Leveraging Machine Learning for Time Series Predictive Analysis – Bc. Samuel Ambros
Bc. Samuel Ambros
Master's thesis
Leveraging Machine Learning for Time Series Predictive Analysis
Leveraging Machine Learning for Time Series Predictive Analysis
Abstract:
Táto diplomová práca hodnotí efektívnosť jedenástich rôznych modelov prognózovania na viacerých súboroch údajov s rôznymi charakteristikami. Analyzované modely zahŕňajú lineárnu regresiu, ARIMA, SARIMAX, Prophet, ETS, DLT, KTR, LSTM, grafové neurónové siete, Transformer a automatizované modely strojového učenia pomocou AutoTS. Zistenia naznačujú, že žiadny model nie je jednotne lepší vo všetkých skúmaných …moreAbstract:
This thesis evaluates the effectiveness of eleven different forecasting models on multiple datasets with diverse characteristics. The models analyzed include linear regression, ARIMA, SARIMAX, Prophet, ETS, DLT, KTR, LSTM, Graph Neural Networks, Transformer models, and automated machine learning models using AutoTS. The findings suggest that no single model uniformly outperforms others across all datasets …more
Language used: English
Date on which the thesis was submitted / produced: 21. 5. 2024
Identifier:
https://is.muni.cz/th/d7tnp/
Thesis defence
- Date of defence: 20. 6. 2024
- Supervisor: doc. Ing. RNDr. Barbora Bühnová, Ph.D.
- Reader: doc. Ing. Radim Burget, Ph.D.
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Software Engineering / Deployment and operations of software systems
Theses on a related topic
-
Development of Time Series AI Framework and Blood Glucose Level Forecasting
Andrej Kubanda -
Time Series Forecasting Using Machine Learning
Katarína Hertelová -
A Comparative Study of Financial Time Series Forecasting Using Machine Learning and Traditional Statistical Methods - An Application To Stock Market Data
Mesut Yasar Ozturk -
Time Series Forecasting Using Machine Learning
Islam Elrefaei -
Time Series Forecasting Using Machine Learning
Islam Elrefaei -
A comparison of time series models for revenue and product demand forecasting in smart fridges.
Hrithik Rai SAXENA -
Machine learning techniques of de-novo molecular formula reconstruction from its mass spectrum
Adam Hájek -
Machine learning techniques of mass spectra prediction
Filip Jozefov