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Abstract
Game theory handles tasks such as cooperation, competition, and self-regulation in
the environment, where numerous agents with conflicting goals are involved. These
conflicts of interest are extremely common, when dealing with environmental sustain-
ability and circular economy. This Ph.D. thesis is devoted to applications of game
theory in waste management, with an emphasis on Waste-to-Energy treatment of non-
recyclable waste. After an introduction, the fundamental background of game theory
is summarized, providing an overview of the current state of knowledge. Then, recent
applications of game-theoretic techniques in sustainability research are reviewed to
emphasize the novelty of the work. In the end, the author’s own contribution in the
application of non-cooperative and cooperative games to problems of waste manage-
ment is presented. In particular, this Ph.D. thesis is focused on the Waste-to-Energy
plants’ price-setting game and the waste producers’ cost minimization game. The-
oretical properties of these games are studied in detail. The original algorithms for
bilevel optimization problems and dynamic coalition formation are proposed to solve
the considered games. The case studies’ results demonstrate rational outcomes of the
conflicts and prove that the proposed approaches to the considered waste manage-
ment problems are reasonable.

Abstrakt
Teorie her se zabývá temáty, jako je spolupráce, konkurence a seberegulace v prostředí,
kde je zapojeno mnoho entit s protichůdnými cíly. Rozdílné zájmy jsou běžné při
řešení environmentální udržitelnosti a oběhového hospodářství. Tato Ph.D. práce je
věnována aplikacím teorie her v odpadovém hospodářství s důrazem na energetické
zpracování nerecyklovatelného odpadu. Po úvodu je shrnuto základní pozadí teorie
her, které poskytuje přehled o součásném stávu poznání. Poté jsou přezkoumány
novodobé aplikace metod teorie her v problematice udržitelnosti, aby se zdůraznila
aktuálnost práce. V závěru je uveden vlastní přínos autora v aplikaci nekoopera-
tivních a kooperativních her v oblasti odpadového hospodářství. Konkretně je Ph.D.
práce zaměřena na hru o stanovení cen zařízeními pro energetické využití odpadů a
hru o minimalizaci nákladů producentů odpadů. Jsou podrobně studovány teoretické
vlastnosti těchto her. Pro řešení uvažovaných her jsou navrženy originální algoritmy
pro problémy dvouúrovňové optimalizace a vytváření dynamických koalic. Výsledky
případových studií ukazují racionální vyústění konfliktů a dokazují, že navrhované
přístupy k uvažovaným problémům odpadového hospodářství jsou rozumné.
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Chapter 1

Introduction

According to [91], game theory (GT) focuses on mathematical models of complex
interactions among rational participants of the formalized conflict. GT enables the
description of the natural and logical development of such conflicts. It anticipates pos-
sible outcomes of situations in which decision-makers with different goals are involved
and can affect each other [85]. Among other applications, it can imitate rationality
and optimize arbitrary complex engineering systems, where different system parts are
considered to be players performing various, often conflicting, tasks. GT has become
an essential framework in the past years, since the number of applications involves
multiple users, where disagreements between them are incredibly likely or even un-
avoidable [81]. These disagreements are common to a wide range of disciplines such
as economics, computer science, social sciences, or engineering. Among all these dis-
ciplines, this doctoral thesis is focused on sustainability research, circular economy
(CE), and efficient green waste management (WM).

The structure of this doctoral thesis is the following. Initially, a general descrip-
tion of the sustainability concept and a discussion about the role of decision-making
(DM) in sustainability research are given to promote GT as a suitable DM method
within the area. Chapter 2 consists of an overview of the main GT concepts, their
mathematical descriptions and properties. This section provides mathematical back-
ground, which is considered necessary in order to understand and assess current
research trends. To highlight the contribution of the work, the general review of
the recent articles focused on the applications of GT in particular fields, requiring
sustainable development, is presented in Chapter 3. Thus, the theoretical part of
this work is followed by the results of the performed review. These results are thor-
oughly discussed in order to identify existing research gaps. After that, author’s
original research within GT in WM is demonstrated in Chapter 4. This last section
demonstrates current applications of cooperative GT (CGT) and non-cooperative
GT (NGT) approaches to WM problems. In particular, this application section is
focused on the problems of a gate fee-setting in competitive environment and of a
fair waste treatment costs distribution and union formation between municipalities in
WM networks. To solve the former problem, the original algorithm based on bilevel
programming techniques is proposed. Moreover, an existence of Nash equilibrium
(NE) in this setting is studied from a theoretical point of view. The properties of the
latter problem are extensively studied and the solution is proposed using the coalition
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formation approach and the Shapley value estimate. The definitions and analyses of
these practical problems are complemented by the necessary theoretical insights and
reviews on the related topics. Functionality of both approaches is demonstrated on
a realistic case study inspired by the WM situation in the Czech Republic.

1.1 Potential of game theory in sustainability re-
search

The rapid growth of the world population, urbanization, and industrialization are
current trends, that lead to a substantial and continuous increase in consumption of
goods, energy, and primary resources [82]. One of the most negative consequences
of such trends is environmental degradation represented by water, air, and land pol-
lution, non-speaking of overwhelming greenhouse gases emissions having undeniable
climate change impact [86]. Scarcity of available resources and irresponsible consump-
tion, contributing to the above-mentioned consequences, emphasize the importance of
sustainability [79]. Sustainability is the ability of an economy to retain or improve the
level of economic, environmental, and social resources over generations [73]. Thus, it
is common to think of this concept as of something that considers and contributes to
the three main aspects: economic, environmental, and social [6]. Among all these di-
mensions, this work is mainly focused on the economic consequences of environmental
sustainability principles implemented into waste treatment policy.

Environmental sustainability is a conservation concept that entails the provision
of current and future generations with services and resources without endangering
the health of ecosystems [57]. When embedding principles of environmental sus-
tainability into economic processes, conflicts are expected to arise, since different
stakeholder groups have their own interests and priorities. An integrative DM pro-
cess should enable to erase such problems and help to achieve cooperation between
stakeholders [86].

1.1.1 Challenges of decision-making in environmental sus-
tainability

Environmental sustainability problems are often characterized by the need for a prac-
tical DM solution [24]. However, DM within this context represents an eminent chal-
lenge, since numerous social, financial, and political consequences of possible decisions
have to be considered. Different tools have been developed and applied to face the
above-described complications and many others arising during the DM processes. For
example, DM methods, such as sensitivity analysis, stochastic analysis, and mathe-
matical programming, can serve as a helpful basis for finding sustainable solutions.
Now, implications of recent articles dealing with DM in environmental sustainability
within different fields of research will be summarized.

The sustainability of hydropower development has been studied in [67] in detail.
Whereas hydropower is one of the most spread renewable sources of energy, it might
bring negative environmental (and consequently social) impacts. The authors con-
cluded, that commonly applied cost-benefit analysis does not fully take into account
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the sustainability of the designed system. Thus, as it was already mentioned, the main
challenge is to consider all possible dimensions impacted by the prepared project. As
a possible solution, authors propose their own evaluation criteria system and multi-
criteria DM method. In [56], authors reviewed DM tools and methods for solid WM
systems. It has been emphasized, that the main challenge is to capture cooperative
incentives of stakeholders, as well as their possibly conflicting distinct objectives. The
same problem has been pointed out in [79], where DM in the context of sustainable
energy, water, and food nexus systems has been reviewed. The authors highlighted
the difficulty of taking into account different sectors, agents, and uncertainties. The
importance and challenges of DM in the management of the closed-loop supply chains
(CLSC) have been discussed in [98]. It has been pointed out, that the main challenge
of DM in the general framework of supply-chain management is an interdependence
of agents’ decisions. According to the above-mentioned implications, it can be con-
cluded, that the most frequent difficulties occurring during the DM process, related
to the environmental sustainability research, are the necessity to consider conflicting
objectives, multiple assessment criteria, and interdependence between the involved
agents.

1.1.2 Game theory as a decision-making method
Among all possible DM methods, this doctoral thesis proposal is focused on GT. The
reasoning beneath such a choice is rather plain: GT is a relatively young (in the
context of mathematics) framework and possibly can complement (or fully replace)
some DM methods. In the above-mentioned work [79], the authors concluded, that
currently applied tools cannot properly represent strategic interactions and trade-offs
between stakeholders. Exactly GT proves itself as an efficient and practical DM tool
in a multi-stakeholder interdependent environment. The authors of [56] highlighted,
that the GT approach can contribute to the sustainability of a solid WM system.
Also, in [98], the authors concluded, that GT provides a quantitative insight into
the allocation of costs and benefits within the CLSC. Thus, it can be concluded,
that all the above-mentioned works agreed on GT potential in environmental sus-
tainability research. In particular, GT has a potential to serve as a powerful tool
for researchers to overcome the occurring challenges and to explore topic of CE [17],
being a substantial tool of sustainable development.

1.2 Motivation and goals
Well-planned WM is an essential part of CE, and behavioral modeling, describing
the ever-changing decisions of the involved agents, is its key aspect [1]. This doctoral
thesis is devoted to applications of CGT and NGT to WM problems, which are
of critical importance for the modern society. As it was already indicated in the
beginning of this chapter, the considered problems are the non-cooperative gate fee
setting game between waste treatment facilities and the municipalities’ cooperative
waste treatment cost game.

The main goals of this doctoral thesis are:
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• to present an overview of the GT theoretical concepts, with an emphasis on
branches, solutions, and specific game types, which will be used later in the
application section;

• to review recent applications of GT in environmental sustainability research
within different fields in order to identify currently existing research gaps;

• to formulate and analyze WM problems using CGT and NGT;
• to design algorithms for solving these problems;
• to implement bilevel programming techniques into the price-setting problem.
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Chapter 2

Theoretical aspects of game theory

By the nature of a studied conflict and given set of rules from which possible in-
teractions are derived, GT has been traditionally divided into two branches: non-
cooperative and cooperative. NGT deals with strategic choices in settings, in which
there are no binding agreements between players, and they are independently try-
ing to improve their own welfare [85]. Compared to NGT, CGT studies behavior of
players in a situation, when they can improve their payoffs by merging into coalitions
[88]. Evolutionary GT (EGT), pioneered in [36], is another GT branch distinguished
by many authors. Original biology-inspired EGT assumed that players could not
choose a strategy, but only inherit it from ancestors or obtain it due to mutation
[102]. Among these widely accepted branches, other, yet insufficiently developed,
branches such as quantum GT [65] can be found. Due to nature of the thesis, we
have mainly focused on deterministic games with fully rational players. The basic
classification of GT, major game types, fundamental solution concepts, and related
algorithms are depicted in Figure 2.1. Clearly, this classification cannot be viewed as
complete, but might provide the reader with some introductory image of GT. Since
the applied part of this doctoral thesis devotes itself to the application of the NGT
and the CGT framework to WM, the theoretical concepts related to these branches
of GT will be discussed in the following sections. Concepts, which are not related
to the case studies and underlying WM games, will be briefly discussed for the pur-
pose of simple acquaintance or completely omitted in some cases. For example, in
this chapter, we have omitted concept of fuzzy games, random games, or games with
bounded rationality.

2.1 Non-cooperative game theory

Due to the historical development of GT [107], its non-cooperative branch is diverse
and well-studied [91]. Early applications of non-cooperative games can be found in
classical studies of oligopoly competition by Cournot [21], Bertrand [9], or Stackelberg
[108]. In the following subsection, possible approaches, solution algorithms, games
types, and representations of NGT are summarized according to [85].
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Figure 2.1: Game theory basic structure

2.1.1 Representation, types, properties

Non-cooperative games can be represented in extensive form or normal form. Exten-
sive form employs a game tree as a representation tool, where nodes represent states
of the game, whereas arcs represent possible moves. Alternatively, non-cooperative
games in normal form consist of a list of strategies for the players together with their
payoff functions defined for each strategy profile. Formally, normal form game can
be defined as follows.
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Definition (Normal form game). A non-cooperative game in normal form is defined
as the structure 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁), where 𝑁 = {1, 2, 3, . . . , 𝑛} is the set of players,
𝑋𝑖, 𝑖 ∈ 𝑁 , is the individual strategy set of 𝑖-th player, with element 𝑥𝑖 ∈ 𝑋𝑖 called
strategy, and 𝜋𝑖 : Π𝑖∈𝑁𝑋𝑖 → R, 𝑖 ∈ 𝑁 , is the payoff function of the 𝑖-th player.
The joint strategy set will be further denoted as 𝑋𝑁 := Π𝑖∈𝑁𝑋𝑖, and its element
𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝑋𝑁 is called a strategy profile.

A particular case of normal form games are finite games, where the strategy sets
of players have finite cardinality |𝑋𝑖| < ∞, ∀𝑖 ∈ 𝑁 [39]. In some cases, finite games
can be represented via matrix of payoffs. Non-cooperative games can be either static
or dynamic. Static games takes place only once, and all players make decisions
simultaneously [85]. The latter group can be divided into two classes: sequential
and repeated games. In sequential games, agents play a game in turns, dividing it
into smaller subgames [84]. A static game, occurring over many periods (possibly
infinitely many), is called a repeated game [8]. Regarding the amount of the avail-
able information, non-cooperative games can be divided into games with perfect or
imperfect information and complete or incomplete information [85]. Perfect informa-
tion means, that each player possesses all available information about every event,
that has occurred during previous stages of the game. Complete information implies,
that players’ utility functions, payoffs, and strategy sets are assumed to be common
knowledge [72].

2.1.2 Nash equilibrium
The NE is a cornerstone of non-cooperative solutions [80]. The NE is a stable out-
come, in which no player has the intention to change his strategy, while other players
keep theirs unchanged [85]. Its precise definition is following.

Definition (Nash equilibrium). The NE is a strategy profile 𝑥* ∈ 𝑋𝑁 , such that

𝜋𝑗(𝑥
*
𝑗 , 𝑥

*
−𝑗) ≥ 𝜋𝑗(𝑥𝑗, 𝑥

*
−𝑗),∀𝑥 ∈ 𝑋𝑁 ,∀𝑗 ∈ 𝑁,

where (𝑥𝑗, 𝑥
*
−𝑗) stands for (𝑥*1, ..., 𝑥

*
𝑗−1, 𝑥𝑗, 𝑥

*
𝑗+1, ..., 𝑥

*
𝑛).

Existence of NE is one of fundamental questions of GT. It is closely related to
existence of a fixed point of a correspondence [39].

Definition (Correspondence and its properties). Let 𝑋 ⊆ R𝑛 and 𝑌 ⊆ R𝑚, where
𝑛,𝑚 ∈ N. Then, a correspondence 𝐹 from 𝑋 to 𝑌 is a map 𝐹 : 𝑋 → 2𝑌 . We say,
that a correspondence 𝐹 is

• non-empty-valued if ∀𝑥 ∈ 𝑋, 𝐹 (𝑥) is non-empty subset of 𝑌 ;

• closed-valued if ∀𝑥 ∈ 𝑋, 𝐹 (𝑥) is closed subset of 𝑌 ;

• convex-valued if ∀𝑥 ∈ 𝑋, 𝐹 (𝑥) is convex subset of 𝑌 ;

Now, we generalize notion of continuity for correspondences.

Definition (Upper and lower hemicontinuity). A correspondence 𝐹
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• is upper hemicontinuous if, for each sequence {𝑥𝑘} ⊆ 𝑋 converging to �̂� ∈ 𝑋
and each open set 𝑌 * ⊆ 𝑌 , such that 𝐹 (�̂�) ⊆ 𝑌 *, there is 𝑘0 ∈ 𝑁 such that,
for each 𝑘 ≥ 𝑘0, 𝐹 (𝑥𝑘) ⊆ 𝑌 *.

• is lower hemicontinuous if, for each sequence {𝑥𝑘} ⊆ 𝑋 converging to �̂� ∈ 𝑋
and each open set 𝑌 * ⊆ 𝑌 , such that 𝐹 (�̂�)∩𝑌 * = ∅, there is 𝑘0 ∈ 𝑁 such that,
for each 𝑘 ≥ 𝑘0, 𝐹 (𝑥𝑘) ∩ 𝑌 * = ∅.

In particular, we focus on the best-response correspondences of players.

Definition (Best-response correspondence). Let 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁) be a normal-
form game. Then, we define best-response correspondence 𝐵𝑗 : 𝑋−𝑗 → 2𝑋𝑗 , where
𝑋−𝑗 := Π𝑖∈𝑁,𝑖 ̸=𝑗𝑋𝑖 with 𝑥−𝑗 ∈ 𝑋−𝑗, as

𝐵𝑗(𝑥−𝑗) = {�̃�𝑗 ∈ 𝑋𝑗 : 𝜋𝑗(�̃�𝑗, 𝑥−𝑗) ≥ 𝜋𝑗(𝑥𝑗, 𝑥−𝑗),∀𝑥𝑗 ∈ 𝑋𝑗}.

Clearly, best-response correspondences do not have to be well-defined. We also define
𝐵 : 𝑋𝑁 → 2𝑋𝑁 for each 𝑥 ∈ 𝑋𝑁 , as 𝐵(𝑥) := Π𝑖∈𝑁𝐵𝑖(𝑥−𝑖).

Then, to establish the so-called Nash theorem, which states sufficient conditions
for NE existence, we introduce Kakutani fixed-point theorem. The formulations of
the two following theorems and the quasi-concavity definition are taken form [39].

Theorem 2.1.1 (Kakutani fixed-point theorem). Let 𝑋 ⊆ 𝑅𝑛 be a nonempty, con-
vex, and compact set. Let 𝐹 : 𝑋 → 𝑋 be an upper hemicontinuous, non-empty-valued,
closed-valued, and convex-valued correspondence. Then, 𝐹 has a fixed-point.

Proof. Proof can be found in [39].

At last, the property of quasi-concavity has to be introduced.

Definition (Quasi-concavity). Let 𝑚 ∈ N and 𝑋 ⊆ R𝑚 be a convex set. A function
𝑓 : 𝑋 → R is quasi-concave if, for each 𝑟 ∈ R, the set {𝑥 ∈ 𝑋 : 𝑓(𝑥) ≥ 𝑟} is convex.

The main point of the Nash theorem is that in certain situations underlying best-
response correspondences fulfill assumptions of Kakutani fixed-point theorem.

Theorem 2.1.2 (Nash theorem). Let 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁) be a normal-form game
such that, for each 𝑖 ∈ 𝑁 ,

• 𝑋𝑖 is a nonempty, convex, and compact subset of R𝑚𝑖 for some 𝑚𝑖 ∈ N;

• 𝜋𝑖 is continuous;

• For each 𝑥−𝑖, 𝜋𝑖(𝑥𝑖, ·) is quasi-concave on 𝑋𝑖.

Then, the game 𝐺 has NE.

Proof. Proof can be found in [39].
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It can be seen, that this theorem cannot be applied to games with discontinuous
payoff functions or non-convex strategy sets, which are quite common when dealing
with practical problems. Another substantial problem is that this theorem does not
discuss uniqueness of the NE. Indeed, it can be pointed out, that possible existence
of multiple NEs, as well as non-existence of the NE, might dramatically complicate
prediction of the outcome. In such situations, utilization of the refined or generalized
solution concepts might be useful. One of the main such concepts is mixed NE.

Until now, we were discussing only so-called pure strategies, where players choose
only one particular strategy. However, the concept of mixed strategy assumes that
player might plays strategies randomly. When working with mixed strategies, player
𝑖 ∈ 𝑁 does not choose strategy 𝑥𝑖, but some probability distribution 𝑠𝑖 over the
strategy set 𝑋𝑖. Now, a mixed extension of the normal form game will be formally
introduced according to [39].

Definition (Mixed extension). Let 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁) be a finite game. The mixed
extension 𝐸(𝐺) := (𝑁, (𝑆𝑖, �̂�𝑖)𝑖∈𝑁) of 𝐺, is the strategic game with:

• 𝑆𝑖 := {𝑠𝑖 ∈ [0, 1]𝑋𝑖 : |{𝑥𝑖 ∈ 𝑋𝑖 : 𝑠𝑖(𝑥𝑖) > 0}| < ∞ and
∑︀

𝑥𝑖∈𝑋𝑖
𝑠𝑖(𝑥𝑖) = 1},∀𝑖 ∈

𝑁,

• 𝑆𝑁 := Π𝑖∈𝑁𝑆𝑖;

• 𝑠(𝑥) := 𝑠1(𝑥1) · ... · 𝑠𝑛(𝑥𝑛), for each 𝑠 ∈ 𝑆𝑁 ;

• �̂�𝑖(𝑠) :=
∑︀

𝑥∈𝑋𝑛
𝜋𝑖(𝑥)𝑠(𝑥).

Then, for a finite game 𝐺, the following theorem holds.

Theorem 2.1.3 (Existence of equilibrium in mixed games). Let 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁)
be a finite game. Then, the mixed extension 𝐸(𝐺) := (𝑁, (𝑆𝑖, �̂�𝑖)𝑖∈𝑁) of 𝐺 has NE.

Proof. Existence of NE for 𝐸(𝐺) follows directly from the Nash theorem [39].

One of the most popular algorithms for finding the NE in normal form games
(except for direct extensive search in finite games) are best-response dynamics (BRD)
[71] and implementation of strategy domination [76]. The former algorithm represents
a process, during which each player iteratively plays his/her best response to actual
rivals’ strategy profile. The main idea of the algorithm is natural: a process starts
at a given point and at each iteration player chooses a strategy from his or her best-
response correspondence. The new starting strategy profile for the next player is
obtained from a chosen strategy of the previous player. If the algorithm converges
to some strategy profile, then this strategy profile is the NE. The main disadvantage
of this algorithm is the fact that it can get stuck in a cycle. Moreover, in some
cases, finding a 𝐵𝑗(𝑥−𝑗) might be a challenging task. Figure 2.2 explains the main
principles of the algorithm. Before we proceed to the strategy domination approach,
some important aspects of the BRD process should be discussed, since this algorithm
will play a major role with respect to subject of the Ph.D. thesis.
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Figure 2.2: Sketch of best-response dynamics algorithm

Properties of best-response dynamics. Unfortunately, there is no general re-
sults on convergence of BRD. It has been proven, that for certain types of games,
such as potential [75] or aggregative games [25], convergence is assured. However,
these games assume that players’ utility functions have some common denominator or
their best-response correspondences can be jointly described by one general function.
Therefore, to cover «complementary» class of games, literature also focuses on the
study of the so-called uncoupled BRD processes, where players payoff/responses do
not depend on payoffs of the other players (or they cannot be directly incorporated
into 𝜋𝑖 due to lack of knowledge). Thus, player 𝑖 can choose best response only based
on available joint strategy profile 𝑥 and properties of 𝜋𝑖. In case BRD is uncoupled,
its convergence cannot be guaranteed. In fact, even if we modify original uncoupled
BRD, general uncoupled dynamics which can guarantee convergence to NE ceases to
exist [45]. From Figure 2.2, it is also not clear in which order players make their deci-
sions. The order in which players update their actions is called playing sequence. In
[49], it has been demonstrated, that, compared to fixed cyclic order, random playing
sequence (using uniform distribution over 𝑁) converges to a pure NE (if it exists)
in almost all games. On the contrary, the probability of finding pure NE using fixed
playing sequence goes to 0 with increasing |𝑁 | or/and |𝑋𝑖|, 𝑖 ∈ 𝑁. Thus, Figure 2.2
does not demonstrate the particular approach, but rather presents a possible mix of
both playing sequences. During every inner cycle a new player has to take turn, but
there is no fixed strict ordering. Convergence speed also dramatically depends on
properties of the underlying game. For example, [27] have shown that in potential
games fixed cyclic ordering is the fastest possible option. Simulation results pre-
sented in [49] demonstrate that the speed of convergence in generic games is slower
for random playing sequences. In general, if we focus on uncoupled BRD processes,
the speed of convergence is at least exponential function of |𝑁 | [46].

The idea of the strategy domination algorithm dwells in the iterative removal of
dominated strategies. The strategy dominance relation can be defined as follows [76].

Definition (Strategy dominance). A strategy 𝑥1𝑗 ∈ 𝑋𝑗 is dominated by a strategy
𝑥2𝑗 ∈ 𝑋𝑗 iff

𝜋𝑗(𝑥
2
𝑗 , 𝑥−𝑗) ≥ 𝜋𝑗(𝑥

1
𝑗 , 𝑥−𝑗), ∀𝑥−𝑗 ∈ 𝑋−𝑗,

and
∃𝑥−𝑗 ∈ 𝑋−𝑗 : 𝜋𝑗(𝑥

2
𝑗 , 𝑥−𝑗) > 𝜋𝑗(𝑥

1
𝑗 , 𝑥−𝑗).
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In the first step, all the dominated strategies of the first player are removed, and his
or her strategy set is reduced to a set of undominated strategies. In the second step,
the same approach is applied for the second player using the new reduced strategy
set of the first player and so forth. If such an algorithm leads to a singleton, then
this strategy profile is NE.

2.2 Cooperative game theory
In general, a coalitional or cooperative game is uniquely defined by pair (𝑁, 𝑣), where
𝑁 is a set of players and 𝑣 is a coalition value function, that assigns each coalition 𝑆 ⊆
𝑁, 𝑆 ̸= ∅, (a binding agreement of players to act as a single entity) its worth (the total
utility that can be obtained by 𝑆) in the game [88]. The definition of 𝑣 determines
the so-called form and properties of the game. In this work, we focus only on games
with transferable utility (TU), where coalition’s worth has a monetary equivalent,
that can be divided between participants of the coalition [88]. Thus, we can formally
define a value function 𝑣 of TU-game as a function 𝑣 : 2𝑁 ×𝐴1× ...×𝐴𝑘 → R, where
𝐴1, ..., 𝐴𝑘 are possible additional spaces than can be considered. The conventionally
added assumption 𝑣(∅) = 0 implies, that in absence of cooperation, no value is
produced. The main principle of a TU-game is that, if we denote player’s 𝑖 ∈ 𝑁
payoff as 𝑥𝑖, then any utility allocation (𝑥𝑖)𝑖∈𝑆, such that∑︁

𝑖∈𝑆

𝑥𝑖 ≤ 𝑣(𝑆),

can be achieved by players in 𝑆,∀𝑆 ⊆ 𝑁 [88]. The set of all so-called feasible payoff
vectors of the game (𝑁, 𝑣) [88] will be denoted as

𝑋*(𝑁, 𝑣) = {(𝑥𝑖)𝑖∈𝑁 |
∑︁
𝑖∈𝑁

𝑥𝑖 ≤ 𝑣(𝑁)}.

Further, we will also use equivalent notation of payoff vectors 𝑥 := (𝑥𝑖)𝑖∈𝑁 . Ac-
cording to the classification of coalitional games proposed in [91], there are three
major distinct classes:

• canonical coalitional games;
• coalition formation games;
• coalitional graph games.

The first two classes will be introduced in detail in the following subsections. Coali-
tional graph games are out of scope of this doctoral thesis.

2.2.1 Canonical coalitional games
Canonical coalitional games are the most common type of the cooperative games. All
the concepts presented in this subsection can be found in [88], [85] and [38]. There are
three main properties, that coalitional game should possess in order to be classified
as a canonical [91]:
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Characteristic function form. The first one is that coalitional game has to be in
characteristic form [88]. For many readers, this requirement could seem redundant,
since numerous publications do not make difference between concept of a value func-
tion and concept of characteristic function. However, the main property of a game
in characteristic form is that the value of coalition 𝑆 depends solely on coalition
members, without dependence on how 𝑁 ∖ 𝑆 is structured. Thus, 𝑣 : 2𝑁 → R and
additional sets from the definition of the value function are all singletones. In some
literature, authors refer to this property as to absence of externalities.

Advantages of cooperation. The second property of canonical games is that
cooperation is always prosperous (or at least guarantees the same utility). This
property corresponds to superadditivity of the value function [88], i.e. it should
fulfill:

𝑣(𝑆 ∪ 𝑇 ) ≥ 𝑣(𝑆) + 𝑣(𝑇 ),∀𝑆, 𝑇 ⊆ 𝑁,𝑆 ∩ 𝑇 = ∅.
Thus, no player can do worse by cooperating, than acting non-cooperatively. Some-
times, it is sufficient to consider only weakly superadditive games fullfilling

𝑣(𝑆 ∪ {𝑖}) ≥ 𝑣(𝑆) + 𝑣({𝑖}), ∀𝑖 ∈ 𝑁,∀𝑆 ⊆ 𝑁 ∖ {𝑖}.

If ∀𝑆, 𝑇 ⊆ 𝑁,𝑆∩𝑇 = ∅, the equality holds instead of inequality in the superadditivity
definition, then we say that the characteristic function is additive. The additivity
assumption can be equivalently rewritten as:∑︁

𝑖∈𝑆

𝑣({𝑖}) = 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

Games with additive characteristic function are called inessential. Inessentiality de-
rives from absence of a space to negotiate: payoff of a player 𝑖 is uniquely determined
by a value 𝑣({𝑖}). Additive games are subclass of the so-called constant sum games
for which

𝑣(𝑆) + 𝑣(𝑁 ∖ 𝑆) = 𝑣(𝑁),∀𝑆 ⊆ 𝑁,

holds. Games with constant sum are often employed to describe political negotiations.
It is peculiar, that the fact that a game is not essential does not imply it to be
inessential. Gilles [38] defines essential game as a one, which fulfills∑︁

𝑖∈𝑁

𝑣({𝑖}) < 𝑣(𝑁).

Thus, essentiality means, that if all players cooperate they are able to produce non-
trivial amount of wealth, which can be distributed. The requirement of the superad-
ditivity can be restrictive, and many authors require cohesiveness

𝑣(𝑁) ≥
∑︁
𝑆∈𝒫

𝑣(𝑆), ∀𝒫 ∈ 𝒫𝑁 ,

where 𝒫𝑁 is a set of all partitions of 𝑁 , or the weaker property

𝑣(𝑁) ≥
∑︁
𝑖∈𝑁

𝑣({𝑖}).
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If the particular game (𝑁, 𝑣) fails to satisfy superadditivity, it can be studied as
(𝑁, 𝑣𝑆𝐴) using superadditive cover of a characteristic function

𝑣𝑆𝐴(𝑆) = max
𝒫∈𝒫𝑆

∑︁
𝑇∈𝒫

𝑣(𝑇 ).

It is important to note, that superadditivity is necessary only when working with
the value function that has «positive connotation»: for example, if it describes prof-
its. However, when 𝑣(𝑆) represents costs inflicted by 𝑆, the game is called a cost
game and, in order to motivate players to cooperate, it should posses property of
subadditivity:

𝑣(𝑆 ∪ 𝑇 ) ≤ 𝑣(𝑆) + 𝑣(𝑇 ), ∀𝑆, 𝑇 ⊆ 𝑁,𝑆 ∩ 𝑇 = ∅.

Such a game can alternatively be studied by its savings formulation. Assume a cost
game (𝑁, 𝑣𝑐𝑜𝑠𝑡), then a corresponding savings game (𝑁, 𝑣𝑠𝑎𝑣𝑖𝑛𝑔𝑠) can be defined as

𝑣𝑠𝑎𝑣𝑖𝑛𝑔𝑠(𝑆) =
∑︁
𝑖∈𝑆

𝑣𝑐𝑜𝑠𝑡({𝑖})− 𝑣𝑐𝑜𝑠𝑡(𝑆).

The last note regarding superadditive games is their connection to class of monotonic
games, where

𝑣(𝑆) ≤ 𝑣(𝑇 ),∀𝑆 ⊆ 𝑇 ⊆ 𝑁.

The two properties are not equivalent, since there is no general relationship between
these classes of games. However, if, for a superadditive game (𝑁, 𝑣), 𝑣(𝑆) ≥ 0,∀𝑆 ⊆
𝑁, it is always monotonic.

Distribution of wealth. Third and the last main property of canonical coalitional
games is that their main objectives are to study possibility of forming grand coalition
𝑁 and its properties, and to design allocations of the value produced by grand coali-
tion 𝑣(𝑁) between players. The fact that the main interest is only focused on the
study of the grand coalition can be explained by superaddtivity of canonical games.
Due to this property, formation of the grand coalition is almost inevitable, since it is
the most profitable possibility to all of the players.

Thus, the two fundamental questions of canonical coalitional games are: which
payoffs can guarantee stability of the grand coalition and which payoffs distribute
𝑣(𝑁) between players in a “fair” way? These questions are addressed by a so-called
solution concept.

Solutions of coopertaive games

In terms of CGT, a solution is defined as a function 𝜎 : Γ = {(𝑁, 𝑣)} → 2𝑋
*(𝑁,𝑣),

that assigns each game (𝑁, 𝑣) a subset 𝜎(𝑁, 𝑣) ⊆ 𝑋*(𝑁, 𝑣) [88]. In the following
paragraphs, the most well-known solutions of canonical coalitional games will be
defined and discussed. The less requiring solution is a set of preimputations, which
can be defined as follows.
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Definition (Preimputation). A payoff vector 𝑥 ∈ 𝑋*(𝑁, 𝑣) is a preimputation, i.e.
𝑥 ∈ 𝑃𝐼(𝑁, 𝑣), if it satisfies the condition of group rationality also known as Pareto
optimality or efficiency ∑︁

𝑖∈𝑁

𝑥𝑖 = 𝑣(𝑁).

Thus, preimputations distribute wealth 𝑣(𝑁) completely. However, such a dis-
tribution does not reflect any negotiation power of players. The set of imputations
embeds the potential claims of the players in the most simple fashion: it does not
distribute to a player an amount of wealth, which is less than he/she is able to ensure
on his/her own.

Definition (Imputation). A payoff vector 𝑥 ∈ 𝑃𝐼(𝑁, 𝑣) is an imputation, i.e. 𝑥 ∈
𝐼(𝑁, 𝑣), if it satisfies condition of individual rationality

𝑥𝑖 ≥ 𝑣({𝑖}),∀𝑖 ∈ 𝑁.

For example, in inessential games there is always only one imputation:

𝐼(𝑁, 𝑣) = (𝑣({1}), ..., 𝑣({𝑛}).

Imputations can be compared by a relation of domination [38]: imputation 𝑥 domi-
nates imputation 𝑦 through coalition 𝑆, 𝑆 ̸= ∅, iff

𝑥𝑖 > 𝑦𝑖,∀𝑖 ∈ 𝑆,∑︁
𝑖∈𝑆

𝑥𝑖 ≤ 𝑣(𝑆).

Such relation is denoted as (𝑥 >𝑆 𝑦). We say, that imputation 𝑥 dominates impu-
tation 𝑦, i.e. 𝑥 > 𝑦, if there exists a coalition 𝑆 such that 𝑥 >𝑆 𝑦. If for some
𝑥 ∈ 𝐼(𝑁, 𝑣),∄𝑦, such that 𝑦 > 𝑥, then we say that 𝑥 is undominated. The domina-
tion relation leads us directly to the one of the most fundamental solution concepts
in CGT: the core. The core 𝐶(𝑁, 𝑣) can be described via the set of undominated
imputations in two ways:

1. 𝑥 ∈ 𝐶(𝑁, 𝑣) ⇒ 𝑥 ∈ 𝐼(𝑁, 𝑣) and 𝑥 is undominated;

2. For superadditive game (𝑁, 𝑣), 𝑥 ∈ 𝐶(𝑁, 𝑣) ⇔ 𝑥 ∈ 𝐼(𝑁, 𝑣) and 𝑥 is undomi-
nated.

Alternatively, the Core can be defined as a set of imputations fulfilling coalitional
rationality.

Definition (Core). Core is a set

𝐶 = {𝑥|𝑥 ∈ 𝐼(𝑁, 𝑣),
∑︁
𝑖∈𝑆

𝑥𝑖 ≥ 𝑣(𝑆),∀𝑆 ⊆ 𝑁}.
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Thus, core is a stable set of imputations, in which no group of players has an
incentive to deviate and form a smaller coalition instead of 𝑁 . The core is always well-
defined, but in general does not satisfy non-emptiness [88]: for example, constant-sum
games have non-empty core iff they are inessential. In general, verification of a core
non-emptiness is an NP-complete problem, since increase in number of subsets with
respect to number of players |𝑁 | cannot be bounded by a polynomial function. This
fact naturally brings the question: for which games the core is non-empty and how
do we efficiently verify its non-emptiness?

To prove core non-emptiness, the linear programming techniques and duality are
employed [11]. In particular, the idea of the proof lies in showing that solution of the
following optimization problem

min
𝑥𝑖,𝑖∈𝑁

∑︁
𝑖∈𝑆

𝑥𝑖 (2.1)

s.t.
∑︁
𝑖∈𝑆

𝑥𝑖 ≥ 𝑣(𝑆),∀𝑆 ⊆ 𝑁, (2.2)

is 𝑣(𝑁). This fact will directly imply existence of Pareto optimal coaltitionally ra-
tional imputation and, as a result, 𝐶(𝑁, 𝑣) ̸= ∅. To proceed further, notion of the
characteristic vector 𝜆𝑆 ∈ R𝑛 for 𝑆 ⊆ 𝑁 is necessary:

𝜆𝑖𝑆 =

{︃
1, if 𝑖 ∈ 𝑆,

0, otherwise.

These characteristic vectors will help us to formulate the so-called dual problem
(2.1,2.2). In the following paragraph, the duality principles of linear programming
are explained in accordance with [85].

Duality principle of linear programming. Assume 𝑚,𝑛 ∈ N and the primal
linear programming problem

max
𝑥𝑗 ,𝑗=1,...,𝑛

𝑛∑︁
𝑗=1

𝑐𝑗𝑥𝑗,

s.t.
𝑛∑︁
𝑗=1

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖, 𝑖 = 1, ...,𝑚,

𝑥𝑗 ≥ 0, 𝑗 = 1, ..., 𝑛.

Then, its dual problem can be defined as

min
𝑦𝑖,𝑖=1,...,𝑚

𝑚∑︁
𝑖=1

𝑏𝑖𝑦𝑖

s.t.
𝑚∑︁
𝑖=1

𝑎𝑖𝑗𝑦𝑖 ≥ 𝑐𝑗, 𝑗 = 1, ..., 𝑛.

𝑦𝑖 ≥ 0, 𝑖 = 1, ...,𝑚.

Then, for these problems the principles of weak and strong duality hold:
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• Weak: For feasible 𝑥 of primal problem and feasible 𝑦 of dual problem∑︀𝑛
𝑗=1 𝑐𝑗𝑥𝑗 ≤

∑︀𝑚
𝑖=1 𝑏𝑖𝑦𝑖 holds.

• Strong: If the primal and dual problems are both feasible, then there exist
an optimum �̃� of the primal problem and optimum 𝑦 of its dual such that∑︀𝑛

𝑗=1 𝑐𝑗�̃�𝑗 =
∑︀𝑚

𝑖=1 𝑏𝑖𝑦𝑖.

Thus, according to the strong duality principle, the value of the previously intro-
duced optimization problem (2.1,2.2) equals to 𝑣(𝑁) only if for all feasible vectors 𝛿𝑆
of its dual problem

max
𝛿𝑆 ,𝑆⊆𝑁

∑︁
𝑆⊆𝑁

𝛿𝑆𝑣(𝑆)

s.t.
∑︁
𝑆⊆𝑁

𝛿𝑆𝜆𝑆 = 𝜆𝑁 ,

𝛿𝑆 ≥ 0,∀𝑆 ⊆ 𝑁,

following relation
𝑣(𝑁) ≥

∑︁
𝑆⊆𝑁

𝛿𝑆𝑣(𝑆)

holds. However, [11] and [97], were able to efficiently reduce the set of 𝛿𝑆 for which
this condition should be checked. They (independently) established the sufficient and
necessary condition for a non-empty core using the concept of balanced collection.

Definition (Balanced collection). A collection ℬ ⊆ 2𝑁 , ∅ ̸∈ ℬ, is called balanced if
positive numbers 𝛿𝑆, 𝑆 ∈ ℬ, exist such that∑︁

𝑆∈ℬ

𝛿𝑆𝜆𝑆 = 𝜆𝑁 .

The weights 𝛿𝑆, 𝑆 ∈ ℬ, from the previous definition are called a system of balanced
weights. Then, the weak form of the Bondareva-Shapley theorem states that a game
has non-empty core iff

𝑣(𝑁) ≥
∑︁
𝑆∈ℬ

𝛿𝑆𝑣(𝑆)

for each balanced collection ℬ and each system of balanced weights 𝛿𝑆, 𝑆 ∈ ℬ. Games
for which previous expression holds are called balanced. The strong form of the same
theorem states that the same inequality has to be valid only for minimal balanced
collections. These are balanced collections that do not contain a proper balanced
subcollection or, equivalently, have a unique system of balancing weights.

From the theoretical point of view, there exist another type of games, that always
have a non-empty core: these are convex games [88]. Convex games are games for
which the following inequality holds

𝑣(𝑆 ∪ 𝑇 ) + 𝑣(𝑆 ∩ 𝑇 ) ≥ 𝑣(𝑆) + 𝑣(𝑇 ),∀𝑆, 𝑇 ⊆ 𝑁,

or, alternatively, convexity can be represented as

𝑣(𝑇 ∪ {𝑖})− 𝑣(𝑇 ) ≥ 𝑣(𝑆 ∪ {𝑖})− 𝑣(𝑆),∀𝑖 ∈ 𝑁,∀𝑆 ⊆ 𝑇 ⊆ 𝑁 ∖ {𝑖}.
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Previous inequality states that the game is convex if and only if marginal contribution
of each player to coalition is non-decreasing with respect to set-theoretic inclusion.
In other words, each player has an incentive to join larger coalition because his
possible payoff will increase. Convexity can be also described as a “snow-ball effect”.
Convexity of the game implies its balancedness and as a result non-emptiness of the
core.

Still, a game might possibly have an empty core or, on the contrary, relatively
large core, so it can lose its informativeness. Then, alternative solution concepts such
as 𝜖-core can be employed [96].
Definition (𝜖-core). For 𝜖 ∈ R, 𝜖-core is a set

𝐶𝜖 (𝑁, 𝑣) = {𝑥|𝑥 ∈ 𝑃𝐼(𝑁, 𝑣) and
∑︁
𝑖∈𝑆

𝑥𝑖 ≥ 𝑣(𝑆)− 𝜖,∀𝑆 ⊂ 𝑁}.

Clearly, depending on the choice of the parameter 𝜖, 𝜖-core can be seen as a
relaxation of the group rationality (𝜖 > 0) or as a more restrictive solution concept
(𝜖 < 0). From the concept of 𝜖-core, the least-core can be deduced [96].
Definition (Least-core). Least-core of a game (𝑁, 𝑣) is an intersection of all non-
empty 𝜖-cores

𝐿𝐶(𝑁, 𝑣) = ∩𝜖∈R:𝐶𝜖 ̸=∅𝐶𝜖.

The least-core is a reasonable alternative to the core in case of an empty core. In
the end of this subsection, we introduce a solution concept known as the Weber set,
which is strongly related to the core since it is one of so-called core covers [38].
Definition (Core cover). Solution 𝜎(𝑁, 𝑣) is a core cover if

𝐶(𝑁, 𝑣) ⊆ 𝜎(𝑁, 𝑣)

holds for every game (𝑁, 𝑣).
In this section, we focus solely on the definition of Weber set on 2𝑁 . In general,

Weber set can be defined on Ω ⊆ 2𝑁 fulfilling some regularity properties described
in [38].
Definition (Weber set on 2𝑁). Weber set on 2𝑁 is defined as

𝑊 (𝑁, 𝑣) = 𝑐𝑜𝑛𝑣{𝑥𝛼 ∈ R𝑛 | 𝛼 is a permutation on N},
where 𝑐𝑜𝑛𝑣 denotes convex hull of a set,

𝑥𝛼𝑖 = 𝑣(𝑅𝑖)− 𝑣(𝑅𝑖 ∖ {𝑖}),
and

𝑅𝑖 = {𝛼(1), ..., 𝛼(𝑗)}, where 𝑗 ∈ 𝑁 such that 𝛼(𝑗) = 𝑖.

With respect to 𝑊 (𝑁, 𝑣), convex games demonstrate noteworthy properties since
𝐶(𝑁, 𝑣) = 𝑊 (𝑁, 𝑣) ⇔ (𝑁, 𝑣) is convex.

All the above-mentioned solution concepts are defined as subsets of imputations
with particular requirements on their elements. However, a proper mathematical
definition of solution states that it is a function which assigns to every game a subset
of feasible allocations of the game. Thus, a solution is not always a set, but can be
just one allocation.
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Solution as a single allocation

The solution concepts, mentioned in the previous subsection, mostly suffer from the
same disadvantages: they can be empty or, on the contrary, too large. These compli-
cations serve as a motivation for application of the solution concepts result of which
yields a unique allocation vector. We have already pointed out some inconsistencies
in literature regarding essentiality and inessentiality. There are also inconsistencies
regarding the value concept. Gilles [38] defines value directly as a function

𝜑 : Γ = {(𝑁, 𝑣)} → R𝑛

without any further assumptions. However, in [88], it is stated that if solution 𝜎 fulfills
|𝜎(𝑁, 𝑣)| = 1 for every (𝑁, 𝑣) it only possesses the property of being single-valued.
The authors establish further non-trivial properties for a single-valued solution to
be called value. In fact, this problem does not have any major consequences, since
these properties are fulfilled by all the single-valued solution concepts discussed in
this subsection.

Shapley value. One of the most popular single-valued solution concepts is the
Shapley Value (Shapley defined it as a value of the game) [95]. The Shapley Value
𝜑 (𝜑𝑖 will denote payoff obtained by player 𝑖 via the Shapley value) has been defined
as the unique solution that satisfies the four axioms:

• Efficiency:
∑︀

𝑖∈𝑁 𝜑𝑖(𝑁, 𝑣) = 𝑣(𝑁);

• Symmetry: 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆 ∪ {𝑗}),∀𝑆 ∈ 2𝑁 , 𝑖, 𝑗 ̸∈ 𝑆,⇒ 𝜑𝑖(𝑁, 𝑣) = 𝜑𝑗(𝑁, 𝑣);

• Dummy: 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆),∀𝑆 ∈ 2𝑁 , 𝑖 ̸∈ 𝑆,⇒ 𝜑𝑖(𝑁, 𝑣) = 0;

• Additivity: 𝑢, 𝑣 are characteristic functions ⇒ 𝜑(𝑁, 𝑢+𝑣) = 𝜑(𝑁, 𝑢)+𝜑(𝑁, 𝑣),
where 𝑢+ 𝑣(𝑆) := 𝑢(𝑆) + 𝑣(𝑆), ∀𝑆 ⊆ 𝑁 .

Efficiency makes Shapley value a preimputation. Symmetry says that if two play-
ers have the same contributions to each coalition, then their payoffs have to be the
same. Dummy axiom states, that if player does not contribute to any coalition, his
payoff should be zero. Additivity connects values of different games and contribute
to uniqueness of the Shapley value. Proof of uniqueness can be found in [88].

At first, we demonstrate a way of computation of the Shapley value based on the
unanimity games [38] and Harsanyi dividends [44].
Definition (Unanimity game). For a players set 𝑁 and any nonempty 𝑆 ⊆ 𝑁 , the
value function of the corresponding unanimity game (𝑁, 𝑣𝑆) is defined as

𝑣𝑆(𝑇 ) =

{︃
1, if 𝑆 ⊆ 𝑇,

0, otherwise.

The set of unanimity games {(𝑁, 𝑣𝑆)|𝑆 ⊆ 𝑁} forms a basis of all cooperative
games (𝑁, 𝑣) with the set of players 𝑁 [88]. Exactly Harsanyi dividends 𝜆𝑆 [44] are
used to represent games in this basis:

𝑣(𝑇 ) =
∑︁

𝑆⊆𝑁, 𝑆 ̸=∅

𝜆𝑆𝑣𝑆(𝑇 ),
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where
𝜆𝑆 = 𝑣(𝑆)−

∑︁
𝑀⊂𝑆

𝜆𝑀 .

Then, in terms of the Harsanyi dividends, the Shapley value can be expressed as

𝜑𝑖 (𝑁, 𝑣) =
∑︁

𝑆⊆𝑁 : 𝑖∈𝑆

𝜆𝑆
|𝑆|

.

If we interpret a Harsanyi dividend as a real «added value» of coalition 𝑆 with respect
to its subsets, then the Shapley value equally distributes the generated wealth in
accordance with these contributions. An alternative and a more classical formulation
of the Shapley value is

𝜑𝑖(𝑁, 𝑣) =
∑︁

𝑆⊆𝑁∖{𝑖}

|𝑆|!(|𝑁 | − |𝑆| − 1)!

|𝑁 |!
(𝑣(𝑆 ∪ {𝑖})− 𝑣(𝑆)).

This formulation makes one great disadvantage of the Shapley value obvious: sum-
mation proceeds through all possible subsets of grand coalition and might lead to
combinatorial explosion in case of 𝑁 with a large cardinality. The expression above
provides another possible interpretation of the Shapley value. It assigns to each player
his expected payoff in the following situation: players arrive randomly and each order
has the equal probability, when player arrives he/she obtains his/her marginal con-
tribution to the coalition of the already arrived players. From such an interpretation,
we can directly establish the probabilistic formulation of the Shapley value, which is
directly connected to the Weber set [38]

𝜑𝑖(𝑁, 𝑣) =
1

𝑛!

∑︁
𝛼∈G𝑁

𝑥𝛼𝑖 ,

where G𝑁 is the collection of all permutations on 𝑁 with 𝑛! = |G𝑁 |. In this doctoral
thesis, this formulation will prove itself considerably useful, since it will allow for
estimation of the Shapley value in polynomial time eliminating potential problems
with its computational complexity. Now, we will discuss the relation between the
Core, the Weber set and the Shapley value. It is important to note that the last
formulation directly implies that the Shapley value is a center of gravity of the Weber
set, which coincide with the core in the case of convex games. However, in general,
the Shapley value does not have to be contained in the core. Moreover, the Shapley
value might not be even an imputation, if the considered game is not superadditive.

Nucleolus. The second most popular single-valued solution is the nucleolus [100].
The idea behind the nucleolus is finding the imputation, which makes the most un-
satisfied coalition as satisfied as possible. More specifically it is such an imputation,
that lexicographically minimizes dissatisfactions of the coalitions measured by the
excesses

𝑒(𝑥, 𝑆) = 𝑣(𝑆)−
∑︁
𝑖∈𝑆

𝑥𝑖.
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To provide a better image about excesses, it can be emphasized that

𝑥 ∈ 𝐼(𝑁, 𝑣) ⇒ 𝑒(𝑥,𝑁) = 0,

𝑥 ∈ 𝐶(𝑁, 𝑣) ⇒ 𝑒(𝑥, 𝑆) ≤ 0,∀𝑆 ⊆ 𝑁.

Assume 𝜃(𝑥) ∈ R2𝑛 will denote the vector with its elements being excesses of all
coalitions arranged in non-increasing order, i.e. with elements 𝜃𝑘(𝑥) = 𝑒(𝑆𝑘, 𝑥), 𝑘 =
1, .., 2𝑛, such that 𝑒(𝑆𝑘, 𝑥) ≥ 𝑒(𝑆𝑘+1, 𝑥). Then, an imputation 𝑥 ∈ 𝐼(𝑁, 𝑣) is lexico-
graphically smaller than 𝑦 ∈ 𝐼(𝑁, 𝑣), i.e. 𝜃(𝑥) <𝑙 𝜃(𝑦), iff

∃𝑙 ∈ N, 1 ≤ 𝑙 ≤ 2𝑛 : 𝜃𝑗(𝑥) = 𝜃𝑗(𝑦),∀𝑗 < 𝑙 and 𝜃𝑙(𝑥) < 𝜃𝑙(𝑦).

We write 𝜃(𝑥) ≤𝑙 𝜃(𝑦), in case 𝜃(𝑥) <𝑙 𝜃(𝑦) or 𝜃(𝑥) = 𝜃(𝑦). Using these relation, the
nucleolus can be defined as follows [100].

Definition (Nucleolus). Consider a game (𝑁, 𝑣), such that 𝐼(𝑁, 𝑣) ̸= ∅. Then, the
nucleolus 𝜂 of the game (𝑁, 𝑣) is

𝜂(𝑁, 𝑣) = 𝑥, s.t. 𝑥 ∈ 𝐼(𝑁, 𝑣) and 𝜃(𝑥) ≤𝑙 𝜃(𝑦),∀𝑦 ∈ 𝐼(𝑁, 𝑣).

In fact, nucleolus can be defined on arbitrary subset of R𝑛, not only on 𝐼(𝑁, 𝑣)
[100]. Later, we will use this generalized definition of nucleolus on arbitrary set 𝑋:

𝜂(𝑁, 𝑣,𝑋) = {𝑥|𝑥 ∈ 𝑋 and 𝜃(𝑥) ≤𝑙 𝜃(𝑦), ∀𝑦 ∈ 𝑋},

with 𝜂(𝑁, 𝑣) = 𝜂 (𝑁, 𝑣, 𝐼(𝑁, 𝑣)). If 𝑋 is compact, then nucleolus is non-empty, and
if it is convex, then nucleolus is unique. Thus, solution 𝜂(𝑁, 𝑣) is unique, as an
imputation it satisfies individual and group rationality, and additionally it satisfies
symmetry and dummy axioms of the Shapley value [38]. Moreover, nucleolus always
exists and if the core is not empty, it contains nucleolus. Nucleolus also belongs to
every non-empty 𝜖-core, and, as a result, to the least core [100]. The computation
of the nucleolus dwells in the sequential minimization of the excesses using linear
programming techniques until unique solution is obtained. Unfortunately, this algo-
rithm requires at most 2𝑛− 1 steps. Thus, analogically to the Shapley value, there is
a problem with the computational complexity. Precise description of the algorithm
can be found in [39].

The original definition of the nucleolus has been introduced using the so-called
0-normalized games, for which 𝑣({𝑖}) = 0,∀𝑖 ∈ 𝑁 [100]. The notion of a payoff vector
(𝑥𝑖)𝑖∈𝑁 was then automatically assuming that 𝑥𝑖 ≥ 0,∀𝑖 ∈ 𝑁, and

∑︀
𝑖∈𝑁 𝑥𝑖 = 𝑣(𝑁)

[100]. However, this approach can easily be generalized using concept of strategic
equivalence presented in [88].

Definition. Games (𝑁, 𝑣) and (𝑁,𝑤) are strategically equivalent if there ∃𝛼 > 0
and (𝛽𝑖)𝑖∈𝑁 , such that

𝑤(𝑆) = 𝛼𝑣(𝑆) +
∑︁
𝑖∈𝑆

𝛽𝑖, ∀𝑆 ⊆ 𝑁.
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This relation is equivalence on the space of games with players set 𝑁 . Thus,
strategically equivalent games have the same properties and a solution of one game
is a simple linear transformation of the analogical solution of the other game (if these
properties and solutions preserve linear transformations). Clearly, every game (𝑁, 𝑣)
is strategically equivalent to a 0-normalized game through the choice

𝛼 = 1, 𝛽𝑖 = −𝑣({𝑖}),∀𝑖 ∈ 𝑁.

Thus, the main assumption of 𝐼(𝑁, 𝑣) ̸= ∅ remains natural.

2.2.2 Coalition formation games
Coalition formation games can be either in characteristic or partition form [91]. In
games in partition form, the value of the coalition 𝑣(𝑆,𝒫) depends not only on partic-
ipants of coalition 𝑆, but in addition on the actual coalition structure 𝒫 ∈ 𝒫𝑁 , where
𝒫𝑁 is set of all partitions of players set 𝑁 [88]. Thus, the value of 𝑆 depends on the
cooperation between external players outside of 𝑆 given by 𝒫 . However, games with
𝑣 : 2𝑁 × 𝒫𝑁 → R are significantly computationally complex and are out of scope
of these Ph.D. thesis. Coalition formation games are generally not superadditive,
because cooperation can often bring additional costs implying that formation of the
grand coalition is not always desirable and optimal. Their main objective is to study
the final state of the game and describe the properties of the resulting structure.
In addition, impact of possible changes in game environment on the game outcome
and wealth distribution can be studied. In general, coalition formation games can be
divided into two basic types: static and dynamic [91].

Static coalition formation games

Static coalition formation games dwell in study of already imposed coalition structure,
that can be predefined by some external factor. Such games can be uniquely defined
by triple (𝑁, 𝑣,𝒫) [5]. This subclass is not dramatically distinct from canonical
cooperative games and can be viewed as their superstructure. The concepts from
previous section, can be preserved in static coalition formation games with suitable
modifications. The major change is that we have to replace Pareto optimality with
the so-called relative efficiency/rationality. All the concepts presented in this section
can be found in the original work [5].
Definition (Relative efficiency). The payoff vector 𝑥 is relative efficient for the static
coalition formation game (𝑁, 𝑣,𝒫) iff∑︁

𝑖∈𝑆

𝑥𝑖 = 𝑣(𝑆),∀𝑆 ∈ 𝒫 .

Then, we introduce the generalization of 𝑋*(𝑁, 𝑣) of a canonical game for the
static coalition formation game (𝑁, 𝑣,𝒫) [5]:

�̃�(𝑁, 𝑣,𝒫) = {𝑥|
∑︁
𝑖∈𝑆

𝑥𝑖 = 𝑣(𝑆),∀𝑆 ∈ 𝒫}.

Now, we can proceed to the study of the previously introduced solution concepts with
respect to static coalition formation games.
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Solutions of games with coalition structure. The main point of this discussion
is to establish, which solution concepts possess so-called restriction property. This
property dwells in fact, that in order to compute the solution of static coalition
formation game, it is sufficient to compute its classical games analogy separately
with respect to each coalition 𝑆 ∈ 𝒫 [5]. Thus, this property can be formally defined
as follows.

Definition (Restriction property). Assume the solution of the coalition formation
game

𝜎𝐶𝐹 : Γ𝐶𝐹 = {(𝑁, 𝑣,𝒫)} → 2�̃�(𝑁,𝑣,𝒫).

We say that 𝜎𝐶𝐹 has a restriction property if

𝜎𝐶𝐹 (𝑁, 𝑣,𝒫) = Π𝑆∈𝒫𝜎
𝐶𝐹 (𝑆, 𝑣|𝑆, {𝑆}) = Π𝑆∈𝒫𝜎(𝑆, 𝑣|𝑆),∀(𝑁, 𝑣,𝒫) ∈ Γ𝐶𝐹 ,

where 𝑣|𝑆 denotes restriction of 𝑣 onto set 𝑆 ∈ 𝒫 .

At first, we focus on the coalition formation analogy of the Shapley value.

Definition (Coalition formation Shapley value). There exist, unique single-valued
solution 𝜑𝐶𝐹 (𝑁, 𝑣,𝒫) that satisfies:

• Relative efficiency: For all 𝑆 ∈ 𝒫 ,
∑︀

𝑖∈𝑆 𝜑
𝐶𝐹
𝑖 (𝑁, 𝑣,𝒫) = 𝑣(𝑆);

• Symmetry: For all permutations 𝛼 ∈ G𝑁 such that 𝛼(𝑆) = 𝑆,∀𝑆 ∈ 𝒫 , the
following expression holds∑︁

𝑖∈𝑆

𝜑𝐶𝐹𝑖 (𝑁,𝛼𝑣,𝒫) =
∑︁
𝑖∈𝛼(𝑆)

𝜑𝐶𝐹𝑖 (𝑁, 𝑣,𝒫),∀𝑆 ⊆ 𝑁,

where 𝛼𝑣(𝑆) = 𝑣(𝛼(𝑆)) and 𝛼(𝑆) = {𝛼(𝑖)|𝑖 ∈ 𝑆}.

• Additivity: 𝜑𝐶𝐹 (𝑁, 𝑣 + 𝑤,𝒫) = 𝜑𝐶𝐹 (𝑁, 𝑣,𝒫) + 𝜑𝐶𝐹 (𝑁,𝑤,𝒫);

• Dummy: If 𝑣(𝑆 ∪ {𝑖}) = 𝑣(𝑆),∀𝑆 ⊆ 𝑁, 𝑖 ̸∈ 𝑆, then 𝜑𝐶𝐹𝑖 (𝑁, 𝑣,𝒫) = 0.

It is important to note, that we have introduced the novel definition of symmetry,
which is equivalent to the one already presented in the definition of the Shapley
value, which describes the so-called equal treatment property [38]. An expression for
computation of 𝜑𝐶𝐹 (𝑁, 𝑣,𝒫) is omitted, due to the following theorem.

Theorem 2.2.1. Coalition formation Shapley value 𝜑𝐶𝐹 has a restriction property.

Proof. Proof can be found in [5].

Thus, 𝜑𝐶𝐹 (𝑁, 𝑣,𝒫) can be computed for each player 𝑖 ∈ 𝑆 from set 𝑆 ∈ 𝒫 , using
the relation:

𝜑𝐶𝐹𝑖 (𝑁, 𝑣,𝒫) = 𝜑𝑖(𝑆, 𝑣|𝑆).
Now, our attention will be focused on nucleolus and core for static coalition forma-
tion games. It has been already emphasized, that nucleolus can be defined on an
arbitrary set, therefore generalization of nucleolus for coalition formation games is
straightforward [5].
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Definition (Nucleolus of coalition formation game). For static coalition formation
game (𝑁, 𝑣, 𝑃 ), nucleolus is defined as

𝜂𝐶𝐹 (𝑁, 𝑣,𝒫) = 𝜂
(︁
𝑁, 𝑣, 𝐼(𝑁, 𝑣,𝒫)

)︁
,

where 𝐼(𝑁, 𝑣,𝒫) = {𝑥 ∈ �̃�(𝑁, 𝑣,𝒫)|𝑥𝑖 ≥ 𝑣({𝑖}),∀𝑖 ∈ 𝑁}.

Analogically, we can generalize the core as follows [5].

Definition (Core of coalition formation game). For static coalition formation game
(𝑁, 𝑣,𝒫), core is defined as

𝐶𝐶𝐹 (𝑁, 𝑣,𝒫) = {𝑥 ∈ �̃�(𝑁, 𝑣,𝒫)|
∑︁
𝑖∈𝑆

𝑥𝑖 ≥ 𝑣(𝑆),∀𝑆 ⊆ 𝑁}.

Unfortunately, following theorem [5] complicates situation with computation and
study of these concepts within class of static coalition formation games.

Theorem 2.2.2. Core 𝐶𝐶𝐹 and nucleolus 𝜂𝐶𝐹 of coalition formation game do not
have a restriction property.

Proof. Counterexamples can be found in [5].

Nevertheless, [5] were able to find some connection between game (𝑁, 𝑣,𝒫) and
games played between players in 𝑆 ∈ 𝒫 . For example, for static coalition formation
game (𝑁, 𝑣,𝒫), the following relation holds

𝑥 ∈ 𝐶𝐶𝐹 (𝑁, 𝑣,𝒫) ⇒ (𝑥𝑖)𝑖∈𝑆 ∈ 𝐶𝐶𝐹 (𝑆, 𝑣|𝑆, {𝑆}), ∀𝑆 ∈ 𝒫 .

The practical implications of these theoretical findings can be summarized as
follows. Among the Shapley value, the nucleolus and the core, only the former concept
has some consistency with respect to coalition formation games: the Shapley value of
sub-games on coalitions defined by partition is the Shapley value of the whole coalition
formation game. Thus, for the Shapley value, there is no question about which
solution

(︀
𝜑𝐶𝐹𝑖 (𝑁, 𝑣, 𝑃 )

)︀
𝑖∈𝑁 or Π𝑆∈𝒫,𝑖∈𝑆𝜑𝑖(𝑆, 𝑣|𝑆) has to be interpreted as correct and

there is no need to modify computational process, which can be performed on a
smaller coalitions instead of the grand one. Unfortunately, this does not hold for the
nucleolus or the core. Whereas each point of the core (including the nucleolus) of
the (𝑁, 𝑣,𝒫) is in the core of (𝑆, 𝑣|𝑆, {𝑆}), this is not possible to directly use the
core or the nucleolus of these sub-games to obtain these solutions for the whole game
without modification of the value function. Therefore, to obtain the complete image
of the game, all solutions has to be calculated separately, but their results might
be contradictory. This ambiguity is one of the main drawbacks of static coalition
formation approach employing the core or the nucleolus concepts.

Dynamic coalition formation games of a distributed type

Whereas static games study properties of the already given structure, dynamic games
analyze the process of the formation of suitable coalition structure for the given game
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and its stability and evolution in the face of the internal and external factors. In
dynamic games, the main point is finding coalition formation that maximizes welfare
of the players in a pre-defined sense. However, a framework of coalition formation
games of dynamic type, is not so formalized, and, as a result, is a more diverse and
application-specific branch [91]. There are two major distinct approaches: centralized
and distributed. The centralized approach dwells in finding partition of a set of
players, which maximizes welfare, by iterating over all partitions of 𝑁 . Such extensive
search is generally NP-complete due to the fact, that number of partitions grows
exponentially depending on the cardinality of 𝑁 [93]. Thus, in many application-
oriented problems, study of coalition formation process in a distributed manner is
preferred. Distributed coalition formation is based on the idea of the autonomy of
players decision about joining a coalition. Considerations, established in [4], provide
necessary concepts for the description of the general process of distributed coalition
formation by the means of merges and splits. This approach is based on the three
following concepts.

Comparison relation. At first, relation, which enables to compare collections of
coalitions, has to be defined. For the sake of clarity, we define the collection of the
coalitions, as a family 𝐶 = {𝐶1, . . . , 𝐶𝑙} of mutually disjoint subsets of 𝑁 . Recall,
that partition is a particular case of collection, for which ∪𝑙𝑖=1𝐶𝑖 = 𝑁 holds. Further,
for 𝐶 = {𝐶1, . . . , 𝐶𝑙}, the notation ∪𝐶 will stand for ∪𝑙𝑖=1𝐶𝑖. Collections 𝐴 and 𝐵
can be compared, iff ∪𝐴 = ∪𝐵 holds. Then, a comparison relation � can be defined
as follows.
Definition (Comparison relation). Comparison relation � is an irreflexive, transitive
relation, which satisfies ∀𝐴,𝐵,𝐶,𝐷 : ∪𝐴 = ∪𝐵, ∪𝐶 = ∪𝐷, (∪𝐴) ∩ (∪𝐶) = ∅, two
following conditions of the monotonicity:

𝐴�𝐵, 𝐶 �𝐷 ⇒ 𝐴 ∪ 𝐶 �𝐵 ∪𝐷,
𝐴�𝐵 ⇒ 𝐴 ∪ 𝐶 �𝐵 ∪ 𝐶.

Intuitive meaning of notation 𝐴� 𝐵 is that 𝐴 partitions some set in a way, that
is preferred by elements of this set over 𝐵. A comparison relation � is semi-linear, if
for all collections 𝐴,𝐵 : ∪𝐴 = ∪𝐵, either 𝐴� 𝐵 or 𝐵 � 𝐴. In a framework of CGT,
collections of coalitions can be compared by the mean of the value function of the
game: for the collections 𝐴 and 𝐵

𝐴�𝐵 ⇔ 𝑣(𝐴)� 𝑣(𝐵),

where for the collection 𝐴 = {𝐴1, . . . , 𝐴𝑚}, 𝑣(𝐴) = {𝑣(𝐴1), . . . , 𝑣(𝐴𝑚)}. Then, we
could define semi-linear comparison relations between sets 𝑣(𝐴) = {𝑣(𝐴1), . . . , 𝑣(𝐴𝑚)}
and 𝑣(𝐵) = {𝑣(𝐵1), . . . , 𝑣(𝐵𝑛)} of reals such as

• utilitarian order: 𝐴�𝑢𝑡 𝐵 ⇔ 𝑣(𝐴)�𝑢𝑡 𝑣(𝐵) ⇔
∑︀𝑚

𝑖=1 𝑣(𝐴𝑖) >
∑︀𝑛

𝑖=1 𝑣(𝐵𝑖);

• Nash order: 𝐴�𝑁𝑎𝑠ℎ 𝐵 ⇔ 𝑣(𝐴)�𝑁𝑎𝑠ℎ 𝑣(𝐵) ⇔ Π𝑚
𝑖=1𝑣(𝐴𝑖) > Π𝑛

𝑖=1𝑣(𝐵𝑖).
The utilitarian order states, that collections of coalitions, that guarantee greater

social welfare (total utility), are preferred by the players, whereas the Nash order
states, that collections, which provide equal distributions, are preferred (note, that
Nash order is reasonable only for non-negative values of 𝑣(𝑆)).
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Merge and split rules. Once a comparison order is defined, dynamic process of
distributed coalition formation can be started through two possible rules on the set
of partitions of the players set:

• merge: {𝑇1, . . . , 𝑇𝑘} ∪𝑅 →𝑀 {∪𝑘𝑗=1𝑇𝑗} ∪𝑅, if {∪𝑘𝑗=1𝑇𝑗}� {𝑇1, . . . , 𝑇𝑘};

• split: {∪𝑘𝑗=1𝑇𝑗} ∪𝑅 →𝑆 {𝑇1, . . . , 𝑇𝑘} ∪𝑅, if {𝑇1, . . . , 𝑇𝑘}� {∪𝑘𝑗=1𝑇𝑗}.

In the above-described rules, {𝑇1, . . . , 𝑇𝑘} ∪ 𝑅 is some partition of the players’ set
𝑁 , where 𝑅 represents partition of other players, who are not involved in any 𝑇𝑖, 𝑖 =
1, . . . , 𝑘. For the comparison relation �, every iterative application of the merge and
split rules terminates [4].

These theoretical rules can be explained as follows. Assume utilitarian order and
coalition structure 𝒞0 = {𝑆1, 𝑆2, 𝑆3} ∪ 𝑅, where 𝑆𝑖, 𝑖 = 1, 2, 3, are disjoint coalitions
and 𝑅 represents partition of other players, who are not involved in any 𝑆𝑖, 𝑖 = 1, 2, 3.
If 𝑣 (∪3

𝑖=1𝑆𝑖) >
∑︀3

𝑖=1 𝑣 (𝑆𝑖), then application of merge rule will lead to a new coalition
structure 𝒞1 = {∪3

𝑖=1𝑆𝑖} ∪ 𝑅. Analogically, if coalition structure 𝒞0 = {∪3
𝑖=1𝑆𝑖} ∪ 𝑅

is assumed and 𝑣 (∪3
𝑖=1𝑆𝑖) <

∑︀3
𝑖=1 𝑣 (𝑆𝑖), then the result of the split rule will be

𝒞1 = {𝑆1, 𝑆2, 𝑆3} ∪ 𝑅. Now, our attention can be focused on the two following
questions:” under what conditions does different sequences of merge and split rules
lead to the same outcome?” and “is this outcome unique?”.

Defection function. Important concept, used for checking stability and unique-
ness of the coalition formation outcome, is defection function 𝒟, that assigns to each
partition 𝒫 ∈ 𝒫𝑁 , some collections 𝒟(𝒫) of the grand coalition. In other words,
𝒟(𝒫) consists of collections, that can be formed by players in 𝑁 by leaving partition
𝒫 . The two most obvious ways of defining 𝒟 are 𝒟𝑐, which assigns to every parti-
tion 𝒫 the family of all collections in 𝑁 , and 𝒟𝑝, which assigns to every partition 𝒫
the family 𝒫𝑁 . Then, for the given defection function 𝒟 and comparison relation �

stability of a partition 𝒫 = {𝑆1, ..., 𝑆𝑘} can be defined as follows.

Definition. Partition 𝒫 is 𝒟-stable iff

𝐶[𝒫 ]� 𝐶, ∀𝐶 ∈ 𝒟(𝒫), 𝐶[𝒫 ] ̸= 𝐶,

where
𝐶[𝒫 ] = {𝑆1 ∩ (∪𝐶), . . . , 𝑆𝑘 ∩ (∪𝐶)} ∖ {∅}.

Thus, the 𝒟-stability means, that each collection 𝐶 from 𝒟(𝒫) in the frame of
partition 𝒫 is «better» compared to 𝐶. However, checking both 𝒟𝑐 and 𝒟𝑝 stabil-
ity types for large games through extensive search is computationally challenging.
Whereas for the case of semi-linear comparison a 𝒟𝑝-stable partition always exists,
the 𝒟𝑐-partition does not need to exist even under this assumption. Moreover, they
are not directly connected to process of merging and splitting: terminal partition
obtained by merge and split rules is not guaranteed to be 𝒟𝑐- or 𝒟𝑝-stable. Due to
these complications, another type of stability is applied. This is 𝒟ℎ𝑝 type stability,
where 𝒟ℎ𝑝 is a defection function, which assigns to each partition 𝒫 the collection
𝒟ℎ𝑝(𝒫) consisting of all partitions, that can be obtained from 𝒫 by performing ex-
actly one merge or split operation. 𝒟ℎ𝑝-stable partition can be found as an outcome
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of iterating merge and split rules. Thus, it always exists. In [3], it is proven, that 𝒟ℎ𝑝-
stable partition is unique 𝒟ℎ𝑝-stable and unique 𝒟𝑝-stable partition for the case of
the utilitarian order. To summarize, whereas the mechanism of comparison relation
built-in into merge and split rules enables to obtain some predictable outcome of the
coalition formation process, defection function-based stability describes properties of
such an outcome.
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Chapter 3

Review

The main goal of this section is to provide a thorough overview of the recent pub-
lications about general applications of GT in sustainability research. Search for the
articles has been performed via the Web of Science Core collection database using
the keyword «game theory application». Only articles in English published between
2017 and 2020 (when this research has started) have been considered. This 3 years
range has helped us to rationally limit the amount of the found articles. Articles with
solely theoretically oriented research, or not related to sustainability research have
been excluded from the review. As a result, a complete review of 33 articles has been
performed. The reviewed articles have been characterized according to GT branches,
applied theoretical concepts, and other important factors in «General review.xlsx» of
Appendix.

3.1 Review summary
The main findings and implications of the performed review will be summarized and
discussed in this section. In particular, the following areas, where GT is applied to
embed sustainability principles, have been studied: WM (related to 21.2% of the
reviewed articles), supply chain management (33.3%), policy design (24.2%), water
resource management (18.2%) and energetics (18.2%).

Supply chain management and waste management. Fields of WM and of
supply chain management are very similar, since practical WM is mainly based on
optimal management of the supply chain and employs many techniques from oper-
ations research [7]. When managing waste or general supply chain, it is common,
that there exist some pre-defined roles, that are assigned to players. These roles are
frequently placed on the different level of hierarchy, such as in [112]. This is why
Stackelberg games are of such popularity in these fields of research. The simplest
Stackelberg model includes two entities, the leader and follower, and both entities
are trying to anticipate decision of the opponent. In fact, the Stackelberg game can
be viewed as a particular case of a bilevel optimization problem [60]. Therefore,
along with the backward induction, the Karush-Kuhn-Tucker (KKT) conditions are
used to establish the NE in the Stackelberg games. Some of the reviewed articles
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are focused on comparison of a centralized cooperation model and a non-cooperative
model within the supply chain or the WM network [37]. It is mainly considered,
that the non-cooperative case is more insightful and realistic, than the mandatory
cooperation. However, it is not realistic to completely neglect possibility of cooper-
ation. Application of differential games, which bear continuous game process, has
been demonstrated in [41]. It is a promising approach, that combines optimal control
theory and GT.

Policy design. In this area, it is important to study reaction [31] and process of
adaptation [16] to newly implemented policies, with a focus on a stable outcome of
such dynamic processes. This is a reason, why evolutionary games are most common
in a field of policy design, since EGT provides an explicitly dynamical point of view
missing from the traditional theory [94]. Moreover, it enables to assume limited ratio-
nality of involved parties. Consequently, the most popular solution concepts in policy
design games are evolutionarily stable strategy (ESS) and replicator dynamics [94].
CGT can be potentially applied to design a fair distribution of emission reductions
using its solution concepts [64].

Water resource management. Since irresponsible water consumption represents
externalities for other users, cooperation in management of water resources is vital.
Due to this fact, CGT is expectedly the most popular GT branch within this area of
research. Moreover, it enables to define solutions of water management games, which
reflect legislative specifics, as well as the nature of a water resource, and locations
of users upstream and downstream of a river [105]. CGT also enables to distribute
water cleaning costs in a fair way, which is a common problem in this field [14]. As
in the area of policy design, when some political or biological issues are involved,
non-cooperative games in matrix form are applied [42]. The fuzzy coalitional games
[87], where players take part in a coalition only to a certain extent, are also con-
sidered in this area [53]. The water resource management is the only field, where
coalition formation games and graph games have been considered. Graph games [77]
are applied to management of water [105], since the graph structure enables to in-
corporate geographical connections between subjects. The coalitional graph games
also possess solution concepts, which can take into account role of the player in the
network structure [50].

Energetics. Due to the generality of this field, it demonstrates a rather uniform
application of the majority of GT concepts. In energetics, CGT enables to design
a fair distribution of energy between users [68], optimal capacities of system parts
[43] or reasonable allocations of energy costs [69]. Compared to other fields, it even
employs solution concept of the Core [43]. When dealing with the energetical supply,
Stackelberg games are applied [92], since again, the supplier and consumer are clearly
defined roles for system participants. Energetics also demonstrates the application
of classical normal form games, which are solved through NE using the derivatives of
payoff functions [70].
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3.2 Findings and suggestions
From the reviewed articles, it can be deduced, that GT can be used as a fully-right
standalone DM method, as well as a complement to other DM methods. GT can
be applied to design government policies, supply chains, resource allocations, and
real, tangible engineering projects. Moreover, it can take into account uncertainties
and probabilities of different types, including fuzzy sets, and serve as a basis for per-
forming sensitivity analysis. The review confirms, that GT is frequently applied to
environmentally oriented research, but also reveals, that game-theoretic approaches
require further improvement. While future applications of NGT should embed models
considering more complex leader-follower games and uncertainties, in CGT-related
research, more attention should be paid to game classes describing cooperation restric-
tions. Moreover, computational complexity makes applications of GT to instances
with many players inconvenient. This problem represents a substantial research gap
and a potential direction for further studies. Overcoming the computational issues,
might considerably promote application of GT across different fields of research. The
main findings of the review and the resulting implications can be summarized as
follows.

• Almost all reviewed articles, considering cooperative games, deal only with
canonical coalitional games, ignoring other classes. There is an obvious absence
of application-oriented research sufficiently employing coalition formation and
coalitional graph games.

• Applications of NGT dominate over other studied branches. This fact can be
easily explained by diversity of its approaches, intuitive solution concepts, and
relatively simple formalization of the game process. Thus, NE is expectedly the
most eminent concept of GT. Due to supply chain management importance,
backward induction (often accompanied by the KKT and bilevel programming)
also plays a significant role in contemporary research. While some instances of
the Stackelberg games are well studied, instances with multiple leaders achiev-
ing mutual equilibrium represent a research gap. Naturally, replicator dynamics
and the ESS are mentioned in all articles, where EGT is applied. The core and
the Shapley value are also of great significance, but some of the cooperative
instances are studied without particular wealth distribution suggestions.

• Only slightly more than half (57%) of articles have considered real data in the
performed case studies. Due to the applied nature of the performed review, it
can be viewed as insufficient. Evidently, there are not enough applications of
GT to real instances.

• 75% of the articles consider either 2 or 3 players, while only 3 articles consider
more than ten players. Therefore, there is insufficient application of GT to
instances with a large number of agents.
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3.3 Scope of the research
The author has decided to focus on the application of GT to the problems of sustain-
able WM, with respect to the found research gaps. Since problems of environmental
degradation and depletion of natural resources have become eminent challenges for
the modern society, WM is a currently actively developing area of research, which
aims to embed sustainability principles into the majority of the underlying processes.
WM is closely connected to the concept of CE because one of their common goals
is an effective treatment of solid waste. In particular, the European Union (EU)
countries have recently adopted the CE Package (CEP) [18] to legislatively embed
principles of CE and effective WM. CEP sets up a series of goals which dwell in a
decrease of the amount of solid waste that is being landfilled and in an increase of
its material and energy recovery. This package includes the requirement, that all EU
member countries must recycle at least 60% of produced mixed solid waste (MSW) by
2030 and 65% by the year 2035 [26]. According to the update of the above-described
package, only 10% of the total MSW amount can be landfilled by the year 2035 [19].
These milestones gradually become part of member states’ legislation, including pri-
oritized energy recovery of MSW in appropriate facilities. Such incentives require
reliable strategic planning from all involved stakeholders: government, waste treat-
ment facilities managers and investors, WM companies, and municipalities. This fact
makes study of sustainable WM networks crucial.

Currently employed game-theoretic models in this area lack more sophisticated
approaches, real data-based case studies, and are often limited to comparison of
fully cooperative and non-cooperative cases, or to solution of simple matrix-form
games. Thanks to cooperation on research projects with the Institute of Process
Engineering, Faculty of Mechanical Engineering, Brno University of Technology, real
data and operation conditions of WM networks, in the form of waste production,
price levels, capacities and infrastructure, are available to experiment with designed
approaches under conditions, that are maximally close to real ones. In the next
chapter, it will be also demonstrated, that the considered area of research possesses
previously mentioned complex instances of Stackelberg games with multiple leaders,
that have not been sufficiently studied. These games deal with setting of gate fee
for waste treatment facilities and their optimal capacity design. Moreover, WM
has a great potential in application of classes of cooperative games with cooperation
restrictions. In particular, dynamic coalition formation games between municipalities
are of great interest, since individual municipalities generally are not able to efficiently
and economically dispose of the produced waste. The considered task also brings
further challenges, such as development and employment of the approaches, that are
able to handle large number of players. The proposed game theoretic approaches to
the considered problems will be validated through realistic case studies1.

1Data and results of the case study from section 4.1, resp. 4.2, can be found in «Data 1.xlsx»,
resp. «Data 2.xlsx», of Appendix.
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Chapter 4

Games in waste management

The main issues of WM are monitoring and regulation of the collection, transporta-
tion, treatment, and disposal of waste [1]. Whereas the recyclable waste fits perfectly
into the design of CE closed production cycles, the non-recyclable fraction of MSW
cannot be utilized in the same way. However, the energy potential of non-recyclable
waste can be restored through Waste-to-Energy (WtE) technology [59]. It is expected
that WtE plants will play an important role in waste treatment under CEP legislative
changes [74]. Whereas in the past, incineration of MSW has been a source of sub-
stantial pollution, nowadays, due to the continuous development of WtE technology,
WtE plants can serve as an environmentally friendly source of energy [110]. In [89],
the WtE environmental impact has been thoroughly studied. The research concluded
that WtE, as a combination of WM practice and electricity sources, can provide cli-
mate change benefits. However, if it is considered a renewable energy source solely, it
cannot compete with other sources regarding greenhouse gas emissions. On the other
side, it is more stable than wind power or solar energy [111]. Thus, the embedment of
the WtE plants into cities’ smart-energy grids might help to increase the sustainable
production of energy and solve the problem of overwhelming energy demand expected
in the near future [104].

4.1 Waste-to-energy plants price-setting
Expectedly, the actual capacities of already existing waste treatment facilities can be
insufficient for efficient waste energy recovery in the future. Therefore, new waste
treatment facilities will be needed [52]. The placement of a new WtE facility is
strongly impacted by the existing infrastructure of the considered region and therefore
does not suggest vast space for possible decisions. On the other side, the optimal
capacity design brings numerous variants that should be assessed correctly. Such
strategical decisions should be made with the help of suitable DM methods. Moreover,
it should be supported by a reliable analysis of the current WM situation, since the
accurate estimate of potential occupancy of capacity, and a realistic gate fee will
enable to correctly anticipate return on investment and the financial feasibility of
the whole project. However, in most operational research models employed in WM
[7], gate fees are assumed to be external fixed parameters that have been set or
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optimized centrally. Such assumption neglects individual behaviors of WtE plants
management and cannot describe a real conflict of interests in a waste treatment
market. Therefore, there is an open problem of how to efficiently anticipate the gate
fees, which will realistically reflect the WM network setting.

This part of the doctoral thesis deals with the problem of the WtE plans’ optimal
gate-fee setting in a competitive environment under limited capacities. It focuses on
an identification of the stable gate fee state in an already built WM network (loca-
tions, productions and capacities are already given) that can be used in strategical
planning and should ensure efficient and financially sustainable waste energy recov-
ery. The problem of WtE plants’ price-setting (setting of gate fee) will be studied as a
normal formal game of WtE plants with gate fee being their strategies. The primary
purpose of the research is to find a gate fees NE such that none of WtE plants would
like to change its gate fee. After a formal introduction of the problem and exten-
sive investigation of the bilevel optimization methods, the novel heuristic approach is
proposed to solve an optimal price-setting problem for each Waste-to-Energy (WtE)
plant separately. Combined with the BRD algorithm, it enables the search for NE of
the considered game. The functionality of the proposed approach is validated by an
exemplary problem of the DM process on the optimal capacity design of the newly
planned WtE facility in the Czech Republic. At the end, the existence of the specific
NE generalization for the newly introduced class of price-setting games is studied.

4.1.1 Problem statement
The detailed formulation of the considered problem can be described as follows. Con-
sider the already built WM network. WtE plants with different capacities and waste
producers (mainly cities or agglomerations) with different waste productions are pre-
sented in an area. Each WtE plant is interested in maximizing its income by setting
the optimal gate fee, which will be sufficiently high or/and will attract waste pro-
ducers. WtE plant income is presented as a product of its gate fee and the total
amount of waste sent to this WtE plant by waste producers. The main assumption
is that landfilling of utilizable waste is substantially limited, according to [19]. This
fact forces waste producers to treat all produced non-recyclable waste using the ser-
vices of WtE plants. Each waste producer’s main interest is to reduce costs for waste
treatment. These costs are represented as a product of the amount of waste sent to
a particular WtE plant and the sum of gate fee and transportation costs. Another
important assumption is that, whereas WtE plants located in an area are individually
maximizing their income, waste producers are cooperatively minimizing their total
waste treatment costs. The cooperating waste producers reflect the current trend
when municipalities tend to create unions to lower their waste treatment costs [29].
The schematic explanation of the revenue maximization by a WtE plant is depicted
in Figure 4.1, where the entities’ objectives are highlighted in bold, and their con-
straints are highlighted in italics. The exchange of decision variables is depicted using
arrows.

From Figure 4.1, it can be seen that setting the optimal gate fee for a partic-
ular WtE plant corresponds to solving the bilevel optimization problem, with the
WtE plant on the upper level of the hierarchy and waste producers as one entity
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Figure 4.1: Revenue maximization problem

on the lower level. Formally, bilevel optimization can be defined as a mathematical
programming problem with constraints determined by another optimization problem.

The conflict of WtE plants’ interests will certainly occur since each plant will
operate with its gate fee to obtain a greater part of the fixed total demand (total waste
production of the whole region). Plants’ capacities and relative locations of WtE
plants and waste producers define the market power of WtE plants, i.e., how great
a gate fee WtE plant can set and still not a substantial loose part of demand. The
considered problem can be seen as a classical normal form game, which is played on
the upper hierarchy level between WtE plants, where optimizing the payoff function
of a player leads to a bilevel programmming problem. It was decided to apply a
non-cooperative approach to the price-setting problem; cooperation between WtE
plants would mean the existence of illegal collusion about the gate fees level. The
NE is assumed to be the searched stable outcome. One of the main complications
is that setting the optimal price for one WtE plant is already an NP-hard bilevel
programming problem [13]. Therefore, the established task comprehends two distinct
challenging steps:

• a solution of the price-setting bilevel programming problem with one WtE plant,
maximizing its revenue on the upper level and cooperating waste producers,
minimizing their total costs on the lower level;

• a determination of the NE of the price-setting normal form game between WtE
plants.

Now, the mathematical formalization of the considered problem will be given.

4.1.2 Model and game
Let 𝑁 = {1, . . . , 𝑛} be a set of WtE plants; 𝑤𝑐1, . . . , 𝑤𝑐𝑛 denotes their capacities
and 𝐶𝑔

1 , . . . , 𝐶
𝑔
𝑛 denotes their strategy sets (sets of possible gate fees) with an element

𝑐𝑔𝑗 ∈ 𝐶𝑔
𝑗 , 𝑗 ∈ 𝑁 . The set of producers is 𝑀 = {1, . . . ,𝑚}. Their waste productions are

𝑤𝑝1, . . . , 𝑤
𝑝
𝑚. Transportation costs are given by the matrix

[︀
𝑐𝑡𝑖,𝑗
]︀
, where 𝑐𝑡𝑖,𝑗 represents

the cost of waste transportation from the producer 𝑖 ∈𝑀 to the plant 𝑗 ∈ 𝑁 . In the
following expressions, 𝑥𝑖,𝑗 denotes the amount of waste sent by the producer 𝑖 ∈ 𝑀
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to the WtE plant 𝑗 ∈ 𝑁 in tonnes. For each WtE plant 𝑗 ∈ 𝑁 , the payoff function
𝜋𝑗 is defined as

𝜋𝑗 (𝑐
𝑔
1, . . . , 𝑐

𝑔
𝑛) =

∑︁
𝑖∈𝑀

𝑐𝑔𝑗𝑥
*
𝑖,𝑗, (4.1)

where (𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁 ∈ {(𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁}, such that

{(𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁} = arg min
𝑥𝑖,𝑗 :𝑖∈𝑀,𝑗∈𝑁

∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗, (4.2)

𝑠.𝑡.
∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈ 𝑁, (4.3)∑︁
𝑗∈𝑁

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, (4.4)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁. (4.5)
The (𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁 describe resulting non-negative (4.5) waste flows after cooperative
minimization of total costs by cities (4.2) and the fact, that they have to dispose of
all waste they produce (4.4) and cannot exceed capacities of WtE plants (4.3). The
set {(𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁} is not necessarily a singleton. To prevent ambiguity, in this work,
a risk-averse leader, who wants to create a financial cushion, is considered. Thus,
the worst possible waste distribution scenario (𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁 for the WtE plant will
be taken among all possible arguments of optima of the above-presented mathemat-
ical programming problem. To make the problem of waste producers feasible, it is
necessary to assume

∑︀
𝑖∈𝑁 𝑤

𝑐
𝑖 ≥

∑︀
𝑗∈𝑀 𝑤𝑝𝑗 . By now, two of three necessary elements

of the normal form game of WtE plants have been established: the set of players
𝑁 = {1, . . . , 𝑛} and their payoff functions 𝜋𝑗(𝑐𝑔1, . . . , 𝑐𝑔𝑛), 𝑗 ∈ 𝑁, have been defined.
To thoroughly study the properties of the problem, the whole set of positive reals will
be considered as a strategy space of possible gate fees. Thus, the considered game
can be represented as a triple 𝐺 = (𝑁, (𝜋𝑗, 𝐶

𝑔
𝑗 )𝑗∈𝑁), where 𝐶𝑔

𝑗 = (0,∞),∀𝑗 ∈ 𝑁 .
The above-defined payoff functions are not differentiable or continuous. As a

result, their derivatives cannot be described in order to analytically find the NE.
Author’s first paper on this topic [28] has considered applying BRD to discrete sets
of possible gate fees. Compared to the original work on this topic [83], the cardinality
of the sets of possible gate fees for which equilibrium can be found was substantially
enlarged. In [83], the NP-hard problem of setting the optimal price between one WtE
plant and all waste producers has been solved by a simple combinatorial approach
through simple iteration over all possible strategies. However, such an approach does
not reflect reality, where WtE plants can choose from the continuous sets of gate
fees. Then, an achieved equilibrium might seem artificial because players were not
allowed to play optimal strategy and arbitrarily change it. This is the reason why we
will focus on bilevel programming methods in the next section: it will enable us to
consider continuous strategy spaces, find optima faster and better reflect reality.

4.1.3 Bilevel programming
Firstly, we will analyze the max𝑐𝑔

𝑗′∈
𝑔

𝑗′
𝜋𝑗′ for an arbitrary 𝑗′ ∈ 𝑁 and for the given

gate fees of rivals. This can be seen as an instance of bilevel bilinear programming,
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where the WtE plant on the upper level maximizes its income by setting the optimal
gate fee, whereas waste producers on the lower level minimize the sum of their waste
treatment costs. This problem will be further referred to as 𝑀𝑅𝑗′ . This section is
devoted to the proper inroduction of the bilevel programming and to the review of
the bilevel programming research related to our problem. Also we will discuss the
common elements of particular instances of so-called general taxation problem (GTP)
and of 𝑀𝑅𝑗′ .

Theoretical background

The framework of bilevel optimization involves convex, non-convex, and mixed-integer
programming (MIP) and enables the model of hierarchical situations when the re-
sponse of lower level entities impacts the decisions of the upper level authority. Bilevel
programming is NP-hard in general. Obviously, 𝑀𝑅𝑗′ belongs to this class of mathe-
matical programming problems. Let 𝐹 : R𝑛×R𝑚 → R, 𝐺 : R𝑛 → R𝑞, 𝑓 : R𝑛×R𝑚 →
R, 𝑔 : R𝑛 × R𝑚 → R𝑝, and 𝑋 ⊆ R𝑛, 𝑇 ⊆ R𝑚, are closed sets. Then, according to
[23], general bilevel programming problem can be mathematically expressed as

min
𝑥∈𝑋

𝐹 (𝑥, 𝑦), (4.6)

s.t. 𝐺(𝑥) ≤ 0, (4.7)
(𝑥, 𝑦) ∈ gph 𝜓, (4.8)

where gph 𝜓 := {(𝑥, 𝑦) ∈ R𝑛×R𝑚 | 𝑦 ∈ 𝜓(𝑥)} is a graph of solution set mapping 𝜓,

𝜓(𝑥) := {𝑦 ∈ 𝑌 (𝑥) ∩ 𝑇 | 𝑓(𝑥, 𝑦) ≤ 𝜑(𝑥)},

with an optimal value function 𝜑

𝜑(𝑥) := min
𝑦∈𝑇

𝑓(𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) ≤ 0,

and a feasible set mapping 𝑌

𝑌 (𝑥) := {𝑦 | 𝑔(𝑥, 𝑦) ≤ 0}.

It can be percived as a hierarchical problem, where leader pursues the objective
of (4.6)-(4.8), trying to anticipate reaction of the follower, who tries to solve

min
𝑦∈𝑇

𝑓(𝑥, 𝑦),

s.t. 𝑔(𝑥, 𝑦) ≤ 0.

However, this general definition of the bilevel programming problem is not precise,
since 𝜓(𝑥) is not necessary a singleton, implying that 𝑥 → 𝐹 (𝑥, 𝑦) is not a function,
but rather a point-to-set mapping. This fact causes the ambiguity in choice of a
solution from {𝐹 (𝑥, 𝑦) | 𝑦 ∈ 𝜓(𝑥)} for a particular 𝑥. To overcome this problem,
three conventional approaches may be applied:
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1. Optimistic: Leader has a belief, that follower will behave «friendly» and, in
case of numerous lower level solutions, will choose the solution, that is the best
for the leader. This leads to the problem

min
𝑥∈𝑋

𝜑𝑜(𝑥),

s.t. 𝐺(𝑥) ≤ 0,

where 𝜑𝑜(𝑥) := min𝑦∈𝜓(𝑥) 𝐹 (𝑥, 𝑦).

2. Pessimistic: Leader works with the worst-case scenario, solving
min
𝑥∈𝑋

𝜑𝑝(𝑥),

s.t. 𝐺(𝑥) ≤ 0,

where 𝜑𝑝(𝑥) := max𝑦∈𝜓(𝑥) 𝐹 (𝑥, 𝑦).

3. Selection function approach: The leader is able to perfectly anticipate the
reaction of the follower to each decision 𝑥, i.e. 𝑦(𝑥) ∈ 𝜓(𝑥) for all 𝑥. Then, this
unique reaction can directly be transferred to the upper level problem (4.6)-
(4.8):

min
𝑥∈𝑋

𝐹 (𝑥, 𝑦(𝑥)) ,

s.t. 𝐺(𝑥) ≤ 0.

Both previously introduced cases are particular instances of more generic selec-
tion function approach.

As we have already identeified, the pessimistic approach in the choice of (𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁
from {(𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁} will be employed. Thus, our pessimistic bilevel bilinear program-
ming problem 𝑀𝑅𝑗′ , can be rewritten as

max
𝑐𝑔
𝑗′>0

min
(𝑥*𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁∈𝜓(𝑐𝑔

𝑗′ )

∑︁
𝑖∈𝑀

𝑐𝑔𝑗𝑥
*
𝑖,𝑗,

where
𝜓(𝑐𝑔𝑗′) := {(𝑥𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁 ∈ 𝑌 ∩ R𝑚𝑛,+

0 | 𝑓
(︀
𝑐𝑔𝑗′ , (𝑥𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁

)︀
≤ 𝜑(𝑐𝑔𝑗′)},

𝜑(𝑐𝑔𝑗′) := min
𝑦∈R𝑚𝑛,+

0

𝑓
(︀
𝑐𝑔𝑗′ , (𝑥𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁

)︀
s.t.

∑︁
𝑗∈𝑁

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀,

∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈ 𝑁,

𝑌 := {(𝑥𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁 |
∑︁
𝑗∈𝑁

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, and
∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈ 𝑁},

and
𝑓
(︀
𝑐𝑔𝑗′ , (𝑥𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁

)︀
:=
∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗.

At the end of this theoretical section, some basic image of classical bilevel program-
ming solution methods will be provided.
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How to solve bilevel programming problems? The most classical way of solv-
ing the bilevel programming problems is via KKT conditions. In this paragraph, we
introduce only the so-called classical KKT transformation [23]. Let us assume that
𝑇 = R𝑚 and 𝑌 (𝑥) = {𝑦 | 𝑔(𝑥, 𝑦) ≤ 0}. We additionaly assume, that 𝑔(𝑥, 𝑦) is convex
for a fixed 𝑥 and

∃𝑦 : 𝑔(𝑥, 𝑦) < 0 (Slater’s regularity condition).

Then, classical KKT conditions state, that 𝑦 ∈ 𝜓(𝑥) if and only if

0 ∈ 𝜕𝑦𝑓(𝑥, 𝑦) + 𝜆𝑇𝜕𝑦𝑔(𝑥, 𝑦),

𝜆 ≥ 0,

𝜆𝑇𝑔(𝑥, 𝑦) = 0,

where 𝜕𝑦𝑓(𝑥, 𝑦) denotes subdifferential (set of all subgradients) of function 𝑓(𝑥, 𝑦)
for a fixed 𝑥. Thus, the originally introduced bilevel programming problem can be
rewritten using lower-level KKT conditions as following single-level problem

min
𝑥,𝑦

𝐹 (𝑥, 𝑦)

𝐺(𝑥) ≤ 0

0 ∈ 𝜕𝑦𝑓(𝑥, 𝑦) + 𝜆𝑇𝜕𝑦𝑔(𝑥, 𝑦),

𝜆 ≥ 0, 𝑔(𝑥, 𝑦) ≤ 0, 𝜆𝑇𝑔(𝑥, 𝑦) = 0,

𝑥 ∈ 𝑋.

Clearly, newly introduced dual variables 𝜆 bring complications, that the origi-
nal formulation of the bilevel problem and its classical KKT transformation are not
completely equivalent. Therefore, it is important to establish relationship between
solution of original bilevel problem and its KKT transformation. If we denote

Λ(𝑥, 𝑦) := {𝜆 ≥ 0 | 0 ∈ 𝜕𝑦𝑓(𝑥, 𝑦) + 𝜆𝑇𝜕𝑦𝑔(𝑥, 𝑦), 𝜆
𝑇𝑔(𝑥, 𝑦) = 0},

then we have the two following theorems [23], specifying the relationship between
solutions of both problems.

Theorem 4.1.1. Let the lower-level problem be a convex optimization problem and
assume that Slater’s condition is satisfied for all 𝑥 ∈ 𝑋 with 𝜓(𝑥) ̸= ∅. A feasible
point (�̂�, 𝑦) of the original bilevel probelm is a local optimal solution of this problem iff
(�̂�, 𝑦, �̂�) is a local optimal solution of KKT transformed problem for each �̂� ∈ Λ(�̂�, 𝑦).

Proof. Proof can be found in [22].

Theorem 4.1.2. Let (�̂�, 𝑦, �̂�) be a global optimal solution of KKT transformed prob-
lem and assume 𝑓(𝑥, 𝑦), 𝑔𝑖(𝑥, 𝑦), are convex for every fixed 𝑥 ∈ 𝑋 and that Slater’s
constraint qualification is satisfied for the lower-level problem for each 𝑥 ∈ 𝑋. Then,
(�̂�, 𝑦) is a global optimal solution of the bilevel optimization problem.
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Proof. Proof can be found in [22].

Thus, under some additional assumptions, we can globally solve bilevel problem
by solving its classical KKT transformation (what might also be a challenging task
in practice). Particular methods of solving the above-presented problem are designed
with respect to specific properties of the involved functions. Now, it is suitable to
analyze already established approaches used in contemporary research dealing with
the problems of pricing and bilevel optimization.

Literature review on price-setting

The product’s pricing has always been and is still the key question in economics, as
it is one of the main aspects affecting a firm’s revenue [32]. The problem of a firm
that maximizes its revenue, under the assumption that customers are maximizing
their utility from the product, has been vastly studied in the literature. The work
of Van Hoesel [106] confirmed the direct connection between the general Stackelberg
pricing game and bilevel programming. This connection holds due to the hierarchical
structure of the pricing problems. In fact, [106] has focused his study of pricing games
on the network pricing problem (NPP), being an instance of the GTP proposed in
[62] (further «toll-setting problem» will be used as an equivalent for NPP). In GTP,
the leader imposes taxes on commodities transported through the abstract network
by a follower to maximize profit, whereas the follower minimizes transporting costs.
Indeed, numerous pricing problems correspond to the GTP. This is why it was decided
to split the review of the current state-of-art into two parts: the first one is focused
on the price-setting problems presented in the literature, whereas the second part is
devoted solely to the GTP and its instances.

To ensure high relevance of the performed review, the main interest has been fo-
cused on the recent review papers on the bilevel optimization, from which articles
focused on pricing and toll-setting have been extracted. In particular, the survey of
mixed-integer bilevel approaches [58], a general review on classical bilevel optimiza-
tion with an emphasis on evolutionary approaches [101], article on bilevel intermodal
pricing [103] and extensive review of pessimistic bilevel optimization approaches [66]
have been considered. To complement the found papers, the search in the Scopus
database using pairs (and triplets in case of numerous results) of the following key-
words has been performed:

• general taxation problem;

• highway network problem;

• price setting;

• bilevel optimization;

• bilevel bilinear problem;

• Stackelberg game.
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Then, relevant papers have been divided into two groups mentioned above and detailly
reviewed. The results of the review of general pricing problems can be found in Table
1 of the author’s paper [30].

The main feature of our problem are limited capacities of WtE plants, which
substantially complicate the solution. Only a few papers consider some analogy
of these capacities. Anjost et al. [2] studied the model where only part of the
lower level decision variables have an upper bound. Moreover, the integer nature of
some variables has simplified single-level reformulation. The work [35] also assumes
analogical constraints. Still, the problem formulation again contains integer variables,
and the application specifics enable convenient linearization of bilinear terms during
reformulation into a single-level problem. Feng et al. [33] also consider the analogy
of capacitated arcs, but, compared to cooperating waste producers considered in
this paper, the authors have assumed equilibrium on the lower level, which enabled
reformulation into a mixed-integer quadratically constrained optimization problem.
Zheng et al. [113] considered capacitated depots, but the capacity is given for each
product separately, implying their mutual independence.

Thus, the analogical problem has not been studied in the considered papers. An-
other peculiar finding is that the pessimistic approach considered in this paper is
enforced using a simple numerical trick, which has been also applied in [10]. It dwells
in the addition of an artificial small constant, which makes the leader’s services more
expensive than services of other suppliers. One of the most interesting papers is [99],
where the closely related problem of product line pricing is studied. Whereas it has
an analogical structure (though formulated as a single-level problem), it differs in the
following important assumptions:

• the leader does not assume the limited production capacities of the competitors
(analogy of capacity of other WtE plants), which leads to maximally risk-averse
behavior;

• the customers are not forced to buy products, whereas waste producers (in fact,
customers of the WtE sector) have to treat all produced waste;

• integer nature of the customer-product relationship (each customer buys at
most one product) simplifies the potential embedment of capacity constraints.

Moreover, under the assumptions of this work, the heuristics proposed in [99] degen-
erates into an enumeration procedure. Regarding the search for equilibrium between
leaders, Myklebust et al. [78] assumed the stationary prices of the competitors’ prod-
ucts since changing competitors’ prices would substantially complicate the problem.
The same is valid for the work [99]. The problem of establishing the equilibrium
between leaders has been considered only in one paper: Reisi et al. [90] studied the
version of the equilibrium problem with equilibrium constraints. However, this ver-
sion has been simplified by an assumption that enabled a direct search for equilibria
via the backward induction. Thus, from the perspective of the upper level normal
form game, the lack of related research can be aslo confirmed.

The first part of the review has confirmed the necessity to focus on the GTP:
the majority of the papers mention NPP or GTP. For example, the envy-free pricing
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studied in [34] is solved with the help of the NPP. Now, the GTP will be shortly
introduced.

General taxation problem literature review

Labbé et. al [62] have thoroughly studied theoretical properties of GTP. In this
problem, the leader imposes taxes on a commodities transported through the abstract
network by follower, maximizing his profit, while follower minimizes his costs. Now,
assume that 𝑥 and 𝑦 are vectors of reals describing quantitative levels of taxed and
untaxed types of activities, respectively. Vector 𝑇 will denote taxes imposed on the
𝑥. Let 𝐹 and 𝑓 denote the leader’s and follower’s objective functions, respectively.
Then, the corresponding bilevel programming problem can be expressed as follows

max
𝑇∈Θ,𝑥,𝑦

𝐹 (𝑥, 𝑦, 𝑇 ),

min
𝑥,𝑦

𝑓(𝑥, 𝑦, 𝑇 ),

s.t.(𝑥, 𝑦) ∈ Π,

where Θ is set of feasible taxes and Π is set of feasible activities.
Such a model can describe multiple possible situations, when 𝑇 can represent not

only taxes, but also subsidies, while 𝑥 and 𝑦 can represent consumption or production
levels. After describing this model, Labbé et. al [62] focus on the simplified bilevel
bilinear model, which clearly has the same structure as 𝑀𝑅𝑗′ :

max
𝑇,𝑥,𝑦

𝑇𝑥,

s.t. 𝑇𝐶 ≥ 𝑒,

min
𝑥,𝑦

(𝑐+ 𝑇 )𝑥+ 𝑑𝑦,

s.t. 𝐴𝑥+𝐵𝑦 ≥ 𝑏,

where 𝐶, 𝑑, and 𝑒 are vectors of reals and 𝐴 and 𝐵 are real matrices of suitable
dimensions (the original notation from [62] has been preserved). It is important to
notice that 𝑐 corresponds to the costs of the activities 𝑥 before the tax were imposed.
The description, provided in [62], illustrates that the leader’s objective function is
neither continuous nor convex, but it is piecewise linear and left continuous in the
optimistic case.

Under assumptions that Π = {(𝑥, 𝑦)| 𝐴𝑥 + 𝐵𝑦 ≥ 𝑏} is bounded and {𝑦|𝑦 ≥ 𝑏}
is non-empty, the leader’s objective function is bounded from above and the whole
problem can be reformulated using KKT conitions as a single-level bilinear problem.
However, such reformulation might bring extensive amount of the additional variables
for the large instances complicating computation of the global optima for the off-the-
shelf solvers (their can stuck in numerous local optima). Alternatively, it can be
reformulated as a linear bilevel programming problem, which, however, does not
necessarily simplifies the task.

Then, Labbé et. al [62] proceed to NPP (originally called a road pricing model),
being one of the most common instances of the GTP. In NPP, an authority (leader)
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tolls a specified arc of a multicommodity transportation network, while the remaining
arcs bear only fixed costs, and the users (followers) of the network travel on the
shortest path (minimum sum of initial costs and tolls) between their relative origins
and destinations [47]. Now, we will formally introduce NPP.

Assume a multicommodity network represented by a set of nodes 𝒩 , a set of arcs
𝒜 ∪ ℬ, and a set of pairs {

(︀
𝑜𝑘, 𝑑𝑘

)︀
: 𝑘 ∈ 𝒦} for the commodities 𝑘 ∈ 𝒦, associated

with a demand 𝜂𝑘. A subset 𝒜 represent arcs, which are owned by authority and can
be tolled by a 𝑡𝑎, 𝑎 ∈ 𝒜, whereas ℬ represent toll-free arcs. For a commodity 𝑘 ∈ 𝒦
and arc 𝑎 ∈ 𝒜 ∪ ℬ, 𝑐𝑘𝑎 denotes the cost of travelling via 𝑎. The flow variables are
denoted by 𝑥𝑘𝑎, where 𝑎 ∈ 𝒜 ∪ ℬ, and 𝑘 ∈ 𝒦. Then, NPP can be formulated as,

max
𝑡𝑎,𝑎∈𝒜,𝑥𝑘𝑎,𝑘∈𝒦,𝑎∈𝒜∪ℬ

∑︁
𝑘∈𝒦

∑︁
𝑎∈𝒜

𝜂𝑘𝑡𝑎�̃�
𝑘
𝑎 (4.9)

𝑠.𝑡. 𝑡𝑎 ≥ 0, ∀𝑎 ∈ 𝒜, (4.10)

(�̃�𝑘𝑎)𝑘∈𝒦,𝑎∈𝒜∪ℬ ∈ arg min
𝑥𝑘𝑎,𝑘∈𝒦,𝑎∈𝒜∪ℬ

∑︁
𝑘∈𝒦

(︃∑︁
𝑎∈𝒜

(︀
𝑐𝑘𝑎 + 𝑡𝑎

)︀
𝑥𝑘𝑎 +

∑︁
𝑎∈ℬ

𝑐𝑘𝑎𝑥
𝑘
𝑎

)︃
, (4.11)

𝑠.𝑡.
∑︁

𝑎∈𝑖−∩𝒜

𝑥𝑘𝑎+
∑︁

𝑎∈𝑖−∩ℬ

𝑥𝑘𝑎−
∑︁

𝑎∈𝑖+∩𝒜

𝑥𝑘𝑎−
∑︁

𝑎∈𝑖+∩ℬ

𝑥𝑘𝑎 =

⎧⎪⎨⎪⎩
−1, if 𝑖 = 𝑜𝑘

1, if 𝑖 = 𝑑𝑘

0, otherwise
, ∀𝑘 ∈ 𝒦, ∀𝑖 ∈ 𝒩 ,

(4.12)

𝑥𝑘𝑎 ∈ {0, 1}, ∀𝑘 ∈ 𝒦,∀𝑎 ∈ 𝒜. (4.13)

where 𝑖+, resp. 𝑖−, denotes arcs with 𝑖 as its head, resp. tail. This problem has been
proven to be generally NP-hard, even for instances without congestion (capacitated
arcs). Under assumptions, that no negative cost cycle can occur and there always
exist toll-free path for each commodity, the NPP formulation can be reformuilated
as an integer programming problem, since each origin-destination path will carry
either total demand or zero. Unfortunately, this assumption doesn’t hold in case of
the congested arcs, making linearization of terms problematic. Moreover, numerate
Lagrange multipliers will complicate the situation.

For the case of the single toll arc 𝑎, the solution can be find in polynomial time.
Let 𝛾𝑘(𝑡𝑎) denotes the shortest path cost for the pair (𝑜𝑘, 𝑑𝑘), 𝑘 ∈ 𝒦, for a toll 𝑡𝑎. If
we set 𝜋𝑘 = 𝛾𝑘(∞)− 𝛾𝑘(0). Then, assuming ordering

𝜋𝑘1 ≥ 𝜋𝑘2 ≥ ... ≥ 𝜋𝑘|𝒦| ,

the optimal toll 𝑡𝑎 can be computed as

𝑡𝑎 = 𝜋𝑘𝑖* ,

𝑖* ∈ argmax
𝑖

{𝜋𝑘𝑖
∑︁
𝑗≤𝑖

𝜂𝑘𝑗 : 𝜋𝑘𝑖 ≥ 0}.

43



The review of papers focused on GTP and its instances can be found in Table 2
of the author’s paper [30]. The work of Bouhtou et al. [12] is similar to the stud-
ied problem, but does not consider the main complication of our model: capacity
constraints. Due to omitted capacities, the authors were able to find the optimal so-
lution in polynomial time using the enumeration procedure. However, in the problem
considered in this paper, the assumption of cooperating followers and capacitated
arcs makes it hard to anticipate the behavior of followers and changes in waste flows.
There are only two works with the same research subject: [54] and [55]. Evolutionary
approaches presented in [109] and [40] are out of scope of this thesis. Kalashnikov et
al. [54] considered four different heuristic approaches for toll-setting problems with
congestion (capacitated arcs). In particular, the penalization function approach,
quasi-Newton method, sharpest ascent method, and direct search via Nelder-Mead
algorithm. These algorithms can handle the capacitated toll-setting problem: for
example, for medium-sized problems, it takes from 7 up to 15 minutes for these al-
gorithms to find a solution. Compared to the papers mentioned above, 𝑀𝑅𝑗′ has a
much simpler structure, that should be exploited when computing optimum: it has
only one tolled arc controlled by 𝑗′. Moreover, there is no available data about the
efficiency of computation process of the above-mentioned algorithms in the case of
single tolled arc and numerous commodities.

Heilporn et al. [47] focus on instances reflecting the structure of an actual toll
highway: the network is composed of a toll path (the highway) and toll-free arcs
linking the origins, highway entrances, exits, and destinations. This problem is called
the Highway NPP (HNPP). It is assumed that all arcs controlled by an authority
present a complete bipartite subgraph and for every commodity exists the toll-free
path from its origin to its destination. The main distinction of HNPP from NPP,
which makes it not a particular case of the NPP, but its variant, is the assumption that
followers do not re-enter the highway. This is ensured via Triangle and Monotonicity
inequalities. Clearly, the existence of one tolled arc (one-arc highway) axiomatically
fulfills these assumptions. These properties enabled Heilporn et al. [47] to suggest
a simple and efficient reformulation of the HNPP into MIP (solvable in polynomial
time for a single tolled arc or a single commodity). This reformulation also enabled
solving other pricing problems: it has been demonstrated that the envy-free pricing
problem can be reduced to basic HNPP [34]. Moreover, the equivalence between
HNPP and the product line pricing problem [99] has been shown in [48]. However,
the main drawback of the work of Heilporn et al. are unconstrained arcs in a network.

One of the main ideas implied by Kalashnikov et al. [54] is that approximation
of derivatives enables capturing the followers’ behavior. Kalashnikov et al. [55] have
exploited the related idea of finding the maximum of the leader function via iterated
sensitivity analysis performed on the lower level linear programming problem to find a
suitable increase in the leader’s function. This approach has been applied to indirectly
model followers’ behavior in the non-constrained arc and in the constrained case [55] ,
where equilibrium on the lower level has been considered to fairly solve the congestion
problem.

The solution idea. Exactly the combination of the MIP reformulation proposed by
Heilporn et al. [47] and of the idea analogical to [55] has inspired the development of
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a new heuristic approach providing the near-optimal solution for 𝑀𝑅𝑗′ . Whereas, in
the latter work, the follower’s behavior has been anticipated via small perturbations
in flows, in this work, a completely new iterative solution approach is presented. It
is suggested to neglect the idea of approximation of objective function derivatives.
The proposed approach captures the followers’ behavior via iterative update of their
optimal flows after the solution of the risk-averse revenue maximization problem of
the leader: the iterative adjustment of the lower level solution enables to estimate
the optimal price of the upper level. The whole leader problem is formulated based
on MIP reformulation proposed by [47] with novel additions, enabling the embedding
of leader capacities constraints and new inequalities reflecting his ability to raise gate
fees by neglecting some of the flows.

4.1.4 Finding the optimal gate fee
In this section, the previously introduced idea of finding the solution will be further
formalized. In particular, the different formulations of HNPP, the establishment
of the relation between HNPP and 𝑀𝑅𝑗′ , and precise description of the proposed
algorithm and commentary on it will be introduced.

Highway network pricing problem

In this subsection, we focus on the particular instance of HNPP called Constrained
Complete Toll NPP. In the original work [47], Heilporn et al. have introduced three
main versions of the problem: Basic NPP (additive tolls and forbidden re-entry),
General Complete Toll NPP (arbitrary non-additive tolls and complete toll subgraph)
and Constrained Complete Toll NPP (analogical to General Complete Toll NPP with
additional real-life constraints). In order to introduce Constrained Complete Toll
NPP, new notation is necessary. For a commodity 𝑘 ∈ 𝒦 and a toll arc 𝑎 ∈ 𝒜, 𝑐𝑘𝑎
denotes the cost of travel through the path 𝑜𝑘 → 𝑡 (𝑎) → ℎ (𝑎) → 𝑑𝑘 before imposing
tolls, where 𝑡 (𝑎) , ℎ (𝑎) ∈ 𝒩 , are the entry (tail node of 𝑎) and exit (head node of 𝑎)
of the highway, respectively [47]. The corresponding flow variable is denoted by 𝑥𝑘𝑎.
The travel cost on the toll-free path 𝑜𝑘 → 𝑑𝑘 is denoted by 𝑐𝑘𝑜𝑑 corresponding flow
variable 𝑥𝑘𝑜𝑑. Using this notation, Triangle and Monotonicity constraints on network
can be introduced.

• Triangle constraints:

𝑡𝑎 ≤ 𝑡𝑏 + 𝑡𝑐 ∀𝑎, 𝑏, 𝑐 ∈ 𝒜 :

𝑡(𝑎) = 𝑡(𝑏), ℎ(𝑏) = 𝑡(𝑐), ℎ(𝑐) = ℎ(𝑎).

• Monotonicity constraints:

𝑡𝑎 ≥ 𝑡𝑏, ∀𝑎, 𝑏 ∈ 𝒜 : 𝑡(𝑎) = 𝑡(𝑏) < ℎ(𝑎) = ℎ(𝑏) + 1

or 𝑡(𝑎) = 𝑡(𝑏)− 1 < ℎ(𝑎) = ℎ(𝑏)

or 𝑡(𝑎) = 𝑡(𝑏) > ℎ(𝑎) = ℎ(𝑏)− 1
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or 𝑡(𝑎) = 𝑡(𝑏) + 1 > ℎ(𝑎) = ℎ(𝑏),

where nodes are represented by indices, which are ordered increasingly with
respect to direction (see [47]).

Then, the following bilevel formulation of the Constrained Complete Toll NPP
can be obtained

max
𝑡𝑎,𝑥𝑘𝑎,𝑥

𝑘
𝑜𝑑,𝑎∈𝒜,𝑘∈𝒦

∑︁
𝑘∈𝒦

∑︁
𝑎∈𝒜

𝜂𝑘𝑡𝑎�̃�
𝑘
𝑎 (4.14)

𝑠.𝑡. 𝑡𝑎 ≥ 0, ∀𝑎 ∈ 𝒜, (4.15)(︀
�̃�𝑘𝑎, �̃�

𝑘
𝑜𝑑

)︀
𝑎∈𝒜,𝑘∈𝒦 ∈ arg min

𝑥𝑘𝑎,𝑥
𝑘
𝑜𝑑,𝑎∈𝒜,𝑘∈𝒦

∑︁
𝑘∈𝒦

∑︁
𝑎∈𝒜

(︀
𝑐𝑘𝑎 + 𝑡𝑎

)︀
𝑥𝑘𝑎 + 𝑐𝑘𝑜𝑑𝑥

𝑘
𝑜𝑑, (4.16)

𝑠.𝑡.
∑︁
𝑎∈𝒜

𝑥𝑘𝑎 + 𝑥𝑘𝑜𝑑 = 1, ∀𝑘 ∈ 𝒦, (4.17)

𝑥𝑘𝑎 ∈ {0, 1}, ∀𝑘 ∈ 𝒦, ∀𝑎 ∈ 𝒜. (4.18)

The constraint (4.16) is the so-called shortest-path constraint. The constraint (4.17)
on the lower level ensures that the commodity cannot be assigned to both tolled and
toll-free paths simultaneously. Under the assumptions of the problem, the require-
ment of 𝑥𝑘𝑎 to be binary is redundant and it can be taken from the closed interval
between zero and one. Introducing linearizng variables

𝑝𝑘𝑎 =

{︃
𝑡𝑎, if commodity 𝑘 travels through arc 𝑎,
0, otherwise.

(4.19)

and replacing the lower-level problem with its KKT conditions, alternative for-
mulation can be obtained [47]. However, shortly after, it is demonstrated, that dual
variables are redundant, when expressing lower level optimality in term of path flows.
This fact enables us to obtain the following compact mixed-integer problem CCTNPP

max
𝑝𝑘𝑎,𝑡𝑎,𝑥

𝑘
𝑎,𝑎∈𝒜,𝑘∈𝒦

∑︁
𝑘∈𝒦

∑︁
𝑎∈𝒜

𝜂𝑘𝑝𝑘𝑎, (4.20)

𝑠.𝑡.
∑︁
𝑎∈𝒜

(︀
𝑐𝑘𝑎𝑥

𝑘
𝑎 + 𝑝𝑘𝑎

)︀
+ 𝑐𝑘𝑜𝑑

(︃
1−

∑︁
𝑎∈𝒜

𝑥𝑘𝑎

)︃
≤ 𝑐𝑘𝑏 + 𝑡𝑏, ∀𝑘 ∈ 𝒦,∀𝑏 ∈ 𝒜, (4.21)

𝑝𝑘𝑎 ≤𝑀𝑘
𝑎𝑥

𝑘
𝑎, ∀𝑘 ∈ 𝒦,∀𝑎 ∈ 𝒜, (4.22)

𝑡𝑎 − 𝑝𝑘𝑎 ≤ 𝑁𝑎

(︀
1− 𝑥𝑘𝑎

)︀
, ∀𝑘 ∈ 𝒦, ∀𝑎 ∈ 𝒜, (4.23)

𝑝𝑘𝑎 ≤ 𝑡𝑎, ∀𝑘 ∈ 𝒦,∀𝑎 ∈ 𝒜, (4.24)

𝑝𝑘𝑎 ≥ 0, ∀𝑘 ∈ 𝒦,∀𝑎 ∈ 𝒜, (4.25)

𝑥𝑘𝑎 ∈ {0, 1}, ∀𝑘 ∈ 𝒦,∀𝑎 ∈ 𝒜, (4.26)∑︁
𝑎∈𝒜

𝑥𝑘𝑎 ≤ 1, ∀𝑘 ∈ 𝒦, (4.27)
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where 𝑀𝑘
𝑎 = max {0, 𝑐𝑘𝑜𝑑 − 𝑐𝑘𝑎} and 𝑁𝑎 = max𝑘∈𝒦𝑀

𝑘
𝑎 . Constraints (4.21) ensure the

optimality of the chosen path for each commodity 𝑘 ∈ 𝒦, whereas constraints (4.22)-
(4.24) ensure that revenue variable 𝑝𝑘𝑎 fulfills the linearization assumption (4.19).

This formulation coincides with the reformulation given in [99] to the problem
of product line pricing. As already mentioned, Heilporn et al. [48] have indicated a
close relation between a generic NPP, CCTNPP, and the product line pricing problem.
Labbe and Violin [63] also highlighted the parallel between a product’s pricing and a
highway. Certainly, a similarity between the 𝑀𝑅𝑗′ and the CCTNPP with the single
tolled arc can be observed. The schematic representation of CCTNPP with the single
tolled arc and three commodities is given in Figure 4.2.

Figure 4.2: Structure of CCTNPP

The «aim» of a commodity is to be transported with minimal costs. Analogically,
a waste producer aims to treat waste with minimal costs. Whereas the owner of the
arc sets the toll, the WtE plant sets the gate fee. Let toll 𝑡 be identified with the
gate fee 𝑐𝑔𝑗′ of 𝑗′, 𝒦 be identified with a set of waste producers 𝑀 , price of untolled
highway travel 𝑐𝑘 be identified with transportation costs 𝑐𝑡𝑖,𝑗′ , origins of commodities
𝑜𝑘 be identified with locations of waste producers, and alternative optimal route costs
𝑐𝑘𝑜𝑑 be identified with alternative optimal waste treatment option costs 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 , and
destinations 𝑑𝑘 be identified with successful treatment of waste. Further, for the sake
of convenience, we will use simplified notation 𝑁 ∖ {𝑖} := 𝑁 ∖ 𝑖. Then, 𝑀𝑅𝑗′ can
be represented analogically to CCTNPP as it is depicted in Figure 4.3 for the case
𝑗′ = {2}.

However, the most challenging difference between these problems is that CCTNPP
does not involve capacity constraints on an arc (analogy of WtE plants capacities
constraints). This fact brings many complications, since, due to limited capacities, a
waste producer can choose a non-optimal waste treatment possibility to reduce the
costs of another waste producer and achieve a minimal sum of total costs. As a result,
the behavior of waste producers will not correspond to the behavior of commodities.
In order to proceed to heuristical solution of the problem, the exact solution of the
modified problem should be established at first.
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Figure 4.3: Sturcture of 𝑀𝑅𝑗′

Risk-averse price-setting

Consider the point of view of one of WtE plants 𝑗′ and setting, in which only the fol-
lowing information is available to 𝑗′: gate fees of other WtE plants, waste production
for each waste producer in the region, and, obviously, the capacity of its own waste
treatment facility. Whereas such a situation is improbable, exactly this assumption
will enable to model 𝑀𝑅𝑗′ as CCTNPP and to embed capacity constraints into the
problem afterward. Since capacities of other WtE plants are unknown, 𝑗′ has to make
a decision about its attitude to possible risks in this uncertain situation. If 𝑗′ accepts
the risk-averse behavior, it has to work with the worst possible scenario. Therefore,
𝑗′ will try to solve the 𝑀𝑅𝑗′ , where the capacity constraint holds only for the WtE
plant managed by itself. Further, this problem will be denoted as 𝑀𝑅𝑗′𝑅𝐴. The fol-
lowing way of finding the solution to 𝑀𝑅𝑗′𝑅𝐴, which can be viewed as a three-step
algorithm, is proposed.

At first, a linear programming problem, corresponding to minimization of the
total costs by waste producers, assuming infinite capacities of WtE plants from 𝑁 ∖𝑗′
and absence of 𝑗′ in the network, has to be solved. It can be formulated as 𝐿𝑃𝑗′𝑅𝐴:

min
𝑥𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁∖𝑗′

∑︁
𝑗∈𝑁∖𝑗′

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗, (4.28)

𝑠.𝑡.
∑︁
𝑗∈𝑁∖𝑗′

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, (4.29)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′. (4.30)

Once the solution of the 𝐿𝑃𝑗′𝑅𝐴 is obtained, take (𝑥*,𝑗
′

𝑖,𝑗 )𝑖∈𝑀,𝑗∈𝑁∖𝑗′ ∈ arg𝐿𝑃𝑗′𝑅𝐴.
Non-uniquness of 𝐿𝑃𝑗′𝑅𝐴 solution does not have an impact on the following consid-
erations. Now, when the optimal waste flows from 𝐿𝑃𝑗′𝑅𝐴 are known, the 𝑀𝑅𝑗′𝑅𝐴
can be solved as CCTNPP with a single toll arc in two steps. A relation between the
role of variables and parameters in the CCTNPP and new formulation 𝐻𝑁𝑃𝑗′𝑅𝐴 is
given by the following Table 4.1.
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Table 4.1: Roles of variables in CCTNPP and 𝐻𝑁𝑃𝑗′𝑅𝐴

CCTNPP 𝒜 𝑘 ∈ 𝒦 𝜂𝑘 𝑝𝑘𝑎 𝑐𝑘𝑎 𝑐𝑘𝑜𝑑 𝑥𝑘𝑎 𝑡𝑎

𝐻𝑁𝑃𝑗′𝑅𝐴 Single arc (𝑖, 𝑗),
𝑖 ∈𝑀, 𝑗 ∈ 𝑁 ∖ 𝑗′ 𝑥*,𝑗

′

𝑖,𝑗 𝑝𝑖,𝑗 𝑐𝑡𝑖,𝑗′ 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 𝑞𝑖,𝑗 𝑐𝑔𝑗′

Thus, 𝑀𝑅′
𝑗𝑅𝐴 can be reformulated as a problem 𝐻𝑁𝑃𝑗′𝑅𝐴

max
𝑐𝑔
𝑗′ ,𝑝

𝑖,𝑗 ,𝑞𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁∖𝑗′

∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁∖𝑗′

𝑥*,𝑗
′

𝑖,𝑗 𝑝
𝑖,𝑗, (4.31)

s.t.
(︀
𝑐𝑡𝑖,𝑗′𝑞

𝑖,𝑗 + 𝑝𝑖,𝑗
)︀
+
(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀ (︀
1− 𝑞𝑖,𝑗

)︀
≤ 𝑐𝑡𝑖,𝑗′ + 𝑐𝑔𝑗′ ,∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.32)

𝑝𝑖,𝑗 ≤𝑀 𝑖,𝑗𝑞𝑖,𝑗, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.33)

𝑐𝑔𝑗′ − 𝑝𝑖,𝑗 ≤ 𝑁
(︀
1− 𝑞𝑖,𝑗

)︀
, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.34)

𝑝𝑖,𝑗 ≤ 𝑐𝑔𝑗′ , ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.35)

𝑝𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.36)

𝑞𝑖,𝑗 ∈ {0, 1}, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.37)∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁∖𝑗′

𝑞𝑖,𝑗𝑥*,𝑗
′

𝑖,𝑗 ≤ 𝑤𝑐𝑗′ , (4.38)

where 𝑀 𝑖,𝑗 = max {0, 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 − 𝑐𝑡𝑖,𝑗′}, ∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, and 𝑁 = max𝑀 𝑖,𝑗.
Newly imposed inequality (4.38) will prevent the exceeding of the capacity of the
WtE plant 𝑗′. However, due to the integer nature of variables 𝑞𝑖,𝑗, the WtE plant 𝑗′
can not completely engage its capacity, what is clearly possible in the original setting.
To take into account this complication and solve the occurred problem, the following
modification 𝐻𝑁𝑃𝑗′𝑅𝐴 𝐹𝑈𝐿𝐿 of 𝐻𝑁𝑃𝑗′𝑅𝐴, which is based on its optimal solution(︀
(𝑝*,𝑖,𝑗, 𝑞*,𝑖,𝑗)𝑖∈𝑀,𝑗∈𝑁∖𝑗′ , 𝑐

*,𝑔
𝑗′

)︀
∈ arg𝐻𝑁𝑃𝑗′𝑅𝐴, has to be solved.

max
𝑐𝑔
𝑗′ ,𝑝

𝑖,𝑗 ,𝑞𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁∖𝑗′

∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁∖𝑗′

𝑥*,𝑗
′

𝑖,𝑗,𝑛𝑒𝑤𝑝
𝑖,𝑗, (4.39)

𝑠.𝑡.
(︀
𝑐𝑡𝑖,𝑗′𝑞

𝑖,𝑗 + 𝑝𝑖,𝑗
)︀
+
(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀ (︀
1− 𝑞𝑖,𝑗

)︀
≤ 𝑐𝑡𝑖,𝑗′ + 𝑐𝑔𝑗′ , ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.40)

𝑝𝑖,𝑗 ≤𝑀 𝑖,𝑗𝑞𝑖,𝑗, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.41)

𝑐𝑔𝑗′ − 𝑝𝑖,𝑗 ≤ 𝑁
(︀
1− 𝑞𝑖,𝑗

)︀
, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.42)

𝑝𝑖,𝑗 ≤ 𝑐𝑔𝑗′ , ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.43)

𝑝𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.44)

𝑞𝑖,𝑗 ∈ {0, 1}, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.45)∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁∖𝑗′

𝑞𝑖,𝑗𝑥*,𝑗
′

𝑖,𝑗,𝑛𝑒𝑤 ≤ 𝑤𝑐𝑗′ , (4.46)
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𝑐𝑔𝑗′ ≤ 𝑐*,𝑔𝑗′ , (4.47)

where

𝑥*,𝑗
′

𝑖,𝑗,𝑛𝑒𝑤 =

{︃
𝑥*,𝑗

′

𝑖,𝑗 , if 𝑞*,𝑖,𝑗 = 1,

min{𝑥*,𝑗
′

𝑖,𝑗 , 𝑤
𝑐
𝑗′ −

∑︀
𝑖∈𝑀

∑︀
𝑗∈𝑁∖𝑗′ 𝑞

*,𝑖,𝑗𝑥*,𝑗
′

𝑖,𝑗 }, if 𝑞*,𝑖,𝑗 = 0.

Inequality (4.46) will enable utilization of the whole capacity, whereas (4.47) prevents
the repetition of calculations already performed during the solution of 𝐻𝑁𝑃𝑗′𝑅𝐴.
Then, the optimal solution of 𝐻𝑁𝑃𝑗′𝑅𝐴 𝐹𝑈𝐿𝐿 is also assumed to be a solution to
𝑀𝑅𝑗′𝑅𝐴. It is important to note, that in case 𝐻𝑁𝑃𝑗′𝑅𝐴 is infeasible, it is sufficient
to directly solve 𝐻𝑁𝑃𝑗′𝑅𝐴 𝐹𝑈𝐿𝐿 without constraint (4.47) and assume, that all
𝑞*,𝑖,𝑗 are zeros.

Suggested approach

The setting described in the previous subsection enables to fully embed the considered
problem of gate fee setting into the framework of HNPP. However, the previously
mentioned risk-averse approach might impose too strong and unrealistic restrictions.
For example, such an approach can accept the idea that all waste produced in the
region can be sent to only one WtE plant, which is rather improbable for large-
scale cases. Thus, in this subsection, a heuristic algorithm for solving the original
problem 𝑀𝑅𝑗′ , which is based on the approach presented in the previous subsection,
is proposed. This suggested algorithm embeds the capacities of other WtE plants
into a DM process and can be described as follows.

First step. Solve the problem 𝐿𝑃𝑗′𝑊𝐼𝑇𝐻𝑂𝑈𝑇 and obtain information about the
current state of the network without WtE plant 𝑗′.

min
𝑥𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁∖𝑗′

∑︁
𝑗∈𝑁∖𝑗′

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗, (4.48)

s.t.
∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.49)

∑︁
𝑗∈𝑁∖𝑗′

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, (4.50)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁 ∖ 𝑗′. (4.51)

Second step. Set (𝑥*,𝑗
′

𝑖,𝑗 )𝑖∈𝑀,𝑗∈𝑁∖𝑗′ ∈ arg𝐿𝑃𝑗′𝑊𝐼𝑇𝐻𝑂𝑈𝑇 . Solve the problem
𝐻𝑁𝑃𝑗′𝑅𝐴 and consequently 𝐻𝑁𝑃𝑗′𝑅𝐴 𝐹𝑈𝐿𝐿. The first two steps provide the main
body of the algorithm with the relevant estimate of the network starting state and the
gate fee 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ ∈ arg𝐻𝑁𝑃𝑗′𝑅𝐴 𝐹𝑈𝐿𝐿 is the starting price in the iterative solution
process. Currently, the capacity constraints hold for every WtE plant in the network.
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Third step. Solve the 𝐿𝑃𝑗′ , corresponding to the lower-level problem in the original
bilevel formulation 𝑀𝑅𝑗′ with 𝑐𝑔𝑗′ = 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ , to obtain the current state of the network:

min
𝑥𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁

∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗, (4.52)

𝑠.𝑡.
∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈ 𝑁, (4.53)

∑︁
𝑗∈𝑁

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, (4.54)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁. (4.55)
In each iteration, this step corrects the reactions of the follower to the newly chosen
𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ , so that leader has actual information about current flows for the given gate
fee.

Fourth step. Set (𝑥*,𝑗
′

𝑖,𝑗 )𝑖∈𝑀,𝑗∈𝑁∖𝑗′ ∈ arg𝐿𝑃𝑗′ . Solve the problem 𝐻𝑁𝑃𝑗′𝐶𝐴𝑃

max
𝑐𝑔
𝑗′ ,𝑝

𝑖,𝑗 ,𝑞𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁

∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁

𝑥*,𝑗
′

𝑖,𝑗 𝑝
𝑖,𝑗, (4.56)

𝑠.𝑡.
(︀
𝑐𝑡𝑖,𝑗′𝑞

𝑖,𝑗 + 𝑝𝑖,𝑗
)︀
+
(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀ (︀
1− 𝑞𝑖,𝑗

)︀
≤ 𝑐𝑡𝑖,𝑗′ + 𝑐𝑔𝑗′ , ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′, (4.57)

𝑐𝑡𝑖,𝑗′𝑞
𝑖,𝑗′ + 𝑝𝑖,𝑗

′
+ 𝐿𝑖(1− 𝑞𝑖,𝑗

′
) ≤ 𝑐𝑡𝑖,𝑗′ + 𝑐𝑔𝑗′ ,∀𝑖 ∈𝑀, (4.58)

𝑐𝑔𝑗′ − 𝑝𝑖,𝑗 ≤ 𝑁
(︀
1− 𝑞𝑖,𝑗

)︀
, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁, (4.59)

𝑝𝑖,𝑗 ≤𝑀 𝑖,𝑗𝑞𝑖,𝑗, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁, (4.60)
𝑝𝑖,𝑗 ≤ 𝑐𝑔𝑗′ , ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁, (4.61)
𝑝𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁, (4.62)

𝑞𝑖,𝑗 ∈ {0, 1}, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁, (4.63)∑︁
𝑖∈𝑀

∑︁
𝑗∈𝑁

𝑞𝑖,𝑗𝑥*,𝑗
′

𝑖,𝑗 ≤ 𝑤𝑐𝑗′ , (4.64)

where
𝑀 𝑖,𝑗 = max {0, 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 − 𝑐𝑡𝑖,𝑗′}, ∀𝑖 ∈𝑀,∀𝑗 ∈ 𝑁 ∖ 𝑗′,

𝑀 𝑖,𝑗′ = max{0, 𝐿𝑖 − 𝑐𝑡𝑖,𝑗′},

𝐿𝑖 = min
𝑗∈𝑁∖𝑗′

{𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 | 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 > 𝑐𝑡𝑖,𝑗′ + 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ },

and 𝑁 = max𝑀 𝑖,𝑗. In case 𝐿𝑖 is not defined due to emptiness of the underlying
set, 𝐿𝑖 can be set as sufficiently large number. Consequently, solve modification
𝐻𝑁𝑃𝑗′𝐶𝐴𝑃 𝐹𝑈𝐿𝐿 : modify flows analogous to the previous subsection and add a
constraint (4.47) describing that the gate fee can only be lowered compared to the
optimum found via 𝐻𝑁𝑃𝑗′𝐶𝐴𝑃 . These two problems describe the adaptation of the
leader to the current flows that have been changed in the previous step. Novel, newly
introduced constraint (4.58) reflects the possible choice of abandoning some of the
current non-zero waste flows to 𝑗′ in order to increase the price and potentially obtain
higher revenue. Set 𝑐𝑜𝑝𝑡,𝑔𝑗′ ∈ arg 𝐻𝑁𝑃𝑗′𝐶𝐴𝑃 𝐹𝑈𝐿𝐿.
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Fifth step. Raise 𝑐𝑜𝑝𝑡,𝑔𝑗′ and solve 𝐿𝑃𝑗′ with 𝑐𝑔𝑗′ = 𝑐𝑜𝑝𝑡,𝑔𝑗′ , until the first decrease in∑︀
𝑖∈𝑀 𝑥*,𝑗

′

𝑖,𝑗′ , where (𝑥*,𝑗
′

𝑖,𝑗 )𝑖∈𝑀,𝑗∈𝑁∖𝑗′ ∈ arg 𝐿𝑃𝑗′ . This is a simple computational check
in case the WtE plant 𝑗′ might still be the best waste treatment option due to the
filled capacities of the other plants.

Sixth step. If 𝑐𝑜𝑝𝑡,𝑔𝑗′ from the previous step guarantees greater revenue than 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ ,
then set 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′ = 𝑐𝑜𝑝𝑡,𝑔𝑗′ and go back to the third step. Otherwise, the solution 𝑐𝑠𝑡𝑎𝑟𝑡,𝑔𝑗′

is found, END. This is a classical search stop condition, where the main body of a
cycle runs as long as it can find a better solution.

Commentary. The algorithm is meant to produce the optimal or near-optimal so-
lution. To create an artificial upper bound for gate fees and to ensure the requirement
that for every commodity exists the toll-free path from its origin to its destination,
a «virtual» WtE plant with a fixed gate fee and a capacity that can meet waste pro-
duction of the whole region has to be considered. It was stated that the pessimistic
approach would be applied in the case of multiple solutions on the lower level. How-
ever, all presented MIPs are defined for the optimistic approach. Embeddment of the
pessimistic approach into them can be done by adding a sufficiently small number 𝜖
to all 𝑐𝑡𝑖,𝑗′ . It will help to choose a solution that is smaller than limit of nearly optimal
solutions by the 𝜖 and to avoid numerous evaluations, which will not substantially
improve the objective function value. To not distort optima by this numerical ad-
justment, it is recommended to set an 𝜖 to a decimal number, which has order of
magnitude equal to min(order of magnitude that is lower than the order of magni-
tude of any transportation costs, order of magnitude of the fixed gate fees). Thus,
if integer costs and gate fees are considered, it is advised to set 𝜖=0.1. Moreover, in
the fifth step of the algorithm, it is advised to raise 𝑐𝑜𝑝𝑡,𝑔𝑗′ by 𝜖 to cover all possible
waste distributions on the lower level.

The linear programming problems solved during third and fifth step of the pre-
sented algorithm are solved using the pessimistic approach for the leader with the
original 𝑐𝑡𝑖,𝑗′ without adjustments. This can be ensured by finding arbitrary solu-
tion (𝑥*,𝑗

′

𝑖,𝑗 )𝑖∈𝑀,𝑗∈𝑁 ∈ arg𝐿𝑃𝑗′ with 𝑐𝑡𝑖,𝑗′ . Then, to obtain pessimistic argument it is
sufficient to solve 𝐿𝑃𝑗′𝑃𝐸𝑆:

min
𝑥𝑖,𝑗 ,𝑖∈𝑀,𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗′ + 𝑐𝑔𝑗′

)︀
𝑥𝑖,𝑗′ , (4.65)

𝑠.𝑡.
∑︁
𝑖∈𝑀

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈ 𝑁, (4.66)

∑︁
𝑗∈𝑁

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈𝑀, (4.67)

∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗 =

∑︁
𝑗∈𝑁

∑︁
𝑖∈𝑀

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥*,𝑗

′

𝑖,𝑗 , (4.68)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈𝑀, ∀𝑗 ∈ 𝑁. (4.69)
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Generation of the shortest paths in the preprocessing step [106] may help to mini-
mize the number of the waste treatment options represented by arcs (waste producer
will be connected to his best option and to tolled arc). However, it is redundant in the
considered case, since such preprocessing is almost equivalent to the solution of the
problem. Also, the costs of each arc will iteratively change during BRD: previously
redundant information should be considered in the next step. Basic single tolled arc
problems without congestion solved during the algorithm are simple and are solvable
in polynomial time. As it was already described in bilevel programming section, it is
sufficient to order differences 𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 − 𝑐𝑡𝑖,𝑗′ ,∀𝑖 ∈ 𝑀,∀𝑗 ∈ 𝑁, and perform a simple
sequential evaluation of the leader’s objective function with a gate fee equal to these
differences in the decreasing order. However, this representation does not consider
the leader’s capacity constraint and the inequality enabling the renouncing of some
waste flows sent to the leader. Therefore, CCTNPP has seemed like a more suitable
formulation, which better represents the structure of the problem, and might enable
convenient generalization and future work with the inequalities, which will reduce
the feasible region, so the solution can be found faster.

The heuristic’s testing

In this section, the attention will be solely focused on testing the proposed method’s
ability to solve the general bilevel price-setting problem without searching for the NE
(BRD functionality will be demonstrated in the case study section). An application
to artificial WM network instances has been considered to validate the proposed
bilevel programming algorithm. Now, the instance generation rules will be described
in detail.

• A random number 𝑛 of local WtE plants between 10 and 20 is generated.
Capacities of WtE plants are generated randomly within a range of 25 kt to
350 kt. Their gate fees are chosen randomly between 40 €/t and 100 €/t.

• A number 𝑚 = 𝑘𝑛 of municipalities is generated, where 𝑘 is a random number
between 5 and 15. For 𝑘 municipalities, waste production is generated within a
range of 100 kt to 300 kt (representing large cities). For the remaining 𝑘(𝑛− 1)
municipalities, it is generated within a range of 5 kt to 50 kt (small and medium-
sized municipalities).

• Then, these municipalities are randomly placed on a map. The map is consid-
ered to have a size of 450 × 300 square units of length (in particular, square
kilometers are considered). However, only a range of (50, 400) × (50, 250) is
considered for the municipalities. The WtE plants are randomly assigned to
the municipalities.

• Additionally, 1 to 5 foreign WtE plants are randomly generated on the map
within a range (0, 50) ∪ (400, 450)× (0, 50) ∪ (250, 300). Each plant’s capacity
equals the total waste production of all municipalities. All foreign WtE plants
have the same gate fee of 1.5 times the maximum of local WtE plants’ gate
fees.
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• Transportation costs are generated using the euclidean distance between the
municipality and WtE plant. The distance is multiplied by a randomly gener-
ated coefficient within a range of 0.1 to 0.4 €/km.

• Locations of WtE plants and municipalities, transportation costs coefficients,
gate fees, and waste productions are generated using a continuous uniform
distribution. All other values are generated using a discrete uniform distribution
over integers within the defined ranges.

• The generated waste productions are then rounded to two decimal places, trans-
portation costs are rounded to an integer, and gate fees are rounded to one dec-
imal place (thus, 𝜖 = 0.1 can be set). This is done to computationally simplify
the algorithm and to enhance the speed of checking the heuristic’s correctness.

Since the heuristic will be later applied to an exemplary case study, the ranges were
chosen to generate WM networks comparable to the Czech Republic’s WM situation.
Each map generated in the above-described way is considered an artificial scenario,
for which an optimal gate fee has been subsequently established for each local WtE
plant. The total of 20 scenarios have served as an input: 10 scenarios where

∑︀
𝑖∈𝑀 𝑤𝑝𝑖

is greater than total capacity of local WtE plants and 10 scenarios where
∑︀

𝑖∈𝑀 𝑤𝑝𝑖
is less than total capacity of local WtE plants have been taken into consideration.
Such diversification of scenarios makes it possible to test situations when the main
competitors are foreign WtE plants, as well as instances when competition takes place
within a local WM network. The results are then compared to the one obtained via
the complete enumeration procedure of the precision 𝜖 = 0.1. It dwells in a successive
increase of a gate fee from zero with step 0.1 and a calculation of the revenue for each
linear problem solution under this gate fee. All computations were performed using
the CPLEX solver within GAMS. The results and basic scenarios information are
presented in Table 4.2.

One iteration of the follower’s problem during enumeration lasts for approximately
0.25 seconds with 1, 574, resp. 2, 236, solutions performed in case of sufficient, resp.
insufficient, capacities of local WtE plants on average. On the other side, to solve
one iteration of the MIP formulation approximately 10 times more time is needed
with only 4.5 iterations performed on average. Whereas ten scenarios with insuffi-
cient capacities require averagely 1.3 iterations and lose averagely 3.34% compared to
optimal objective function value, the remaining scenarios are more computationally
challenging (7.5 iterations are required), which do not substantially affect average loss
of 3.67%. In 87% procents of the cases, loss was less than 10% and, in the worst case,
loss was 45%. The maximal number of iterations that has been performed during one
run of the algorithm is 46. The more detailed analysis of errors did not demonstrate
some obvious pattern in the behavior of the heuristic and its performance with re-
spect to the setting of the scenarios. Potentially, greater loss can be implied by an
unrealistic input or it can be the result of complex interactions of the parameters with
the shape of the generated network. It can be seen that the proposed algorithm is
able to handle the randomly generated scenarios time-efficiently without substantial
loss in an objective function value in most of the cases.
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4.1.5 Exemplary case study

In this section, the Czech Republic exemplary case study will demonstrate how the
proposed approach could be applied to design the optimal capacity of the future WtE
plant. Moreover, the numerical results of the proposed bilevel programming heuristics
algorithm will be presented. It is assumed that in the Czech Republic, there are 16
WtE plants (the founding of 12 of them is currently planned). However, some waste
producers from the Czech Republic might use the services of facilities in the nearby
countries (Germany and Austria). To create an upper boundary on the possible gate
fee and ensure the existence of the «toll-free» path, these facilities are represented as
three WtE plants with a fixed gate fee of 100 €/t and the capacity corresponding to
the total waste production of the whole Czech Republic.

To compete with these foreign facilities, it is planned to build one more WtE
plant in the Czech Republic (WtE plant «Otrokovice»), and the question of optimal
capacity design arises. To optimally estimate the capacity, it is advised to «place»
this facility in the currently existing network and find the NE of the considered
WtE plants price-setting game using the suggested approach: BRD based on the
proposed bilevel programming heuristics. The resulting price state will enable the
establishment of the waste flows and revenues of all WtE plants in the network.
This process, iteratively repeated for each capacity design, will provide an image
of the expected revenue of the planned facility, which can be compared to required
investments. The starting point of the whole process for each WtE plant (except the
foreign plants) is assumed to be the gate fee of 50 €/t, and the first capacity design
is 25 kt/y. To computationally simplify the algorithm, the transportation costs are
assumed to be integers (thus, 𝜖=0.1). Productions, as well as capacities, are assumed
to be annual.

Unfortunately, the BRD failed to find an NE during the first attempt. When
the 𝜎, defining stopping condition of the algorithm in Figure 2.2, is considered to
be too small, the algorithm gets stuck in the cycle. This fact can be explained, by
the hypothesis, that when continuous strategy sets are assumed, the change of the
gate fee is expected to be always profitable. This would lead to non-existence of the
fixed-point in best-response correspondences, and, as a result, the NE would cease
to exist in a general game. This possible explanation will be studied in detail at the
end of the section devoted to WtE price-setting. To overcome this complication, it
is assumed that, when the norm of the difference vector is less than 1, no substantial
change in the gate fees vector has occurred, and the algorithm will be stopped. This
assumption will enable to prevent the cyclic nature of the price-setting game, when
players successively lower their prices to obtain greater demand. Under assumption
𝜎=1, the gate fee stable outcomes were computed for the suggested capacities from 25
kt to 350 kt with the step of 25 kt. The capacity usage and the estimated revenue of
the planned WtE plant «Otrokovice» are presented in Table 4.3. The table confirms
that the proposed model is reasonable: capacity increase causes a gradual decrease in
gate fees for all of the considered WtE plants. Thus, in accordance with basic economy
rules, the greater «supply» (capacity) leads to a lower price (gate fee). Clearly, to
improve the reliability of the found solutions, the impact of the input parameters and
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Table 4.3: Results for «Otrokovice»

Capacity
[kt]

Gate fee
[€/t]

Obtained amount
of waste [kt]

Employed
capacity

Revenue
[T€]

25 68.8 6.54 26.17% 450.21
50 55.9 36.93 73.85% 2,064.21
75 54.6 67.47 89.97% 3,684.07
100 53.2 84.60 84.60% 4,500.81
125 52.9 103.14 82.51% 5,456.18
150 50.8 146.09 97.40% 7,421.55
175 50.5 152.88 87.36% 7,720.50
200 51.5 163.94 81.97% 8,442.81
225 49.3 163.94 72.86% 8,082.15
250 48.9 239.66 95.87% 11,719.57
275 47.6 265.91 96.69% 12,657.26
300 46.8 252.75 84.25% 11,828.56
325 48 265.91 81.82% 12,763.62
350 48.6 260.06 74.30% 12,638.91

initial point choice on the algorithm precision and speed of convergence should be
studied in the future.

To choose an appropriate capacity design for a particular WtE project, the rev-
enues from waste treatment have to be compared with the initial investments. For the
sake of simplicity, the solved task does not consider operational costs and revenues
related to heat and electricity selling. In the case of investment costs, it is important
to reflect decreasing unit costs when increasing capacity. The costs for particular
capacity variants are estimated by adopting the following formula from [20]:

𝐼 = 𝐼𝑅
𝐶

𝐶𝑅

0.75

,

where 𝐼 represents investments and 𝐶 represents the capacity of the facility. Subscript
𝑅 denotes the reference number. For the case presented herein, the reference numbers
were set to 𝐼𝑅 = 4 M€/y and 𝐶𝑅 = 100 kt/y. Figure 4.4 illustrates the results for the
considered capacity variants. The profitability of investment can be easily compared
via ratios illustrated by a line. Figure 4.4 demonstrates that the greater capacity
does not always guarantee a better ratio between revenue and investments. Thus, the
market power induced by a greater capacity does not automatically ensure a greater
return on investment but has phase-shifting properties. For example, only after
trespassing the capacity of 225 kt/y the WtE plant again obtains an advantageous
position on the WM market and can pursue a greater return on investment. The
decision about the optimal capacity directly depends on the available capital for the
investment. For example, if the maximal possible investment is around 7 M€/y,
it is reasonable to invest less and build a WtE plant with a capacity of 150 kt/y.
Now, suppose the management of the WtE plant can ensure greater resources for the
investment. Then, it is more profitable to invest approximately 8 M€/y and build a

57



facility with a capacity of 250− 275 kt/y (higher precision can be achieved by choice
of the smaller step).

Figure 4.4: Ratio of revenue vs. capital cost

Numerical results of the heuristic algorithm

To verify that the algorithm is also able to provide the optimal or near-optimal
solution in the realistic scenario, its performance has been compared to the classical
enumeration of the precision 𝜖. In particular, gate fee vectors from the last iteration
of BRD have been used as an input describing fixed gate fees of competitors. Thus,
17 different cases (each for one of 17 competing WtE plants) have been calculated for
14 capacity designs. Table 4.4 represents information about non-optimal solutions
found by the proposed heuristics.

The heuristics failed to find an optimum solution only in 44 cases out of the con-
sidered 238, only 10 of which have led to a loss greater than 1%. Moreover, the largest
difference between found optimum and the optimum established by the algorithm is
1.1. Thus, Table 4.4 confirms the potential of the proposed algorithm on the realistic
data: it produces an optimal solution in most cases. Due to comparability of the
artificial scenarios to the exemplary case study input data, the computational time
of one iteration remains approximately the same. Thus, the case study motivated by
the realistic data also proves that the algorithm solves underlying NP-hard problems
cardinally faster with an average objective function value optimality loss of 0.18%.
Since the underlying motivation was to provide fast input into the BRD evaluation
cycle, the proposed heuristics can be considered suitable. The presented apparatus
can provide a realistic estimate of the optimal gate fee for a particular WtE plant,
which enables finding the NE of the WtE plant’s price-setting game.

Now, we proceed to a more theoretical study of the presented WtE plants’ game
(and of the analogical games) in order to establish some general conclusions about
NE existence.
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Table 4.4: Numerical results for the heuristic

Capacity
[kt] WtE plant Iterations Found

optimum
Real

optimum
Loss in
revenue

25 Praha 2 100.7 99.7 2.64%
25 Brno 2 78.8 78.7 0.76%
25 Liberec 1 95.6 95.5 1.79%
25 Ústí nad Labem 1 94.5 93.8 6.70%
50 Tábor 2 74.8 74.9 0.13%
50 Hradec Králové 2 73.8 73 0.11%
75 Liberec 1 79.5 79.6 0.13%
75 Vsetín 1 50.5 50.4 0.37%
100 Liberec 1 80.8 79.8 0.66%
100 Ústí nad Labem 1 77.8 77.9 0.13%
125 Liberec 1 75.9 76 0.13%
125 Most 1 76.9 77 0.13%
125 Ústí nad Labem 2 72.8 73 0.27%
150 Hradec Králové 3 70.5 69.8 0.20%
150 Ústí nad Labem 1 75.5 75.6 0.13%
175 Praha 3 79.6 79.5 2.86%
175 Liberec 1 75.4 75.5 0.13%
175 Ústí nad Labem 3 72.3 72.4 0.14%
175 Vsetín 1 47.4 47.5 0.21%
225 Brno 2 60.4 60.2 0.56%
225 Ústí nad Labem 2 73.9 74 0.14%
250 Tábor 2 68 67.9 0.95%
250 Liberec 1 72.9 73 0.14%
250 Most 1 74.9 74.8 3.90%
250 Otrokovice 2 48.9 49.9 2.00%
250 Vsetín 1 45.9 46.9 0.35%
275 Liberec 1 73.2 73.3 0.14%
275 Melník 2 71.5 71.2 5.25%
275 Jihlava 1 62.4 62.5 0.16%
275 Otrokovice 2 47.6 48.7 2.26%
300 Brno 2 56.5 56.6 0.02%
300 Hradec Králové 4 65 65.5 0.76%
300 Liberec 1 72.9 72.5 1.35%
300 Otrokovice 3 46.8 47.8 2.09%
325 Brno 2 57.5 57.4 0.71%
325 Hradec Králové 1 66.3 65.9 0.53%
325 Ústí nad Labem 1 70.7 70.8 0.14%
325 Jihlava 1 62.4 62.2 0.33%
325 Otrokovice 1 48 48.2 0.41%
325 Zlín 1 47.9 48 0.21%
350 Tábor 4 67.3 67.2 0.95%
350 Brno 1 58 57.8 0.54%
350 Liberec 1 73.1 73.2 0.14%
350 Ústí nad Labem 3 70 70.1 0.14%
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4.1.6 Price-setting game and its properties
Our empirical results have pointed out possible non-existence of NE in problems of
price-setting. This is why this section is devoted to analysis of the newly introduced
class of price-setting games and to research on existence of NE in games of this
type. In particular, we are interested in proving the fact that, under some real-world
constraints and limitations, there might be no stable price state for sufficiently small
artificial parameter 𝜖 from previous section. Before we define a price-setting game, a
concept of market situation should be discussed.

Definition (Market situation). The market situation

𝑀𝑆 = (𝑀,𝑁,𝑅, (𝑡𝑖,𝑗)𝑖∈𝑁∪𝑅,𝑗∈𝑀 , (𝑐𝑖)𝑖∈𝑁∪𝑅, (𝑑𝑗)𝑗∈𝑀 , 𝑥𝑟𝑒𝑓 )

is defined by the set of customers 𝑀 = {1, ...,𝑚}, |𝑀 | ≥ 1, the set of domestic
producers𝑁 = {1, ...𝑛}, |𝑁 | ≥ 2, the set of foreign producers 𝑅 = {𝑛+1, ..., 𝑟}, |𝑅| ≥
1, transportation costs per unit of goods 𝑡𝑖,𝑗 ≥ 0, ∀𝑗 ∈ 𝑀, ∀𝑖 ∈ 𝑁 ∪ 𝑅, needed to
transport unit of product from producer 𝑖 ∈ 𝑁 ∪ 𝑅 to consumer 𝑗 ∈ 𝑀 , production
capacities 𝑐𝑖 > 0, ∀𝑖 ∈ 𝑁 ∪ 𝑅, of producers, and demands 𝑑𝑗 > 0, ∀𝑗 ∈ 𝑀, of
consumers. Foreign producers are participants of the market creating the reference
price 𝑥𝑟𝑒𝑓 > 0.

Further, to simplify some expressions, we will use notation �̃� = 𝑁 ∪ 𝑅. We also
would like to describe role of 𝑥𝑟𝑒𝑓 in more details. In our study, the reference price
𝑥𝑟𝑒𝑓 is a price of a product on a foreign market, so, when the price on the domestic
market exceeds the reference price (and potential transportation costs), it is more
economic to import the product. Thus, it indeed creates «reference» for domestic
producers and establishes price ceiling after trespassing which, domestic market begin
to lose customers. Now, we can proceed to the definition of the price-setting game
associated with a market situation.

Definition (Price-setting game). Let us assume the market situation 𝑀𝑆. Then,
we define the price-setting game 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁) associated with 𝑀𝑆 as a game
between players from a set 𝑁 , where strategy of each player is represented as a price
𝑥𝑖 ∈ 𝑋𝑖 = (0,∞),∀𝑖 ∈ 𝑁 . Elements of 𝑅 are not part of the game itself, and they
prices are fixed as 𝑥𝑖 = 𝑥𝑟𝑒𝑓 ,∀𝑖 ∈ 𝑅. Then, each player’s payoff function 𝜋𝑖(𝑥), 𝑖 ∈ 𝑁,
is defined as

𝜋𝑖(𝑥) =
∑︁
𝑗∈𝑀

𝑥𝑖𝑞
*
𝑖,𝑗, where (𝑞*𝑙,𝑗)𝑙∈�̃�,𝑗∈𝑀, ∈ 𝑄,

𝑠.𝑡.
∑︁
𝑗∈𝑀

𝑥𝑖𝑞
*
𝑖,𝑗 ≤

∑︁
𝑗∈𝑀

𝑥𝑖𝑞𝑖,𝑗, ∀(𝑞𝑙,𝑗)𝑙∈�̃�,𝑗∈𝑀 ∈ 𝑄,

where set 𝑄 is defined as

𝑄 = arg min
𝑞𝑙,𝑗 ,𝑙∈�̃�,𝑗∈𝑀

∑︁
𝑗∈𝑀

∑︁
𝑙∈�̃�

(𝑥𝑙 + 𝑡𝑙,𝑗)𝑞𝑙,𝑗,

𝑠.𝑡.
∑︁
𝑗∈𝑀

𝑞𝑙,𝑗 ≤ 𝑐𝑙, ∀𝑙 ∈ �̃� ,
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∑︁
𝑙∈�̃�

𝑞𝑙,𝑗 = 𝑑𝑗, ∀𝑗 ∈𝑀,

𝑞𝑙,𝑗 ≥ 0, ∀𝑗 ∈𝑀, ∀𝑙 ∈ �̃� .

Thus, domestic producers are independently maximizing their profits, whereas
customers are minimizing their total costs, while aiming at completely satisfying
their demands without capacity overruns. The above-defined game is designed to
model markets with a high level of government interference, where costs, that occur
during operation, are negligible compared to initial capital investments: this is why
the payoff function does not involve fixed or variable costs. In order to ensure the
correct definition of the payoff function, we have employed the already introduced
pessimistic approach, i.e., that in the case of the existence of multiple solutions to
the lower level customers’ cost minimization problem, the solution, which is the most
unfavorable to the producer 𝑖 is chosen. This choice is crucial since the following
problem can occur at NEs of games solved using an optimistic approach.

Example 4.1.3. Assume market situation 𝑀𝑆 with following parameters: 𝑀 = {1},
𝑁 = {1, 2}, 𝑅 = {3}, 𝑑1 = 5, 𝑥𝑟𝑒𝑓 = 4, 𝑐1 = 𝑐2 = 𝑐3 = 10, and 𝑡𝑙,𝑗 = 0,∀𝑙 ∈ �̃� , 𝑗 ∈𝑀 .
Then, the optimistic NE of the associated game 𝐺 is price state 𝑥* = (4, 4) which
guarantees to both players payoff 𝜋1(𝑥

*) = 𝜋2(𝑥
*) = 20.

One can see, that optimistic NE might create overoptimistic expectations and
some kind of «vacuum»: these expectations can not be fulfilled for all of players
since the consumer will spend only 20. In other words, the optimistic approach
has doubled expected profit of producers compared to amount of money spent by
consumer. Thus, the suggested pessimistic approach is more reasonable than the
optimistic one. It is also important to note, that it is required, that consumers’
demand is completely satisfied, leading to the necessary feasibility assumption that
total market production capacity is greater or equal to the total demand, i.e.∑︁

𝑖∈�̃�

𝑐𝑖 ≥
∑︁
𝑗∈𝑀

𝑑𝑗 (feasibility).

However, the stronger assumption should be imposed on game in order to make its
study reasonable:

𝑐𝑖 ≥
∑︁
𝑗∈𝑀

𝑑𝑗,∀𝑖 ∈ 𝑅, (boundness).

Now, we will demonstrate a possible problem, which occurs when boundness assump-
tion is not fulfilled.

Example 4.1.4. Assume market situation 𝑀𝑆 with following parameters: 𝑀 = {1},
𝑁 = {1, 2}, 𝑅 = {3}, 𝑑1 = 5, 𝑥𝑟𝑒𝑓 = 4, 𝑐1 = 𝑐2 = 3, 𝑐3 = 1, and 𝑡𝑙,𝑗 = 0, ∀𝑙 ∈ �̃� , 𝑗 ∈
𝑀 . In this setting, 𝑞*1,1 ≥ 1 and 𝑞*2,1 ≥ 1 hold for any 𝑥 ∈ 𝑋𝑁 . Thus, ∀𝑥 ∈ 𝑋𝑁 and
for each 𝑖 ∈ 𝑁

𝜋𝑖(𝑥1 + 𝛿1, 𝑥+ 𝛿2) ≥ 𝜋𝑖(𝑥1, 𝑥2)

always holds for arbitrary 𝛿𝑖 > 0, 𝑖 ∈ 𝑁 . Such situation will lead to the state where
consumer will have to pay infinite amount of money for goods.
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As we can see, insufficient capacities of foreign producers might make optimization
problems of domestic producers unbounded. Clearly, boundness imply the feasibility
assumption, making it redundant. Before a discussion on existence of NE is given,
the description of payoff function 𝜋𝑖 and of

∑︀
𝑗∈𝑀 𝑞*𝑖,𝑗 for 𝑖 ∈ 𝑁 , fixed strategy profile

(𝑥−𝑖), and given 𝑥𝑟𝑒𝑓 should be provided.

Properties of the payoff function and the lower-level optimal solution.
Assume some 𝑖 ∈ 𝑁 , fixed strategy profile (𝑥−𝑖), and given 𝑥𝑟𝑒𝑓 . Then, let us describe∑︀

𝑗∈𝑀 𝑞*𝑖,𝑗 as a function of 𝑥𝑖. Due to the nature of linear programming problems,
their solutions are convex combinations of extreme points or directly extreme points
(in case problems are bounded). This implies that

∑︀
𝑗∈𝑀 𝑞*𝑖,𝑗 as a function of 𝑥𝑖 is

non-increasing piece-wise constant and right continuous [62]. This properties should
hold, since otherwise it will be a contradiction with optimality of (𝑞*𝑙,𝑗)𝑙∈�̃�,𝑗∈𝑀 and
its pessimistic property with respect to 𝑖. If this function will be multiplied by a
variable 𝑥𝑖 > 0, we will obtain a piece-wise linear (where each segment is increasing)
and a right continuous payoff function 𝜋𝑖(𝑥𝑖) [62]. Now, the concept of NE in the
considered class of games can be discussed.

Concept of 𝛿-equilibrium

Unfortunately, the definition of the problem violates the existence of NE. For the
above-defined payoff function, a more profitable strategy can always be found: it is
sufficient to choose the price, which will shift the payoff closer to the peak of the
«optimal» linear segment. The peak istelf is «absent»: in pessimistic approach it is
only a limit of the payoff function from the left, which corresponds to an optimistic
approach optimal solution (which does not have to be unique). Thus, player is always
able to choose some sufficiently small 𝛿 > 0, such that, for a fixed (𝑥−𝑖), given 𝑥𝑟𝑒𝑓 ,
and arbitraty 𝑥𝑖

𝜋𝑖(𝑥
𝑜𝑝𝑡
𝑖 − 𝛿) ≥ 𝜋𝑖(𝑥𝑖)

where 𝑥𝑜𝑝𝑡𝑖 denotes the optimistic approach optimal price. However, if we assume,
that players can be satisfied with the «nearly» optimal solution, then it is possible
to define the following alternative to the pure NE concept.

Definition (𝛿-NE). Let us assume a normal form game 𝐺 = (𝑁, (𝑋𝑖, 𝜋𝑖)𝑖∈𝑁) with
𝑋𝑖 = (0,∞), ∀𝑖 ∈ 𝑁 . Then, we define 𝛿-NE, 𝛿 > 0, as a strategy profile �̃� ∈ 𝑋𝑁 ,
such that �̃�𝑖 = 𝑥𝛿lim,𝑖 − 𝛿, where 𝑥𝛿lim,𝑖 fulfills

lim
𝑥𝑖→𝑥𝛿−lim,𝑖

𝜋𝑖(𝑥𝑖, �̃�−𝑖) ≥ 𝜋𝑖(𝑥𝑖, �̃�−𝑖),∀𝑥𝑖 ∈ (𝛿,∞).

This way we avoid the concept of the classical NE, replacing it with the strategy
profile that might be arbitrarily close to a profile that is NE in a sense of limit. Such a
definition makes perfect sense with respect to the application-oriented nature of this
work: the price is always set in some currency, which has the lowest possible order of
magnitude. For example, when we work with euros, the price can be changed only by
cents, meaning the closest possible price to 𝑥𝛿lim,𝑖 is 𝑥𝛿lim,𝑖−𝛿 with 𝛿 = 0.01. We would
like to additionally emphasize that the concept of 𝛿-NE is not necessarily unique.
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Existence of 𝛿-NE

We begin this section with the study of 𝛿-NE existence in market situations without
transportation costs. It will be demonstrated, that capacities of producers signifi-
cantly impact existence of 𝛿-NE. In particular, we will prove that, under the certain
assumptions, there exists a 𝛾 > 0 such that, for every 𝛿 smaller than 𝛾, 𝛿-NE for
non-zero transportation costs game will cease to exist. However, before starting our
theoretical considerations we would like to demonstrate, that concept of 𝛿-NE exists
at least for some games. Thus, we introduce the following simple example.

Example 4.1.5. Assume market situation 𝑀𝑆 with following parameters: 𝑀 = {1},
𝑁 = {1, 2}, 𝑅 = {3}, 𝑑1 = 6, 𝑥𝑟𝑒𝑓 = 4, 𝑐1 = 4, 𝑐2 = 3, and 𝑐3 = 10, and 𝑡𝑙,𝑗 = 0,∀𝑙 ∈
�̃� , 𝑗 ∈ 𝑀 . Let us set 𝛿 = 1. Then, 𝛿-NE is a state �̃� = (3, 2) which guarantees
payoffs 𝜋1(�̃�) = 9 and 𝜋2(�̃�) = 6.

Zero transportation costs

In this part, we consider only price-setting games 𝐺 associated with 𝑀𝑆, where
𝑡𝑖,𝑗 = 0,∀𝑖 ∈ �̃� , 𝑗 ∈ 𝑀. Further, we will use notation 𝑥lim,𝑖(𝑥−𝑖) describing all 𝑥lim,𝑖
such that

lim
𝑥𝑖→𝑥−lim,𝑖

𝜋𝑖(𝑥𝑖, 𝑥−𝑖) ≥ 𝜋𝑖(𝑥𝑖, 𝑥−𝑖), ∀𝑥𝑖 ∈ 𝑋𝑖.

Notation 𝑥𝛿lim,𝑖(𝑥−𝑖) will be used analogically. Then, we begin with the following
lemma.

Lemma 4.1.6. Assume the price-setting game 𝐺 associated with zero transportation
costs 𝑀𝑆 fulfilling boundness and arbitrary strategy profile �̂� ∈ 𝑋𝑁 . Then, ∀𝑖 ∈ 𝑁,
it holds that

𝑥lim,𝑖 ∈ 𝑥lim,𝑖(�̂�−𝑖) ⇒ 𝑥lim,𝑖 = �̂�𝑙 for some 𝑙 ∈ �̃� ∖ {𝑖}.

Proof. Further, we will denote
∑︀

𝑗∈𝑀 𝑞*𝑖,𝑗 for a fixed �̂�−𝑖, 𝑖 ∈ 𝑁, as
∑︀

𝑗∈𝑀 𝑞*𝑖,𝑗(𝑥𝑖).
Due to zero transportation costs,∑︁

𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥𝑖) > 0, 0 < 𝑥𝑖 < min
𝑙∈�̃�∖{𝑖}

�̂�𝑙,

holds. Then, due to boundness, there is also such 𝑥𝑖 ∈ 𝑋𝑖 that
∑︀

𝑗∈𝑀 𝑞*𝑖,𝑗(𝑥𝑖) = 0.
Thus, there will always occur at least one decrease in

∑︀
𝑗∈𝑀 𝑞*𝑖,𝑗(𝑥𝑖) for some 𝑥𝑖 ∈ 𝑋𝑖.

Now, let us assume, that we have some point of decrease 𝑥*𝑖 ∈ 𝑋𝑖, i.e.∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥
*
𝑖 ) <

∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥
*
𝑖 − 𝛿), 𝛿 ∈ (0, 𝑥*𝑖 ),

since
∑︀

𝑗∈𝑀 𝑞*𝑖,𝑗(𝑥𝑖) is non-increasing and only right continuous. However, decrease
can occur only if there ∃𝑙 ∈ �̃� such that 𝑥*𝑖 − 𝛿 < �̂�𝑙 ≤ 𝑥*𝑖 , since otherwise it will
imply a contradiction due to absence of decrease direction for the objective function.
Then, we can obtain

lim
𝛿→0+

𝑥*𝑖 − 𝛿 < �̂�𝑙 ≤ 𝑥*𝑖 ⇒ 𝑥*𝑖 = �̂�𝑙.
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Thus, every possible decrease 𝑥*𝑖 should be given by some �̂�𝑙, 𝑙 ∈ �̃� ∖ {𝑖}. The pre-
viously discussed properties of 𝜋𝑖(𝑥𝑖, �̂�−𝑖), imply that 𝑥*𝑖 = �̂�𝑙, 𝑙 ∈ �̃� ∖ {𝑖}, are only
possible points fulfilling

lim
𝑥𝑖→𝑥*,−𝑖

𝜋𝑖(𝑥𝑖, �̂�−𝑖) ≥ 𝜋𝑖(𝑥𝑖, �̂�−𝑖),∀𝑥𝑖 ∈ (𝑥*𝑖 − 𝜖, 𝑥*𝑖 + 𝜖),

for some 𝜖 > 0. Therefore, one or more of such 𝑥*𝑖 = �̂�𝑙, 𝑙 ∈ �̃� ∖ {𝑖}, should fulfill

lim
𝑥𝑖→𝑥*−

𝜋𝑖(𝑥𝑖, �̂�−𝑖) ≥ 𝜋𝑖(𝑥𝑖, �̂�−𝑖),∀𝑥𝑖 ∈ 𝑋𝑖.

Then, we can proceed to the following theorem on 𝛿-NE existence for price-setting
games associated with a particular group of 𝑀𝑆 with zero transportation costs.

Theorem 4.1.7. For any zero transportation costs price-setting game 𝐺 fulfilling
boundness and ∑︁

𝑙∈𝑁∖{𝑖}

𝑐𝑙 >
∑︁
𝑗∈𝑀

𝑑𝑗, ∀𝑖 ∈ 𝑁, (absence of dictator),

𝛿-NE exists for every 𝛿.

Proof. Assume arbitrary value 𝛿 > 0. If we construct a price state �̃� with

0 < �̃�𝑖 ≤ 𝛿, ∀𝑖 ∈ 𝑁,

then this state is always a 𝛿-NE. Due to absence of dictator, every 𝑥𝑖 with 𝑥𝑖 ≥ 𝛿 will
always lead to 𝜋𝑖(𝑥𝑖, �̃�−𝑖) = 0. Thus, 𝑥𝛿lim,𝑖(�̃�−𝑖) = (𝛿,∞), since every 𝑥𝛿−lim,𝑖 from such
𝑥𝛿lim,𝑖(�̃�−𝑖) trivially satisfies the expression

lim
𝑥𝑖→𝑥𝛿−lim,𝑖

𝜋𝑖(𝑥𝑖, �̃�−𝑖) ≥ 𝜋𝑖(𝑥𝑖, �̃�−𝑖),∀𝑥𝑖 ∈ (𝛿,∞),

where both sides equal 0. Therefore, if we choose 𝑥𝛿lim,𝑖 = �̃�𝑖 + 𝛿,∀𝑖 ∈ 𝑁 , then our �̃�
will completely meet the definition of 𝛿-NE.

Absence of dictator ensure that there is some amount of demand over which players
might possibly compete. However, the theorem points out an interesting drawback
of 𝛿-NE for the 𝑀𝑆 with this property: some strategy profiles are 𝛿-NE only due
to the fact, that players cannot play their optimal prices with respect to the given
price state. This problem does not occur when capacity dictator exists, as we will
demonstrate in the following theorem.

Theorem 4.1.8. Assume zero transportation costs 𝑀𝑆 fulfilling boundness and that
∃𝑖* ∈ 𝑁 such that∑︁
𝑗∈𝑀

𝑑𝑗 > 𝑐𝑖* ,
∑︁
𝑗∈𝑀

𝑑𝑗 >
∑︁

𝑘∈𝑁∖{𝑖*}

𝑐𝑘 and
∑︁
𝑗∈𝑀

𝑑𝑗 <
∑︁
𝑘∈𝑁

𝑐𝑘. (existence of dictator)

Then, for the associated price-setting game 𝐺, there ∃𝛿 such that 𝛿-NE does not exist.
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Proof. The theorem can be proven via contradiction. Assume there exist 𝛿-NE profile
�̃� for each 𝛿 > 0. From Lemma 4.1.6, it follows that 𝑥lim,𝑖* = �̃�𝑙, 𝑙 ∈ �̃� ∖ {𝑖}, for all
𝑥lim,𝑖* ∈ 𝑥lim,𝑖*(�̃�−𝑖*). If we consider 𝛿 ∈ (0, 𝑥𝑟𝑒𝑓 ), then, due to existence of dictator,

𝑥𝛿lim,𝑖* = �̃�𝑙, 𝑙 ∈ �̃� ∖ {𝑖}, for all 𝑥𝛿lim,𝑖* ∈ 𝑥𝛿lim,𝑖*(�̃�−𝑖*),

with
lim

𝑥𝑖*→𝑥𝛿−
lim,𝑖*

𝜋𝑖*(𝑥𝑖* , �̃�−𝑖*) > 0.

At first, we focus ourselves on the case 𝑥𝛿lim,𝑖* = 𝑥𝑟𝑒𝑓 . Clearly, we can order
elements of �̃� as

�̃�𝑖1 ≤ ... ≤ �̃�𝑖𝑛−1 ≤ �̃�𝑖* < 𝑥𝑟𝑒𝑓 .

If we consider 𝛿 ∈ (0,
𝑥𝑟𝑒𝑓
3
), it should hold that �̃�𝑖𝑛−1 = 𝑥𝑟𝑒𝑓 − 𝛿 or �̃�𝑖𝑛−1 = �̃�𝑖* − 𝛿,

since otherwise it will be in contradiction with the �̃� being a 𝛿-NE. It also important
to note, that existence of dictator implies

lim
𝑥𝑖*→𝑥−𝑟𝑒𝑓

∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*) < 𝑐𝑖* .

Now, we introduce notation

𝛾𝑖 :=
𝑥𝑟𝑒𝑓∆

min
𝑖

2𝑐𝑖
,

where

∆min
𝑖 := min

𝑥−𝑖∈𝑋−𝑖,0<𝜖<𝑥𝑟𝑒𝑓

(︃
lim

𝑥𝑖→(𝑥𝑟𝑒𝑓−𝜖)−

∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥𝑖, 𝑥−𝑖)− lim
𝑥𝑖→𝑥−𝑟𝑒𝑓

∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥𝑖, 𝑥−𝑖)

)︃
,

s.t. lim
𝑥𝑖→(𝑥𝑟𝑒𝑓−𝜖)−

∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥𝑖, 𝑥−𝑖) > lim
𝑥𝑖→𝑥−𝑟𝑒𝑓

∑︁
𝑗∈𝑀

𝑞*𝑖,𝑗(𝑥𝑖, 𝑥−𝑖).

Then, for sufficiently small 𝛿, such that 𝛿 ∈ (0,
𝑥𝑟𝑒𝑓
3
)∩ (0, 𝛾𝑖*), choice 𝑥lim,𝑖*(�̃�−𝑖) =

𝑥𝑟𝑒𝑓 does not guarantee the greatest possible payoff. Player 𝑖* is able to ensure greater
payoff by choosing 𝑥𝑟𝑒𝑓 − 2𝛿 as a limit. Indeed, if we consider such 𝛿, it will imply

𝛿 <
𝑥𝑟𝑒𝑓∆𝑖*(�̃�−𝑖*)

2 lim𝑥𝑖*→(𝑥𝑟𝑒𝑓−2𝛿)−
∑︀

𝑗∈𝑀 𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*)
,

where

∆𝑖*(�̃�−𝑖*) = lim
𝑥𝑖*→(𝑥𝑟𝑒𝑓−2𝛿)−

∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*)− lim
𝑥𝑖*→𝑥−𝑟𝑒𝑓

∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*).

However, using this expression, we can obtain

lim
𝑥𝑖*→𝑥−𝑟𝑒𝑓

𝑥𝑖*
∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*) < lim
𝑥𝑖*→(𝑥𝑟𝑒𝑓−2𝛿)−

𝑥𝑖*
∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*).

This fact is in direct contradiction with definition of 𝛿-NE, proving that in case
𝑥𝛿lim,𝑖* = 𝑥𝑟𝑒𝑓 our concept of 𝛿-NE does not exist for 𝛿 ∈ (0,

𝑥𝑟𝑒𝑓
3
) ∩ (0, 𝛾𝑖*).
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Now, we will focus our attention on the second possible case, where 𝑥𝛿lim,𝑖* = �̃�𝑙, 𝑙 ∈
𝑁 ∖ {𝑖*}. Consider 𝛿 such that

𝛿 ∈

(︃
0,
𝑥𝑟𝑒𝑓 (

∑︀
𝑗∈𝑀 𝑑𝑗 −

∑︀
𝑘∈𝑁∖{𝑖*} 𝑐𝑘)

2𝑐𝑖*

)︃
.

Such choice implies
2𝛿𝑐𝑖* < 𝑥𝑟𝑒𝑓 (

∑︁
𝑗∈𝑀

𝑑𝑗 −
∑︁

𝑘∈𝑁∖{𝑖*}

𝑐𝑘),

leading to the fact, that
�̃�𝑙 > 2𝛿

should hold, since otherwise 𝑥𝛿lim,𝑖* = �̃�𝑙, 𝑙 ∈ 𝑁 ∖ {𝑖*}, will be contradicted. Then,
there are two possibilities:

lim
𝑥𝑖*→�̃�−𝑙

∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*) < 𝑐𝑖* or lim
𝑥𝑖*→�̃�−𝑙

∑︁
𝑗∈𝑀

𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*) = 𝑐𝑖* .

In case strict inequality holds, it implies that

lim
𝑥𝑙→(�̃�𝑙+𝛿)−

𝜋𝑙(𝑥𝑙, �̃�−𝑙) = 0.

However,
lim

𝑥𝑙→(�̃�𝑙−𝛿)−
𝜋𝑙(𝑥𝑙, �̃�−𝑙) > 0

is an obvious contradiction with assumption that �̃� is a 𝛿-NE.
Otherwise, consider that lim𝑥𝑖*→�̃�−𝑙

∑︀
𝑗∈𝑀 𝑞*𝑖*,𝑗(𝑥𝑖* , �̃�−𝑖*) = 𝑐𝑖* holds. Let us as-

sume following ordering of elements from �̃�:

... ≤ �̃�𝑖* < �̃�𝑙 ≤ ... < 𝑥𝑟𝑒𝑓 .

Thus, there should exist 𝑙* ∈ 𝑁 ∖ {𝑖*} with

�̃�𝑙* + 𝛿 = 𝑥𝑟𝑒𝑓

such that
lim

𝑥𝑙*→𝑥−𝑟𝑒𝑓

∑︁
𝑗∈𝑀

𝑞*𝑙*,𝑗(𝑥𝑙* , �̃�−𝑙*) < 𝑐𝑙* ,

since otherwise �̃� cannot be 𝛿-NE or it will directly imply that

lim
𝑥𝑙*→(�̃�𝑙*+𝛿)−

𝜋𝑙*(𝑥𝑙* , �̃�−𝑙*) = 0,

what can be easily prevented by choosing 𝑥𝛿lim,𝑙* = �̃�𝑖* . Then, the rest of the proof
completely corresponds to the case 𝑥𝛿lim,𝑖* = 𝑥𝑟𝑒𝑓 with respect to 𝑙* and 𝛿 ∈ (0, 𝛾𝑙*).

Thus, for every

𝛿 ∈ (∩𝑖∈𝑁(0, 𝛾𝑖)) ∩

(︃
0,
𝑥𝑟𝑒𝑓 (

∑︀
𝑗∈𝑀 𝑑𝑗 −

∑︀
𝑘∈𝑁∖𝑖* 𝑐𝑘)

2𝑐𝑖*

)︃
∩ (0,

𝑥𝑟𝑒𝑓
3

) ̸= ∅,

the concept of 𝛿-NE does not exist.

66



The previous proof has led us to the following corollary.

Corollary 4.1.9. Assume market situation 𝑀𝑆 fulfilling boundness and existence
of dictator. Then, for the associated price-setting game 𝐺, there ∃𝛾, s.t. for all
𝛿 ∈ (0, 𝛾), 𝛿-NE ceases to exist.

Indeed, if we set

𝛾 = min

{︃
(min
𝑖∈𝑁

𝛾𝑖),
𝑥𝑟𝑒𝑓 (

∑︀
𝑗∈𝑀 𝑑𝑗 −

∑︀
𝑘∈𝑁∖𝑖* 𝑐𝑘)

2𝑐𝑖*
,
𝑥𝑟𝑒𝑓
3

}︃
,

then for each 𝛿, 0 < 𝛿 < 𝛾, the proposed 𝛿-NE will cease to exist. Unfortunately, we
were not able to prove an existence of the analogical threshold in the case of general
transportation costs.

General transportation costs

Non-zero transportation costs complicate study of 𝛿-NE existence representing im-
portant competitive advantage for some of the players. The main problem is that,
for the price-setting game 𝐺 associated with general 𝑀𝑆 fulfilling boundness and
arbitrary strategy profile �̂� ∈ 𝑋𝑁 , we have

𝑥lim,𝑖 ∈ 𝑥lim,𝑖(�̂�−𝑖) ⇒ 𝑥lim,𝑖 = �̂�𝑙 + 𝑡𝑙,𝑗 − 𝑡𝑖,𝑗 for some 𝑙 ∈ �̃� ∖ {𝑖}, 𝑗 ∈𝑀,

for every 𝑖 ∈ 𝑁 . Thus, transportation costs bring asymmetry into the game and it is
not possible to generalize the considerations established in Theorem 4.1.8 and prove
problem with optimality of playing 𝑥𝑟𝑒𝑓 . Indeed, each player may play one of many
possible «versions»

𝑥𝑟𝑒𝑓 + 𝑡𝑟,𝑗 − 𝑡𝑖,𝑗 for some 𝑟 ∈ 𝑅, 𝑗 ∈𝑀.

At least, we were able to deduce the assumption, that will prevent the situation
described in Theorem 4.1.7:

• For each 𝑖 ∈ 𝑁, ∃!𝑗𝑖 ∈𝑀, such that

min
𝑙∈�̃�∖{𝑖},

𝑡𝑙,𝑗𝑖 − 𝑡𝑖,𝑗𝑖 > 0, (internal competitiveness).

Internal competitiveness ensures that each 𝑖 can always achieve non-zero profit with

lim
𝑥𝑖→(min𝑙∈�̃�∖{𝑖}, 𝑡𝑙,𝑗𝑖−𝑡𝑖,𝑗𝑖 )−

𝜋𝑖(𝑥𝑖, 𝑥−𝑖) > 0

under any given 𝑥−𝑖. Thus, 𝛿 < min𝑖∈𝑁 min𝑙∈�̃�∖{𝑖}, 𝑡𝑙,𝑗𝑖 −𝑡𝑖,𝑗𝑖 will make implications of
Theorem 4.1.7 impossible. Now, we will briefly discuss implications of our theoretical
findings.
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Discussion

Clearly, it is rather hard to directly establish value of 𝛾 from Corollary 4.1.9, due
to necessity of finding all ∆𝑚𝑖𝑛

𝑖 , 𝑖 ∈ 𝑁. In practice, it is possible to establish lower
boundary for ∆𝑚𝑖𝑛

𝑖 , 𝑖 ∈ 𝑁 . In the case study, the smallest order of magnitude for the
capacities and demands is 10−2. Thus, ∆𝑚𝑖𝑛

𝑖 , 𝑖 ∈ 𝑁, will never be lower than 0.01.
This estimate will enable us to directly calculate lower boundary for 𝛾. Clearly, the
resulting value will be less than the considered 𝜖 = 0.01. However, it is important to
note that the resulting 𝛾 does not need to be a «tight» boundary. Thus, it is not
guaranteed, that the established 𝛾 will be the greatest possible. We believe that the
considerations established in subsection 4.1.6 will enable us to generalize Theorem
4.1.7 and to estimate «tighter» upper boundary for 𝛾 in the future.

4.2 Waste producers’ costs minimization
The upcoming CEP legal changes will substantially affect municipalities due to more
complex and expensive waste treatment in the future. Thus, it is also essential to
model and study the implementation of WtE technology from the municipalities
point of view, considering their objectives of WM cost minimization. The way how
municipalities financially handle new legal requirements will substantially impact sus-
tainability of WtE plants and, as a result, of the energy produced there. To react to
the up-coming legal changes, it is beneficial to create municipal unions, focused on
the cooperation in WM. Such municipal unions help to lower waste treatment costs
and to optimize waste collection. Whereas full cooperation axiomatically assumed in
[51] can be considered as the most desirable outcome, it may not correspond to the
realistic one due to circumstances/settings. In fact, such a centralized approach can-
not properly model individual incentives of municipalities and interactions between
them. This behavioral aspect becomes crucial during planning of municipal budgets
and negotiations about the legal form of municipal units’ cooperation. Therefore,
it is necessary to study formation of municipal unions in a dynamic manner. More-
over, the distribution of resulting costs across municipal units should be assessed with
respect to their locations and waste productions. Such cost analysis will enable to
estimate future realistic WM tariffs, providing important information for municipal
councils.

In this section, the problem of municipal unions formation will be represented
as a distributed dynamic coalition formation game, which is able to capture non-
cooperative incentives of municipalities, while they are pursuing cost minimization,
as well as their cooperation and trade-offs. At first, we deduce the characteristic
function, introduce the canonical coalitional game and study its properties. Then,
the discussion on the implementation of coalition formation and the proposed costs
distribution is given. After that, in the case study, the outcome, achieved through
iterating merges and splits with respect to utilitarian order, is presented. Since the
Shapley value is commonly applied in different problems involving optimal alloca-
tion and configuration of profits, costs, resources, or capacities, it is suggested as a
particular proposal, of how to distribute costs (including appropriate financial com-
pensations) among resulting coalitions’ participants in a fair way. The point of the
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core will be also calculated to provide an alternative point of view on possible stable
distribution of costs in case of full cooperation.

The originality and contribution of this part consists of application of the dis-
tributed dynamic coalition formation framework to waste treatment costs minimiza-
tion game. It must be emphasized that, according to the performed review, the author
has not found out any cases of coalition formation applied to the analogical problem-
atics. The suggested approach is justified by theoretical properties of the game, that
have been studied in detail. To overcome a problem with large players set, innovative
coalition formation algorithm for games with numerous players has been developed.
In this algorithm, penalization for cooperation serves as an instrument, which im-
pacts the behavior of the waste producers and the size of the resulting coalitions.
Also, none of the reviewed articles has considered application of the Shapley value
to such a large set of players (up to 47), where computation of a solution becomes a
challenging task. Due to this reason, the sampling Shapley value estimation [15] has
been applied (deterministic approach is not suitable for such large games).

4.2.1 Problem definition
The general case of the problem considers a nonspecific area in which WtE plants
with different capacities are situated. Waste producers (municipalities) with different
locations and waste productions treat their waste using services of the available WtE
plants. The model works with the already existing WM network. Assuming lim-
ited or banned landfilling, waste producers are forced to treat produced waste using
services of WtE plants. Gate fees of WtE plants are assumed to be external fixed pa-
rameters (which can be obtained using approach from the previous section). Waste
producers minimize their total waste treatment costs, consisting of transportation
and waste processing costs. Cooperation occurs when instead of competing over the
free capacities, some producers create union and reserve capacities of nearby WtE
plants to waste producers with unfavorable locations. This enables them to reduce
their waste treatment costs in exchange for the financial compensation, from which
some of the cooperating waste producers, that have renounced these capacities, might
substantially benefit. Now, the deduction of the appropriate value function 𝑣 will be
discussed in detail.

Deduction of the value function

• TU vs non-TU: Since 𝑣 should reflect costs for waste treatment, which are
commonly represented by their monetary value, the considered conflict of waste
producers should be modeled as a TU-game.

• Form of the game: From the theoretical chapter, it can be seen, that games
in partition function form are much more computationally complex. Facing this
complication, only value functions in the characteristic form will be considered.

• Underlying normal-form game: A characteristic function of a cooperative
game can be derived from utility functions of the non-cooperative conflict. The
two main approaches are 𝛼- and 𝛽-functions. The former function is derived
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under condition that outsiders cooperate to maximize costs of coalition after it
has minimized them. The latter approach swaps order of decisions. However,
these approaches are based on the underlying non-cooperative game in normal
form, which cannot be appropriately defined for the case of waste producers’
conflict. Due to limited capacities, WtE plants, which locations and gate fees
are the most favorable for a player, can have no free capacity depending on
the established order, in which waste producers make their decisions about
waste treatment. The importance of the DM order implies non-relevance of the
normal form approach. Moreover, it is not realistic to assume that 𝑁 ∖ 𝑆 will
be aimed at damaging coalition 𝑆 at all cost.

• Objective of outsiders: Another possibility is 𝛾-function approach [38],
which reasonably admits that players outside of coalition individually pursue
their own interest instead of damaging their cooperating opponents. However,
it should be modified to avoid the above-mentioned ordering problem. For this
sake, full cooperation between players in 𝑁 ∖𝑆 will be assumed and these play-
ers will cooperatively minimize the sum of their own total costs. Unfortunately,
even in a such setting order is crucial.

• Optimistic vs pessimistic approach: The setting, in which coalition 𝑆
makes decision as first, can be viewed as the most optimistic approach for to-
tal waste treatment costs estimation. However, it is not always appropriate
to estimate costs using an optimistic variant of situation development. This is
the reason why the pessimistic setting, in which the coalition 𝑆 makes decision
after 𝑁 ∖𝑆 , has been preferred as more representative way of defining the 𝑣(𝑆)
for the waste producers cost reduction game. Moreover, this approach can be
viewed as completely risk-averse attitude when coalitions do not possess infor-
mation about their mutual composition, making exclusion of partition function
approach reasonable.

Thus, the main idea is to propose the value function, which will reflect a realistic
worst-case scenario of the WtE treatment costs minimization by an arbitrary munic-
ipal union. In the following mathematical programming problem, notation is given
as follows: 𝑀 is set of WtE plants, 𝑁 is set of waste producers, 𝑆 is coalition of mu-
nicipalities (subset of 𝑁), 𝑣(𝑆) is value function of 𝑆 (total annual waste treatment
costs of 𝑆), remaining notation coincides with the model from the previous section.
Then, waste producers’ cost reduction game can be defined as a pair (𝑁, 𝑣), where
𝑁 is a set of waste producers and 𝑣 is the value function defined as

𝑣(𝑆) = min
𝑥𝑖,𝑗 ,𝑖∈𝑆,𝑗∈𝑀

∑︁
𝑗∈𝑀

∑︁
𝑖∈𝑆

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥𝑖,𝑗, (4.70)

s.t.
∑︁
𝑖∈𝑆

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 −
∑︁
𝑖∈𝑁∖𝑆

𝑥
′,𝑁∖𝑆
𝑖,𝑗 , ∀𝑗 ∈𝑀, (4.71)

∑︁
𝑗∈𝑀

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈ 𝑆, (4.72)
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𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈ 𝑆, ∀𝑗 ∈𝑀, (4.73)

(𝑥
′,𝑁∖𝑆
𝑖,𝑗 )𝑖∈𝑁∖𝑆, 𝑗∈𝑀 ∈ arg 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 (4.74)

𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 = min
𝑥𝑖,𝑗 ,𝑖∈𝑁∖𝑆, 𝑗∈𝑀

∑︁
𝑗∈𝑀

∑︁
𝑖∈𝑁∖𝑆

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗, (4.75)

𝑠.𝑡.
∑︁
𝑖∈𝑁∖𝑆

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈𝑀, (4.76)

∑︁
𝑗∈𝑀

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈ 𝑁 ∖ 𝑆, (4.77)

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈ 𝑁 ∖ 𝑆, ∀𝑗 ∈𝑀. (4.78)

Each waste treatment costs component is represented as linear variable costs,
where the amount of waste is multiplied by transportation cost and gate fee per ton
of waste. Most of the constraints are the same as in lower-level problem of WtE
plants’ price-setting. For the sake of clarity, we describe their role once more time.
Expression (4.70) represents the minimal amount of total costs, that can be achieved
by coalition 𝑆. Constraints (4.72), (4.73), and (4.77), (4.78), ensure that all waste is
treated, and forbid negative waste flows. Constraint (4.76) ensures, that the capacity
of WtE plants cannot be exceeded, when computing optimal waste flows of coalition
𝑁 ∖ 𝑆 in expression (4.75). Constraint (4.71) guarantees, that coalition 𝑆 optimizes
its waste flows on the capacities remaining after 𝑁 ∖𝑆. This value function describes
the pessimistic setting, in which the coalition 𝑆 makes decision after the coalition
𝑁 ∖ 𝑆, and is assumed to describe upper bound of WM costs of coalition 𝑆. The
considered 𝑣 has been originally presented in [83]. It is crucial to assume, that the
total capacities of regional WtE plants should be greater than (or equal to) total
waste production in a region. Thus, once more, the main assumption of the whole
model is ∑︁

𝑖∈𝑁

𝑤𝑝𝑖 ≤
∑︁
𝑗∈𝑀

𝑤𝑐𝑗 .

It is important to explain, how particular solution (𝑥
′,𝑁∖𝑆
𝑖,𝑗 )𝑖∈𝑁∖𝑆, 𝑗∈𝑀 can be chosen,

since in case of ambiguity it can drastically affect 𝑣(𝑆).

1. At first, the problem 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 is solved.

2. After that, we obtain the particular solution (𝑥
′,𝑁∖𝑆
𝑖,𝑗 )𝑖∈𝑁∖𝑆, 𝑗∈𝑀 as

(𝑥
′,𝑁∖𝑆
𝑖,𝑗 )𝑖∈𝑁∖𝑆, 𝑗∈𝑀 ∈ arg max

𝑥𝑖,𝑗 ,𝑖∈𝑁, 𝑗∈𝑀

∑︁
𝑗∈𝑀

∑︁
𝑖∈𝑁

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗,

𝑠.𝑡.
∑︁
𝑖∈𝑁

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈𝑀,

∑︁
𝑗∈𝑀

𝑥𝑖,𝑗 = 𝑤𝑝𝑖 , ∀𝑖 ∈ 𝑁,
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∑︁
𝑗∈𝑀

∑︁
𝑖∈𝑁∖𝑆

(︀
𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗

)︀
𝑥𝑖,𝑗 = 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆,

𝑥𝑖,𝑗 ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈𝑀.

However, when performing simulations in the case study, the arbitrary solution of
𝑐𝑜𝑠𝑡𝑠𝑡𝑁∖𝑆 is taken, to better reflect randomness of real world decisions and limited
rationality of outsiders. Now, the effect that can be achieved through cooperation
will be explained and demonstrated in detail.

4.2.2 Motivational examples
In this section, two exemplary problems will be presented. Each problem has the
same data for the sake of better demonstration of the cooperation restriction impact
on a game outcome. Resulting costs will be compared by the means of the Shapley
value computed for each problem. The first exemplary game (𝑁, 𝑣) is represented by
Figure 4.5, where used notation fully corresponds to the previously given description.
From the practical point of view, such a setting can be explained in the following way.
In the case 𝑁 is formed, waste producer 2 will willingly choose the more expensive
services of the WtE plant 1 in order to reduce total costs by leaving free capacity of
WtE plant 2 to waste producers 1 and 3.

Figure 4.5: Exemplary problem without cooperation restrictions

Increased expenses of waste producer 2 will be then compensated by waste pro-
ducers 1 and 3 from the money they spared, because even with such compensation
their costs will be less, than in a case with absence of cooperation. The second ex-
emplary problem is represented in Figure 4.6. The yellow shape presents a natural or
legal barrier, which in a certain way, divides waste producers in the considered area.
This setting can be represented by a static coalition formation game (𝑁, 𝑣,𝒫) with
the pre-defined coalition structure 𝒫 = {{1, 2}, {3}}.

In Table 4.5, the values of the characteristic function for both considered games
is presented.

Table 4.5: The characteristic function values in MEUR

Game/Coalition {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
(𝑁, 𝑣) 7 7.2 7.8 13.75 14.35 14.25 19.75
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Figure 4.6: Exemplary problem with cooperation restrictions imposing pre-defined
coalition structure

Then, the Shapley values for each game can be obtained in accordance with Table
4.6. It can be highlighted, that costs distributed on a basis of the Shapley value are at

Table 4.6: The Shapley values in MEUR

Game/Waste producer 1 2 3
(𝑁, 𝑣) 6.35 6.4 7

(𝑁, 𝑣,𝒫) 6.775 6.975 7.8

least the same as they were in a case of absence of cooperation for each player. Thus,
cooperation in each setting has proven itself as profitable. It enables municipality,
which does not have WtE infrastructure and is distant from other WtE plants, to
lower its waste treatment costs through negotiation with the closest municipality, that
is situated near some WtE plant. The latter municipality can choose to treat its waste
at another WtE facility to let the former municipality minimize its transportation
costs (in real life, it is enough to subsidize transportation of former municipality).
The part of occurred financial surplus, i.e., difference between the potential non-
cooperative scenario costs and the real costs achieved through cooperation, can be
then transferred to the latter municipality as a compensation. Now, we will study
the theoretical properties of the considered game.

4.2.3 Properties of the game
Throughout the whole section, we make the following assumption:

• Each considered waste producers’ cost reduction game (𝑁, 𝑣) has unique solu-
tions (𝑥′,𝑆𝑖,𝑗 )𝑖∈𝑆,𝑗∈𝑀 = arg 𝑐𝑜𝑠𝑡𝑠𝑆, ∀𝑆 ⊆ 𝑁 .

Though, this assumption might seem quite strong, it is necessary in order to be
able to study properties of the considered game and compare the underlying linear
programming problems. When solving practical problems, addition of sufficiently
small random 𝜖 ∈ R (positive as well as negative) to each considered transportation
cost might help to create unique decrease directions to meet this assumption. We
begin with the properties, that might have practical consequences with respect to
costs distribution and coalition formation process during our case study.
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Cohesivity and balancedness

The game (𝑁, 𝑣) considered in the motivational example is cohesive. When studying
a cohesive game using merge and split rules in terms of utilitarian order and 𝒟ℎ𝑝 or
𝒟𝑝 stability, this property implies that if a merge and split process will start from 𝑁 ,
then it will never split. We begin with the following lemma.
Lemma 4.2.1. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁

𝑖∈𝑆

𝑥′,𝑆𝑖,𝑗 ≤
∑︁
𝑖∈𝑇

𝑥′,𝑇𝑖,𝑗 ,∀𝑆 ⊆ 𝑇 ⊆ 𝑁, ∀𝑗 ∈𝑀.

Proof. This relationship can be proven by a contradiction. Assume there exist �̃� ∈𝑀 ,
𝑇 ⊆ 𝑁 and 𝑆 ⊆ 𝑇 , such that

𝑤𝑐
�̃�
≥
∑︁
𝑖∈𝑆

𝑥′,𝑆
𝑖,�̃�
>
∑︁
𝑖∈𝑇

𝑥′,𝑇
𝑖,�̃�
.

Since (𝑥′,𝑆𝑖,𝑗 )𝑖∈𝑆,𝑗∈𝑀 is the unique optimal solution for 𝑐𝑜𝑠𝑡𝑠𝑆, there should exist 𝛿 > 0

and �̂� ∈ 𝑆, �̂� ∈𝑀 ∖ {�̃�}, such that a solution constructed as(︁
𝑥′,𝑇
�̂�,�̂�

− 𝛿, 𝑥′,𝑇
�̂�,�̃�

+ 𝛿, (𝑥′,𝑇𝑖,𝑗 )𝑖∈𝑇,𝑗∈𝑀∖{�̂�,�̃�}

)︁
will lower value of

∑︀
𝑗∈𝑀

∑︀
𝑖∈𝑆(𝑐

𝑡
𝑖,𝑗+𝑐

𝑔
𝑗 )𝑥𝑖,𝑗 compared to (𝑥′,𝑇𝑖,𝑗 )𝑖∈𝑇,𝑗∈𝑀 , while the value

of
∑︀

𝑗∈𝑀
∑︀

𝑖∈𝑇∖𝑆(𝑐
𝑡
𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥𝑖,𝑗 will remain the same. Therefore, the following relation

will hold∑︁
𝑗∈𝑀∖{�̂�,�̃�}

∑︁
𝑖∈𝑇

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥
′,𝑇
𝑖,𝑗 + (𝑐𝑡

�̂�,�̂�
+ 𝑐𝑔

�̂�
)(𝑥′,𝑇

�̂�,�̂�
− 𝛿) + (𝑐𝑡

�̂�,�̃�
+ 𝑐𝑔

�̃�
)(𝑥′,𝑇

�̂�,�̃�
+ 𝛿) < 𝑐𝑜𝑠𝑡𝑠𝑇 .

Thus, we were able to construct solution that produces value which is less than
𝑐𝑜𝑠𝑡𝑠𝑇 under the same constraints. However, this is a contradiction with optimality
of (𝑥′,𝑇𝑖,𝑗 )𝑖∈𝑇,𝑗∈𝑀 for 𝑐𝑜𝑠𝑡𝑠𝑇 .

Then, the following relationship holds.
Lemma 4.2.2. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,

𝑐𝑜𝑠𝑡𝑠𝑇 ≤ 𝑐𝑜𝑠𝑡𝑠𝑇∖𝑆 + 𝑣(𝑆),∀𝑆 ⊆ 𝑇 ⊆ 𝑁.

Proof. It is sufficient to prove that optimal solution
(︁
(𝑥*,𝑆𝑖,𝑗 )𝑖∈𝑆,𝑗∈𝑀 , (𝑥

′,𝑇∖𝑆
𝑖,𝑗 )𝑖∈𝑇∖𝑆,𝑗∈𝑀

)︁
that produces value 𝑐𝑜𝑠𝑡𝑠𝑇∖𝑆+𝑣(𝑆) for

∑︀
𝑖∈𝑇 (𝑐

𝑡
𝑖,𝑗+𝑐

𝑔
𝑗 )𝑥𝑖,𝑗 is always feasible for problem

𝑐𝑜𝑠𝑡𝑠𝑇 . The main interest dwells in the problem with capacity constraints, since other
constraints are trivially satisfied. It is clear that by the definition of 𝑣(𝑆)∑︁

𝑖∈𝑆

𝑥*,𝑆𝑖,𝑗 +
∑︁
𝑖∈𝑁∖𝑆

𝑥
′,𝑁∖𝑆
𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀,

holds. However, from Lemma 4.2.1,∑︁
𝑖∈𝑆

𝑥*,𝑆𝑖,𝑗 +
∑︁
𝑖∈𝑇∖𝑆

𝑥
′,𝑇∖𝑆
𝑖,𝑗 ≤

∑︁
𝑖∈𝑆

𝑥*,𝑆𝑖,𝑗 +
∑︁
𝑖∈𝑁∖𝑆

𝑥
′,𝑁∖𝑆
𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀,

which completes the proof.
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With respect to the statement of the previous lemma it is important to note, that
𝑐𝑜𝑠𝑡𝑠𝑁 = 𝑣(𝑁) holds. Lemma 4.2.2 also enables necessary to establish quite obvious
relationship between 𝑐𝑜𝑠𝑡𝑠𝑆 and 𝑣(𝑆).

Corollary 4.2.3. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,

𝑐𝑜𝑠𝑡𝑠𝑆 ≤ 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

Proof. It is a direct consequence of Lemma 4.2.2 for 𝑆 ⊆ 𝑆 ⊆ 𝑁 :

𝑐𝑜𝑠𝑡𝑠𝑆 ≤ 𝑐𝑜𝑠𝑡𝑠𝑆∖𝑆 + 𝑣(𝑆) = 𝑣(𝑆).

Now, we can proceed to the main theorem on cohesivity of waste producers’ cost
reduction games.

Theorem 4.2.4. General waste producers’ cost reduction game (𝑁, 𝑣) is cohesive.

Proof. Assume arbitrary partition 𝒫 = {𝑆1, ..., 𝑆𝑘} ∈ 𝒫𝑁 of 𝑁 with 𝑘 = 2, ..., 𝑛 (case
𝑘 = 1 is trivial). Then, by Lemma 4.2.2, we have

𝑣(𝑁) ≤ 𝑣(𝑆1) + 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆1 .

By subsequent application of Lemma 4.2.2,

𝑣(𝑁) ≤ 𝑣(𝑆1) + 𝑣(𝑆2) + 𝑐𝑜𝑠𝑡𝑠𝑁∖(𝑆1∪𝑆2) ≤ ... ≤
𝑘−1∑︁
𝑖=1

𝑣(𝑆𝑖) + 𝑐𝑜𝑠𝑡𝑠𝑆𝑘
.

Then, with the help of Corollary 4.2.3, we obtain

𝑣(𝑁) ≤
𝑘−1∑︁
𝑖=1

𝑣(𝑆𝑖) + 𝑐𝑜𝑠𝑡𝑠𝑆𝑘
≤

𝑘∑︁
𝑖=1

𝑣(𝑆𝑖),

which completes the proof.

Thus, when playing as one large entity, total costs of the waste treatment in a
region are as minimal as possible. The game from the motivational example also has
a non-empty core (the Shapley value of the game belongs to the core). However,
Shapley value, that has been chosen as a suitable distribution of waste treatment
costs, does not necessarily belong to the core of the non-convex game. Therefore, it
might be beneficial to consider the core distribution to compare this stable solution to
the Shapley value. We have focused ourselves on finding point (𝑥𝑖)𝑖∈𝑁 of the core for
every cost minimization game (𝑁, 𝑣). By finding such a distribution, the balancedness
of the general waste producers costs minimization game will be automatically proven.
The cohesivity of the general game (𝑁, 𝑣) has motivated us to study costs of each
𝑖 ∈ 𝑁 when 𝑣(𝑁) is calculated, since it is the optimal partition with respect to social
welfare. At first, the following important lemma is introduced.
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Lemma 4.2.5. Let us assume waste producers’ cost reduction game (𝑁, 𝑣). Further,
we will use notation 𝑐𝑜𝑠𝑡𝑠

𝑁∖𝑆
𝑁 :=

∑︀
𝑗∈𝑀

∑︀
𝑖∈𝑁∖𝑆(𝑐

𝑡
𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥

′,𝑁
𝑖,𝑗 . Then, the following

relation holds
𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 ≤ 𝑐𝑜𝑠𝑡𝑠

𝑁∖𝑆
𝑁 ,∀𝑆 ⊆ 𝑁.

Proof. The vector (𝑥′,𝑁𝑖,𝑗 )𝑖∈𝑁∖𝑆,𝑗∈𝑀 from the solution of 𝑐𝑜𝑠𝑡𝑠𝑁 = 𝑣(𝑁) is always fea-
sible for 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆:∑︁

𝑖∈𝑁

(𝑥′,𝑁𝑖,𝑗 ) ≤ 𝑐𝑗,∀𝑗 ∈𝑀 ⇒
∑︁
𝑖∈𝑁∖𝑆

(𝑥′,𝑁𝑖,𝑗 ) ≤ 𝑐𝑗,∀𝑗 ∈𝑀.

Since other constraints and objective functions of both problems coincide, minimiza-
tion of 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 is always less or equal to 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆

𝑁 .

Then, we proceed to the next lemma about the relationship of 𝑐𝑜𝑠𝑡𝑠𝑆𝑁 and 𝑣(𝑆).

Lemma 4.2.6. Let us assume waste producers’ cost reduction game (𝑁, 𝑣). Then,
the following relation

𝑐𝑜𝑠𝑡𝑠𝑆𝑁 ≤ 𝑣(𝑆),∀𝑆 ⊆ 𝑁,

holds.

Proof. Clearly,
𝑣(𝑁) = 𝑐𝑜𝑠𝑡𝑠𝑆𝑁 + 𝑐𝑜𝑠𝑡𝑠

𝑁∖𝑆
𝑁

holds. Additionally, from Lemma 4.2.2,

𝑣(𝑁) ≤ 𝑣(𝑆) + 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆

holds. Thus, we have

𝑐𝑜𝑠𝑡𝑠𝑆𝑁 + 𝑐𝑜𝑠𝑡𝑠
𝑁∖𝑆
𝑁 ≤ 𝑣(𝑆) + 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆

or, equivalently,
𝑐𝑜𝑠𝑡𝑠𝑆𝑁 + 𝑐𝑜𝑠𝑡𝑠

𝑁∖𝑆
𝑁 − 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 ≤ 𝑣(𝑆).

However, from Lemma 4.2.5 it follows that

𝑐𝑜𝑠𝑡𝑠𝑆𝑁 + 𝜖 ≤ 𝑣(𝑆),

for some 𝜖 ≥ 0, implying
𝑐𝑜𝑠𝑡𝑠𝑆𝑁 ≤ 𝑣(𝑆).

Now, the main theorem on core of the general waste producers cost reduction
game can be established.

Theorem 4.2.7. Let us assume waste producers cost reduction game (𝑁, 𝑣). Further
assume the costs distribution (�̂�𝑖)𝑖∈𝑁 such that

�̂�𝑖 =
∑︁
𝑗∈𝑀

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥
′,𝑁
𝑖,𝑗 .

Then, (�̂�𝑖)𝑖∈𝑁 ∈ 𝐶(𝑁, 𝑣).
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Proof. Two following properties of (�̂�𝑖)𝑖∈𝑁 should be proven:∑︁
𝑖∈𝑁

�̂�𝑖 = 𝑣(𝑁)

and ∑︁
𝑖∈𝑆

�̂�𝑖 ≤ 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

Clearly, ∑︁
𝑖∈𝑁

�̂�𝑖 =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥
′,𝑁
𝑖,𝑗 = 𝑣(𝑁).

Then, using the Lemma 4.2.6,∑︁
𝑖∈𝑆

�̂�𝑖 =
∑︁
𝑖∈𝑁

∑︁
𝑗∈𝑀

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥
′,𝑁
𝑖,𝑗 = 𝑐𝑜𝑠𝑡𝑠𝑆𝑁 ≤ 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

The result of the previous theorem and equivalence between balancedness and
core non-emptiness imply the following corollary.

Corollary 4.2.8. Every waste producers’ cost reduction game (𝑁, 𝑣) is balanced.

Now, we proceed to another important property that might substantially impact
the distributed dynamic coalition formation process.

Subadditivity

It is important to note, that the game (𝑁, 𝑣) from the motivational example is sub-
additive. Unfortunately, this important property is not satisfied for all games of the
considered type.

Lemma 4.2.9. Waste producers cost reduction games are not subadditive in general.

Proof. We prove the lemma via constructing a counter-example. Assume a waste
producer game with the following setting: 𝑁 = {1, 2, 3, 4}, 𝑀 = {1, 2, 3}, 𝑐𝑔 =
(50, 50, 50), 𝑤𝑝 = (100, 100, 100, 50), 𝑤𝑐 = (100, 100, 150), and the following trans-
portation costs matrix

𝑐𝑡 =

⎛⎜⎜⎝
10 4 20
8 2 20
20 2 4
20 20 2

⎞⎟⎟⎠ .

It can be easily verified that

• 𝑐𝑜𝑠𝑡𝑠{2,3,4} = 13200 with non-zero 𝑥′2,2 = 100, 𝑥′3,3 = 100, 𝑥′4,3 = 50,

• 𝑐𝑜𝑠𝑡𝑠{1,3,4} = 13400 with non-zero 𝑥′1,2 = 100, 𝑥′3,3 = 100, 𝑥′4,3 = 50,

• 𝑐𝑜𝑠𝑡𝑠{3,4} = 7800 with non-zero 𝑥′3,2 = 100, 𝑥′4,3 = 50,
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implying

• 𝑣({1}) = 6000 with non-zero 𝑥*1,1 = 100 and non-trivial constraint 𝑥1,1 ≤ 100,

• 𝑣({2}) = 5800 with non-zero 𝑥*2,1 = 100 and non-trivial constraint
𝑥2,1 ≤ 100,

• 𝑣({1, 2}) = 12800 with non-zero 𝑥*1,3 = 100, 𝑥*2,1 = 100 due to non-trivial con-
straints 𝑥1,1 + 𝑥2,1 ≤ 100, 𝑥1,3 + 𝑥2,3 ≤ 150− 50.

It can be seen that
𝑣({1}) + 𝑣({2}) < 𝑣({1, 2}).

Thus, we can conclude that waste producers’ cost reduction games do not satisfy
subadditivity in general.

The proof of Lemma 4.2.9 also makes it possible to establish the following corollary
about properties related to subadditivity.

Corollary 4.2.10. Waste producers’ cost reduction games are not weakly subaddi-
tive or convex in general.

Unfortunately, it is rather challenging to establish some easily verifiable condition
for subadditivity or convexity, since the relationship between

∑︀
𝑖∈𝑁∖(𝑆∪𝑇 ) 𝑥

′,𝑁∖(𝑆∪𝑇 )
𝑖,𝑗

and
∑︀

𝑖∈𝑁∖𝑆 𝑥
′,𝑁∖𝑆
𝑖,𝑗 +

∑︀
𝑖∈𝑁∖𝑇 𝑥

′,𝑁∖𝑇
𝑖,𝑗 for some 𝑗 ∈𝑀 can be hardly predicted.

Additivity

Since some games are not subadditive, it was decided to focus on studying a condition
(put on input parameters of the game) that makes cooperation during the game
non-trivial for at least one coalition. Thus, our aim is to establish easily verifiable
condition, that will demonstrate if the game is or is not additive. At first, let us focus
on the relationship between

∑︀
𝑇∈𝒫 𝑐𝑜𝑠𝑡𝑠𝑇 and 𝑐𝑜𝑠𝑡𝑠𝑆 for arbitrary partition 𝒫 ∈ 𝒫𝑆

of 𝑆 ⊆ 𝑁 . We begin with the following lemma.

Lemma 4.2.11. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁
𝑇∈𝒫

𝑐𝑜𝑠𝑡𝑠𝑇 ≤ 𝑐𝑜𝑠𝑡𝑠𝑆,∀𝑆 ⊆ 𝑁,∀𝒫 ∈ 𝒫𝑆, 𝑆 ⊆ 𝑁.

Proof. Assume arbitrary partition 𝒫 of 𝑆. Since feasible regions of each 𝑐𝑜𝑠𝑡𝑠𝑇 , 𝑇 ∈
𝒫 , are not interrelated,

∑︀
𝑇∈𝒫 𝑐𝑜𝑠𝑡𝑠𝑇 can be equivalently reformulated as a problem

with the same objective function as 𝑐𝑜𝑠𝑡𝑠𝑆. Thus, we only have to demonstrate, that
feasible region of 𝑐𝑜𝑠𝑡𝑠𝑆 is a subset of a feasible region of

∑︀
𝑇∈𝒫 𝑐𝑜𝑠𝑡𝑠𝑇 . An arbitrary

vector (𝑥𝑖,𝑗)𝑖∈𝑆,𝑗∈𝑀 from feasible region of 𝑐𝑜𝑠𝑡𝑠𝑆 trivially satisfies 4.78 and 4.77 of∑︀
𝑇∈𝒫 𝑐𝑜𝑠𝑡𝑠𝑇 . Moreover,∑︁

𝑖∈𝑆

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑗 ∈𝑀 ⇒
∑︁
𝑖∈𝑇

𝑥𝑖,𝑗 ≤ 𝑤𝑐𝑗 , ∀𝑇 ∈ 𝒫 , ∀𝑗 ∈𝑀,

which completes the proof.
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The following lemma will demonstrate under which condition equality holds in
the relationship established above.

Lemma 4.2.12. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁
𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀 ⇒ 𝑥′,𝑆𝑖,𝑗 = 𝑥′,𝑖𝑖,𝑗, ∀𝑆 ⊆ 𝑁,∀𝑖 ∈ 𝑆, ∀𝑗 ∈𝑀.

Proof. The unique (𝑥′,𝑖𝑖,𝑗)𝑖∈𝑆,𝑗∈𝑀 composed of solutions (𝑥′,𝑖𝑖,𝑗)𝑗∈𝑀 of 𝑐𝑜𝑠𝑡𝑠𝑖 fulfills 4.78
and 4.77 of 𝑐𝑜𝑠𝑡𝑠𝑆. Then,∑︁

𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀 ⇒
∑︁
𝑖∈𝑆

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀,

making it feasible and, as a consequence of Lemma 4.2.11 for 𝒫 = {𝑖|𝑖 ∈ 𝑆} ∈ 𝒫𝑆,
the unique optimal solution for the 𝑐𝑜𝑠𝑡𝑠𝑆.

Corollary 4.2.13. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁
𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ⇒
∑︁
𝑇∈𝒫

𝑐𝑜𝑠𝑡𝑠𝑇 = 𝑐𝑜𝑠𝑡𝑠𝑆, ∀𝑆 ⊆ 𝑁,∀𝒫 ∈ 𝒫𝑆.

Then, the following implication of
∑︀

𝑖∈𝑁 𝑥
′,𝑖
𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀, can be established.

Lemma 4.2.14. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁
𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀 ⇒ 𝑥*,𝑆𝑖,𝑗 = 𝑥′,𝑖𝑖,𝑗, ∀𝑆 ⊆ 𝑁, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀.

Proof. An assumption
∑︀

𝑖∈𝑁 𝑥
′,𝑖
𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈ 𝑀, and Lemma 4.2.12 imply that

(𝑥′,𝑖𝑖,𝑗)𝑖∈𝑆,𝑗∈𝑀 is always feasible for 𝑣(𝑆), since∑︁
𝑖∈𝑆

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 −
∑︁
𝑖∈𝑁∖𝑆

𝑥′,𝑖𝑖,𝑗 = 𝑤𝑐𝑗 −
∑︁
𝑖∈𝑁∖𝑆

𝑥
′,𝑁∖𝑆
𝑖,𝑗 , ∀𝑗 ∈𝑀.

Then, from Corollary 4.2.3 and uniqueness of (𝑥′,𝑖𝑖,𝑗)𝑖∈𝑆,𝑗∈𝑀 , we have

𝑥*,𝑆𝑖,𝑗 = 𝑥′,𝑖𝑖,𝑗, ∀𝑆 ⊆ 𝑁, 𝑖 ∈ 𝑁, 𝑗 ∈𝑀.

Now, we can proceed to the first theorem on the addititivty of the studied game.

Theorem 4.2.15. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁
𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀 ⇒ (𝑁, 𝑣) is additive.

Proof. From Lemma 4.2.14, we have,

𝑣(𝑆) =
∑︁
𝑖∈𝑆

𝑣({𝑖}) =
∑︁
𝑖∈𝑆

𝑐𝑜𝑠𝑡𝑠{𝑖},∀𝑆 ⊆ 𝑁.
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As a result, non-existence of a conflict over WtE capacities between waste pro-
ducers, when they are individually optimizing costs on the «empty» network, is a
sufficient condition for the game to be additive. Now, the necessity of the established
condition will be proven. At first, we demonstrate that additivity of the game brings
following implications.
Lemma 4.2.16. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,

(𝑁, 𝑣) is additive ⇒ 𝑥*,𝑆𝑖,𝑗 = 𝑥′,𝑆𝑖,𝑗 = 𝑥′,𝑖𝑖,𝑗, ∀𝑆 ⊆ 𝑁,∀𝑖 ∈ 𝑆, ∀𝑗 ∈𝑀.

Proof. Lemma 4.2.2 and Corollary 4.2.3 lead us to the following expression:

𝑣(𝑁) ≤ 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 + 𝑣(𝑆) ≤ 𝑣(𝑁 ∖ 𝑆) + 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

However, additivity of (𝑁, 𝑣) implies that

𝑣(𝑁) = 𝑣(𝑁 ∖ 𝑆) + 𝑣(𝑆),∀𝑆 ⊆ 𝑁,

and
𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 + 𝑣(𝑆) = 𝑣(𝑁 ∖ 𝑆) + 𝑣(𝑆),∀𝑆 ⊆ 𝑁.

As a result, we obtain
𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 = 𝑣(𝑁 ∖ 𝑆),∀𝑆 ⊆ 𝑁. (4.79)

Then, (4.79) and uniqueness of solution of 𝑐𝑜𝑠𝑡𝑠𝑁∖𝑆 imply, that

𝑥*,𝑆𝑖,𝑗 = 𝑥′,𝑆𝑖,𝑗 , ∀𝑆 ⊆ 𝑁, ∀𝑖 ∈ 𝑆, ∀𝑗 ∈𝑀.

At the same time, additivity of the game and (4.79) also imply, that∑︁
𝑇∈𝒫

𝑐𝑜𝑠𝑡𝑠𝑇 = 𝑐𝑜𝑠𝑡𝑠𝑆,∀𝒫 ∈ 𝒫𝑆, ∀𝑆 ⊆ 𝑁,

and, from Lemma 4.2.11 and uniqueness assumption, we obtain

𝑥*,𝑆𝑖,𝑗 = 𝑥′,𝑆𝑖,𝑗 = 𝑥′,𝑖𝑖,𝑗, ∀𝑆 ⊆ 𝑁, ∀𝑖 ∈ 𝑆, ∀𝑗 ∈𝑀.

After that, the necessity of the proposed condition can be established in the
following theorem.
Theorem 4.2.17. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,

(𝑁, 𝑣) is additive ⇒
∑︁
𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀.

Proof. The proof can be performed by a contradiction. Assume, that there exists
some 𝑗 ∈ 𝑀 , such that

∑︀
𝑖∈𝑁 𝑥

′,𝑖
𝑖,𝑗 > 𝑤𝑐𝑗 . Then, (𝑥′,𝑖𝑖,𝑗)𝑖∈𝑁,𝑗∈𝑀 is infeasible for 𝑣(𝑁),

being a contradiction with the additivity of the game due to Lemma 4.2.16.
Corollary 4.2.18. Assume a waste producers’ cost reduction game (𝑁, 𝑣). Then,∑︁

𝑖∈𝑁

𝑥′,𝑖𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈𝑀 ⇔ (𝑁, 𝑣) is additive.

Thus, in waste producers’ costs minimization game, cooperation might bring ben-
efits, when for at least two waste producers the most economical optimistic option of
the individual waste treatment becomes infeasible due to limited capacities.
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Summary of theoretical findings and their implications with respect to
case study

Since necessary and sufficient condition of additivity has been obtained, it is possible
to verify if the study of the particular WM setting is reasonable. At the same time,
if the game is not additive, it will always have a core element

(�̂�𝑖)𝑖∈𝑁 ∈ 𝐶(𝑁, 𝑣), �̂�𝑖 =
∑︁
𝑗∈𝑀

(𝑐𝑡𝑖,𝑗+𝑐
𝑔
𝑗 )𝑥

′,𝑁
𝑖,𝑗 ,∀𝑖 ∈ 𝑁, such that ∃𝑆 ⊂ 𝑁 :

∑︁
𝑖∈𝑆

�̂�𝑖 > 𝑣(𝑆),

due to general balancedness and cohesivity of waste producers’ cost reduction games.
Thus, after verifying

∑︀
𝑖∈𝑁 𝑥

′,𝑖
𝑖,𝑗 ≤ 𝑤𝑐𝑗 ,∀𝑗 ∈ 𝑀 , we are able to calculate a stable

allocation of the total waste treatment costs 𝑣(𝑁). The whole process requires only
|𝑁 |+ 1 linear programming problems to be solved.

However, in practice, when large number of players is considered (case of the na-
tional WM network), it is rather improbable, that the grand coalition 𝑁 will form.
Indeed, to sustain such a large network of micro-regions (consisting of smaller mu-
nicipalities), additional investments might be needed. This consideration can be
supported by our finding that the waste producer’s game might not be subadditive.
Thus, it is not completely reasonable to study this game using the canonical cooper-
ative games. Therefore, it was decided to employ the coalition formation approach.
Since there is no reason to assume existence of some pre-defined coalition structure,
we have chosen to apply dynamic approach. The centralized dynamic approach is
impractical for the large games. This is why its dynamic alternative will be employed
through merges and splits. In the next section, the proposed implementation of the
coalition formation process will be discussed.

Distributed dynamic coalition formation

Whereas the concepts from theoretical section provide necessary elements to formal-
ize dynamic coalition formation, they do not explain, how outcome of such process
should be computed. Moreover, a particular implementation of the merge and split
process might directly affect a found stable outcome. In this work, the following im-
plementation is suggested (the implementation has been programmed in MATLAB).

The initial coalition structure is assumed to correspond to the state with no co-
operation among players. The merge rule is always applied as first and operates
exclusively on pairs of coalitions. Coalitions to be merged are subsequently taken
from a set of all available pairs of coalitions in coalition structure. If the merge oper-
ation is performed, coalition structure is updated, and merge rule application starts
again. When no merge operation can be performed, the algorithm proceeds to the
application of a split rule. It iterates over all coalitions in the coalitional structure
and checks the split operation assumption for every partition of the currently pro-
cessed coalition. Partitions are taken from a set of all possible partitions. If the
split operation is performed, the coalition structure is updated, and the split rule
continues to run. When no split operation can be performed, the process proceeds
to merge rule application. If in one full cycle (one application of merge rule and
one application of split rule) no merge or split operation has been performed, the
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merge and split algorithm ends. The ordering in combinatorial sets (set of all pairs of
coalitions and set of all partitions) is obtained via the MATLAB function „nchoosek“.
The assumptions about a starting coalition structure and the application of merge
rule on pairs of coalitions are aimed at sustaining computational complexity on the
desired level. Since every game has been proven to be cohesive, if the merge and split
process with respect to utilitarian order will start from 𝑁 , it will not be splitted any
more. In the case of strict cohesivity, any starting profile will lead us to 𝑁 , if we
consider not only pairs but all possible merges. Thus, when no additional costs are
assumed, the first merge operation might result into complete cooperation and the
formation of the grand coalition. In such case, the large set of players will potentially
lead to the combinatorial explosion during the split operation, since all possible par-
titions must be checked. To overcome this potential problem, it has been decided to
embed additional cooperation costs into the considered approach. Such penalization
might reflect increasing financial costs for retaining efficient communication between
coalition participants and coordination of mutual actions.

Additional costs algorithm. In order to capture the impact of additional coop-
eration costs, the definition of value function has been modified to:

𝑣*(𝑆) = 𝑣(𝑆) +
∑︁
𝑖∈𝑆

√︀
|𝑆| − 1

𝑝

100
𝑣({𝑖}).

The value function now represents the sum of the original value function and ad-
ditional cooperation costs, which are represented as a sum of value function values
corresponding to the individual micro-regions contained in 𝑆 ⊆ 𝑁 . The latter term is
multiplied by a square root of coalition 𝑆 size minus one to embed nonlinear penaliza-
tion of greater coalitions (with 𝑣*(𝑖) = 𝑣(𝑖)). To obtain uniform coalition, the latter
term is also multiplied by a penalization term 𝑝 ∈ [0, 100], which will be further used
as an instrument to manipulate with the coalition formation process. In practice, it is
almost impossible to find a general cost function describing the costs of cooperation.
It is intuitively clear, that it will have positive correlation with the cardinality of the
coalition, therefore the proposed function is in line with the basic premise. The exact
idea of the manipulation with penalization dwells in an algorithm, which is aimed
at obtaining the collation structure with the maximal average coalition size, through
iterative alternation of penalization decreases and increases. The design of the pro-
posed algorithm is sketched in Figure 4.7. In Figure 4.7, 𝑝 with the lower subscript
represents particular value of penalization, 𝑘 is step with which penalization changes
in each iteration, 𝒞𝑗 = {𝑆1, . . . , 𝑆𝑚} is a particular coalition structure, and 𝑎𝒞𝑗 =

|𝑁 |
𝑚

is an average coalition size under structure 𝒞𝑗. The structure 𝒞𝑠𝑡𝑎𝑟𝑡 represents start-
ing coalition structure for application of merge and split algorithm (it corresponds to
fully non-cooperative case only during the first penalization decrease).

Distributing the costs

Unfortunately, it may not be possible to generalize the proposed core solution

�̂�𝑖 =
∑︁
𝑗∈𝑀

(𝑐𝑡𝑖,𝑗 + 𝑐𝑔𝑗 )𝑥
′,𝑁
𝑖,𝑗 ,∀𝑖 ∈ 𝑁,
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Figure 4.7: Penalization-based coalition formation algorithm

into domain of coalition formation games. Indeed, (�̂�𝑖)𝑖∈𝑁 , resp. (�̂�𝑖)𝑖∈𝑆, 𝑆 ⊂ 𝑁,
may not belong to 𝐶𝐶𝐹 (𝑁, 𝑣,𝒫), resp. 𝐶𝐶𝐹 (𝑆, 𝑣|𝑆, {𝑆}). Moreover, these cores may
be empty. Therefore, the proposed core distribution will be used only for the sake
of comparison to demonstrate how «far» the Shapley value will be from the stable
distribution of 𝑣(𝑁).

The Shapley value has a reduction property and this solution concept will be
utilized to suggest fair distribution of costs among resulting coalitions of municipal
units. Due to the size of the players’ set in the considered case study (47), a Shapley
value estimation, based on sampling theory [15], will be employed. In [15], the Shapley
value is estimated as the mean value of the marginal contribution of the player to
coalition of player’s predecessors in permutation (players assigned to a smaller natural
numbers than the considered player), taken from a sample, in which each permutation
on 𝑁 is included with the probability equal to 1/|𝑁 |!. Now, the sampling algorithm
will be formalized with respect to the definition of the Shapley value utilizing Weber
strings/permutations. Assume sample of 𝑚 permutations. In step 𝑘 of the algorithm,
permutation 𝛼𝑘 ∈ G𝑁 is taken from the sample and

𝑥𝛼𝑘
𝑖 = 𝑣(𝑅𝑖)− 𝑣(𝑅𝑖 ∖ {𝑖}),

where
𝑅𝑖 = {𝛼𝑘(1), ..., 𝛼𝑘(𝑗)}, 𝑗 ∈ 𝑁 such that 𝛼𝑘(𝑗) = 𝑖,

is calculated for each 𝑖 ∈ 𝑁 . Then, after the 𝑚 steps, the Shapley value estimate
𝜑(𝑁, 𝑣) can be obtained as

𝜑𝑖(𝑁, 𝑣) =

∑︀𝑚
𝑘=1 𝑥

𝛼𝑘
𝑖

𝑚
.

Such an estimate can be calculated in polynomial time, it is also unbiased and con-
sistent [15].

83



4.2.4 Case Study

The case study dwells in the application of the modified merge and split algorithm to
the waste producers’ cost game, where the set of players consists of 47 micro-regions
(municipalities with extended authority), which are presented within three regions of
the Czech Republic: the Zlín Region, the Olomouc Region, and the South Moravian
Region. In order to meet the requirement, that all waste meant for energy recovery
can be handled by the Czech Republic’s WM network, WtE plants, that do not exist,
but are currently being planned, have also been assumed. This makes a total of seven
WtE plants. The data on waste generation of the micro-regions has been provided
by the Ministry of the Environment; financially sustainable gate fees, capacities, and
transportation costs have been obtained from [61]. The additivity condition has been
checked and the game in the considered setting is not inessential. As it was already
mentioned, the initial coalition structure corresponds to the state with no coopera-
tion among the micro-regions, i.e. the process starts with 47 disjoint coalitions, each
represented by only one municipality. For the case study, starting penalization value
has been set to 2 and the step has been set to 0.1. This relatively low penalization
might be explained by a pessimistic setting of the problem, where only large coali-
tions might substantially reduce their total costs through cooperation. A schematic
merge and split process for the penalization of 1.2 during first penalization decrease
is depicted in Figure 4.8. The algorithm run information is presented in Table 4.7.

Table 4.7: Average coalition size changes

Penalization 1st
decrease

1st
increase

2nd
decrease

2nd
increase

3rd
decrease

2 1.044
1.9 1.119
1.8 1.119
1.7 1.119
1.6 1.093
1.5 1.119 1.306
1.4 1.237 1.343 1.382
1.3 1.424 1.382 1.382
1.2 1.469 1.469 1.469 1.469
1.1 Err 1.469 1.469
1 1.567 1.567 1.567

0.9 Err Err

The 3rd increase column has been omitted, since it fully copies the 2nd increase
column. In each penalization increase step, few more iterations have been computed
to ensure, that average coalition size is consistently decreasing. All resulting coalitions
with the cardinality greater than one, can be considered as a steady and stable
outcome. The map of the resulting structure is depicted in Figure 4.9.
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Figure 4.8: Merge and split full run for the penalization of 1.2

Discussion

In this case study, the algorithm has enabled to create three “clusters”, which at-
tracted a certain number of micro-regions, due to substantial total costs decrease
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Figure 4.9: Map of the resulting municipal unions

regardless of the applied penalization. These coalitions can be referred to as the
most profitable, while other micro-regions are not interested in cooperation under
additional cooperation costs. This implies, that cooperation cannot enable them suf-
ficient compensation due to their waste productions and locations with respect to
the WtE plants, which are indicated by red dots in Figure 4.9. These dots do not
correspond to the real or planned location of WtE and only indicate their existence
in a micro-region. Evident geographical inconsistencies in coalitions can be explained
by the fact, that the considered micro-regions already represent aggregated smaller
cities. Moreover, the planning of the waste collection is not taken into account in the
model, which might promote cooperation between distant micro-regions.

Clearly, the proposed algorithm must be further improved to provide precise in-
structions in case of possible irregularities. A more comprehensive study of the devel-
opment of average coalition size depending on penalization is also needed. Moreover,
other “uniformity” metrics such as geometric mean might be worth considering. The
merging of pairs of coalitions remains the main disadvantage of the current imple-
mentation, but it is necessary to mitigate the risk of combinatorial explosion. When
working with smaller player sets, merging three or more coalitions into one could also
be considered.

The stable outcome. From Figure 4.9, it can be seen, that the resulting coalitions
are not spatially consistent: cooperation of distant micro-regions can be profitable.
Thus, formation of municipal unions cannot be solved solely intuitively based on
geographical vicinity between subjects, as it is usually done in practice. The resulting
coalitions have showed that micro-regions, where WtE facilities are situated, tend
to be major players of their coalitions, around which other players are gathering.
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Due to assumed zero transportation costs, these “centers” tend to reserve capacities
of their WtE plants to other participants of corresponding coalitions. While the
greatest coalition consists of three such “centers” (“Brno”, “Přerov”, and “Zlín”),
which explains its greater size, another coalition has occurred around “Otrokovice”
with a WtE plant of large capacity and competitive gate fee for its region. The
last coalition has been created around “Valašské Meziříčí” with a WtE plant, which,
though of a relatively small capacity and higher gate fee, still provides possibility to
achieve smaller waste treatment costs for local micro-regions. However, the existence
of a WtE plant within a micro-region does not always guarantee that such micro-
regions will attract others. For example, “Hodonín” micro-region, which has its own
WtE facility, does not serve as a gathering “center” for any coalition. This fact can be
explained by the fact that “Hodonín” is situated close to “Brno”, but its WtE plant
is uncompetitive compared to “Brno” WtE plant. It can be concluded that obtained
results lack irrationalities and the presented approach has potential in research on
this topic. The case study results validate the proposed method and indicate, that
the developed approach can be applied to locations with analogous demographical
conditions.

The proposed distributions of waste treatment costs. The Shapley value has
been chosen as a fair method of a total waste treatment cost distribution between
micro-regions. Three possible scenarios have been considered to provide a better
image about the role of cooperation in the presented problem. These scenarios are
the following: I. fully non-cooperative case, II. fully cooperative case, III. stable
outcome with non-cooperating outsiders (three proposed coalitions are considered
and remaining micro-regions do not cooperate). For the sake of better comparison,
all scenarios have been computed using the original function 𝑣. The suggested point
of the core 𝐶(𝑁, 𝑣) has been calculated only for the fully cooperative case. The
proposed costs distributions are presented in «Shapley values.docx» of Appendix.
The results for the I. scenario are represented by total waste treatment costs per ton
of waste. The results of scenarios II. and III. and the proposed core distribution are
represented by percentual savings compared to the I. scenario. The sampling method
has been employed to estimate the Shapley value of coalitions with cardinality greater
than 7, where the sample size has been set to 10,000.

At first, it is necessary to emphasize that estimates of Shapley value in II. and III.
scenarios are smaller than 𝑣({𝑖}) values of I. scenario. Thus, under both scenarios
players were able to prosper from cooperation. Expectedly, micro-regions in which
WtE plants are situated play a major role in their coalitions. This fact has also
manifested itself through the suggested costs distributions. Mainly, micro-regions
with production, which is smaller than capacity of their local WtE plant, can achieve
substantial savings through cooperation. Other micro-regions in these coalitions, can
also save considerable amount of money, especially if their waste production is high
with respect to their geographical area. Therefore, micro-regions in which waste
treatment facilities are situated and micro-regions with locally above-average waste
generation should be maximally interested in cooperation and initiate the creation of
municipal unions in order to substantially lower their waste treatment costs. While
pursuing their own wealth, they can also reduce the financial impact of legal changes
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on the other micro-regions. As expected, global cooperation, corresponding to the II.
scenario, is the most profitable outcome for everyone. According to the performed es-
timate, in case of global cooperation, all players can lower their total waste treatment
costs. While the III. scenario represents an opportunity to lower waste treatment
costs for members of the previously described coalitions, it should be noted, that it
cannot offer such substantial savings that can be achieved through the II. scenario.
It should be concluded that decision of the micro-regions to cooperate is based on all
considered factors. Waste productions and locations play an equally eminent role in
the process of coalition formation. The «attractiveness» of a micro-region in coali-
tion formation is not guaranteed exclusively by existence of a nearby WtE or large
waste production, rather it is a combination of both factors. There is obviously no
intention to cooperate with micro-regions with small waste productions, since they
cannot offer any benefits to their partners. Then, after passing a certain threshold,
where waste production becomes sufficient with respect to location of a micro-region,
attractiveness of the micro-region begins to grow. Due to the clear implication, that
some micro-regions might play fundamental role in their coalitions, currently widely
applied policy of equal waste treatment tariffs in municipal unions should be revised.

The proposed core distribution demonstrates that, in case of full cooperation, some
waste producers are able to achieve enormous savings. They can save twice more than
under the distribution proposed by Shapley value for fully cooperative scenario II.
The large differences between the Shapley value and core point indicate that Shapley
might not be stable distribution. However, it distributes costs in a more fair, uniform
way. Indeed, in some cases stable core distribution provide savings comparable to
III. scenario or does not provide any savings at all.

Sensitivity analysis of the proposed method. To verify the stability of the
model and assess the impact of the input variables on the outcome, a sensitivity anal-
ysis has been conducted. Whereas some significant biasedness of the data on WtE
plants and transportation can hardly be assumed, the main source of the variability
of the whole model is considered to dwell in the waste production data. After a brief
analysis of the available waste production time series data, it has been concluded,
that in the last ten years average fluctuation in waste production for the considered
micro-regions was around 5%. Therefore, it has been suggested to generate 10 new
scenarios, using 10 randomly generated samples from the continuous uniform distri-
bution on the interval [−0.05; 0.05]. These sample data have been multiplied by the
originally considered waste amounts and then added to the original waste production
data. Thus, the effect of imprecision in the waste production data on the outcome of
the model has been studied using these 10 scenarios. For each of these scenarios, the
resulting coalition structure and resulting waste costs distribution have been com-
puted using the above-proposed coalition formation method. Summarization of the
sensitivity analysis results can be described as follows:

• The micro-regions, that participate in a union in the original scenario, also
participate in unions generated in 85% of the new scenarios on average.
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• On the contrary, micro-regions, that are not interested in cooperation in the
original scenario, cooperate only in 26.7% of the newly generated scenarios on
average.

• 11 out of 20 micro-regions, that cooperate in the original scenario, cooperate in
all 10 scenarios.

• The number of unions in the generated scenarios varies from 2 to 5, with the
modus equal to 3 (4 out of 10 scenarios), being the number of clusters in the
original scenario.

• From 1081 of all possible pairs of micro-regions, only 16 pairs cooperate in more
than half of scenarios. 15 of these 16 pairs also participate in the same union
in the original scenario.

From the above-presented points, it can be concluded, that the sensitivity analysis
has demonstrated the relative stability of the method. Evidently, there are micro-
regions that have a strong incentive to cooperate, as well as there are micro-regions,
that are not interested in joining coalitions in the most of scenarios. Moreover, there
is an obvious trend in cooperation between particular micro-regions. Clearly, the
algorithm is quite sensitive with respect to the resulting number of clusters, which
can be partially explained, that the 5% change in waste production of the large
micro-region represents a substantial change of the original setting.
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Chapter 5

Conclusion

In this Ph.D. thesis, application of GT approaches to problems of WtE treament
of non-recyclable waste in WM networks has been demonstrated. The work has
provided theoretical insight into domain of NGT and CGT. The latter branch has
been discussed with respect to class of canonical coalitional games and coalition
formation games. The performed review has enabled us to establish existing research
gaps. These gaps have highlighted the contribution of this thesis. In particular, the
autor’s original research has been aimed at two types of games.

The WtE plants’ price-setting problem has been thoroughly studied from two
perspectives: setting the optimal prices for one WtE plant and the search for NE
between WtE plants. The problem has been defined as a normal-form game of WtE
plants, with gate fee as their strategies. Such a game has peculiar properties, wherein
maximizing a player’s payoff leads to a bilevel programming problem between one
WtE plant and waste producers. However, these instances of bilevel optimization
cannot be solved in polynomial time. After the extensive investigation of the bilevel
optimization methods, the novel heuristic approach to solve the considered bilevel
problem has been proposed. The approach considers that a simple iterative update of
the lower-level linear problem solution provides sufficiently reliable estimates of waste
flows, concerning which the optimization on the upper level is performed. Algorithm
performance has been validated via testing and exemplary case study: it has been
shown that it provides fast solutions to the considered problem and produces optimal
solutions in approximately 60% of artificial scenarios and in nearly 85% of realistic
cases. The research has also filled the gap in the current game-theoretic literature
since the solution of the NP-hard optimization problem is only an instrument to find
the NE in the WtE plants’ network. Combined with the BRD algorithm, the heuristic
enabled the search for NE under the assumption of continuous strategy sets. This
approach should provide more realistic insight into the reaction of other WtE plants
to changes in gate fees. Thus, the estimate of optimal waste flows and gate fees in the
WM network provides more reliable input to decision-makers. The proposed method
can be potentially applied to assess the feasibility of the investments in new WtE
plants. In particular, the exemplary problem motivated by the Czech Republic data
demonstrated how the approach could be applied in practice to design the capacity
of the WtE plant. The optimal capacity of the facility, which is being planned in
one of the regions, was proposed with respect to the analogous projects and actual
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waste production in the Czech Republic. The found stable gate fee outcomes exhibit
economically reasonable behavior of waste treatment market participants, verifying
that the developed tool can be used to simulate the market environment for the
WtE facility. While solving the exemplary problem, the hypothesis about the non-
existence of the NE in the considered game has been proposed. The existence of the
NE has been studied for the whole class of the originally introduced price-setting
games. Since the classical NE concept does not exist for the pessimistic setting,
the author has proposed the modified concept of 𝛿-NE. Existence of the 𝛿-NE under
different assumptions put on capacities and transportation costs has been studied.

The waste producer’s cost reduction game has been defined to suggested the most
suitable municipal unions for adaptation to new waste treatment legislative. The
strong connection between the studied theoretical concepts and the real-world waste
treatment problem has been showed. The cohesivity and balancedness of the studied
class of games has been proven. Moreover, the easily verifiable necessary and suffi-
cient condition of additivity has been established. The practical implications of the
game properties has been discussed. The related research has provided concepts and
instruments to study the formation of coalitions and distribution of costs for general
TU-game with numerous players. The proposed method handles distributed coali-
tion formation via merge and split rules under utilitarian order relation. In order to
reasonably implement merge and split rules into the considered game, a cooperation
costs model has been introduced. It has helped to achieve a more realistic outcome,
which considers the possible suboptimality of the grand coalition and nonlinearly
growing costs for creating a sustainable coalition of large number of players. The
penalization percent has been used as the main instrument through which uniform
coalition structure can be obtained and computational complexity can be retained
at the desired level. The distribution of costs for the resulting coalition structure
has been suggested on the basis of sampling Shapley value and the point of the core.
Real WM data for the Czech Republic and distributed coalition formation between
47 micro-regions have been analyzed. After the application of the presented method,
slightly less than half of micro-regions were engaged into some coalition under re-
sulting coalition structure and their saves were varying from around 2% up to 8%
compared to non-cooperative case. The estimated costs have provided an insight into
how cooperation might affect the municipal budgets under transition from landfilling
to WtE technology. The resulting coalitions can be viewed as a potential sugges-
tion of which municipal unions should be formed. The case study data revealed that
micro-regions possessing their own WtE infrastructure can substantially lower their
total waste treatment costs via renouncing the capacities to other participants of the
coalition. Brief sensitivity analysis has been performed, to assess impact of changes
in waste production of the micro-regions (being the main source of the model variabil-
ity) on the resulting costs of municipalities. The results demonstrated, that, when it
is profitable for a municipality to cooperate, it tends to do so in majority of scenarios.
Regarding the future research, we establish four possible directions:

• there is an opportunity to embed reconsideration of the waste flows with respect
to capacities constraint into the heuristics from section 4.1. to improve the
performance of the method;
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• the detailed study of the possible generalization of Theorem 4.1.8 for arbitrary
price-setting game;

• the estimation of the nucleolus for the waste producer’s cost reduction game

• an embedment of waste collection within the established municipal unions into
the waste producer’s cost reduction game.

To summarize the whole work:

• the new price-setting approach, combining bilevel optimization techniques and
GT, should help to ensure efficient and financially sustainable waste energy
recovery;

• the presented coalition formation approach has a potential to serve as a basis for
design of tariffs for different public services or for design of unions in arbitrary
cost minimization problem, where cooperation between subjects is possible.
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