
T
BRND UNIVERSITY DF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF ELECTRICAL ENGINEERING AND
COMMUNICATION
FAKULTA ELEKTROTECHNIKY
A KOMUNIKAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF TELECOMMUNICATIONS
ÚSTAV TELEKOMUNIKACÍ

CLOUD SERVICE ACCESS CONTROL USING SMART
CARDS
ŘÍZENÍ PŘÍSTUPU KE CLOUDOVÉ SLUŽBĚ POMOCÍ ČIPOVÝCH KARET

MASTER'S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Be. Petr Muzikant
AUTOR PRÁCE

SUPERVISOR doc. Ing. Jan Hajný, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2022

Master's Thesis
Master's study program Information Secur i ty

Department of Telecommunications

Student: Be. Petr Muzikant ID: 200517

Year of
2 A cademic year: 2021/22

study:

TITLE O F THESIS :

Cloud Service Access Control using Smart Cards

INSTRUCTION:

This work focuses on the design and implementation of advanced user authentication methods for accessing the

Nextcloud open-source cloud storage. The aim of the thesis is to study the issues of access control,

authentication and structure of the Nextcloud project. The actual contribution of the thesis is the analysis and

exploration of advanced Nextcloud login options and subsequent implementation of an authentication method

based on smart cards. This solution should be tested in practice using internal faculty facilities. The work will also

include the implementation of advanced authentication protocol specified by the supervisor. The resulting

solution should provide advanced, secure and error-free authentication with respect to user-friendliness and

confidentially transmit the result of the operation to the Nextcloud server which will provide access to the cloud

storage.

R E C O M M E N D E D L I T E R A T U R E :

[1] Menezes, Alfred, Van Oorschot, Paul C. a V A N S T O N E , Scott A.. Handbook of applied cryptography. Boca

Raton: C R C Press, c1997. Discrete mathematics and its applications. ISBN 0-8493-8523-7.

[2] M U L T O S Developer's Guide [online]. , 96 [cit. 2021-09-09]. Dostupné z: https://multos.com/wp-

content/uploads/2020/09/MDG.pdf.

Date of project Deadline for
7.2.2022 8.8.2022

specification: submission:

Supervisor: doc. Ing. Jan Hajný, Ph.D.

The author of the Master's Thesis claims that by creating this thesis he/she did not infringe the rights of third persons and the personal and/or
property rights of third persons were not subjected to derogatory treatment. The author is fully aware of the legal consequences of an
infringement of provisions as per Section 11 and following of Act No 121/2000 Coll. on copyright and rights related to copyright and on
amendments to some other laws (the Copyright Act) in the wording of subsequent directives including the possible criminal consequences as
resulting from provisions of Part 2, Chapter VI, Article 4 of Criminal Code 40/2009 Coll.

doc . Ing. J a n Hajný, Ph .D.

Chair of study program board

WARNING:

Faculty of Electrical Engineering and Communication, Brno University of Technology / Technická 3058/10/616 00 / Brno

https://multos.com/wp-

ABSTRACT
Using personal smart cards for authent icat ing into web services (like cloud storage) is not
tr ivial due to the lack of open-source implementat ions, standardisat ions and documen
tat ion. Th is thesis explores the possibil it ies of such operat ion and provides a solution
based on the Estonian Web-e lD tool-set. Its main purpose is to enable state-issued
electronic ID cards to communicate with web services, but thanks to its extensibil ity
and being an open-source solut ion, it is suitable even for custom-bui ld web appl icat ions
and smart cards. Thesis outcomes include an extension of this repository in form of a
highly requested new authent icat ion token val idation library for P H P language, instal
lable Nextc loud appl icat ion enabling Web-e lD 2-factor authent icat ion and also a new
JavaCard applet fully compat ib le with the Web-e lD solut ion. Implementation results
with the developed open-source JavaCard applet are presented as well as evaluation
of the potential Czech electronic ID card usage with the Web -e lD system for easier
and faster deployment in the future. Contr ibut ions are also aimed to help developers
implement this strong-authent icat ion method in their web application services using a
high-level solution wi thout being relied on actual state-issued or proprietary solut ion.

KEYWORDS

W e b - e l D , Smart card, Web appl icat ion, Cloud storage, Authent icat ion

ABSTRAKT
Využi t í osobních čipových karet pro autent izaci do webových služeb - jako je cloudové
úložiště - není t r iv iá lní kvůli nedostatku open-source implementací, standardizací a do
kumentace. Tato práce zkoumá možnosti takové operace a nabízí řešení založené na
estonské sadě nástrojů Web -e lD . Hlavním účelem tohoto projektu je umožnit komuni
kaci státem vydávaných elektronických průkazů totožnost i s webovými službami, ale díky
své rozšiřitelnosti a open-source licenci je vhodný i pro obecné webové aplikace a vlastní,
personalizované čipové karty. Výstupem té to diplomové práce je rozšíření projektu v po
době velmi žádané nové knihovny pro val idaci autentizačních tokenů pro jazyk P H P ,
dále instalovatelná Nextc loud aplikace umožňující dvoufaktorovou autent izaci s Web-
e lD , a také nový JavaCard applet, plně kompat ib i ln í s Web -e lD . V práci jsou rovněž
prezentovány výsledky implementace s vyv inutým open-source JavaCard appletem a vy
hodnocení potenciálu využi t í českých elektronických občanských průkazů se systémem
Web-e lD pro snadnější a rychlejší nasazení v budoucnu. Dodatečným cílem práce je také
výpomoc vývojářům implementovat tuto silnou autent izační metodu do jejich webových
aplikačních služeb, aniž by museli být odkázáni na státní, propr ietami či nemoderní řešení.

KLÍČOVÁ SLOVA

W e b - e l D , čipová karta, webová apl ikace, cloudové úložiště, autent izace

Typeset by the thesis package, version 4.07; http://latex.feec.vutbr.cz

http://latex.feec.vutbr.cz

ROZŠÍŘENÝ ABSTRAKT
Úvod

Cloudové služby v dnešní době zaznamenávají značný rozmach ve všech informačních
oblastech od soukromých aplikací pro jednotlivé uživatele po sdílený výpočetní
výkon pro multi-korporátní operace. Zabezpečení dat a autentizace entit proto čím
dál tím více hraje podstatnou roli při využívání těchto služeb.

Jednou z možností moderní autentizace je využití čipových (chytrých) karet.
Jak již z názvu vyplývá, tyto karty obsahují zpravidla méně výkonný, nenáročný
mikročip, pro který je možné programovat a instalovat jednoduché aplikace v podobě
sad instrukcí. Výrobě těchto karet předcházelo vytvoření standardů, kterými čipové
karty komunikují se svoji čtečkou, resp. s připojeným zařízením. Tyto standardy
se však primárně zaměřují na komunikaci, které probíhá lokálně (např. přes USB
rozhraní), což značně komplikuje využití karet při autentizaci do cloudových služeb,
ke kterým uživatel běžně přistupuje pouze přes webový prohlížeč.

Důvodem jsou dnešní - poměrně striktní - bezpečnostní politiky webových
prohlížečů, co se komunikace vzdálených serverů s perifériemi počítače týče. Praxe
je proto taková, že se využívá tzv. middleware v podobě dodatečně nainstalovaného
software, který zprostředkovává komunikaci mezi lokálně připojenou čipovou kartou
a serverem (většinou s pomocí nově vytvořeného zabezpečeného kanálu). Napřík
lad pokud chce uživatel přistupovat do internetového bankovnictví s pomocí čipové
karty, je nutné si nejdříve nainstalovat bankou poskytnutou aplikaci.

Tato práce se věnuje primárně výzkumu možností pro přihlašování uživatelů
pomocí komunikace čipové karty s cloudovou službou. V případě lokálně nain
stalovaného middleware je požadováno, aby řešení bylo open-source, snadno instalo-
vatelné, podporované a do jisté míry bezpečné. Práce se také věnuje rozšířenými
možnostmi autentizace do cloudového úložiště Nextcloud, které finálně zvládne ak
ceptovat výsledek autentizace s využitím čipových karet. Nakonec se práce věnuje
výzkumu potenciálního využití českých elektronických občanských průkazů.
Popis řešení

Po teoretické části práce - jejíchž součástí je i výběr cloudového úložiště Nextcloud
- následuje zhodnocení aktuálního stavu dostupného software pro využití čipových
karet s webovými službami. Závěrem tohoto hodnocení je, že možnosti pro efektivní
a moderní komunikaci čipové karty s webovým serverem nejsou triviální z důvodu ne
dostatku open-source implementací, standardizací a dokumentace. Aktuální řešení
ve veřejném (např. státní elektronická identita) a soukromém (např. internetové
bankovnictví) si zakládá na proprietárním a closed-source systému na míru.

Výjimkou předchozího tvrzení je analyzované řešení Web-eID, vyvíjené Eston
skou Informační Autoritou (oficiální zkratka RIA) pro estonské veřejné i soukromé
internetové služby. Jedná se o sadu nástrojů, které dohromady zajišťují autentizaci

a digitální podpis pomocí estonského elektronického občanského průkazu s využitím
asymetrické kryptografie. Díky modulárnímu designu, flexibilitě a open-source l i
cenci je možné Web-eID použít i pro personalizované čipové karty s vlastní cer
tifikační infrastrukturou. Zároveň je systém vyvíjen jako nástupce (nejpozději do
konce roku 2023) aktuálně používaného řešení Open Electronic Identity se záměrem
předejít novým technickým překážkám, zmodernizovat, zabezpečit a zpřístupnit
nové řešení široké veřejnosti (včetně dalších členských států Evropské Unie). Jedná
se tedy o perfektní řešení pro tuto diplomovou práci.

Pro využití Web-eID k účelům, ke kterým nebylo původně zamýšleno, je třeba
provést jeho konkrétní modifikaci a rozšíření. Tato diplomová práce tedy prezen
tuje výsledky těchto úprav, popisuje vývoj appletu čipové karty (tj. zkompilovaný
program nainstalovaný na kartě) nejprve pro MultOS kartu, posléze pro JavaCard,
a nakonec uvádí novou, instalovatelnou Nextcloud aplikaci, která zpřístupňuje Web-
eID autentizaci jako druhý autentizační faktor pro přihlášení uživatele do cloudového
úložiště.
Shrnutí

V rámci diplomové práce jsem provedl krátkou analýzu cloudových úložišť, analýzu
současného stavu využívání čipových karet pro webové služby a také jsem představil
velmi jednoduchý Proof-of-Concept s MultOS kartou a komunikací přes internetové
sockety. Samotnými výsledky je však několik aplikací a nástrojů, sloužících k zpřís
tupnění velmi slibného řešení na potencionálně multi-státní úrovni pro open-source
cloudové úložiště Nextcloud.

První aplikací je instalovatelný 2FA modul pro Nextcloud. Využívá Web-eID
JavaScript A P I pro komunikaci s upravenou (viz dále) Web-eID nativní aplikací
a zároveň je součástí vnitřního Nextcloud frameworku, díky kterému umožňuje ad
ministrátorovi u jakéhokoliv uživatele zaktivovat přihlášení s pomocí čipové karty
jako druhý autentizační faktor. Tuto aplikaci jsem naprogramoval v jazycích PHP,
JS, H T M L a CSS.

Dále jsem vytvořil JavaCard applet, který z prázdné Java karty vytvoří nástroj
pro autentizaci a digitální podpis, plně kompatibilní s upravenou verzí Web-eID.
Jako inspiraci jsem využil open-source applety FakeEstEID (imitace funkcí eston
ského občanského průkazu) a IsoApplet (naprogramovaná podle relevantních ISO
standardů). Jedná se tedy o moderní a funkční aplikaci čipové karty, jejichž operace
jsou zabezpečené nutností zadat příslušný PIN, který se ověřuje přímo na kartě.
Aby mohl administrátor s prázdnými Java kartami manipulovat, vytvořil jsem také
management konzoli umožňující jejich inicializaci (tj. generace klíčových párů, nas
tavení PIN hodnot a vytvoření, podepsání a uložení certifikátů veřejných klíčů).
Applet jsem naprogramoval v jazyce Java pomocí developerské sady JavaCard SDK
a konzoli jsem naprogramoval v jazyce Python.

Aby mohla Web-eID nativní aplikace (tj. middleware nainstalovaný na počítači
uživatele) komunikovat s novým JavaCard appletem, bylo nutné aplikaci modifikovat
a rozšířit. Konkrétně jsem implementoval vnitřní rozhraní ElectronicID, ve kterém
jsem specifikoval, jaké konkrétní řetězce bytů musí aplikace na kartu odeslat, aby
dostala zpět požadovaný výsledek (např. prefixy pro ověření PIN, řetězce pro výběr
a stažení certifikátu na kartě). Takto modifikovaná aplikace poté nahradí tu oficiální
a umožní tím uživateli používat vlastní Java kartu namísto oficiálního estonského
občanského průkazu. Rozhraní i další modifikace (definice A T R pro nové rozhraní)
jsem provedl v jazyce C++.

Největším přínosem pro obecnou developerskou komunitu je nová Web-eID val-
idační knihovna v jazyce PHP. Aktuálně totiž součástí projektu existují pouze val-
idační knihovny pro webové aplikace napsané v Javě nebo C#. Jelikož back-end
Nextcloud využívá jazyk PHP, dohodl jsem se s vývojáři Web-eID, že v rámci diplo
mové práce také vytvořím údajně žádanou validační knihovnu v PHP. Tyto knihovny
mají za úkol generovat a bezpečně uchovávat autentizační výzvu a poté validovat
výsledek celého autentizačního procesu (tj. ověřit digitální podpis a certifikát veře
jného klíče, který přísluší podepisujícímu privátnímu klíči na kartě). Tuto knihovnu
jsem vytvořil podle existující knihovny v Javě tak, aby prováděla téměř identické op
erace. V rámci tohoto jsem se musel potýkat převážně s knihovnami, které (narozdíl
od Javy) v jazyce P H P chybí a naprogramovat tak dané funkce sám (např. OCSP
klient). Setkal jsem se tedy s jazyky PHP, Java a C#, ale také jsem si osvojil
zkušenosti a znalosti v oblastech certifikační architektury, digitálního podpisu, a
především ASN1, B E R , D E R kódování.
Zhodnocení výsledků

Výsledkem práce je efektivní a bezpečné řešení pro využití čipových karet k aut-
entizaci uživatelů do služby Nextcloud. Z pohledu uživatele je průběh autentizace
(včetně instalace) velmi intuitivní a díky nástroji Web-eID dostává dynamicky in
formace o tom, co má pro úspěšnou autentizaci udělat (zobrazují se mu instrukční
hlášky k připojení čtečky, zasunutí karty do čtečky, zadání PINu, do které služby se
přihlašuje, atd.). Na druhé straně administrátor má k dispozici zkompilovaný ap-
plet a management konzoli, díky které dokáže rychle, formou dialogu a automaticky
personalizovat novou Java kartu pro daného uživatele. Díky Nextcloud management
konzoli pak jedním příkazem dokáže aktivovat druhý autentizační faktor s využitím
Web-eID pro stejného uživatele. Časové měření ukázalo, že přivedení autentizačního
postupu na základě digitálních podpisu a certifikátů do procesu přihlašování přináší
(mimo neovlivnitelné vstupy uživatele) zpoždění v řádech setin až desítek sekund.

M U Z I K A N T , Petr. Cloud Service Access Control using Smart Cards. Brno: Brno

University of Technology, Faculty of Electr ical Engineering and Commun ica t ion , Depart

ment of Telecommunicat ions, 2022, 81 p. Master 's Thesis. Advised by doc. Ing. Jan

Hajný, P h . D .

Author's Declaration

Author: Be. Petr Muz ikan t

Author's ID: 200517

Paper type: Master 's Thesis

Academic year: 2021 /22

Topic: Cloud Service Access Contro l using Smart

Cards

I declare that I have writ ten this paper independently, under the guidance of the advisor

and using exclusively the technical references and other sources of information cited in

the paper and listed in the comprehensive bibl iography at the end of the paper.

A s the author, I furthermore declare that, with respect to the creation of this paper,

I have not infringed any copyright or violated anyone's personal and /o r ownership rights.

In this context, I am fully aware of the consequences of breaking Regulat ion § 11 of the

Copyright Ac t No. 121 /2000 Co l l . of the Czech Republ ic, as amended, and of any breach

of rights related to intellectual property or introduced within amendments to relevant

Ac ts such as the Intellectual Property Ac t or the Cr iminal Code, Ac t No . 40 /2009 Col l .

of the Czech Republ ic, Sect ion 2, Head VI , Part 4.

Brno

author 's signature*

*The author signs only in the printed version.

A C K N O W L E D G E M E N T

I would like to thank my thesis supervisor, doc. Ing. Jan Hajný P h . D . for the professional

guidance, support, and patience. I would also like to thank my Estonian consultants

A m i s Paršovs and Mar t SSmermaa for sharing their high expertise in smart cards and

authent icat ion appl icat ions with me as well as providing helpful and encouraging answers

to my questions. Finally, I would like to thank my girlfriend for her support and tenacity

dur ing my stay in Estonia and my parents for their overall support.

Contents

Introduction 23

1 Theoretical Introduction 25
1.1 Cloud Service 25
1.2 Cloud Storage 26
1.3 Authentication, Authorization, and Access Control 28
1.4 Smart Cards 30

2 Current State and Existing Technologies for Connecting Smart
Cards and Web Services 35
2.1 State of the Art 35
2.2 Problem Definition 38
2.3 Proof-of-Concept 39
2.4 Web-elD 42

3 Practical Results: Nextcloud Access Control System and Its Im
plementation 47
3.1 Nextcloud Authentication Solution 47
3.2 InfinitEID: Fully Web-elD Compatible Card Colution 51
3.3 Web-elD Extensions and Modifications 55

4 Overview and Verification of Results 59
4.1 Administrator's Point of View 59
4.2 User's Point of View 61

4.3 Authentication Duration Measurements 64

5 Next Steps: Czech elD 67

Conclusions 69

Bibliography 71

A Code listings 77

B Content of the electronic attachment 81

List of Figures
2.1 The result of the script used to test the functions of the MultOS smart

card 40
2.2 Terminal application used to control the MultOS smart card 41
2.3 Card-Connector logs 41
2.4 Web-elD full overview by Mart Somermaa 44
2.5 Web-elD authentication communication diagram by Mart SSmermaa 46
4.1 General overview of Nextcloud-Web-eid architecture with highlighted

contributions 59
4.2 InifinitEID applet build and reload process 59
4.3 InfmitEID management console 60
4.4 InfmitEID initialization finished 60
4.5 Web-elD compatibility unit tests result 61
4.6 Enabling Web-elD second-factor authentication for ncadmin user . . . 61
4.7 Web-elD web-browser extension installed 61
4.8 Replacing extended and built version of Web-elD native application

with the original one 62
4.9 Nextcloud login page 62
4.10 Web-elD second-factor authentication page 63
4.11 Web-elD authentication PIN prompt 63
4.12 Nextcloud web-interface example 64
4.13 On-card digital signature of pre-hashed authentication value measure

ment 65
4.14 P H P back-end validation of Web-elD authentication token measurement 66

Listings
3.1 build.xml file for building C A P file 53
A . l Example session-backed challenge nonce store implementation 77
A.2 Challenge nonce generator builder usage example 78
A.3 Authentication token validator configuration example 78
A.4 Example of providing challenge nonce to the client 79
A.5 Front-end code for obtaining authentication token and sending it back

for validation 79
A.6 Nextcloud authentication result configuration 80

Introduction
Cloud services are experiencing significant growth in all information domains, from
private applications for individual users to shared computing power for
multi-corporate operations. Therefore, data security and entity authentication are
increasingly essential in using these services.

One modern authentication option is the use of smart cards. As the name implies,
these cards generally contain a low-power microchip for which simple applications in
the form of instruction sets can be programmed and installed. Production of these
cards was preceded by the creation of standards by which smart cards communicate
with their reader or connected device. However, these standards primarily focus on
communication that takes place locally (e.g., via a USB interface), which signifi
cantly complicates the use of the cards for authentication to cloud services generally
accessed by the user via a web browser.

This complication is due to today's - rather strict - security policies of web
browsers regarding the communication of remote servers with computer peripherals.
Therefore, the practice is to use middleware as retrofitted software that mediates
communication between the locally connected smart card and the server (usually
using a newly created secure channel). For example, if a user wants to access internet
banking using a smart card, it is necessary first to install an application provided
by the bank.

This thesis investigates the possibilities for users to log in using smart card
directly with the cloud service without the need to use locally installed software or
with minimal and efficient install process. It also explores the possibilities of more
advanced authentication protocols on this new system.

The thesis contains a theoretical overview chapter 1 describing cloud services,
cloud storages, authentication, and smart cards in general. In the next chapter 2,
I focus on the current state of connecting smart cards and web services, define the
problem this thesis is trying to solve, implement simple proof of concept and describe
chosen solution Web-elD in more detail. Chapter 3 then describes practical results in
the form of an installable Nextcloud module for second-factor authentication, Web-
elD compatible JavaCard applet, a new Web-elD authentication token validation
library for P H P and Web-elD extensions. Chapter 4 provides a reader with an
overview of results from the user's and administrator's point of view and verifies
its usability by measuring authentication durations. In chapter 5, I explore the
possibilities of using Czech elD cards in combination with Web-elD technology.
The last chapter 5 concludes this master thesis.

23

1 Theoretical Introduction

This chapter describes cloud services, authentication in general, and smart cards.
The acquired knowledge is further used in the practical part, in which the identifi
cation of options, their selection, and implementation is carried out.

1.1 Cloud Service

Cloud service or cloud computing is defined as cheap, easy to access, immediate,
and remote access to computing resources or resources in various forms that are
operated and managed by a third party. This system is then made available to the
user themselves via an Internet connection without the need to install additional
software [1].

The data flow is specific to the cloud service. The data usually travels from the
client part (i.e., from the users through the web interface) through the network to the
server part (i.e., the internal system of the service provider), where the necessary
operations are performed locally. The operations' results then travel back to the
user, whereby the user can invoke further operations.

The advantage of cloud services is primarily the easy and fast access to mod
ern technologies in computing, analytical, database, and other areas. Furthermore,
their elasticity in the form of scalable use of computing resources - users will always
use the exact amount of resources corresponding to their requirements. The last
advantage is the relatively low cost [2]. More information about cloud services is
available at [3] and [4].

1.1.1 Categorization of Cloud Services

•

These services can be divided into two metrics: what they provide and who uses
them. In the first case, we divide cloud services in descending order of abstractness
into:

• Infrastructure-as-a-Service (IaaS): provides basic computing, network, and
database resources with the most significant degree of flexibility, control, and
management.

• Platform-as-a-Service (PaaS): provides pre-built and controlled platforms on
which one can develop own system with applications. Users do not have to
worry about the resources themselves but only about how they use them.

25

• Software-as-a-Service (SaaS): provides the product, application, service, or
function itself. The end-user should not be able to recognize that the applica
tion is not running on their machine but remotely.

The second division is based on accessibility to the general public:
• public: services are for those willing to pay for them, regardless of the user's

occupation, background, or interest. At the same time, the user has no control
over where their data travels for processing.

• Private: services provided only within one or more closed networks, e.g., in
a specific organization or company. User data is processed on the internal
infrastructure of the object.

• Hybrid: combines public and private cloud services, where the more sensitive
data is processed within the internal network, and the other data is processed
on the public network. This solution is more cost-effective than private cloud
computing. However, it brings particular implementation challenges [5].

1.2 Cloud Storage

Cloud storage is one of the implementations of cloud services. Its purpose is clear
from its name: it is used to store data on a remote server easily and provides users
with easy manipulation, instant accessibility, and sharing capabilities. Therefore,
they are very often used in organizations and companies where groups and teams
of employees access data. The security of the data depends on the security of the
storage server itself (or multiple storage servers) [6].

In the most uncomplicated design, a single server is connected to the network.
Users on this network access it through a web interface and upload copies of data
of their choice. At any time in the future, they can then access and manipulate
the data through the same web interface or download copies back to their device.
Superstructures and additional functionality are then built on top of this system:
e.g., versioning, data storage in multiple locations in case of hardware failure, access
control for users and groups, and a tagging system [5].

1.2.1 Why Cloud Storage?

Results from this thesis will contribute to a multi-academical project focused on
developing a secure system for storing and handling electronic evidence for law en
forcement. Therefore, I am researching the usage of smart cards for authenticating
into the web interface of cloud storage, which will store this electronic evidence.
This system's requirements are listed in the following subsection 1.2.2, where I also
pick a suitable cloud storage solution.

26

1.2.2 Overview of Existing Cloud Storages

This section is used to select suitable cloud storage for this thesis. The main re
quirements for such an implementation are:

• open-source: openness and transparency of the code allow implementation of
custom infrastructure and additional features. For a proprietary system, it
would be problematic to change and adapt the system source code in the case
of developing smart card authentication.

• Self-hosting is the ability to download the solution to one's device and install,
configure, run and test it locally.

• Native options for system development and custom features: cloud storage that
is natively programmed with a modular design is preferred. That is, the solu
tion developers anticipate adding new features in the future and appropriately
prepare the system for it.

• Active development: to maintain the relevance of the results of this work, it is
crucial that the system is currently being developed with good prospects for
future development (regular updates, active development team, active com
munity, population).

• Access control: the solution should have an existing implementation of access
control.

• Finally, other general requirements related to security (ensuring confidential
ity, integrity, and availability of data), server- and client-side encryption, a
low level of discovered security vulnerabilities, and the relevance of the cryp
tographic algorithms and keys used are welcomed.

Out of the original 31 solutions analyzed (complete analysis available in [7]), I
have selected the final four solutions with the most optimal compliance with the
requirements. These solutions are listed in the following subsections.

Nextcloud It is the most widely used open-source cloud storage on the market
and meets all specified requirements. Proof of its popularity is also the fact that
foreign governments actively use this system [8]. Another advantage is the great
emphasis on security and the well-managed documentation of security services. A l l
features are already included in the free, open-source version. In the paid Enterprise
version, only user support, expert provision, and priority vulnerability reporting are
included [9].

OwnCloud The previous Nextcloud solution was created in Apri l 2016 by the sepa
ration of several developers and founders of the ownCloud cloud storage. Therefore,
the two solutions are not too different from each other, but the development of both

27

continued along their paths. The most significant difference is the licensing policy,
in which, for a fee, ownCloud offers features that are not in the open-source ver
sion [10]. OwnCloud fulfills all the requirements. However, only the web interface
can be used for encryption on the side, not the installed native client.

SeaFile The SeaFile cloud solution meets all requirements except one: client-side
encryption does not encrypt metadata, which poses some security risk [11] - specif
ically, the directory list, file names and sizes, and edit history. However, this is not
a serious enough deficiency for the solution sought to exclude the solution from the
selection.

MinIO A l l the solutions mentioned so far have been cloud storage solutions.
MinIO, however, is a "distributed object storage system". The data is spread across
multiple locations (separately or as duplicates), providing a data distribution. The
object storage system then stores the data in object databases. MinlO's licensing
policy is similar to that of Nextcloud. Thus, for a fee, it only offers support, an offer
of expertise, and no additional features. Unfortunately, unlike the others, MinIO
does not provide client-side encryption.

1.2.3 Choosing Optimal Solution

To meet the objectives of this thesis, I decided to use a cloud service in the form of
an open-source cloud storage service Nextcloud based on existing solutions and their
requirements. This decision is mainly due to the participation in a prototype for a
faculty project, therefore, existing experience. Furthermore, the market's popularity,
the documentation's quality, and the large, active community. The whole system is
also licensed under AGPLv3 [12]. Hence the system can be modified and distributed
provided the license, changes, and source code are included.

1.3 Authentication, Authorization, and Access Con

trol

This subsection describes the authentication process, which is an integral part of this
work in connection with smart cards. By this process, we commonly refer to verifying
the identity of a given subject using specific data or procedures that uniquely identify
that subject. The goal of authentication is to detect a false identity (pretending to
be someone or something they are not) and prevent them from accessing resources
or assets they should not have access to [13].

28

Naturally, successful authentication creates trust in the authenticated entity.
The authentication process is much more applicable in the digital world, where
creating a false identity is relatively easy due to the physical anonymity of the
network. We distinguish between authentication of an entity (i.e., a person, a user,
but also, e.g., software performing an action) and authentication of a message (i.e.,
its sender).

Authentication Factors Authentication factors are methods of authenticating a
subject (specifically a user) based on his:

• Knowledge factors: e.g., knowledge of a password, a pre-shared secret, a correct
answer to a challenge or control question.

• Ownership factors: the user demonstrates physical ownership of, e.g., a hard
ware key, smart card, one-time, time-based password, or phone number.

• Inherence factors: the user proves something that is part of him or herself.
These are mainly biometric properties such as a fingerprint, retinal image,
D N A sequence, or handwritten signature.

We call these divisions factor classes. We also distinguish the level of security
(trustworthiness of the authentication result) depending on how many factors are
used.

Single-factor authentication uses only one specific factor from any factor class.
However, this solution is often not considered sufficient and is commonly resorted
to only for financial or time reasons. As soon as possible, to improve security,
authentication should be switched to multi-factor authentication, which combines
two or more factors from different factor classes (e.g., password knowledge and smart
card ownership). This method does not only serve to strengthen authentication once
but also to re-authenticate an already authenticated user. For example, to log in to
the system, the user had to provide two different factors, but for a more sensitive
operation in the system, the user has to provide a third factor (e.g., a one-time
password) [13].

Authorization After successful authentication, we can then perform the authoriza
tion process. This time it is about verifying the level of access. The authorization
policy specifies what the subject is authorized to do - for example, manipulate
resources and assets or perform certain operations.

A single entity can have multiple permissions assigned to it, and it can also
belong to a group of entities with one common permission. The most usual subject
of authorization are rights to operations (read, write, delete, change file owner) and
access rights to various services and resources (e.g., an authenticated administrator

29

will be assigned more rights in the system to a given process than an authenticated
ordinary user) [14].

Access Control The authorization serves only to define the individual access rights
of the subjects. Therefore, access control physically or logically takes care of enforc
ing these privileges. Thus, it is sector-specific implementations in which assets must
be protected from unauthorized entities [15] [16].

According to [5], [15] and [16], there are several basic access control models:
• DAC (discretionary access control) is one of the first access control models.

Each object in the system is assigned a list of all subjects with associated
rights for the object. Essentially, each owner of a resource or asset individually
assigns access rights to all others. This approach has the advantage of reducing
the burden on the system administrator. The disadvantage of the model is the
uncontrollable flow of data. A user with the right to read data may pass it on
to those who do not have that right.

• MAC (mandatory access control) introduces security levels into the system for
both subjects and objects. These levels are then managed by the administra
tor/central authority. For a subject to successfully interact with an object, its
security level must be equal or higher.

• RBAC (role-based access control) is the most widely used model today, as
signing roles to individual subjects or groups of subjects representing certain
hierarchical functions. Thus, users can only perform operations their roles
allow them to perform. At the same time, access rights to objects are defined
based on individual roles.

1.4 Smart Cards

This chapter focuses on a specific means of authentication, namely smart cards.
They can be defined as technical devices providing authentication and security func
tions in the form of key storage, shared secrets, and cryptographic calculations.
These plastic cards, which usually incorporate a small chip (also an antenna in the
case of contactless cards), fall into the ownership factor class and are often used in
multi-factor authentication.

The concept of cards has been commonly used for over a century, e.g., to prove
membership or a valid transport ticket. In the 1970s, it also became massively
widespread in the likes of credit and debit cards. Plastic cards continued to be
improved to provide unquestionable authentication (e.g., engraving of names on the
card, magnetic strips). However, these physical modifications were not enough to
stop the creation of counterfeits.

30

A decade later, the first combinations of plastic cards and integrated circuits (i.e..
microchips) began to take hold in the market. These cards are nowadays called IC
cards (integrated circuit cards) or smart cards and are widely used in many areas
(banking, employee or patient identification, and transportation) [17].

1.4.1 Categorization of Smart Cards

As the previous text indicates, smart cards can be divided into contact and contact-
less cards (or a hybrid card, a combination of both). The advantage of a contactless
card is more significant user-friendliness, longer lifetime, and reliability. On the
other hand, however, they come with certain security risks in the form of easier
eavesdropping.

Another division of smart cards lies in the design of the chip itself concerning
its use. Single-application smart cards are designed to perform only one specific
operation, which cannot or is difficult to change from the moment of manufacture.
These cards have access only to static memory, and for the most basic ones, there
is no ability to combine instructions to create an executable program. For more
complex single-application cards, these programs can be created, but only once,
at production. Therefore, the use of these cards can vary enormously - e.g., only
reading a stored identifier or pre-shared secret, computing a response to a challenge,
or a simple (a)symmetric cryptographic function.

Then there are multi-application smart cards, which are fully programmable
and allow one or more pre-compiled programs to be loaded into memory (when
manipulating the card, one always selects at the beginning which application one
wants to work with). Consequently, they have access not only to static memory but
also to dynamic memory in which each application's data is stored while running.
These cards are much more popular on the market due to their multi-functionality
- an employee can use one physical card to authenticate access to the company
building, pay for lunch, and identify himself in the printer. However, the greater
complexity of the chip brings higher costs and software development requirements.

1.4.2 Communication with Smart Cards

A smart card reader is required to communicate with the smart card. This device
powers the card's integrated circuit via a contact plate and sends a reference signal
for data transmission: the clock signal. For the data transport itself, two transport
protocols are defined in the ISO 7816-3 standard [18]:

• T=0: this is an older, byte-oriented protocol (the basic transmission unit is
one byte). The reader (acting as a client) always initiates communication, and
the card (acting as a server) responds to these commands. The protocol also

31

defines the form of transmitted messages in the form of A P D U (Application
Protocol Data Unit) commands and responses with a specific header format.
More about A P D U s is described in 1.4.2.

• T—l: unlike the first protocol, T = l is block-oriented, which means that the
reader and card exchange whole blocks of bytes. The advantage is higher data
throughput and, overall, faster data transfer. The disadvantage, however, is
the higher memory requirements of the smart card.

Answer To Reset (ATR) The power supply is initialized when the card is plugged
into the reader. At this point (or also later on the command), the card sends
a message. A T R is a string of bytes defined by ISO 7816-10 [19] that provides
information about supported transport protocols, the clock pulse frequency (used
to synchronize the signal between the reader and the card), and also the historical
characters. These contain information about the card itself, such as manufacturer
and serial number, but also application data specified by the programmer [17].

A P D U Requests and Responses APDUs are logical units defined by ISO 7816-
4 [20] and are transferred between the reader and the card. They are divided into
commands sent by the reader and responses sent by the card. Both types of messages
have a fixed structure which is described in the following paragraphs.

A n APDU command contains a mandatory header and an optional part contain
ing application data. In the header, the following fields must always be specified
(each field is of size 1 Byte):

• CLA (Class) specifies the class of the command used to identify its type.
• INS (Instruction) specifies the instruction code used to identify a particular

application on the card.
• PI and P2 (Parameter) indicate the input parameters. They are used to

identify the functions of a given application further.

The optional part located immediately after the header may contain the Lc
(length command) field indicating the size of the following data to be sent. The Le
field can be added at the end of the command to indicate the expected data size in
the response.

The APDU response, on the other hand, consists of an optional part and a
mandatory field. In the first part, the message can contain the actual data to be
returned by the card based on the sent Le field. Furthermore, the footer always
contains two fields, SW1 and SW2 (Status Word), which specify the result of the
operation performed on the card. These return codes are usually defined in the chip
card operating system. Traditionally, the code 0x9000 is interpreted as a successful

32

request processing. On the other hand, codes beginning with 0x6XXX indicate an
error specified in the omitted hexadecimal digits.

ISO Cases Finally, due to the optional part in both A P D U commands and re
sponses, the already mentioned ISO 7816-4 standard [20] defines four possible cases
(called ISO Cases) that can occur during communication. These cases define all
possible command combinations and associate the correct response combinations to
them. The ISO Cases can be seen in Table 1.1.

Tab. 1.1: Possible A P D U message structures

ISO CASE A P D U request A P D U response
1 CLA INS PI P2 SW1 SW2

2 CLA INS PI P2 Le [data] SW1 SW2

3 CLA INS PI P2 Lc [data] SW1 SW2

4 CLA INS PI P2 Lc [data] Le [data] SW1 SW2

Information from this chapter and other information can be found, for example,
in the MultOS developer documentation [17] and academic papers [21], [22] and [23].

33

2 Current State and Existing Technologies
for Connecting Smart Cards and Web Ser
vices

In this chapter, I focus on using smart cards in web services and applications. First,
I provide state-of-the-art research and then describe the problem I am trying to
solve in this thesis. The following section describes my early attempts to solve this
problem using MultOS smart card and socket connector. However, this technique
is only a proof-of-concept since it contains significant security deficiencies. The
last section of this chapter introduces Web-elD, which I have chosen for the final
implementation.

2.1 State of the Art

The following subsections provide a list of existing technologies which are/were used
to provide a communication channel between the smart card and the web server.
The main focus is on the availability of the technology for the broad developer
community1.

Netscape Plugin Application Programming Interface (NPAPI) NPAPI is a

very outdated technology in the form of an application interface that allows various
plugins to run in a web browser. However, support is no longer available in 2022.
For example, it was discontinued in Google Chrome in January 2014 [24].

Java Applets Since local communication with the card on the client-side using
retrofitted software is relatively standard, Java Applet seems to be the ideal solution.
It is a code (usually in Java) that has been compiled into Java bytecode and inserted
into the source code of a web page. This applet is invoked and executed by the local
J V M (Java Virtual Machine) when the page is loaded [25]. This approach thus
eliminated the need to install middleware, as the J V M was until recently a standard
tool on most PCs. Java even includes native libraries for communicating with the
smart card 2.

Unfortunately, this solution ceased to be functional at the same time as support
for the NPAPI technology - on which the applets ran - was ending. Applets were

I.e., how easy it is to integrate smartcard usage into a newly developed general web application.
2 T h e library is described in detail at https://docs.oracle.eom/javase/6/docs/jre/api/

security/smartcardio/spec/javax/smartcardio/package-summary.html.

35

https://docs.oracle.eom/javase/6/docs/jre/api/

also no longer supported in the Java Development Kit (JDK) [26]. Similarly, modern
web browsers have also stopped supporting them.

WebUSB API The WebUSB A P I 3 was created to allow a web server to access
non-standard USB devices for which it is common to install additional software that
is platform-specific and developed only by the device manufacturers. Thanks to this
API , these vendors can create multi-platform SDKs (Software Development Kit) for
their devices [27].

However, this solution is also no longer functional, and in 2018, Chrome develop
ers stopped supporting and started blocking smart cards (along with other selected
devices) [28].

Smart Card Connector Smart Card Connector4 is an extension for the Chrome
web browser (or as an application for the ChromeOS operating system) that enables
communication with a smart card. The disadvantages are low availability, minimal
documentation, and the need to install middleware for the smart card in addition
to the extension [29].

However, according to [30], Google plans to stop supporting all Chrome Apps,
which also applies to this extension. In a December 2020 support tab on the Chrome
Web Store, the developers expressed that they are working on migrating the product,
but without any further updates or news on the development.

Webcard It is an open-source add-on5 for Google Chrome on macOS and Windows
operating systems. It links the connected smart card directly to a web page using a
JavaScript library. However, according to consultations with supervisors of existing
implementations [31] and [32], this solution is not ideal due to inactive development
and the need for periodic configuration at the operating system level and enabling
security features.

SConnect The SConnect solution is the result of work [33] from 2009. However,
it is not easy to find any up-to-date documentation. The original solution website is
already redirected to another company. I was able to find already compiled solutions
for different browsers6. However, decompiling them would be beyond the scope and
time of this thesis. I also tried contacting the original authors, but most did not
work for the company anymore, and the others did not answer.

documentat ion is available at https://wicg.github.io/webusb.
4Source code is available at https://github.com/GoogleChromeLabs/

chromeos_smart_card_connector.
5Source code is available at https://github.com/cardid/webcard.
6 A t https ://www.sconnect.com/extensions/.

36

https://wicg.github.io/webusb
https://github.com/GoogleChromeLabs/
https://github.com/cardid/webcard
http://www.sconnect.com/extensions/

WebAuthn standard Since May 2019, the World Wide Web Consortium (W3C)
has been developing a new standard to create a unified interface for web user au
thentication via asymmetric cryptography [34]. This solution is already supported
in standard web browsers such as Chrome, Firefox, and Edge by the spring of 2022.
However, I could not find any implementations of it for smart cards. Supported
devices include mobile phones, smartwatches, and proprietary USB keys such as
FID02 and UbiKey.

According to Mart Oruaas from Norwegian cyber-security company Cybernet-
ica, this technology is theoretically possible to use for smart cards. However, its
implementation would be very complicated. WebAuthn considers having a separate
private key for every authentication endpoint, and this kind of key management
would require a deep security analysis of the developed smart card applet.

Create Custom Middleware The last option is to program an additional software
that can communicate with the smart card and the web server. This solution is the
easiest to implement but at the cost of low user-friendliness and the need to perform
extensive security analysis beyond the scope of a single person. I have implemented
my middleware in 2.3.

Other Technologies/Tools Finally, I will list here other names of technologies for
which some indications of the possibility of linking the smart card with a web server
were found during the research. However, there was not enough documentation or
sources to support the theory, so it was impossible to look into these terms in more
detail: SignalR7 and Websocket-Smart-Card-Signers.

Proprietary Solutions There are also proprietary and closed-source solutions like
signer-digital9, Fujitsu mPollux DigiSign Client10 used in Finland, AusweisApp2
used in Germany, and IDEMIA Smartcard Web Connector11 [35].

7 According to https://stackoverflow.eom/a/48799171 the implementation of smart cards is
reportedly possible.

8Source code available at https://github.com/damianofalcioni/Websocket-Smart-Card-

Signer.
9 Available at https : //signer.digital/SignerDigitalBrowserExtensions.

10

https : //dvv.f i/documents/16079645/17667177/Fuj itsu+mPollux+DigiSign+Technical+

References.pdf/a6630863-c268-b56a-992c-b51dfce44617/Fujitsu+mPollux+DigiSign+

Technical+Ref erences.pdf ?version=1.0&t=1595588194569
u

https://chrome.google.com/webstore/detail/idemia-smartcard-web-conn/

pmcjdgnohppjkhnadihaonfmdponlcbi

37

https://stackoverflow.eom/a/48799171
https://github.com/damianofalcioni/Websocket-Smart-Card-
https://chrome.google.com/webstore/detail/idemia-smartcard-web-conn/

Web-el D This solution is an open-source project currently being developed by the
Estonian Information Authority. The project's main aim is to improve the current
system for using state-issued ID cards in the public and private sectors.

Web-elD is designed to be highly extensible, is produced at a high-quality state
level, and has a promising relevance in the future. Therefore it is my choice for
integrating smart cards into web applications. Alongside my further reasoning, it is
explained in more detail in 2.4.

2.2 Problem Definition

The previous sections show that the current situation with personal smart cards used
for authenticating into web services is not trivial, but quite complicated due to the
lack of open-source implementations, standardizations, and documentation.

The common practice in the private sector (e.g., internet banking services) is to
use a closed-source, proprietary middleware. Public sector implementations (e.g.,
national electronic ID cards) usually use closed-source solutions as well (e.g., in the
Czech Republic, Finland, and Germany). Unfortunately, these solutions are usually
unavailable to the general development community [35].

2.2.1 Requirements for Solution Connecting Smart Cards and
Web Services

The following list contains identified requirements for a solution, which I will use in
this thesis [35]:

• open-source: the solution should have an open-source license, so it is possible
to adapt it for custom systems.

• Portability: user (law enforcement in this case) might frequently access the
cloud storage from a new computer, where smart card middleware is not in
stalled. The solution must have no middleware or be installed and initialized
quickly and efficiently

• Web-focused: the solution needs to work seamlessly with most modern web
browsers and with intended behavior.

• OS support: the solution needs to work seamlessly on most modern operating
systems and with intended behavior.

• Security: authentication results cannot be maliciously intercepted, changed,
or crafted by third parties.

• Speed and integrity: the solution should be responsive and resilient and should
handle tasks in an unnoticeable time from the user's point of view.

38

• Modularity: this feature is welcomed for future non-smart card authentication,
e.g., security token integration.

2.3 Proof-of-Concept

As mentioned in 2.1, creating custom middleware seems easy to implement. This
section provides such implementation as an elementary proof of concept. For this
implementation, I used MultOS card and socket programming.

2.3.1 MultOS Card Programming

At first, the faculty provided a MultOS Card12 and the Gemalto PC Twin Reader.
However, since programming an authentication protocol for the smart card is not
a priority in this proof-of-concept, I have implemented a simple challenge-response
authentication protocol.

There are many tools for programming smart cards. However, the simplest way is
to use the SmartDeck framework (a library providing an A P I to machine commands
on the card and compiling programs written in C) in combination with the MUtil
tool (uploading copied applications to cards) 1 3.

In C, I then programmed the smart card to accept four commands (INS =
instruction) using SmartDeck documentation and previous existing faculty projects:

1. INS_GET_CURRENT_KEY: the card returns the active key used to gener
ate the response. This command is for development purposes only.

2. INS_SET_KEY: the card receives a new 12B key and loads it into static
memory to the location where the active key is stored. This command is for
development purposes only.

3. INS_RESET_KEY: the card resets the active key and substitutes the de
fault key, which is statically stored in memory and cannot be changed. This
command is used for development purposes only.

4. INS_A UTHENTICA TE: the card receives a 52B challenge, attaches the active
key, and computes the S H A l hash. Unfortunately, the provided card does not
support other hashing functions. The S H A l function has been considered
obsolete in [36], [37] and [38].

For communicating with the card, it is possible to use the Python package
pyscardM. With its help, I created two scripts designed to test the programmed
functions on the card.

1 2 A specific card model shall remain nameless due to the non-disclosure agreement.
1 3documentation and free download links available at https://multos.com/support/
1 4available from https://p3rpi.0rg/project/pyscard/

39

https://multos.com/support/
https://p3rpi.0rg/project/pyscard/

The first script takes the form of a unit test, meaning that if it finishes without
errors, all functions work correctly. The script first attempts to connect through the
reader to the card and performs the following actions sequentially:

1. it calls the application selection command.
2. Calls the command to reset the active key.
3. Calls the command to obtain the active key and verify that it matches the

statically defined default key.
4. Calls the new key set command, calls the key gain command and verifies that

it matches the set key.
5. Calls the command to reset the active key.
6. Creates a challenge, calls the authentication command, obtains the response,

and verifies that it matches its own computation using a statically defined
pre-shared secret.

The result of the test can be seen in Figure 2.1.

Fig. 2.1: The result of the script used to test the functions of the MultOS smart
card

The second script is used for more dynamic testing of the card functions. It takes
the form of an interactive menu through which the user can arbitrarily and repeat
edly choose which command to send to the card. The results of the instructions are
then displayed on the screen. A n example of this menu can be seen in Figure 2.2.

2.3.2 Socket Connector

The implemented challenge-response authentication protocol based on pre-shared
secrets requires two data messages to be forwarded over the network. The nature
of the protocol may not preserve the confidentiality of these messages, so I imple
mented it using socket programming, i.e., using the socket A P I to establish a reliable
connection between two nodes in the network [39]. The advantage is that creating

40

('>' , '80 40 00 00 0C)
('<", '70 61 73 73 77 6F 72 64 31 32 33 34', '90 0 •)
Current key: passwordl234
Source: [112, 97, 115, 115, 119, 111, 114, 100, 49, 50, 51, 52]

Card communicator

> [g] - ^ ^ ^ ^ H
[s] Set new key
[r] Reset key to defa u l t
[a] Authenticate
[f] Flush response
[q] Quit

Fig. 2.2: Terminal application used to control the MultOS smart card

sockets and sending and receiving data through these APIs is implemented in almost
every programming language and operating system.

I have therefore created two more programs in Python. They are considered
client and server in terms of communication between these programs. The server
part runs as a process on the user's computer that wants to log in with a smart
card. A web server then performs the role of the client with Nextcloud installed,
which sends a prompt when the user logs in.

The server listens on a predetermined socket and creates a new thread to serve
the request when a new connection is made to the client. It reads the challenge
through the open socket and uses the already implemented communication with the
card from 2.3.1 to obtain a response, which it then sends back. In Figure 2.3, the
operations are shown as program entries.

[DEBUG] [4313777536] 2021-12-12 17:31:45,246 - " STARTING CONNECTOR "

[DEBUG] [4313777536] 2021-12-12 17:31:45,246 - "Start listening on 192.168.255.59:5050"

[DEBUG] [6176747520] 2021-12-12 17:32:53,259 - "Connected by ('192.168.100.115', 42644)*'

[DEBUG] [4313777536] 2021-12-12 17:32:53,260 - "Active connections update: 1"

[DEBUG] [6176747520] 2021-12-12 17:32:53,260 - "Getting card connection for ('192.168.100.115', 42644)"

[DEBUG] [6176747520] 2021-12-12 17:32:53,291 - "Card successfully found and connected for ('192.168.100.115', 42644)"

[DEBUG] [6176747520] 2021-12-12 17:32:53,291 - "disconnecting from Gemalto PC Twin Reader"

[DEBUG] [6176747520] 2021-12-12 17:32:53,292 - "Challenge received: [79, 74, 21, 236, 234, 119, 117, 134, 185, 72, 179, 167, 186, 10, 14, 165,

194, 1, 209, 63, 219, 135, 48, 228, 37, 177, 88, 180, 48, 41, 47, 112, 28, 9, 30, 106, 64, 116, 245, 118, 49, 177, 153, 62, 214, 33, 127, 245,

124, 36, 187, 108]"

[DEBUG] [6176747520] 2021-12-12 17:32:53,292 - "connecting to Gemalto PC Twin Reader"

[DEBUG] [6176747520] 2021-12-12 17:32:53,374 - "> 00 A4 04 00 04 F0 00 00 01 00"

[DEBUG] [6176747520] 2021-12-12 17:32:53,428 - "('<', '[]', '90 0 ')"

[DEBUG] [6176747520] 2021-12-12 17:32:53,429 - "> 80 10 00 00 34 4F 4A 15 EC EA 77 75 86 B9 48 B3 A7 BA 0A 0E A5 C2 01 Dl 3F DB B9 30 E4 57 Bl

58 B4 30 29 2F /0 1C 09 50 6A 40 74 F5 76 31 Bl 9E 3E D6 26 7F F5 7C 24 BB 6C 20"

[DEBUG] [6176747520] 2021-12-12 17:32:53,542 - "('<', '[]', '61 14')"

[DEBUG] [6176747520] 2021-12-12 17:32:53,542 - "> 00 C0 00 00 14"

[DEBUG] [6176747520] 2021-12-12 17:32:53,581 - "('<', 'E7 94 A3 C4 6E FA D6 62 94 79 9F 09 EC 75 BD DD 51 25 72 A7', '90 0 ')"

[DEBUG] [6176747520] 2021-12-12 17:32:53,581 - "Card returned response [231, 148, 168, 196, 110, 250, 214, 98, 148, 121, 159, 9, 236, 117,

189, 221, 81, 37, 114, 167]"

[DEBUG] [6176747520] 2021-12-12 17:32:53,582 - "Response successfully send to ('192.168.100.115', 42644)"

[DEBUG] [6176747520] 2021-12-12 17:32:53,582 - "disconnecting from Gemalto PC Twin Reader"

Fig. 2.3: Card-Connector logs

The second script, in the role of a client, is for testing purposes only and does
the exact opposite, i.e., it first attempts to connect to an open server socket, sends

41

a randomly generated challenge, and compares the returned response with its own
computation from knowledge of the challenge and the pre-shared secret.

The Nextcloud cloud storage is primarily programmed in PHP, so I also created
a client equivalent in PHP. I also created an installable module for Nextcloud, which
implements this proof-of-concept in the form of two-factor authentication (see 3.1.2).

2.3.3 PoC Conclusions

Thanks to this proof-of-concept, I have become familiar with smart card program
ming and Nextcloud authentication module implementations. Since the imple
mented challenge-response protocol with S H A l function serves as a demonstration
- due to obsoleteness of hash function and no message authentication - the rest
of this thesis is mainly focused on improving the communication layer between the
smart card and the server.

2.4 Web-el D

Based on the current state-of-the-art situation, I have decided to analyze and use
Web-elD. In this section, I describe my reasoning in more detail and introduce the
project itself.

Web-elD is an open-source repository of multiple applications and tools, which
together enable the usage of authentication and digital-signing smart card functions
on the wide web using public-key cryptography. Its primary purpose is to enable
state-issued electronic ID cards. However, thanks to its extensibility, flexibility,
and open-source license, it is suitable even for custom-build web applications with
custom smart cards, thus being a perfect, high-level solution for this thesis [35].

It is being developed by the Estonian Information System Authority (RIA in
short) to be a reliable, user-convenient solution. Most importantly, it tries to solve
the technical challenges of its predecessor, the Open Electronic Identity (OpenID),
which is currently used in Estonia for connecting public, but also private web services
with electronic, state-issued ID-cards [40].

It is heavily focused on web use cases with web browser platforms, supporting
recent versions of standard operating systems and browsers. It is also being dissoci
ated from operating systems' inner smart card technologies, using a cross-browser
development system and consistent visual elements across all platforms, ultimately
allowing cross-platform, cross-browser, without-restart availability and with no need
to install any third-party software. Authentication and digital signature principles
using public-key cryptography, on-card PIN verification, and HTTPS-only principle

42

ensure day-to-day function security. Lastly, it is designed to be highly extensible to
easily support other security tokens and smart cards [35].

I have chosen this project as it almost perfectly fulfills the requirements listed in
subsection 2.2.1:

• open-source: all of its components are licensed under MIT Licence.
• Portability: it can be installed without the need to restart the browser or OS,

supporting the immediate launch. It uses standard PS /SC available on most
OS' to communicate with smart cards directly.

• Web-focused: it works on Windows, Linux, and macOS.
• OS support: it works on Chrome, Edge, Firefox, and Safari web browsers.
• Security: it is implemented according to Web Authentication A P I and requires

HTTPS protocol to be used (see next paragraph for more details).
• Speed and integrity: it seems to be well optimized. There are no noticeable

delays and no crashes. Visuals are consistent through all processes.
• Modularity: supports an extension for P C / S C , PKCS#11, and other tokens

supporting public-key cryptography, such as Yubikey.

2.4.1 Web-elD Architecture

According to [40], main components of Web-elD are:

• Cross-platform Web-elD Native Application: running native on Ubuntu Linux,
macOS, and Windows, this software communicates with a smart card con
nected to the computer, provides the user with PIN prompts and information
about current operations, and prepares authentication token for the valida
tion library. This component directly communicates with Web-elD browser
extensions via Native messaging API.

• Web-elD Browser Extensions: bundled with the previous application, the
cross-browser extension is seamlessly installed and enabled in standard web
browsers (Firefox, Chrome, Safari, and Edge). Its task is to directly transfer
messages between the native application and the Web-elD JavaScript Library
via Browser messaging API.

• Web-elD JavaScript Library: this library provides an asynchronous interface
for invoking Web-elD functions and operations from the web UI through E-
service JavaScript code. It poses as a front-end of the server application.

• Web-elD Authentication Token Validation Library: as a back-end part of the
server application, this library handles generating cryptographic nonce at the
start of the process and verification of signed token and attached certificate at
the end of the process, ultimately providing validated authentication result.

43

Graphical interpretation of the connections between these components by the
authors of Web-elD is in Figure 2.4.

cmp Web elDfull overview

E-service web application

Web elD authentication
token validation library

DigiDoc4j digital signing
library

User computer

E-service JavaScript r̂ ~|
application

({^fi web-eid.jsAPI

Web elD JavaScript library Ê]

1 Browser messaging API [window.postMessage)

aWebErtension»
Web elD browser extension

[JavaScript)

« application^
Cross-platform WebelD

application

I

Native messaging API, standard input/output

Cross-platform Ul rjT]

«tier 1»
WinSCardAPI

«tier 2w
PKCSfrllAPI

PC/SC PKCSttll card
driver

Fig. 2.4: Web-elD full overview by Mart Somermaa [41]

2.4.2 Authentication with Web-elD

The solution utilizes a digital signature on the smart cards alongside stored digital
certificates for authentication. It uses the same principles as TLS Client Certificate
Authentication (TLS CCA) and Web Authentication A P I (also known as WebAu-
thn already described in subsection 2.1). The following enumeration provides a
shortened and slightly simplified workflow of mentioned principles, also depicted in
Figure 2.5:

1. The user tries to log in. His browser requests the server for a cryptographic
challenge nonce (session-dependent, only-once value safely generated and
stored by the server).

44

2. The client generates the authentication token using a private key on his smart
card.
(a) Web extension sends the challenge to the native application, which asks

the user for consent in the form of PIN verification and obtains a certifi
cate of the public key corresponding to the private key, which is used to
create the signature.

(b) The native application then creates the authentication token, including
a to-be-signed authentication value.

(c) The to-be-signed authentication value is sent to the smart card using
A P D U commands described in subsection 1.4.2.

(d) A signed authentication value is inserted into the token, then sent back
to the web extensions, which transfer it to the server.

3. The server verifies the signature and the public key certificate to generate the
authentication result.
(a) The signature is verified by reconstructing the authentication value us

ing server origin, and the challenge nonce using the public key from the
certificate in the token.

(b) The certificate in the token is verified using standard certificate verifica
tion practices (in this case, with Online Certificate Status Protocol).

The main difference from the TLS C C A is that this workflow is implemented on
the application layer and uses a smart card for client operations. User details and
his identity (e.g., username for login or name, surname, and birthname for personal
identity) can be obtained from the certificate public subject field.

2.4.3 Security Analysis

A few security analyses have already been done, with some security issues emerging.
However, the current assumption of the project's future is set to be positive as it is
still in development [35].

First, there is analysis [43]. It introduces relevant technologies, describes simi
larities and compatibility with TLS C C A , analyses protection against man-in-the-
middle attacks, and analyzes threat scenarios with certain assumptions. In the
executive summary, the authors mention two possible vulnerable points (simplified
- more details are available in the analysis itself):

1. certain scenario/configuration might introduce man-in-the-middle vulnerabil
ity into the solution. For example, corporate TLS proxies used for monitoring
the traffic of its employees become a point of a single failure.

2. Another difference from TLS C C A is that there need to be some outside coun-
termeasures to prevent session hijacking. The web service, therefore, needs to

45

O C S P responder

cert,
valid? 3\

yes fj6)

Server application D _ validate
certificate

©
\

® ® J

authentication request challenge validate
signature,

token

auth. success

f
login © JavaScript application and

web extension

Browser

authe nti cate (challenge)

attach signature
to token, return
token

Web elD native application

OK, PIN
I)

©
get certificate certificate

13
sign

auth.
value

®
signature

create token with
cert., create
authentication value
hash(origin) +
hash (challenge)

elD smart card

Fig. 2.5: Web-elD authentication communication diagram by Mart Somermaa [42]

implement these by itself, for example, by using CSRF tokens.
Second, there is analysis [44], which questions designers' choices to use JSON

Web Tokens to carry the authentication proof. According to the article's author,
this choice introduces security risks into the system. The article also suggests several
improvements to the Web-elD solutions that do not decrease user experience. I plan
to observe whether these improvements have been implemented in the Web-elD and
if not, I will try to contact the authors to do so (or at least consider the article's
suggestions). Lastly, few resources describe the security and protection against
specific attacks in [45] and [46].

In conclusion, Web-elD was designed with security in mind from the start. There
are some minor issues that can still be solved during the ongoing development. No
critical vulnerabilities were found in the Web-elD project. It is expected to be a safe
and reliable way of utilizing Estonian (and other countries') state-issued electronic
identities in the future.

46

3 Practical Results: Nextcloud Access Con
trol System and Its Implementation

In this chapter, I am describing the practical results of this thesis and how it solves
the problem defined in 2.2. First, I have enhanced Nextcloud's authentication flow
so it can accept smart card usage. After that, I created a new applet (application
on the smart card) for another type of smart card: JavaCard. Lastly, I describe how
I have integrated Web-elD project into this solution and what needed to be done in
order to achieve that.

3.1 Nextcloud Authentication Solution

As mentioned in section 1.2.3, I chose Nextcloud cloud storage for my solution. In
the following subsections, I explore the natively supported methods of authenticating
individual users. The primary purpose of this identification is to find and implement
a solution that will be able to integrate smart card data into its authentication
process. Therefore, I omit basic authentication options such as name and password
combinations.

3.1.1 Overview of Possible Solutions

This subsection lists the solutions that I managed to find during my thesis. For all of
them, I give a short description, advantages, disadvantages, and, if necessary, why
the solution is insufficient. Unless otherwise stated, the source for the individual
solutions is mainly the official Nextcloud documentation for administrators [47] and
developers [48]. In the case of "apps for Nextcloud", this refers to the app available
on the official Nextcloud App Store [49].

OAuth2 When first searching the admin documentation, one might see the possi
bility of using OAuth2 technology. However, according to [50] and [51], OAuth2.0
is an authorization standard, not an authentication standard. This subsection only
acknowledges that we are looking for authentication options that precede authoriza
tion.

Two-factor Authentication Multi-factor authentication has already been
discussed in subsection 1.3. Nextcloud provides information for creating custom
second-factor modules in the administration documentation and directly in the de
veloper documentation. It is possible to create, program, and even make it manda
tory for specific users or groups.

47

The module is created as an application, the development of which is described
in detail in the development documentation. Some applications for two-factor au
thentication are already publicly available: e.g., U2F (Universal 2nd Factor, log in
with USB or N F C technology), T O T P (Time-based one-time password, log in with
an external application with time-varying codes), e-counts and SMS messages.

The advantage of this solution is the possibility of a completely customized so
lution - Nextcloud only requires the final implementation of the IProvider interface
- leading to higher elasticity and better options for connecting to smart cards. On
the other hand, the disadvantage is that authentication cannot be entirely replaced
by smart cards. In this case, users will still have to log in with a name and password
first.

External Authentication Another option is to use the existing Nextcloud External
user authentication application, which allows users to log in using services other than
the Nextcloud server. Specifically, authentication via IMAP, SMB, FTP, WebDAV,
H T T P BasicAuth, SSH, and X M P P . A n external server must be set up for each
service.

At the same time, the source code of the server and other applications1 shows
that it is possible to program and implement the service separately according to
one's wishes.

This option is worth considering, as while we eliminate the possibility of logging
in via username and password (thus increasing user-friendliness), we, unfortunately,
reduce the level of security by not using an additional factor. The additional external
service could run on the same machine where Nextcloud runs.

LDAP Protocol The administrator documentation provides information on using
L D A P to log on users through existing organizations, domains, or user lists (such
as Active Directory from Microsoft). This option is inappropriate for this work,
as it only allows you to set up a new, remote authentication server that supports
L D A P , not to change the authentication means (users still log in with a username
and password).

OpenID Standard Nextcloud's OpenID Connect SSO by Gluu app allows you to
authenticate users to any OpenID provider. It is an open standard that enables
single sign-on to multiple services at public and private providers [52]. The stan
dard contains many libraries and implementations for OpenID providers. For this
application, it is necessary to use the open-source authentication server Gluu.

1for example https://apps.nextcloud.com/apps/user_backend_sql_raw or https://

github.com/bcecchinato/user_unix_script

48

https://apps.nextcloud.com/apps/user_backend_sql_raw
http://github.com/bcecchinato/user_unix_script

Third-party ID Providers There are also apps on the Nextcloud App Store [49]
that allow you to sign in using third-party dedicated apps. These are specifically Or-
cid, SecSign, or miniOrange. When logging into the repository, a new window will
appear and redirect to the service. There, authentication takes place (e.g., using
the SecSign mobile app), and the result is returned to the Nextcloud server. This
solution is not suitable for this work.

WebAuthn Standard Another option for external login to Nextcloud storage is
the Two-Factor Webauthn application. This application directly implements a de
vice that supports the WebAuthn standard, discussed in 2 .1. However, as already
mentioned, this standard does not support smart cards out-of-the-box.

elD Authentication The last way of logging in is the elD-login application2, which
is used to log in directly to the German electronic identity system. The national
elD card is used for this purpose. The developers responded to my inquiry about
this project by saying that the elD-login solution is unsuitable for sending custom
A P D U messages or implementing custom smart cards.

However, they referred to the open-source framework Open eCard3 and the pro
prietary ChipGateway Protocol4". However, both solutions seem too complicated for
this work.

3.1.2 Two-factor Authentication Implementation

For this work, I have chosen a custom two-factor authentication solution. In the
following subsections, I describe its development.

Nextcloud Application Skeleton Nextcloud provides the generation of the basic
skeleton of the application5, which contains all the necessary files to install, enable
and use it. After downloading the generated package, you need to extract it and
put it in the /apps directory (in my case /var//www/nextcloud/apps). You can then
start editing, adding, and deleting the source files that provide the logic and user
interface of the application.

The following is a list and description of the essential files and directories for
a basic implementation of two-factor authentication via smart cards (the file paths
have the application directory prefix installed in the previous paragraph):

2

https: //apps.nextcloud.com/apps/eidlogin
3

https: //github.com/ecsec/open-ecard
4

https : //www.oasis-open.org/committees/download.php/60049/ChipGateway-

Specification-OASIS.pdf
5Generation available at https://apps.nextcloud.com/developer/apps/generate.

49

http://nextcloud.com/apps/eidlogin
http://www.oasis-open.org/committees/download.php/60049/ChipGateway-
https://apps.nextcloud.com/developer/apps/generate

• appinfo/info.xml: contains basic information about the application, author,
required server version, and web pages. It also identifies special features of the
application, such as activity logging, custom sections in settings, and also pro
viding two-factor authentication.

• appinfo/routes.php: contains an array with special syntax that maps the given
application U R L to individual functions in Controller objects. This file is the
primary application disclosure. In my case, this field is empty because, for now,
the implemented application does not need any user interaction via U R L . It
only provides two-factor authentication.

• css/xxx.css: files in the CSS directory are used to define H T M L styles. They
are used in templates using the P H P style() function.

• img/app.img: defines a primary application icon used, for example, when se
lecting two-factor authentication during login.

• lib: the most important application directory that contains all logical opera
tions:

— lib /Provider/WebEidProvider .php: this file contains a class that inherits
attributes and functions from the previously mentioned IProvider. There
fore, it provides the server with a straightforward interface for using this
two-factor authentication method.

— lib/Service/SmartCardService.php: to reduce code redundancy, the Ser
vice layer is used, which can be inserted into the constructor of all other
objects in the application. It contains all helper functions used in We
bEidProvider.php.

— lib/Activity/Provider.php J Settings.php: these files can log application ac
tivity, which can be viewed in the integrated Activity application.

— lib/Appinfo/Application.php - contains any code that must be run before
using the application. It represents the initialization of the application.

— lib/Controller/xxxController.php: contains the application entry point
via the U R L specified in routes.php.

— lib/Db/Entity.php J Mapper.php: the object inheriting from Entity repre
sents the object's definition corresponding to the database record. The
object inheriting from Mapper contains functions and queries for working
with entities and databases.

— lib/Event/xxx.php and lib /Listener/xxx.php: provide the application with
the ability to listen for and possibly respond to various events on the
server.

— lib/Migration/VersionxxxDatexxx.php: objects inheriting from Migration
define changes in the database, such as creating a new table, changing
columns in a table, changing data types in the database, etc.

50

— lib/Settings/Personalphp/Admin.php: contains options for user or ad
ministrator configuration of the application through the web interface
settings.

• templates: contains PHP scripts for rendering the user interface. In my case,
it provides instructions for inserting a tab and a button for initializing authen
tication with a smart card.

• src: contains auxiliary JavaScript files to perform client-side operations. They
are used in templates using the P H P script() function.

• vendor: contains PHP packages of third-party applications and frameworks.

Exact Web-elD implementation for Nextcloud is described in section 3.3.3.

3.2 InfinitEID: Fully Web-elD Compatible Card Co-

lution

Web-elD is currently being built primarily for state-issued electronic ID cards. Sup
port for Estonian, Latvian, Finnish, and Croatian elD smart cards is planned for
the project launch in the 4th quarter of 20226 (other countries are supposed to be
supported in the phases). However, I aimed to implement my own "custom self-
issued electronic ID card" for this thesis. Since the current smart card solutions are
utilizing JavaCards, I have decided to switch from MultOS (used in section 2.3) card
to JavaCard as well.

For this thesis, I have borrowed two different JavaCards:

1. JavaCard SLJ52GCA150 (jTOP SLE78 Estonian ID card platform)78 from
the University of Tartu, Applied Cyber Security Group.

2. JavaCard NXP JC0P3 J3H14& from the Brno University of Technology, De
partment of Telecommunications.

In this section, I describe the JavaCard programming in general and introduce
my created JavaCard applet and its corresponding management console used for
card initialization and self-issuing the certificates saved on the card.

6 And transition is set to be finished sometime in 2023 according to the official schedule: https:
//www.id.ee/en/article/web-eid/#schedule.

7 ATR: 3B FE 18 00 00 80 31 FE 45 80 31 80 66 40 90 A5 10 2E 10 83 01 90 00 F2
8The card's ATR also points to another card model: Infineon CJTOP 80K INF SLJ

52GLA080AL M8.4.
9 A T R : 3B D5 18 FF 81 91 FE IF C3 80 73 C8 21 10 OA

51

http://www.id.ee/en/article/web-eid/%23schedule

3.2.1 JavaCard Programming

In this subsection, I introduce the JavaCards in general, as well as describe my
development environment and how to install an applet on the card.

Introduction to JavaCards JavaCard is a smart card capable of running the Java
Card Virtual Machine. It executes bytecode, manages classes and objects, and
enables secure data sharing between different applications [53]. According to its
name, it supports code written in Java with specific javacard packages to provide
different smart card-specific functions (e.g., handling A P D U messages).

However, JavaCard V M is not capable of running vanilla Java code, and there
are few specifications or differences:

• threads: thread programming is not supported due to smart cards'
low-performance CPUs.

• Garbage Collector: JavaCard V M does not support garbage collection. There
fore methods like finalize() are not supported. The developers need to do
their own memory management to prevent writing dynamic values into static
memory, ultimately leading to locking the card by having no memory left for
other operations.

• Primitive Types: JavaCard V M only supports byte, short and boolean primitive
types. The Integer type is supported only on specific platforms and should
not be relied on.

More detailed and technical details about JavaCard programming can be found
in [53]. General guidelines and best practices (including memory management men
tioned before) are listed in [54].

Development Requirements and Applet Installation In order to create a JavaC

ard applet (i.e., an application package capable of running on JavaCard) and load
it onto a smart card, I had to download a few files and repositories:

• JavaCard SDK binaries are necessary to recognize all JavaCard-related key
words in the code and build the applet itself. I have used [55], which provides
a list of SDK directories for different versions of JavaCard (version 3.0.4 in my
case; therefore, I have used jc304_kit).

• ant-javacard.jar file from [56] is used to build a C A P file (which can be loaded
on JavaCard) from the JavaCard applet source code.

• gp.jar: lastly, the file from [57] is used for operations regarding the JavaCard
itself, such as reading information from the card, uploading, installing, and
deleting C A P files as applets.

52

First, I had to create a build.xml (see Listing 3.1) file with specific information
for ant command 1 0. In <taskdef > tags, I have specified which library to use for
building (ant-javacard.jar). After that, I specified which SDK binary to use, how
the C A P file should be named, and the applet's source code. Specified AID values
define the unique application ID on the card.

Listing 3.1: build.xml file for building C A P file

<?xml version="1.0" encoding="UTF-8"?>

<project basedir=".">

<taskdef name="javacard" classname="pro.javacard.ant.

JavaCard" classpath="ant-javacard.jar" />

<javacard jckit="sdks/jc304_kit">

<cap output="InfinitEID-applet.cap" sources="src/

InfinitEID" aid="0102030405">

<applet class="InfinitEID.InfinitEIDApplet"

aid="0102030405060708" />

</cap >

</j avacard >

</proj ect >

After that, I run these commands in sequence in order to fully build and install
my applet on the JavaCard (the result can be seen in Figure 4.2):

1. build the C A P file: ant -f build.xml.
2. Uninstall the existing applet from the card, if it exists:

Java -jar ./gp.jar —uninstall ./InfinitEID-applet.cap.

3. Install the applet to the card:
Java -jar ./gp.jar — i n s t a l l ./InfinitEID-applet.cap.

3.2.2 InfinitEID: JavaCard Applet

As mentioned before, I have decided to create a new, open-source JavaCard applet,
which is fully compatible with custom Web-elD solution (more details in section 3.3)
and according to the modern electronic ID standards (e.g., ISO 7816 and [58]).
During the development, I was inspired primarily by FakeEstEID [59] and IsoAp
plet [60])11. I have also named a created applet the InfinitEID.

The following list summarizes InfinitEID's functionality1 2:
1 0 Apache Ant is commonly used for building Java applications.
UA11 inspirations are listed in the source code.
1 2For increased readability, the subject in the following items is abstract. It is either the applet

itself (in the form of a source code), the installed application on the card or the card itself (especially
when talking about storing values in the memory).

53

• can handle A P D U messages longer than 256B by using:
— logical chaining of A P D U messages in TO communication protocol or
— extended A P D U protocol 1 3 in the T l communication protocol.

• Contains two key-pair objects (containing keys for Elliptic-curve operations
over large prime fields) and handles their generation during the card initial
ization phase (more on that in the following subsection 3.2.2):

— for authentication and
— for digital signature1 4.

• Contains two X509 certificates over the public keys from key-pair objects,
which were generated and signed by a trusted authority during the card ini
tialization phase.

• Supports verifying, handling, changing, and resetting three PIN values: auth,
sign, and admin. Their relationships are the following:

— auth P IN is for on-card verification of the authentication operation,
— sing P IN is for on-card verification of the digital signature operation,
— admin P IN is for on-card verification of (re)setting other two PIN values,

(re)generating key-pairs, uploading certificates,
— all PIN values have minimum and maximum length specified,
— all PIN values have a maximum retries counter, after which the PIN is

blocked and cannot be verified anymore (until resetting with the admin
PIN).

• Supports reading and writing an arbitrary amount of binary data from/to the
card. It is currently used only for certificates, but it can be easily expanded
when more data is needed to be stored on the card.

• Currently, it uses ES384 1 5 algorithm for creating signature values. Elliptic
curve domain parameters were taken from [61].

• After verifying appropriate PIN value, it allows running authenticate()
or performSignature(). Both operations perform a digital signature algo
rithm but over different pre-hashed data. The authentication value from Web-
elD (built from challenge nonce and server origin) is signed during authenti
cation. During the regular signature operation, an arbitrary amount of data
is signed.

InfinitEID also supports some common Status Word responses (described in sub
section 1.4.2) from [62] and [63]. For more details or while debugging, check the

1 3Built-in protocol in the SDK to automatically handle longer messages. It is not supported by
every card chip.

14Please note, that although during authentication the card also produces digital signature, the
common practice is to have different key pairs for different card operations.

1 5 JSON Web Algorithm equivalent of ECDSA algorithm using elliptic curve P-384 (also called
"secp384rl") and hash function SHA-384.

54

InfinitEID source code itself.

Management Console for InfinitEID To safely initialize and manage the card
after applet installation (by following instructions from 3.2.1), I have also created
an InfinitEID management console (see Figure 4.3).

First, the system administrator needs to create his own root private key and root
certificate, which will be used to sign public keys generated on the card by running
commands specified and described in the source code. Second, he needs to adjust
values in the configuration file conf ig.yaml. He can also review or change A P D U
requests used by the console in apdulist .yaml.

The administrator can then run the main Python script, after which he is pre
sented with several options:

• Initialize currently connected card: sets the PIN values from the configuration
file, requests key-pairs on-card generation, obtains public keys from the card,
creates certificate using root private key, and stores these certificates on the
card.

• Select main applet: this command sends the applet selection request to the
card. It is useful for debugging or troubleshooting.

• Obtain public key from card: prints the out selected public key in P E M format.
• Obtain certificate from card: prints the out selected certificate in P E M format.
• Set PIN: asks for a new value of a selected PIN and tries to (re)set it on the

card. It is primarily used by the administrator to unblock a locked card.
• Verify PIN: asks for a value of a selected PIN and tries to verify it on the card.

It is primarily used to authorize other operations and by the administrator to
verify his admin P IN to set other PINs.

• Run specific command: allows to send chosen command from apdulist .yaml

file. Useful for debugging and troubleshooting.
• Toggle APDU logging (current: False): defines whether or not the specific

bytes of A P D U messages are shown in the console.
Lastly, as an addition, I have created a second Python script containing 4 unit

tests. Together, they are supposed to determine the compatibility of the currently
connected card with the custom Web-elD solution. Results can be seen in Figure 4.5.

3.3 Web-elD Extensions and Modifications

In this section, I describe my changes and additions to the Web-elD solution in order
for it to accept InfinitEID and ultimately allow the user to log in to Nextcloud using
a custom smart card. The actual research and implementation of these changes
have been consulted with Amis Parsovs (Research Fellow in Cyber Security at the

55

University of Tartu, Estonia) and Mart Somermaa (Web-elD developer and main-
tainer) [35].

3.3.1 Web-elD Validation Library in PHP

As mentioned in subsection 2.4.1, validation libraries are used for securely creating
cryptographic challenges and verifying the response and the certificates associated
with it. Currently, only two of these libraries are available in the Web-elD repository:
Java (finished) and .NET (being developed).

Since the Nextcloud back-end is written primarily in PHP, I have decided to
develop and deploy a new PHP validation library from scratch. This implementation
is open-source, provides the same functionalities as existing libraries, and can be
easily deployed in modern P H P applications. It required studying and researching
ASN1 notation, X.509 certificate architecture [64] and OCSP protocol [65]. Together
with the original Web-elD JavaScript library, the solution provides on-demand nonce
generation and authentication token validation according to the Web-elD standard.

It can be installed and deployed with Composer in any PHP project. Great
emphasis was placed on mimicking as much existing Java code-base as possible, al
though there were some obstacles due to programming language differences. It should
also help the Web-elD community since Mart Somermaa expressed great interest in
its future evaluation and possible integration into the official Web-elD repository [35].

OCSP Client Library During the PHP validation library development, I also had
to create an OCSP (Online Certificate Status Protocol) client in PHP. It allows
building an OCSP request and sending it to an OCSP server to obtain a validity
check of a certificate (whether or not it has been revoked). In other programming
frameworks (Java and .NET), it is already a part of built-in or installable packages.
However, it is missing in PHP. Currently, this client is part of said P H P validation
library, but I plan to separate it into a standalone P H P library in the future for the
development community to use in their own web applications. Mart Somermaa well
supports this idea.

3.3.2 Web-elD Native Application Extension

For Web-elD to support InfinitEID, I had to also create a native application exten
sion by implementing the pre-defined interface ElectronicID in C++ programming
language. In this interface, I had to define the following variables and functions:

• A P D U message to select application AID,
• A P D U messages for selecting authentication or digital signature certificates,
• function for verifying PIN values,

56

• function for obtaining the number of PIN retries left.
• supported digital signature algorithms (only ES384 at the moment), and
• functions for authenticating and digital signature.

In general, the Web-elD native application uses these definitions to know which
sequence of bytes to send to the card to obtain high-level results of specific opera
tions.

3.3.3 Authentication Token Validation in Nextcloud

As mentioned in subsection 3.1.2, I have created an installable Nextcloud App to
integrate Web-elD authentication as a second authentication factor. I will further
describe how to install the P H P validation library into this application and configure
necessary objects (responsible for creating challenge nonce and authentication token
validation) to enable users to log in with their initialized InfinitEID.

Installation First, the system administrator must install this application into
Nextcloud by copying/cloning the source code into the nextcloud-path/apps direc
tory. Web-elD validation token library for P H P is already defined in the Composer
installation file, so the administrator needs to issue the command composer install

to download and install it automatically.

Challenge Nonce Store Configuration After the installation, the administrator

also needs to configure a challenge nonce store to guarantee that the authentication
token is received from the same browser to which the corresponding challenge nonce
was issued. The most probable solution is a session-dependent challenge nonce store.

In Nextcloud, a session variable is available to all classes in the framework. The
Listing A . l provides an example implementation using the ISession object from the
Nextcloud framework. Note that the class extends a ChallengeNonceStore, part of
the validation token library.

Challenge Nonce Generator Configuration Challenge nonce generator can be im

plemented by extending the ChallengeNonceGenerator interface. However, a Chal-
lengeNonceGeneratorBuilder is available in the library, which can be used to create a
default, built-in implementation with specific values. In the Listing A.2, an example
usage is provided.

Authentication Token Validator Configuration Lastly, the server administrator

needs to configure the validator itself. Mandatory parameters are the website origin

57

and trusted certificate authorities (i.e., loaded P E M or DER-encoded files using Cer-
tificateLoader class from the library). The administrator can specify a designated
OCSP server location or turn off OCSP checking completely. In the Listing A.3, an
example configuration is provided.

Obtaining Authentication Result During the authentication attempt, the server
administrator needs to ensure that:

• challenge nonce is generated, stored, strictly tied with user session in the back-
end, and is sent to the client:

— by including it in the rendered template on the authentication page (ex
ample in the Listing A.4) or

— by providing it via REST A P I point, which the client accesses during
authentication initialization.

• The client page tries to provide an authentication token by utilizing the Web-
elD JavaScript library, ultimately invoking communication with the smart
card. A n example is provided in the Listing A.5: the authentication token
returned from the card is inserted into the Nextcloud second-factor authenti
cation form, which is afterward submitted.

Lastly, the administrator should also check the function
lib/Service/WebEidService.php:authenticate() and optionally implement a
different authentication mechanism after the Web-elD successfully verifies electronic
identity by its own workflow. Currently, the program checks whether the verified cer
tificate from the card contains the same username in its subject field CommonName
as provided by the Nextcloud framework (see Listing A.6).

58

4 Overview and Verification of Results
In this chapter, I present the results of this thesis in sequences of screenshots from
the administrator's and user's points of view. I also present measurement results
for on-card digital signature operation and duration of token validation by the P H P
validation library. Figure 4.1 presents a general overview of this thesis' solution,
with my contribution highlighted in red color.

Nextcloud server side

Nextcloud modulardesign
capable of loading now applications

Nextcloud
server

| | J ^ |Direct P H P implementation!

Client side

Native messaging API APP
OS

JavaCard
Personalised
smart-card

Web-elD
Native Application

(Electronic ID implementation)

Web-elD
PHP Authentication Token

Validation Library

Web-elD
JavaScript library

|Red highlight denotes my changes/implementations|

Fig. 4.1: General overview of Nextcloud-Web-eid architecture with highlighted con
tributions

4.1 Administrator's Point of View

Assuming trusted certificate authorities have already been established and certifi
cates issued (e.g., a self-signed certificate has been created), the system administra
tor can start personalizing blank JavaCards by building the latest InfinitEID applet
and installing it on the card (see Figure 4.2).

> /opt/homebrew/bin/ant - f /Users/petr/Developer/Repus/web-eid-nexLcloud/Ir if ir i iLEID/src/Ir i l iniLEID-appleL/buil i i . j trnl ;/Library/Java/JavaVLrtuaWachines/amazon-corretto-8. jdk/Contents/Honie/bi
n/java - j a r /Users/petr/Developer/Repos/web-eid-nextcloud/Inf initEID/src/Inf in i tE ID-applet/gp. j a r u n i n s t a l l /Users/petr/Developer/Repos/web-cid icxtc ' .o . id/ lnf i i i t = l L V s r c / l n f in i tE ID-applet
/ In f in i tE ID-applet .cap ;/L ibrary/Java/J ayaVirtuaV-lachiric-s/amazon corrct to 8. jdk/Contents/Homc/bin/java - j a r /Users/petr/Developer/Repos/web-eid-nextcloud/Inf in i tE ID/src/ In f in i tLID applet/gp
• j a r — i n s t a l l /Users/petr/Developer/Repos/web-e id-nextc loud/ Inf in i tL lD/src/ lnf in i tE ID-applet/ Inf in i tE lD applet .cap

B i l l d f i L e : /Users/petr/Developer/Repos/web-eid-nextc loud/Inf Ini tEID/src/ Inf in i tEID-applet/bui ld .xml
[cap] INFO: using JavaCard 3 .0 .4 SDK in /Users/petr/Developer/Repos/web-eid-nextcloud/Inf initEID/src/Inf initEID-applet/sdks/ ;Jc304_kit
[cap] INFO: Sett ing package name to In f in i tE ID
[cap] Bu i ld ing CAP with 1 applet from package In f in i tE ID [AID: 0102030495)
[cap] In f in i tE ID . In f in i tE IDApple t 910203940596070B

[compile] Compiling f i l e s from /Users/petr/Developer/Repos/web-eid-nextc loud/Inf in i tE ID/src/ Inf in i tE ID-applet/src/ Inf in i tE ID
[cDinpile] Compiling 1 source f i l e to /var/fDlders/0p/_tqy5grl37bd3866163pnw9m00a0gn/T/iccproa412136551997880755
[compile] /Users/petr/Developer/Repos/web-eid-nextc loud/Inf in i tE ID/src/ Inf in i tE ID-applet/src/ Inf in i tE ID/ Inf in i tE IDApplet . Java
[convert] [INFO:] Converter [v3.0.4]
[convert] [INFO:] Copyright (c) 2011, Oracle and/or i t s a f f i l i a t e s . A l l r ights reserved.
[convert]
[convert]
[convert] [INFO:] conversion completed with 0 errors and 0 warnings,

[javacard] NB! Please use JavaCard SDK 3.0.5u3 or Later f o r v e r i f y i n g !
[verify] V e r i f i c a t i o n passed

[cap] CAP saved to /Users/petr/Developer/Repos/web-eid-nextc loud/Inf in i tE ID/src/ Inf in i tE ID-applet/ Inf in i tE ID-applet .cap

BUILD SUCCESSFUL
Tota l t ime: 2 seconds
Warning: no keys g iven , using default test key 4041424344454G4/48494A4B4C4D4E4F
0192030405 deleted .
Warning: no keys g iven , using default test key 404142434445464/48494A4B4C4D4E4F
CAP loaded

Fig. 4.2: InifinitEID applet build and reload process

He then runs the InfinitEID management console (see Figure 4.3), selects the
first Initialize currently connected card option, and inserts the Nextcloud username,

59

for which he wishes to activate the Web-elD second-factor authentication (see ini
tialization for user ncadmin in Figure 4.4).

[.] Waiting 10 seconds for card
[+] Card connected
[.] Disconnecting from Gemalto PC Twin Reader
[>] Selecting main applet AID
#################### Card Manager ####################
> [i] Initialize currently connected card

[m] Select main applet
[p] Obtain public key from card
[c] Obtain certificate from card
[s] Set PIN
[v] Verify PIN
[r] Run specific command
[t] Toogle APDU logging (current: False)
[q] Quit

Fig. 4.3: InfinitEID management console

Input Nextcloud user ID (defaul t from c o n f i g f i l e : ncadmin.
Was admin PIN already set? ({0, 1}, defau l t 0:)

q to q u i t) :

Card i n i t i a l i z a t i o n s tar ted
Se lec t ing main applet AID
Set t ing up PIN codes
Set admin pin
Ver i f y admin pin
Set auth pin
Ver i f y auth p in
Ver i f y admin pin
Set s ign pin
Ver i f y sign pin
Creat ing AUTH keypair , obtain ing pub l i c key and s to r ing c e r t i f i c a t e
Ve r i f y admin pin
Generate auth keypair
Get auth publ ic key
Loading root c e r t i f i c a t e and root p r iva te key
Creat ing user c e r t i f i c a t e
Ve r i f y admin pin
Store auth user c e r t i f i c a t e
Creat ing SIGN keypair , obtain ing pub l i c key and s to r ing c e r t i f i c a t e
Ve r i f y admin pin
Generate sign keypair
Get s ign pub l i c key
Loading root c e r t i f i c a t e and root p r iva te key
Creat ing user c e r t i f i c a t e
Ve r i f y admin pin
Store s ign user c e r t i f i c a t e
Success fu l l y f i n i s h e d !

Card Manager
onnected

mj Select main applet
p] Obtain publ ic key from card
c] Obtain c e r t i f i c a t e from card
s] Set PIN
v] Ve r i f y PIN
r] Run s p e c i f i c command
t] Toogle APDU logging (current : False)
q] Quit

Fig. 4.4: InfinitEID initialization finished

Before activating the second factor for the specific user, the administrator op
tionally runs unit tests that are part of a management console to test Web-elD

60

compatibility (whether the card responds correctly to specific requests). See Fig
ure 4.5 for successful unit tests run.

> pytest
== t e s t s e s s i o n s t a r t s

darwin — Python 3.10.0, pytest-7.1.2, pluggy-1.0.0
r o o t d i r : /Users/petr/Developer/Repos/web-eid-nextcloud/InfinitEID
c o l l e c t e d 4 items

src/InfinitEID-card-management/tests/te5t_web_eid_app_compatibility.py . [.] Disconnecting from Gemalto PC Twin Reader
.[.] Disconnecting from Gemalto PC Twin Reader
.[.] Disconnecting from Gemalto PC Twin Reader
.[.] Disconnecting from Gemalto PC Twin Reader

[180%]

== 4 passed i n 4.03s ---------------

Fig. 4.5: Web-elD compatibility unit tests result

Lastly, the administrator uses the OCC console (built-in management console
for Nextcloud) to activate the Web-elD second factor for the specific user.

nextcloudadmin@nextcloudserver:/var/www/nextcloud$ occ twofactorauth:enable ncadmin twofactor_webeid

Two-factor prov ider twofactor_webeid enabled f o r user ncadmin.

Fig. 4.6: Enabling Web-elD second-factor authentication for ncadmin user

4.2 User's Point of View

In this subsection, an opposite point of view is described. The following text and
pictures depict the final login workflow.

First, the user must install the official version of Web-elD specifically for his
operating system and web browser of choice (see Figure 4.7). In order for his instance
to accept InfinitEID, he needs to build his own, containing the extension described
in subsection 3.3.2)1 and replace it with the original one (see Figure 4.8).

jQ| WebelD c f -]

Use your electronic identification card for secure authentication and digital signing.

Details Permissions

The Web elD extension enables the use of digital documents (ID-card, digital ID,
e-Resident 's digital ID, residence permit card, etc.) for secure authentication and signing
on the web.

n addition to this extension, the Web elD native application must also be installed on the
computer.

Download the Web elD native application from here: https://www.id.ee/en/article/install-
id-software/

Fig. 4.7: Web-elD web-browser extension installed

1 Providing already extended and builded version directly to the users is in the scope for the
future.

61

https://www.id.ee/en/article/install-

i n *• -v/Developer/Repos/web-eid-nextcloud/web-eid-app
sudo cp -R build/src/app/web-eid• app / A p p l i c a t i o n s / L i t i l i t i e s / |

Fig. 4.8: Replacing extended and built version of Web-elD native application with
the original one

Afterward, the user attempts to log in to Nextcloud (see Figure 4.9) and is
presented with a page dedicated to a Web-elD smart card authentication (see Fig
ure 4.10). After clicking on the Authenticate button, a regular Web-elD authentica
tion workflow is executed. Thus the user is immediately asked for an authentication
PIN (see Figure 4.11).

oOo

Forgot p a s s w o r d ?

Log in with a device

Fig. 4.9: Nextcloud login page

Modified Web-elD native application exchanges data with the user's InfinitEID
card and returns an authentication token, which the PHP validation library vali
dates. When successful, the user is authenticated and granted access to the cloud
storage (see Figure 4.12).

62

oQo
Web-elD 2FA

Please insert your smartcard and click on

button below.

Authenticate

Use backup code

Cancel login

Fig. 4.10: Web-elD second-factor authentication page

oQo
Web-elD 2FA

O =

Please insert your smartcard and click on

button below.

A u t h e n t i c a t i o n

By authenticating, I agree to the transfer of my name and personal
identification code to the service provider.

Q 192.168.1.201

ncadmin
Issuer: Web-elD Nextcloud Root CA
Valid: 2022-06-13 to 2022-09-11

Authenticate

Use backup code

Enter PIN1 for authentication

Cancel login
Cancel

Fig. 4.11: Web-elD authentication PIN prompt

63

OQO • • V B

® KeoenI

* Favorites

< Shares

» Tags

Welcome to Nextclou,,, .docx
Recently editec

D e 2 e

Photos

Readme
Recently edited

Nextcloud flyer.pdf
Recently editec

A Examole.md
™ Recently editec

Size Modifiec

<; -•• 391 KB před rokerr

81 KB před rokem

•í --- 5,4 MB před rokerr

Fig. 4.12: Nextcloud web-interface example

4.3 Authentication Duration Measurements

In this subsection, I provide two measurements: the on-card digital signature of
pre-hashed authentication value2 and PHP back-end validation of Web-elD authen
tication token.

During the first measurement, I created a Python script that generates a sim
ulated Web-elD authentication value, sends it to the card one hundred times, and
measures how long it took to obtain a response. As mentioned in subsection 3.2.1,
I was working with two different JavaCards. I have run this script three times for
each card, so in total, I have done six measurements with 100 retries each. The
results are depicted in Figure 4.13, and the average values are in Table 4.1. From
these, we can conclude that the speed of creating a digital signature of authentica
tion value heavily depends on the exact card model. However, the slower model is
still usable and user-friendly. Please note that A P D U communication and on-card
request processing are also part of a measured duration. Compared to the values
from Petr Svenda's JavaCard Algorithm Test [66], my measurements are 16-30 %
higher. The mentioned actions might cause this delay.

Tab. 4.1: Average duration values for on-card digital signature

Card model:

JavaCard
SLJ52GCA150
(jTOP SLE78

Estonian ID card
platform)

JavaCard NXP
J COP 3 J3H145

Average from measurement 1 [s]:
Average from measurement 2 [s]:
Average from measurement 3 [s]:

0,262262263
0,256840816
0,264224105

0,069637427
0,073954861
0,074868116

2Using already mentioned ES384.

64

0,25

On-card digital signature of pre-hashed authentication value

JavaCard
SLJ52GCA150
(jTOP SLE78

Estonian ID card
platform)

0,15

0,05 46 55
Retry number [-

JavaCard NXP
JCOP3J3H145

Fig. 4.13: On-card digital signature of pre-hashed authentication value measurement

For the second measurement, I have modified the Nextcloud App for Web-elD
second-factor authentication. Instead of providing authentication results to the
Nextcloud framework, it also runs the validation process one hundred times and
measures the duration of this process. I then ran this code five times. Results
of validation without OCSP service (which might introduce random latency) are
depicted in Figure 4.14 and Table 4.2. The first values of each run are slightly higher
and are more critical (since the user will probably always try to log in only once a
time), so I have excluded them from the average calculation. We can conclude that
the pure validation process is fast enough for the user not to notice any significant
delay in the authentication process.

Tab. 4.2: Average durations of back-end validation

First validation [s] Average of the 2 n d 100 t h retry [s]

Measurement 1 0,152329 0,144614

Measurement 2 0,153286 0,144802

Measurement 3 0,153549 0,144638
Measurement 4 0,153389 0,144777
Measurement 5 0.153431 0,145102

65

PHP back-end validation of Web-elD authentication token

0,153

0,151

66

5 Next Steps: Czech elD
One of Web-elD's main goals is an expansion to other European Union countries.
Based on the communication with both Estonian consultants, preparing Web-elD for
the Czech ID card would significantly contribute to the project overall. Out of scope
of this thesis, I have decided to research and try to implement a new ElectronicID
interface for the Czech electronic identity card. These cards are being distributed to
all fifteen years old citizens or whoever inquires and contain a chip with a JavaCard
applet that should serve a similar purpose as Estonian elD.

As soon as I started, I encountered several critical problems. First, there is no
official documentation for the Czech elD applet (apparently by choice)1. I have
tried contacting the official support of Identita Občana (the official portal for Czech
electronic identity) and asked for an essential public A P I structure (which A P D U
commands to send to obtain specific responses). I have received a one-sentence re
sponse saying that the Ministry of Interior is not interested in integrating my appli
cation. However, a leader of the development group Smart Security from MONET+2,
a.s. reached out to me later, saying that although the Ministry of Interior indeed
can not provide me with Czech elD documentation, they are interested in the results
of this thesis and want to co-operate in the future.

My next option was to use real Czech elD with genuine and legitimate software
and trace A P D U using standards tools (for example, pcscd tool with "-a" flag or
running specific command3 in the macOS terminal and reading A P D U messages
from the console). For specific operations, I could read which specific bytes were
sent to the card before that operation and define them in the Web-elD ElectronicID
interface. However, from conversations with said M O N E T + employee, I have learned
that in the case of Czech elD complementary software, it is forbidden to perform
any decompilation, transformation, reverse-engineering, or other similar operations
except for the situation described or listed explicitly by law. Chances are, the same
restrictions also apply to the Czech elD JavaCard applet.

According to the description and several articles referenced in [67], the Czech
Ministry of Interior has decided not to make public on-card certificates public4", ul
timately denying broad public community in developing new applications utilizing
new electronic IDs and independent identity verification. ParalelniPolis also provides
a way to compute these public keys from card certificates. This way of obtaining

1In opposition with other state-issued ID cards. Estonian ID card is openly speci
fied in https://www.id.ee/en/article/id-card-documentation-2/ and https://www.id.ee/
wp-content/uploads/2021/08/td-idl-chip-app-4.pdf.

2Company, which is developing electronic identity cards for Czech government.
3sudo defaults write /Library/Preferences/com.apple.security.smartcard Logging -bool yes
4It refuses to publish public keys required to verify these on-card certificates, to be more specific.

67

https://www.id.ee/en/article/id-card-documentation-2/
https://www.id.ee/

public keys required to verify the on-card public key (with the corresponding pri
vate key used for digital signature) is in the scope for future work from this thesis
(assuming all required steps will be proven legal).

08

Conclusions
During the work on this thesis, I have focused on cloud services, cloud storages,
authentication, and smart cards in general. I have also researched existing technolo
gies that connect smart cards and web services by enabling web servers to utilize
personal smart cards for authenticating users into their services.

The state-of-the-art shows that most solutions are either not supported any
more, not documented enough, or do not meet our criteria for secure authentication
via smart cards into cloud storage for handling electronic evidence. As a proof-of-
concept, I created a simple solution using MultOS smart card and socket program
ming during the first half of the thesis work.

I have also discovered an up-and-coming Estonian solution called Web-elD -
currently being developed collection of tools that safely authenticate a user to the
web application using a smart card. It is set to be used in all Estonian e-services in
the next few years (even spreading to other European countries as a new standard)
and is primarily focused on state-issued electronic ID cards. However, due to its
open-source license, high extensibility, and my Erasmus+ stay in Estonia (enabling
close contacts and consultations with two Estonian experts on Web-elD and smart
cards in general), I have managed to use it with the custom-built and personalized
smart card.

I have created an InfinitEID JavaCard applet, which is fully compatible with a
modified and extended version of Web-elD. It follows the same authentication and
digital signature principles and workflows as the original Estonian ID card (ensuring
the solution is a modern and possibly safe option for this thesis outcome).

Then, I created a new Web-elD authentication token validation library in P H P
language, which might be part of the official repository someday (since existing
Web-elD validation libraries are currently only for Java and .NET applications with
more languages to come).

The subsequent outcome is an installable Nextcloud (one of the most popular
open-source cloud storage) module that enables Web-elD for a second authentication
factor by utilizing this P H P validation library. In the end, I have also measured
the duration of authentication with InfinitEID and the duration of back-end token
validation.

I have also researched (noted by the two mentioned experts as "highly requested"
for Web-elD expansion) the option of using Czech electronic identity cards with
Web-elD. This area, however, still needs some time and possible involvement in
closed-source development as the choice of the Czech Ministry of Interior (as the
opposite of the Slovak or Estonian government) is not to publicize public keys used
for on-card certificates verification. This decision prevents the broad community

69

from using Czech state-issued electronic identities in their applications.
Overall, this thesis work and its practical outcomes - besides providing the so

lution to authenticate users into cloud storage with electronic evidence safely - is
supposed to guide/help future developers with effective and secure integration of
strong-authentication methods into their web applications on every expertise level.

70

Bibliography
[1] RedHat. What are cloud services?, December 2019. U R L : https://

www.redhat.com/en/topics/cloud-computing/what-are-cloud-services.

[2] Amazon Web Services. What is cloud computing, 2021. U R L : https:
/ / aws. amaz on.com/what-is-cloud-c omput i ng/.

[3] L. Wang, G. von Laszewski, A . Younge, X i He, M . Kunze, J. Tao, and Ch.
Fu. Cloud computing: a perspective study - new generation computing, 2010.
U R L : https: //doi.org/10.1007/s00354-008-0081-5.

[4] Nick Antonopoulos and Lee Gillam, 2017. U R L : https://doi.org/10.1007/
978-3-319-54645-2.

[5] Erik Chovanec. Řízení přístupu k datům v cloudu. Master's thesis, Brno
University of Technology, 2021.

[6] Jiyi Wu, Lingdi Ping, Xiaoping Ge, Ya Wang, and Jianqing Fu. Cloud storage
as the infrastructure of cloud computing. In Cloud Storage as the Infrastructure
of Cloud Computing, pages 380-383. IEEE, June 2010.

[7] Tým V U T v Brně. Identifikace požadavků a návrh technického řešení systému
pro bezpečnou správu el. důkazů. Technical report, Brno University of Tech
nology, Department of Telecommunications, 2022.

[8] Government - nextcloud. U R L : https://nextcloud.com/industries/
government/.

[9] Enterprise - nextcloud. U R L : https://nextcloud.com/enterprise/.

[10] owncloud vs nextcloud, October 2020. U R L : https://owncloud.com/
owncloud-vs-nextcloud/.

[11] seafile. Security features - seafile admin manual. U R L : https://

manual.seafile.com/security/security_features/.

[12] Inc. Free Software Foundation. Gnu affero general public license - gnu project
- free software foundation (fsf), November 2007. U R L : https://www.gnu.org/
licenses/agpl-3.0-standalone.html.

[13] Dawn M . Turner. Digital authentication - the basics, August 2016.
U R L : https: //www.cryptomathic.com/news-events/blog/digital-

authentication-the-basics.

71

http://www.redhat.com/en/topics/cloud-computing/what-are-cloud-services
https://doi.org/10.1007/
https://nextcloud.com/industries/
https://nextcloud.com/enterprise/
https://owncloud.com/
http://manual.seafile.com/security/security_features/
https://www.gnu.org/
http://www.cryptomathic.com/news-events/blog/digital-

[14] Dave Piscitello. What is authorization and access control?, Decem
ber 2015. U R L : https://www.icann.org/en/blogs/details/what-is-
authorization-and-access-control-2-12-2015-en.

[15] Faouzi Jaidi and Jaydip Sen. Advances in Security in Computing and Commu
nications. InTech, July 2017.

[16] R.S. Sandhu and P. Samarati. Access control: principle and practice. IEEE
Communications Magazine, 32(9):40-48, September 1994.

[17] MULTOS Limited. Multos developer's guide, 2021. U R L : https://
multos.com/wp-content/uploads/2020/09/MDG.pdf.

[18] Iso. ISO/IEC 7816-3:2006, November 2006.

[19] Iso. ISO/IEC 7816-10:1999., 1999.

[20] Iso. ISO/IEC 7816-4:2020, 2020.

[21] Petr Vančo. Kryptografická podpora současných programovatelných čipových
karet. Master's thesis, Brno University of Technology, 2019.

[22] Michal Kočíř. Michal použití smart-karet v moderní kryptografii. Master's
thesis, Brno University of Technology, 2013.

[23] Alexandr Kuckir. Programování v operačním systému multos. Master's thesis,
Brno University of Technology, 2009.

[24] Chromium. Saying goodbye to our old friend npapi, September 2013.
U R L : https : //blog.chromium.org/2013/09/saying-goodbye-to-our-old-
f riend-npapi.html?hl=hu.

[25] Java - applet basics. U R L : https://www.tutorialspoint.com/java/
java_applet_basics.htm.

[26] Oracle. Jdk 9 release notes, 2021. URL: http://www.oracle.com/

technetwork/java/javase/9-deprecated-features-3745636.html.

[27] Frangois Beaufort. Access usb devices on the web, 2016. U R L : https://
web.dev/usb/.

[28] Reilly Grant. Intent to implement and ship: Webusb interface class filtering,
March 2018. U R L : https ://groups.google.com/a/chromium.org/g/blink-
dev/c/LZXocaeCwDw/m/GLfAffGLAAAJ.

72

https://www.icann.org/en/blogs/details/what-is-
http://multos.com/wp-content/uploads/2020/09/MDG.pdf
http://chromium.org/2013/09/saying-goodbye-to-our-old-
https://www.tutorialspoint.com/java/
http://www.oracle.com/

[29] Chrome Enterprise and Education Help. Use smart cards on chrome os - chrome
enterprise and education help. URL: https://support.google.com/chrome/
a/answer/7014689?hl=en&ref_topic=7015274.

[30] Chromium Blog. Changes to the chrome app support timeline, August
2020. URL: https: //blog.chromium.org/2020/08/changes-to-chrome-app-
support-timeline.html.

[31] Sárka Chwastková. Webová vizualizace a demonstrator anonymních poverení.
Master's thesis, Brno University of Technology, 2021.

[32] Ondrej Malik. Kryptografie a ochrana soukromí. Master's thesis, Brno Univer
sity of Technology, 2021.

[33] Kapil Sachdeva, Karen Lu, and Ksheerabdhi Krishna. A browser-based
approach to smart card connectivity, 2019. U R L : http://www.ieee-
security.org/TC/W2SP/2009/papers/s4p4.pdf.

[34] W3C. Web authentication: A n api for accessing public key credentials - level
2, Apri l 2021. U R L : https://www.w3.org/TR/webauthn/.

[35] Petr Muzikant and Jan Hajný. Integrating smart-card authentication to web
applications. ICUMT 2022, June 2022.

[36] A C S C . Australian government information security manual: Guidelines
for cryptography, 2021. U R L : https://www.cyber.gov.au/acsc/view-all-
content/advice/guidelines-cryptography.

[37] European Pauments Council. Guidelines on cryptographic algorithms usage and
key management., 2021. URL: https://www.europeanpaymentscouncil.eu/
document-library/guidance-documents/guidelines-cryptographic-

algorithms-usage-and-key-management.

[38] Gaétan Leurent and Thomas Peyrin. Sha-1 is a shambles*. Cryptology ePrint
Archive, 2021.

[39] I B M . Socket programming, 2012. U R L : https://www.ibm.eom/docs/en/i/
7. l?topic=communications-socket-programming.

[40] Mart Sômermaa. web-eid/web-eid-system-architecture-doc: The web eid
project enables usage of european union electronic identity smart cards for
secure authentication and digital signing of documents on the web using
public-key cryptography, 2022. U R L : https://github.com/web-eid/web-
eid-system-architecture-doc.

73

https://support.google.com/chrome/
http://chromium.org/2020/08/changes-to-chrome-app-
http://www.ieee-
http://security.org/TC/W2SP/2009/papers/s4p4.pdf
https://www.w3.org/TR/webauthn/
https://www.cyber.gov.au/acsc/view-all-
https://www.europeanpaymentscouncil.eu/
https://www.ibm.eom/docs/en/i/
https://github.com/web-eid/web-

[41] Mart Somermaa. Web-eid component model, 2021. U R L : https:
//github. com/web-eid/web-eid-system-architecture-doc/blob/master/

diagrams/Web-elD-Component-Model.png.

[42] Mart Somermaa. Web-eid authentication communication diagram, 2021. U R L :
https: //github. com/web-eid/web-eid-syst em-architecture-doc/blob/

master/diagrams/Web-elD-authentication-communication-diagram.png.

[43] Tonis Reimo, Sandhra-Mirella Valdma, Kristjan Krips, Oruuas Mart, Pankova
Alisa, and Jan Willemson. Analysis of planned architectural changes in
open-eid, December 2020. URL: https://web-eid.github.io/web-eid-

cybernetica-analysis/webextensions-main.pdf.

[44] Amis Parsovs. On the format of the authentication proof used by ria's
web eid solution, October 2021. U R L : https://cybersec.ee/storage/
webeid_auth_proof.pdf.

[45] Mart Somermaa. Github - web-eid/web-eid-system-architecture-doc: The web
eid project enables usage of european union electronic identity smart cards
for secure authentication and digital signing of documents on the web using
public-key cryptography: Protection against man-in-the-middle attacks during
authentication with origin validation, 2022. U R L : https://github.com/web-
eid/web-eid-system-architecture-doc#protection-against-man-in-

the-middle-attacks-during-authentication-with-origin-validation.

[46] The risk of session hijacking and man-in-the-middle attacks in web
eid - id.ee. URL: https://www.id.ee/en/article/the-risk-of-session-
hijacking-and-man-in-the-middle-attacks-in-web-eid/.

[47] Nextcloud. Nextcloud latest administration manual, 2022. U R L : https://
docs.nextcloud.com/server/latest/admin_manual/index.html.

[48] Nextcloud. Nextcloud developer documentation — nextcloud
latest developer manual latest documentation, 2022. U R L : https://
docs.nextcloud.com/server/latest/developer_manual/index.html.

[49] The Nextcloud Community. A l l apps - app store - nextcloud, 2022. U R L :
https: //apps.nextcloud.com.

[50] D Hardt. The oauth 2.0 authorization framework. Technical report, Internet
Engineering Task Force (IETF), October 2012.

[51] AuthO. What is oauth 2.0 and what does it do for you? - authO. U R L :
https: //authO.com/intro-to-iam/what-is-oauth-2/.

74

https://web-eid.github.io/web-eid-
https://cybersec.ee/storage/
https://github.com/web-
http://id.ee
https://www.id.ee/en/article/the-risk-of-session-
http://docs.nextcloud.com/server/latest/admin_manual/index.html
http://docs.nextcloud.com/server/latest/developer_manual/index.html

[52] Andreas Leicher, Andreas U . Schmidt, and Yogendra Shah. Smart OpenID: A
Smart Card Based OpenID Protocol, pages 75-86. Springer Berlin Heidelberg,
2012.

[53] Inc Sun Microsystems. Java card applet developer's guide, August
1998. U R L : https://ftp.icm.edu.pl/packages/javasoft-docs/javacard/
AppletDevelopersGuide.pdf.

[54] Ruim Tools. Ruimtools: Javacard best programming guidelines, 2018. U R L :
http: //ruimtools. com/doc. php?doc=jc_best.

[55] Martin Paljak. Github - martinpaljak/oracle^javacard sdks: Oracle javacard
classic sdk-s for using as a git submodule for ant-javacard projects, Apri l 2022.
U R L : https: //github.com/martinpaljak/oracle_javacard_sdks.

[56] Martin Paljak. Github - martinpaljak/ant-javacard: Easy to use ant task for
building javacard classic applets (2.1.1 to 3.1.0), February 2022. URL: https:
//github. com/mart inpalj ak/ant-j avacard.

[57] Martin Paljak. Github - martinpaljak/globalplatformpro: Manage applets and
keys on javacard-s like a pro (via command line or from your Java project),
June 2022. U R L : https://github.com/martinpaljak/GlobalPlatformPro.

[58] Inc. GlobalPlatform. Card specification - iso framework, March
2014. U R L : https ://globalplatf orm.org/wp-content/uploads/2014/03/
GPC_ISO_Framework_vl.0.pdf.

[59] Martin Paljak. esteid-applets/fakeesteid.md at master • martinpaljak/esteid-
applets, June 2017. U R L : https://github.com/martinpaljak/esteid-
applets/blob/master/docs/FakeEstEID.md.

[60] Philip Wendland. Github - philipwendland/isoapplet: A Java card pki applet
aiming to be iso 7816 compliant, December 2019. U R L : https://github.com/
philipWendland/IsoApplet.

[61] Certicom Corp. Sec 2: Recommended elliptic curve domain parameters,
September 2000. U R L : https://www.secg.Org/SEC2-Ver-l.0.pdf.

[62] E F T Lab. Complete list of apdu responses - eftlab - breakthrough payment tech
nologies. U R L : https ://www.ef tlab.com/knowledge-base/complete-list-
of-apdu-responses/.

[63] Cheef. Cheef's personal site., June 2009. U R L : http:
//web.archive.org/web/20090623030155/http://cheef .ru/docs/HowTo/

SWlSW2.info.

75

https://ftp.icm.edu.pl/packages/javasoft-docs/javacard/
https://github.com/martinpaljak/GlobalPlatformPro
http://orm.org/wp-content/uploads/2014/03/
https://github.com/martinpaljak/esteid-
https://github.com/
https://www.secg.Org/SEC2-Ver-l.0.pdf
http://www.ef
http://tlab.com/knowledge-base/complete-list-
http://cheef

[64] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, and W. Polk. Rfc
5280 - internet x.509 public key infrastructure certificate and certificate revoca
tion list (crl) profile, May 2008. URL: https://datatracker.ietf.org/doc/
html/rfc5280.

[65] S. Santesson, M . Myers, R. Ankney, A . Malpani, S. Galperin, and C. Adams.
Rfc 6960 - x.509 internet public key infrastructure online certificate status pro
tocol - ocsp, June 2013. U R L : https://datatracker.ietf.org/doc/html/
rfc6960.

[66] Petr Svenda. Javacard algorithm test, 2022. U R L : https://www.fi.muni.cz/
-xsvenda/j calgtest/.

[67] ParalelniPolis. Github - paralelnipolis/obcanka-public: Tool to generate unoffi
cial issuer's certificate for eobcanka, January 2019. U R L : https: //github.com/
ParalelniPolis/obcanka-public.

76

https://datatracker.ietf.org/doc/
https://datatracker.ietf.org/doc/html/
https://www.fi.muni.cz/

A Code listings

Listing A . l : Example session-backed challenge nonce store implementation

class SessionBackedChallengeNonceStore extends

ChallengeNonceStore {

private const CHALLENGE_NONCE_KEY = 'web-eid-challenge-nonce
; . i

private ^session;

public function __construct(ISession $session) {

$this->session = $session;

}

public function put(ChallengeNonce $challengeNonce): void {

$this->session [s e l f : :CHALLENGE_NONCE_KEY] = s e r i a l i z e (

$challengeNonce);

}

protected function getAndRemovelmpl(): ?ChallengeNonce {

i f (!$this->session [self : :CHALLENGE_NONCE_KEY]) {

return n u l l ;

}

$challengeNonce = u n s e r i a l i z e ($ t h i s - > s e s s i o n [s e l f : :

CHALLENGE_NONCE_KEY], array(

'allowed_classes' => array(ChallengeNonce::class, DateTime

: : c l a s s) ,

)) ;

i f (!$challengeNonce) {

return n u l l ;

}

unset($this->session [self : :CHALLENGE_NONCE_KEY]) ;

return $challengeNonce;

}

}

77

Listing A.2: Challenge nonce generator builder usage example

use muzosh\web_eid_authtoken_validation_php\challenge\

ChallengeNonceGenerator;

use muzosh\web_eid_authtoken_validation_php\challenge\

ChallengeNonceGeneratorBuilder;

use muzosh\web_eid_authtoken_validation_php\challenge\

ChallengeNonceStore;

public function getGenerator(ChallengeNonceStore

$challengeNonceStore): ChallengeNonceGenerator {

return (new ChallengeNonceGeneratorBuilder ())

->withNonceTtl($this->config ['CHALLENGE_NONCE_TTL_SECONDS

]) // 300

->withChallengeNonceStore($challengeNonceStore)

->build ()

}

Listing A.3: Authentication token validator configuration example

use GuzzleHttp\Psr7\Uri;

use muzosh\web_eid_authtoken_validation_php\validator\

AuthTokenValidator;

use muzosh\web_eid_authtoken_validation_php\validator\

AuthTokenValidatorBuilder;

public function g e t V a l i d a t o r () : AuthTokenValidator {

return (new AuthTokenValidatorBuilder ())

->withSiteOrigin(new Uri($this->config ['ORIGIN'])) //

https://'.$_SERVER['SERVER_ADDR']

->withTrustedCertificateAuthorities (. . . s e l f : :

loadTrustedCACertificatesFromCertFiles ())

->withoutUserCertificateRevocationCheckWithOcsp()

->build ()

}

78

https://'.$_SERVER%5b'SERVER_ADDR'

Listing A.4: Example of providing challenge nonce to the client
/* *

* Get the template for rending the 2FA provider view.

*/

public function getTemplate(IUser $user): Template {

$generator = $this->webEidService->getGenerator(

$this->webEidService->getSessionBasedChallengeNonceStore()

);

$challengeNonce = $generator->generateAndStoreNonce();

$template = new Template(Application::APP_NAME, '

WebEidChallenge');

$temp1ate->append(
J

 nonce', $challengeNonce->

getBase64EncodedNonce()); // challenge i s appended to

HTML hidden input

return $template;

}

Listing A.5: Front-end code for obtaining authentication token and sending it back
for validation

submitButton.addEventListener("cli ck", async () => {

try {

showSpinner();

h i d e E r r o r () ;

const authToken = await webeid. authenticate(nonce, lang);

document.querySelector("#webeid -token").value =

JSON.stringify(authToken);

f orm.submit () ;

} catch (error) {

>

79

Listing A.6: Nextcloud authentication result configuration
public function authenticate(X509 $cert , IUser $user): bool {

$certCN = CertificateData::getSubjectCN($cert);

i f ($user->getUID () == $certCN) {

return true;

>

$this->logger->error(

'WebEid authtoken v a l i d a t i o n s u c c e s s f u l , but CommonName

does not match. UserlD: '.

$user->getUID().

' , CN :

$certCN

) ;

return f a l s e ;

80

B Content of the electronic attachment
The following diagram depicts and describes directories in the electronic attach

ment. General files have been excluded for readability. Please note that included

README. md files might provide a better source of information.
/ root of the attached archive

github-links.txt URL links to up-to-date source code
InfinitEID

I README. md

1 src

Inf initEID-applet JavaCard applet source code
L_ README.md

1 Inf initEID-card-management initialization, management and testing
1_ README, md

libelectronic-id-with-Inf initEID Web-elD Native Application extension
|_ README, md

nextcloud_twofactor_webeid installable Nextcloud module
|_ README, md

web-eid-authtoken-validation-php . Web-elD token validation library for PHP

1_ README, md

81

