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Abstract 
This work presents an in-depth investigation into the design and implementation of deep 
learning models for speech emotion recognition. It proposes a model based on a compre­
hensive review of existing techniques from the field. The model is trained and tested on 
large-scale emotion-labeled speech datasets. Experimental evaluations are conducted to 
assess the performance of the model in terms of accuracy, robustness, and generalization. 

Abstrakt 
Táto práca do hĺbky skúma návrh a implementáciu modelov hlbokého učenia na rozpozná­
vanie emócií z reči. Navrhuje model založený na komplexnom prehľade existujúcich techník 
z tejto oblasti. Model je trénovaný a testovaný na rozsiahlych sadách rečových dát oz­
načených emóciami. Vykonané experimentálne hodnotenia majú za cieľ posúdiť výkonnosť 
modelu z hľadiska presnosti, robustnosti a schopnosti zovšobecňovat rozpoznávacie schop­
nosti modelu. 
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Rozšířený abstrakt 
Táto práca sa zaoberá tvorbou systému na rozpoznávanie emócií pomocou hlbokého učenia, 
obsahuje popis a porovnanie rôznych prístupov k problematike, pochádzajúcich z analýzy 
súčasného stavu oblasti rozpoznávania emócií. Dátové sady použité na učenie sú EmoDB 
a R A V D E S S , obe nahrané profesionálnymi hercami v nemeckom a anglickom jazyku. 

Cieľom práce bolo navrhnúť systém, ktorý bude schopný detekovat emócie na základe 
vlastností zvukového signálu vedome alebo nevedome spôsobených emóciou. Súčasné rieše­
nia v oblasti rozpoznávania emócií z hlasu využívajú vlastnosti zachytávajúce bud princíp 
tvorby reči (lineárne prediktívne kepstrálne koeficienty), alebo prijímania zvuku (mel-
frekvenčné kepstrálne koeficienty). Algoritmy učenia často stavajú na hlbokých neurónových 
sieťach, v rôznych kombináciách s metódami spracovania dát . Typy sietí ako konvolučná 
neurónová sieť alebo rekurentná neurónová sieť, prípadne ich kombinácia sú často využí­
vanými blokmi v existujúcich systémoch podobného charakteru. 

Navrhnutý systém je postavený na konvolučnej neurónovej sieti, ktorá na vstup dostáva 
vybranú sadu mel-frekvenčných kepstrálnych koeficientov. Detekcia prebieha v troch fázach: 
spracovanie dát, extrakcia a selekcia vlastností a nakoniec učenie siete za pomoci spraco­
vaných dát výsledkom ktorého je finálna klasifikácia. Testovanie výsledkov prebieha na 
základe predikcií modelu. 

Dáta sú spracované odstránením tichých pasáží a normalizáciou. Tento krok napomáha 
presnejšej extrakcii koeficientov. Extrakcia a selekcia koeficientov slúži na zúženie vlastností 
vstupu do siete, umožňuje presnejšiu kontrolu vstupných dát a pomerne nízku komplexitu 
modelu a vďaka tomu aj nižšiu výpočtovú náročnosť. Konvolučná sieť pracuje s vlast­
nosťami spektrálnej a časovej domény signálu. Výsledkom je pravdepodobnostná hodnota 
príslušnosti vzorky do jednej z emočných tried. 

Experimenty boli vykonané oddelene na oboch sadách. Každá sada je rozdelená na 
trénovaciu, testovaciu a validačnú časť. Sady sú rozdelené s uvážením rozdelenia tried emócií 
a reflektujú distribúciu v pôvodnej sade. Presnosť výsledkov trénovania je vyhodnocovaná 
po každej trénovacej epoche a po ukončení všetkých epoch je najlepší výsledok podrobnejšie 
vyhodnotený. 

Ďalší možný smer tejto práce by mohlo byť otestovanie modelu na väčšej testovacej 
sade s reálnymi emóciami alebo podrobnejšie skúmanie vplyvu vstupných parametrov na 
výsledné predikcie. 
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Chapter 1 

Introduction 

Technology around us is much more prevalent today than it used to be only a few years 
ago, fundamentally changing how we communicate. Even when we interact with our devices 
daily, these interactions can feel like there is always something missing to feel truly human­
like. To accommodate this requirement, the machine would have to be able to perceive 
the nature and circumstances of the communication and have the capacity to adjust the 
response accordingly. 

Human voice as an effective way of carrying information, stands out as being our pri­
mary and most natural communication tool. Unlike various physical signals and other 
non-verbal forms of communication, speech is readily and easily producible and easy to col­
lect. However, the problem lies in the fact that we heavily rely on non-verbal components 
of communication (such as emotions) to convey the full extent of our ideas and intentions. 

In response, Speech Emotion Recognition (SER) has received interest in recent years. SER 
uses machine learning principles, allowing us to build models capable of identifying and 
categorizing emotions from speech. This can greatly affect many applications from AI 
assistants that could comprehend and respond to users' emotional states, to call centers 
enhancing customer satisfaction. Key challenges of SER lie in the vast variability of emo­
tions and their expressions across individuals in various situations. As technology continues 
advancing, the pursuit of natural, context-aware man-to-machine interactions remains in 
demand. 

1.1 Ethics and Motivat ion 

This thesis examines the current approaches to SER and works with data used to develop 
an SER. There are some ethical dilemmas concerning this field. SER models can greatly 
improve critical infrastructures, automatizing the process and removing human error. Wi th 
all these positive aspects come negatives. Data used to train these models have to be 
ethically sourced with consent and used for beneficial and not harmful purposes. To date, 
there is legislation in place to keep consumers from such exploitation and regulate the risks 
of deploying SER systems in real-world applications. 
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Chapter 2 

Speech Emotion Recognition 

Speech emotion recognition builds upon the principle that human emotions can be con­
veyed through voice. SER systems focus on correctly identifying and classifying correct 
features in human voice that are capable of conveying most critical characteristics [34]. 
The general structure of the system is depicted in Figure 2.1. In order to understand the 

SPEECH EMOTION RECOGNITION SYSTEM 

EMOTIONAL 
MODEL DATABASE SIGNAL 

PREPROCESSING 
FEATURE 

EXTRACTION CLASSIFICATION 

Figure 2.1: The basic structure of a speech emotion recognition system 

whole system, it is necessary to first understand areas and challenges presented by each 
part. This chapter provides theoretical background to the field of SER. It describes the 
psychological standpoint of defining and categorizing emotions from the view of continuous 
and discrete models, workings of speech processing, and the use of speech features. Further, 
it approaches the classification methods used in SER and the paradigms of deep learning 
used to construct a robust and functional model. 

2.1 Emotions 

This section provides a fundamental psychological insight into the term emotion, the various 
attempts to define and understand it from various standpoints. It mainly introduces the 
idea of grouping emotions into models allowing for more accurate and strict descriptions. 

2.1.1 Definition 

A n emotion can generally be described as a state of belief that results in changes both 
psychological and in turn physiological that convey one's state of thought [28]. Emotions 
fascinate research since Darwin [1] and there are different schools of psychology that produce 
many theories of what emotions are. We can group these theories into three main groups: 
physiological, neurological and cognitive. 

Physiological theory proposes that human body is responsible for the creation of 
emotion. The James-Lange Theory of Emotions [9] suggests that emotions are a product of 
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physiological responses to stimuli in the environment, the Environmental stimuli trigger a 
response of the body and the bodily response in turn triggers a response of the brain which 
we call emotion. This means that we feel emotions because of the physical changes that 
occur in response to stimuli. For example, we feel afraid because we tremble and our heart 
races, rather than trembling and having a racing heart because we experience fear. 

Neurological standpoint is that emotions come from activation within brain. This is 
described by the Facial-Feedback Theory of Emotion [10]. It suggests that facial expressions 
can influence and even regulate emotional experiences. According to this theory, the act 
of forming a facial expression, such as smiling or frowning, can trigger physiological and 
emotional responses associated with that expression our facial muscles send signals to the 
brain, which then interprets these signals as emotions. For example, if you force yourself to 
smile, it may lead to feelings of happiness or positivity, even if you weren't feeling that way 
initially. This theory emphasizes the bidirectional relationship between facial expressions 
and emotions, suggesting that our expressions not only reflect our emotions but also have 
the power to shape them. 

Lastly, cognitive theories propose that thoughts and other mental activity play a 
role in forming emotions. The Cognitive Appraisal Theory [21] suggests that our emotions 
are determined by our cognitive appraisal or evaluation of events. When we encounter a 
stimulus or event, we subconsciously evaluate it based on its relevance to our goals, beliefs, 
and well-being. The appraisal process comes in two steps. The primary appraisal is the 
initial assessment of whether the event is positive, negative, or irrelevant. If it's seen as 
positive or relevant, it can lead to positive emotions. If it's perceived as negative, it can 
lead to negative emotions like fear, anger, or sadness. In the secondary stage we evaluate 
our ability to cope with or manage the situation. This assessment influences the intensity 
and type of emotion we experience. This produces the intensity of the emotion. In the 
case of positive emotions, it can escalate them to pride or relief. These appraisals trigger 
emotions and our reactions to them. 

2.1.2 Categorization 

A l l theories described emotions as some inner process. When we want to signify emotion 
on a more objective level, we need a model that can describe it. There are two unique 
approaches to modeling emotions: the discrete and the dimensional model. 

Discrete Model 

The discrete model divides emotions into disjunct categories. When choosing an emotion 
we can simply choose from predefined set of basic categories which one fits best. This model 
allows us to easily label emotions based on class tags. These are in most cases six: anger, 
disgust, fear, joy, sadness, and surprise or some variations or additions that better reflect 
the application of the model (some variations are listed in Table 2.1). Each of the classes 
is defined by a specific set of features that describe the circumstances leading to emotion 
and the resulting reactions [28]. 

The main drawback is that subjects can experience a wider range of emotions than 
presented. When choosing a response from predefined groups they may encounter a need 
to select and in doing so not identify the label themselves [28]. 
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Table 2 .1: Proposed discrete categories of emotions 

Izard Ekman Plutchik 

enjoyment happiness joy 

sadness sadness sorrow 

fear fear fear 

anger anger anger 

disgust disgust disgust 

surprise surprise surprise 

interest acceptance 

shame anticipation 

shyness 

guilt 

Dimensional Model 

The dimensional or attribute models utilize individual variables used to describe emotion 
along multiple dimensions defined by these variables [34]. These models often use two 
dimensions: valence and arousal or add a third dimension as depicted in Figure 2.2. Emotion 
is then defined as a point in a defined space. These models are therefore capable of capturing 
fine differences and allow to observe a similarity of emotions [28] contrary to broad categories 
of the discrete model. 

The circumplex model proposed by Russell [29] utilizes two primary dimensions: 
valence and arousal. The valence axis refers to whether an emotion is perceived as positive 
or negative. Emotions with positive valence, such as happiness or excitement, are located 
on one side of the circumplex, while emotions with negative valence are located on the 
opposite side. The arousal axis reflects the level of physiological activation or intensity 
associated with an emotion. 

The P A D (Pleasure-Arousal-Dominance) model chooses three dimensions. First, 
is Pleasure-Displeasure defining whether an emotion is positive or negative. Second is the 
Arousal-Non-arousal axis indicating psychological activation and alertness. And third is 
the Dominance-Submissiveness axis describing whether the subject feels in control of the 
emotion. Result is then evaluated by a P A D score defined by emotion scales [23]. 

2.2 Data Sourcing 

Datasets provide collections of data that has been collected, organized and labeled. The 
choice of a dataset and the quality of the data in it affects the success of the recognition 
process [4]. A good dataset usable for SER is required to have diversity of speakers namely 
their genders, ages and requires a balanced number of recordings of each class of emotion 
per speaker to prevent data imbalance in the dataset. 
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AROUSAL AROUSAL 

PLEASURE 

Figure 2.2: Valence-Arousal and P A D model 

Table 2.2: Emotion models - overview 

Discrete model Dimensional model 

Emotion definitions Disjunct categories Points in multi-dimensional 
space 

Real-life applications Natural way of giving names 
to emotions 

More descriptive of feelings 

Labeling Intuitive creation of classes Classes need to be constructed 
from variables 

Databases often use one of the emotion models 2.1.2 to signify the emotion captured in 
a recording. The labels contain information about speaker, the contents of a sample and 
most importantly the collected emotion. When choosing we then must take into account 
not only the quality of data but also the range of emotions it can provide and whether that 
range is suitable or necessary for the application. 

Emotion recognition datasets can be divided into speech datasets (audio recordings, 
text) or visual datasets (facial expression images, video recordings). 

Datasets can be sourced in various ways. The main three include acted, elicited and 
naturally sourced recordings. When sourcing the data it is important that the actors or 
other participants consent to the data being collected. 

Acted Speech Datasets 

Are recorded by professional actors in low-noise environments. These datasets can regulate 
and plan the recorded emotion classes beforehand and recruit actors to make the data 
diverse. Emotions in acted speech are greatly exaggerated making models trained on such 
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databases less successful in detecting real-life emotions [4]. This unwanted effect can be 
reduced by hiring semi-professional actors [12] 

Elicited Speech Datasets 

We can produce a viable dataset by placing a recording device in an environment where 
emotions are artificially induced. This method does not create real emotions but gets close 
to them and provides a wider range of categories. Usually, the stimuli are presented in 
forms of videos, images, stories, music clips, or other media types that are designed to 
induce an emotion of varying intensity. A study from 2005 [17] proposed to use events in 
computer games to induce a more realistic emotional reaction from players. 

Natural Speech Datasets 

Lastly, these are collections of enormous numbers of recordings obtained from various call-
center recordings, talk shows, podcasts, or public conversations. Data sourced this way 
usually contains more noise and the emotions are not as consistent as in elicited or acted 
datasets but it has a limited effect. A famous example is the collection of radio broadcasts 
happening during the Hindenburg crash [12]. Obtaining such spontaneous speech can be 
ethically and legally challenging. 

2.3 Sound and Speech 

Sound and speech play are integral components of human communication. Speech is a spe­
cialized form of sound exclusive to humans characterized by the production of vocal sounds 
through the coordination of respiratory, phonatory, and articulatory systems. It carries 
emotional information through various acoustic features such as pitch, intensity, rhythm, 
and spectral characteristics. Different emotions are associated with distinct patterns in 
these acoustic features, making speech an effective medium for conveying emotions. 

This section provides an overview of processes used to extract information from speech 
signals and overcome challenges such as variability in emotional expression, cultural differ­
ences, and noisy environments. 

2.3.1 Preprocessing 

When working with audio signals we have to take into account that the data can contain 
unwanted components like background noise, inconsistencies in energy levels or variations 
of voice characteristics. A l l of these aspects can have an effect on extracting relevant 
features especially when working with real-world speech [20]. The speech signal is usually 
preprocessed in steps indicated in Figure 2.3. 

Voice Activity Detection (VAD) 

Voice activity detection is used to separate parts where voiced speech can be detected from 
silent (unvoiced) parts. The process divides signal into short frames and determining the 
presence of activity withing these frames. When determining the activity we can use two 
categories of features: time-domain and frequency-domain [20]. 

The time-domain features are used due to their simplicity but degrade in a noisy signal 
[20]. One of these features is Zero-Crossing Rate (ZCR). This method utilizes the way how 
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Table 2.3: Brief description of selected databases 

Language Size Emotions Type 

I E M O C A P English 5 531 utterances Anger, Happiness, 
Excitement, Sadness, 
Frustration, Fear, 
Surprise, Neutral 

Elicited 

B A U M - l s Turkish 1 222 utterances Joy, Anger, Sadness, 
Disgust, Fear, Sur­
prise, Boredom, Con­
tempt 

Natural 

E M O - D B German 535 utterances Neutral, Anger, Sad­
ness, Fear, Boredom, 
Happiness, Disgust 

Acted 

R A V D E S S English 1056 utterances Neutral, Anger, Sad­
ness, Fear, Happiness, 
Disgust, Surprised, 
Calm 

Acted 

M S P -
Podcast 
(version 1.7) 

Mixed 62 140 utterances Anger, Happiness, 
Sadness, Disgust, Sur­
prise, Fear, Contempt, 
Neutral 

Natural 

vocal tract constricts and opens during voiced speech [7]. When producing voiced speech, 
the vocal tract produces a periodic flow which shows a low zero-crossing count, whereas 
unvoiced speech is produced by constricting the airflow and shows higher zero-crossing 
count. The detection of the crossings is shown in Figure 2.4. 

Noise Reduction 

When any sound signal is being used to obtain information, it cannot be corrupted by any 
background or ambient noise. Ambient noise is any signal not being monitored [16] and 
can affect the later stages of recognition. By removing noise, we are left with clean speech. 

Framing 

Framing or segmentation is a process of apportioning the continuous voice signal into fixed-
length segments. Speech is considered an unstable signal, however can remain stable for 
a sufficiently short period, such as 20 to 30 milliseconds [4]. In this short time, we can 
examine local and quasi-stationary features. 
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VOICE ACTIVATION 
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NORMALIZATION WINDOWING 

Figure 2.3: Preprocessing steps 

Figure 2.4: Definition of zero-crossing rate [7] 

Windowing 

After framing the signal, we are left with discontinuities in the beginning and the end of 
the frame. This can be solved by multiplying the signal with a window function. Window 
function (e.g. Hamming window or Hanning window) is used to smooth out values on both 
ends of a signal while leaving the middle part preserved. The smoothed edges can mean 
information loss, however, the relation and information between the frames can be retained 
by deliberately overlapping 30 to 50 percent of these segments [4]. 

Normalization 

Feature normalization is done to reduce speaker and recording variability without losing 
the discriminative strength of the features. [4]. It can be performed on either the whole 
recording or applied to the framed signal. The most common normalization method is 
the ^-normalization which can be calculated using equation 2.1 for signal x if mean JX and 
standard deviation a are known. 

z = X - ^ (2.1) 
a 

2.3.2 Features 

Features represent different information sourced from audio signals. Most acoustic features 
used for SER can be separated as prosodic and spectral (vocal tract) [36]. Prosody fo­
cuses on the temporal and rhythmic aspects of speech that align with human perception of 
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emotion, spectral features describe frequency content and distribution of energy, providing 
a different perspective. The combination of more types of features often results in more 
robust and accurate models [12]. 

Prosodic Features 

Prosody provides linguistic naturalness to speech through intonation, stress, and rhythm. 
These cues are conveyed using mainly three acoustic parameters: pitch, energy, and dura­
tion [25]. Prosodic features are applied by the speaker and can be detected in units like 
syllables, words, or sentences - units detectable in larger portions of recordings. Literature 
suggests prosody to be a high correlate of emotion. Features derived from statistical meth­
ods are important sources for discriminating emotions. Around 50% of average emotion 
recognition performance is reported using discriminant analysis [26]. 

Spectral Features 

Spectral features in the context of speech emotion recognition involve analyzing the fre­
quency content of the speech signal. These features provide information about the distri­
bution of energy across different frequency bands. Generally, we have a 20 to 30 milliseconds 
long segment used to extract these features. Vocal tract characteristics are well reflected 
in frequency domain analysis of speech signals. The Fourier transform of each frame gives 
a short time spectrum where features like formants, bandwidths, spectral energy, and their 
slopes can be observed [19]. 

Mel-frequency Cepstral Coefficients (MFCCs) 

Are a set of coefficients commonly used in speech and audio processing for representing the 
short-term power spectrum of the speech signal. 

The M F C C s are widely used in SER due to their ability to mimic the workings of the 
human auditory system which does not follow a linear scale when it comes to perception 
of sound frequency contents for speech signal. Therefore, for each frequency / measured in 
Hz a subjective pitch is measured (Equation 2.2) on the Mel scale [15] 

To obtain M F C C , speech signals are divided into segments (described in 2.3.1) each seg­
ment is converted into the frequency domain using a short-time discrete Fourier transform. 
Several sub-band energies are calculated using a Mel filter bank and the logarithm of those 
sub-bands is calculated. The inverse Fourier transform is applied to obtain M F C C [4]. 

Linear Prediction Cepstral Coefficients (LPCCs) 

Another set of coefficients used in speech and audio processing are the L P C C s . They are 
derived from Linear Prediction Coefficients (LPC) , based on the speech production model 
where the characteristic of the vocal tract can be modeled by an all-pole filter. L P C C s 
same as L P C s have the disadvantage of approximating speech linearly on all frequencies, 
which is inconsistent with how human hearing works [35]. 
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Table 2.4: Spectral features - overview 

L P C C M F C C 

Extraction Process Linear prediction analysis fol­
lowed by cepstral analysis 

Mel-frequency filter-bank 
analysis followed by cepstral 
analysis. 

Frequency Domain Primarily captures vocal tract 
characteristics 

Captures spectral characteris­
tics, emphasizing perceptual 
loudness 

Sensitivity to Noise More sensitive to noise due to 
detailed vocal tract modeling 

Relatively robust to noise due 
to perceptual loudness focus 

Biological Inspiration Inspired by linear prediction 
modeling of the vocal tract 

Inspired by human auditory 
perception of frequency 

Dimensionality Typically has a lower dimen­
sionality 

Generally has a higher dimen­
sionality 

Common Usage Less commonly used in gen­
eral speech processing tasks 

Standard and widely used in 
speech and audio processing 

2.4 Classifiers 

After extracting all valuable information from data SER systems use classifiers to learn and 
detect patterns that they attribute to various emotions. A classification algorithm takes 
an input X, typically in the form of labeled data, and maps it onto an output Y. The 
mapping function is approximated aiding in predicting the class of the next input. The 
learning algorithm utilizes the labeled data to identify samples and their relevant classes. 
Data is used to train the classifier and to further test and validate its performance. For 
SER data used are in the form of feature vectors obtained in the feature extraction process. 
There is no preferred classification approach to SER. The choice can be based on past 
references or experimental evaluation. The performance is then greatly affected by the 
combination of feature extraction and classification method [33] and several algorithms can 
be combined to improve predictions [4]. 

2.4.1 Traditional Machine Learning Classifiers 

A traditional learning classifier, refers to a type of machine learning algorithm that are 
trained using supervised learning, where the algorithm learns to predict the correct class 
label for input data based on labeled examples provided during training. These classifiers 
are typically based on well-established algorithms and techniques. 

Many traditional classifiers offer interpretable models, meaning that the decision-making 
process can be understood and explained based on the learned parameters or decision rules. 
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Support Vector Machine (SVM) 

Support Vector Machine is the supervised linear algorithm transforming the original input 
set to a high dimensional feature space by using a kernel function, in which input space 
is converted into high dimensional feature space making the input data become linearly 
separable. The main advantage of S V M is that it has limited training data and hence has 
very good classification performance [27]. 

Hidden Markov Models ( H M M ) 

Hidden Markov Model is a supervised algorithm used in speech recognition and successfully 
extended for use in SER. H M M is a sequential model relying on the continuity of states in 
time. The current state of a system is at time t and only depends on the previous state in 
t — 1. The term hidden implies the inability to observe the generation of state-generating 
logic and we can use probability to predict the next state only by observing the current 
state [4]. 

Gaussian Mixture Models ( G M M ) 

G M M is a probabilistic method that models the data as a mixture of several components 
with their parametric form. Each data point then belongs to one of the components. We 
can view G M M as a special continuous case of H M M with just one state [4]. 

Table 2.5: Traditional machine learning classifiers - overview 

S V M H M M G M M 

Output Direct classification Sequence of hidden 
states representing 
emotions 

Probabilistic repre­
sentation of emotions 

Feature 
representation 

High-dimensional 
feature spaces 

Often requires care­
fully selected features 

Flexible feature 
types 

Training data 
requirements 

Labeled data for 
each class 

Labeled sequences of 
emotional states 

Labeled data for 
each component 
representing an 
emotion 

Benefits Effective in high-
dimensional feature 
spaces 

Can capture sequences 
of emotions 

Probabilistic rep­
resentation allows 
uncertainty 

2.4.2 Deep Learning Based Classifiers 

Currently most models in SE R pivoted to using deep learning, which has been outperform­
ing traditional machine learning approaches [13]. The main argument for the utilization of 
deep learning lies in its ability to automatically extract features from raw audio. 
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While traditional machine learning approaches (described in 2.4) rely on handcrafted 
features provided in structures appropriate as their input, deep learning algorithms process 
data and extract features during the computation. The drawback is a requirement for larger 
datasets in the learning process. To achieve the best results deep learning models can be 
combined with handcrafted features [13]. 

Recurrent Neural Network(RNN) 

The recurrent neural network is a discriminative supervised model built on recurrent 
architecture. By the usage of internal memory they can process sequential data, remember 
received input and from their interdependencies predict the future state of input. RNNs 
use a recurrent loop where an output of previous cycle is used in the next one. Each step 
processes one part of the input which allows for time-dependency modelling. 

Convolutional Neural Network (CNN) 

The convolutional neural network is a very successful network in the field of pattern recog­
nition. CNNs are adept at extracting abstract features as data progresses through deeper 
layers. For instance, in image classification, early layers might detect edges, followed by 
simpler shapes, and ultimately higher-level features like faces in subsequent layers [5]. The 
networks consist of multiple layers as shown in Figure including convolutional layer, non-
linearity layer, pooling layer and fully-connected layer for making predictions. 

Convolution in CNNs serves the purpose of parameter reduction. Instead of connecting 
every part of the input we connect only local regions as shown in Figure 2.5a whose weights 
remain fixed. We can further utilize this as a method of applying filters and after adding 
more layers extracting different features from the input regardless of their position in the 
input [5]. 

FULLY 
CONNECTED 

t>,., 
OUTPUT 

0,...:;,.;.....p 

cx- ••-;><) 

(a) Convolution of one local region (b) A basic CNN structure 

Figure 2.5: Principles of C N N 

Non-linear layers manage the output by saturating or limiting it [5]. We manage 
this by adjusting or cutting off the generated output. The Rectified Linear Unit (ReLU) 
achieves this by propagating any positive values and setting all negative values to 0 as 
shown in Equation 2.3. 

ReLU(x) = max(0, x) (2.3) 

In order to reduce the complexity, we send to the next layer we have to down-sample. 
The down-sampling is done by a pooling layer. The purpose of this is to achieve spacial 
invariance [30] meaning the existence of a feature is left but it does not matter in which 
region the feature was. 
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Chapter 3 

Proposed Methodology 

This chapter utilizes information gathered in the previous chapter and through understand­
ing of principles of core components of an SER describes the proposed approach to designing 
such system. It focuses on the building blocks of the system and their functions within the 
system. 

DATA 

Raw audio data 
Label extraction 

—> 

CLASSIFICATION 

Deep-learning based 
model —> 

CLASSIFICATION 

Deep-learning based 
model 

FEATURE 
EXTRACTION 

MFCCs 

FEATURE 
SELECTION 

Selecting a subset of 
features 

FEATURE 
EXTRACTION 

MFCCs 

FEATURE 
SELECTION 

Selecting a subset of 
features 

EMOTION 

FEATURE 
EXTRACTION 

MFCCs 

FEATURE 
SELECTION 

Selecting a subset of 
features 

EMOTION 

Figure 3.1: Blocks of the proposed SER system 

3.1 Feature Extraction 
When working with data in any form it is necessary to establish how to use the information 
contained in them in the most efficient way possible. Datasets often contain real-life data 
that have high dimensionality [32]. Reducing dimensions using feature extraction helps 
in data compression therefore can greatly reduce storage space and computation time [2]. 
Feature extraction is the process of removing all ineffective features while extracting the 
important and relevant data, aiding in increase of learning speed and generalization in 
machine learning process [2]. 

Feature extraction is a computation of feature vectors providing a representation of a 
speech signal. It is done in three stages. First, a spectra-temporal analysis is performed. 
It produces features describing the envelope of the power spectrum. The second stage 
produces a feature vector of static and dynamic features and in the third stage makes these 
vectors more robust and compact [11]. 

Mel-frequency Cepstral Coefficients 2.3.2 are often used in speech related classification 
problems due to their ability to extract rich amount of information from speech signal 
[2] and performing extraction similarly how a human ear processes sound [11] without 
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capturing noise in the signal. Spectral features are in general shown to perform well in 
n-way classification problems [12]. Despite deep-learning algorithms being able to perform 
deep feature extraction directly from raw data [2], the step serves the purpose of compressing 
the data and removing personal characteristics of speakers from the learning process. 

3.1.1 Feature Selection 

Feature selection involves selecting a subset of features from the original set without altering 
them and assessing their relevance to the analysis objective [18]. This process can be 
accomplished using various methods depending on the goal, available resources, and desired 
level of optimization. 

It typically follows a process of generation, evaluation, definition of stopping criterion 
and final validation [18]. However, the first few M F C C s often capture essential spectral 
characteristics of the audio signal, such as information related to formants, spectral enve­
lope, and fundamental frequency making them a viable subset. By selecting only the first 
40 M F C C s [3] [8], the feature representation focuses on the most relevant and discriminative 
information. 

3.2 Deep Learning Mode l 

Deep learning models are composed of layers of neurons connected by weighted edges. 
Structure and arrangement of these layers and connections between neurons, define the 
architecture of the model. By having multiple layers, deep learning models can learn hi­
erarchical representations of the input data, with each layer capturing increasingly more 
abstract and complex features, enabling deep learning models to effectively learn and gen­
eralize. 

This section describes parts of a deep learning model proposed by Aftab et al [3] shown 
in Figure 3.2. 

3.2.1 Receptive Field 

A receptive field of a neural network is defined as the size of the region in input that 
produces the feature [6]. As described in 2.5a each neuron in a C N N is connected to a 
small localized region of the input data. The size of a receptive field affects the ability of 
the network to capture finer or more global features. 

To ensure that a unit in a Convolutional Neural Network captures all relevant infor­
mation from the input, it's crucial to carefully control its receptive field. This ensures 
that the unit encompasses the entire region of the input that contains pertinent features. 
Otherwise, any information outside the receptive field of a unit would have no impact on 
its value. Thus, by managing the receptive field size effectively, the C N N can accurately 
extract meaningful features [24]. 

We can increase the receptive field linearly by adding more layers and making the 
network deeper. Each layer increases the receptive field by its kernel size [24]. This however 
creates more parameters of the network and causes over-fitting of the model. 

The model shown in Figure 3.2 proposes a multi-receptive field (part Body I), working 
with the fact that feature extraction provides a multi-dimensional input: spectral, temporal 
and spectra-temporal features. Each dimension of the input has its own convolution unit 
containing a convolutional layer, batch normalization a non-linear layer and a pooling layer. 
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Figure 3.2: Architecture of the model 

The outputs of these units are aggregated at the end. This approach manages to increase 
the receptive field of the network while preventing large parameter count [3]. 

3.2.2 Feed Forward Propagation and Backwards Propagation 

Feed forward neural networks are a type of neural networks without any output feedback 
(like in a recurrent neural network 2.4.2). In feed forward neural layers the input signals 
are propagated to the output by weights and neuron biases [38]. The input data performs 
the required computations, affected by the network's parameters and produces an output 
prediction. Once the forward pass is complete, a loss function 3.2.3 is used to assess how 
much the predicted value differs from the true target. 

To give the network the ability to learn, the back propagation updates the weights of 
connections based on the error rate of the forward run. The backward pass computes the 
gradients of the loss function 3.2.3 layer by layer starting at the output respecting the 
parameters of all layers. The weights can then be adjusted in a way that minimizes the loss 
function, thus achieving better performance. The magnitude of parameter step is controlled 
by the learning rate. 

The process of forward and back propagation is repeated iteratively over multiple epochs 
until the model reaches a satisfactory solution or a predefined stopping condition. 
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3.2.3 Loss Function 

The loss function estimates the degree of difference between the prediction and the true 
value. It's typically a function that yields a non-negative real value, expressed as Equation 
3.1. Reducing the loss function typically indicates an improvement in the model's robustness 
[38]. This metric quantifies how well the model's predictions align with the actual data. 
Lower loss values suggest that the model is making predictions closer to the ground truth, 
indicating enhanced performance and robustness. Therefore, minimizing the loss function 
is a key objective in training neural networks, as it reflects the model's ability to generalize 
well to unseen data and effectively capture underlying patterns in the training dataset. 

L(Y,f(x)) = \Y-f(x)\ (3.1) 

Cross-Entropy Loss Function 

Cross-entropy loss is a probability-based loss function. It quantifies the difference between 
predicted probability distribution of classes and the true distribution provided by labels. 
It applies a softmax normalization 3.2.5 which ensures that the scores provided by neural 
network can be interpreted as probabilities. 

When we are dealing with a classification problem with iV classes we expect the neural 
network to have an iV-dimensional score representation space described in Equation 3.2, 
where XL denotes the set of samples labeled by L. The softmax function takes this space 
and normalizes the scores. Cross-entropy loss is then computed as a negative logarithm 
of the probability of the true class label. Then the gradient of the loss is computed as a 
difference between the vector of the softmax scores and a vector representing the true labels 
(with 1 for the true class and 0 for other classes) [22]. 

T{x € XL) = [Sl,s2,...,sN]T (3.2) 

3.2.4 Overfitting and Dropout Layer 

Overfitting occurs when a model fails to generalize from observed to previously unseen data, 
causing perfect predictions on training set and poor performance on testing set. Many fac­
tors can be the cause of overfitting. Generally, there are three kinds of situations [39]: (1) 
noise learning on the training set: when the training data is small, unrepresentative, or 
contains excessive noise, the model may inadvertently learn these noise patterns alongside 
genuine relationships. This can lead to over-reliance on irrelevant details during prediction: 
(2) hypothesis complexity: In statistical and machine learning contexts, the complex­
ity of hypotheses involves a trade-off between variance and bias. When models become 
overly complex, often by incorporating too many inputs or hypotheses, they may achieve 
high accuracy on average but exhibit low consistency across different datasets; (3) mul­
tiple comparisons procedures: induction algorithms, including those used in artificial 
intelligence, involve comparing multiple items based on evaluation scores to select the most 
promising candidate. However, this process introduces the risk of selecting items that do 
not genuinely improve classification accuracy or may even decrease it. 

Dropout is a regularization technique commonly used in neural networks, particularly 
in deep learning models, to prevent the unwanted interdependencies among neurons on 
training sets [14] and reducing the risk of overfitting. In each training iteration, for every 
neuron in the dropout layer, a random binary decision is made whether to retain the neuron 
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or omit it („drop it out"). This produces the same result as averaging the predictions of a 
large number of networks, but in a reasonable time [14]. 

3.2.5 Activation Function 

By default, a neural network without an activation function is a simple linear function 
unable to recognize complex mapping of the data [31]. Activation functions introduce 
non-linearity, enabling the network to extract complex information and intricate patterns 
from data and represent non-linear mappings between inputs and outputs. A crucial as­
pect of activation functions is their differentiability, which enables the implementation of 
backpropagation 3.2.2. 

Softmax Activation Function 

The softmax activation function provides a vector of probability distribution from a vector 
of real numbers. It is particularly useful in classification problems with multi-class models 
as the returned vector represents the probability of each class (Equation 3.3 [31]), with the 
target class having the highest value. 

<r(*)j = -p— for j = l,...,K (3.3) 

fe=i 

3.3 Cross-Validation 

Trained models can show a satisfactory performance on the training sets while not being 
able to generalize well and fail when shown previously unseen data. Cross-validation is a 
technique used to evaluate models' ability to generalize to new data. We achieve this by 
splitting the data into a training and testing set. One part is used for training while the 
other is withheld and used after the model is trained. The ratio of splitting the data is 
known as validation size [37]. 

The value is usually represented in the form of a fraction denoting a percentage of the 
dataset (a validation size of 0.2 indicates that 20% of dataset will be reserved for a certain 
task). The choice of this parameter involves a trade-off between the amount of data used for 
training resulting in over or under fitting of the model and the reliability of the validation. 

3.3.1 Hold—out Cross—Validation 

Hold-out validation is a validation method solving overfitting problems of validation set 
being a subset of training data. The data is divided into two disjunct parts: one for 
training and one for validation the model. The validation samples are introduced after the 
model has been trained. 

These two subsets usually have a different validation size, we use a 0.8 to 0.2 training 
to validation ratio, but any other combination is possible. When splitting the data we have 
to keep in mind that the distribution of information is the key to successfully validating 
the model and preventing overfitting [37]. 
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3.3.2 K - F o l d Cross-Validation 

Similarly, as in the hold-out validation the data is split into two parts used for training and 
validation. The k-fold method first splits the data into K equal parts called folds. The 
data is usually stratified in order to provide equal distribution of classes through the folds. 
One of the folds is then used for validation and the other folds are used for training. This 
process then iterates K times, every iteration using a different fold as the validation set. 
The model accuracy is then expressed as the average of the iterations. 

Choosing the value of K the size of the dataset and the computation time has to be 
considered. K-fold validation can outperform hold-out validation [37], however the number 
of iterations can result in unacceptable computation time. 

ITERATION DATA 

V 

V 

V 

K V 

Figure 3.3: K-fold validation process 

22 



Chapter 4 

Implementation 

The proposed implementation takes root in the model described in 3.2. This chapter details 
the implementation part of handling data, constructing the model, training process and final 
evaluation. 

The implementation utilizes Python as the main programming language. The model 
is implemented in the PyTorch 1 . Significant libraries used are Torchvision, Torchaudio, 
torch.nn, torch.optim, NumPy 2, Matplotlib'\ l i b r o s a 1 and scikit-learn'\ 

A l l necessary dependencies are provided in the requirements. txt file and more detailed 
information on the usage of scripts is provided in the README.md file. 

4.1 Data 

This system utilizes two databases: The Ryerson Audio-Visual Database of Emotional 
Speech and Song (RAVDESS) and Berlin Emotion Database (EmoDB). These datasets 
share many similarities: they are recorded by actors, have discrete labeling and share 
majority of emotion classes. Both are described in Table 2.3. 

Emotion classes of these databases do not perfectly correspond. Some classes had to 
be omitted in order to have a unified set. The unification is depicted in Figure 4.1. The 
majority of classes stayed the same and the overall number of samples was reduced by 
approximately 24% in case of R A V D E S S and 15% for EmoDB. 

4.1.1 Labels 

The Berlin Emotion Database (EmoDB) is labeled based on the discrete model 2.1.2. Each 
label provides information in form of 7 characters representing the speaker identification, 
code for transcription, emotion and the version of the recording. The transcription and 
speaker flags were not used for any purpose as the model does not utilize transcriptions 
in any way and feature processing is speaker indifferent. The R A V D E S S database utilizes 
discrete models as well. The label provides information about the media type, transcription, 
intensity of emotion, speaker and emotion class. 

1https://pytorch.org/ 
2https://numpy.org/ 
3https://matplotlib.org/ 
4https: //librosa.org/doc/latest / index.html 
5 https: / / scikit-learn. org / stable / 
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Figure 4.1: Class reduction in used datasets 

The labels are then reconstructed to better fit the implementation steps. First label 
contains a single character representing the emotion class (emotion abbreviations are listed 
in Figure 4.1). This label is later used to stratify the classes in dataset partitioning. The 
same information is then used to create a one-hot-encoding-based vector used as true value 
during training. One-hot encoding-based vector is a binary vector that sets one value at 
index corresponding to the representing class to 1 and sets others as 0. Dataset is then 
constructed as in Figure 4.2. 

Samplel Sample2 Sample3 

Data, label, target Data, label, target Data, label, target 

Figure 4.2: Dataset composition 

4.1.2 Dataset partitions 

Before training the dataset is partitioned into three parts: the training set, the final valida­
tion set and a testing set used to assess the performance after every epoch. The partitions 
divide the dataset in 0.7 to 0.3 ratio (training to testing) and the testing set is then halved 
for validation. 

The dataset splitting is done using sklearn.model_selection.train_test_split to 
ensure stratification of the classes. The resulting subsets then have the same class distri­
bution as the original dataset. 

Each subset is then divided into batches. The number of batches set for training control 
the rate of network parameter updates. The forward and backward propagation 3.2.2 occur 
for every batch. If these updates occur too often it can lead to learning some local minimum 
or saddle point. On the other hand, if these updates occur too infrequently it can make 
the learning process to slow down and require more iteration in order to reach satisfactory 
performance. To prevent both scenarios and taking the smaller dataset size into account 
the sets are divided into 32 batches. 
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4.1.3 Feature Extraction and Selection 

The preprocessing 2.3.1, feature extraction and feature selection 3.1 is all done in the 
MFCC_computing.py script. 

The raw audio used was sourced from an acted databases and did not contain any 
abnormal levels of noise therefore no noise reduction was performed. The signal was loaded 
and normalized by torchaudio. load() function. The audio then undergoes voice activity 
detection. The R A V D E S S samples have a significant gap of silence at the beginning of 
recordings. The voice activity detection is implemented using the zero-crossing rate method 
2.3.1 using the librosa.feature.zero_crossing_rate. 

The waveform was then used to compute a set of Mel-Frequency Cepstral Coefficients 
2.3.2. Using torchaudio .transforms .MFCCO class a set of first 40 coefficients were ex­
tracted by using a 1024-point fast Fourier transform and a Mel filter bank with 40 filters. 
The window length is set to 32ms frames with 16ms hop size. The output is two dimen­
sional: one dimension representing the frequencies and the other representing time. This 
allows capturing both temporal and spectral features during convolution. Figure 4.3 serves 
as a visualization of the output tensor. 

Output of MFCC feature extraction 

35 -

30 -
25 -

c 
u 20-

Figure 4.3: Feature extraction output for a sample in EmoDB dataset 

4.2 Model 

The definition of model architecture in models.py script follows the proposed architecture 
3.2. Model is implemented using torch.nn.Module. The layers are separated into classes 
following the same logic parts as the proposed model: Bodyl, Body2 and the final class 
adding the head ModelCNN. 

The softmax layer depicted in Figure 3.2 is not added when defining the ModelCNN class 
layers. Instead, only a single fully-connected layer is in its place and the softmax activation 
is performed by cross-entropy loss function. 
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4.2.1 Training 

The training loop is performed for a predefined number of epochs. Each epoch produces a 
separate model parameters. The training follows three main steps described in Figure 4.4: 
the forward propagation of input producing the prediction, computation of loss assessing 
the difference between the prediction and the true label and final back propagation. These 
steps are performed in an inner loop for every batch in dataset. The loss of each batch is 
then used to compute the average train loss for a given epoch. 

for batch in dataset 

for sample in batch 
Data True Label 

FORWARD LOSS BACK 
PROPAGATION COMPUTATION PROPAGATION 

Prediction Loss 

•Updates Parameters-

Figure 4.4: Model training loop 

After every training loop, the model is tested on a different set than given to the training 
loop. The testing loop omits the back propagation step and therefore does not update the 
model parameters at all. Same as the training loop the average loss is computed as well as 
the number of correct model predictions. Based on these numbers the model evaluation is 
performed and the model parameters are saved. Once all the epochs have finished the best 
model is chosen. The choice is based on the test evaluation. 

During the training the model is in a „training mode" (model.train()). This acti­
vates the batch normalization and dropout layers. In the testing stage the model is set 
to „evaluation mode" (model.evalO) causing the dropout layer to be inactive in order to 
produce deterministic results and the batch normalization layers to use statistics obtained 
during training. This encourages more consistent behavior of the model. 

Optimizer and Loss Function 

The loss is computed by the torch.nn.CrossEntropyLoss as this is a multi-class classifi­
cation problem. The cross-entropy loss function is described in 3.2.3. 

Optimizer adjusts the network parameters in a way that minimizes the loss. The Adap­
tive Moment Estimation or torch.optim. Adam algorithm was used. This algorithm adjusts 
the learning rates based on the gradients as well as based on information stored in moving 
averages. This approach helps the model to converge faster. 

When initializing the optimizer weight decay and learning rate parameters were set to 
regulate the performance. The weight decay parameter is set to prevent overfitting by 
penalizing overly complex patterns with large weights. The learning rate defines the rate 
at which parameters are updated. 
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4.3 Validation and Evaluation 

The model is validated using the hold-out cross-validation method 3.3.1. To produce an 
objective performance and generalization estimate the validation utilizes a different data 
source then during training. 

During training, each epoch produces a version of the model that can be tested for 
accuracy. This is done by the training loop on the training dataset. For the final validation 
the best model is chosen from all the epochs based on the accuracy it achieved. Early 
stopping of the learning is done to avoid deterioration of accuracy once the model starts to 
overfit. 

4.3.1 Evaluation Metrics 

To assess how well the model is performing we can quantify the performance using evaluation 
metrics. The ones used to evaluate the proposed model are: accuracy, precision, recall 
and Fl-score. The implementation utilizes sklearn.metrics.classif ication_report for 
the calculations and sklearn.metrics.confusion_matrix to visualize them in confusion 
matrix. 

Confusion matrix helps evaluate models' performance by comparing and visualizing 
the predictions compared to actual values. The matrix defines 4 scenarios: true positive, 
true negative, false positive and false negative shown in Figure 4.5a. The true positive and 
the true negative are the correct scenarios. In true positive the model correctly predicted 
the true value and in true negative the model did not predict a false value. The false 
positive and negative represent faulty predictions. 

Wi th this understanding we can then construct the matrix for n classes as shown in 
Figure 4.5b. We define only true positive and false positive cases. In the context of more 
than one class we can reduce the false scenarios to just one as it simply represents a wrong 
prediction. True negatives for a class are all true positives of all other classes. Information 
from confusion matrix can then be used to derive other performance metrics. 
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Figure 4.5: Confusion matrix 
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Accuracy defines the proportion of correct predictions to the number of all samples 
in dataset. It gives an overall measure of how correct the predictions are. From confusion 
matrix data we can derive accuracy as Equation 4.1. 

TP + TN . . 
A c C U r a C V = TP + TN + FP + FN ( 4 J ) 

Precision defines accuracy of only positive predictions. It does not take account of the 
true negative. It is calculated as Equation 4.2 

TP . . 
Precision = p p - p p (4.2) 

Recall measures the proportion of true positive predictions to all positive instances in the 
dataset. It defines the models' ability to identify positive instances of actual values. It is 
calculated as Equation 4.3 

TP 
Recall = — — (4.3) 

TP + FN v ' 
To balance the precision and recall values we compute the Fl-score. It is the harmonic 
mean of precision and recall values as shown in Equation 4.4. this value can be especially 
useful in cases of unbalanced classes. If the classes are unbalanced accuracy remains high 
as it may be biased towards the majority class. 

Precision x Recall 
Fl score = 2 x — (4.4) 

Precision + Recall 
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Chapter 5 

Results 

The model described in the previous Chapter 4 was tested on two datasets described in 4.1. 
The purpose of these experiments was to evaluate the success of the model implementation 
and its performance. Experiments include training and validation of the model on both 
datasets separately. A l l results shown in this chapter were obtained using parameters 
provided in hyperparameters .py. Evaluation methods and significance of the metrics is 
described in 4.3. 

5.1 R A V D E S S 

The R A V D E S S dataset was selected in order to compare the model performance when 
provided with more samples and utterances recorded in a different language corpus. The 
class distribution in this dataset is shown in Figure 5.1a. Compared to EmoDB the emotion 
classes are uniform in sample count with the exception of the Neutral (N) class having half 
the samples. 

Original dataset RAVDESS Validation dataset RAVDESS 

(a) In the original dataset (b) In the validation dataset 

Figure 5.1: Class distribution in R A V D E S S 

The experiments shown the model reaches an accuracy of 84.2% over 100 epochs, lower 
compared to EmoDB. The trend of training loss and training accuracy across epochs shown 
in Figures 5.2a and 5.2b shows major spikes in accuracy. The maximum accuracy was 
reached at epoch 80. It showed a stable result that stayed at a level even after training over 
more epochs. The accuracy suggests that the model began converging around epoch 60. 
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Learning Curve RAVDESS 

Average training lass 

Accuracy RAVDESS 

20 40 60 80 
=|::o;h 

20 40 

(a) Training loss across all epochs (b) Accuracy across all epochs 

Figure 5.2: Training loss and accuracy with R A V D E S S 

The confusion matrix for R A V D E S S shown in Figure 5.3 suggests that the model done 
quite well with only occasional errors. The Neutral emotion has shown the worst results 
mainly in Sadness-Neutral case. This result is consistent with the evaluation metrics shown 
in Table 5.1. The best result was reached for Anger. 

Confusion matrix RAVDESS 

Anger - 29 0 0 0 c 0 

Disgust - 0 B 1 1 c 1 

Fear - 1 a 23 3 2 0 

Happiness - 1 2 0 24 1 1 

Sadness • 0 1 1 2 19 5 

Neutral - c 0 0 0 2 13 

/ 
Predicted label 

Figure 5.3: Confusion matrix for R A V D E S S 

5.2 E m o D B 

The EmoDB dataset is one of the smaller in size datasets available and used for training 
automated speech emotion recognition systems compared to the rest in Table 2.3. The class 
distribution across this dataset shown in Figure 5.4a shows that Anger (A) is a majority 
class and Disgust (D) a minority class. Due to no data augmentation step the classes 
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Table 5.1: R A V D E S S class evaluation metrics 

Emotion Precision Recall Fl-score 
Happy 0.80 0.83 0.81 
Neutral 0.65 0.87 0.74 
Disgusted 0.89 0.89 0.89 
Afraid 0.92 0.79 0.85 
Angry 0.94 1.00 0.97 
Sad 0.79 0.68 0.73 

remained distributed this way in all subsets 4.1.2. The distribution shown in Figure 5.4b 
shows the same trend in class sample counts in the validation subset. 

Original dataset EmoDB Validation dataset EmoDB 

(a) In the original dataset (b) In the validation dataset 

Figure 5.4: Class distribution in EmoDB 

The training and testing loops were iterated over 15 epochs. Figure 5.5a depicts the 
average training loss over the whole training. The average per epoch is calculated from 
training losses of batches. Figure 5.5b shows the training accuracy. We can notice rapid 
spikes in the accuracy values compared to the training losses. The low number of epochs 
was chosen due to the model becoming less stable and failing to provide any meaningful 
results. At epoch 151 the model reached its peak accuracy at 92.6%. 

Figure 5.6 shows the confusion matrix for the validation subset. The matrix shows 
an overall good performance with low number of false positives and false negatives. The 
only remarkable occurrence of a false negative is the Happiness-Anger showing consistently 
across all experiments. 

Evaluation metrics for each class are concluded in Table 5.2. The table showed a possible 
overfitting problem based on the presence of value 1.00 in the Afraid emotion row. The 
false negative problem observed in the confusion matrix is visible in the table in the recall 
value of Happiness reaching only 0.70 and precision of Anger 0.83 

l rThe graphs showed are indexed from 0, whereas the text describes the number indexed form 1 for better 
readability 
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Learning Curve EmoDB Accuracy EmoDB 

Epoch Epoch 

(a) Training loss across all epochs (b) Accuracy across all epochs 

Figure 5.5: Training loss and accuracy with EmoDB 

Table 5.2: EmoDB class evaluation metrics 

Emotion Precision Recall Fl-score 
Happy 1.00 0.70 0.82 
Neutral 0.92 1.00 0.96 
Disgusted 1.00 0.86 0.92 
Afraid 1.00 1.00 1.00 
Angry 0.83 1.00 0.90 
Sad 1.00 0.90 0.95 

Confusion matrix EmoDB 

Figure 5.6: Confusion matrix for EmoDB 
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5.3 Discussion and Future Work 

The proposed model was inspired by Aftab et al [3]. The system is lightweight and does not 
require big computation power nor time. The implementation presented in this thesis was 
done with adjustments to the paper. These alterations were done based on the literature 
reviewed in first chapters of this work as well as empirical experiments with the implemented 
system. 

The overall result achieved showed lesser accuracy, however the model managed to 
converge early on in the training process due to added audio preprocessing stage. The 
generalization of the model degrades when presented with a cross-corpus validation. The 
choice of the discrete model as a labeling method reduces the applicability of the model 
to a limited predefined set of emotions and has no way of detecting or interpreting mixed 
emotions from the results. 

The experiments shown Anger as a strong and detectable emotion. Despite having 
a uniform number of samples in the R A V D E S S experiment it achieved consistently good 
results. The size and stratification of classes in subsets proved to be a necessity. It is the 
belief of the author that the instability of the EmoDB experiment could be solved by data 
augmentation and unifying the sample count of each class. 

Overall, the system showed the ability to learn and recognise emotion. The work pre­
sented meaningful insight into methodology of designing and utilizing such systems as well 
as described various challenges in the field from theoretical and methodological standpoint. 

Proposed Improvements 

The system would benefit from future alterations. The main proposal is to change the vali­
dation method to the K-fold approach in order to achieve better data utilization. Other pos­
sibilities are further training with different input parameters, data augmentation and testing 
on different datasets like I E M O C A P or MSP-Podcast providing not acted but elicited and 
natural speech recordings. These alterations have the possibility of making the system more 
robust. 
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Appendix A 

SD content 

The attached media contains following items: 

• thesis-latex/ the LaTeX source of this thesis 

• program/ implementation source files 

— saves/ saved model versions used in experiments 

— data_processing.py 
— hyperparameters.py 
— MFCC_computation 
— plots.py 
— train.py 
— README. md description of scripts and usage 

— requirements.txt required dependencies 

• data/ the data used for experiments 

— EmoDB/ 
— RAVDESS/ 

• thesis.pdf thesis pdf file 
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