 

Kim and Portis 2005). It is not the activity of Rubisco per se but the light-dependent 

Rubisco activation that is particularly sensitive to HS (Weis 1981b; Feller et al. 1998).  

In general, the activation state of Rubisco is regulated by another stromal 

enzyme called Rubisco activase (see Portis 2003 for review). Thus, the reason for 

Rubisco inhibition can be presumed to be due directly to loss of Rubisco activase 

activity. This premise has been proven in several studies (Feller et al. 1998; Law and 

Crafts-Brandner 1999; Crafts-Brandner and Law 2000; Crafts-Brandner and Salvucci 

2002; 2004; Salvucci and Crafts-Brandner 2004b). For instance, the activation state of 

Rubisco decreased at temperatures exceeding 32.5 °C, with nearly complete inactivation 

at 45 °C (Crafts-Brandner and Salvucci 2002). The sensitivity of activase to HS is much 

greater than that of Rubisco (Salvucci et. al 2001) and varies in different plant species 

(Law and Crafts-Brandner 1999). The inhibition of activase can be attributed to changes 

in its structural properties, i.e. to formation of high-molecular-weight aggregates (Feller 

et al. 1998), or to disruption of activase subunit interactions with each other or with 

Rubisco (Crafts-Brandner and Law 2000). Reversible association of a specific protein 
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(chaperonin-60β) with Rubisco activase might protect it from thermal denaturation and 

thus contribute to plant tolerance to HS (Salvucci 2008). 

In addition to these findings, it has been also suggested that decline in CO2 

assimilation rate is caused by limitation of Ribulose-1,5-bisphosphate regeneration, 

rather than Rubisco activase inhibition (Cen and Sage 2005; Kubien and Sage 2008; 

Sage et al. 2008). Thus, the process of photosynthesis limitation at elevated 

temperatures is still a subject of discussion. Moreover, photorespiration, an alternative  

Rubisco reaction , is increased at temperatures exceeding the optimum for assimilation 

due to relatively higher concentration of oxygen in relation to carbon dioxide at higher 

temperatures (Blankenship 2002) and this also leads to concomitant decrease in the 

efficiency of CO2 assimilation. 

The rate of photosynthesis (PN) at higher temperatures depends on ambient 

atmospheric concentration of CO2 (Taub et al. 2000; Wang et al. 2008). Taub et al. 

(2000) presented evidence that most tested species grown under elevated atmospheric 

CO2 (550-1000 µmol mol-1) showed increased tolerance of photosynthesis to HS. The 

thermotolerance of PN under elevated CO2 is increased in C3 plants, but decreased in C4 

plants (Wang et al. 2008). These results, along with some other studies, indicate that the 

reaction of PN under HS conditions depends especially on the plant species. 

 
 
1.2.2.2. Recovery of CO2 assimilation 
 

In spite of its susceptibility to high temperatures, the CO2 assimilation process is 

quite capable of recovery from HS-induced changes (Weis 1981a; Heckathorn et al. 

1997; Feller et al. 1998; Crafts-Brandner and Law 2000; Sharkey et al. 2001a; 

Haldimann and Feller 2004; Kim and Portis 2005). A threshold condition for recovery 

of the activation state of Rubisco is generally considered the maintainance of leaf 

temperature around 40 °C for several minutes or up to half an hour (Feller et al. 1998; 

Crafts-Brandner and Law 2000; Haldimann and Feller 2004; Kim and Portis 2005). 

However, it is very difficult to compare the results from these studies because of the use 

various plant species (oak, tobacco, cotton and wheat) and different stress regimes (T-

jump - e.g. Sharkey et al. 2001a; gradual temperature increase - Kim and Portis 2005; 

combined – Haldimann and Feller 2004). The reversible decarbamylation of Rubisco at 

moderately high temperatures might be a protective mechanism by which the plant 

avoids more serious damage to Rubisco and the rest of the photosynthetic apparatus 
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(Sharkey et al. 2001a). Kim and Portis (2005) concluded that Rubisco activase is critical 

for recovery after inhibition of photosynthesis by exposure to high temperatures. 

Finally, physical denaturation of activase has been observed at temperatures above 40 

°C that cause irreversible inactivation of Rubisco (Feller et al. 1998). Interestingly, full 

post-heat stress (45 °C) recovery of PN in maize coincided with recovery of levels of 

OEC proteins (Heckathorn et al. 1997) indicating that carbon fixation recovery can be 

limited by HS-induced decrease in these proteins. The recoverability of PN can be 

improved by isoprene (Sharkey et al. 2001b). The photosynthesis of bean leaves fed 

fosmidomycin (which eliminates isoprene emission) recovered less, following HS 

treatment (2 min at 46 °C) than in the case of control leaves or fosmidomycin-fed leaves 

in air supplemented by isoprene (Sharkey et al. 2001b).  
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2. GOALS OF THE THESIS 

 
The main goal of this thesis was to increase our understanding of some aspects 

of thermal damage in plants in relation to various heat stress regimes. A secondary aim 

was study of the recoverability of plants to these HS-induced changes. Two separate 

projects were undertaken:  

 

1) The aim of the first project was to characterize the HS-related changes in the 

chlorophyll fluorescence signal and its reversibility in barley leaves exposed to a 

linearly increasing and decreasing temperature with different heating/cooling 

rates 

 

2) The aim of the second project was to uncover the response of light-induced 

chloroplast movement in tobacco leaves to linear and temperature-jump heat 

stress 
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3. EXPERIMENTAL PART 
 

3.1. IRREVERSIBILITY OF HEAT STRESS-INDUCED CHANGES DETECTED BY THE 

CHLOROPHYLL FLUORESCENCE IN LINEARLY-HEATED BARLEY LEAVES 

 
The relation of the chlorophyll fluorescence intensity to linearly increasing 

temperature is usually depicted as the fluorescence temperature curve (FTC). The curve 

presents a record of the continual response of the plant photosynthetic apparatus to 

gradual heating and it reflects many structural as well as functional changes. 

Recoverability from heat injury is very important for plants. The reversibility of 

the FTC was investigated during linear heating followed by spontaneous cooling (Nauš 

et al. 1986) or under a combined regime of linear heating and incubation at given 

temperatures (Nauš et al. 1992a). Other experimental methods have also helped to 

characterize some irreversible changes caused by linear heating (Lipová et al. 2010). 

Here, we revealed the basic features of the HS-related recovery of barley leaves 

using four linear heating/cooling regimes with different heating rates. In order to carry 

out a detailed analysis of measured FTCs, five slopes of linear parts of each FTC, 

degree of fluorescence irreversibility at 35 °C and activation energies of the initial 

fluorescence irreversible increase were evaluated. The results are described and 

discussed in more detail in the attached paper [I]. 

 
 

3.1.1. Material and methods 
 

Barley plants (Hordeum vulgare L., cv. Akcent) were cultivated in a homemade 

growth chamber for 9 d in a 16 h / 8 h light/dark regime (85 ± 20 µmol photons m-2 s-1 

of white fluorescent light, relative humidity 50 ± 10 %) in artificial soil composed of 

perlit and Knop solution at 22 ± 3 °C. The plants used for measurements were in growth 

stage 12 according to Zadox (Zadox et al. 1974).  

Chlorophyll fluorescence intensity was measured with a fluorimeter PAM 2000 

(Walz, Effeltrich, Germany) excited by weak red light (655 nm, 0.3 µmol photons m-2 s-

1) and detected at wavelengths higher than 700 nm.  
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Heating device and linear heating 

A laboratory-made heating device was used for the sample heating. The 

segments placed on a holder were immersed in a stirred distilled water-bath. The 

heating/cooling of the water bath used Peltier cells. The temperature of the bath was 

determined by a thermocouple and the regime was controlled by an application written 

in LabView 3.1 (National Instruments, Austin, Texas). The leaf segments were 

immersed in distilled water and heated at 0.5, 1, 2 or 3 °C min-1 from room temperature 

up to the maximal temperature Tm and then cooled at the same rate to 35 °C.  

 

The FTC regression lines and Ea calculation 

For detailed evaluation of the FTC, we established five tangents (S1 - S5) of 

some linear parts of the up/down linear FTC (Fig. 6). The temperature range for these 

lines was established so as to reach a minimal deviation between fluorescence intensity 

and the corresponding regression line. The first (designated S1) and second (S2) tangent 

is defined in the temperature range from 46 °C to 48 °C and from 51 °C to Tm, 

respectively. The S3 line was discernible only for Tm above 54 °C. The temperature 

range for the S3, S4 and S5 tangents was established at 54–48 °C, 48–42 °C and 42–35 

°C, respectively. The slopes of tangents of the linear FTCs parts were estimated for 

these temperature ranges by a linear regression procedure using Microsoft Excel 2000. 

  
Figure 6. A schematic illustration of tangents (S1 - S5) of the linear parts of the up/down linear FTC.  

The temperature ranges of the tangents are 46–48 °C (S1), 51 °C–Tm (S2) during heating and 54–48 °C 

(S3), 48–42 °C (S4) and 42–35 °C (S5) during subsequent cooling. The arrows indicate heating (to the 

right) and cooling (to the left) time-course. The position of the first FTC maximum reached during 

heating (M1) and cooling (M1´) are marked. 
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3.1.2. Results and discussion 
 

Coefficient of irreversibility and critical temperatures 

In order to investigate the recovery of FTC, the barley segments were heated in a 

water-bath from room temperature up to maximal temperature Tm (chosen range from 

42 °C to 65 °) and then linearly cooled to 35 °C at the same rate. Typical curves for 

linear heating (right-hand arrow)/cooling (left-hand arrow) of the samples for all 

measured rates (0.5, 1, 2 and 3 °C min-1) and for Tm = 60 °C are shown in Fig. 7. This 

illustrates that the FTC course depends on the heating rate and maximal temperature of 

heating (Tm).  

The recoverability of chlorophyll fluorescence after the heating/cooling cycle 

was determined using the coefficient µ, representing the degree of fluorescence 

irreversibility at 35 °C (i.e. ratio of fluorescence intensity at 35 °C after cooling and the 

fluorescence intensity at the same temperature during heating of the sample). The µ 

versus Tm dependences (Fig. 8) showed two distinct phases, an increasing and 

decreasing one, indicate the two main processes in the irreversible changes. The 

decrease in µ values during the decreasing phases (Fig. 8) to its initial values thus does 

not mean a fully reversible reaction but gradual disruption to fully irreversible state 

(Fig. 7a). 

The reversibility was higher, as can be expected, for higher heating/cooling rates 

and lower Tm. The initial phase with values of µ greater than 1 increases and reaches a 

maximum at temperatures between 54 °C and 61 °C in relation to heating rate (Fig. 8). 

This increase in µ in all probability reflects an increase in the number of irreversibly 

closed (blocked) PSII centers. Interestingly, this first phase does not reflect the original 

FTC (Fig. 7). The dependence of µ on Tm increases smoothly with no maximum 

corresponding to the M1 maximum (around 50 °C). The reverse part of FTC can also 

reach a maximum (designated as M1´, Fig. 7) that partly copies the original curve. 
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Figure 7. Typical courses of the up-down linear FTC representing the changes in the measured F0 level 

of a spring barley leaf segment for all measured heating/cooling rates. The maximal temperature of 

heating (Tm) was 60 °C. The curves are normalized to the fluorescence intensity at 25 °C. The arrows 

indicate heating (to the right) and cooling (to the left) temperature-course. The positions of the first and 

second FTC maxima reached during heating (M1 and M2) and the maximum reached during cooling 

(M1´) are marked. 

 

A fully reversible response of barley leaves Chl fluorescence (µ = 1) was 

observed for Tm = 42–43 °C. The critical temperatures of the fluorescence temperature 

curve, TC1 and TC2, were postulated earlier in the temperature regions 45-48 °C and 53-

55 °C, respectively (Nauš et al. 1992a). Lowering the temperature of the sample after 

reaching a temperature below TC1 or TC2 regions led to a partially reversible transition 

of F to the preceding level (see Section 1.2.1.2.2.). A starting point of the steeper 

increase in µ (see Fig. 8, arrows) and the region of µ (Fig. 8) maximum could present a 

similar triggering region to TC1 and TC2, respectively. The particular critical temperature 

occurred within temperature regions 43–48 °C (TC1) and 54–60 °C (TC2) depending on 

the heating rate. 
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Figure 8. The dependence of the fluorescence coefficient of irreversibility at 35 °C (µ) on the maximal 

temperature of heating (Tm) for different heating/cooling rates. The arrows indicate an approximate 

starting point of a steeper increase (i. e. 10% or more). The means of 3 experiments and the variation 

interval are shown. 

 

Tangents  

A detailed characterization of the course of the up/down linear FTC can be made 

by a set of 5 linear parts (Fig. 6) and the slopes of their corresponding tangents (Fig. 9). 

The slopes of the S1 and S2 tangents, describing the heating part (to the M1 maximum), 

were only changed slightly in our measurements (not shown). The S3, S4 and S5 

tangents describe the fluorescence course during the linear cooling from Tm to 35 °C 

(Fig. 6). The temperature Tm that triggered a maximal fluorescence increase during the 
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first phase of cooling is represented by the minimum of the S3 tangent slope. An 

increase in the heating rate from 0.5 to 3 °C min-1 led to a shift of this minimum from 

Tm = 55 °C to 60 °C higher temperatures (Fig. 9). Similarly, the minima of S4 occurred 

at temperatures (Tm = 54 °C, 56 °C, 60 °C and 61 °C for the heating rate of 0.5, 1, 2 and 

3 °C min-1, respectively) reaching negative values. The dependencies of S5, reflecting 

the last phase of FTC cooling, had lower amplitudes but similar courses as in the case of 

S4. 

 
Figure 9. The dependence of slopes of tangents (S3, S4, S5) on the maximal temperature of heating (Tm) 

for each measured heating/cooling rate. The means of 3 experiments and the variation interval are 

shown. The arrows indicate a change of sign of a given slope from positive to negative. Evaluated from 

the up/down linear FTCs of spring barley leaf segment. 

 

The slopes of the S4 and S5 tangents usually change their sign with increasing 

Tm (see Fig. 9, arrows). The maximum in the reverse part of the curve (M1´) can be 

detected in the region of Tm where the slope S3 is negative and S4 positive. This can be 
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found between 54 and 59 °C but only for higher rates of heating/cooling (2 and 3 °C 

min-1, Fig. 9). 

A very relevant indication for the recovery threshold of PSII reflected by the 

FTC curve seems to be the change in sign from positive to negative of the slope of the 

S4 tangent (Fig. 9, arrows). These points occurred between 52 and 59 °C depending on 

the heating/cooling rate. For Tm below these temperatures, the changes in the sample are 

partly reversible. After this point, the signs of the S3 and S4 slopes are the same and the 

cooling part of FTC shows an increasing trend only with no maximum. 

 

Activation energies 

In order to better characterize the irreversible processes during our heating 

regimes, we attempted to calculate the activation energies (Ea) necessary for the 

fluorescence irreversibility increase. The initial increasing part of the µ(Tm) curve (up to 

Tm = 52, 54, 58 and 58 °C for the heating rate 0.5, 1, 2 and 3 °C min-1, respectively) was 

used for such an evaluation. Since each of the possible reasons for increase in µ may be 

in principle characterized as a denaturation of some PSII transforming them from the 

fully functional state to an adversely changed one, we applied a simple protein-

denaturation model to calculate the Ea. In the model, the proteins are irreversibly 

transformed from a native to a denatured state with a temperature-dependent rate 

constant (see e.g. Bischof and He 2005), which changes with temperature according to 

the Arrhenius or Eyring equation. In this model, a quantity designated as fraction of 

denatured proteins (Fd) needs to be estimated. We predicted that the fraction of 

denaturated centers was either proportional to measured excess of µ (Fd1) or to 

fluorescence irreversibility derived from the FV/FM parameter (Fd2). Thus, we obtained 

four options for the evaluation of Ea; the quantities Fd1 and Fd2 were calculated using 

both possible (Arrhenius as well as Eyring) temperature dependences of the rate 

constant. 

For each of these options were numerically evaluated the activation energies 

separately for each heating rate (Tab. 1). Four different approaches led to values ranging 

from 30 to 50 kJ mol-1 (Tab. 1). These values decreased slightly with the increasing 

heating rate and they are similar to those of enzymatic membrane processes and, 

indicate rather some minor structural changes in PSII. For denaturation, a higher 

activation energy is needed (Bischof and He 2005). 
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Table 1. Calculated activation energies of the fluorescence irreversible increase. For each combination 

of the model and heating rate, the obtained activation energy (kJ mol-1) (left columns) and corresponding 

sum of least squares (right columns) are shown. 

 

The best fit was obtained with an assumption of closing PSII at the acceptor side 

characterized by the tendency of fluorescence to increase up to the FM level (Fd2 option, 

Tab. 1). Therefore the most probable mechanism of the initial irreversible changes is the 

closure of certain PSII reaction centers (i.e. the accumulation of QA
-), which is probably 

connected with disintegration of OEC as the most susceptible part of PSII. 

 

Method

Arrhenius dependence (F d1 ) 49.8 0.032 48.7 0.008 48.2 0.044 47.7 0.075

Eyring dependence (F d1 ) 47.0 0.032 45.9 0.007 45.4 0.044 44.9 0.075

Arrhenius dependence (F d2 ) 31.2 0.005 30.2 0.001 29.5 0.006 29.1 0.011

Eyring dependence (F d2 ) 41.1 0.005 40.2 0.001 39.6 0.007 39.1 0.011

Heating rate (°C min-1)
0.5 1.0 2.0 3.0
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3.2. IMPACT OF TWO DIFFERENT TYPES OF HEAT STRESS ON CHLOROPLAST 

MOVEMENT IN TOBACCO LEAVES 

 
The spatial arrangement of chloroplasts in the plant leaf can change as a response to 

light intensity. The translocation towards weakly illuminated leaf parts (the 

accumulation response or diastrophe) and away from strongly illuminated regions (the 

avoidance response parastrophe) may optimise the photosynthetic performance in a 

given plant protecting the chloroplasts from excess light (Kasahara et al. 2002).  

Despite the fact that high temperatures are a common environmental factor, little 

is known about the chloroplast movement under HS conditions. Thus, the goal of this 

study was to characterize precisely how HS affects the light-induced motility of 

chloroplasts as detected by measurements of light-induced courses of collimated 

transmittance (CT). Using distinct heating regimes (linear and T-jump) allowed us to 

examine their impact. In addition, the fast chlorophyll fluorescence rise (FLR) was 

measured on the stressed leaves to monitor the function of PSII. Since chlorophyll 

fluorescence has been shown to be dependent on chloroplast movement (Brugnoli and 

Björkman 1992), the reactions of chlorophyll fluorescence and leaf transmittance 

measurements to elevated temperatures were compared as well. The results are 

described and discussed in more detail in the attached paper [II]. 

 
 

3.2.1. Material and methods 
 
Plant material 

Tobacco plants (Nicotiana tabacum L. cv. Samsun) were cultivated in regularly 

watered soil substrate in pots in a growth chamber (SGC.170.PFX.J, Weiss-

Gallenkamp, Loughborough, England) for 2.5 - 3.5 months in a regime consisting of 8 h 

dark (temperature 21 °C, relative humidity 55 %), 15 h light (24 °C, 60 %, 100 µmol 

(photons) m−2s−1 of photosynthetically active radiation (PAR)) with 30 min of linear 

light-rise (dawn) and 30 min light-decrease (sunset). 

 

Sample handling 

The third leaves counted from the apex taken from ten different plants were used 

for five independent measurements under the T-jump regime and five under linear HS. 

Seven segments (for seven different Tm) of dimensions 0.9 x 2.0 cm (in the case of T-
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jump regime) or 0.9 x 1.5 cm (linear regime) were cut off from each leaf and used for 

the measurements. Before HS treatment each leaf segment was put into a mask with 

central opening made from filter paper moistened with water (to reduce the water loss 

of the segment) and illuminated for 15 min [at 22 °C, RH: 24%, 20 µmol (photons) 

m−2s−1] to insure the parastrophe chloroplast position, then packed into aluminum foil. 

The foil insured the heat transport and prevented infiltration of the segment by the water 

from the bath. The samples (packed leaf segments) underwent one of two different 

regimes of HS before the FLR and time-course of light induced changes in CT were 

measured:  

1) Linear regime: a laboratory-made heating device described in Frolec et al. (2008) 

was used for this HS regime. The samples were immersed in distilled water and 

heated at 2 °C min-1 from room temperature (25 °C) up to the maximal 

temperature Tm (25, 30, 35, 38, 40, 42 or 45 °C) and then cooled at the same rate 

to the final temperature (25 °C).  

2) T-jump regime: 5 min treatment of sample in distilled water at 25 °C was 

followed by 5 min incubation at Tm (25, 30, 35, 38, 40, 42 or 45 °C) in 

thermostat U10 (Prüfgeräte-Werk Medingen, Dresden, Germany) and 5 min at 

25 °C in thermostat (Transsonic T460/H, Elma, Singen, Germany). The transfer 

of a sample to the bath took about 1 s (the “jump”). 

 

Experimental methods and parameters calculations 

Fluorescence induction curves were measured from the adaxial leaf side by 

fluorometers PEA (Hansatech Instruments, King's Lynn, England) or FluorPen FP100 

(PSI, Brno, Czech Republic). The irradiance was about 3000 µmol (photons) m−2s−1 of 

red light (peak wavelength 650 nm) for PEA and 3000 µmol (photons) m−2s−1 of blue 

light (455 nm) for FluorPen (a test showed that the FLR curves from a control leaf and 

measured by both fluorometers were the same within experimental error; data not 

shown). The signal was detected at wavelengths higher than 700 nm. The fluorescence 

parameters used here were calculated from the following equations (based on the JIP-

test; see Strasser et al. 2004): F0 = fluorescence intensity at 50 µs, FV/FP = (FP - F0) / FP, 

M0 =4(F300 µs - F0) / (FP - F0), VJ = (FJ - F0) / (FP - F0), VI = (FI - F0) / (FP - F0), SM = area 

(between fluorescence curve and FP) / (FP - F0) in the case of linear time scale. 

Light-induced chloroplast movement was detected using leaf transmittance 

measurement, similar to that described in Nauš et al. (2008). To induce the chloroplast 
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movement, the samples were illuminated from the adaxial leaf side by a blue light 

(using Schott BG 12 filter) with two different intensities. The leaf segment was 

illuminated for 25 min with strong blue light [380 µmol (photons) m−2 s−1] to cause the 

chloroplast movement in the direction to the anticlinal cell walls and for the next 35 min 

by a weak blue light [5 µmol (photons) m−2 s−1] which caused a back movement 

characterized by a decrease in leaf transmittance. The source of cold white light was 

Schott KL 2500 (Schott Glas, Mainz, Germany). The transmitted light was conducted 

by a light-guide to the spectroradiometer LI-1800 (LI-COR, Lincoln, Nebraska). The 

transmittance signal was measured at 436 nm every 30 s. To obtain a particular value, 

the signal obtained with the leaf was divided by the signal detected in the same 

arrangement without the leaf. 

From the light-induced time courses of the collimated transmittance were 

evaluated the normalized amplitudes (H1, H2) and the slopes (S1, S2) of the CT curves. 

 

Statistical analysis 

Data sets with P < 0.05 were regarded significantly different. Statistical software 

SigmaStat (Systat, Chicago, USA) version 3.0 was used for the testing. Each 

measurement (fluorescence inductions, transmittance measurements) was performed 

five times (n = 5). The statistically significant difference for the given parameter was 

evaluated for particular Tm with respect to the preceding Tm. 

 
 

3.2.2. Results and discussion 
 
Linear HS 

Most measured FLR curves showed the characteristic shape with O, J, I and P 

steps. The changes in fluorescence signal detected after the linear regime started at 

about Tm = 42 °C (Fig. 10a). The character of all measured FLR curves and their 

responses to HS (i.e. gradual decrease of FLR intensity at J, I, and P steps reflecting 

gradual loss of photochemistry) correspond with other results (e. g. Guissé et al. 1995; 

Lazár et al. 1997; 1999; Tóth et al. 2005; 2007). Similarly, decline in the time-course of 

CT curves of the linearly heated samples was observed at the highest used Tm = 42 °C 

and 45 °C (Fig. 10b). 
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Figure 10. Average (n = 5) FLR (a) and 

time-course of CT (b) curves of tobacco leaf 

segments measured at 25 °C after linear HS 

regime (2 °C min-1 up to given maximal 

temperature Tm and cooled at the same rate 

to 25 °C). The illumination during each CT 

measurement (b) was changed after 25 min 

from 380 to 5 µmol (photons) m-2 s-1 

 Figure 11. Average (n = 5) FLR (a) and 

time-course of CT (b) curves of tobacco leaf 

segments measured at 25 °C after T-jump 

HS regime (5 min incubation at given Tm 

followed by 5 min incubation at 25 °C). The 

illumination during each CT measurement 

(b) was changed after 25 min from 380 to 5 

µmol (photons) m-2 s-1 

 

In order to estimate the effect of HS regime on the samples more accurately, we 

evaluated and compared several fluorescence and transmittance parameters. From 

standard JIP-test (for review see Strasser et al. 2004) we chose 6 “basic” parameters 

derived from the FLR curves (Fig. 10a and 11a): the minimal fluorescence at the 

beginning of FLR (F0), maximal quantum yield of PSII photochemistry (FV/FP), 

approximation of the slope of the initial part of fluorescence rise (M0), relative variable 

fluorescence at 2 ms (VJ), at 30 ms (VI) and the normalized area (SM) above the FLR 

curve. From the measured CT curves (Fig. 10b and 11b) we introduced the normalized 

parameters of the maximal collimated transmittance (H1) and slopes of the linear section 

of the time-course (S1) for the increasing part and analogically H2 and S2 for the 

decreasing part of CT curves. 
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Figure 12. Chl fluorescence and leaf CT 
parameters calculated from the FLR and CT 
curves measured at 25 °C after linear HS 
regime (2 °C min-1 up to given Tm and cooled at 
the same rate to 25 °C). The values are mean ± 
SD of five independent experiments. 
Statistically significant differences between 
neighboring means (P < 0.05) are presented by 
asterisks 

 Figure 13. Chl fluorescence and leaf CT 
parameters calculated from the FLR and CT 
curves measured at 25 °C after T-jump regime 
(5 min incubation at given Tm followed by 5 min 
incubation at 25 °C). The values are mean ± SD 
of five independent experiments. Statistically 
significant differences between neighboring 
means (P < 0.05) are presented by asterisks 

 

Parameters defined in this way reflect the amplitude (H1 and H2) and rate (S1 and S2) of 

chloroplast translocation. Statistically significant changes in parameters measured using 

linear regime mostly occurred for Tm = 45 °C (Fig. 12). 

 

T-jump HS  

The first pronounced changes in the shape and fluorescence intensity of the FLR 

curve measured after T-jump regime were detected at Tm = 42 °C (Fig. 11a). The 

decline in the extent of CT signal started at about Tm = 40 °C and the changes in CT 

curves during the illumination were almost fully inhibited at Tm = 45 °C (Fig. 11b).  

Fluorescence parameters of curves measured after T-jump HS changed mostly at 

45 °C while transmittance changes occurred in the interval Tm = 40 – 45 °C (Fig. 13). 
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Although the statistically significant differences in transmittance parameters were 

largely observed for Tm higher than 40 °C, there was a tendency to reach maxima of the 

transmittance parameters after incubation for Tm = 35 °C (Fig. 13) corresponding with 

the original CT curves (Fig. 11b). This maximum indicates that a T-jump incubation for 

5 min at Tm = 35 °C was optimal for chloroplast movement.  

 

Comparison of FLR and CT under both regimes 

Our measurement of CT and FLR curves revealed that the chloroplast movement 

is more sensitive to higher temperatures than PSII photochemistry for our regimes (see 

all statistically significant changes in calculated parameters in Figs. 12 and 13). 

Interestingly, these differences in sensitivity were only slightly greater after linear HS 

(compare the reaction of S1 and S2 with FLR parameters at Tm = 42 and 45 °C in Fig. 

12) in contrast to much greater in the case of T-jump regime (compare the reaction of 

CT parameters with FLR parameters for Tm = 40, 42 and 45 °C in Fig. 13).  

The question, however, was whether the regimes and stress temperatures used, 

would occur under field conditions. Additional pilot experiments under field conditions 

showed that tobacco leaves can reach temperatures around 45 °C in the sunshine and 

that the temperature rise after exposure of the leaf is approximately linear and more 

rapid than slow leaf cooling induced by transfer of the sample back into the shadow. 

 

Impaired chloroplast movement and its possible physiological role 

The shape of CT curves in Fig. 10b and 11b reflects the chloroplast 

translocation. The increase in CT signal after onset of strong blue light is caused by the 

avoidance response resulting in increased transmittance through the cells. Vice versa, 

dim light induced accumulation of chloroplasts close to illuminated cell walls resulting 

in a decrease in light transmittance. All CT time-course parameters, the amplitude (H1 

and H2) and rates (S1 and S2) of chloroplast translocation, began to decline at about Tm = 

40 °C (Figs. 12 and 13). The decrease reflects gradual inhibition of chloroplast 

translocation for both avoidance (H1, S1) as well as accumulation response (H2, S2). 

As the plant cytoskeleton plays a crucial role in chloroplast movement (for 

review see Takagi 2003), we tentatively propose that cytoskeleton changes are 

responsible for the inhibition of chloroplast movement at higher Tm. This is in 

accordance with observation of disruption of microtubules and actin filaments exposed 

to similar HS conditions (Müller et al. 2007). Other reasons too, for the inhibition of 
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chloroplast movement are possible, e.g. inhibition of signal transduction mediated by 

phototropins or impaired linkage between chloroplasts and actin filaments (Oikawa et 

al. 2008; Kadota et al. 2009). 

One of the most accepted physiological functions of chloroplast movement is to 

avoid excess light (Park et al. 1996; Kasahara et al. 2002). Strong light under natural 

conditions is often accompanied by elevated temperatures that can result in decreased 

light-induced chloroplast movement. The HS-induced inhibition of chloroplast 

translocation in strongly illuminated regions of the first layer of the mesophyll cells 

prevents the chloroplast movement in the direction of the sidewalls of the cell under 

strong light. We tentatively propose that such HS-induced interception of greater 

amounts of light at the illuminated surface cells better protects the remaining 

chloroplasts inside the leaf from excess light.  
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4. CONCLUSION  
 

The focus of this thesis was the effects of HS on the photosynthetic apparatus of 

plants and study of the reversibility of the resultant HS induced changes. The use of a 

variety of heating regimes and comparison of their impact was given careful attention. 

The response of the photosynthetic apparatus was monitored using chlorophyll 

fluorescence techniques in particular.  

In the first paper, we focused on characterization of the effects of linear 

heating/cooling regimes, an unexplored approach in the field of heat stress research. 

Considering the initial signal, a fully reversible response of PSII function as reflected by 

the reversibility of chlorophyll fluorescence, was observed for a maximal temperature 

(Tm) of linear heating up to 42 °C. The evaluation of tangents revealed that the reaction 

of the samples was leastwise partly reversible up to maximal temperatures ranging from 

52 (in the case of heating rate 0.5 °C min-1) to 59 °C (3 °C min-1). Further evaluation of 

initial irreversible changes in fluorescence led to an estimation of the activation energy 

needed for this process (on average 41 kJ mol-1) and reflecting some minor structural 

changes in PSII. The assumptions used for the Ea evaluation suggested that the 

irreversible changes are caused by closure of certain PSII reaction centers (i.e. the 

accumulation of QA
-), which is considered the main reason for fluorescence increase in 

heated samples (see Section 1.2.1.2.). 

The second paper deals with the impact of distinct heating regimes, linear and T-

jump, on the light-induced movement of tobacco chloroplasts. While a 5-min incubation 

at 35 °C presented optimal conditions for the translocation, the inhibition of chloroplast 

movement began after incubation at about 40 °C and was almost complete at 45 °C. The 

fluorescence parameters from the O-J-I-P curves, measured in the same samples, 

responded generally at higher Tm. This difference in sensitivity was higher for the 

abrupt than for the gradual HS. Although chloroplast translocation can affect the 

fluorescence signal under normal conditions, their responses to HS seem to be different, 

according to our results. The observed inhibition of light-induced chloroplast movement 

is probably due to cytoskeleton disruption and it is suggested that this impairment might 

contribute to protection of the majority of chloroplasts inside the leaf from 

photoinhibitory damage. The measurement of changes in collimated transmittance 

showed that the light-induced chloroplast movement is affected under relatively mild 
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HS. For this reason, we suggest this may be a sensitive indicator of the adverse effects 

of elevated temperatures.  

This thesis shows the importance of various heating regimes as the plant 

response to heat shock is strongly influenced by the kind and severity of the HS. It is 

not surprising that slow temperature increase causes greater irreversibility of some 

physiological parameters than faster heating to the same stress temperature (Fig. 7) as 

the slower temperature increase presents a longer exposure to higher temperatures and 

thus greater risk of plant damage. On the other hand, some of the results, namely the 

slight decrease in Ea with the increasing rate of heating as well as the lower adverse 

impact of linear heating with respect to T-jump, support the view that gradual 

temperature increase is more tolerable to plants than rapid temperature increase.  

This very rapid acclimation process is activated in a relatively short period of 

time and thus it takes place during the action of the HS itself. This might consist in the 

protective effect of some heat shock proteins, whose synthesis is greater under gradual 

temperature increase (Ginzburg and Salomon 1986, Howarth 1991). Similar results 

were obtained in the case of net CO2 assimilation rate measurement (Law and Crafts-

Brandner 1999; Crafts-Brandner and Salvucci 2002) showing that this feature may be 

common to various plant levels.  

Leaf temperatures in the field often change temporarily and very rapidly and this 

could be simulated by T-jump regime under more controlled laboratory conditions. 

However, the main temperature changes, which take place during the diurnal cycle or 

within sun-shade alternations, are rather gradual and thus progressive heating regimes 

would be more appropriate for reflecting the natural conditions. 
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7. SUPPLEMENT 
Separate papers are attached 


