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Abstract 
Game theory handles tasks such as cooperation, competition, and self-regulation in 
the environment, where numerous agents wi th conflicting goals are involved. These 
conflicts of interest are extremely common, when dealing wi th environmental sustain-
ability and circular economy. This P h . D . thesis is devoted to applications of game 
theory in waste management, with an emphasis on Waste-to-Energy treatment of non-
recyclable waste. After an introduction, the fundamental background of game theory 
is summarized, providing an overview of the current state of knowledge. Then, recent 
applications of game-theoretic techniques in sustainability research are reviewed to 
emphasize the novelty of the work. In the end, the author's own contribution in the 
application of non-cooperative and cooperative games to problems of waste manage­
ment is presented. In particular, this P h . D . thesis is focused on the Waste-to-Energy 
plants' price-setting game and the waste producers' cost minimization game. The­
oretical properties of these games are studied in detail. The original algorithms for 
bilevel optimization problems and dynamic coalition formation are proposed to solve 
the considered games. The case studies' results demonstrate rational outcomes of the 
conflicts and prove that the proposed approaches to the considered waste manage­
ment problems are reasonable. 

Abstrakt 
Teorie her se zabývá temáty , jako je spolupráce , konkurence a seberegulace v prostředí , 
kde je zapojeno mnoho entit s p ro t ichůdnými cíly. Rozdílné zájmy jsou běžné při 
řešení envi ronmentá ln í udrži te lnost i a oběhového hospodářs tv í . Tato P h . D . práce je 
věnována apl ikacím teorie her v odpadovém hospodářs tv í s dů razem na energetické 
zpracování nerecyklovatelného odpadu. Po úvodu je shrnuto základní pozadí teorie 
her, k teré poskytuje přehled o současném stavu poznání . Po té jsou přezkoumány 
novodobé aplikace metod teorie her v problematice udrži te lnost i , aby se zdůrazni la 
ak tuá lnos t práce. V závěru je uveden vlas tn í př ínos autora v aplikaci nekoopera-
t ivních a koopera t ivních her v oblasti odpadového hospodářs tv í . Konkré tně je P h . D . 
práce zaměřena na hru o s tanovení cen zařízeními pro energetické využi t í o d p a d ů a 
hru o minimalizaci nák ladů p roducen tů odpadů . Jsou p o d r o b n ě s tudovány teoretické 
vlastnosti těchto her. Pro řešení uvažovaných her jsou navrženy originální algoritmy 
pro problémy dvouúrovňové optimalizace a vytváření dynamických koalic. Výsledky 
př ípadových s tudi í ukazují racionální vyús těn í konfliktů a dokazují , že navrhované 
př í s tupy k uvažovaným p rob lémům odpadového hospodářs tv í jsou rozumné. 
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Chapter 1 

Introduction 

According to [91], game theory (GT) focuses on mathematical models of complex 
interactions among rational participants of the formalized conflict. G T enables the 
description of the natural and logical development of such conflicts. It anticipates pos­
sible outcomes of situations in which decision-makers with different goals are involved 
and can affect each other [85]. Among other applications, it can imitate rationality 
and optimize arbitrary complex engineering systems, where different system parts are 
considered to be players performing various, often conflicting, tasks. G T has become 
an essential framework in the past years, since the number of applications involves 
multiple users, where disagreements between them are incredibly likely or even un­
avoidable [81]. These disagreements are common to a wide range of disciplines such 
as economics, computer science, social sciences, or engineering. Among all these dis­
ciplines, this doctoral thesis is focused on sustainability research, circular economy 
( C E ) , and efficient green waste management ( W M ) . 

The structure of this doctoral thesis is the following. Initially, a general descrip­
tion of the sustainability concept and a discussion about the role of decision-making 
(DM) in sustainability research are given to promote G T as a suitable D M method 
within the area. Chapter 2 consists of an overview of the main G T concepts, their 
mathematical descriptions and properties. This section provides mathematical back­
ground, which is considered necessary in order to understand and assess current 
research trends. To highlight the contribution of the work, the general review of 
the recent articles focused on the applications of G T in particular fields, requiring 
sustainable development, is presented in Chapter 3. Thus, the theoretical part of 
this work is followed by the results of the performed review. These results are thor­
oughly discussed in order to identify existing research gaps. After that, author's 
original research within G T in W M is demonstrated in Chapter 4. This last section 
demonstrates current applications of cooperative G T ( C G T ) and non-cooperative 
G T ( N G T ) approaches to W M problems. In particular, this application section is 
focused on the problems of a gate fee-setting in competitive environment and of a 
fair waste treatment costs distribution and union formation between municipalities in 
W M networks. To solve the former problem, the original algorithm based on bilevel 
programming techniques is proposed. Moreover, an existence of Nash equilibrium 
(NE) in this setting is studied from a theoretical point of view. The properties of the 
latter problem are extensively studied and the solution is proposed using the coalition 
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formation approach and the Shapley value estimate. The definitions and analyses of 
these practical problems are complemented by the necessary theoretical insights and 
reviews on the related topics. Functionality of both approaches is demonstrated on 
a realistic case study inspired by the W M situation in the Czech Republic. 

1.1 Potential of game theory in sustainability re­
search 

The rapid growth of the world population, urbanization, and industrialization are 
current trends, that lead to a substantial and continuous increase in consumption of 
goods, energy, and primary resources [82]. One of the most negative consequences 
of such trends is environmental degradation represented by water, air, and land pol­
lution, non-speaking of overwhelming greenhouse gases emissions having undeniable 
climate change impact [86]. Scarcity of available resources and irresponsible consump­
tion, contributing to the above-mentioned consequences, emphasize the importance of 
sustainability [79]. Sustainability is the ability of an economy to retain or improve the 
level of economic, environmental, and social resources over generations [73]. Thus, it 
is common to think of this concept as of something that considers and contributes to 
the three main aspects: economic, environmental, and social [6]. Among all these di­
mensions, this work is mainly focused on the economic consequences of environmental 
sustainability principles implemented into waste treatment policy. 

Environmental sustainability is a conservation concept that entails the provision 
of current and future generations with services and resources without endangering 
the health of ecosystems [57]. When embedding principles of environmental sus­
tainability into economic processes, conflicts are expected to arise, since different 
stakeholder groups have their own interests and priorities. A n integrative D M pro­
cess should enable to erase such problems and help to achieve cooperation between 
stakeholders [86]. 

1 . 1 . 1 Challenges of decision-making in environmental sus­
tainability 

Environmental sustainability problems are often characterized by the need for a prac­
tical D M solution [24]. However, D M within this context represents an eminent chal­
lenge, since numerous social, financial, and polit ical consequences of possible decisions 
have to be considered. Different tools have been developed and applied to face the 
above-described complications and many others arising during the D M processes. For 
example, D M methods, such as sensitivity analysis, stochastic analysis, and mathe­
matical programming, can serve as a helpful basis for finding sustainable solutions. 
Now, implications of recent articles dealing wi th D M in environmental sustainability 
wi thin different fields of research wi l l be summarized. 

The sustainability of hydropower development has been studied in [67] in detail. 
Whereas hydropower is one of the most spread renewable sources of energy, it might 
bring negative environmental (and consequently social) impacts. The authors con­
cluded, that commonly applied cost-benefit analysis does not fully take into account 
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the sustainability of the designed system. Thus, as it was already mentioned, the main 
challenge is to consider all possible dimensions impacted by the prepared project. As 
a possible solution, authors propose their own evaluation criteria system and multi-
criteria D M method. In [56], authors reviewed D M tools and methods for solid W M 
systems. It has been emphasized, that the main challenge is to capture cooperative 
incentives of stakeholders, as well as their possibly conflicting distinct objectives. The 
same problem has been pointed out in [79], where D M in the context of sustainable 
energy, water, and food nexus systems has been reviewed. The authors highlighted 
the difficulty of taking into account different sectors, agents, and uncertainties. The 
importance and challenges of D M in the management of the closed-loop supply chains 
( C L S C ) have been discussed in [98]. It has been pointed out, that the main challenge 
of D M in the general framework of supply-chain management is an interdependence 
of agents' decisions. According to the above-mentioned implications, it can be con­
cluded, that the most frequent difficulties occurring during the D M process, related 
to the environmental sustainability research, are the necessity to consider conflicting 
objectives, multiple assessment criteria, and interdependence between the involved 
agents. 

1 . 1 . 2 Game theory as a decision-making method 

Among all possible D M methods, this doctoral thesis proposal is focused on G T . The 
reasoning beneath such a choice is rather plain: G T is a relatively young (in the 
context of mathematics) framework and possibly can complement (or fully replace) 
some D M methods. In the above-mentioned work [79], the authors concluded, that 
currently applied tools cannot properly represent strategic interactions and trade-offs 
between stakeholders. Exact ly G T proves itself as an efficient and practical D M tool 
in a multi-stakeholder interdependent environment. The authors of [56] highlighted, 
that the G T approach can contribute to the sustainability of a solid W M system. 
Also, in [98], the authors concluded, that G T provides a quantitative insight into 
the allocation of costs and benefits within the C L S C . Thus, it can be concluded, 
that all the above-mentioned works agreed on G T potential in environmental sus­
tainability research. In particular, G T has a potential to serve as a powerful tool 
for researchers to overcome the occurring challenges and to explore topic of C E [17], 
being a substantial tool of sustainable development. 

1.2 Motivation and goals 
Well-planned W M is an essential part of C E , and behavioral modeling, describing 
the ever-changing decisions of the involved agents, is its key aspect [1]. This doctoral 
thesis is devoted to applications of C G T and N G T to W M problems, which are 
of critical importance for the modern society. A s it was already indicated in the 
beginning of this chapter, the considered problems are the non-cooperative gate fee 
setting game between waste treatment facilities and the municipalities' cooperative 
waste treatment cost game. 

The main goals of this doctoral thesis are: 
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• to present an overview of the G T theoretical concepts, wi th an emphasis on 
branches, solutions, and specific game types, which wi l l be used later in the 
application section; 

• to review recent applications of G T in environmental sustainability research 
within different fields in order to identify currently existing research gaps; 

• to formulate and analyze W M problems using C G T and N G T ; 

• to design algorithms for solving these problems; 

• to implement bilevel programming techniques into the price-setting problem. 
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Chapter 2 

Theoretical aspects of game theory 

B y the nature of a studied conflict and given set of rules from which possible in­
teractions are derived, G T has been traditionally divided into two branches: non-
cooperative and cooperative. N G T deals wi th strategic choices in settings, in which 
there are no binding agreements between players, and they are independently try­
ing to improve their own welfare [85]. Compared to N G T , C G T studies behavior of 
players in a situation, when they can improve their payoffs by merging into coalitions 
[88]. Evolutionary G T ( E G T ) , pioneered in [36], is another G T branch distinguished 
by many authors. Original biology-inspired E G T assumed that players could not 
choose a strategy, but only inherit it from ancestors or obtain it due to mutation 
[102]. Among these widely accepted branches, other, yet insufficiently developed, 
branches such as quantum G T [65] can be found. Due to nature of the thesis, we 
have mainly focused on deterministic games with fully rational players. The basic 
classification of G T , major game types, fundamental solution concepts, and related 
algorithms are depicted in Figure 2.1. Clearly, this classification cannot be viewed as 
complete, but might provide the reader with some introductory image of G T . Since 
the applied part of this doctoral thesis devotes itself to the application of the N G T 
and the C G T framework to W M , the theoretical concepts related to these branches 
of G T wi l l be discussed in the following sections. Concepts, which are not related 
to the case studies and underlying W M games, wi l l be briefly discussed for the pur­
pose of simple acquaintance or completely omitted in some cases. For example, in 
this chapter, we have omitted concept of fuzzy games, random games, or games wi th 
bounded rationality. 

2.1 Non-cooperative game theory 

Due to the historical development of G T [107], its non-cooperative branch is diverse 
and well-studied [91]. Ear ly applications of non-cooperative games can be found in 
classical studies of oligopoly competition by Cournot [21], Bertrand [9], or Stackelberg 
[108]. In the following subsection, possible approaches, solution algorithms, games 
types, and representations of N G T are summarized according to [85]. 
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Figure 2.1: Game theory basic structure 

2 . 1 . 1 Representation, types, properties 

Non-cooperative games can be represented in extensive form or normal form. Exten­
sive form employs a game tree as a representation tool, where nodes represent states 
of the game, whereas arcs represent possible moves. Alternatively, non-cooperative 
games in normal form consist of a list of strategies for the players together wi th their 
payoff functions defined for each strategy profile. Formally, normal form game can 
be defined as follows. 
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Definition (Normal form game). A non-cooperative game in normal form is defined 
as the structure G = (N, (Xi, 7ii)i£N), where N = {1, 2 , 3 , . . . , n} is the set of players, 
Xi, % G N, is the individual strategy set of i - th player, wi th element x« G Xi called 
strategy, and 7Tj : I L ; e A r X j —> M , % G N, is the payoff function of the z-th player. 
The joint strategy set wi l l be further denoted as XN := UieNXi, and its element 
x = (xi,..., xn) G XN is called a strategy profile. 

A particular case of normal form games are finite games, where the strategy sets 
of players have finite cardinality \Xi\ < oo ,Vi G N [39]. In some cases, finite games 
can be represented via matrix of payoffs. Non-cooperative games can be either static 
or dynamic. Static games takes place only once, and all players make decisions 
simultaneously [85]. The latter group can be divided into two classes: sequential 
and repeated games. In sequential games, agents play a game in turns, dividing it 
into smaller subgames [84]. A static game, occurring over many periods (possibly 
infinitely many), is called a repeated game [8]. Regarding the amount of the avail­
able information, non-cooperative games can be divided into games wi th perfect or 
imperfect information and complete or incomplete information [85]. Perfect informa­
tion means, that each player possesses all available information about every event, 
that has occurred during previous stages of the game. Complete information implies, 
that players' ut i l i ty functions, payoffs, and strategy sets are assumed to be common 
knowledge [72]. 

2 .1 . 2 Nash equilibrium 
The N E is a cornerstone of non-cooperative solutions [80]. The N E is a stable out­
come, in which no player has the intention to change his strategy, while other players 
keep theirs unchanged [85]. Its precise definition is following. 

Definition (Nash equilibrium). The N E is a strategy profile x* G XN, such that 

•Kjix^X*^) > 7Tj(Zj, £*_,-), V z G XN,Vj G N, 

where ( X J , X * •) stands for ( x * , z * _ 1 , Xj, x * + 1 , x * ) . 

Existence of N E is one of fundamental questions of G T . It is closely related to 
existence of a fixed point of a correspondence [39]. 

Definition (Correspondence and its properties). Let X C M n and Y C M m , where 
n,m G N . Then, a correspondence F from X to Y is a map F : X —> 2 y . We say, 
that a correspondence F is 

• non-empty-valued if Vx G X, F(x) is non-empty subset of Y; 

• closed-valued if Vx G X, F(x) is closed subset of Y; 

• convex-valued if Vx G X, F(x) is convex subset of Y; 

Now, we generalize notion of continuity for correspondences. 

Definition (Upper and lower hemicontinuity). A correspondence F 
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• is upper hemicontinuous if, for each sequence {xk} C X converging to x G X 
and each open set Y* C F , such that F(x) C F * , there is fco G A/" such that, 
for each k > k0, F(xk) C F * . 

• is lower hemicontinuous if, for each sequence {x^} C X converging to i e I 
and each open set Y* C F , such that fl Y* = 0, there is k0 G A7" such that, 
for each k > k0, F(xk) H F * = 0. 

In particular, we focus on the best-response correspondences of players. 

Definition (Best-response correspondence). Let G = ( X , ( X j , 7TJ)JGJV) be a normal-
form game. Then, we define best-response correspondence Bj : X _ j —> 2Xj, where 
X_j := I l j g ^ j ^ X j wi th x_j G X _ j , as 

BAx-j) = & e x i : Kj(xj,x-j) > -/(•''./••'' . / ) - v - r / e -Xj}-

Clearly, best-response correspondences do not have to be well-defined. We also define 
B : XN - ) • 2 X j v for each x G X ^ , as := r i j G A r-Bj(x_i) . 

Then, to establish the so-called Nash theorem, which states sufficient conditions 
for N E existence, we introduce Kakutan i fixed-point theorem. The formulations of 
the two following theorems and the quasi-concavity definition are taken form [39]. 

Theorem 2.1.1 (Kakutani fixed-point theorem). Let X C Rn be a nonempty, con­
vex, and compact set. Let F : X —> X be an upper hemicontinuous, non-empty-valued, 
closed-valued, and convex-valued correspondence. Then, F has a fixed-point. 

Proof. Proof can be found in [39]. • 

A t last, the property of quasi-concavity has to be introduced. 

Definition (Quasi-concavity). Let m G N and X C W71 be a convex set. A function 
/ : X —> K. is quasi-concave if, for each r G M , the set {x G X : f(x) > r} is convex. 

The main point of the Nash theorem is that in certain situations underlying best-
response correspondences fulfill assumptions of Kakutan i fixed-point theorem. 

Theorem 2.1.2 (Nash theorem). Let G = (AT, ( X j , 7Ti)iGjv) be a normal-form game 
such that, for each i G N, 

• X j is a nonempty, convex, and compact subset of Rmi for some nii G N ; 

• 7Tj is continuous; 

• For each x_i, 7TJ(XJ, •) is quasi-concave on X j . 

Then, the game G has NE. 

Proof. Proof can be found in [39]. • 
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It can be seen, that this theorem cannot be applied to games with discontinuous 
payoff functions or non-convex strategy sets, which are quite common when dealing 
wi th practical problems. Another substantial problem is that this theorem does not 
discuss uniqueness of the N E . Indeed, it can be pointed out, that possible existence 
of multiple N E s , as well as non-existence of the N E , might dramatically complicate 
prediction of the outcome. In such situations, uti l ization of the refined or generalized 
solution concepts might be useful. One of the main such concepts is mixed N E . 

Un t i l now, we were discussing only so-called pure strategies, where players choose 
only one particular strategy. However, the concept of mixed strategy assumes that 
player might plays strategies randomly. When working wi th mixed strategies, player 
i G N does not choose strategy xiy but some probability distribution Sj over the 
strategy set JQ. Now, a mixed extension of the normal form game wi l l be formally 
introduced according to [39]. 

Definition (Mixed extension). Let G = (N, (Xi, 7Tj)jeAr) be a finite game. The mixed 
extension E(G) := (N, (Si, iti)^) of G, is the strategic game with: 

• St := {Si G [0, l}Xi : \{xi G Xt : Sifa) > 0}| < oo and Ex-ev- si(xi) = e 

N, 

• SN '•= ^-i&NSi] 

• s(x) := S i (x i ) • ... • sn(xn), for each s G SN; 

Then, for a finite game G, the following theorem holds. 

Theorem 2.1.3 (Existence of equilibrium in mixed games). Let G = (N, (Xi: fti)^) 
be a finite game. Then, the mixed extension E(G) := (TV, (Si, 7Tj)jGAr) of G has NE. 

Proof. Existence of N E for E(G) follows directly from the Nash theorem [39]. • 

One of the most popular algorithms for finding the N E in normal form games 
(except for direct extensive search in finite games) are best-response dynamics ( B R D ) 
[71] and implementation of strategy domination [76]. The former algorithm represents 
a process, during which each player iteratively plays his/her best response to actual 
rivals' strategy profile. The main idea of the algorithm is natural: a process starts 
at a given point and at each iteration player chooses a strategy from his or her best-
response correspondence. The new starting strategy profile for the next player is 
obtained from a chosen strategy of the previous player. If the algorithm converges 
to some strategy profile, then this strategy profile is the N E . The main disadvantage 
of this algorithm is the fact that it can get stuck in a cycle. Moreover, in some 
cases, finding a Bj(x_j) might be a challenging task. Figure 2.2 explains the main 
principles of the algorithm. Before we proceed to the strategy domination approach, 
some important aspects of the B R D process should be discussed, since this algorithm 
wi l l play a major role wi th respect to subject of the P h . D . thesis. 
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Figure 2.2: Sketch of best-response dynamics algorithm 

Properties of best-response dynamics. Unfortunately, there is no general re­
sults on convergence of B R D . It has been proven, that for certain types of games, 
such as potential [75] or aggregative games [25], convergence is assured. However, 
these games assume that players' ut i l i ty functions have some common denominator or 
their best-response correspondences can be jointly described by one general function. 
Therefore, to cover «complementary» class of games, literature also focuses on the 
study of the so-called uncoupled B R D processes, where players payoff/responses do 
not depend on payoffs of the other players (or they cannot be directly incorporated 
into 7Tj due to lack of knowledge). Thus, player % can choose best response only based 
on available joint strategy profile x and properties of 7Tj. In case B R D is uncoupled, 
its convergence cannot be guaranteed. In fact, even if we modify original uncoupled 
B R D , general uncoupled dynamics which can guarantee convergence to N E ceases to 
exist [45]. From Figure 2.2, it is also not clear in which order players make their deci­
sions. The order in which players update their actions is called playing sequence. In 
[49], it has been demonstrated, that, compared to fixed cyclic order, random playing 
sequence (using uniform distribution over N) converges to a pure N E (if it exists) 
in almost all games. O n the contrary, the probability of finding pure N E using fixed 
playing sequence goes to 0 wi th increasing \N\ or /and \Xi\,i G N. Thus, Figure 2.2 
does not demonstrate the particular approach, but rather presents a possible mix of 
both playing sequences. During every inner cycle a new player has to take turn, but 
there is no fixed strict ordering. Convergence speed also dramatically depends on 
properties of the underlying game. For example, [27] have shown that in potential 
games fixed cyclic ordering is the fastest possible option. Simulation results pre­
sented in [49] demonstrate that the speed of convergence in generic games is slower 
for random playing sequences. In general, if we focus on uncoupled B R D processes, 
the speed of convergence is at least exponential function of \N\ [46]. 

The idea of the strategy domination algorithm dwells in the iterative removal of 
dominated strategies. The strategy dominance relation can be defined as follows [76]. 

Definition (Strategy dominance). A strategy x] G Xj is dominated by a strategy 
x) G Xj iff 

and 
3x-j G X_j : TTjix^x.j) > Trj(x),x-j). 
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In the first step, all the dominated strategies of the first player are removed, and his 
or her strategy set is reduced to a set of undominated strategies. In the second step, 
the same approach is applied for the second player using the new reduced strategy 
set of the first player and so forth. If such an algorithm leads to a singleton, then 
this strategy profile is N E . 

2.2 Cooperative game theory 
In general, a coalitional or cooperative game is uniquely defined by pair (JV, v), where 
N is a set of players and v is a coalition value function, that assigns each coalition S C 
N, S 7̂  0, (a binding agreement of players to act as a single entity) its worth (the total 
ut i l i ty that can be obtained by S) in the game [88]. The definition of v determines 
the so-called form and properties of the game. In this work, we focus only on games 
wi th transferable uti l i ty ( T U ) , where coalition's worth has a monetary equivalent, 
that can be divided between participants of the coalition [88]. Thus, we can formally 
define a value function v of TU-game as a function v : 2N x A\ x ... x Ak where 
Ai, ...,Ak are possible additional spaces than can be considered. The conventionally 
added assumption i>(0) = 0 implies, that in absence of cooperation, no value is 
produced. The main principle of a TU-game is that, if we denote player's i & N 
payoff as xiy then any uti l i ty allocation (xi)itEs, such that 

< v(S), 
ies 

can be achieved by players in S, WS C TV [88]. The set of all so-called feasible payoff 
vectors of the game (N, v) [88] wi l l be denoted as 

X*(N,v) = {(Xi)ieN\ J > * < v(N)}. 

Further, we wi l l also use equivalent notation of payoff vectors x := (xi)i£N- A c ­
cording to the classification of coalitional games proposed in [91], there are three 
major distinct classes: 

• canonical coalitional games; 

• coalition formation games; 

• coalitional graph games. 

The first two classes wi l l be introduced in detail in the following subsections. Coali­
tional graph games are out of scope of this doctoral thesis. 

2.2 .1 Canonical coalitional games 
Canonical coalitional games are the most common type of the cooperative games. A l l 
the concepts presented in this subsection can be found in [88], [85] and [38]. There are 
three main properties, that coalitional game should possess in order to be classified 
as a canonical [91]: 
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Characteristic function form. The first one is that coalitional game has to be in 
characteristic form [88]. For many readers, this requirement could seem redundant, 
since numerous publications do not make difference between concept of a value func­
tion and concept of characteristic function. However, the main property of a game 
in characteristic form is that the value of coalition S depends solely on coalition 
members, without dependence on how TV \ S is structured. Thus, v : 2N —> K. and 
additional sets from the definition of the value function are all singletones. In some 
literature, authors refer to this property as to absence of externalities. 

Advantages of cooperation. The second property of canonical games is that 
cooperation is always prosperous (or at least guarantees the same uti l i ty) . This 
property corresponds to superadditivity of the value function [88], i.e. it should 
fulfill: 

v(SUT) > v(S) +v(T),VS,T C N,S CiT = 0. 

Thus, no player can do worse by cooperating, than acting non-cooperatively. Some­
times, it is sufficient to consider only weakly superadditive games fullfilling 

v(S U {i}) > v(S) + v({i}), Vz e N, VS C N \ {i}. 

UWS, T C N, SOT = 0, the equality holds instead of inequality in the superadditivity 
definition, then we say that the characteristic function is additive. The additivity 
assumption can be equivalently rewritten as: 

^2v{{i}) = v{S),VSQN. 
ies 

Games with additive characteristic function are called inessential. Inessentiality de­
rives from absence of a space to negotiate: payoff of a player % is uniquely determined 
by a value v({i}). Addit ive games are subclass of the so-called constant sum games 
for which 

v(S)+v(N\S) =v(N),VS C N, 

holds. Games with constant sum are often employed to describe poli t ical negotiations. 
It is peculiar, that the fact that a game is not essential does not imply it to be 
inessential. Gilles [38] defines essential game as a one, which fulfills 

-£v({i})<v(N). 
i&N 

Thus, essentiality means, that if all players cooperate they are able to produce non-
tr ivial amount of wealth, which can be distributed. The requirement of the superad­
dit ivi ty can be restrictive, and many authors require cohesiveness 

v(N) > J > ( S ) , VVeVN, 
s&v 

where VN is a set of all partitions of N, or the weaker property 

w(JV) > 5>({i}) . 
i&N 
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If the particular game (N, v) fails to satisfy superadditivity, it can be studied as 
(N, VSA) using superadditive cover of a characteristic function 

VSA(S) = max 
V&Vs 

It is important to note, that superadditivity is necessary only when working wi th 
the value function that has «positive connotation)): for example, if it describes prof­
its. However, when v(S) represents costs inflicted by S, the game is called a cost 
game and, in order to motivate players to cooperate, it should posses property of 
subadditivity: 

Such a game can alternatively be studied by its savings formulation. Assume a cost 
game (N,vcost), then a corresponding savings game (N,vsavings) can be defined as 

The last note regarding superadditive games is their connection to class of monotonie 
games, where 

The two properties are not equivalent, since there is no general relationship between 
these classes of games. However, if, for a superadditive game (N,v), v(S) > 0,WS C 
N, it is always monotonie. 

Distribution of wealth. T h i r d and the last main property of canonical coalitional 
games is that their main objectives are to study possibility of forming grand coalition 
N and its properties, and to design allocations of the value produced by grand coali­
t ion v(N) between players. The fact that the main interest is only focused on the 
study of the grand coalition can be explained by superaddtivity of canonical games. 
Due to this property, formation of the grand coalition is almost inevitable, since it is 
the most profitable possibility to all of the players. 

Thus, the two fundamental questions of canonical coalitional games are: which 
payoffs can guarantee stability of the grand coalition and which payoffs distribute 
v(N) between players in a "fair" way? These questions are addressed by a so-called 
solution concept. 

Solutions of coopertaive games 

In terms of C G T , a solution is defined as a function a : T = {(N,v)} —> 2X*(-N'v\i 

that assigns each game (N,v) a subset a(N,v) C X*(N, v) [88]. In the following 
paragraphs, the most well-known solutions of canonical coalitional games wi l l be 
defined and discussed. The less requiring solution is a set of preimputations, which 
can be defined as follows. 

v(SUT) <v(S)+v(T),VS,TCN,SnT = <b. 

v{S) < v(T),VS C T C TV. 
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Definition (Preimputation). A payoff vector x G X*(N, v) is a preimputation, i.e. 
x G PI(N,v), if it satisfies the condition of group rationality also known as Pareto 
optimality or efficiency 

^xi = v{N). 
i&N 

Thus, preimputations distribute wealth v(N) completely. However, such a dis­
tr ibution does not reflect any negotiation power of players. The set of imputations 
embeds the potential claims of the players in the most simple fashion: it does not 
distribute to a player an amount of wealth, which is less than he/she is able to ensure 
on his/her own. 

Definition (Imputation). A payoff vector x G PI(N,v) is an imputation, i.e. x G 
I(N,v), if it satisfies condition of individual rationality 

Xi > v({i}),Vi G N. 

For example, in inessential games there is always only one imputation: 

I(N,v) = (v({l}),...,v({n}). 

Imputations can be compared by a relation of domination [38]: imputation x domi­
nates imputation y through coalition S,S 7 ^ 0, iff 

Xi > yi,Vi G S, 

^2,Xi < v(S). 
ies 

Such relation is denoted as (x >s y)- We say, that imputation x dominates impu­
tation y, i.e. x > y, if there exists a coalition S such that x >s y- If for some 
x G I(N,v), $y, such that y > x, then we say that x is undominated. The domina­
tion relation leads us directly to the one of the most fundamental solution concepts 
in C G T : the core. The core C(N,v) can be described v ia the set of undominated 
imputations in two ways: 

1. x G C(N,v) 4 i G I(N,v) and x is undominated; 

2. For superadditive game (N,v), x G C(N,v) <^ x G I(N,v) and x is undomi­
nated. 

Alternatively, the Core can be defined as a set of imputations fulfilling coalitional 
rationality. 

Definition (Core). Core is a set 

C = {x\x G I(N,v), J2xi ^ v(S),VS C TV}. 
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Thus, core is a stable set of imputations, in which no group of players has an 
incentive to deviate and form a smaller coalition instead of N. The core is always well-
defined, but in general does not satisfy non-emptiness [88]: for example, constant-sum 
games have non-empty core iff they are inessential. In general, verification of a core 
non-emptiness is an NP-complete problem, since increase in number of subsets wi th 
respect to number of players \N\ cannot be bounded by a polynomial function. This 
fact naturally brings the question: for which games the core is non-empty and how 
do we efficiently verify its non-emptiness? 

To prove core non-emptiness, the linear programming techniques and duality are 
employed [11]. In particular, the idea of the proof lies in showing that solution of the 
following optimization problem 

ies 

s.t. ^^Xi > v(S),yS C N, (2.2) 
ies 

is v(N). This fact wi l l directly imply existence of Pareto optimal coaltitionally ra­
tional imputation and, as a result, C(N,v) ^ 0. To proceed further, notion of the 
characteristic vector As G W1 for S C N is necessary: 

As 
1, if i e S, 
0, otherwise. 

These characteristic vectors wi l l help us to formulate the so-called dual problem 
(2.1,2.2). In the following paragraph, the duality principles of linear programming 
are explained in accordance with [85]. 

Duality principle of linear programming. Assume m, n G N and the primal 
linear programming problem 

max '•./•• • 
Xj,j=l,...,n ' ' 

s.t. ^^dijXj < bi, i = l,...,m, 
3=1 

Xj > 0, j = 1, . . . ,n . 

Then, its dual problem can be defined as 

min hyi 
(=l,...,m ' ^ i=l 

•t. ^a^yi > c-j, j = 1, . . . ,n . 
rn 

S 

i=l 
Vi>0, 1 = 1, . . . ,m 

Then, for these problems the principles of weak and strong duality hold: 

17 



• Weak: For feasible x of primal problem and feasible y of dual problem 

E " = i CjXj < Y,T=i biVi h o l d s -

• Strong: If the primal and dual problems are both feasible, then there exist 
an optimum x of the primal problem and optimum y of its dual such that 

j=l cjxj ~ l^i=l "iVi-

Thus, according to the strong duality principle, the value of the previously intro­
duced optimization problem (2.1,2.2) equals to v(N) only if for all feasible vectors 8s 
of its dual problem 

max >^ SQV(S) 
SS,SCN ^ 

- SCN 

following relation 

s-t. ^2 ^s^s = ^N 

SCN 

8S > 0 , V 5 C N, 

v(N) > J2 Ssv(S) SCN 

holds. However, [11] and [97], were able to efficiently reduce the set of 8s for which 
this condition should be checked. They (independently) established the sufficient and 
necessary condition for a non-empty core using the concept of balanced collection. 

Definition (Balanced collection). A collection B C 2^ , 0 ^ 13, is called balanced if 
positive numbers 6~s, S E B, exist such that 

$s^s — ^N-
se-B 

The weights 8s, S G B, from the previous definition are called a system of balanced 
weights. Then, the weak form of the Bondareva-Shapley theorem states that a game 
has non-empty core iff 

v(N)>J2$sv(S) 
SGB 

for each balanced collection B and each system of balanced weights 8s, S G B. Games 
for which previous expression holds are called balanced. The strong form of the same 
theorem states that the same inequality has to be valid only for minimal balanced 
collections. These are balanced collections that do not contain a proper balanced 
subcollection or, equivalently, have a unique system of balancing weights. 

From the theoretical point of view, there exist another type of games, that always 
have a non-empty core: these are convex games [88]. Convex games are games for 
which the following inequality holds 

v(S U T ) + v(S n T ) > v(S) + v(T),VS,T C N, 

or, alternatively, convexity can be represented as 

v(T U {i}) - v(T) > v(SU {i}) -v(S),Vi G i V , V 5 C T C J V \ { j } . 
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Previous inequality states that the game is convex if and only if marginal contribution 
of each player to coalition is non-decreasing with respect to set-theoretic inclusion. 
In other words, each player has an incentive to join larger coalition because his 
possible payoff wi l l increase. Convexity can be also described as a "snow-ball effect". 
Convexity of the game implies its balancedness and as a result non-emptiness of the 
core. 

St i l l , a game might possibly have an empty core or, on the contrary, relatively 
large core, so it can lose its informativeness. Then, alternative solution concepts such 
as e-core can be employed [96]. 

Definition (e-core). For e e l , e-core is a set 

Ce (N,v) = {x\x G PI(N,v) and J ^ X i - V(S"> ~ e ^ S C N ^ 

ies 
Clearly, depending on the choice of the parameter e, e-core can be seen as a 

relaxation of the group rationality (e > 0) or as a more restrictive solution concept 
(e < 0). From the concept of e-core, the least-core can be deduced [96]. 
Definition (Least-core). Least-core of a game (N,v) is an intersection of all non­
empty e-cores 

LC(N, v) = n e e R : C . e # 0 c e . 

The least-core is a reasonable alternative to the core in case of an empty core. In 
the end of this subsection, we introduce a solution concept known as the Weber set, 
which is strongly related to the core since it is one of so-called core covers [38]. 

Definition (Core cover). Solution a(N,v) is a core cover if 

C(N,v) C <T(N,V) 

holds for every game (N,v). 

In this section, we focus solely on the definition of Weber set on 2^ . In general, 
Weber set can be defined on Q C 2N fulfilling some regularity properties described 
in [38]. 

Definition (Weber set on 2^) . Weber set on 2^ is defined as 

W(N,v) = conv{xa G W1 \ a is a permutation on N } , 

where conv denotes convex hull of a set, 

xf = v(Ri) - v(Ri \ {i}), 

and 
Ri = {«(1) , ...,a(j)}, where j G N such that a(j) = i. 

W i t h respect to W(N,v), convex games demonstrate noteworthy properties since 

C(N,v) = W(N,v) (N,v) is convex. 

A l l the above-mentioned solution concepts are defined as subsets of imputations 
wi th particular requirements on their elements. However, a proper mathematical 
definition of solution states that it is a function which assigns to every game a subset 
of feasible allocations of the game. Thus, a solution is not always a set, but can be 
just one allocation. 
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Solution as a single allocation 

The solution concepts, mentioned in the previous subsection, mostly suffer from the 
same disadvantages: they can be empty or, on the contrary, too large. These compli­
cations serve as a motivation for application of the solution concepts result of which 
yields a unique allocation vector. We have already pointed out some inconsistencies 
in literature regarding essentiality and inessentiality. There are also inconsistencies 
regarding the value concept. Gilles [38] defines value directly as a function 

0 : T = {(N,v)} -»• Rn 

without any further assumptions. However, in [88], it is stated that if solution a fulfills 
\a(N,v)\ = 1 for every (N,v) it only possesses the property of being single-valued. 
The authors establish further non-trivial properties for a single-valued solution to 
be called value. In fact, this problem does not have any major consequences, since 
these properties are fulfilled by all the single-valued solution concepts discussed in 
this subsection. 

Shapley value. One of the most popular single-valued solution concepts is the 
Shapley Value (Shapley defined it as a value of the game) [95]. The Shapley Value 
0 (<f>i wi l l denote payoff obtained by player % v ia the Shapley value) has been defined 
as the unique solution that satisfies the four axioms: 

. Efficiency: £ i e A r<f>i{N,v) = v{N); 

. Symmetry: v(S U {*}) = v(S U {j}), VS e 2N, i, j £ S, 0,(7V, v) = 0,(7V, v); 

. Dummy: v(S U {i}) = v(S), V S e 2 * i <£ S, &(JV, v) = 0 ; 

• Addi t iv i ty : u, v are characteristic functions =>• <f>(N, u + v) = <f>(N, u) + <f>(N, v), 
where u + v(S) := u(S) + v(S), C N. 

Efficiency makes Shapley value a preimputation. Symmetry says that if two play­
ers have the same contributions to each coalition, then their payoffs have to be the 
same. Dummy axiom states, that if player does not contribute to any coalition, his 
payoff should be zero. Addi t iv i ty connects values of different games and contribute 
to uniqueness of the Shapley value. Proof of uniqueness can be found in [88]. 

A t first, we demonstrate a way of computation of the Shapley value based on the 
unanimity games [38] and Harsanyi dividends [44]. 

Definition (Unanimity game). For a players set TV and any nonempty S C N, the 
value function of the corresponding unanimity game (TV, vs) is defined as 

J l , i f S C T , 
vs{T) = < 

10, otherwise. 

The set of unanimity games {(N,vs)\S C TV} forms a basis of all cooperative 
games (N,v) wi th the set of players TV [88]. Exact ly Harsanyi dividends As [44] are 
used to represent games in this basis: 

v(T)= Xsvs(T), 
SCN, 5^0 
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where 
\ s = V(S) - ^ A M -

McS 

Then, in terms of the Harsanyi dividends, the Shapley value can be expressed as 

SCN: j£5 1 1 

If we interpret a Harsanyi dividend as a real «added value» of coalition S wi th respect 
to its subsets, then the Shapley value equally distributes the generated wealth in 
accordance wi th these contributions. A n alternative and a more classical formulation 
of the Shapley value is 

* ( J M = E W m M S u , i } H ( S ) ) . 
SCiV\{i} I 

This formulation makes one great disadvantage of the Shapley value obvious: sum­
mation proceeds through all possible subsets of grand coalition and might lead to 
combinatorial explosion in case of TV wi th a large cardinality. The expression above 
provides another possible interpretation of the Shapley value. It assigns to each player 
his expected payoff in the following situation: players arrive randomly and each order 
has the equal probability, when player arrives he/she obtains his/her marginal con­
tribution to the coalition of the already arrived players. From such an interpretation, 
we can directly establish the probabilistic formulation of the Shapley value, which is 
directly connected to the Weber set [38] 

where (25AT is the collection of all permutations on TV wi th n\ = \<&N\- In this doctoral 
thesis, this formulation wi l l prove itself considerably useful, since it wi l l allow for 
estimation of the Shapley value in polynomial time eliminating potential problems 
wi th its computational complexity. Now, we wi l l discuss the relation between the 
Core, the Weber set and the Shapley value. It is important to note that the last 
formulation directly implies that the Shapley value is a center of gravity of the Weber 
set, which coincide wi th the core in the case of convex games. However, in general, 
the Shapley value does not have to be contained in the core. Moreover, the Shapley 
value might not be even an imputation, if the considered game is not superadditive. 

Nucleolus. The second most popular single-valued solution is the nucleolus [100]. 
The idea behind the nucleolus is finding the imputation, which makes the most un­
satisfied coalition as satisfied as possible. More specifically it is such an imputation, 
that lexicographically minimizes dissatisfactions of the coalitions measured by the 
excesses 

e(x,S) = v(S) - E x « -
ies 
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To provide a better image about excesses, it can be emphasized that 

x G I(N,v) => e(x, N) = 0, 

x G C{N,v) => e(x,S) < 0 , V S C N. 

Assume 8(x) G M2™ wi l l denote the vector wi th its elements being excesses of all 
coalitions arranged in non-increasing order, i.e. wi th elements 9k(x) = e(Sk,x),k = 
l , . . , 2 n , such that e(Sk,x) > e(Sk+i,x). Then, an imputation x G I(N,v) is lexico­
graphically smaller than y G I(N,v), i.e. 9{x) <i 9(y), iff 

3/ G N , 1 < / < 2™ : 6j(x) = 9j(y), V j < / and 6i{x) < 0,(y). 

We write 9{x) </ 9(y), in case 9{x) <i 9{y) or 9{x) = 9{y). Using these relation, the 
nucleolus can be defined as follows [100]. 

Definition (Nucleolus). Consider a game (N,v), such that I(N,v) ^ 0. Then, the 
nucleolus r\ of the game (TV, v) is 

r)(N,v) = x, s.t. x G I(N,v) and 9{x) <i 9{y),\/y G I(N,v). 

In fact, nucleolus can be defined on arbitrary subset of MP, not only on I(N,v) 
[100]. Later, we wi l l use this generalized definition of nucleolus on arbitrary set X: 

r](N,v,X) = {x\x G X and 9{x) <t 9(y),Vy G X}, 

with T)(N,V) = r) (N,v, I(N,v)). If X is compact, then nucleolus is non-empty, and 
if it is convex, then nucleolus is unique. Thus, solution r)(N,v) is unique, as an 
imputation it satisfies individual and group rationality, and additionally it satisfies 
symmetry and dummy axioms of the Shapley value [38]. Moreover, nucleolus always 
exists and if the core is not empty, it contains nucleolus. Nucleolus also belongs to 
every non-empty e-core, and, as a result, to the least core [100]. The computation 
of the nucleolus dwells in the sequential minimization of the excesses using linear 
programming techniques unti l unique solution is obtained. Unfortunately, this algo­
r i thm requires at most 2™ — 1 steps. Thus, analogically to the Shapley value, there is 
a problem wi th the computational complexity. Precise description of the algorithm 
can be found in [39]. 

The original definition of the nucleolus has been introduced using the so-called 
0-normalized games, for which v({i}) = 0, Vz G N [100]. The notion of a payoff vector 
(xi)i£N was then automatically assuming that Xi > 0,Vz G N, and ^2ieNXi = v(N) 
[100]. However, this approach can easily be generalized using concept of strategic 
equivalence presented in [88]. 

Definition. Games (TV, v) and (TV, w) are strategically equivalent if there 3a > 0 
and ((3i)iGN, such that 

w(S) = av{S) +^Pi,VS C N. 
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This relation is equivalence on the space of games with players set N. Thus, 
strategically equivalent games have the same properties and a solution of one game 
is a simple linear transformation of the analogical solution of the other game (if these 
properties and solutions preserve linear transformations). Clearly, every game (N,v) 
is strategically equivalent to a O-normalized game through the choice 

a = 1, pi = -v({i}),Vi G N. 

Thus, the main assumption of I(N, v) 7̂  0 remains natural. 

2.2.2 Coalition formation games 
Coali t ion formation games can be either in characteristic or parti t ion form [91]. In 
games in parti t ion form, the value of the coalition v(S, V) depends not only on partic­
ipants of coalition S, but in addition on the actual coalition structure V G VN, where 
VN is set of all partitions of players set TV [88]. Thus, the value of S depends on the 
cooperation between external players outside of S given by V. However, games wi th 
v : 2N x VN -> K. are significantly computationally complex and are out of scope 
of these P h . D . thesis. Coali t ion formation games are generally not superadditive, 
because cooperation can often bring additional costs implying that formation of the 
grand coalition is not always desirable and optimal. Their main objective is to study 
the final state of the game and describe the properties of the resulting structure. 
In addition, impact of possible changes in game environment on the game outcome 
and wealth distribution can be studied. In general, coalition formation games can be 
divided into two basic types: static and dynamic [91]. 

Static coalition formation games 

Static coalition formation games dwell in study of already imposed coalition structure, 
that can be predefined by some external factor. Such games can be uniquely defined 
by triple (N,v,V) [5]. This subclass is not dramatically distinct from canonical 
cooperative games and can be viewed as their superstructure. The concepts from 
previous section, can be preserved in static coalition formation games with suitable 
modifications. The major change is that we have to replace Pareto optimality wi th 
the so-called relative efficiency/rationality A l l the concepts presented in this section 
can be found in the original work [5]. 

Definition (Relative efficiency). The payoff vector x is relative efficient for the static 
coalition formation game (N,v,V) iff 

^Xi = v(S),VS e V. 
ies 

Then, we introduce the generalization of X*(N, v) of a canonical game for the 
static coalition formation game (N,v,V) [5]: 

X(N,v,V) = {x\ J2xi = v(S),VS G V}. 
ies 

Now, we can proceed to the study of the previously introduced solution concepts wi th 
respect to static coalition formation games. 
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Solutions of games with coalition structure. The main point of this discussion 
is to establish, which solution concepts possess so-called restriction property. This 
property dwells in fact, that in order to compute the solution of static coalition 
formation game, it is sufficient to compute its classical games analogy separately 
wi th respect to each coalition S G V [5]. Thus, this property can be formally defined 
as follows. 

Definition (Restriction property). Assume the solution of the coalition formation 
game 

a C F : TCF = {(N,v,V)} 2 ^ ™ . 

We say that a has a restriction property if 

aCF(N,v,V) = USePaCF(S,v\s, {S}) = USePa(S,v\s)MN,v,V) G TCF, 

where v\s denotes restriction of v onto set S G V. 

A t first, we focus on the coalition formation analogy of the Shapley value. 

Definition (Coalition formation Shapley value). There exist, unique single-valued 
solution <ftCF(N,v,V) that satisfies: 

. Relative efficiency: For all S eV, £ i G s ( />? F (N, v,V) = v(S); 

• Symmetry: For all permutations a G <3N such that a(S) = S,WS G V, the 
following expression holds 

J2<P?F(N,av,V)= <t>?F(N,v,V),VSCN, 

where av(S) = v(a(S)) and a(S) = G S}. 

. Additivity: <j)CF(N,v + w,V) = (j)CF(N,v,V) + (j)CF(N,w,V); 

. Dummy: If v(S U {i}) = v(S), C N, i <£ S, then 0 f F(N, v, V) = 0. 

It is important to note, that we have introduced the novel definition of symmetry, 
which is equivalent to the one already presented in the definition of the Shapley 
value, which describes the so-called equal treatment property [38]. A n expression for 
computation of <f>CF(N,v,V) is omitted, due to the following theorem. 

Theorem 2.2.1. Coalition formation Shapley value <ftCF has a restriction property. 

Proof. Proof can be found in [5]. • 

Thus, <f)CF(N, v, V) can be computed for each player % G S from set S G V, using 
the relation: 

tfF(N,v,V) = HSAs). 

Now, our attention wi l l be focused on nucleolus and core for static coalition forma­
tion games. It has been already emphasized, that nucleolus can be defined on an 
arbitrary set, therefore generalization of nucleolus for coalition formation games is 
straightforward [5]. 
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Definition (Nucleolus of coalition formation game). For static coalition formation 
game (N,v,P), nucleolus is defined as 

r]

CF(N,v,V) = r](N,v,I(N,v,V)); 

where I(N,v,V) = {x G X(N,v,V)\xi > v({i}),Vi G N}. 

Analogically, we can generalize the core as follows [5]. 

Definition (Core of coalition formation game). For static coalition formation game 
(N,v,V), core is defined as 

CCF{N,v,V) = {xe X(N,v,V)\J2xi > v(S),VS C N}. 
ies 

Unfortunately, following theorem [5] complicates situation wi th computation and 
study of these concepts within class of static coalition formation games. 

Theorem 2.2.2. Core CCF and nucleolus r]CF of coalition formation game do not 
have a restriction property. 

Proof. Counterexamples can be found in [5]. • 

Nevertheless, [5] were able to find some connection between game (N, v, V) and 
games played between players in S G V. For example, for static coalition formation 
game (N,v,V), the following relation holds 

x G CCF(N,v,V) => (x^s e CCF(S,v\s,{S}),VS G V. 

The practical implications of these theoretical findings can be summarized as 
follows. Among the Shapley value, the nucleolus and the core, only the former concept 
has some consistency wi th respect to coalition formation games: the Shapley value of 
sub-games on coalitions defined by parti t ion is the Shapley value of the whole coalition 
formation game. Thus, for the Shapley value, there is no question about which 
solution (^(f)fF(N,v,P))i&N or ^-s&v^s^ii^, v\s) has to be interpreted as correct and 
there is no need to modify computational process, which can be performed on a 
smaller coalitions instead of the grand one. Unfortunately, this does not hold for the 
nucleolus or the core. Whereas each point of the core (including the nucleolus) of 
the (N,v,V) is in the core of (S, v\s, {S}), this is not possible to directly use the 
core or the nucleolus of these sub-games to obtain these solutions for the whole game 
without modification of the value function. Therefore, to obtain the complete image 
of the game, all solutions has to be calculated separately, but their results might 
be contradictory. This ambiguity is one of the main drawbacks of static coalition 
formation approach employing the core or the nucleolus concepts. 

Dynamic coalition formation games of a distributed type 

Whereas static games study properties of the already given structure, dynamic games 
analyze the process of the formation of suitable coalition structure for the given game 
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and its stability and evolution in the face of the internal and external factors. In 
dynamic games, the main point is finding coalition formation that maximizes welfare 
of the players in a pre-defined sense. However, a framework of coalition formation 
games of dynamic type, is not so formalized, and, as a result, is a more diverse and 
application-specific branch [91]. There are two major distinct approaches: centralized 
and distributed. The centralized approach dwells in finding parti t ion of a set of 
players, which maximizes welfare, by iterating over all partitions of N. Such extensive 
search is generally NP-complete due to the fact, that number of partitions grows 
exponentially depending on the cardinality of N [93]. Thus, in many application-
oriented problems, study of coalition formation process in a distributed manner is 
preferred. Distributed coalition formation is based on the idea of the autonomy of 
players decision about joining a coalition. Considerations, established in [4], provide 
necessary concepts for the description of the general process of distributed coalition 
formation by the means of merges and splits. This approach is based on the three 
following concepts. 

Comparison relation. A t first, relation, which enables to compare collections of 
coalitions, has to be defined. For the sake of clarity, we define the collection of the 
coalitions, as a family C = { C i , . . . ,Ci} of mutually disjoint subsets of N. Recall , 
that parti t ion is a particular case of collection, for which L ) ' = 1 C j = N holds. Further, 
for C = {Ci,... ,Ci}, the notation U C wi l l stand for L ) ' = 1 C j . Collections A and B 
can be compared, iff UA = UB holds. Then, a comparison relation > can be defined 
as follows. 

Definition (Comparison relation). Comparison relation > is an irreflexive, transitive 
relation, which satisfies VA, B,C,D: UA = LiB, UC = LiD, (UA) n (UC) = 0, two 
following conditions of the monotonicity: 

A>B, C > D => AUC > BU D, 

A> B => AUC> BUC. 

Intuitive meaning of notation A > B is that A partitions some set in a way, that 
is preferred by elements of this set over B. A comparison relation > is semi-linear, if 
for all collections A, B : UA = UB, either A > B or B > A. In a framework of C G T , 
collections of coalitions can be compared by the mean of the value function of the 
game: for the collections A and B 

A> B v(A) > v(B), 

where for the collection A = {All..., Am}, v(A) = {v(Ai),..., v(Am)}. Then, we 
could define semi-linear comparison relations between sets v(A) = {v(Ai),..., v(Am)} 
and v(B) = {v(Bi),..., v(Bn)} of reals such as 

. uti l i tarian order: A\>utB ^ v(A) >ut v{B) & YZi v(Ai) > E H i v(Bi^ 

. Nash order: A > N a s h B v(A) > N a s h v{B) & Wp=lv(Ai) > W}=lv(Bi). 

The uti l i tarian order states, that collections of coalitions, that guarantee greater 
social welfare (total ut i l i ty) , are preferred by the players, whereas the Nash order 
states, that collections, which provide equal distributions, are preferred (note, that 
Nash order is reasonable only for non-negative values of v(S)). 
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Merge and split rules. Once a comparison order is defined, dynamic process of 
distributed coalition formation can be started through two possible rules on the set 
of partitions of the players set: 

. merge: { 7 1 , . . . , Tk} U R ^ M { u j = i ^ } U R, if {uJ= 1Tj} > { 7 \ , . . . , Tk}; 

. split: {U* = i7}} UR^s{Ti,...,Tk}UR, if {7\ , ..., Tk} > {uJ^T}}. 

In the above-described rules, { 7 \ , . . . ,7^} U i? is some partition of the players' set 
N, where R represents parti t ion of other players, who are not involved in any Tj, % = 
1 , . . . , k. For the comparison relation >, every iterative application of the merge and 
split rules terminates [4]. 

These theoretical rules can be explained as follows. Assume util i tarian order and 
coalition structure Co = {Si, S2, S3} U R, where Si, % — 1,2,3, are disjoint coalitions 
and R represents parti t ion of other players, who are not involved in any Si, % — 1, 2, 3. 
If v (Uf=1Si) > X)i=i v 0%)> then application of merge rule wi l l lead to a new coalition 
structure C\ = {Uf=1Si} U R. Analogically, if coalition structure Co = {Uf=1Si} U R 
is assumed and v (Uf=1Si) < Ylt=i v ( ^ ) ' then the result of the split rule wi l l be 
C\ = {Si,S2,S3} U R. Now, our attention can be focused on the two following 
questions:" under what conditions does different sequences of merge and split rules 
lead to the same outcome?" and "is this outcome unique?". 

Defection function. Important concept, used for checking stability and unique­
ness of the coalition formation outcome, is defection function T>, that assigns to each 
partition V G VN, some collections V(V) of the grand coalition. In other words, 
T>(V) consists of collections, that can be formed by players in N by leaving parti t ion 
V. The two most obvious ways of defining T> are T>c, which assigns to every parti­
t ion V the family of all collections in N, and T>v, which assigns to every parti t ion V 
the family VN- Then, for the given defection function T> and comparison relation > 
stability of a parti t ion V = { S i , S k } can be defined as follows. 

Definition. Part i t ion V is D-stable iff 

C[V] > C, V C G V(V), C[V] + c, 

where 

C[p] = {S1 n (uc), ...,skn (uc)} \ {0}. 

Thus, the ©-stabi l i ty means, that each collection C from T>(V) in the frame of 
partition V is «bet te r» compared to C. However, checking both T>c and T>p stabil­
ity types for large games through extensive search is computationally challenging. 
Whereas for the case of semi-linear comparison a P p -s table parti t ion always exists, 
the "Dc-partition does not need to exist even under this assumption. Moreover, they 
are not directly connected to process of merging and splitting: terminal parti t ion 
obtained by merge and split rules is not guaranteed to be VC- or Dp-stable. Due to 
these complications, another type of stability is applied. This is VHP type stability, 
where T>hv is a defection function, which assigns to each partition V the collection 
T>hp(V) consisting of all partitions, that can be obtained from V by performing ex­
actly one merge or split operation. "D/^-stable parti t ion can be found as an outcome 
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of iterating merge and split rules. Thus, it always exists. In [3], it is proven, that T e ­
stable parti t ion is unique "D^-stable and unique D p -stable parti t ion for the case of 
the uti l i tarian order. To summarize, whereas the mechanism of comparison relation 
buil t- in into merge and split rules enables to obtain some predictable outcome of the 
coalition formation process, defection function-based stability describes properties of 
such an outcome. 
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Chapter 3 

Review 

The main goal of this section is to provide a thorough overview of the recent pub­
lications about general applications of G T in sustainability research. Search for the 
articles has been performed via the Web of Science Core collection database using 
the keyword «game theory application)). Only articles in English published between 
2017 and 2020 (when this research has started) have been considered. This 3 years 
range has helped us to rationally limit the amount of the found articles. Articles wi th 
solely theoretically oriented research, or not related to sustainability research have 
been excluded from the review. A s a result, a complete review of 33 articles has been 
performed. The reviewed articles have been characterized according to G T branches, 
applied theoretical concepts, and other important factors in «General review.xlsx)) of 
Appendix. 

3.1 Review summary 
The main findings and implications of the performed review wi l l be summarized and 
discussed in this section. In particular, the following areas, where G T is applied to 
embed sustainability principles, have been studied: W M (related to 21.2% of the 
reviewed articles), supply chain management (33.3%), policy design (24.2%), water 
resource management (18.2%) and energetics (18.2%). 

Supply chain management and waste management. Fields of W M and of 
supply chain management are very similar, since practical W M is mainly based on 
optimal management of the supply chain and employs many techniques from oper­
ations research [7]. When managing waste or general supply chain, it is common, 
that there exist some pre-defined roles, that are assigned to players. These roles are 
frequently placed on the different level of hierarchy, such as in [112]. This is why 
Stackelberg games are of such popularity in these fields of research. The simplest 
Stackelberg model includes two entities, the leader and follower, and both entities 
are t rying to anticipate decision of the opponent. In fact, the Stackelberg game can 
be viewed as a particular case of a bilevel optimization problem [60]. Therefore, 
along wi th the backward induction, the Karush-Kuhn-Tucker ( K K T ) conditions are 
used to establish the N E in the Stackelberg games. Some of the reviewed articles 
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are focused on comparison of a centralized cooperation model and a non-cooperative 
model wi thin the supply chain or the W M network [37]. It is mainly considered, 
that the non-cooperative case is more insightful and realistic, than the mandatory 
cooperation. However, it is not realistic to completely neglect possibility of cooper­
ation. Appl icat ion of differential games, which bear continuous game process, has 
been demonstrated in [41]. It is a promising approach, that combines optimal control 
theory and G T . 

Policy design. In this area, it is important to study reaction [31] and process of 
adaptation [16] to newly implemented policies, wi th a focus on a stable outcome of 
such dynamic processes. This is a reason, why evolutionary games are most common 
in a field of policy design, since E G T provides an explicitly dynamical point of view 
missing from the traditional theory [94]. Moreover, it enables to assume limited ratio­
nality of involved parties. Consequently, the most popular solution concepts in policy 
design games are evolutionarily stable strategy (ESS) and replicator dynamics [94]. 
C G T can be potentially applied to design a fair distribution of emission reductions 
using its solution concepts [64]. 

Water resource management. Since irresponsible water consumption represents 
externalities for other users, cooperation in management of water resources is vi tal . 
Due to this fact, C G T is expectedly the most popular G T branch within this area of 
research. Moreover, it enables to define solutions of water management games, which 
reflect legislative specifics, as well as the nature of a water resource, and locations 
of users upstream and downstream of a river [105]. C G T also enables to distribute 
water cleaning costs in a fair way, which is a common problem in this field [14]. As 
in the area of policy design, when some polit ical or biological issues are involved, 
non-cooperative games in matrix form are applied [42]. The fuzzy coalitional games 
[87], where players take part in a coalition only to a certain extent, are also con­
sidered in this area [53]. The water resource management is the only field, where 
coalition formation games and graph games have been considered. Graph games [77] 
are applied to management of water [105], since the graph structure enables to in­
corporate geographical connections between subjects. The coalitional graph games 
also possess solution concepts, which can take into account role of the player in the 
network structure [50]. 

Energetics. Due to the generality of this field, it demonstrates a rather uniform 
application of the majority of G T concepts. In energetics, C G T enables to design 
a fair distribution of energy between users [68], optimal capacities of system parts 
[43] or reasonable allocations of energy costs [69]. Compared to other fields, it even 
employs solution concept of the Core [43]. When dealing wi th the energetical supply, 
Stackelberg games are applied [92], since again, the supplier and consumer are clearly 
defined roles for system participants. Energetics also demonstrates the application 
of classical normal form games, which are solved through N E using the derivatives of 
payoff functions [70]. 
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3.2 Findings and suggestions 
From the reviewed articles, it can be deduced, that G T can be used as a fully-right 
standalone D M method, as well as a complement to other D M methods. G T can 
be applied to design government policies, supply chains, resource allocations, and 
real, tangible engineering projects. Moreover, it can take into account uncertainties 
and probabilities of different types, including fuzzy sets, and serve as a basis for per­
forming sensitivity analysis. The review confirms, that G T is frequently applied to 
environmentally oriented research, but also reveals, that game-theoretic approaches 
require further improvement. Whi le future applications of N G T should embed models 
considering more complex leader-follower games and uncertainties, in CGT-re la ted 
research, more attention should be paid to game classes describing cooperation restric­
tions. Moreover, computational complexity makes applications of G T to instances 
wi th many players inconvenient. This problem represents a substantial research gap 
and a potential direction for further studies. Overcoming the computational issues, 
might considerably promote application of G T across different fields of research. The 
main findings of the review and the resulting implications can be summarized as 
follows. 

• Almost all reviewed articles, considering cooperative games, deal only wi th 
canonical coalitional games, ignoring other classes. There is an obvious absence 
of application-oriented research sufficiently employing coalition formation and 
coalitional graph games. 

• Applications of N G T dominate over other studied branches. This fact can be 
easily explained by diversity of its approaches, intuitive solution concepts, and 
relatively simple formalization of the game process. Thus, N E is expectedly the 
most eminent concept of G T . Due to supply chain management importance, 
backward induction (often accompanied by the K K T and bilevel programming) 
also plays a significant role in contemporary research. Whi le some instances of 
the Stackelberg games are well studied, instances with multiple leaders achiev­
ing mutual equilibrium represent a research gap. Naturally, replicator dynamics 
and the ESS are mentioned in all articles, where E G T is applied. The core and 
the Shapley value are also of great significance, but some of the cooperative 
instances are studied without particular wealth distribution suggestions. 

• Only slightly more than half (57%) of articles have considered real data in the 
performed case studies. Due to the applied nature of the performed review, it 
can be viewed as insufficient. Evidently, there are not enough applications of 
G T to real instances. 

• 75% of the articles consider either 2 or 3 players, while only 3 articles consider 
more than ten players. Therefore, there is insufficient application of G T to 
instances wi th a large number of agents. 
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3.3 Scope of the research 
The author has decided to focus on the application of G T to the problems of sustain­
able W M , wi th respect to the found research gaps. Since problems of environmental 
degradation and depletion of natural resources have become eminent challenges for 
the modern society, W M is a currently actively developing area of research, which 
aims to embed sustainability principles into the majority of the underlying processes. 
W M is closely connected to the concept of C E because one of their common goals 
is an effective treatment of solid waste. In particular, the European Union (EU) 
countries have recently adopted the C E Package ( C E P ) [18] to legislatively embed 
principles of C E and effective W M . C E P sets up a series of goals which dwell in a 
decrease of the amount of solid waste that is being landfilled and in an increase of 
its material and energy recovery. This package includes the requirement, that all E U 
member countries must recycle at least 60% of produced mixed solid waste ( M S W ) by 
2030 and 65% by the year 2035 [26]. According to the update of the above-described 
package, only 10% of the total M S W amount can be landfilled by the year 2035 [19]. 
These milestones gradually become part of member states' legislation, including pri­
oritized energy recovery of M S W in appropriate facilities. Such incentives require 
reliable strategic planning from all involved stakeholders: government, waste treat­
ment facilities managers and investors, W M companies, and municipalities. This fact 
makes study of sustainable W M networks crucial. 

Currently employed game-theoretic models in this area lack more sophisticated 
approaches, real data-based case studies, and are often limited to comparison of 
fully cooperative and non-cooperative cases, or to solution of simple matrix-form 
games. Thanks to cooperation on research projects wi th the Institute of Process 
Engineering, Faculty of Mechanical Engineering, Brno University of Technology, real 
data and operation conditions of W M networks, in the form of waste production, 
price levels, capacities and infrastructure, are available to experiment wi th designed 
approaches under conditions, that are maximally close to real ones. In the next 
chapter, it wi l l be also demonstrated, that the considered area of research possesses 
previously mentioned complex instances of Stackelberg games wi th multiple leaders, 
that have not been sufficiently studied. These games deal wi th setting of gate fee 
for waste treatment facilities and their optimal capacity design. Moreover, W M 
has a great potential in application of classes of cooperative games with cooperation 
restrictions. In particular, dynamic coalition formation games between municipalities 
are of great interest, since individual municipalities generally are not able to efficiently 
and economically dispose of the produced waste. The considered task also brings 
further challenges, such as development and employment of the approaches, that are 
able to handle large number of players. The proposed game theoretic approaches to 
the considered problems wi l l be validated through realistic case studies 1. 

xData and results of the case study from section 4.1, resp. 4.2, can be found in «Data l.xlsx», 
resp. «Data 2.xlsx», of Appendix. 
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Chapter 4 

Games in waste management 

The main issues of W M are monitoring and regulation of the collection, transporta­
tion, treatment, and disposal of waste [1]. Whereas the recyclable waste fits perfectly 
into the design of C E closed production cycles, the non-recyclable fraction of M S W 
cannot be utilized in the same way. However, the energy potential of non-recyclable 
waste can be restored through Waste-to-Energy (WtE) technology [59]. It is expected 
that W t E plants wi l l play an important role in waste treatment under C E P legislative 
changes [74]. Whereas in the past, incineration of M S W has been a source of sub­
stantial pollution, nowadays, due to the continuous development of W t E technology, 
W t E plants can serve as an environmentally friendly source of energy [110]. In [89], 
the W t E environmental impact has been thoroughly studied. The research concluded 
that W t E , as a combination of W M practice and electricity sources, can provide cli­
mate change benefits. However, if it is considered a renewable energy source solely, it 
cannot compete wi th other sources regarding greenhouse gas emissions. On the other 
side, it is more stable than wind power or solar energy [111]. Thus, the embedment of 
the W t E plants into cities' smart-energy grids might help to increase the sustainable 
production of energy and solve the problem of overwhelming energy demand expected 
in the near future [104]. 

4.1 Waste-to-energy plants price-setting 
Expectedly, the actual capacities of already existing waste treatment facilities can be 
insufficient for efficient waste energy recovery in the future. Therefore, new waste 
treatment facilities wi l l be needed [52]. The placement of a new W t E facility is 
strongly impacted by the existing infrastructure of the considered region and therefore 
does not suggest vast space for possible decisions. On the other side, the optimal 
capacity design brings numerous variants that should be assessed correctly. Such 
strategical decisions should be made wi th the help of suitable D M methods. Moreover, 
it should be supported by a reliable analysis of the current W M situation, since the 
accurate estimate of potential occupancy of capacity, and a realistic gate fee wi l l 
enable to correctly anticipate return on investment and the financial feasibility of 
the whole project. However, in most operational research models employed in W M 
[7], gate fees are assumed to be external fixed parameters that have been set or 
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optimized centrally. Such assumption neglects individual behaviors of W t E plants 
management and cannot describe a real conflict of interests in a waste treatment 
market. Therefore, there is an open problem of how to efficiently anticipate the gate 
fees, which wi l l realistically reflect the W M network setting. 

This part of the doctoral thesis deals wi th the problem of the W t E plans' optimal 
gate-fee setting in a competitive environment under l imited capacities. It focuses on 
an identification of the stable gate fee state in an already built W M network (loca­
tions, productions and capacities are already given) that can be used in strategical 
planning and should ensure efficient and financially sustainable waste energy recov­
ery. The problem of W t E plants' price-setting (setting of gate fee) wi l l be studied as a 
normal formal game of W t E plants with gate fee being their strategies. The primary 
purpose of the research is to find a gate fees N E such that none of W t E plants would 
like to change its gate fee. After a formal introduction of the problem and exten­
sive investigation of the bilevel optimization methods, the novel heuristic approach is 
proposed to solve an optimal price-setting problem for each Waste-to-Energy (WtE) 
plant separately. Combined wi th the B R D algorithm, it enables the search for N E of 
the considered game. The functionality of the proposed approach is validated by an 
exemplary problem of the D M process on the optimal capacity design of the newly 
planned W t E facility in the Czech Republic. A t the end, the existence of the specific 
N E generalization for the newly introduced class of price-setting games is studied. 

4 . 1 . 1 Problem statement 

The detailed formulation of the considered problem can be described as follows. Con­
sider the already built W M network. W t E plants wi th different capacities and waste 
producers (mainly cities or agglomerations) wi th different waste productions are pre­
sented in an area. Each W t E plant is interested in maximizing its income by setting 
the optimal gate fee, which wi l l be sufficiently high or /and wi l l attract waste pro­
ducers. W t E plant income is presented as a product of its gate fee and the total 
amount of waste sent to this W t E plant by waste producers. The main assumption 
is that landfilling of utilizable waste is substantially limited, according to [19]. This 
fact forces waste producers to treat all produced non-recyclable waste using the ser­
vices of W t E plants. Each waste producer's main interest is to reduce costs for waste 
treatment. These costs are represented as a product of the amount of waste sent to 
a particular W t E plant and the sum of gate fee and transportation costs. Another 
important assumption is that, whereas W t E plants located in an area are individually 
maximizing their income, waste producers are cooperatively minimizing their total 
waste treatment costs. The cooperating waste producers reflect the current trend 
when municipalities tend to create unions to lower their waste treatment costs [29]. 
The schematic explanation of the revenue maximization by a W t E plant is depicted 
in Figure 4.1, where the entities' objectives are highlighted in bold, and their con­
straints are highlighted in italics. The exchange of decision variables is depicted using 
arrows. 

From Figure 4.1, it can be seen that setting the optimal gate fee for a partic­
ular W t E plant corresponds to solving the bilevel optimization problem, with the 
W t E plant on the upper level of the hierarchy and waste producers as one entity 
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1. Decision about 
gate fee 

WtE plant: 

• Maximizes revenue 

Waste producers: 

Minimize total costs 
Treat all produced waste [ 
Cannot exceed capacities 

2. Decision about 
waste flows 

Figure 4.1: Revenue maximization problem 

on the lower level. Formally, bilevel optimization can be defined as a mathematical 
programming problem with constraints determined by another optimization problem. 

The conflict of W t E plants' interests wi l l certainly occur since each plant wi l l 
operate with its gate fee to obtain a greater part of the fixed total demand (total waste 
production of the whole region). Plants ' capacities and relative locations of W t E 
plants and waste producers define the market power of W t E plants, i.e., how great 
a gate fee W t E plant can set and still not a substantial loose part of demand. The 
considered problem can be seen as a classical normal form game, which is played on 
the upper hierarchy level between W t E plants, where optimizing the payoff function 
of a player leads to a bilevel programmming problem. It was decided to apply a 
non-cooperative approach to the price-setting problem; cooperation between W t E 
plants would mean the existence of illegal collusion about the gate fees level. The 
N E is assumed to be the searched stable outcome. One of the main complications 
is that setting the optimal price for one W t E plant is already an NP-hard bilevel 
programming problem [13]. Therefore, the established task comprehends two distinct 
challenging steps: 

• a solution of the price-setting bilevel programming problem with one W t E plant, 
maximizing its revenue on the upper level and cooperating waste producers, 
minimizing their total costs on the lower level; 

• a determination of the N E of the price-setting normal form game between W t E 
plants. 

Now, the mathematical formalization of the considered problem wi l l be given. 

4 . 1 . 2 Mode l and game 
Let TV = { l , . . . , n } be a set of W t E plants; w^,..., wc

n denotes their capacities 
and C f , . . . , denotes their strategy sets (sets of possible gate fees) wi th an element 
c9j G Cj, j G N. The set of producers is M = { 1 , . . . , m}. Their waste productions are 
wf,..., wv

m. Transportation costs are given by the matrix [c* •], where c* • represents 
the cost of waste transportation from the producer % G M to the plant j G N. In the 
following expressions, Xij denotes the amount of waste sent by the producer % G M 
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to the W t E plant j G N in tonnes. For each W t E plant j G N, the payoff function 
7ij is defined as 

~,(<l O E ' K / -

where ( a ^ i e M j e i v e { ( x - ^ e M j e i v } , such that 

{K^iGMjeJv} = arg m m V J ] (c* • + c s ) x^-, (4.2) 

s.t.^Xij < Wj, V j G A , (4.3) 

J > M = W f , V * G M , (4.4) 

X i j > 0, Vz G M , V j G A . (4.5) 

The (x*j)i£M,j£N describe resulting non-negative (1.5) waste flows after cooperative 
minimization of total costs by cities (4.2) and the fact, that they have to dispose of 
all waste they produce (4.4) and cannot exceed capacities of W t E plants (4.3). The 
set {{x*j)ieM,jeN} is not necessarily a singleton. To prevent ambiguity, in this work, 
a risk-averse leader, who wants to create a financial cushion, is considered. Thus, 
the worst possible waste distribution scenario (x*j)i£M,jeN for the W t E plant wi l l 
be taken among all possible arguments of optima of the above-presented mathemat­
ical programming problem. To make the problem of waste producers feasible, it is 
necessary to assume J2ieN w\ > X]J £ M w j • B y now, two of three necessary elements 
of the normal form game of W t E plants have been established: the set of players 
N — { 1 , . . . , n} and their payoff functions 7Tj(cf,... , c * Q , j G N, have been defined. 
To thoroughly study the properties of the problem, the whole set of positive reals wi l l 
be considered as a strategy space of possible gate fees. Thus, the considered game 
can be represented as a triple G = (TV, (71J,CJ)J£N), where = (0, oo), V j G N. 

The above-defined payoff functions are not differentiable or continuous. A s a 
result, their derivatives cannot be described in order to analytically find the N E . 
Author 's first paper on this topic [28] has considered applying B R D to discrete sets 
of possible gate fees. Compared to the original work on this topic [83], the cardinality 
of the sets of possible gate fees for which equilibrium can be found was substantially 
enlarged. In [83], the NP-hard problem of setting the optimal price between one W t E 
plant and all waste producers has been solved by a simple combinatorial approach 
through simple iteration over all possible strategies. However, such an approach does 
not reflect reality, where W t E plants can choose from the continuous sets of gate 
fees. Then, an achieved equilibrium might seem artificial because players were not 
allowed to play optimal strategy and arbitrarily change it. This is the reason why we 
wi l l focus on bilevel programming methods in the next section: it wi l l enable us to 
consider continuous strategy spaces, find optima faster and better reflect reality. 

4 . 1 . 3 Bilevel programming 
Firstly, we wi l l analyze the max cs gs 7iy for an arbitrary j ' G N and for the given 

gate fees of rivals. This can be seen as an instance of bilevel bilinear programming, 
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where the W t E plant on the upper level maximizes its income by setting the optimal 
gate fee, whereas waste producers on the lower level minimize the sum of their waste 
treatment costs. This problem wi l l be further referred to as MRj>. This section is 
devoted to the proper inroduction of the bilevel programming and to the review of 
the bilevel programming research related to our problem. Also we wi l l discuss the 
common elements of particular instances of so-called general taxation problem ( G T P ) 
and of MRf. 

Theoretical background 

The framework of bilevel optimization involves convex, non-convex, and mixed-integer 
programming (MIP) and enables the model of hierarchical situations when the re­
sponse of lower level entities impacts the decisions of the upper level authority. Bilevel 
programming is NP-ha rd in general. Obviously, MRj> belongs to this class of mathe­
matical programming problems. Let F : W1 x Rm -»• R, G : Rn -»• Rq, / : M n x R m ^ 
R, g : Rn x Rm -»• Rp, and X C Rn, T C M m , are closed sets. Then, according to 
[23], general bilevel programming problem can be mathematically expressed as 

mm F(x,y), (4.6) 

s.t. G(x) < 0, (4.7) 

(x, y) G gph ip, (4.8) 

where gph ip :— {(x, y) G Rn x Rm \ y G ip(x)} is a graph of solution set mapping ip, 

ip{x) :={yeY(x)nT \ f{x,y)<<t>{x)}, 

with an optimal value function <f> 

<f>(x) := mm f(x,y), 

s.t. g(x,y) < 0, 

and a feasible set mapping Y 

Y(x) := {y | g(x,y) < 0}. 

It can be percived as a hierarchical problem, where leader pursues the objective 
of (4.6)-(4.8), t rying to anticipate reaction of the follower, who tries to solve 

mm f(x,y), 

s.t. g(x,y) < 0. 

However, this general definition of the bilevel programming problem is not precise, 
since ip(x) is not necessary a singleton, implying that x —> F(x,y) is not a function, 
but rather a point-to-set mapping. This fact causes the ambiguity in choice of a 
solution from {F(x,y) \ y G il>(x)} for a particular x. To overcome this problem, 
three conventional approaches may be applied: 
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1. Optimistic: Leader has a belief, that follower wi l l behave «friendly» and, in 
case of numerous lower level solutions, wi l l choose the solution, that is the best 
for the leader. This leads to the problem 

min 4>0(x), 

s.t. G(x) < 0, 

where <f>0(x) := mmye4>ix) F(x,y). 

2. Pessimistic: Leader works with the worst-case scenario, solving 

mm (j)p(x), 

s.t. G(x) < 0, 

where <f>p(x) := m a x ^ ^ ) F(x,y). 

3. Selection function approach: The leader is able to perfectly anticipate the 
reaction of the follower to each decision x, i.e. y(x) G ip{x) for all x. Then, this 
unique reaction can directly be transferred to the upper level problem (4.6)-
(4.8): 

min F (x, y(x)), 

s.t. G(x) < 0. 
Both previously introduced cases are particular instances of more generic selec­
tion function approach. 

A s we have already identeified, the pessimistic approach in the choice of (x*j)iGM,jGN 
from {{x*j)ieM,jeN} w i l l be employed. Thus, our pessimistic bilevel bilinear program­
ming problem MRj>, can be rewritten as 

max min z^cjxij' 

where 

4>(c9j>) '•= {{Xi,j)idM,jdN G Y n I / (c9

f, (Xij)i£M,jeN) < 0(4)}' 
0(4):= min / (c?,, {xitj)i&M,j&N) 

0 

s.t. ^^Xij = wf, Mi G M, 
jdN 

Y := {(xij)i£M,jeN I ^ Xjj = wf, Vz G M, and ^ Xjj < wc

p V j G N}, 

and 
/ ( 4 ' (^ j ) iGMj G Jv) := (c-j + 4 ) x i > 3-. 

A t the end of this theoretical section, some basic image of classical bilevel program­
ming solution methods wi l l be provided. 

38 



How to solve bilevel programming problems? The most classical way of solv­
ing the bilevel programming problems is v ia K K T conditions. In this paragraph, we 
introduce only the so-called classical K K T transformation [23]. Let us assume that 
T = Rm and Y(x) = {y \ g(x,y) < 0}. We additionaly assume, that g(x,y) is convex 
for a fixed x and 

3y : g(x,y) < 0 (Slater's regularity condition). 

Then, classical K K T conditions state, that y G ip(x) if and only if 

0 G dyf(x,y) + AT<9^(a:,|/), 

A > 0, 

^Tg(x,y) = 0, 

where dyf(x,y) denotes sub differential (set of all subgradients) of function f(x,y) 
for a fixed x. Thus, the originally introduced bilevel programming problem can be 
rewritten using lower-level K K T conditions as following single-level problem 

min F(x, y) 
x,y 

G(x) < 0 

0 G dyf(x,y) + ^dygix^), 

\>0,g(x,y)<0,\Tg(x,y)=0, 

x e x . 

Clearly, newly introduced dual variables A bring complications, that the origi­
nal formulation of the bilevel problem and its classical K K T transformation are not 
completely equivalent. Therefore, it is important to establish relationship between 
solution of original bilevel problem and its K K T transformation. If we denote 

A ( x , y ) := {A > 0 | 0 G dyf(x,y) + XTdyg(x,y), XTg(x,y) = 0}, 

then we have the two following theorems [23], specifying the relationship between 
solutions of both problems. 

Theorem 4.1.1. Let the lower-level problem be a convex optimization problem and 
assume that Slater's condition is satisfied for all x G X with ip(x) ^ 0. A feasible 
point (x,y) of the original bilevel probelm is a local optimal solution of this problem iff 
(x, y, A) is a local optimal solution of KKT transformed problem for each A G A(x,y). 

Proof. Proof can be found in [22]. • 

Theorem 4.1.2. Let (x,y, A) be a global optimal solution of KKT transformed prob­
lem and assume f(x,y),gi(x,y), are convex for every fixed x G X and that Slater's 
constraint qualification is satisfied for the lower-level problem for each x G X. Then, 
(x, y) is a global optimal solution of the bilevel optimization problem. 
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Proof. Proof can be found in [22]. • 
Thus, under some additional assumptions, we can globally solve bilevel problem 

by solving its classical K K T transformation (what might also be a challenging task 
in practice). Particular methods of solving the above-presented problem are designed 
wi th respect to specific properties of the involved functions. Now, it is suitable to 
analyze already established approaches used in contemporary research dealing with 
the problems of pricing and bilevel optimization. 

Literature review on price-setting 

The product's pricing has always been and is st i l l the key question in economics, as 
it is one of the main aspects affecting a firm's revenue [32]. The problem of a firm 
that maximizes its revenue, under the assumption that customers are maximizing 
their ut i l i ty from the product, has been vastly studied in the literature. The work 
of Van Hoesel [106] confirmed the direct connection between the general Stackelberg 
pricing game and bilevel programming. This connection holds due to the hierarchical 
structure of the pricing problems. In fact, [106] has focused his study of pricing games 
on the network pricing problem ( N P P ) , being an instance of the G T P proposed in 
[62] (further «toll-set t ing problem)) wi l l be used as an equivalent for N P P ) . In G T P , 
the leader imposes taxes on commodities transported through the abstract network 
by a follower to maximize profit, whereas the follower minimizes transporting costs. 
Indeed, numerous pricing problems correspond to the G T P . This is why it was decided 
to split the review of the current state-of-art into two parts: the first one is focused 
on the price-setting problems presented in the literature, whereas the second part is 
devoted solely to the G T P and its instances. 

To ensure high relevance of the performed review, the main interest has been fo­
cused on the recent review papers on the bilevel optimization, from which articles 
focused on pricing and toll-setting have been extracted. In particular, the survey of 
mixed-integer bilevel approaches [58], a general review on classical bilevel optimiza­
tion wi th an emphasis on evolutionary approaches [101], article on bilevel intermodal 
pricing [103] and extensive review of pessimistic bilevel optimization approaches [66] 
have been considered. To complement the found papers, the search in the Scopus 
database using pairs (and triplets in case of numerous results) of the following key­
words has been performed: 

• general taxation problem; 

• highway network problem; 

• price setting; 

• bilevel optimization; 

• bilevel bilinear problem; 

• Stackelberg game. 
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Then, relevant papers have been divided into two groups mentioned above and detailly 
reviewed. The results of the review of general pricing problems can be found in Table 
1 of the author's paper [30]. 

The main feature of our problem are l imited capacities of W t E plants, which 
substantially complicate the solution. Only a few papers consider some analogy 
of these capacities. Anjost et al. [2] studied the model where only part of the 
lower level decision variables have an upper bound. Moreover, the integer nature of 
some variables has simplified single-level reformulation. The work [35] also assumes 
analogical constraints. St i l l , the problem formulation again contains integer variables, 
and the application specifics enable convenient linearization of bilinear terms during 
reformulation into a single-level problem. Feng et al. [33] also consider the analogy 
of capacitated arcs, but, compared to cooperating waste producers considered in 
this paper, the authors have assumed equilibrium on the lower level, which enabled 
reformulation into a mixed-integer quadratically constrained optimization problem. 
Zheng et al. [113] considered capacitated depots, but the capacity is given for each 
product separately, implying their mutual independence. 

Thus, the analogical problem has not been studied in the considered papers. A n ­
other peculiar finding is that the pessimistic approach considered in this paper is 
enforced using a simple numerical trick, which has been also applied in [10]. It dwells 
in the addition of an artificial small constant, which makes the leader's services more 
expensive than services of other suppliers. One of the most interesting papers is [99], 
where the closely related problem of product line pricing is studied. Whereas it has 
an analogical structure (though formulated as a single-level problem), it differs in the 
following important assumptions: 

• the leader does not assume the limited production capacities of the competitors 
(analogy of capacity of other W t E plants), which leads to maximally risk-averse 
behavior; 

• the customers are not forced to buy products, whereas waste producers (in fact, 
customers of the W t E sector) have to treat all produced waste; 

• integer nature of the customer-product relationship (each customer buys at 
most one product) simplifies the potential embedment of capacity constraints. 

Moreover, under the assumptions of this work, the heuristics proposed in [99] degen­
erates into an enumeration procedure. Regarding the search for equilibrium between 
leaders, Myklebust et al. [78] assumed the stationary prices of the competitors' prod­
ucts since changing competitors' prices would substantially complicate the problem. 
The same is valid for the work [99]. The problem of establishing the equilibrium 
between leaders has been considered only in one paper: Reisi et al. [90] studied the 
version of the equilibrium problem wi th equilibrium constraints. However, this ver­
sion has been simplified by an assumption that enabled a direct search for equilibria 
v ia the backward induction. Thus, from the perspective of the upper level normal 
form game, the lack of related research can be aslo confirmed. 

The first part of the review has confirmed the necessity to focus on the G T P : 
the majority of the papers mention N P P or G T P . For example, the envy-free pricing 
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studied in [34] is solved with the help of the N P P . Now, the G T P wi l l be shortly 
introduced. 

General taxation problem literature review 

Labbe et. al [62] have thoroughly studied theoretical properties of G T P . In this 
problem, the leader imposes taxes on a commodities transported through the abstract 
network by follower, maximizing his profit, while follower minimizes his costs. Now, 
assume that x and y are vectors of reals describing quantitative levels of taxed and 
untaxed types of activities, respectively. Vector T wi l l denote taxes imposed on the 
x. Let F and / denote the leader's and follower's objective functions, respectively. 
Then, the corresponding bilevel programming problem can be expressed as follows 

max F(x,y,T), 
TG<d,x,y 

mm f(x,y,T), 
x,y 

s.t.(x,y) e n , 

where 0 is set of feasible taxes and II is set of feasible activities. 
Such a model can describe multiple possible situations, when T can represent not 

only taxes, but also subsidies, while x and y can represent consumption or production 
levels. After describing this model, Labbe et. al [62] focus on the simplified bilevel 
bilinear model, which clearly has the same structure as MRj>: 

m a x T i , 
T,x,y 

s.t. TC > e, 

min(c + T)x + dy, 
x,y 

s.t. Ax + By > b, 

where C, d, and e are vectors of reals and A and B are real matrices of suitable 
dimensions (the original notation from [62] has been preserved). It is important to 
notice that c corresponds to the costs of the activities x before the tax were imposed. 
The description, provided in [62], illustrates that the leader's objective function is 
neither continuous nor convex, but it is piecewise linear and left continuous in the 
optimistic case. 

Under assumptions that II = {(x,y)\ Ax + By > b} is bounded and {y\y > b} 
is non-empty, the leader's objective function is bounded from above and the whole 
problem can be reformulated using K K T conitions as a single-level bilinear problem. 
However, such reformulation might bring extensive amount of the additional variables 
for the large instances complicating computation of the global optima for the off-the-
shelf solvers (their can stuck in numerous local optima). Alternatively, it can be 
reformulated as a linear bilevel programming problem, which, however, does not 
necessarily simplifies the task. 

Then, Labbe et. al [62] proceed to N P P (originally called a road pricing model), 
being one of the most common instances of the G T P . In N P P , an authority (leader) 
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tolls a specified arc of a multicommodity transportation network, while the remaining 
arcs bear only fixed costs, and the users (followers) of the network travel on the 
shortest path (minimum sum of init ial costs and tolls) between their relative origins 
and destinations [47]. Now, we wi l l formally introduce N P P . 

Assume a multicommodity network represented by a set of nodes A/", a set of arcs 
A U B, and a set of pairs {(ok,dk) : k G )C} for the commodities k G )C, associated 
wi th a demand rf. A subset A represent arcs, which are owned by authority and can 
be tolled by a ta, a G A, whereas B represent toll-free arcs. For a commodity k G fC 
and arc a G A U B, ck denotes the cost of travelling via a. The flow variables are 
denoted by xk, where a G A U B, and k G fC. Then, N P P can be formulated as, 

max y ^ y ^ ( 4 - 9 ) 
fce^C a&A 

s.t. ta > 0, Va G A (4.10) 

)fceK,ae.4uH G arg min ^ ( S (c« + ta) x« + Yl c*x* ) ' (4-U> 

S 

- 1 , if % = ok 

aei-n.4 aei _ni3 ae«+n^l aei+ni3 0, otherwise 
(4.12) 

G {0,1}, VA; E JC,Wa E A. (4.13) 

where i + , resp. z~, denotes arcs wi th % as its head, resp. tai l . This problem has been 
proven to be generally NP-hard , even for instances without congestion (capacitated 
arcs). Under assumptions, that no negative cost cycle can occur and there always 
exist toll-free path for each commodity, the N P P formulation can be reformuilated 
as an integer programming problem, since each origin-destination path wi l l carry 
either total demand or zero. Unfortunately, this assumption doesn't hold in case of 
the congested arcs, making linearization of terms problematic. Moreover, numerate 
Lagrange multipliers wi l l complicate the situation. 

For the case of the single tol l arc a, the solution can be find in polynomial time. 
Let 7fc(ta) denotes the shortest path cost for the pair (o fc, dk), k G /C, for a tol l ta. If 
we set nk = 7fc(oo) — 7^(0). Then, assuming ordering 

TTfci > 7Tfc2 > ••• > 7Tfc|K|, 

the optimal tol l ta can be computed as 

i* G arg max{7r f e i Y] rjkj : <rrki > 0}. 
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The review of papers focused on G T P and its instances can be found in Table 2 
of the author's paper [30]. The work of Bouhtou et al. [12] is similar to the stud­
ied problem, but does not consider the main complication of our model: capacity 
constraints. Due to omitted capacities, the authors were able to find the optimal so­
lution in polynomial time using the enumeration procedure. However, in the problem 
considered in this paper, the assumption of cooperating followers and capacitated 
arcs makes it hard to anticipate the behavior of followers and changes in waste flows. 
There are only two works wi th the same research subject: [54] and [55]. Evolutionary 
approaches presented in [109] and [40] are out of scope of this thesis. Kalashnikov et 
al. [54] considered four different heuristic approaches for toll-setting problems with 
congestion (capacitated arcs). In particular, the penalization function approach, 
quasi-Newton method, sharpest ascent method, and direct search via Nelder-Mead 
algorithm. These algorithms can handle the capacitated toll-setting problem: for 
example, for medium-sized problems, it takes from 7 up to 15 minutes for these al­
gorithms to find a solution. Compared to the papers mentioned above, MRy has a 
much simpler structure, that should be exploited when computing optimum: it has 
only one tolled arc controlled by j'. Moreover, there is no available data about the 
efficiency of computation process of the above-mentioned algorithms in the case of 
single tolled arc and numerous commodities. 

Heilporn et al. [47] focus on instances reflecting the structure of an actual tol l 
highway: the network is composed of a tol l path (the highway) and toll-free arcs 
l inking the origins, highway entrances, exits, and destinations. This problem is called 
the Highway N P P ( H N P P ) . It is assumed that all arcs controlled by an authority 
present a complete bipartite subgraph and for every commodity exists the toll-free 
path from its origin to its destination. The main distinction of H N P P from N P P , 
which makes it not a particular case of the N P P , but its variant, is the assumption that 
followers do not re-enter the highway. This is ensured via Triangle and Monotonicity 
inequalities. Clearly, the existence of one tolled arc (one-arc highway) axiomatically 
fulfills these assumptions. These properties enabled Heilporn et al. [47] to suggest 
a simple and efficient reformulation of the H N P P into M I P (solvable in polynomial 
time for a single tolled arc or a single commodity). This reformulation also enabled 
solving other pricing problems: it has been demonstrated that the envy-free pricing 
problem can be reduced to basic H N P P [34]. Moreover, the equivalence between 
H N P P and the product line pricing problem [99] has been shown in [48]. However, 
the main drawback of the work of Heilporn et al. are unconstrained arcs in a network. 

One of the main ideas implied by Kalashnikov et al. [54] is that approximation 
of derivatives enables capturing the followers' behavior. Kalashnikov et al. [55] have 
exploited the related idea of finding the maximum of the leader function v ia iterated 
sensitivity analysis performed on the lower level linear programming problem to find a 
suitable increase in the leader's function. This approach has been applied to indirectly 
model followers' behavior in the non-constrained arc and in the constrained case [55] , 
where equilibrium on the lower level has been considered to fairly solve the congestion 
problem. 

The solution idea. Exact ly the combination of the M I P reformulation proposed by 
Heilporn et al. [47] and of the idea analogical to [55] has inspired the development of 
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a new heuristic approach providing the near-optimal solution for MRf. Whereas, in 
the latter work, the follower's behavior has been anticipated via small perturbations 
in flows, in this work, a completely new iterative solution approach is presented. It 
is suggested to neglect the idea of approximation of objective function derivatives. 
The proposed approach captures the followers' behavior v ia iterative update of their 
optimal flows after the solution of the risk-averse revenue maximization problem of 
the leader: the iterative adjustment of the lower level solution enables to estimate 
the optimal price of the upper level. The whole leader problem is formulated based 
on M I P reformulation proposed by [47] wi th novel additions, enabling the embedding 
of leader capacities constraints and new inequalities reflecting his ability to raise gate 
fees by neglecting some of the flows. 

4 . 1 . 4 Finding the optimal gate fee 
In this section, the previously introduced idea of finding the solution wi l l be further 
formalized. In particular, the different formulations of H N P P , the establishment 
of the relation between H N P P and MRj>, and precise description of the proposed 
algorithm and commentary on it wi l l be introduced. 

Highway network pricing problem 

In this subsection, we focus on the particular instance of H N P P called Constrained 
Complete Tol l N P P . In the original work [47], Heilporn et al . have introduced three 
main versions of the problem: Basic N P P (additive tolls and forbidden re-entry), 
General Complete Tol l N P P (arbitrary non-additive tolls and complete tol l subgraph) 
and Constrained Complete Tol l N P P (analogical to General Complete Tol l N P P wi th 
additional real-life constraints). In order to introduce Constrained Complete Tol l 
N P P , new notation is necessary. For a commodity k E JC and a tol l arc a G A, ck 

denotes the cost of travel through the path ok —> t (a) —> h (a) —> dk before imposing 
tolls, where t (a) ,h (a) G M, are the entry (tail node of a) and exit (head node of a) 
of the highway, respectively [47]. The corresponding flow variable is denoted by xk. 
The travel cost on the toll-free path ok —> dk is denoted by ck

d corresponding flow 
variable xk

d. Using this notation, Triangle and Monotonicity constraints on network 
can be introduced. 

• Triangle constraints: 

ta < h + tc Va, b, c G A : 

t(a) = tip), h{b) = t(c), h(c) = h(a). 

• Monotonicity constraints: 

ta > h, Va,beA: t(a) = t(b) < h(a) = h{b) + 1 

or t(a) = t{b) - 1 < h(a) = h{b) 

or t(a) = t{b) > h(a) = hp) - 1 
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or t(a) = t(b) + 1 > h(a) = h(b), 

where nodes are represented by indices, which are ordered increasingly with 
respect to direction (see [47]). 

Then, the following bilevel formulation of the Constrained Complete Tol l N P P 
can be obtained 

s.t. ta > 0, Va e A, (4.15) 

K ^ o d ) a e A f e ^ e a r g min V ) £ (c* + ta) xk

a + ck

odxk

od, (4.16) 

S.t. J2Xa+Xod = 1 » V f c ^ ( 4 - 1 7 ) 
aS.4 

e {0,1}, Vfc e /C ,Va e A (4.18) 

The constraint (4.16) is the so-called shortest-path constraint. The constraint (4.17) 
on the lower level ensures that the commodity cannot be assigned to both tolled and 
toll-free paths simultaneously. Under the assumptions of the problem, the require­
ment of xk

a to be binary is redundant and it can be taken from the closed interval 
between zero and one. Introducing linearizng variables 

k i td, if commodity k travels through arc a, (4 19) 
0, otherwise. 

and replacing the lower-level problem wi th its K K T conditions, alternative for­
mulation can be obtained [47]. However, shortly after, it is demonstrated, that dual 
variables are redundant, when expressing lower level optimality in term of path flows. 
This fact enables us to obtain the following compact mixed-integer problem C C T N P P 

s.t. J2(ck

axk

a + Pka)+ck

od( 1 - J2X«) <ct + tb, VkeJC,Vbe A, (4.21) 
a£A V a£A / 

pk<Mkxk, \/k e /C, Va e A, (4.22) 

ta-pk

a<Na(l-xk

a),Vke JC, Va e A, (4.23) 

Pk < ta, Vfc e /C ,Va e A, (4.24) 

Pk > 0, V/c e /C ,Va G A, (4.25) 

xk e {0,1}, Vfc e /C, Va e A (4.26) 

^ > * < 1 , V f c e / C , (4.27) 
aS.4 
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where Mk = m a x { 0 , c ^ — ck} and 7Va = m a x ^ ^ M ^ . Constraints (4.21) ensure the 
optimality of the chosen path for each commodity k 6 /C, whereas constraints (4.22)-
(4.24) ensure that revenue variable pk fulfills the linearization assumption (4.19). 

This formulation coincides wi th the reformulation given in [99] to the problem 
of product line pricing. A s already mentioned, Heilporn et al. [48] have indicated a 
close relation between a generic N P P , C C T N P P , and the product line pricing problem. 
Labbe and V i o l i n [63] also highlighted the parallel between a product's pricing and a 
highway. Certainly, a similarity between the MRj> and the C C T N P P with the single 
tolled arc can be observed. The schematic representation of C C T N P P wi th the single 
tolled arc and three commodities is given in Figure 4.2. 

Figure 4.2: Structure of C C T N P P 

The «aim» of a commodity is to be transported with minimal costs. Analogically, 
a waste producer aims to treat waste wi th minimal costs. Whereas the owner of the 
arc sets the toll , the W t E plant sets the gate fee. Let toll t be identified wi th the 
gate fee c9-, of f, fC be identified wi th a set of waste producers M, price of untolled 
highway travel ck be identified with transportation costs c* •/, origins of commodities 
ok be identified wi th locations of waste producers, and alternative optimal route costs 
ck

d be identified wi th alternative optimal waste treatment option costs c* • + c|, and 
destinations dk be identified wi th successful treatment of waste. Further, for the sake 
of convenience, we wi l l use simplified notation TV \ {i} := N \ i. Then, MRj> can 
be represented analogically to C C T N P P as it is depicted in Figure 4.3 for the case 
f = {2}-

However, the most challenging difference between these problems is that C C T N P P 
does not involve capacity constraints on an arc (analogy of W t E plants capacities 
constraints). This fact brings many complications, since, due to l imited capacities, a 
waste producer can choose a non-optimal waste treatment possibility to reduce the 
costs of another waste producer and achieve a minimal sum of total costs. A s a result, 
the behavior of waste producers wi l l not correspond to the behavior of commodities. 
In order to proceed to heuristical solution of the problem, the exact solution of the 
modified problem should be established at first. 
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Figure 4.3: Sturcture of MR~ 

Risk-averse price-setting 

Consider the point of view of one of W t E plants j' and setting, in which only the fol­
lowing information is available to f: gate fees of other W t E plants, waste production 
for each waste producer in the region, and, obviously, the capacity of its own waste 
treatment facility. Whereas such a situation is improbable, exactly this assumption 
wi l l enable to model MRj> as C C T N P P and to embed capacity constraints into the 
problem afterward. Since capacities of other W t E plants are unknown, j' has to make 
a decision about its attitude to possible risks in this uncertain situation. If j' accepts 
the risk-averse behavior, it has to work wi th the worst possible scenario. Therefore, 
j' w i l l t ry to solve the MRj>, where the capacity constraint holds only for the W t E 
plant managed by itself. Further, this problem wi l l be denoted as MRj/RA. The fol­
lowing way of finding the solution to MRjiRA, which can be viewed as a three-step 
algorithm, is proposed. 

A t first, a linear programming problem, corresponding to minimization of the 
total costs by waste producers, assuming infinite capacities of W t E plants from N\f 
and absence of j' in the network, has to be solved. It can be formulated as LPj/RA: 

m m 
r:i,j,i&M,jGN\j> 

x 1,31 

j&N\f ieM 

(4.28) 

s.t. E 
j£N\j> 

X U"; Vi e M. (4.29) 

x > 0, Vi e M, Vj eN\ j'. 

Once the solution of the LPj/RA is obtained, take (x 

(4.30) 

ij )i£M,j£N\f € arg LPjiRA. 
Non-uniquness of LPj/RA solution does not have an impact on the following consid­
erations. Now, when the optimal waste flows from LPj/RA are known, the MRj/RA 
can be solved as C C T N P P with a single tol l arc in two steps. A relation between the 
role of variables and parameters in the C C T N P P and new formulation HNPj/RA is 
given by the following Table 4.1. 
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Table 4.1: Roles of variables in C C T N P P and HNPyRA 

C C T N P P A k E JC rf ft~\k' s~.k s~.k ,-yi fi -4-

fa ^od h°> 
HNPjiRA Single arc 

ieM,jeN\f 
Xi,j phj c\j, c\j + (fj qhj c9-. 

Thus, MR'jRA can be reformulated as a problem HNPj/RA 

max V V ./•;•{//- ' . (4.31) 

s-t. « , , < z i J ' + p " ) + (cl + cf) (1 - j'i) < c{f + cf,,Vt EM,VjeN\ f, (4.32) 

pl'j < M^q^, Vz G M , V j G TV \ j ' , (4.33) 

4 - p i J < TV (1 - g^') , Vz G M , V j G TV \ j ' , (4.34) 

p i j ' < 4 , Vz G M , V j G TV \ j ' , (4.35) 

> 0, Vz G M , V j G TV \ j ' , (4.36) 

^ e { 0 , l } , VieM,VjeN\j', (4.37) 

E E '̂<f ^ (4-38) 
i£M jGN\j> 

where M i j ' = max{0 ,c* J + 4 - c^-,}, Vz G M , V j G TV \ j ' , and TV = m a x M ! J . 
Newly imposed inequality (4.38) wi l l prevent the exceeding of the capacity of the 
W t E plant j ' . However, due to the integer nature of variables q1^, the W t E plant j ' 
can not completely engage its capacity, what is clearly possible in the original setting. 
To take into account this complication and solve the occurred problem, the following 
modification HNPjiRA FULL of HNPj/RA, which is based on its optimal solution 
((p*' i j\ q*,i,j)iaM,j&N\j', c*f) G arg HNPj/RA, has to be solved. 

s-t. (r'^q'-1 + p " ) + {c% + 4) (1 - q^) < c%, + 4 , Vz € M, V j € N \ f, (4.40) 

pij < M^q^, Vz G M , V j G TV \ j ' , (4.41) 

4 - p i j ' < TV ( l - , Vz G M , V j G TV \ j ' , (4.42) 

p i j < 4,, Vz G M, V j G TV \ j ' , (4.43) 

p i j ' > 0, Vz G M , V j G TV \ j ' , (4.44) 

g i j G {0,1}, Vz G M , V j G TV \ j ' , (4.45) 

E E <ld->--ii„„-< >ry. (4.46) 
i £ M jGN\j> 
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where 

4 ^ </'• (4.47) 

•>'7:\, if 7 

Inequality (4.46) wi l l enable uti l ization of the whole capacity, whereas (4.47) prevents 
the repetition of calculations already performed during the solution of HNPj/RA. 
Then, the optimal solution of HNPj/RA FULL is also assumed to be a solution to 
MRjiRA. It is important to note, that in case HNPj/RA is infeasible, it is sufficient 
to directly solve HNPj/RA FULL without constraint (4.47) and assume, that al l 
g*'*'7 are zeros. 

Suggested approach 

The setting described in the previous subsection enables to fully embed the considered 
problem of gate fee setting into the framework of H N P P . However, the previously 
mentioned risk-averse approach might impose too strong and unrealistic restrictions. 
For example, such an approach can accept the idea that all waste produced in the 
region can be sent to only one W t E plant, which is rather improbable for large-
scale cases. Thus, in this subsection, a heuristic algorithm for solving the original 
problem MRjt, which is based on the approach presented in the previous subsection, 
is proposed. This suggested algorithm embeds the capacities of other W t E plants 
into a D M process and can be described as follows. 

First step. Solve the problem LPj/WITHOUT and obtain information about the 
current state of the network without W t E plant f. 

min V V ( c * , + d ) x i J , (4.48) 
j£N\j'iGM 

s.t. ^ . r , . ; < / r ; . V / e . V \ / . (4.49) 

E Xij = wf, Vz G M, (4.50) 
j£N\j> 

Xij > 0, Vz e M, V j eN\f. (4.51) 

Second step. Set (x*'j )ieM,jeN\j' £ argLPj/WITHOUT. Solve the problem 
HNPj/RA and consequently HNPj/RA FULL. The first two steps provide the main 
body of the algorithm with the relevant estimate of the network starting state and the 
gate fee c^rt>9 e arg HNPj/RA FULL is the starting price in the iterative solution 
process. Currently, the capacity constraints hold for every W t E plant in the network. 
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T h i r d step. Solve the LPji, corresponding to the lower-level problem in the original 
bilevel formulation MRy wi th c9, = c^art'9, to obtain the current state of the network: 

„ J S « E E « , + 4 ) ^ . (4-52) 
jeN ieM 

s.t. Xij < wc

p V j e N, (4.53) 

J2xiJ = w h Vi e M , (4.54) 
i e v 

X i j > 0, Vz e M , V j e iV. (4.55) 

In each iteration, this step corrects the reactions of the follower to the newly chosen 
cstart,g^ g o i e a c j e r -^as a c t u a l information about current flows for the given gate 
fee. 

Fourth step. Set (x*'j )ieM,jeN\j' £ arg LP, , / . Solve the problem HNPj/CAP 

s.t. (<{,,</••> + p") + (cl + <*) (1 - q") < clr + 4 , Vz e M , V j e N \ f, (4.57) 

<,-'?ij" + Pi,f + L\l - qij') < c{f + c9,,Vi e M, (4.58) 

4 - piJ <N(1- qiJ) , Vz e M , V j e iV, (4.59) 

p i j < Mi,jqi,j, Vi e M , V j e iV, (4.60) 

< 4 , Vz e M , V j e iV, (4.61) 

> 0, Vz e M , V j e iV, (4.62) 

g i J e {0,1}, Vz e M , V j e N, (4.63) 

E E ^ ' ^ " / - (4-64) 
where 

M ^ ' = max {0, c% + 4 - c^ , } , Vz E M,\/j E N \ f, 

M^' = m a x { 0 , L i - 4 J , } , 

/-' = '••in, { < , + 4 I 4 . + 4 > c%, + <fH-«\. 

and N = m a x M ' , J . In case U is not defined due to emptiness of the underlying 
set, L% can be set as sufficiently large number. Consequently, solve modification 
HNPj/CAP FULL : modify flows analogous to the previous subsection and add a 
constraint (4.47) describing that the gate fee can only be lowered compared to the 
optimum found via HNPj/CAP. These two problems describe the adaptation of the 
leader to the current flows that have been changed in the previous step. Novel, newly 
introduced constraint (4.58) reflects the possible choice of abandoning some of the 
current non-zero waste flows to j' in order to increase the price and potentially obtain 
higher revenue. Set cf '9 e arg HNPj/CAP FULL. 
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Fifth step. Raise c°yt,a and solve LPy wi th c9-, = c°?*'9, unti l the first decrease in 

YlieMxi'j'i w n e r e (XTJ )i£M,jeN\j' £ arg LPy. This is a simple computational check 
in case the W t E plant f might still be the best waste treatment option due to the 
filled capacities of the other plants. 

Sixth step. If Cj?t,g from the previous step guarantees greater revenue than c ^ a r t ' 9

; 

then set cs

J

t,art,9= c^1,9 and go back to the third step. Otherwise, the solution c^,art,g 

is found, E N D . This is a classical search stop condition, where the main body of a 
cycle runs as long as it can find a better solution. 

Commentary. The algorithm is meant to produce the optimal or near-optimal so­
lution. To create an artificial upper bound for gate fees and to ensure the requirement 
that for every commodity exists the toll-free path from its origin to its destination, 
a «virtual» W t E plant wi th a fixed gate fee and a capacity that can meet waste pro­
duction of the whole region has to be considered. It was stated that the pessimistic 
approach would be applied in the case of multiple solutions on the lower level. How­
ever, al l presented M I P s are defined for the optimistic approach. Embeddment of the 
pessimistic approach into them can be done by adding a sufficiently small number e 
to a l l c\-i. It wi l l help to choose a solution that is smaller than limit of nearly optimal 
solutions by the e and to avoid numerous evaluations, which wi l l not substantially 
improve the objective function value. To not distort optima by this numerical ad­
justment, it is recommended to set an e to a decimal number, which has order of 
magnitude equal to min (order of magnitude that is lower than the order of magni­
tude of any transportation costs, order of magnitude of the fixed gate fees). Thus, 
if integer costs and gate fees are considered, it is advised to set e=0.1. Moreover, in 
the fifth step of the algorithm, it is advised to raise c°yt,a by e to cover all possible 
waste distributions on the lower level. 

The linear programming problems solved during third and fifth step of the pre­
sented algorithm are solved using the pessimistic approach for the leader wi th the 
original c* •/ without adjustments. This can be ensured by finding arbitrary solu­
tion (x*j )i&M,j£N £ arg LPji wi th c\-,. Then, to obtain pessimistic argument it is 
sufficient to solve LPy PES: 

mm 
75= N ' 

s.t. E Xij < Wj, V j e N, (4.66) 

E^ j — Vz e M, (4.67) 

E E +4) = E E +4) *y"> (4-68) 

Xij > 0, Vz e M, V j e N. (4.69) 
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Generation of the shortest paths in the preprocessing step [106] may help to mini­
mize the number of the waste treatment options represented by arcs (waste producer 
wi l l be connected to his best option and to tolled arc). However, it is redundant in the 
considered case, since such preprocessing is almost equivalent to the solution of the 
problem. Also, the costs of each arc wi l l iteratively change during B R D : previously 
redundant information should be considered in the next step. Basic single tolled arc 
problems without congestion solved during the algorithm are simple and are solvable 
in polynomial time. A s it was already described in bilevel programming section, it is 
sufficient to order differences cjj + — c\ -,, Vz G M, V j G N, and perform a simple 
sequential evaluation of the leader's objective function wi th a gate fee equal to these 
differences in the decreasing order. However, this representation does not consider 
the leader's capacity constraint and the inequality enabling the renouncing of some 
waste flows sent to the leader. Therefore, C C T N P P has seemed like a more suitable 
formulation, which better represents the structure of the problem, and might enable 
convenient generalization and future work wi th the inequalities, which wi l l reduce 
the feasible region, so the solution can be found faster. 

The heuristic's testing 

In this section, the attention wi l l be solely focused on testing the proposed method's 
ability to solve the general bilevel price-setting problem without searching for the N E 
( B R D functionality wi l l be demonstrated in the case study section). A n application 
to artificial W M network instances has been considered to validate the proposed 
bilevel programming algorithm. Now, the instance generation rules wi l l be described 
in detail. 

• A random number n of local W t E plants between 10 and 20 is generated. 
Capacities of W t E plants are generated randomly within a range of 25 kt to 
350 kt. Their gate fees are chosen randomly between 40 € / t and 100 € / t . 

• A number m = kn of municipalities is generated, where k is a random number 
between 5 and 15. For k municipalities, waste production is generated within a 
range of 100 kt to 300 kt (representing large cities). For the remaining k(n — 1) 
municipalities, it is generated within a range of 5 kt to 50 kt (small and medium-
sized municipalities). 

• Then, these municipalities are randomly placed on a map. The map is consid­
ered to have a size of 450 x 300 square units of length (in particular, square 
kilometers are considered). However, only a range of (50,400) x (50,250) is 
considered for the municipalities. The W t E plants are randomly assigned to 
the municipalities. 

• Additionally, 1 to 5 foreign W t E plants are randomly generated on the map 
within a range (0,50) U (400,450) x (0,50) U (250,300). Each plant's capacity 
equals the total waste production of all municipalities. A l l foreign W t E plants 
have the same gate fee of 1.5 times the maximum of local W t E plants' gate 
fees. 
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• Transportation costs are generated using the euclidean distance between the 
municipality and W t E plant. The distance is multiplied by a randomly gener­
ated coefficient within a range of 0.1 to 0.4 € / k m . 

• Locations of W t E plants and municipalities, transportation costs coefficients, 
gate fees, and waste productions are generated using a continuous uniform 
distribution. A l l other values are generated using a discrete uniform distribution 
over integers within the defined ranges. 

• The generated waste productions are then rounded to two decimal places, trans­
portation costs are rounded to an integer, and gate fees are rounded to one dec­
imal place (thus, e = 0.1 can be set). This is done to computationally simplify 
the algorithm and to enhance the speed of checking the heuristic's correctness. 

Since the heuristic wi l l be later applied to an exemplary case study, the ranges were 
chosen to generate W M networks comparable to the Czech Republic's W M situation. 
Each map generated in the above-described way is considered an artificial scenario, 
for which an optimal gate fee has been subsequently established for each local W t E 
plant. The total of 20 scenarios have served as an input: 10 scenarios where ^ i & M w\ 
is greater than total capacity of local W t E plants and 10 scenarios where J2ieM w \ 
is less than total capacity of local W t E plants have been taken into consideration. 
Such diversification of scenarios makes it possible to test situations when the main 
competitors are foreign W t E plants, as well as instances when competition takes place 
wi thin a local W M network. The results are then compared to the one obtained via 
the complete enumeration procedure of the precision e = 0.1. It dwells in a successive 
increase of a gate fee from zero wi th step 0.1 and a calculation of the revenue for each 
linear problem solution under this gate fee. A l l computations were performed using 
the C P L E X solver wi thin G A M S . The results and basic scenarios information are 
presented in Table 4.2. 

One iteration of the follower's problem during enumeration lasts for approximately 
0.25 seconds wi th 1,574, resp. 2,236, solutions performed in case of sufficient, resp. 
insufficient, capacities of local W t E plants on average. O n the other side, to solve 
one iteration of the M I P formulation approximately 10 times more time is needed 
wi th only 4.5 iterations performed on average. Whereas ten scenarios wi th insuffi­
cient capacities require averagely 1.3 iterations and lose averagely 3.34% compared to 
optimal objective function value, the remaining scenarios are more computationally 
challenging (7.5 iterations are required), which do not substantially affect average loss 
of 3.67%. In 87% procents of the cases, loss was less than 10% and, in the worst case, 
loss was 45%. The maximal number of iterations that has been performed during one 
run of the algorithm is 46. The more detailed analysis of errors did not demonstrate 
some obvious pattern in the behavior of the heuristic and its performance wi th re­
spect to the setting of the scenarios. Potentially, greater loss can be implied by an 
unrealistic input or it can be the result of complex interactions of the parameters with 
the shape of the generated network. It can be seen that the proposed algorithm is 
able to handle the randomly generated scenarios time-efficiently without substantial 
loss in an objective function value in most of the cases. 
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Table 4.2: Results of the algorithm validation 

Scenario 

N u m b e r 
of loca l 

W t E 
plants 

T o t a l 
loca l W t E 

capaci ty [kt] 

Average gate 
fee of 

loca l W t E 
plants [ E U R / t ] 

N u m b e r of 
m u n i c i p a l i t i e s 

T o t a l waste 
p r o d u c t i o n 

[kt] 

G a t e fee 
of foreign 

W t E plants 
[ E U R / t ] 

Average 
t r a n s p o r t a t i o n 
costs [ E U R / t ] 

Average loss 
i n object ive 

f u n c t i o n 
value [%] 

1 11 2,107 77.58 88 3,854 144,1 21.83 2.37% 
2 12 2,35 79.85 72 3,209 146,7 44.20 5.08% 
3 14 3,659 74.81 196 8,051 147,9 43.60 0.24% 
4 12 2,036 69.88 168 6,884 139 77.47 1.18% 
5 15 2,031 67.44 75 2,822 134,3 30.65 4.76% 
G 18 2,985 76.34 198 7,639 143,4 44.80 0.05% 
7 18 3,335 63.32 144 5,337 143,7 64.30 9.13% 
8 1G 2,844 71.34 224 8,518 145,5 72.17 0.94% 
9 12 2,939 76.66 72 3,046 148,5 37.73 6.89% 
10 20 4,677 68.17 200 7,252 149,9 34.87 2.76% 
11 20 4,229 74.91 120 4,216 148,7 56.77 12.17% 
12 17 4,065 72.15 85 2,954 137,6 61.81 1.02% 
13 20 4,807 69.36 140 4,519 147,8 61.55 2.70% 
14 17 3,715 71.78 85 3,127 145,4 62.08 5.92% 
15 15 3,209 64.24 75 2,897 130,1 60.01 1.34% 
1G 20 4,101 72.60 100 3,613 146,9 22.26 0.91% 
17 11 2,629 77.46 55 2,335 146,1 26.55 1.16% 
18 17 4,756 71.47 85 3,183 148,4 57.33 2.92% 
19 19 4,006 75.72 95 3,558 146,8 50.00 4.63% 
20 19 4,141 64.33 95 3,664 149,2 27.71 3.96% 



4.1.5 Exemplary case study 

In this section, the Czech Republic exemplary case study wi l l demonstrate how the 
proposed approach could be applied to design the optimal capacity of the future W t E 
plant. Moreover, the numerical results of the proposed bilevel programming heuristics 
algorithm wi l l be presented. It is assumed that in the Czech Republic, there are 16 
W t E plants (the founding of 12 of them is currently planned). However, some waste 
producers from the Czech Republic might use the services of facilities in the nearby 
countries (Germany and Austria) . To create an upper boundary on the possible gate 
fee and ensure the existence of the «toll-free» path, these facilities are represented as 
three W t E plants wi th a fixed gate fee of 100 € / t and the capacity corresponding to 
the total waste production of the whole Czech Republic. 

To compete wi th these foreign facilities, it is planned to bui ld one more W t E 
plant in the Czech Republic ( W t E plant «Otrokovice») , and the question of optimal 
capacity design arises. To optimally estimate the capacity, it is advised to «place» 
this facility in the currently existing network and find the N E of the considered 
W t E plants price-setting game using the suggested approach: B R D based on the 
proposed bilevel programming heuristics. The resulting price state wi l l enable the 
establishment of the waste flows and revenues of all W t E plants in the network. 
This process, iteratively repeated for each capacity design, wi l l provide an image 
of the expected revenue of the planned facility, which can be compared to required 
investments. The starting point of the whole process for each W t E plant (except the 
foreign plants) is assumed to be the gate fee of 50 € / t , and the first capacity design 
is 25 k t /y . To computationally simplify the algorithm, the transportation costs are 
assumed to be integers (thus, e=0.1). Productions, as well as capacities, are assumed 
to be annual. 

Unfortunately, the B R D failed to find an N E during the first attempt. When 
the a, defining stopping condition of the algorithm in Figure 2.2, is considered to 
be too small, the algorithm gets stuck in the cycle. This fact can be explained, by 
the hypothesis, that when continuous strategy sets are assumed, the change of the 
gate fee is expected to be always profitable. This would lead to non-existence of the 
fixed-point in best-response correspondences, and, as a result, the N E would cease 
to exist in a general game. This possible explanation wi l l be studied in detail at the 
end of the section devoted to W t E price-setting. To overcome this complication, it 
is assumed that, when the norm of the difference vector is less than 1, no substantial 
change in the gate fees vector has occurred, and the algorithm wi l l be stopped. This 
assumption wi l l enable to prevent the cyclic nature of the price-setting game, when 
players successively lower their prices to obtain greater demand. Under assumption 
cr=l, the gate fee stable outcomes were computed for the suggested capacities from 25 
kt to 350 kt with the step of 25 kt. The capacity usage and the estimated revenue of 
the planned W t E plant «Otrokovice» are presented in Table 4.3. The table confirms 
that the proposed model is reasonable: capacity increase causes a gradual decrease in 
gate fees for all of the considered W t E plants. Thus, in accordance with basic economy 
rules, the greater «supply» (capacity) leads to a lower price (gate fee). Clearly, to 
improve the reliability of the found solutions, the impact of the input parameters and 
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Table 4.3: Results for «Otrokovice» 

Capacity Gate fee Obtained amount Employed Revenue 
[kt] ' [€/t] of waste [kt] capacity [T€] 
25 68.8 6.54 26.17% 450.21 
50 55.9 36.93 73.85% 2,064.21 
75 54.6 67.47 89.97% 3,684.07 
100 53.2 84.60 84.60% 4,500.81 
125 52.9 103.14 82.51% 5,456.18 
150 50.8 146.09 97.40% 7,421.55 
175 50.5 152.88 87.36% 7,720.50 
200 51.5 163.94 81.97% 8,442.81 
225 49.3 163.94 72.86% 8,082.15 
250 48.9 239.66 95.87% 11,719.57 
275 47.6 265.91 96.69% 12,657.26 
300 46.8 252.75 84.25% 11,828.56 
325 48 265.91 81.82% 12,763.62 
350 48.6 260.06 74.30% 12,638.91 

ini t ial point choice on the algorithm precision and speed of convergence should be 
studied in the future. 

To choose an appropriate capacity design for a particular W t E project, the rev­
enues from waste treatment have to be compared wi th the ini t ial investments. For the 
sake of simplicity, the solved task does not consider operational costs and revenues 
related to heat and electricity selling. In the case of investment costs, it is important 
to reflect decreasing unit costs when increasing capacity. The costs for particular 
capacity variants are estimated by adopting the following formula from [20]: 

n 0.75 

where I represents investments and C represents the capacity of the facility. Subscript 
R denotes the reference number. For the case presented herein, the reference numbers 
were set to IR = 4 M € / y and CR = 100 k t /y . Figure 4.4 illustrates the results for the 
considered capacity variants. The profitability of investment can be easily compared 
v ia ratios illustrated by a line. Figure 4.4 demonstrates that the greater capacity 
does not always guarantee a better ratio between revenue and investments. Thus, the 
market power induced by a greater capacity does not automatically ensure a greater 
return on investment but has phase-shifting properties. For example, only after 
trespassing the capacity of 225 k t / y the W t E plant again obtains an advantageous 
position on the W M market and can pursue a greater return on investment. The 
decision about the optimal capacity directly depends on the available capital for the 
investment. For example, if the maximal possible investment is around 7 M € / y , 
it is reasonable to invest less and build a W t E plant wi th a capacity of 150 kt /y . 
Now, suppose the management of the W t E plant can ensure greater resources for the 
investment. Then, it is more profitable to invest approximately 8 M € / y and build a 
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facility wi th a capacity of 250 — 275 k t / y (higher precision can be achieved by choice 
of the smaller step). 
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Numerical results of the heuristic algorithm 

To verify that the algorithm is also able to provide the optimal or near-optimal 
solution in the realistic scenario, its performance has been compared to the classical 
enumeration of the precision e. In particular, gate fee vectors from the last iteration 
of B R D have been used as an input describing fixed gate fees of competitors. Thus, 
17 different cases (each for one of 17 competing W t E plants) have been calculated for 
14 capacity designs. Table 4.4 represents information about non-optimal solutions 
found by the proposed heuristics. 

The heuristics failed to find an optimum solution only in 44 cases out of the con­
sidered 238, only 10 of which have led to a loss greater than 1%. Moreover, the largest 
difference between found optimum and the opt imum established by the algorithm is 
1.1. Thus, Table 4.4 confirms the potential of the proposed algorithm on the realistic 
data: it produces an optimal solution in most cases. Due to comparability of the 
artificial scenarios to the exemplary case study input data, the computational time 
of one iteration remains approximately the same. Thus, the case study motivated by 
the realistic data also proves that the algorithm solves underlying NP-hard problems 
cardinally faster with an average objective function value optimality loss of 0.18%. 
Since the underlying motivation was to provide fast input into the B R D evaluation 
cycle, the proposed heuristics can be considered suitable. The presented apparatus 
can provide a realistic estimate of the optimal gate fee for a particular W t E plant, 
which enables finding the N E of the W t E plant's price-setting game. 

Now, we proceed to a more theoretical study of the presented W t E plants' game 
(and of the analogical games) in order to establish some general conclusions about 
N E existence. 
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Table 4.4: Numerical results for the heuristic 

C a p a c i t y 
[kt] ' 

W t E plánt I terat ions 
F o u n d 

o p t i m u m 
R e a l 

o p t i m u m 
Loss i n 
revenue 

25 Praha 2 100.7 99.7 2.64% 
25 Brno 2 78.8 78.7 0.76% 
25 Liberec 1 95.6 95.5 1.79% 
25 Ústí nad Labem 1 94.5 93.8 6.70% 
50 Tábor 2 74.8 74.9 0.13% 
50 Hradec Králové 2 73.8 73 0.11% 
75 Liberec 1 79.5 79.6 0.13% 
75 Vsetín 1 50.5 50.4 0.37% 
100 Liberec 1 80.8 79.8 0.66% 
100 Ústí nad Labem 1 77.8 77.9 0.13% 
125 Liberec 1 75.9 76 0.13% 
125 Most 1 76.9 77 0.13% 
125 Ústí nad Labem 2 72.8 73 0.27% 
150 Hradec Králové 3 70.5 69.8 0.20% 
150 Ústí nad Labem 1 75.5 75.6 0.13% 
175 Praha 3 79.6 79.5 2.86% 
175 Liberec 1 75.4 75.5 0.13% 
175 Ústí nad Labem 3 72.3 72.4 0.14% 
175 Vsetín 1 47.4 47.5 0.21% 
225 Brno 2 60.4 60.2 0.56% 
225 Ústí nad Labem 2 73.9 74 0.14% 
250 Tábor 2 68 67.9 0.95% 
250 Liberec 1 72.9 73 0.14% 
250 Most 1 74.9 74.8 3.90% 
250 Otrokovice 2 48.9 49.9 2.00% 
250 Vsetín 1 45.9 46.9 0.35% 
275 Liberec 1 73.2 73.3 0.14% 
275 Mělník 2 71.5 71.2 5.25% 
275 Jihlava 1 62.4 62.5 0.16% 
275 Otrokovice 2 47.6 48.7 2.26% 
300 Brno 2 56.5 56.6 0.02% 
300 Hradec Králové 1 65 65.5 0.76% 
300 Liberec 1 72.9 72.5 1.35% 
300 Otrokovice 3 46.8 47.8 2.09% 
325 Brno 2 57.5 57.4 0.71% 
325 Hradec Králové 1 66.3 65.9 0.53% 
325 Ústí nad Labem 1 70.7 70.8 0.14% 
325 Jihlava 1 62.4 62.2 0.33% 
325 Otrokovice 1 48 48.2 0.41% 
325 Zlín 1 47.9 48 0.21% 
350 Tábor 4 67.3 67.2 0.95% 
350 Brno 1 58 57.8 0.54% 
350 Liberec 1 73.1 73.2 0.14% 
350 Ústí nad Labem 3 70 70.1 0.14% 
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4.1.6 Price-setting game and its properties 
Our empirical results have pointed out possible non-existence of N E in problems of 
price-setting. This is why this section is devoted to analysis of the newly introduced 
class of price-setting games and to research on existence of N E in games of this 
type. In particular, we are interested in proving the fact that, under some real-world 
constraints and limitations, there might be no stable price state for sufficiently small 
artificial parameter e from previous section. Before we define a price-setting game, a 
concept of market situation should be discussed. 

Definition (Market situation). The market situation 

is defined by the set of customers M = { l , . . . , m } , \M\ > 1, the set of domestic 
producers N = {1, ...n}, \N\ > 2, the set of foreign producers R = {n+l,r}, \R\ > 
1, transportation costs per unit of goods > 0, V j G M, V i G N U R, needed to 
transport unit of product from producer % G N U R to consumer j G M, production 
capacities q > 0, V i G N U R, of producers, and demands dj > 0, V j G M, of 
consumers. Foreign producers are participants of the market creating the reference 
price xref > 0. 

Further, to simplify some expressions, we wi l l use notation N = N U R. We also 
would like to describe role of xref in more details. In our study, the reference price 
xref is a price of a product on a foreign market, so, when the price on the domestic 
market exceeds the reference price (and potential transportation costs), it is more 
economic to import the product. Thus, it indeed creates «reference» for domestic 
producers and establishes price ceiling after trespassing which, domestic market begin 
to lose customers. Now, we can proceed to the definition of the price-setting game 
associated wi th a market situation. 

Definition (Price-setting game). Let us assume the market situation MS. Then, 
we define the price-setting game G = (N, (JQ, 7Tj)jeAr) associated wi th MS as a game 
between players from a set N, where strategy of each player is represented as a price 
Xi G Xi = (0,oo), Vz G N. Elements of R are not part of the game itself, and they 
prices are fixed as Xi = xref, V i G R. Then, each player's payoff function iTi(x), % G N. 
is defined as 

J6M 

J6M J6M 

where set Q is defined as 

s.t. «j < c h ^ l ^ N - , 
J6M 
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%j > o, V j G M , V/ G i v . 

Thus, domestic producers are independently maximizing their profits, whereas 
customers are minimizing their total costs, while aiming at completely satisfying 
their demands without capacity overruns. The above-defined game is designed to 
model markets with a high level of government interference, where costs, that occur 
during operation, are negligible compared to ini t ial capital investments: this is why 
the payoff function does not involve fixed or variable costs. In order to ensure the 
correct definition of the payoff function, we have employed the already introduced 
pessimistic approach, i.e., that in the case of the existence of multiple solutions to 
the lower level customers' cost minimization problem, the solution, which is the most 
unfavorable to the producer % is chosen. This choice is crucial since the following 
problem can occur at N E s of games solved using an optimistic approach. 

Example 4.1.3. Assume market situation MS wi th following parameters: M = {1}, 
N = {1,2}, R = {3}, rJi = 5, xref = 4, cx = c 2 = c 3 = 10, and thj = 0,V7 G N,j G M. 
Then, the optimistic N E of the associated game G is price state x* = (4,4) which 
guarantees to both players payoff 7Ti(x*) = ^ ( x * ) = 20. 

One can see, that optimistic N E might create overoptimistic expectations and 
some kind of «vacuum»: these expectations can not be fulfilled for all of players 
since the consumer wi l l spend only 20. In other words, the optimistic approach 
has doubled expected profit of producers compared to amount of money spent by 
consumer. Thus, the suggested pessimistic approach is more reasonable than the 
optimistic one. It is also important to note, that it is required, that consumers' 
demand is completely satisfied, leading to the necessary feasibility assumption that 
total market production capacity is greater or equal to the total demand, i.e. 

Cj > dj (feasibility). 

However, the stronger assumption should be imposed on game in order to make its 
study reasonable: 

Q > dj, Vz G R, (boundness). 

Now, we wi l l demonstrate a possible problem, which occurs when boundness assump­
tion is not fulfilled. 

Example 4.1.4. Assume market situation MS wi th following parameters: M = {1}, 
N = {1,2}, R = {3}, di = 5, x r e f = 4, c i = c 2 = 3, c 3 = 1, and tij = 0,V7 G N,j G 
M. In this setting, q\ 1 > 1 and <j£ l > 1 hold for any x G Xjy. Thus, Vx G Xjq and 
for each % G N 

7li(x1 +S1,X + S2) > 7li(x1, X2) 

always holds for arbitrary 5i > 0,i G N. Such situation wi l l lead to the state where 
consumer wi l l have to pay infinite amount of money for goods. 
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As we can see, insufficient capacities of foreign producers might make optimization 
problems of domestic producers unbounded. Clearly, boundness imply the feasibility 
assumption, making it redundant. Before a discussion on existence of N E is given, 
the description of payoff function 7Tj and of X l j e M Qij f ° r * e ^> fixed strategy profile 

and given xref should be provided. 

Properties of the payoff function and the lower-level optimal solution. 
Assume some % G N, fixed strategy profile and given xref. Then, let us describe 
S j e M Qij a s a function of X j . Due to the nature of linear programming problems, 
their solutions are convex combinations of extreme points or directly extreme points 
(in case problems are bounded). This implies that J^JGMQIJ a s a function of Xi is 
non-increasing piece-wise constant and right continuous [62]. This properties should 
hold, since otherwise it wi l l be a contradiction with optimality of (QIJ)IGNJGM a n d 
its pessimistic property wi th respect to i. If this function wi l l be multiplied by a 
variable Xi > 0, we wi l l obtain a piece-wise linear (where each segment is increasing) 
and a right continuous payoff function 7TJ(XJ) [62]. Now, the concept of N E in the 
considered class of games can be discussed. 

Concept of ^-equilibrium 

Unfortunately, the definition of the problem violates the existence of N E . For the 
above-defined payoff function, a more profitable strategy can always be found: it is 
sufficient to choose the price, which wi l l shift the payoff closer to the peak of the 
«optimal» linear segment. The peak istelf is «absent»: in pessimistic approach it is 
only a limit of the payoff function from the left, which corresponds to an optimistic 
approach optimal solution (which does not have to be unique). Thus, player is always 
able to choose some sufficiently small 8 > 0, such that, for a fixed given xref, 

and arbitraty Xi 
-Kiixf1 -5) >7Ti{Xi) 

where xf1 denotes the optimistic approach optimal price. However, if we assume, 
that players can be satisfied wi th the «nearly» optimal solution, then it is possible 
to define the following alternative to the pure N E concept. 

Definition (<5-NE). Let us assume a normal form game G = (iV, 7TJ)JGJV) wi th 
Xi = (0, oo), Vz G N. Then, we define <5-NE, 8 > 0, as a strategy profile x, G XN. 
such that Xi = xfiia i — 5, where x f i m t fulfills 

lim_ 7Ti(Xi,X-i) > 7Ti(Xi,X-i),VXi G (5, oo). 

This way we avoid the concept of the classical N E , replacing it wi th the strategy 
profile that might be arbitrarily close to a profile that is N E in a sense of l imit . Such a 
definition makes perfect sense with respect to the application-oriented nature of this 
work: the price is always set in some currency, which has the lowest possible order of 
magnitude. For example, when we work wi th euros, the price can be changed only by 
cents, meaning the closest possible price to xfimi is xfimi — 8 wi th 8 = 0.01. We would 
like to additionally emphasize that the concept of 5-NE is not necessarily unique. 
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Existence of <5-NE 

We begin this section with the study of 5 -NE existence in market situations without 
transportation costs. It wi l l be demonstrated, that capacities of producers signifi­
cantly impact existence of <5-NE. In particular, we wi l l prove that, under the certain 
assumptions, there exists a 7 > 0 such that, for every 8 smaller than 7, <5-NE for 
non-zero transportation costs game wi l l cease to exist. However, before starting our 
theoretical considerations we would like to demonstrate, that concept of <5-NE exists 
at least for some games. Thus, we introduce the following simple example. 

Example 4.1.5. Assume market situation MS wi th following parameters: M — {1}, 
N = {1,2}, R = {3}, di = 6, xref = 4, c i = 4, c 2 = 3, and c 3 = 10, and tij — 0, V7 G 
N,j G M. Let us set 8 = 1. Then, <5-NE is a state x = (3,2) which guarantees 
payoffs 7Ti(x) = 9 and V T 2 ( X ) = 6. 

Zero transportation costs 

In this part, we consider only price-setting games G associated wi th MS, where 
tij = 0, Vz G N,j G M. Further, we wi l l use notation X i i m , i 0 c - i ) describing all x i i m j j 
such that 

l im 7ii(xi,x_i) > 7ii(xi,x_i),Wxi G X,i. 

Notation x f i m i ( x _ j ) wi l l be used analogically. Then, we begin wi th the following 
lemma. 

Lemma 4.1.6. Assume the price-setting game G associated with zero transportation 
costs MS fulfilling boundness and arbitrary strategy profile x G Xjy. Then, Vz G N. 
it holds that 

x\im,i e xhraji(x_i) ^ x i i m j i = xi for some I E N \ {%]• 

Proof. Further, we wi l l denote J^JGMQIJ f ° r a fixed £-i> 2 G TV, as J2JGM Qij(xi)-
Due to zero transportation costs, 

V ] > 0, 0 < X j < min x z , 

holds. Then, due to boundness, there is also such xi G Xi that J2JGM Qi,j(xi) = 0-
Thus, there wi l l always occur at least one decrease in X l j e M Qi,j(xi) f ° r s o m e xi e - ^ i -
Now, let us assume, that we have some point of decrease x * G JQ, i.e. 

since J2JGM Qi,j(.xi) *s non-increasing and only right continuous. However, decrease 
can occur only if there 3/ G N such that x* — 8 < xi < x*, since otherwise it wi l l 
imply a contradiction due to absence of decrease direction for the objective function. 
Then, we can obtain 

l im x* — 8 < xi < x* =>- x* = xi. 
5^0+ - 1 1 
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Thus, every possible decrease x* should be given by some xi,l G N \ {i}. The pre­
viously discussed properties of 7ii(xi, X-i), imply that x* = xi,l G N \ {i}, are only 
possible points fulfilling 

l im_7ri(xi ,x-i) > TTi(xi,X-i),Mxi G (x* - e,x* + e), 

for some e > 0. Therefore, one or more of such x* = xi,l G N \ {i}, should fulfill 

l im 7ii(xi,x_i) > 7ii(xi,x_i),Mxi G Xi. 

• 
Then, we can proceed to the following theorem on 5-NE existence for price-setting 

games associated wi th a particular group of MS wi th zero transportation costs. 

Theorem 4.1.7. For any zero transportation costs price-setting game G fulfilling 
boundness and 

Q > Y^dj,Mi G N, (absence of dictator), 

l£N\{i} j&M 

5-NE exists for every S. 

Proof. Assume arbitrary value 8 > 0. If we construct a price state x wi th 
0 < Xi < S, Mi G N, 

then this state is always a 5-NE. Due to absence of dictator, every Xi wi th Xi > S wi l l 
always lead to 7TJ(XJ, = 0. Thus, x f i m i ( x _ j ) = (5, oo), since every 4 from such 
x f i m i ( x _ i ) t r ivial ly satisfies the expression 

lim_ Tii(xi,x-i) > Tii(xi,X-i),Mxi G (5, oo), 

where both sides equal 0. Therefore, if we choose xfimi = Xi + 8, Mi G N, then our x 
wi l l completely meet the definition of 5-NE. • 

Absence of dictator ensure that there is some amount of demand over which players 
might possibly compete. However, the theorem points out an interesting drawback 
of 5-NE for the MS wi th this property: some strategy profiles are 5-NE only due 
to the fact, that players cannot play their optimal prices wi th respect to the given 
price state. This problem does not occur when capacity dictator exists, as we wi l l 
demonstrate in the following theorem. 

Theorem 4.1.8. Assume zero transportation costs MS fulfilling boundness and that 
3i* G A" such that 

dj > Ci*, ŷ  dj > ŷ  Ck and ^ dj < ^ Ck- (existence of dictator) 
j£M j£M keN\{i*} j£M k£N 

Then, for the associated price-setting game G, there 35 such that 5-NE does not exist. 
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Proof. The theorem can be proven v ia contradiction. Assume there exist 5-NE profile 
x for each 8 > 0. From Lemma 4.1.6, it follows that x i i m ! i * = 5ti,l G N \ {i}, for all 
x\im,i* G x\imji*(x-i*). If we consider 8 G (0,xref), then, due to existence of dictator, 

xim,f = x h l e N \ {i}, for all xf i m , i* e 4mi!«(^«); 
with 

l im 7Tj* (xi*, > 0. 

A t first, we focus ourselves on the case x f i m i , = xref. Clearly, we can order 
elements of x as 

Xii ^ ••• ̂  xin_^ ^ x^* <C x r e j . 

If we consider 5 G (0, p p ) , it should hold that X j „ _ 1 = x r e / — 5 or X j „ _ 1 = X j * — 8. 
since otherwise it wi l l be in contradiction wi th the x being a 5-NE. It also important 
to note, that existence of dictator implies 

lim_ ^ 9**,j( xi*,X-i*)<Ci*. 
x i * ^ X r e f j e M 

Now, we introduce notation 
^ref XrPfAr* 

li •-- 2Ci ' 
where 

:= min l im ^ 9 ^ ( ^ , 1 - , ) - l im Vf/y^r • | . 

s.t. l im Vg* 3 (a ;„a ;_ i )> l im V g ^ x , , ! ^ ) . 

Then, for sufficiently small 8, such that 8 G (0, p p ) fl (0, 7**), choice x i i m ] j * ( x - j ) = 
x r e / does not guarantee the greatest possible payoff. Player i* is able to ensure greater 
payoff by choosing xref — 28 as a l imit . Indeed, if we consider such 8, it wi l l imply 

Xre f A j * (X—i* ) 
0 < 

2 l im s . ._ ) . ( S i . e / _2 < j ) - E j e M Qi*,j(xi*^-i*): 

where 

A i . ( x _ i . ) = l im r ^ j f i , . , ! - , . ) - l im Vg*,^^.,^.). 
1 V ' j £ M X * * ^ X r e f j £ M 

However, using this expression, we can obtain 

l im x^ y~] q** • (x^, x-i*) < l im X j * V " 5*, • (x^ , x_ j* ' 
*_i.3-- *—' x,-*->-(x-..f —25)- *—' u 

* j e M 1 v r e / ;
 j£M 

This fact is in direct contradiction wi th definition of 5-NE, proving that in case 
x\imi* = xref our concept of 5 -NE does not exist for 8 G (0, p p ) fl (0,7«»). 
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Now, we wi l l focus our attention on the second possible case, where x f i m t* = xi,l G 
N \{i*}. Consider S such that 

§ £ (0 X r e f ^ - J i ^ M ^ ~ ^keN\{i*} °k) 

Such choice implies 

25Cj* < Xref(^ dj - E Ck); 
jeM k£N\{i*} 

leading to the fact, that 
xi > 25 

should hold, since otherwise xfimi* = xi,l G N \{i*}, wi l l be contradicted. Then, 
there are two possibilities: 

l i m _ E <?** j fa*< Ci* or l i m _ ̂  Qi* j = Ci*• 
j £ M xi*-^xl . & M 

In case strict inequality holds, it implies that 

However. 

l im 7ri(xi,x-i) = 0. 
xi +6)~ 

l im 7Ti(xhx_i) > 0 
xi^(xi-6)~ 

is an obvious contradiction wi th assumption that x is a 5-NE. 
Otherwise, consider that l i m ^ ^ - - X l j e M Qi*,j(xi*i x-i*) = c%* holds. Let us as­

sume following ordering of elements from x: 

... < Xi* < Xl < ... < Xref. 

Thus, there should exist I* e N \ {i*} wi th 

Xl* + 5 = Xref 

such that 
lim_ E ft* j(xi*,x_i*) <ci*, 

xl*^Xref j£M 

since otherwise x cannot be 5-NE or it wi l l directly imply that 

l im 7Ti*(xi*,X-i*) = 0, 
xi*^t(xi*+5) 

what can be easily prevented by choosing x f i m Z , = Xi*. Then, the rest of the proof 
completely corresponds to the case x f i m i » = xref wi th respect to I* and 8 G (0,7;.). 

Thus, for every 

5 G (rwo, 7 ,)) n (o, X r e / ( E ^ M ^ E f c e ^ C f c ) j n (o, x-f) + 0, 

the concept of 5 -NE does not exist. • 
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The previous proof has led us to the following corollary. 

Corollary 4.1.9. Assume market situation MS fulfilling boundness and existence 
of dictator. Then, for the associated price-setting game G, there 37, s.t. for al l 
5 G (0 ,7) , <5-NE ceases to exist. 

Indeed, if we set 

~ / ( £ i e * d i - £ f c e * \ i . * ) xref 
X 

7 = m m < ^mm 7, i&N 2ci* 3 

then for each 8, 0 < 8 < 7, the proposed 5 - N E wi l l cease to exist. Unfortunately, we 
were not able to prove an existence of the analogical threshold in the case of general 
transportation costs. 

General transportation costs 

Non-zero transportation costs complicate study of 5-NE existence representing im­
portant competitive advantage for some of the players. The main problem is that, 
for the price-setting game G associated wi th general MS fulfilling boundness and 
arbitrary strategy profile x G XN, we have 

x\im,i G xiim,i(£-i) =>• £iim,i = %i + Mj - Ud for some / G N \ {i}, j G M, 

for every % G N. Thus, transportation costs bring asymmetry into the game and it is 
not possible to generalize the considerations established in Theorem 4.1.8 and prove 
problem wi th optimality of playing xref. Indeed, each player may play one of many 
possible «versions» 

Xref + trj — for some r G R, j G M. 

A t least, we were able to deduce the assumption, that w i l l prevent the situation 
described in Theorem 4.1.7: 

• For each % G N, 3\jl G M, such that 

min tiji —tiji > 0, (internal competitiveness). 
l£N\{i}, ' ' 

Internal competitiveness ensures that each % can always achieve non-zero profit wi th 

l im 7Tj(xj, X-i) > 0 

z i - K m i n , ^ ^ * , ^ - t h ­

under any given Thus, 8 < minjGjv m i n ; G j v \ { i } — w ^ n m a k e implications of 

Theorem 4.1.7 impossible. Now, we wi l l briefly discuss implications of our theoretical 

findings. 
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Discussion 

Clearly, it is rather hard to directly establish value of 7 from Corollary 4.1.9, due 
to necessity of finding all A ™ m , i G N. In practice, it is possible to establish lower 
boundary for A ™ m , % e N. In the case study, the smallest order of magnitude for the 
capacities and demands is 10~ 2 . Thus, A ™ m , i e N, wi l l never be lower than 0.01. 
This estimate wi l l enable us to directly calculate lower boundary for 7. Clearly, the 
resulting value wi l l be less than the considered e = 0.01. However, it is important to 
note that the resulting 7 does not need to be a «t ight» boundary. Thus, it is not 
guaranteed, that the established 7 wi l l be the greatest possible. We believe that the 
considerations established in subsection 4.1.6 wi l l enable us to generalize Theorem 
4.1.7 and to estimate «t ighter» upper boundary for 7 in the future. 

4.2 Waste producers' costs minimization 
The upcoming C E P legal changes wi l l substantially affect municipalities due to more 
complex and expensive waste treatment in the future. Thus, it is also essential to 
model and study the implementation of W t E technology from the municipalities 
point of view, considering their objectives of W M cost minimization. The way how 
municipalities financially handle new legal requirements wi l l substantially impact sus-
tainability of W t E plants and, as a result, of the energy produced there. To react to 
the up-coming legal changes, it is beneficial to create municipal unions, focused on 
the cooperation in W M . Such municipal unions help to lower waste treatment costs 
and to optimize waste collection. Whereas full cooperation axiomatically assumed in 
[51] can be considered as the most desirable outcome, it may not correspond to the 
realistic one due to circumstances/settings. In fact, such a centralized approach can­
not properly model individual incentives of municipalities and interactions between 
them. This behavioral aspect becomes crucial during planning of municipal budgets 
and negotiations about the legal form of municipal units' cooperation. Therefore, 
it is necessary to study formation of municipal unions in a dynamic manner. More­
over, the distribution of resulting costs across municipal units should be assessed with 
respect to their locations and waste productions. Such cost analysis wi l l enable to 
estimate future realistic W M tariffs, providing important information for municipal 
councils. 

In this section, the problem of municipal unions formation wi l l be represented 
as a distributed dynamic coalition formation game, which is able to capture non-
cooperative incentives of municipalities, while they are pursuing cost minimization, 
as well as their cooperation and trade-offs. A t first, we deduce the characteristic 
function, introduce the canonical coalitional game and study its properties. Then, 
the discussion on the implementation of coalition formation and the proposed costs 
distribution is given. After that, in the case study, the outcome, achieved through 
iterating merges and splits wi th respect to uti l i tarian order, is presented. Since the 
Shapley value is commonly applied in different problems involving optimal alloca­
tion and configuration of profits, costs, resources, or capacities, it is suggested as a 
particular proposal, of how to distribute costs (including appropriate financial com­
pensations) among resulting coalitions' participants in a fair way. The point of the 
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core wi l l be also calculated to provide an alternative point of view on possible stable 
distribution of costs in case of full cooperation. 

The originality and contribution of this part consists of application of the dis­
tributed dynamic coalition formation framework to waste treatment costs minimiza­
tion game. It must be emphasized that, according to the performed review, the author 
has not found out any cases of coalition formation applied to the analogical problem­
atics. The suggested approach is justified by theoretical properties of the game, that 
have been studied in detail. To overcome a problem with large players set, innovative 
coalition formation algorithm for games wi th numerous players has been developed. 
In this algorithm, penalization for cooperation serves as an instrument, which im­
pacts the behavior of the waste producers and the size of the resulting coalitions. 
Also, none of the reviewed articles has considered application of the Shapley value 
to such a large set of players (up to 47), where computation of a solution becomes a 
challenging task. Due to this reason, the sampling Shapley value estimation [15] has 
been applied (deterministic approach is not suitable for such large games). 

4.2.1 Problem definition 
The general case of the problem considers a nonspecific area in which W t E plants 
wi th different capacities are situated. Waste producers (municipalities) with different 
locations and waste productions treat their waste using services of the available W t E 
plants. The model works wi th the already existing W M network. Assuming l im­
ited or banned landfilling, waste producers are forced to treat produced waste using 
services of W t E plants. Gate fees of W t E plants are assumed to be external fixed pa­
rameters (which can be obtained using approach from the previous section). Waste 
producers minimize their total waste treatment costs, consisting of transportation 
and waste processing costs. Cooperation occurs when instead of competing over the 
free capacities, some producers create union and reserve capacities of nearby W t E 
plants to waste producers wi th unfavorable locations. This enables them to reduce 
their waste treatment costs in exchange for the financial compensation, from which 
some of the cooperating waste producers, that have renounced these capacities, might 
substantially benefit. Now, the deduction of the appropriate value function v wi l l be 
discussed in detail. 

Deduction of the value function 

• T U vs n o n - T U : Since v should reflect costs for waste treatment, which are 
commonly represented by their monetary value, the considered conflict of waste 
producers should be modeled TU-erame. 

• Form of the game: From the theoretical chapter, it can be seen, that games 
in parti t ion function form are much more computationally complex. Facing this 
complication, only value functions in the characteristic form wi l l be considered. 

• Underlying normal-form game: A characteristic function of a cooperative 
game can be derived from uti l i ty functions of the non-cooperative conflict. The 
two main approaches are a- and /^-functions. The former function is derived 
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under condition that outsiders cooperate to maximize costs of coalition after it 
has minimized them. The latter approach swaps order of decisions. However, 
these approaches are based on the underlying non-cooperative game in normal 
form, which cannot be appropriately defined for the case of waste producers' 
conflict. Due to l imited capacities, W t E plants, which locations and gate fees 
are the most favorable for a player, can have no free capacity depending on 
the established order, in which waste producers make their decisions about 
waste treatment. The importance of the D M order implies non-relevance of the 
normal form approach. Moreover, it is not realistic to assume that N \ S wi l l 
be aimed at damaging coalition S at a l l cost. 

• Objective of outsiders: Another possibility is 7-function approach [38], 
which reasonably admits that players outside of coalition individually pursue 
their own interest instead of damaging their cooperating opponents. However, 
it should be modified to avoid the above-mentioned ordering problem. For this 
sake, full cooperation between players in N \ S wi l l be assumed and these play­
ers wi l l cooperatively minimize the sum of their own total costs. Unfortunately, 
even in a such setting order is crucial. 

• Optimistic vs pessimistic approach: The setting, in which coalition S 
makes decision as first, can be viewed as the most optimistic approach for to­
tal waste treatment costs estimation. However, it is not always appropriate 
to estimate costs using an optimistic variant of situation development. This is 
the reason why the pessimistic setting, in which the coalition S makes decision 
after N\S , has been preferred as more representative way of defining the v(S) 
for the waste producers cost reduction game. Moreover, this approach can be 
viewed as completely risk-averse attitude when coalitions do not possess infor­
mation about their mutual composition, making exclusion of partition function 
approach reasonable. 

Thus, the main idea is to propose the value function, which wi l l reflect a realistic 
worst-case scenario of the W t E treatment costs minimization by an arbitrary munic­
ipal union. In the following mathematical programming problem, notation is given 
as follows: M is set of W t E plants, N is set of waste producers, S is coalition of mu­
nicipalities (subset of N), v(S) is value function of S (total annual waste treatment 
costs of S), remaining notation coincides wi th the model from the previous section. 
Then, waste producers' cost reduction game can be defined as a pair (N,v), where 
iV is a set of waste producers and v is the value function defined as 

(4.70) 

(4.72) 

J6M 
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Xij > 0, Mi e S, V j e M, (4.73) 

(x'^XS)i(,N\s, j(iM e aigcostsN\S (4.74) 

costsN\S = m m V V (c*, + cf) x^-, (4.75) 
,J j£Mi&N\S 

s.t. E xi,o < w% V i e M; (4-76) 
iev\s 

E = > Vi <E N \ S, (4.77) 

K i j > 0, Vz £ N\S, V j e M . (4.78) 
Each waste treatment costs component is represented as linear variable costs, 

where the amount of waste is multiplied by transportation cost and gate fee per ton 
of waste. Most of the constraints are the same as in lower-level problem of W t E 
plants' price-setting. For the sake of clarity, we describe their role once more time. 
Expression (4.70) represents the minimal amount of total costs, that can be achieved 
by coalition S. Constraints (4.72), (4.73), and (4.77), (4.78), ensure that a l l waste is 
treated, and forbid negative waste flows. Constraint (4.76) ensures, that the capacity 
of W t E plants cannot be exceeded, when computing optimal waste flows of coalition 
N \ S in expression (4.75). Constraint (4.71) guarantees, that coalition S optimizes 
its waste flows on the capacities remaining after N\S. This value function describes 
the pessimistic setting, in which the coalition S makes decision after the coalition 
N \ S, and is assumed to describe upper bound of W M costs of coalition S. The 
considered v has been originally presented in [83]. It is crucial to assume, that the 
total capacities of regional W t E plants should be greater than (or equal to) total 
waste production in a region. Thus, once more, the main assumption of the whole 
model is 

It is important to explain, how particular solution (x-J^S)I&N\s, J^M can be chosen, 
since in case of ambiguity it can drastically affect v(S). 

1. A t first, the problem costsN\S is solved. 

2. After that, we obtain the particular solution (x'-j^S)i^N\s, J&M as 

(XijKS)i£N\s, JGM e arg max E E (ch + cj) x^r-

E xi,j — wi > V-i e A ,̂ 
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E E (Cti + Ci) X i J = C O s t s N \ S ; 
j&Mi£N\S 

xid > 0, Vz e A , V j e M . 

However, when performing simulations in the case study, the arbitrary solution of 
costst]y\s is taken, to better reflect randomness of real world decisions and limited 
rationality of outsiders. Now, the effect that can be achieved through cooperation 
wi l l be explained and demonstrated in detail. 

4.2.2 Motivational examples 
In this section, two exemplary problems wi l l be presented. Each problem has the 
same data for the sake of better demonstration of the cooperation restriction impact 
on a game outcome. Resulting costs wi l l be compared by the means of the Shapley 
value computed for each problem. The first exemplary game (JV, v) is represented by 
Figure 4.5, where used notation fully corresponds to the previously given description. 
From the practical point of view, such a setting can be explained in the following way. 
In the case N is formed, waste producer 2 wi l l will ingly choose the more expensive 
services of the W t E plant 1 in order to reduce total costs by leaving free capacity of 
W t E plant 2 to waste producers 1 and 3. 

Figure 4.5: Exemplary problem without cooperation restrictions 

Increased expenses of waste producer 2 wi l l be then compensated by waste pro­
ducers 1 and 3 from the money they spared, because even with such compensation 
their costs wi l l be less, than in a case wi th absence of cooperation. The second ex­
emplary problem is represented in Figure 4.6. The yellow shape presents a natural or 
legal barrier, which in a certain way, divides waste producers in the considered area. 
This setting can be represented by a static coalition formation game (N, v, V) wi th 
the pre-defined coalition structure V = {{1,2}, {3}}. 

In Table 4.5, the values of the characteristic function for both considered games 
is presented. 

Table 4.5: The characteristic function values in M E U R 

"Game/Coa l i t i on {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3} 
(N,v) 7 7.2 7.8 13.75 14.35 14.25 19.75 
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Figure 4.6: Exemplary problem with cooperation restrictions imposing pre-defined 
coalition structure 

Then, the Shapley values for each game can be obtained in accordance wi th Table 
4.6. It can be highlighted, that costs distributed on a basis of the Shapley value are at 

Table 4.6: The Shapley values in M E U R 

Game/Waste producer 1 2 3 
(N,v) 6\35 6A 7~~ 

(N,v,P) 6.775 6.975 7.8 

least the same as they were in a case of absence of cooperation for each player. Thus, 
cooperation in each setting has proven itself as profitable. It enables municipality, 
which does not have W t E infrastructure and is distant from other W t E plants, to 
lower its waste treatment costs through negotiation wi th the closest municipality, that 
is situated near some W t E plant. The latter municipality can choose to treat its waste 
at another W t E facility to let the former municipality minimize its transportation 
costs (in real life, it is enough to subsidize transportation of former municipality). 
The part of occurred financial surplus, i.e., difference between the potential non-
cooperative scenario costs and the real costs achieved through cooperation, can be 
then transferred to the latter municipality as a compensation. Now, we wi l l study 
the theoretical properties of the considered game. 

4.2.3 Properties of the game 
Throughout the whole section, we make the following assumption: 

• Each considered waste producers' cost reduction game (N, v) has unique solu­
tions (x'-^i^sjeM = axg costss, VS C N. 

Though, this assumption might seem quite strong, it is necessary in order to be 
able to study properties of the considered game and compare the underlying linear 
programming problems. When solving practical problems, addition of sufficiently 
small random e G K (positive as well as negative) to each considered transportation 
cost might help to create unique decrease directions to meet this assumption. We 
begin wi th the properties, that might have practical consequences wi th respect to 
costs distribution and coalition formation process during our case study. 
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Cohesivity and balancedness 

The game (JV, v) considered in the motivational example is cohesive. When studying 
a cohesive game using merge and split rules in terms of uti l i tarian order and T>hv or 
T>p stability, this property implies that if a merge and split process wi l l start from N, 
then it wi l l never split. We begin wi th the following lemma. 

Lemma 4.2.1. Assume a waste producers' cost reduction game (N,v). Then, 

E X'S ^ E C T C TV, Vj G M. 

Proof. This relationship can be proven by a contradiction. Assume there exist j G M, 
T C N and S C T , such that 

.7 

Since (x'-j)itEs,jtEM is the unique optimal solution for costs5, there should exist 0" > 0 
and i G «S, j G M \ {j}, such that a solution constructed as 

i,T _ c l,T , r / / ,T \ \ 

wi l l lower value of X l j e M £ies(clj + c j ) x * j compared to (XjJ)jeT,jeM, while the value 
of YIJSM £ieT\s(ctj + c9j)xi,j w m remain the same. Therefore, the following relation 
wi l l hold 

E E(''„ + 4K 'J + ( c b + <f )(4J-(V» • (4j + <f )(4J + *) <cos^. 

Thus, we were able to construct solution that produces value which is less than 
costsT under the same constraints. However, this is a contradiction wi th optimality 

of (x-j )i£T,jeM for COStST- • 

Then, the following relationship holds. 

Lemma 4.2.2. Assume a waste producers' cost reduction game (N,v). Then, 

costsT < costsT\s + v(S),VS CTCN. 

Proof. It is sufficient to prove that optimal solution ((x*j)iGs,jGM, (̂ iĴ 5)jeT\s,jeM) 
that produces value costsT\s+v(S) for X ] j e T (c ' j - l - c | )x j j is always feasible for problem 
costsT- The main interest dwells in the problem wi th capacity constraints, since other 
constraints are tr ivial ly satisfied. It is clear that by the definition of v(S) 

ie-s ieN\s 

holds. However, from Lemma 4.2.1, 

E<f + E 4,rs<E<f + E * : r<» j . v ^ M , 
ie-s ieT\s ies ieN\s 

which completes the proof. • 
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W i t h respect to the statement of the previous lemma it is important to note, that 
costsN = v(N) holds. Lemma 4.2.2 also enables necessary to establish quite obvious 
relationship between costss and v(S). 

Corollary 4.2.3. Assume a waste producers' cost reduction game (N,v). Then, 

costss < v(S),VS C N. 

Proof. It is a direct consequence of Lemma 4.2.2 for S C S C N: 

costss < costss\s + v(S) = v(S). 

• 
Now, we can proceed to the main theorem on cohesivity of waste producers' cost 

reduction games. 

Theorem 4.2.4. General waste producers' cost reduction game (N,v) is cohesive. 

Proof. Assume arbitrary partition V = {Si,Sk} G VN of N wi th k — 2, ...,n (case 
k — 1 is tr ivial) . Then, by Lemma 4.2.2, we have 

v(N) < v(S1) + costsN\Sl-

B y subsequent application of Lemma 4.2.2, 

fc-i 
v(N) < v(Si) +v(S2) + costsJV\(SIUS2) < ••• < ^ ^ ( ^ i ) + costs 5 f e . 

i=l 

Then, wi th the help of Corollary 4.2.3, we obtain 

fe-i k 

V(N) < J2<si)+costssk < J2v^--
i=l i=l 

which completes the proof. • 

Thus, when playing as one large entity, total costs of the waste treatment in a 
region are as minimal as possible. The game from the motivational example also has 
a non-empty core (the Shapley value of the game belongs to the core). However, 
Shapley value, that has been chosen as a suitable distribution of waste treatment 
costs, does not necessarily belong to the core of the non-convex game. Therefore, it 
might be beneficial to consider the core distribution to compare this stable solution to 
the Shapley value. We have focused ourselves on finding point (X J ) J G J V of the core for 
every cost minimization game (TV, v). B y finding such a distribution, the balancedness 
of the general waste producers costs minimization game wi l l be automatically proven. 
The cohesivity of the general game (TV, v) has motivated us to study costs of each 
i G N when v(N) is calculated, since it is the optimal partition wi th respect to social 
welfare. A t first, the following important lemma is introduced. 
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Lemma 4.2.5. Let us assume waste producers' cost reduction game (N,v). Further, 

we wi l l use notation costs'^3 := Ylj^MYli^N\s(ci,j + ^j)x'i^ • Then, the following 
relation holds 

costsN\S < costs^S,yS C AT. 

Proof. The vector (x'-j )i£N\s,jeM from the solution of costsN = v(N) is always fea­
sible for costsN\s: 

) < 9,-,Vj 6 M ^ ^ (47) < c,, V j G M . 
ieiv i ev \ 5 

Since other constraints and objective functions of both problems coincide, minimiza­
tion of costsN\S is always less or equal to costs^S. • 

Then, we proceed to the next lemma about the relationship of costsff and v(S). 

Lemma 4.2.6. Let us assume waste producers' cost reduction game (N,v). Then, 
the following relation 

costss

N < v(S),VS C N, 

holds. 

Proof. Clearly, 

v(N) = costs^ + c o s t s ^ S 

holds. Additionally, from Lemma 4.2.2, 

v(N) < v(S) + COStSN\S 

holds. Thus, we have 

costs^ + costs^S < v(S) + costsN\S 

or, equivalently, 

costs^ + costs^S — costsN\S < v(S). 

However, from Lemma 4.2.5 it follows that 

costsff + e < v(S), 

for some e > 0, implying 
costsN < v(S). 

• 
Now, the main theorem on core of the general waste producers cost reduction 

game can be established. 

Theorem 4.2.7. Let us assume waste producers cost reduction game (N,v). Further 
assume the costs distribution (XA^N such that 

Then, (xi)i&N G C(N,v). 
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Proof. Two following properties of (xi)i£N should be proven: 

E^ = v(N) 

and 
J^Xi < v(S),VS C N. 
ies 

Clearly. 

Then, using the Lemma 4.2.6, 

E£« = E Efe + = < v(S),VS C TV. 

• 
The result of the previous theorem and equivalence between balancedness and 

core non-emptiness imply the following corollary. 

Corollary 4.2.8. Every waste producers' cost reduction game (N,v) is balanced. 

Now, we proceed to another important property that might substantially impact 
the distributed dynamic coalition formation process. 

Subadditivity 

It is important to note, that the game (TV, v) from the motivational example is sub­
additive. Unfortunately, this important property is not satisfied for all games of the 
considered type. 

Lemma 4.2.9. Waste producers cost reduction games are not subadditive in general. 

Proof. We prove the lemma via constructing a counter-example. Assume a waste 
producer game wi th the following setting: TV = {1,2 ,3 ,4} , M = {1,2,3}, c9 = 
(50,50,50), wp = (100,100,100,50), wc = (100,100,150), and the following trans­
portation costs matrix 

/10 4 20 \ 
t _ 8 2 20 

C " 20 2 4 ' 
\ 20 20 2 / 

It can be easily verified that 

• costS{2,3A} — 13200 wi th non-zero x'2 2 = 100, £33 = 100,x'A Z = 50, 

• costS{ii3i4} = 13400 wi th non-zero x[ 2 = 100,x' 3 3 = 100,x' i 3 = 50, 

• costs{3^} = 7800 wi th non-zero x'32 = 100,x'A 3 = 50, 
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implying 

• 1>({1}) = 6000 wi th non-zero x\ l — 100 and non-trivial constraint X\^ < 100. 

• v({2}) = 5800 wi th non-zero x\x = 100 and non-trivial constraint 
x2,i < 100, 

• v({l,2}) = 12800 wi th non-zero x\ 3 = 100, x\x = 100 due to non-trivial con­
straints + x 2 j i < 100, X i j 3 + x2j3 < 150 — 50. 

It can be seen that 
v({l})+v({2})<v({l,2}). 

Thus, we can conclude that waste producers' cost reduction games do not satisfy 
subadditivity in general. • 

The proof of Lemma 4.2.9 also makes it possible to establish the following corollary 
about properties related to subadditivity. 

Corollary 4.2.10. Waste producers' cost reduction games are not weakly subaddi­
tive or convex in general. 

Unfortunately, it is rather challenging to establish some easily verifiable condition 
subadditivity or convexity, since the relationship between J2ieN\(suT) x'-j'S'('SuT'1 

I,N\S . ^ ',N\T 

and Yli£N\s xij + S « e v \ T xi,j f ° r s o m e 3 e M can be hardly predicted. 

Additivity 

Since some games are not subadditive, it was decided to focus on studying a condition 
(put on input parameters of the game) that makes cooperation during the game 
non-trivial for at least one coalition. Thus, our aim is to establish easily verifiable 
condition, that wi l l demonstrate if the game is or is not additive. A t first, let us focus 
on the relationship between Y^T&V COS^ST and costss for arbitrary parti t ion V G Vs 
of S C N. We begin with the following lemma. 

Lemma 4.2.11. Assume a waste producers' cost reduction game (N,v). Then, 

E costsr < costss yS C N, V P G Vs, S C N. 

Proof. Assume arbitrary parti t ion V of S. Since feasible regions of each costsr, T G 
V, are not interrelated, J2TeV costsr can be equivalently reformulated as a problem 
wi th the same objective function as costss- Thus, we only have to demonstrate, that 
feasible region of costss is a subset of a feasible region of J2TeV costsx- A n arbitrary 
vector (xij)ies,j£M from feasible region of costss t r ivial ly satisfies 4.78 and 4.77 of 
X r̂e-p COS^ST- Moreover, 

x ^ ^ WP Y? G M E *ij < WP V T e P ' e M : 

which completes the proof. • 
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The following lemma wi l l demonstrate under which condition equality holds in 
the relationship established above. 

Lemma 4.2.12. Assume a waste producers' cost reduction game (N,v). Then, 

J2x'i ^ e M x'g = x g , V S c iv, Vz G 5, V j G M . 
i e v 

Proof. The unique (x'-j)ies,jeM composed of solutions (x'-j)jeM of costSi fulfills 4.78 
and 4.77 of costss- Then, 

£ < '<;•• V j e M ^ ^ < V j G M , 

making it feasible and, as a consequence of Lemma 4.2.11 for "P = {z|z G S} G Pgr, 
the unique optimal solution for the costs5. • 

Corollary 4.2.13. Assume a waste producers' cost reduction game (N,v). Then, 

x'i ^Yl c o s t s T = costss, C TV, V P G Vs-

Then, the following implication of J2ieN x'-j < Wj, V j G M, can be established. 

Lemma 4.2.14. Assume a waste producers' cost reduction game (N,v). Then, 

x ' i ^ wj> V j G M ^ x-'j = x'^VS CN,ieN,j G M . 
i e v 

)/. A n assumption l^ieN 5''' Proof. A n assumption X ^ e A r x i j —
 wj^J

 e ^ a n d Lemma 4.2.12 imply that 
( x g ) j G 5 j G M is always feasible for w(S'), since 

«S5 ieAT\S i£N\S 

Then, from Corollary 4.2.3 and uniqueness of (x-j)i£s,jeM, we have 

x*J = x'^,yscN,ieN,jeM. 

• 
Now, we can proceed to the first theorem on the additi t ivty of the studied game. 

Theorem 4.2.15. Assume a waste producers' cost reduction game (N,v). Then, 

x'lj < Wj,Vj G M =>- (N,v) is additive. 

Proof. From Lemma 4.2.14, we have, 

V(S) = J2v({j}) = £ c o s £ s w , V S C N. 

• 
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As a result, non-existence of a conflict over W t E capacities between waste pro­
ducers, when they are individually optimizing costs on the «empty» network, is a 
sufficient condition for the game to be additive. Now, the necessity of the established 
condition wi l l be proven. A t first, we demonstrate that additivity of the game brings 
following implications. 

Lemma 4.2.16. Assume a waste producers' cost reduction game (N,v). Then, 

(N,v) is additive => x*'J = x'g = x'(p V S C 7V,Vz G S, V j G M. 

Proof. Lemma 4.2.2 and Corollary 4.2.3 lead us to the following expression: 

v(N) < costsN\s + v(S) < v(N \S) + v(S),VS C N. 

However, addit ivity of (N, v) implies that 

v(N) =v{N\S)+v{S),VS C N, 

and 

costsN\s + v(S) = v(N \S) + v(S),VS C N. 

A s a result, we obtain 

costsN\s = v(N \ S),VS C TV. (4.79) 

Then, (4.79) and uniqueness of solution of costsN\S imply, that 

x*f = x'g, VS c N, Vz e 5, V j e M . 

A t the same time, additivity of the game and (4.79) also imply, that 

E costsr = costss, VP eVsyS CN, 

and, from Lemma 4.2.11 and uniqueness assumption, we obtain 

• 
After that, the necessity of the proposed condition can be established in the 

following theorem. 

Theorem 4.2.17. Assume a waste producers' cost reduction game (N,v). Then, 

(N,v) is additive =>• x'£ < w^Wj G M. 

Proof. The proof can be performed by a contradiction. Assume, that there exists 
some j G M, such that YlieNxij > wj' Then, (x-j)i£N,jeM is infeasible for v(N), 
being a contradiction with the additivity of the game due to Lemma 4.2.16. • 

Corollary 4.2.18. Assume a waste producers' cost reduction game (N,v). Then, 

E x i J ^ wpVJ e M ( A r ' u ) i s additive. 
i&N 

Thus, in waste producers' costs minimization game, cooperation might bring ben­
efits, when for at least two waste producers the most economical optimistic option of 
the individual waste treatment becomes infeasible due to l imited capacities. 
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Summary of theoretical findings and their implications with respect to 
case study 

Since necessary and sufficient condition of additivity has been obtained, it is possible 
to verify if the study of the particular W M setting is reasonable. A t the same time, 
if the game is not additive, it wi l l always have a core element 

(xi)ieN e C(N,v), Xi = ^(clj + c^x'-j , V i G N, such that 3S C N : > v(S), 

due to general balancedness and cohesivity of waste producers' cost reduction games. 
Thus, after verifying J2ieN 

we are able to calculate a stable 
allocation of the total waste treatment costs v(N). The whole process requires only 
\N\ + 1 linear programming problems to be solved. 

However, in practice, when large number of players is considered (case of the na­
tional W M network), it is rather improbable, that the grand coalition TV wi l l form. 
Indeed, to sustain such a large network of micro-regions (consisting of smaller mu­
nicipalities), additional investments might be needed. This consideration can be 
supported by our finding that the waste producer's game might not be subadditive. 
Thus, it is not completely reasonable to study this game using the canonical cooper­
ative games. Therefore, it was decided to employ the coalition formation approach. 
Since there is no reason to assume existence of some pre-defined coalition structure, 
we have chosen to apply dynamic approach. The centralized dynamic approach is 
impractical for the large games. This is why its dynamic alternative wi l l be employed 
through merges and splits. In the next section, the proposed implementation of the 
coalition formation process wi l l be discussed. 

Distributed dynamic coalition formation 

Whereas the concepts from theoretical section provide necessary elements to formal­
ize dynamic coalition formation, they do not explain, how outcome of such process 
should be computed. Moreover, a particular implementation of the merge and split 
process might directly affect a found stable outcome. In this work, the following im­
plementation is suggested (the implementation has been programmed in M A T L A B ) . 

The ini t ial coalition structure is assumed to correspond to the state with no co­
operation among players. The merge rule is always applied as first and operates 
exclusively on pairs of coalitions. Coalitions to be merged are subsequently taken 
from a set of all available pairs of coalitions in coalition structure. If the merge oper­
ation is performed, coalition structure is updated, and merge rule application starts 
again. When no merge operation can be performed, the algorithm proceeds to the 
application of a split rule. It iterates over all coalitions in the coalitional structure 
and checks the split operation assumption for every parti t ion of the currently pro­
cessed coalition. Partitions are taken from a set of all possible partitions. If the 
split operation is performed, the coalition structure is updated, and the split rule 
continues to run. When no split operation can be performed, the process proceeds 
to merge rule application. If in one full cycle (one application of merge rule and 
one application of split rule) no merge or split operation has been performed, the 
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merge and split algorithm ends. The ordering in combinatorial sets (set of all pairs of 
coalitions and set of all partitions) is obtained via the M A T L A B function „nchoosek". 
The assumptions about a starting coalition structure and the application of merge 
rule on pairs of coalitions are aimed at sustaining computational complexity on the 
desired level. Since every game has been proven to be cohesive, if the merge and split 
process wi th respect to util i tarian order wi l l start from N, it wi l l not be splitted any 
more. In the case of strict cohesivity, any starting profile wi l l lead us to N, if we 
consider not only pairs but all possible merges. Thus, when no additional costs are 
assumed, the first merge operation might result into complete cooperation and the 
formation of the grand coalition. In such case, the large set of players wi l l potentially 
lead to the combinatorial explosion during the split operation, since all possible par­
titions must be checked. To overcome this potential problem, it has been decided to 
embed additional cooperation costs into the considered approach. Such penalization 
might reflect increasing financial costs for retaining efficient communication between 
coalition participants and coordination of mutual actions. 

Additional costs algorithm. In order to capture the impact of additional coop­
eration costs, the definition of value function has been modified to: 

v*(S) = v(S) + J ] y/\S\^JLv({i}). 

The value function now represents the sum of the original value function and ad­
ditional cooperation costs, which are represented as a sum of value function values 
corresponding to the individual micro-regions contained in S C N. The latter term is 
multiplied by a square root of coalition S size minus one to embed nonlinear penaliza­
tion of greater coalitions (with v*(i) = v(i)). To obtain uniform coalition, the latter 
term is also multiplied by a penalization term p e [0,100], which wi l l be further used 
as an instrument to manipulate wi th the coalition formation process. In practice, it is 
almost impossible to find a general cost function describing the costs of cooperation. 
It is intuitively clear, that it wi l l have positive correlation wi th the cardinality of the 
coalition, therefore the proposed function is in line wi th the basic premise. The exact 
idea of the manipulation wi th penalization dwells in an algorithm, which is aimed 
at obtaining the collation structure wi th the maximal average coalition size, through 
iterative alternation of penalization decreases and increases. The design of the pro­
posed algorithm is sketched in Figure 4.7. In Figure 4.7, p wi th the lower subscript 
represents particular value of penalization, k is step wi th which penalization changes 
in each iteration, Cj = {S1,..., Sm} is a particular coalition structure, and ac• — — 
is an average coalition size under structure Cj. The structure Cstart represents start­
ing coalition structure for application of merge and split algorithm (it corresponds to 
fully non-cooperative case only during the first penalization decrease). 

Distributing the costs 

Unfortunately, it may not be possible to generalize the proposed core solution 
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Figure 4.7: Penalization-based coalition formation algorithm 

into domain of coalition formation games. Indeed, (X^^N, resp. (xi)ies,S C N, 
may not belong to CCF(N, v, V), resp. CCF(S, v\s, {S}). Moreover, these cores may 
be empty. Therefore, the proposed core distribution wi l l be used only for the sake 
of comparison to demonstrate how «far» the Shapley value wi l l be from the stable 
distribution of v(N). 

The Shapley value has a reduction property and this solution concept wi l l be 
utilized to suggest fair distribution of costs among resulting coalitions of municipal 
units. Due to the size of the players' set in the considered case study (47), a Shapley 
value estimation, based on sampling theory [15], wi l l be employed. In [15], the Shapley 
value is estimated as the mean value of the marginal contribution of the player to 
coalition of player's predecessors in permutation (players assigned to a smaller natural 
numbers than the considered player), taken from a sample, in which each permutation 
on N is included with the probability equal to 1/|JV|!. Now, the sampling algorithm 
wi l l be formalized with respect to the definition of the Shapley value uti l izing Weber 
strings/permutations. Assume sample of m permutations. In step k of the algorithm, 
permutation ak G C5N is taken from the sample and 

xf^vW-viRiMi}), 

where 
Ri = {ak(l), ...,ak(j)}, j G N such that ak(j) = i, 

is calculated for each % G N. Then, after the m steps, the Shapley value estimate 
(f>(N, v) can be obtained as 

Em «j, 
fe=l Xi 
m 

Such an estimate can be calculated in polynomial time, it is also unbiased and con­
sistent [15]. 
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4.2.4 Case Study 

The case study dwells in the application of the modified merge and split algorithm to 
the waste producers' cost game, where the set of players consists of 47 micro-regions 
(municipalities with extended authority), which are presented within three regions of 
the Czech Republic: the Zl in Region, the Olomouc Region, and the South Moravian 
Region. In order to meet the requirement, that all waste meant for energy recovery 
can be handled by the Czech Republic's W M network, W t E plants, that do not exist, 
but are currently being planned, have also been assumed. This makes a total of seven 
W t E plants. The data on waste generation of the micro-regions has been provided 
by the Minis t ry of the Environment; financially sustainable gate fees, capacities, and 
transportation costs have been obtained from [61]. The additivity condition has been 
checked and the game in the considered setting is not inessential. A s it was already 
mentioned, the ini t ial coalition structure corresponds to the state wi th no coopera­
tion among the micro-regions, i.e. the process starts wi th 47 disjoint coalitions, each 
represented by only one municipality. For the case study, starting penalization value 
has been set to 2 and the step has been set to 0.1. This relatively low penalization 
might be explained by a pessimistic setting of the problem, where only large coali­
tions might substantially reduce their total costs through cooperation. A schematic 
merge and split process for the penalization of 1.2 during first penalization decrease 
is depicted in Figure 4.8. The algorithm run information is presented in Table 4.7. 

Table 4.7: Average coalition size changes 

Penalization 
1st 1st 2nd 2nd 3rd 

Penalization 
decrease increase decrease increase decrease 

2 1.044 
1.9 1.119 
1.8 1.119 
1.7 1.119 
1.6 1.093 
1.5 1.119 1.306 
1.4 1.237 1.343 1.382 
1.3 1.424 1.382 1.382 
1.2 1.469 1.469 1.469 1.469 
1.1 Err 1.469 1.469 
1 1.567 1.567 1.567 

0.9 Err Er r 

The 3rd increase column has been omitted, since it fully copies the 2nd increase 
column. In each penalization increase step, few more iterations have been computed 
to ensure, that average coalition size is consistently decreasing. A l l resulting coalitions 
wi th the cardinality greater than one, can be considered as a steady and stable 
outcome. The map of the resulting structure is depicted in Figure 4.9. 
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Figure 4.8: Merge and split full run for the penalization of 1.2 

Discussion 

In this case study, the algorithm has enabled to create three "clusters", which at­
tracted a certain number of micro-regions, due to substantial total costs decrease 
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Figure 4.9: M a p of the resulting municipal unions 

regardless of the applied penalization. These coalitions can be referred to as the 
most profitable, while other micro-regions are not interested in cooperation under 
additional cooperation costs. This implies, that cooperation cannot enable them suf­
ficient compensation due to their waste productions and locations wi th respect to 
the W t E plants, which are indicated by red dots in Figure 4.9. These dots do not 
correspond to the real or planned location of W t E and only indicate their existence 
in a micro-region. Evident geographical inconsistencies in coalitions can be explained 
by the fact, that the considered micro-regions already represent aggregated smaller 
cities. Moreover, the planning of the waste collection is not taken into account in the 
model, which might promote cooperation between distant micro-regions. 

Clearly, the proposed algorithm must be further improved to provide precise in­
structions in case of possible irregularities. A more comprehensive study of the devel­
opment of average coalition size depending on penalization is also needed. Moreover, 
other "uniformity" metrics such as geometric mean might be worth considering. The 
merging of pairs of coalitions remains the main disadvantage of the current imple­
mentation, but it is necessary to mitigate the risk of combinatorial explosion. When 
working wi th smaller player sets, merging three or more coalitions into one could also 
be considered. 

The stable outcome. From Figure 4.9, it can be seen, that the resulting coalitions 
are not spatially consistent: cooperation of distant micro-regions can be profitable. 
Thus, formation of municipal unions cannot be solved solely intuitively based on 
geographical vicinity between subjects, as it is usually done in practice. The resulting 
coalitions have showed that micro-regions, where W t E facilities are situated, tend 
to be major players of their coalitions, around which other players are gathering. 
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Due to assumed zero transportation costs, these "centers" tend to reserve capacities 
of their W t E plants to other participants of corresponding coalitions. Whi le the 
greatest coalition consists of three such "centers" ("Brno", "Přerov" , and "Zlín") , 
which explains its greater size, another coalition has occurred around "Otrokovice" 
wi th a W t E plant of large capacity and competitive gate fee for its region. The 
last coalition has been created around "Valašské Meziříčí" with a W t E plant, which, 
though of a relatively small capacity and higher gate fee, stil l provides possibility to 
achieve smaller waste treatment costs for local micro-regions. However, the existence 
of a W t E plant wi thin a micro-region does not always guarantee that such micro-
regions wi l l attract others. For example, "Hodonín" micro-region, which has its own 
W t E facility, does not serve as a gathering "center" for any coalition. This fact can be 
explained by the fact that "Hodonín" is situated close to "Brno", but its W t E plant 
is uncompetitive compared to "Brno" W t E plant. It can be concluded that obtained 
results lack irrationalities and the presented approach has potential in research on 
this topic. The case study results validate the proposed method and indicate, that 
the developed approach can be applied to locations wi th analogous demographical 
conditions. 

The proposed distributions of waste treatment costs. The Shapley value has 
been chosen as a fair method of a total waste treatment cost distribution between 
micro-regions. Three possible scenarios have been considered to provide a better 
image about the role of cooperation in the presented problem. These scenarios are 
the following: I. fully non-cooperative case, II. fully cooperative case, III. stable 
outcome with non-cooperating outsiders (three proposed coalitions are considered 
and remaining micro-regions do not cooperate). For the sake of better comparison, 
all scenarios have been computed using the original function v. The suggested point 
of the core C(N,v) has been calculated only for the fully cooperative case. The 
proposed costs distributions are presented in «Shapley values.docx» of Appendix. 
The results for the I. scenario are represented by total waste treatment costs per ton 
of waste. The results of scenarios II. and III. and the proposed core distribution are 
represented by percentual savings compared to the I. scenario. The sampling method 
has been employed to estimate the Shapley value of coalitions with cardinality greater 
than 7, where the sample size has been set to 10,000. 

A t first, it is necessary to emphasize that estimates of Shapley value in II. and III. 
scenarios are smaller than v({i}) values of I. scenario. Thus, under both scenarios 
players were able to prosper from cooperation. Expectedly, micro-regions in which 
W t E plants are situated play a major role in their coalitions. This fact has also 
manifested itself through the suggested costs distributions. Mainly, micro-regions 
wi th production, which is smaller than capacity of their local W t E plant, can achieve 
substantial savings through cooperation. Other micro-regions in these coalitions, can 
also save considerable amount of money, especially if their waste production is high 
wi th respect to their geographical area. Therefore, micro-regions in which waste 
treatment facilities are situated and micro-regions wi th locally above-average waste 
generation should be maximally interested in cooperation and initiate the creation of 
municipal unions in order to substantially lower their waste treatment costs. Whi le 
pursuing their own wealth, they can also reduce the financial impact of legal changes 
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on the other micro-regions. A s expected, global cooperation, corresponding to the II. 
scenario, is the most profitable outcome for everyone. According to the performed es­
timate, in case of global cooperation, all players can lower their total waste treatment 
costs. Whi le the III. scenario represents an opportunity to lower waste treatment 
costs for members of the previously described coalitions, it should be noted, that it 
cannot offer such substantial savings that can be achieved through the II. scenario. 
It should be concluded that decision of the micro-regions to cooperate is based on all 
considered factors. Waste productions and locations play an equally eminent role in 
the process of coalition formation. The «at t ract iveness» of a micro-region in coali­
t ion formation is not guaranteed exclusively by existence of a nearby W t E or large 
waste production, rather it is a combination of both factors. There is obviously no 
intention to cooperate wi th micro-regions with small waste productions, since they 
cannot offer any benefits to their partners. Then, after passing a certain threshold, 
where waste production becomes sufficient wi th respect to location of a micro-region, 
attractiveness of the micro-region begins to grow. Due to the clear implication, that 
some micro-regions might play fundamental role in their coalitions, currently widely 
applied policy of equal waste treatment tariffs in municipal unions should be revised. 

The proposed core distribution demonstrates that, in case of full cooperation, some 
waste producers are able to achieve enormous savings. They can save twice more than 
under the distribution proposed by Shapley value for fully cooperative scenario II. 
The large differences between the Shapley value and core point indicate that Shapley 
might not be stable distribution. However, it distributes costs in a more fair, uniform 
way. Indeed, in some cases stable core distribution provide savings comparable to 
III. scenario or does not provide any savings at a l l . 

Sensitivity analysis of the proposed method. To verify the stability of the 
model and assess the impact of the input variables on the outcome, a sensitivity anal­
ysis has been conducted. Whereas some significant biasedness of the data on W t E 
plants and transportation can hardly be assumed, the main source of the variability 
of the whole model is considered to dwell in the waste production data. After a brief 
analysis of the available waste production time series data, it has been concluded, 
that in the last ten years average fluctuation in waste production for the considered 
micro-regions was around 5%. Therefore, it has been suggested to generate 10 new 
scenarios, using 10 randomly generated samples from the continuous uniform distri­
bution on the interval [—0.05; 0.05]. These sample data have been multiplied by the 
originally considered waste amounts and then added to the original waste production 
data. Thus, the effect of imprecision in the waste production data on the outcome of 
the model has been studied using these 10 scenarios. For each of these scenarios, the 
resulting coalition structure and resulting waste costs distribution have been com­
puted using the above-proposed coalition formation method. Summarization of the 
sensitivity analysis results can be described as follows: 

• The micro-regions, that participate in a union in the original scenario, also 
participate in unions generated in 85% of the new scenarios on average. 
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• O n the contrary, micro-regions, that are not interested in cooperation in the 
original scenario, cooperate only in 26.7% of the newly generated scenarios on 
average. 

• 11 out of 20 micro-regions, that cooperate in the original scenario, cooperate in 
all 10 scenarios. 

• The number of unions in the generated scenarios varies from 2 to 5, wi th the 
modus equal to 3 (4 out of 10 scenarios), being the number of clusters in the 
original scenario. 

• From 1081 of all possible pairs of micro-regions, only 16 pairs cooperate in more 
than half of scenarios. 15 of these 16 pairs also participate in the same union 
in the original scenario. 

From the above-presented points, it can be concluded, that the sensitivity analysis 
has demonstrated the relative stability of the method. Evidently, there are micro-
regions that have a strong incentive to cooperate, as well as there are micro-regions, 
that are not interested in joining coalitions in the most of scenarios. Moreover, there 
is an obvious trend in cooperation between particular micro-regions. Clearly, the 
algorithm is quite sensitive wi th respect to the resulting number of clusters, which 
can be partially explained, that the 5% change in waste production of the large 
micro-region represents a substantial change of the original setting. 
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Chapter 5 

Conclusion 

In this P h . D . thesis, application of G T approaches to problems of W t E treament 
of non-recyclable waste in W M networks has been demonstrated. The work has 
provided theoretical insight into domain of N G T and C G T . The latter branch has 
been discussed wi th respect to class of canonical coalitional games and coalition 
formation games. The performed review has enabled us to establish existing research 
gaps. These gaps have highlighted the contribution of this thesis. In particular, the 
autor's original research has been aimed at two types of games. 

The W t E plants' price-setting problem has been thoroughly studied from two 
perspectives: setting the optimal prices for one W t E plant and the search for N E 
between W t E plants. The problem has been defined as a normal-form game of W t E 
plants, wi th gate fee as their strategies. Such a game has peculiar properties, wherein 
maximizing a player's payoff leads to a bilevel programming problem between one 
W t E plant and waste producers. However, these instances of bilevel optimization 
cannot be solved in polynomial time. After the extensive investigation of the bilevel 
optimization methods, the novel heuristic approach to solve the considered bilevel 
problem has been proposed. The approach considers that a simple iterative update of 
the lower-level linear problem solution provides sufficiently reliable estimates of waste 
flows, concerning which the optimization on the upper level is performed. Algor i thm 
performance has been validated via testing and exemplary case study: it has been 
shown that it provides fast solutions to the considered problem and produces optimal 
solutions in approximately 60% of artificial scenarios and in nearly 85% of realistic 
cases. The research has also filled the gap in the current game-theoretic literature 
since the solution of the NP-hard optimization problem is only an instrument to find 
the N E in the W t E plants' network. Combined wi th the B R D algorithm, the heuristic 
enabled the search for N E under the assumption of continuous strategy sets. This 
approach should provide more realistic insight into the reaction of other W t E plants 
to changes in gate fees. Thus, the estimate of optimal waste flows and gate fees in the 
W M network provides more reliable input to decision-makers. The proposed method 
can be potentially applied to assess the feasibility of the investments in new W t E 
plants. In particular, the exemplary problem motivated by the Czech Republic data 
demonstrated how the approach could be applied in practice to design the capacity 
of the W t E plant. The optimal capacity of the facility, which is being planned in 
one of the regions, was proposed wi th respect to the analogous projects and actual 
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waste production in the Czech Republic. The found stable gate fee outcomes exhibit 
economically reasonable behavior of waste treatment market participants, verifying 
that the developed tool can be used to simulate the market environment for the 
W t E facility. Whi le solving the exemplary problem, the hypothesis about the non­
existence of the N E in the considered game has been proposed. The existence of the 
N E has been studied for the whole class of the originally introduced price-setting 
games. Since the classical N E concept does not exist for the pessimistic setting, 
the author has proposed the modified concept of 5-NE. Existence of the 5-NE under 
different assumptions put on capacities and transportation costs has been studied. 

The waste producer's cost reduction game has been defined to suggested the most 
suitable municipal unions for adaptation to new waste treatment legislative. The 
strong connection between the studied theoretical concepts and the real-world waste 
treatment problem has been showed. The cohesivity and balancedness of the studied 
class of games has been proven. Moreover, the easily verifiable necessary and suffi­
cient condition of additivity has been established. The practical implications of the 
game properties has been discussed. The related research has provided concepts and 
instruments to study the formation of coalitions and distribution of costs for general 
TU-game wi th numerous players. The proposed method handles distributed coali­
t ion formation v ia merge and split rules under uti l i tarian order relation. In order to 
reasonably implement merge and split rules into the considered game, a cooperation 
costs model has been introduced. It has helped to achieve a more realistic outcome, 
which considers the possible suboptimality of the grand coalition and nonlinearly 
growing costs for creating a sustainable coalition of large number of players. The 
penalization percent has been used as the main instrument through which uniform 
coalition structure can be obtained and computational complexity can be retained 
at the desired level. The distribution of costs for the resulting coalition structure 
has been suggested on the basis of sampling Shapley value and the point of the core. 
Real W M data for the Czech Republic and distributed coalition formation between 
47 micro-regions have been analyzed. After the application of the presented method, 
slightly less than half of micro-regions were engaged into some coalition under re­
sulting coalition structure and their saves were varying from around 2% up to 8% 
compared to non-cooperative case. The estimated costs have provided an insight into 
how cooperation might affect the municipal budgets under transition from landfilling 
to W t E technology. The resulting coalitions can be viewed as a potential sugges­
tion of which municipal unions should be formed. The case study data revealed that 
micro-regions possessing their own W t E infrastructure can substantially lower their 
total waste treatment costs via renouncing the capacities to other participants of the 
coalition. Brief sensitivity analysis has been performed, to assess impact of changes 
in waste production of the micro-regions (being the main source of the model variabil­
ity) on the resulting costs of municipalities. The results demonstrated, that, when it 
is profitable for a municipality to cooperate, it tends to do so in majority of scenarios. 
Regarding the future research, we establish four possible directions: 

• there is an opportunity to embed reconsideration of the waste flows wi th respect 
to capacities constraint into the heuristics from section 4.1. to improve the 
performance of the method; 
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• the detailed study of the possible generalization of Theorem 4.1.8 for arbitrary 
price-setting game; 

• the estimation of the nucleolus for the waste producer's cost reduction game 

• an embedment of waste collection within the established municipal unions into 
the waste producer's cost reduction game. 

summarize the whole work: 

• the new price-setting approach, combining bilevel optimization techniques and 
G T , should help to ensure efficient and financially sustainable waste energy 
recovery; 

• the presented coalition formation approach has a potential to serve as a basis for 
design of tariffs for different public services or for design of unions in arbitrary 
cost minimization problem, where cooperation between subjects is possible. 
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