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Abstract
This work presents an in-depth investigation into the design and implementation of deep
learning models for speech emotion recognition. It proposes a model based on a compre-
hensive review of existing techniques from the field. The model is trained and tested on
large-scale emotion-labeled speech datasets. Experimental evaluations are conducted to
assess the performance of the model in terms of accuracy, robustness, and generalization.

Abstrakt
Táto práca do hĺbky skúma návrh a implementáciu modelov hlbokého učenia na rozpozná-
vanie emócií z reči. Navrhuje model založený na komplexnom prehľade existujúcich techník
z tejto oblasti. Model je trénovaný a testovaný na rozsiahlych sadách rečových dát oz-
načených emóciami. Vykonané experimentálne hodnotenia majú za cieľ posúdiť výkonnosť
modelu z hľadiska presnosti, robustnosti a schopnosti zovšobecňovat rozpoznávacie schop-
nosti modelu.
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Rozšířený abstrakt
Táto práca sa zaoberá tvorbou systému na rozpoznávanie emócií pomocou hlbokého učenia,
obsahuje popis a porovnanie rôznych prístupov k problematike, pochádzajúcich z analýzy
súčasného stavu oblasti rozpoznávania emócií. Dátové sady použité na učenie sú EmoDB
a RAVDESS, obe nahrané profesionálnymi hercami v nemeckom a anglickom jazyku.

Cieľom práce bolo navrhnúť systém, ktorý bude schopný detekovať emócie na základe
vlastností zvukového signálu vedome alebo nevedome spôsobených emóciou. Súčasné rieše-
nia v oblasti rozpoznávania emócií z hlasu využívajú vlastnosti zachytávajúce buď princíp
tvorby reči (lineárne prediktívne kepstrálne koeficienty), alebo prijímania zvuku (mel-
frekvenčné kepstrálne koeficienty). Algoritmy učenia často stavajú na hlbokých neurónových
sieťach, v rôznych kombináciách s metódami spracovania dát. Typy sietí ako konvolučná
neurónová sieť alebo rekurentná neurónová sieť, prípadne ich kombinácia sú často využí-
vanými blokmi v existujúcich systémoch podobného charakteru.

Navrhnutý systém je postavený na konvolučnej neurónovej sieti, ktorá na vstup dostáva
vybranú sadu mel-frekvenčných kepstrálnych koeficientov. Detekcia prebieha v troch fázach:
spracovanie dát, extrakcia a selekcia vlastností a nakoniec učenie siete za pomoci spraco-
vaných dát výsledkom ktorého je finálna klasifikácia. Testovanie výsledkov prebieha na
základe predikcií modelu.

Dáta sú spracované odstránením tichých pasáží a normalizáciou. Tento krok napomáha
presnejšej extrakcii koeficientov. Extrakcia a selekcia koeficientov slúži na zúženie vlastností
vstupu do siete, umožňuje presnejšiu kontrolu vstupných dát a pomerne nízku komplexitu
modelu a vďaka tomu aj nižšiu výpočtovú náročnosť. Konvolučná sieť pracuje s vlast-
nosťami spektrálnej a časovej domény signálu. Výsledkom je pravdepodobnostná hodnota
príslušnosti vzorky do jednej z emočných tried.

Experimenty boli vykonané oddelene na oboch sadách. Každá sada je rozdelená na
trénovaciu, testovaciu a validačnú časť. Sady sú rozdelené s uvážením rozdelenia tried emócií
a reflektujú distribúciu v pôvodnej sade. Presnosť výsledkov trénovania je vyhodnocovaná
po každej trénovacej epoche a po ukončení všetkých epoch je najlepší výsledok podrobnejšie
vyhodnotený.

Ďalší možný smer tejto práce by mohlo byť otestovanie modelu na väčšej testovacej
sade s reálnymi emóciami alebo podrobnejšie skúmanie vplyvu vstupných parametrov na
výsledné predikcie.
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Chapter 1

Introduction

Technology around us is much more prevalent today than it used to be only a few years
ago, fundamentally changing how we communicate. Even when we interact with our devices
daily, these interactions can feel like there is always something missing to feel truly human-
like. To accommodate this requirement, the machine would have to be able to perceive
the nature and circumstances of the communication and have the capacity to adjust the
response accordingly.

Human voice as an effective way of carrying information, stands out as being our pri-
mary and most natural communication tool. Unlike various physical signals and other
non-verbal forms of communication, speech is readily and easily producible and easy to col-
lect. However, the problem lies in the fact that we heavily rely on non-verbal components
of communication (such as emotions) to convey the full extent of our ideas and intentions.

In response, Speech Emotion Recognition (SER) has received interest in recent years. SER
uses machine learning principles, allowing us to build models capable of identifying and
categorizing emotions from speech. This can greatly affect many applications from AI
assistants that could comprehend and respond to users’ emotional states, to call centers
enhancing customer satisfaction. Key challenges of SER lie in the vast variability of emo-
tions and their expressions across individuals in various situations. As technology continues
advancing, the pursuit of natural, context-aware man-to-machine interactions remains in
demand.

1.1 Ethics and Motivation
This thesis examines the current approaches to SER and works with data used to develop
an SER. There are some ethical dilemmas concerning this field. SER models can greatly
improve critical infrastructures, automatizing the process and removing human error. With
all these positive aspects come negatives. Data used to train these models have to be
ethically sourced with consent and used for beneficial and not harmful purposes. To date,
there is legislation in place to keep consumers from such exploitation and regulate the risks
of deploying SER systems in real-world applications.
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Chapter 2

Speech Emotion Recognition

Speech emotion recognition builds upon the principle that human emotions can be con-
veyed through voice. SER systems focus on correctly identifying and classifying correct
features in human voice that are capable of conveying most critical characteristics [34].
The general structure of the system is depicted in Figure 2.1. In order to understand the

Figure 2.1: The basic structure of a speech emotion recognition system

whole system, it is necessary to first understand areas and challenges presented by each
part. This chapter provides theoretical background to the field of SER. It describes the
psychological standpoint of defining and categorizing emotions from the view of continuous
and discrete models, workings of speech processing, and the use of speech features. Further,
it approaches the classification methods used in SER and the paradigms of deep learning
used to construct a robust and functional model.

2.1 Emotions
This section provides a fundamental psychological insight into the term emotion, the various
attempts to define and understand it from various standpoints. It mainly introduces the
idea of grouping emotions into models allowing for more accurate and strict descriptions.

2.1.1 Definition

An emotion can generally be described as a state of belief that results in changes both
psychological and in turn physiological that convey one’s state of thought [28]. Emotions
fascinate research since Darwin [1] and there are different schools of psychology that produce
many theories of what emotions are. We can group these theories into three main groups:
physiological, neurological and cognitive.

Physiological theory proposes that human body is responsible for the creation of
emotion. The James-Lange Theory of Emotions [9] suggests that emotions are a product of
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physiological responses to stimuli in the environment. the Environmental stimuli trigger a
response of the body and the bodily response in turn triggers a response of the brain which
we call emotion. This means that we feel emotions because of the physical changes that
occur in response to stimuli. For example, we feel afraid because we tremble and our heart
races, rather than trembling and having a racing heart because we experience fear.

Neurological standpoint is that emotions come from activation within brain. This is
described by the Facial-Feedback Theory of Emotion [10]. It suggests that facial expressions
can influence and even regulate emotional experiences. According to this theory, the act
of forming a facial expression, such as smiling or frowning, can trigger physiological and
emotional responses associated with that expression our facial muscles send signals to the
brain, which then interprets these signals as emotions. For example, if you force yourself to
smile, it may lead to feelings of happiness or positivity, even if you weren’t feeling that way
initially. This theory emphasizes the bidirectional relationship between facial expressions
and emotions, suggesting that our expressions not only reflect our emotions but also have
the power to shape them.

Lastly, cognitive theories propose that thoughts and other mental activity play a
role in forming emotions. The Cognitive Appraisal Theory [21] suggests that our emotions
are determined by our cognitive appraisal or evaluation of events. When we encounter a
stimulus or event, we subconsciously evaluate it based on its relevance to our goals, beliefs,
and well-being. The appraisal process comes in two steps. The primary appraisal is the
initial assessment of whether the event is positive, negative, or irrelevant. If it’s seen as
positive or relevant, it can lead to positive emotions. If it’s perceived as negative, it can
lead to negative emotions like fear, anger, or sadness. In the secondary stage we evaluate
our ability to cope with or manage the situation. This assessment influences the intensity
and type of emotion we experience. This produces the intensity of the emotion. In the
case of positive emotions, it can escalate them to pride or relief. These appraisals trigger
emotions and our reactions to them.

2.1.2 Categorization

All theories described emotions as some inner process. When we want to signify emotion
on a more objective level, we need a model that can describe it. There are two unique
approaches to modeling emotions: the discrete and the dimensional model.

Discrete Model

The discrete model divides emotions into disjunct categories. When choosing an emotion
we can simply choose from predefined set of basic categories which one fits best. This model
allows us to easily label emotions based on class tags. These are in most cases six: anger,
disgust, fear, joy, sadness, and surprise or some variations or additions that better reflect
the application of the model (some variations are listed in Table 2.1). Each of the classes
is defined by a specific set of features that describe the circumstances leading to emotion
and the resulting reactions [28].

The main drawback is that subjects can experience a wider range of emotions than
presented. When choosing a response from predefined groups they may encounter a need
to select and in doing so not identify the label themselves [28].
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Table 2.1: Proposed discrete categories of emotions

Izard Ekman Plutchik

enjoyment happiness joy

sadness sadness sorrow

fear fear fear

anger anger anger

disgust disgust disgust

surprise surprise surprise

interest acceptance

shame anticipation

shyness

guilt

Dimensional Model

The dimensional or attribute models utilize individual variables used to describe emotion
along multiple dimensions defined by these variables [34]. These models often use two
dimensions: valence and arousal or add a third dimension as depicted in Figure 2.2. Emotion
is then defined as a point in a defined space. These models are therefore capable of capturing
fine differences and allow to observe a similarity of emotions [28] contrary to broad categories
of the discrete model.

The circumplex model proposed by Russell [29] utilizes two primary dimensions:
valence and arousal. The valence axis refers to whether an emotion is perceived as positive
or negative. Emotions with positive valence, such as happiness or excitement, are located
on one side of the circumplex, while emotions with negative valence are located on the
opposite side. The arousal axis reflects the level of physiological activation or intensity
associated with an emotion.

The PAD (Pleasure-Arousal-Dominance) model chooses three dimensions. First,
is Pleasure-Displeasure defining whether an emotion is positive or negative. Second is the
Arousal-Non-arousal axis indicating psychological activation and alertness. And third is
the Dominance-Submissiveness axis describing whether the subject feels in control of the
emotion. Result is then evaluated by a PAD score defined by emotion scales [23].

2.2 Data Sourcing
Datasets provide collections of data that has been collected, organized and labeled. The
choice of a dataset and the quality of the data in it affects the success of the recognition
process [4]. A good dataset usable for SER is required to have diversity of speakers namely
their genders, ages and requires a balanced number of recordings of each class of emotion
per speaker to prevent data imbalance in the dataset.
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Figure 2.2: Valence-Arousal and PAD model

Table 2.2: Emotion models - overview

Discrete model Dimensional model

Emotion definitions Disjunct categories Points in multi-dimensional
space

Real-life applications Natural way of giving names
to emotions

More descriptive of feelings

Labeling Intuitive creation of classes Classes need to be constructed
from variables

Databases often use one of the emotion models 2.1.2 to signify the emotion captured in
a recording. The labels contain information about speaker, the contents of a sample and
most importantly the collected emotion. When choosing we then must take into account
not only the quality of data but also the range of emotions it can provide and whether that
range is suitable or necessary for the application.

Emotion recognition datasets can be divided into speech datasets (audio recordings,
text) or visual datasets (facial expression images, video recordings).

Datasets can be sourced in various ways. The main three include acted, elicited and
naturally sourced recordings. When sourcing the data it is important that the actors or
other participants consent to the data being collected.

Acted Speech Datasets

Are recorded by professional actors in low-noise environments. These datasets can regulate
and plan the recorded emotion classes beforehand and recruit actors to make the data
diverse. Emotions in acted speech are greatly exaggerated making models trained on such

9



databases less successful in detecting real-life emotions [4]. This unwanted effect can be
reduced by hiring semi-professional actors [12]

Elicited Speech Datasets

We can produce a viable dataset by placing a recording device in an environment where
emotions are artificially induced. This method does not create real emotions but gets close
to them and provides a wider range of categories. Usually, the stimuli are presented in
forms of videos, images, stories, music clips, or other media types that are designed to
induce an emotion of varying intensity. A study from 2005 [17] proposed to use events in
computer games to induce a more realistic emotional reaction from players.

Natural Speech Datasets

Lastly, these are collections of enormous numbers of recordings obtained from various call-
center recordings, talk shows, podcasts, or public conversations. Data sourced this way
usually contains more noise and the emotions are not as consistent as in elicited or acted
datasets but it has a limited effect. A famous example is the collection of radio broadcasts
happening during the Hindenburg crash [12]. Obtaining such spontaneous speech can be
ethically and legally challenging.

2.3 Sound and Speech
Sound and speech play are integral components of human communication. Speech is a spe-
cialized form of sound exclusive to humans characterized by the production of vocal sounds
through the coordination of respiratory, phonatory, and articulatory systems. It carries
emotional information through various acoustic features such as pitch, intensity, rhythm,
and spectral characteristics. Different emotions are associated with distinct patterns in
these acoustic features, making speech an effective medium for conveying emotions.

This section provides an overview of processes used to extract information from speech
signals and overcome challenges such as variability in emotional expression, cultural differ-
ences, and noisy environments.

2.3.1 Preprocessing

When working with audio signals we have to take into account that the data can contain
unwanted components like background noise, inconsistencies in energy levels or variations
of voice characteristics. All of these aspects can have an effect on extracting relevant
features especially when working with real-world speech [20]. The speech signal is usually
preprocessed in steps indicated in Figure 2.3.

Voice Activity Detection (VAD)

Voice activity detection is used to separate parts where voiced speech can be detected from
silent (unvoiced) parts. The process divides signal into short frames and determining the
presence of activity withing these frames. When determining the activity we can use two
categories of features: time-domain and frequency-domain [20].

The time-domain features are used due to their simplicity but degrade in a noisy signal
[20]. One of these features is Zero-Crossing Rate (ZCR). This method utilizes the way how
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Table 2.3: Brief description of selected databases

Language Size Emotions Type

IEMOCAP English 5 531 utterances Anger, Happiness,
Excitement, Sadness,
Frustration, Fear,
Surprise, Neutral

Elicited

BAUM-1s Turkish 1 222 utterances Joy, Anger, Sadness,
Disgust, Fear, Sur-
prise, Boredom, Con-
tempt

Natural

EMO-DB German 535 utterances Neutral, Anger, Sad-
ness, Fear, Boredom,
Happiness, Disgust

Acted

RAVDESS English 1056 utterances Neutral, Anger, Sad-
ness, Fear, Happiness,
Disgust, Surprised,
Calm

Acted

MSP-
Podcast
(version 1.7)

Mixed 62 140 utterances Anger, Happiness,
Sadness, Disgust, Sur-
prise, Fear, Contempt,
Neutral

Natural

vocal tract constricts and opens during voiced speech [7]. When producing voiced speech,
the vocal tract produces a periodic flow which shows a low zero-crossing count, whereas
unvoiced speech is produced by constricting the airflow and shows higher zero-crossing
count. The detection of the crossings is shown in Figure 2.4.

Noise Reduction

When any sound signal is being used to obtain information, it cannot be corrupted by any
background or ambient noise. Ambient noise is any signal not being monitored [16] and
can affect the later stages of recognition. By removing noise, we are left with clean speech.

Framing

Framing or segmentation is a process of apportioning the continuous voice signal into fixed-
length segments. Speech is considered an unstable signal, however can remain stable for
a sufficiently short period, such as 20 to 30 milliseconds [4]. In this short time, we can
examine local and quasi-stationary features.
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Figure 2.3: Preprocessing steps

Figure 2.4: Definition of zero-crossing rate [7]

Windowing

After framing the signal, we are left with discontinuities in the beginning and the end of
the frame. This can be solved by multiplying the signal with a window function. Window
function (e.g. Hamming window or Hanning window) is used to smooth out values on both
ends of a signal while leaving the middle part preserved. The smoothed edges can mean
information loss, however, the relation and information between the frames can be retained
by deliberately overlapping 30 to 50 percent of these segments [4].

Normalization

Feature normalization is done to reduce speaker and recording variability without losing
the discriminative strength of the features. [4]. It can be performed on either the whole
recording or applied to the framed signal. The most common normalization method is
the z-normalization which can be calculated using equation 2.1 for signal 𝑥 if mean 𝜇 and
standard deviation 𝜎 are known.

𝑧 =
𝑥− 𝜇

𝜎
(2.1)

2.3.2 Features

Features represent different information sourced from audio signals. Most acoustic features
used for SER can be separated as prosodic and spectral (vocal tract) [36]. Prosody fo-
cuses on the temporal and rhythmic aspects of speech that align with human perception of
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emotion, spectral features describe frequency content and distribution of energy, providing
a different perspective. The combination of more types of features often results in more
robust and accurate models [12].

Prosodic Features

Prosody provides linguistic naturalness to speech through intonation, stress, and rhythm.
These cues are conveyed using mainly three acoustic parameters: pitch, energy, and dura-
tion [25]. Prosodic features are applied by the speaker and can be detected in units like
syllables, words, or sentences - units detectable in larger portions of recordings. Literature
suggests prosody to be a high correlate of emotion. Features derived from statistical meth-
ods are important sources for discriminating emotions. Around 50% of average emotion
recognition performance is reported using discriminant analysis [26].

Spectral Features

Spectral features in the context of speech emotion recognition involve analyzing the fre-
quency content of the speech signal. These features provide information about the distri-
bution of energy across different frequency bands. Generally, we have a 20 to 30 milliseconds
long segment used to extract these features. Vocal tract characteristics are well reflected
in frequency domain analysis of speech signals. The Fourier transform of each frame gives
a short time spectrum where features like formants, bandwidths, spectral energy, and their
slopes can be observed [19].

Mel-frequency Cepstral Coefficients (MFCCs)

Are a set of coefficients commonly used in speech and audio processing for representing the
short-term power spectrum of the speech signal.

The MFCCs are widely used in SER due to their ability to mimic the workings of the
human auditory system which does not follow a linear scale when it comes to perception
of sound frequency contents for speech signal. Therefore, for each frequency 𝑓 measured in
Hz a subjective pitch is measured (Equation 2.2) on the Mel scale [15]

𝑓𝑚𝑒𝑡 = 2529 log10(1 +
𝑓

700
) (2.2)

To obtain MFCC, speech signals are divided into segments (described in 2.3.1) each seg-
ment is converted into the frequency domain using a short-time discrete Fourier transform.
Several sub-band energies are calculated using a Mel filter bank and the logarithm of those
sub-bands is calculated. The inverse Fourier transform is applied to obtain MFCC [4].

Linear Prediction Cepstral Coefficients (LPCCs)

Another set of coefficients used in speech and audio processing are the LPCCs. They are
derived from Linear Prediction Coefficients (LPC), based on the speech production model
where the characteristic of the vocal tract can be modeled by an all-pole filter. LPCCs
same as LPCs have the disadvantage of approximating speech linearly on all frequencies,
which is inconsistent with how human hearing works [35].
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Table 2.4: Spectral features - overview

LPCC MFCC

Extraction Process Linear prediction analysis fol-
lowed by cepstral analysis

Mel-frequency filter-bank
analysis followed by cepstral
analysis.

Frequency Domain Primarily captures vocal tract
characteristics

Captures spectral characteris-
tics, emphasizing perceptual
loudness

Sensitivity to Noise More sensitive to noise due to
detailed vocal tract modeling

Relatively robust to noise due
to perceptual loudness focus

Biological Inspiration Inspired by linear prediction
modeling of the vocal tract

Inspired by human auditory
perception of frequency

Dimensionality Typically has a lower dimen-
sionality

Generally has a higher dimen-
sionality

Common Usage Less commonly used in gen-
eral speech processing tasks

Standard and widely used in
speech and audio processing

2.4 Classifiers
After extracting all valuable information from data SER systems use classifiers to learn and
detect patterns that they attribute to various emotions. A classification algorithm takes
an input 𝑋, typically in the form of labeled data, and maps it onto an output 𝑌 . The
mapping function is approximated aiding in predicting the class of the next input. The
learning algorithm utilizes the labeled data to identify samples and their relevant classes.
Data is used to train the classifier and to further test and validate its performance. For
SER data used are in the form of feature vectors obtained in the feature extraction process.
There is no preferred classification approach to SER. The choice can be based on past
references or experimental evaluation. The performance is then greatly affected by the
combination of feature extraction and classification method [33] and several algorithms can
be combined to improve predictions [4].

2.4.1 Traditional Machine Learning Classifiers

A traditional learning classifier, refers to a type of machine learning algorithm that are
trained using supervised learning, where the algorithm learns to predict the correct class
label for input data based on labeled examples provided during training. These classifiers
are typically based on well-established algorithms and techniques.

Many traditional classifiers offer interpretable models, meaning that the decision-making
process can be understood and explained based on the learned parameters or decision rules.
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Support Vector Machine (SVM)

Support Vector Machine is the supervised linear algorithm transforming the original input
set to a high dimensional feature space by using a kernel function, in which input space
is converted into high dimensional feature space making the input data become linearly
separable. The main advantage of SVM is that it has limited training data and hence has
very good classification performance [27].

Hidden Markov Models (HMM)

Hidden Markov Model is a supervised algorithm used in speech recognition and successfully
extended for use in SER. HMM is a sequential model relying on the continuity of states in
time. The current state of a system is at time 𝑡 and only depends on the previous state in
𝑡 − 1. The term hidden implies the inability to observe the generation of state-generating
logic and we can use probability to predict the next state only by observing the current
state [4].

Gaussian Mixture Models (GMM)

GMM is a probabilistic method that models the data as a mixture of several components
with their parametric form. Each data point then belongs to one of the components. We
can view GMM as a special continuous case of HMM with just one state [4].

Table 2.5: Traditional machine learning classifiers - overview

SVM HMM GMM

Output Direct classification Sequence of hidden
states representing
emotions

Probabilistic repre-
sentation of emotions

Feature
representation

High-dimensional
feature spaces

Often requires care-
fully selected features

Flexible feature
types

Training data
requirements

Labeled data for
each class

Labeled sequences of
emotional states

Labeled data for
each component
representing an
emotion

Benefits Effective in high-
dimensional feature
spaces

Can capture sequences
of emotions

Probabilistic rep-
resentation allows
uncertainty

2.4.2 Deep Learning Based Classifiers

Currently most models in SER pivoted to using deep learning, which has been outperform-
ing traditional machine learning approaches [13]. The main argument for the utilization of
deep learning lies in its ability to automatically extract features from raw audio.
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While traditional machine learning approaches (described in 2.4) rely on handcrafted
features provided in structures appropriate as their input, deep learning algorithms process
data and extract features during the computation. The drawback is a requirement for larger
datasets in the learning process. To achieve the best results deep learning models can be
combined with handcrafted features [13].

Recurrent Neural Network(RNN)

The recurrent neural network is a discriminative supervised model built on recurrent
architecture. By the usage of internal memory they can process sequential data, remember
received input and from their interdependencies predict the future state of input. RNNs
use a recurrent loop where an output of previous cycle is used in the next one. Each step
processes one part of the input which allows for time-dependency modelling.

Convolutional Neural Network (CNN)

The convolutional neural network is a very successful network in the field of pattern recog-
nition. CNNs are adept at extracting abstract features as data progresses through deeper
layers. For instance, in image classification, early layers might detect edges, followed by
simpler shapes, and ultimately higher-level features like faces in subsequent layers [5]. The
networks consist of multiple layers as shown in Figure including convolutional layer, non-
linearity layer, pooling layer and fully-connected layer for making predictions.

Convolution in CNNs serves the purpose of parameter reduction. Instead of connecting
every part of the input we connect only local regions as shown in Figure 2.5a whose weights
remain fixed. We can further utilize this as a method of applying filters and after adding
more layers extracting different features from the input regardless of their position in the
input [5].

(a) Convolution of one local region (b) A basic CNN structure

Figure 2.5: Principles of CNN

Non-linear layers manage the output by saturating or limiting it [5]. We manage
this by adjusting or cutting off the generated output. The Rectified Linear Unit (ReLU)
achieves this by propagating any positive values and setting all negative values to 0 as
shown in Equation 2.3.

𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) (2.3)

In order to reduce the complexity, we send to the next layer we have to down-sample.
The down-sampling is done by a pooling layer. The purpose of this is to achieve spacial
invariance [30] meaning the existence of a feature is left but it does not matter in which
region the feature was.
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Chapter 3

Proposed Methodology

This chapter utilizes information gathered in the previous chapter and through understand-
ing of principles of core components of an SER describes the proposed approach to designing
such system. It focuses on the building blocks of the system and their functions within the
system.

Figure 3.1: Blocks of the proposed SER system

3.1 Feature Extraction
When working with data in any form it is necessary to establish how to use the information
contained in them in the most efficient way possible. Datasets often contain real-life data
that have high dimensionality [32]. Reducing dimensions using feature extraction helps
in data compression therefore can greatly reduce storage space and computation time [2].
Feature extraction is the process of removing all ineffective features while extracting the
important and relevant data, aiding in increase of learning speed and generalization in
machine learning process [2].

Feature extraction is a computation of feature vectors providing a representation of a
speech signal. It is done in three stages. First, a spectra-temporal analysis is performed.
It produces features describing the envelope of the power spectrum. The second stage
produces a feature vector of static and dynamic features and in the third stage makes these
vectors more robust and compact [11].

Mel-frequency Cepstral Coefficients 2.3.2 are often used in speech related classification
problems due to their ability to extract rich amount of information from speech signal
[2] and performing extraction similarly how a human ear processes sound [11] without
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capturing noise in the signal. Spectral features are in general shown to perform well in
n-way classification problems [12]. Despite deep-learning algorithms being able to perform
deep feature extraction directly from raw data [2], the step serves the purpose of compressing
the data and removing personal characteristics of speakers from the learning process.

3.1.1 Feature Selection

Feature selection involves selecting a subset of features from the original set without altering
them and assessing their relevance to the analysis objective [18]. This process can be
accomplished using various methods depending on the goal, available resources, and desired
level of optimization.

It typically follows a process of generation, evaluation, definition of stopping criterion
and final validation [18]. However, the first few MFCCs often capture essential spectral
characteristics of the audio signal, such as information related to formants, spectral enve-
lope, and fundamental frequency making them a viable subset. By selecting only the first
40 MFCCs [3][8], the feature representation focuses on the most relevant and discriminative
information.

3.2 Deep Learning Model
Deep learning models are composed of layers of neurons connected by weighted edges.
Structure and arrangement of these layers and connections between neurons, define the
architecture of the model. By having multiple layers, deep learning models can learn hi-
erarchical representations of the input data, with each layer capturing increasingly more
abstract and complex features, enabling deep learning models to effectively learn and gen-
eralize.

This section describes parts of a deep learning model proposed by Aftab et al [3] shown
in Figure 3.2.

3.2.1 Receptive Field

A receptive field of a neural network is defined as the size of the region in input that
produces the feature [6]. As described in 2.5a each neuron in a CNN is connected to a
small localized region of the input data. The size of a receptive field affects the ability of
the network to capture finer or more global features.

To ensure that a unit in a Convolutional Neural Network captures all relevant infor-
mation from the input, it’s crucial to carefully control its receptive field. This ensures
that the unit encompasses the entire region of the input that contains pertinent features.
Otherwise, any information outside the receptive field of a unit would have no impact on
its value. Thus, by managing the receptive field size effectively, the CNN can accurately
extract meaningful features [24].

We can increase the receptive field linearly by adding more layers and making the
network deeper. Each layer increases the receptive field by its kernel size [24]. This however
creates more parameters of the network and causes over-fitting of the model.

The model shown in Figure 3.2 proposes a multi-receptive field (part Body I), working
with the fact that feature extraction provides a multi-dimensional input: spectral, temporal
and spectra-temporal features. Each dimension of the input has its own convolution unit
containing a convolutional layer, batch normalization a non-linear layer and a pooling layer.

18



Figure 3.2: Architecture of the model

The outputs of these units are aggregated at the end. This approach manages to increase
the receptive field of the network while preventing large parameter count [3].

3.2.2 Feed Forward Propagation and Backwards Propagation

Feed forward neural networks are a type of neural networks without any output feedback
(like in a recurrent neural network 2.4.2). In feed forward neural layers the input signals
are propagated to the output by weights and neuron biases [38]. The input data performs
the required computations, affected by the network’s parameters and produces an output
prediction. Once the forward pass is complete, a loss function 3.2.3 is used to assess how
much the predicted value differs from the true target.

To give the network the ability to learn, the back propagation updates the weights of
connections based on the error rate of the forward run. The backward pass computes the
gradients of the loss function 3.2.3 layer by layer starting at the output respecting the
parameters of all layers. The weights can then be adjusted in a way that minimizes the loss
function, thus achieving better performance. The magnitude of parameter step is controlled
by the learning rate.

The process of forward and back propagation is repeated iteratively over multiple epochs
until the model reaches a satisfactory solution or a predefined stopping condition.
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3.2.3 Loss Function

The loss function estimates the degree of difference between the prediction and the true
value. It’s typically a function that yields a non-negative real value, expressed as Equation
3.1. Reducing the loss function typically indicates an improvement in the model’s robustness
[38]. This metric quantifies how well the model’s predictions align with the actual data.
Lower loss values suggest that the model is making predictions closer to the ground truth,
indicating enhanced performance and robustness. Therefore, minimizing the loss function
is a key objective in training neural networks, as it reflects the model’s ability to generalize
well to unseen data and effectively capture underlying patterns in the training dataset.

𝐿(𝑌, 𝑓(𝑥)) = |𝑌 − 𝑓(𝑥)| (3.1)

Cross-Entropy Loss Function

Cross-entropy loss is a probability-based loss function. It quantifies the difference between
predicted probability distribution of classes and the true distribution provided by labels.
It applies a softmax normalization 3.2.5 which ensures that the scores provided by neural
network can be interpreted as probabilities.

When we are dealing with a classification problem with 𝑁 classes we expect the neural
network to have an 𝑁 -dimensional score representation space described in Equation 3.2,
where 𝒳𝐿 denotes the set of samples labeled by 𝐿. The softmax function takes this space
and normalizes the scores. Cross-entropy loss is then computed as a negative logarithm
of the probability of the true class label. Then the gradient of the loss is computed as a
difference between the vector of the softmax scores and a vector representing the true labels
(with 1 for the true class and 0 for other classes) [22].

ℱ(𝑥 ∈ 𝒳𝐿) = [𝑠1, 𝑠2, . . . , 𝑠𝑁 ]⊤ (3.2)

3.2.4 Overfitting and Dropout Layer

Overfitting occurs when a model fails to generalize from observed to previously unseen data,
causing perfect predictions on training set and poor performance on testing set. Many fac-
tors can be the cause of overfitting. Generally, there are three kinds of situations [39]: (1)
noise learning on the training set: when the training data is small, unrepresentative, or
contains excessive noise, the model may inadvertently learn these noise patterns alongside
genuine relationships. This can lead to over-reliance on irrelevant details during prediction;
(2) hypothesis complexity: In statistical and machine learning contexts, the complex-
ity of hypotheses involves a trade-off between variance and bias. When models become
overly complex, often by incorporating too many inputs or hypotheses, they may achieve
high accuracy on average but exhibit low consistency across different datasets; (3) mul-
tiple comparisons procedures: induction algorithms, including those used in artificial
intelligence, involve comparing multiple items based on evaluation scores to select the most
promising candidate. However, this process introduces the risk of selecting items that do
not genuinely improve classification accuracy or may even decrease it.

Dropout is a regularization technique commonly used in neural networks, particularly
in deep learning models, to prevent the unwanted interdependencies among neurons on
training sets [14] and reducing the risk of overfitting. In each training iteration, for every
neuron in the dropout layer, a random binary decision is made whether to retain the neuron
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or omit it (”drop it out“). This produces the same result as averaging the predictions of a
large number of networks, but in a reasonable time [14].

3.2.5 Activation Function

By default, a neural network without an activation function is a simple linear function
unable to recognize complex mapping of the data [31]. Activation functions introduce
non-linearity, enabling the network to extract complex information and intricate patterns
from data and represent non-linear mappings between inputs and outputs. A crucial as-
pect of activation functions is their differentiability, which enables the implementation of
backpropagation 3.2.2.

Softmax Activation Function

The softmax activation function provides a vector of probability distribution from a vector
of real numbers. It is particularly useful in classification problems with multi-class models
as the returned vector represents the probability of each class (Equation 3.3 [31]), with the
target class having the highest value.

𝜎(z)𝑗 =
𝑒𝑧𝑗

𝐾∑︁
𝑘=1

𝑒𝑧𝑘

for 𝑗 = 1, . . . ,𝐾 (3.3)

3.3 Cross-Validation
Trained models can show a satisfactory performance on the training sets while not being
able to generalize well and fail when shown previously unseen data. Cross-validation is a
technique used to evaluate models’ ability to generalize to new data. We achieve this by
splitting the data into a training and testing set. One part is used for training while the
other is withheld and used after the model is trained. The ratio of splitting the data is
known as validation size [37].

The value is usually represented in the form of a fraction denoting a percentage of the
dataset (a validation size of 0.2 indicates that 20% of dataset will be reserved for a certain
task). The choice of this parameter involves a trade-off between the amount of data used for
training resulting in over or under fitting of the model and the reliability of the validation.

3.3.1 Hold–out Cross–Validation

Hold-out validation is a validation method solving overfitting problems of validation set
being a subset of training data. The data is divided into two disjunct parts: one for
training and one for validation the model. The validation samples are introduced after the
model has been trained.

These two subsets usually have a different validation size, we use a 0.8 to 0.2 training
to validation ratio, but any other combination is possible. When splitting the data we have
to keep in mind that the distribution of information is the key to successfully validating
the model and preventing overfitting [37].
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3.3.2 K-Fold Cross-Validation

Similarly, as in the hold-out validation the data is split into two parts used for training and
validation. The k-fold method first splits the data into 𝐾 equal parts called folds. The
data is usually stratified in order to provide equal distribution of classes through the folds.
One of the folds is then used for validation and the other folds are used for training. This
process then iterates 𝐾 times, every iteration using a different fold as the validation set.
The model accuracy is then expressed as the average of the iterations.

Choosing the value of 𝐾 the size of the dataset and the computation time has to be
considered. K-fold validation can outperform hold-out validation [37], however the number
of iterations can result in unacceptable computation time.

Figure 3.3: K-fold validation process
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Chapter 4

Implementation

The proposed implementation takes root in the model described in 3.2. This chapter details
the implementation part of handling data, constructing the model, training process and final
evaluation.

The implementation utilizes Python as the main programming language. The model
is implemented in the PyTorch1. Significant libraries used are Torchvision, Torchaudio,
torch.nn, torch.optim, NumPy 2, Matplotlib3, librosa4 and scikit-learn5.

All necessary dependencies are provided in the requirements.txt file and more detailed
information on the usage of scripts is provided in the README.md file.

4.1 Data
This system utilizes two databases: The Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS) and Berlin Emotion Database (EmoDB). These datasets
share many similarities: they are recorded by actors, have discrete labeling and share
majority of emotion classes. Both are described in Table 2.3.

Emotion classes of these databases do not perfectly correspond. Some classes had to
be omitted in order to have a unified set. The unification is depicted in Figure 4.1. The
majority of classes stayed the same and the overall number of samples was reduced by
approximately 24% in case of RAVDESS and 15% for EmoDB.

4.1.1 Labels

The Berlin Emotion Database (EmoDB) is labeled based on the discrete model 2.1.2. Each
label provides information in form of 7 characters representing the speaker identification,
code for transcription, emotion and the version of the recording. The transcription and
speaker flags were not used for any purpose as the model does not utilize transcriptions
in any way and feature processing is speaker indifferent. The RAVDESS database utilizes
discrete models as well. The label provides information about the media type, transcription,
intensity of emotion, speaker and emotion class.

1https://pytorch.org/
2https://numpy.org/
3https://matplotlib.org/
4https://librosa.org/doc/latest/index.html
5https://scikit-learn.org/stable/
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Figure 4.1: Class reduction in used datasets

The labels are then reconstructed to better fit the implementation steps. First label
contains a single character representing the emotion class (emotion abbreviations are listed
in Figure 4.1). This label is later used to stratify the classes in dataset partitioning. The
same information is then used to create a one-hot-encoding-based vector used as true value
during training. One-hot encoding-based vector is a binary vector that sets one value at
index corresponding to the representing class to 1 and sets others as 0. Dataset is then
constructed as in Figure 4.2.

Figure 4.2: Dataset composition

4.1.2 Dataset partitions

Before training the dataset is partitioned into three parts: the training set, the final valida-
tion set and a testing set used to assess the performance after every epoch. The partitions
divide the dataset in 0.7 to 0.3 ratio (training to testing) and the testing set is then halved
for validation.

The dataset splitting is done using sklearn.model_selection.train_test_split to
ensure stratification of the classes. The resulting subsets then have the same class distri-
bution as the original dataset.

Each subset is then divided into batches. The number of batches set for training control
the rate of network parameter updates. The forward and backward propagation 3.2.2 occur
for every batch. If these updates occur too often it can lead to learning some local minimum
or saddle point. On the other hand, if these updates occur too infrequently it can make
the learning process to slow down and require more iteration in order to reach satisfactory
performance. To prevent both scenarios and taking the smaller dataset size into account
the sets are divided into 32 batches.
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4.1.3 Feature Extraction and Selection

The preprocessing 2.3.1, feature extraction and feature selection 3.1 is all done in the
MFCC_computing.py script.

The raw audio used was sourced from an acted databases and did not contain any
abnormal levels of noise therefore no noise reduction was performed. The signal was loaded
and normalized by torchaudio.load() function. The audio then undergoes voice activity
detection. The RAVDESS samples have a significant gap of silence at the beginning of
recordings. The voice activity detection is implemented using the zero-crossing rate method
2.3.1 using the librosa.feature.zero_crossing_rate.

The waveform was then used to compute a set of Mel-Frequency Cepstral Coefficients
2.3.2. Using torchaudio.transforms.MFCC() class a set of first 40 coefficients were ex-
tracted by using a 1024 -point fast Fourier transform and a Mel filter bank with 40 filters.
The window length is set to 32ms frames with 16ms hop size. The output is two dimen-
sional: one dimension representing the frequencies and the other representing time. This
allows capturing both temporal and spectral features during convolution. Figure 4.3 serves
as a visualization of the output tensor.

Figure 4.3: Feature extraction output for a sample in EmoDB dataset

4.2 Model
The definition of model architecture in models.py script follows the proposed architecture
3.2. Model is implemented using torch.nn.Module. The layers are separated into classes
following the same logic parts as the proposed model: Body1, Body2 and the final class
adding the head ModelCNN.

The softmax layer depicted in Figure 3.2 is not added when defining the ModelCNN class
layers. Instead, only a single fully-connected layer is in its place and the softmax activation
is performed by cross-entropy loss function.
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4.2.1 Training

The training loop is performed for a predefined number of epochs. Each epoch produces a
separate model parameters. The training follows three main steps described in Figure 4.4:
the forward propagation of input producing the prediction, computation of loss assessing
the difference between the prediction and the true label and final back propagation. These
steps are performed in an inner loop for every batch in dataset. The loss of each batch is
then used to compute the average train loss for a given epoch.

Figure 4.4: Model training loop

After every training loop, the model is tested on a different set than given to the training
loop. The testing loop omits the back propagation step and therefore does not update the
model parameters at all. Same as the training loop the average loss is computed as well as
the number of correct model predictions. Based on these numbers the model evaluation is
performed and the model parameters are saved. Once all the epochs have finished the best
model is chosen. The choice is based on the test evaluation.

During the training the model is in a ”training mode“ (model.train()). This acti-
vates the batch normalization and dropout layers. In the testing stage the model is set
to ”evaluation mode“ (model.eval()) causing the dropout layer to be inactive in order to
produce deterministic results and the batch normalization layers to use statistics obtained
during training. This encourages more consistent behavior of the model.

Optimizer and Loss Function

The loss is computed by the torch.nn.CrossEntropyLoss as this is a multi-class classifi-
cation problem. The cross-entropy loss function is described in 3.2.3.

Optimizer adjusts the network parameters in a way that minimizes the loss. The Adap-
tive Moment Estimation or torch.optim.Adam algorithm was used. This algorithm adjusts
the learning rates based on the gradients as well as based on information stored in moving
averages. This approach helps the model to converge faster.

When initializing the optimizer weight decay and learning rate parameters were set to
regulate the performance. The weight decay parameter is set to prevent overfitting by
penalizing overly complex patterns with large weights. The learning rate defines the rate
at which parameters are updated.
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4.3 Validation and Evaluation
The model is validated using the hold-out cross-validation method 3.3.1. To produce an
objective performance and generalization estimate the validation utilizes a different data
source then during training.

During training, each epoch produces a version of the model that can be tested for
accuracy. This is done by the training loop on the training dataset. For the final validation
the best model is chosen from all the epochs based on the accuracy it achieved. Early
stopping of the learning is done to avoid deterioration of accuracy once the model starts to
overfit.

4.3.1 Evaluation Metrics

To assess how well the model is performing we can quantify the performance using evaluation
metrics. The ones used to evaluate the proposed model are: accuracy, precision, recall
and F1-score. The implementation utilizes sklearn.metrics.classification_report for
the calculations and sklearn.metrics.confusion_matrix to visualize them in confusion
matrix.

Confusion matrix helps evaluate models’ performance by comparing and visualizing
the predictions compared to actual values. The matrix defines 4 scenarios: true positive,
true negative, false positive and false negative shown in Figure 4.5a. The true positive and
the true negative are the correct scenarios. In true positive the model correctly predicted
the true value and in true negative the model did not predict a false value. The false
positive and negative represent faulty predictions.

With this understanding we can then construct the matrix for 𝑛 classes as shown in
Figure 4.5b. We define only true positive and false positive cases. In the context of more
than one class we can reduce the false scenarios to just one as it simply represents a wrong
prediction. True negatives for a class are all true positives of all other classes. Information
from confusion matrix can then be used to derive other performance metrics.

(a) Confusion matrix for one class (b) Confusion matrix for 𝑛 = 4 classes

Figure 4.5: Confusion matrix
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Accuracy defines the proportion of correct predictions to the number of all samples
in dataset. It gives an overall measure of how correct the predictions are. From confusion
matrix data we can derive accuracy as Equation 4.1.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(4.1)

Precision defines accuracy of only positive predictions. It does not take account of the
true negative. It is calculated as Equation 4.2

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.2)

Recall measures the proportion of true positive predictions to all positive instances in the
dataset. It defines the models’ ability to identify positive instances of actual values. It is
calculated as Equation 4.3

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.3)

To balance the precision and recall values we compute the F1-score. It is the harmonic
mean of precision and recall values as shown in Equation 4.4. this value can be especially
useful in cases of unbalanced classes. If the classes are unbalanced accuracy remains high
as it may be biased towards the majority class.

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2× 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4.4)
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Chapter 5

Results

The model described in the previous Chapter 4 was tested on two datasets described in 4.1.
The purpose of these experiments was to evaluate the success of the model implementation
and its performance. Experiments include training and validation of the model on both
datasets separately. All results shown in this chapter were obtained using parameters
provided in hyperparameters.py. Evaluation methods and significance of the metrics is
described in 4.3.

5.1 RAVDESS
The RAVDESS dataset was selected in order to compare the model performance when
provided with more samples and utterances recorded in a different language corpus. The
class distribution in this dataset is shown in Figure 5.1a. Compared to EmoDB the emotion
classes are uniform in sample count with the exception of the Neutral (N) class having half
the samples.

(a) In the original dataset (b) In the validation dataset

Figure 5.1: Class distribution in RAVDESS

The experiments shown the model reaches an accuracy of 84.2% over 100 epochs, lower
compared to EmoDB. The trend of training loss and training accuracy across epochs shown
in Figures 5.2a and 5.2b shows major spikes in accuracy. The maximum accuracy was
reached at epoch 80. It showed a stable result that stayed at a level even after training over
more epochs. The accuracy suggests that the model began converging around epoch 60.
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(a) Training loss across all epochs (b) Accuracy across all epochs

Figure 5.2: Training loss and accuracy with RAVDESS

The confusion matrix for RAVDESS shown in Figure 5.3 suggests that the model done
quite well with only occasional errors. The Neutral emotion has shown the worst results
mainly in Sadness-Neutral case. This result is consistent with the evaluation metrics shown
in Table 5.1. The best result was reached for Anger.

Figure 5.3: Confusion matrix for RAVDESS

5.2 EmoDB
The EmoDB dataset is one of the smaller in size datasets available and used for training
automated speech emotion recognition systems compared to the rest in Table 2.3. The class
distribution across this dataset shown in Figure 5.4a shows that Anger (A) is a majority
class and Disgust (D) a minority class. Due to no data augmentation step the classes
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Table 5.1: RAVDESS class evaluation metrics

Emotion Precision Recall F1-score
Happy 0.80 0.83 0.81
Neutral 0.65 0.87 0.74
Disgusted 0.89 0.89 0.89
Afraid 0.92 0.79 0.85
Angry 0.94 1.00 0.97
Sad 0.79 0.68 0.73

remained distributed this way in all subsets 4.1.2. The distribution shown in Figure 5.4b
shows the same trend in class sample counts in the validation subset.

(a) In the original dataset (b) In the validation dataset

Figure 5.4: Class distribution in EmoDB

The training and testing loops were iterated over 15 epochs. Figure 5.5a depicts the
average training loss over the whole training. The average per epoch is calculated from
training losses of batches. Figure 5.5b shows the training accuracy. We can notice rapid
spikes in the accuracy values compared to the training losses. The low number of epochs
was chosen due to the model becoming less stable and failing to provide any meaningful
results. At epoch 15 1 the model reached its peak accuracy at 92.6%.

Figure 5.6 shows the confusion matrix for the validation subset. The matrix shows
an overall good performance with low number of false positives and false negatives. The
only remarkable occurrence of a false negative is the Happiness-Anger showing consistently
across all experiments.

Evaluation metrics for each class are concluded in Table 5.2. The table showed a possible
overfitting problem based on the presence of value 1.00 in the Afraid emotion row. The
false negative problem observed in the confusion matrix is visible in the table in the recall
value of Happiness reaching only 0.70 and precision of Anger 0.83

1The graphs showed are indexed from 0, whereas the text describes the number indexed form 1 for better
readability
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(a) Training loss across all epochs (b) Accuracy across all epochs

Figure 5.5: Training loss and accuracy with EmoDB

Table 5.2: EmoDB class evaluation metrics

Emotion Precision Recall F1-score
Happy 1.00 0.70 0.82
Neutral 0.92 1.00 0.96
Disgusted 1.00 0.86 0.92
Afraid 1.00 1.00 1.00
Angry 0.83 1.00 0.90
Sad 1.00 0.90 0.95

Figure 5.6: Confusion matrix for EmoDB
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5.3 Discussion and Future Work
The proposed model was inspired by Aftab et al [3]. The system is lightweight and does not
require big computation power nor time. The implementation presented in this thesis was
done with adjustments to the paper. These alterations were done based on the literature
reviewed in first chapters of this work as well as empirical experiments with the implemented
system.

The overall result achieved showed lesser accuracy, however the model managed to
converge early on in the training process due to added audio preprocessing stage. The
generalization of the model degrades when presented with a cross-corpus validation. The
choice of the discrete model as a labeling method reduces the applicability of the model
to a limited predefined set of emotions and has no way of detecting or interpreting mixed
emotions from the results.

The experiments shown Anger as a strong and detectable emotion. Despite having
a uniform number of samples in the RAVDESS experiment it achieved consistently good
results. The size and stratification of classes in subsets proved to be a necessity. It is the
belief of the author that the instability of the EmoDB experiment could be solved by data
augmentation and unifying the sample count of each class.

Overall, the system showed the ability to learn and recognise emotion. The work pre-
sented meaningful insight into methodology of designing and utilizing such systems as well
as described various challenges in the field from theoretical and methodological standpoint.

Proposed Improvements

The system would benefit from future alterations. The main proposal is to change the vali-
dation method to the K-fold approach in order to achieve better data utilization. Other pos-
sibilities are further training with different input parameters, data augmentation and testing
on different datasets like IEMOCAP or MSP-Podcast providing not acted but elicited and
natural speech recordings. These alterations have the possibility of making the system more
robust.
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Appendix A

SD content

The attached media contains following items:

• thesis-latex/ the LaTeX source of this thesis

• program/ implementation source files

– saves/ saved model versions used in experiments
– data_processing.py

– hyperparameters.py

– MFCC_computation

– plots.py

– train.py

– README.md description of scripts and usage
– requirements.txt required dependencies

• data/ the data used for experiments

– EmoDB/

– RAVDESS/

• thesis.pdf thesis pdf file
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