

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STROJNÍHO INŽENÝRSTVÍ

FACULTY OF MECHANICAL ENGINEERING

ÚSTAV STROJÍRENSKÉ TECHNOLOGIE

INSTITUTE OF MANUFACTURING TECHNOLOGY

VÝROBA DUTÉHO ČEPU OBJEMOVÝM TVÁŘENÍM ZA STUDENA

PRODUCTION OF A HOLLOW PIN BY COLD FORMING

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. Kristián Šanca

VEDOUCÍ PRÁCE SUPERVISOR

Ing. Miroslav Jopek, Ph.D.

BRNO 2022

Zadání diplomové práce

Ústav:	Ústav strojírenské technologie
Student:	Bc. Kristián Šanca
Studijní program:	Strojírenská technologie
Studijní obor:	Strojírenská technologie a průmyslový management
Vedoucí práce:	Ing. Miroslav Jopek, Ph.D.
Akademický rok:	2021/22

Ředitel ústavu Vám v souladu se zákonem č.111/1998 o vysokých školách a se Studijním a zkušebním řádem VUT v Brně určuje následující téma diplomové práce:

Výroba dutého čepu objemovým tvářením za studena

Stručná charakteristika problematiky úkolu:

Návrh technologie sériové výroby krátkého dutého čepu z konstrukční oceli 12 050 objemovým tvářením za studena s důrazem na dopředné a zpětné protlačování, optimalizaci výroby a eliminaci možných výrobních vad.

Cíle diplomové práce:

- 1. Vypracovat literární studii se zaměřením na technologii objemového tváření za studena.
- 2. Zhodnotit současný stav výroby součásti obdobného tvaru.
- 3. Navrhnout vlastní technologii výroby včetně posouzení jednotlivých variant.
- 4. Vypracovat výkresovou dokumentaci nástroje včetně nezbytných výpočtů.
- 5. Zpracovat technické a ekonomické hodnocení navržené technologie.
- 6. Závěry a doporučení pro průmyslovou praxi.

Seznam doporučené literatury:

LANGE, Kurt. Handbook of Metal Forming. New York: McGraw-Hill, c 1985. ISBN 0-07-036285-8.

ELFMARK, Jiří, a kol. Tváření kovů: Technický průvodce, sv 62. 1.vyd. Praha: SNTL. 1992. 524 s. ISBN 80-03-00651-1.

MIELNIK, Edward M. Metalworking science and engineering. New York: McGraw-Hill, c1991. ISBN 0-07-041904-3.

FOREJT, Milan a Miroslav PÍŠKA. Teorie obrábění, tváření a nástroje. Brno: A. n. CERM, 2006. ISBN 80-214-2374-9.

Termín odevzdání diplomové práce je stanoven časovým plánem akademického roku 2021/22

V Brně, dne

L. S.

Ing. Jan Zouhar, Ph.D. ředitel ústavu

doc. Ing. Jaroslav Katolický, Ph.D. děkan fakulty

ABSTRAKT

Dutý čep o délce 45 mm a průměru 28 mm z oceli 12 050 je vyráběn objemovým tvářením za studena. Vykazoval defekt-přeložku a cílem bylo ji odstranit optimalizací. Bylo navrženo 10 variant, z nichž č.10 byla bez defektů a byl splněn cíl práce. Průběh tváření byl simulovaný softwarem Simufact Forming. Polotovar je špalík z kruhové tyče Ø 18 x 35,68. Součást je vyráběna na postupovém nástroji na 4 operace kombinací pěchování a protlačování. Použitý stroj je postupový automat CBF-204L. Potřebná síla je 3 042 kN. Cena 1 kusu je 19,59 Kč. Vyráběno je 120 000 kusů ročně.

Klíčová slova

objemové tváření za studena, výroba čepu objemovým tvářením, dopředné protlačování, zpětné protlačování, simulace objemového tváření, postupový nástroj pro objemové tváření za studena

ABSTRACT

The hollow pin with a length of 45 mm and a diameter of 28 mm made of 12 050 steel is produced by cold cold forming. It showed defect-translation and the goal was to eliminate it by optimization. 10 variants were proposed, of which No. 10 was without defects and the goal of the work was met. The forming process was simulated by Simufact Forming software. The semi-finished product is a block made of a round bar Ø 18 x 35.68. The part is manufactured on a process tool for 4 operations by a combination of upsetting and extrusion. The machine used is the CBF-204L automatic machine. The required force is 3 042 kN. The price of 1 piece is CZK 19.59. 120,000 pieces are produced annually.

Key words

cold forming, pin production by cold forming, forward extrusion, reverse extrusion, cold forming simulation, process tool for cold forming

BIBLIOGRAFICKÁ CITACE

ŠANCA, Kristián. Výroba dutého čepu objemovým tvářením za studena [online]. Brno, 2022 [cit. 2022-04-23]. Dostupné z: <u>https://www.vutbr.cz/studenti/zav-prace/detail/139710</u>. Diplomová práce. Vysoké učení technické v Brně, Fakulta strojního inženýrství, Ústav strojírenské technologie. Vedoucí práce Miroslav Jopek.

PROHLÁŠENÍ

Prohlašuji, že jsem diplomovou práci na téma Výroba dutého čepu objemovým tvářením za studena vypracoval samostatně s využitím uvedené literatury a podkladů, na základě konzultací a pod vedením vedoucího práce.

V Brně 23.04.2022

.....

místo, datum

Kristián Šanca

PODĚKOVÁNÍ

Děkuji tímto panu Ing. Miroslavu Jopkovi, Ph.D. za cenné připomínky a rady, které mi poskytl jako vedoucí při vypracování diplomové práce. Také děkuji své rodině za to, že mě podporovala ve studiu.

OBSAH

ÚVOD	7
1 ROZBOR ZADÁNÍ	8
1.1 Výrobní možnosti	8
1.2 Materiál 12 050 (C45)	9
2 OBJEMOVÉ TVÁŘENÍ ZA STUDENA	12
2.1 Pěchování	12
2.2 Protlačování	14
2.3 Pevnostní kontrola nástrojů	18
2.4 Objemové tváření za studena v současnosti	19
3 NÁVRH VÝROBY DÍLCE	23
3.1 Varianta 1 až 5	23
3.2 Varianta 6 až 8	31
3.3 Varianta 10	33
3.4 Výpočet tvářecích sil a prací	36
3.4.1 Výpočet dopředného protlačování ve 2. operaci	37
3.4.2 Kalibrační očko	39
3.4.3 Kuželová průtlačnice	40
3.4.4 Kontejner a síla pro dopředné protlačování	42
3.4.5 Výpočet zpětného protlačování horní díry	43
3.4.6 Výpočet 4. operace – pěchování hlavy na průměr 28	46
3.5. Návrh stroje a nástroje	50
4 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ	53
ZÁVĚR	58
SEZNAM POUŽITÝCH ZDROJŮ	59
SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK	60
SEZNAM PRILOH	62

ÚVOD

Při výrobě ocelových součástí jsou na výběr různé technologie. Velice časté je použití třískového obrábění jako je například soustružení, frézování a vrtání. Z technologií bez úběru materiálu jsou známé odlévání, svařování a tváření za studena nebo tepla.

První zmínky o tváření kovů pochází již z doby bronzové. Teorie tvářecích procesů byla řešena od dvacátých let dvacátého století. Problémy plastické deformace se začaly popisovat od konce 19. století. První ucelené informace z pohledu teorie tvářecích procesů byly sepsány ke konci 20. století. [1, 2]

Tváření kovů je technologický proces, při kterém se mění tvar polotovaru působením vnějších sil bez úběru třísky. Vznikají plastické deformace od okamžiku překročení meze kluzu materiálu. Výsledkem je výlisek o stejném objemu jako polotovar, ale o jiném tvaru a mechanických vlastnostech.

Tváření dělíme na objemové a plošné. U plošného je polotovarem plech, a jsou prováděny operace stříhání, ohýbání, tažení a tvarování. Objemové tváření provádíme za studena pod rekrystalizační teplotou, a to zahrnuje operace ražení, pěchování a protlačování. Za tepla jsou to převážně technologie volné a zápustkové kování. Tváření využívá výhod produktivity a automatizace a dosahuje vysoké kvality součástí. [1, 2]

V dnešní době ekologických trendů je tváření žádoucí způsob výroby pro své výhody, jako je malé množství odpadu, protože nevzniká tříska. Lze vyrábět stovky kusů za hodinu, takže při vyšším objemu výroby je vítaná i úspora elektřiny oproti obrábění. Proces lze do značné míry automatizovat tak, že na jedné straně jsou do stroje přivedeny polotovary například ve formě tyče a na druhé straně stroj vyhazuje hotové součásti.

Obr. 1 Příklady součástí vyrobené protlačováním za studena [7].

1 ROZBOR ZADÁNÍ

Cílem je optimalizovat výrobu součásti na obr. 2., protože při původní výrobě metodou objemového tváření za studena vznikaly přeložky. Jedná se o rotační součást běžného tvaru s dutinami. V praxi je součást určená pro automobilový průmysl, jako polotovar pro další operace. Není nijak zvlášť členitá. Největší rozměr 45 mm dává najevo, že výrobek je relativně malý a odpadá problém s manipulací. Taktéž nebude třeba využít speciálních metod výroby, protože konvenčními metodami je tento tvar součástí běžné vyráběn. Metodou výroby je objemové tváření za studena. Konkrétně dopředné a zpětné protlačování. Objem výroby je 120 000 kusů ročně. Použitý materiál součásti je ocel 12 050 (C45). Další použitelný materiál by byl 12 040 a 12 122. V práci nebudou tyto materiály řešeny a nebude o nich žádná zmínka. K výrobě je doposud používán tvářecí postupový automat.

a) Rozměry

b) Fotka

Obr. 2 Řešená součást

1.1 Výrobní možnosti

S ohledem na tvar součásti se nabízí 2 technologie výroby, a to obrábění nebo objemové tváření za studena. Obrábění je vhodné použít pro kusovou výrobu, protože nevyžaduje výrobu drahé formy a nástroje. Obráběcí nástroje jsou běžným vybavením podniku a případně je lze snadno dokoupit.

Kromě ceny se metody liší také množstvím odpadu. V objemovém tváření za studena platí zákon zachování objemu. Díky tomu, že se pouze mění tvar a objem zůstává stejný, nevzniká odpad.

Dalšími výhodami objemového tváření za studena je lepší kvalita povrchu a vyšší produktivita. Velkou výhodou objemového tváření oproti soustružení je průběh vláken v hotové součásti viz obr. 3. U obráběné součásti lze vidět oblasti X přerušení vláken. U tvářené součásti vlákna kopírují tvar součásti. Tím vzniká i vyšší mez kluzu a mez pevnosti, takže lze pro daný účel použít méně hodnotného výchozího materiálu. [5]

Obr. 3 Průběh vláken [5].

Pro sériovou výrobu je objemové tváření vhodnější způsob výroby v řadě ohledů. Dosahuje lepší kvality povrchu, lepších mechanických vlastností z důvodu nepřerušeného průběhu vláken a zpevnění vlivem plastické deformace, vyšší produktivity díky automatizaci a menšího množství odpadního materiálu kvůli platnosti zákonu zachování objemu. Nadále v práci bude řešen návrh výroby technologií objemového tváření za studena.

1.2 Materiál 12 050 (C45)

Materiál součásti je známá a hojně využívaná ocel 12 050.3. Je vhodná pro kalení a zušlechťování. Má široké uplatnění a nejčastěji je používána pro vysoko namáhané součásti jako např. šrouby, matice, táhla, hřídele atd. Ve výchozím stavu jde o feriticko-perlitickou strukturu. Tepelné zpracování je žíhání na měkko při teplotě 700 °C po dobu 24 hodin. Základní parametry této oceli jsou v tab. 1 a 2. Ekvivalenty značení jsou v tab. 3. [4]

	С	Mn	Si	Cr	Ni	Cu	Р	S
dle ČSN	0,42	0,50	0,17	max	max.	max	max	max.
	0,50	0,80	0,37	0,25	0,30	0,30	0,040	0,040
aktuální stav	0,51	0.69	0,25	0,15	0,00	0,12	0,023	0,017

Tab. 1 Chemické složení oceli 12 050.3 [4].

			12 050.3
			700°C
			24 hod
Mez kluzu	Rp0,2	MPa	281
Mez pevnosti	Rm	MPa	606
Tažnost	A5	%	29
Tvrdost		HV ₁₀	166
Kontrakce	Z	%	50,3
Modul pružnosti v tahu	E	GPa	204

Tab. 2 Mechanické vlastnosti oceli 12 050.3 [4].

Tab. 3 Ekvivalenty značení [4].

ISO	C60E4	ISO 683-1-87
EURO	C45	EN 10083-2-91
Německo	C45	DIN 17200-84 (1.1191)
Velká Británie	C45	BS EN 100083-2-91
USA	Gr.1043	ASTM A510

Objemové tváření je složitý proces a je nutné početně ověřit chování materiálu. Slouží k tomu veličiny jako přirozený přetvárný odpor σ_p , což je vnitřní odpor materiálu proti působení vnějších sil. Zjišťuje se několika způsoby. Jeden z nich je popis získaný experimentálním měřením. Pro ocel 12 050 se vypočítá podle popisu [12]:

$$\sigma_p = 466,97 \cdot \varphi^3 - 1246,23 \cdot \varphi^2 + 1413,06 \cdot \varphi + 508,77 \tag{1.1}$$

kde: σ_p - přirozený přetvárný odpor získaný experimentálním měřením [MPa] φ - logaritmické přetvoření [-]

Pro modelování mechanického chování při objemovém tváření za studena nepostačují jen základní informace o chemickém složení a tepelném zpracování. Proto je nutné využití materiálového modelu. Ten vychází z tahových zkoušek a jedná se o komplexní soubor materiálových hodnot. Zahrnuje strukturu materiálu, chemické složení, typ a způsob tepelného zpracování a křivky přetvárného odporu. Přirozený (deformační) přetvárný odpor dle konstitutivního vztahu Johnson-Cooka [14]:

$$\sigma_p = (A + B \cdot \varphi^n) \cdot (1 + C \cdot ln \frac{\dot{\varphi}}{\dot{\varphi}_0}) \cdot \left[1 - \left(\frac{T - T_0}{T_m - T_0}\right)^m\right]$$
(1.2)

kde: A - kvazistatická mez kluzu [MPa]

- *B* pevnostní parametr [-]
- *n* exponent zpevnění [-]
- *C* citlivost na rychlost deformace [-]
- $\dot{\phi}$ rychlost deformace [s-1]
- $\dot{\varphi}_0$ referenční rychlost přetvoření při rychlosti deformace 1 s⁻¹
- *T* teplota materiálu při 23 °C [K]
- T_0 referenční teplota při 20 °C [K]
- T_m teplota tavení [K]
- *m* exponent citlivosti s ohledem na rychlost deformace [-]

Pro výpočty přirozeného přetvárného odporu pro ocel 12 050 jsou používány křivky deformačních odporů. Ty jsou zobrazeny na obr. 4. za pokojové teploty 23 °C. Parametry pro výpočet přirozených přetvárných odporů podle Johnson-Cooka jsou v tab. 4.

Obr. 4 Křivky deformačních odporů oceli 12 050.3 za pokojové teploty 23 °C [3].

Tab. 4 Parametry pro výpočet přirozeného přetvárného odporu podle vztahu Johnson-Cook pro ocel 12 050.3 [3].

parametr	12 050.3
ρ	7870 (kg/m ³)
G	8,077 E+01
A	305 MPa
Qt	600 (J/kgK)
φ _o	1 s ⁻¹
T _m	1800°K
В	850 MPa
С	0,052
m	0,88
To	300 °K
n	0,24
f	0

Materiálový model definující materiál použitý v softwaru Simufact Forming je GMT a bude použit pro simulaci tvářecích operací. V příloze č. 3 jsou parametry materiálového modelu GMT, které budou použity i pro výpočty. Vzorec sloužící k výpočtu přirozeného deformačního odporu metodou GMT je:

$$\sigma_{d} = C_{1} \cdot e^{(C_{2} \cdot T)} \cdot \varphi^{(n_{1} \cdot T + n_{2})} \cdot e^{\left(\frac{I_{1} \cdot T + I_{2}}{\varphi}\right)} \cdot \dot{\varphi}^{(m_{1} \cdot T + m_{2})}, \qquad (1.3)$$
kde: σ_{d} - deformační odpor [MPa]
 $C_{l}, C_{2}, n_{l}, n_{2}, I_{l}, I_{2}, m_{l}, m_{2}$ - materiálové konstatnty viz příloha 3 [-]
 T - teplota materiálu [°C]
 φ - logaritmické přetvoření [-]
 $\dot{\varphi}$ - z,718 - Eulerovo číslo [-]

2 OBJEMOVÉ TVÁŘENÍ ZA STUDENA

Tváření za studena je technologie, při níž dochází ke změně tvaru polotovaru působením vnějších sil. Provádí se pod teplotou rekrystalizace. T $\leq 0,3 \cdot T_{TAV}$. Dochází k velkým trvalým deformacím bez porušení materiálu. [2]

V průběhu technologických operací probíhá proces zpevňování a tvoří se deformační textura. V důsledku zpevňování dochází ke zlepšení mechanických vlastností. Je dosažena vyšší mez kluzu a vyšší pevnost součásti. [2]

Tvařitelnost je omezená a při překročení určité hranice dojde k porušení materiálu. Pokud je nutné tvářet více než tvařitelnost materiálu dovoluje, je nutné provést mezioperační žíhání. K obnovení plasticity kovů a ke zjemnění struktury se používá rekrystalizační žíhání, kdy zrna kromě vměstků ztrácejí podélné uspořádání a podle teploty a stupně deformace rostou do různé velikosti. Výsledkem je rekrystalizační textura, která má zvláště u vícefázových struktur nízkouhlíkových ocelí řádkovité uspořádání perlitu. [2]

Závislost přetvárného odporu na teplotě je na obr. 5. V oblasti tváření za studena je od 100 °C do 300 °C patrné značné zvýšení přetvárného odporu. Toto zvýšení se projevuje v oblasti modrého žáru v důsledku deformačního stárnutí. Deformační stárnutí je nežádoucí zvýšení přetvárného odporu tím, že atomy dusíku a uhlíku se snaží difuzní cestou zaujmout místo energeticky výhodnější. [2]

Obr. 5 Vliv teploty na přetvárný odpor slitinové chromové oceli [2].

2.1 Pěchování

Pěchování je základní tvářecí operací objemového tváření, při kterém je zmenšována výška polotovaru a zvětšován jeho příčný průřez. V důsledku tření na čelních plochách polotovaru dochází ke zbrzdění materiálu a vzniká soudečkovitý tvar viz obr. 6 e).

Před tvářením se provádí předpěchování. To je první operace tváření po ustřižení polotovaru. Cílem je zarovnat čela, aby byly kolmé k ose a byly zbaveny nerovností. Po předpěchování může být polotovar protlačován, pěchován a dále tvářen. [17]

Mírou velikosti přetvoření při pěchování je stupeň deformace. Vyjadřuje se logaritmickým přetvořením. Logaritmické přetvoření se modifikuje podle tvaru součásti a druhu tváření a pro pěchování je počítáno podle vztahu [17]:

$$\varphi = ln \frac{D_1^2}{D_0^2},$$
(1.4)

kde: φ - logaritmické přetvoření

 D_0 - průměr polotovaru [mm]

 D_1 - průměr součásti po pěchování [mm]

Při tváření se nástroj pohybuje určitou rychlostí podle použitého stroje. Další veličinou, která popisuje tvářecí proces je rychlost přetvoření. Lze ji definovat jako změnu logaritmického přetvoření za časovou jednotku. Jedná se o rychlost, s jakou se k sobě přibližují dva průřezy kovu vzdáleného o jednotku délky. Je počítána podle vztahu [17]:

$$\dot{\phi} = \frac{v}{\Delta h}$$
(1.5)
kde: $\dot{\phi}$ - rychlost přetvoření [s⁻¹]

Puchlost polybu pástrojo [m/c]

v - Rychlost pohybu nástroje [m/s]
 4h drého politorou probíbí přetvoření

 Δh - dráha, po kterou probíhá přetvoření [m]

a) Vložkovaný pěchovník [2].

b) Pěchovník s rovným čelem [2].

c), d) Pěchovník se zahloubením ke správnému středění [2].

e) Změna tvaru pěchováním [10].

f) Zobrazení volného a uzavřeného pěchování [2].Obr. 6 Pěchování.

Ke každé tvářecí operaci, jako je pěchování a různé metody protlačování, mají nástroje své určité vlastnosti. Pěchovací nástroje jsou voleny podle technologického postupu výroby sestávajícího se ze základních tvářecích operací nebo jejich kombinací. Konstrukční řešení pěchovacích nástrojů je rozdílné pro použití jednooperačního kovacího nástroje, lisu, pěchovacího automatu nebo víceoperačního stroje. Pozornost se věnuje funkčním pěchovacím nástrojům. Tvar funkční dutiny pěchovníku je odpovídající tvaru hlavy součásti, např. hlavy šroubu viz obr. 6 f). Osvědčený tvar vložkovaného pěchovníku je na obr. 6. a). Materiálem pěchovací vložky je buď kvalitní nástrojová ocel nebo slinutý karbid a je zapouzdřena s přesahem do objímky. Ocelová vložka zpravidla na kužel 1° až 3°, ze slinutých karbidů na válec. Pro zkalibrování čel ústřižku v průtlačnici se používá pěchovníku s rovným čelem podle obr. 6.b) nebo se zahloubením ke správnému středění polotovaru podle obr. 6 c) a d). Odpružené kolíky pomáhají zavádět polotovary na postupových strojích nebo slouží k stírání polotovarů z pěchovníku. [2]

2.2 Protlačování

Objemové tváření vyznačující se výhodami, jako je značná úspora materiálu, snížení výrobních časů a potřebné energie, které mají podstatný vliv na snížení výrobních nákladů při zlepšené kvalitě vyrobených součástí. Protlačování je technologie, která může být provedena za tepla, poloohřevu a za studena. Výrobek se nazývá protlaček. Nástroje jsou průtlačník a průtlačnice.

Technologie může být rozdělena do dvou skupin. První se týká výroby hotových součástí, druhá je k výrobě polotovarů (trubek, tyčí, profilů atd.). Protlačování za studena je u lehkých a barevných kovů používané přes 100 let. Bylo využíváno k výrobě nábojnic apod. [2; 6]

Největší ekonomické úspory lze dosáhnout u tváření za studena ve velkosériové a hromadné výrobě spojovacích a strojních součástí. Při protlačování je výrazně měněn tvar polotovarů působením prostorové napjatosti, která vytváří podmínky pro velké plastické deformace, aniž dochází k porušení soudržnosti tvářeného materiálu. Změna tvaru je dosažena zpravidla kombinací různých základních způsobů tváření pěchováním, a hlavně různými způsoby protlačování. Podle způsobu a směru tečení materiálu v protlačovacím nástroji jsou rozeznávány tyto způsoby protlačování: dopředné, zpětné, stranové a sdružené viz obr. 7. [2]

Tvar průtlačníku pro dopředné protlačování je na obr. 8. Pro protlačování plných součástí jsou používány zpravidla průtlačníky z jednoho kusu s upínací částí – hlavou kuželovou nebo válcovou. Přechod mezi dříkem a upínací částí musí být pozvolný, aby se zamezilo vzniku koncentrace napětí.

Pro dopředné protlačování dutých součástí je dělený průtlačník i s doporučeným tvarem a rozměry zobrazen na obr. 9. Pracovní část o délce h_1 je vedena v dutině průtlačnice. Uchycení průtlačníku musí být zajištěno souosostí průtlačnice. Důležité je dodržet kolmost, rovnoběžnost a házivost a věnovat pozornost konečnému opracování – lapování funkční broušené plochy. Zmenšení měrného tlaku na podložku a rychlé středění při výměně průtlačníku je zaručeno kuželovou dosedací plochou.

Tvar redukční části je nejdůležitějším geometrickým parametrem průtlačnice pro dopředné protlačování. Redukční kužel je nejčastěji používaným tvarem a zároveň je výrobně nejjednodušším a nejvíce ovlivňuje velikost deformačního odporu. Konstrukční údaje jsou v tab. 5. Válcová dutina v průtlačnici má pro snadné zavádění polotovarů náběhový kužel nebo rádius. Průtlačnice je kvůli vyšší únosnosti složena ze 2 částí a to samotné průtlačnice a objímky viz obr. 10.

To late to (Xee)	2000	20000 - 7 10000	10000 - 7 70000	70000		
Teplota tvareni	20%	200°C az 400°C	400°C az /00°C	700°C a vice		
D_4	D_3 +(0,1 až 0,2)	D_3 +(0,2 až 0,4)	D ₃ +(0,4 až 0,6)	$D_3^{+(0,6 \text{ až } 0,8)}$		
h	$O, 5.\sqrt{D_3}$	2 až 3	3 až 5	5 až 20		
2α	30° až 90°	60° až 120°	90° až 120°	90° až 150°		
R_1	$(D_1 - D_3)/2$					
R ₂	(0,05 až 0,1). D_3	1 až 2	2 až 4	4 až 10		
R_3	Asi 0,15 . D ₁					
h_2	Min 0,7. <i>D</i> ₁					
γ	1° až 2°					
β	5° až 10°					

Tab. 5 Geometrické parametry průtlačnic pro dopředné protlačování [2].

Příčným dělením viz obr. 11 je zajištěno snížení vrubového účinku. Zabíhání materiálu do dělící roviny je zabráněno těsným stykem obou částí průtlačnice. Pro snadnou výměnu po opotřebení je použito průtlačnice s vložkou. Zvýšení únosnosti průtlačnice je dosaženo použitím objímky, do níž je průtlačnice zapouzdřena s přesahem buď na kuželovou plochu nebo s ohřevem objímky na válcovou plochu. Dělené průtlačnice bývají zpravidla axiálně předepnuté. [2]

Při zpětném protlačování je rozhodující tvar čela průtlačníku, protože podstatně ovlivňuje velikost a průběh protlačovací síly. V praxi se nejlépe osvědčil tvar průtlačníku zobrazený na obr. 12. Čelní plocha mírně kuželovitého tvaru s úhlem α voleným nejen s ohledem na tvar průtlačku, ale především s ohledem na tvářecí teplotu, viz tab. 6. Zmenšený průměr dříku oproti čelu průtlačníku zajistí protlačování rozměrově vyšších průtlačků.

Obr. 10 Složená průtlačnice s objímkou [2].

Obr. 11 Příčně dělená průtlačnice s objímkou [2].

Obr. 12 Průtlačník pro zpětné protlačování [2].

Tab. 6 Geometrické	parametry	průtlačníku	pro zpětné	protlačování	[2]	
--------------------	-----------	-------------	------------	--------------	-----	--

	Teplota zpětného protlačování					
	20°	200° až 400°	400° až 700°	700° a více		
ød	d-(0,1 až 0,2)	d-(0,2 až 0,5)	d-(0,3 až 0,6)	d-(0,4 až 1,0)		
h	0,5 √d	2 až 3 mm	3 až 5 mm	5 až 20 mm		
α	5 až 8°	5 až 15°	5 až 15°	20°		
R ₁	(0,05 až 0,1)d	1 až 3 mm	1 až 4 mm	2 až 10 mm		
d ₁	d-(2 R ₁ +0,2d)≈0,7d					

Obr. 13 Průtlačnice pro zpětné protlačování [2].

Funkční dutina průtlačnic pro zpětné protlačování je na obr. 13 a je zvolena podle tvaru protlačku. Ústí pracovní dutiny je buď zaobleno nebo má tvar kuželového náběhu pro usnadnění zavádění polotovaru. Zaoblením R_1 je snížena koncentrace radiálních napětí. Otevření dutiny s mírnou kuželovitostí je potřebné k zabránění velkých osových tahů při vyhazování průtlačků. Funkční povrch dutiny je upraven broušením a lapováním. Průtlačnice pro zpětné protlačování a pěchovnice jsou přibližně stejného tvaru.

Pěchování a protlačování je někdy potřeba dělat naráz v jedné nebo po sobě jdoucích operacích. K tomu se využívají postupové nástroje a automaty. Jsou složeny ze dvou polovin. Dolní polovina z matric s průtlačnice a objímkami a horní s pěchovníky a průtlačníky.

2.3 Pevnostní kontrola nástrojů

Pro objemové tváření za studena je využíváno vysokých sil v řádu stovek až tisíců kN a napětí v nástrojích vznikají v tisících MPa. Proto se nástroje kontrolují na pevnost. Existuje řada přístupů k řešení pevnostního návrhu složené průtlačnice, většinou jako 2D kontaktního problému spojitého kontinua s aplikací izotropních vlastností materiálů. S rozvojem počítačů vzniklo od programových systémů až po komplexní řešení dynamických úloh v systému 3D s vlivem nelinearit. Přesto dosáhnout přesné řešení je obtížné, proto jsou přístupy často zjednodušeny na základě analytických nebo numerických řešení. Na obr. 14. je rozdělení výpočtových metod průtlačnic a objímek. [16]

Obr. 14. Možnosti řešení pevnostního návrhu složených průtlačnic [16].

Jednoduché výpočtové metody se stále používají a vycházejí z Lamého řešení válcové nádoby. Tyto metody různými způsoby využívají podmínku pevnostní nebo pružnostní optimalizace a jsou upravovány na základě experimentálních zkušeností. Tomuto řešení je podřízen i výpočtový fyzikální model, a to hlavně model geometrie a model vnitřního zatížení. Komponenty složené průtlačnice jsou válcového tvaru a zatěžovací radiální tlak je

rovnoměrný po celém obvodu a výšce. Na obr. 15. je úplný geometrický model průtlačnice a objímky. Zapouzdřená průtlačnice v objímce je vlevo a nákres pro určení potřebných přesahů a poloměrů vlevo. [16].

Obr. 15. Úplný geometrický model průtlačnice a objímky [16].

2.4 Objemové tváření za studena v současnosti

Tváření za studena je technologie s velkou tradicí, která neustále objevuje nové možnosti a překonává původní limity. Na obr. 16 je nástroj pro tváření za studena od výrobce TEMSA. Firma vyrábí od kulových čepů, šroubů, speciálních matic a šroubů, ozubených kol, speciálních montážních prvků, válcování trubek, vytlačování hliníku, až po střeliva. Je použito ocelových nebo karbidových průtlačnic připravených ve 2 nebo více po sobě jdoucích stanicích. [8]

Pokrok přináší i vylepšení materiálů. Slinutý karbid se neustále vyvíjí a slinovací zařízení pro tyto suroviny stále přináší specifické třídy pro každý typ procesu. Kde dříve byla požadována Widia, nyní je popsáno přesné složení, velikost zrna a potřebné vlastnosti. Tím je umožněno enormně zlepšit výkon nástroje. Na druhé straně je ocel stále specifičtější, s širokou škálou klasifikací, od rychlořezné oceli, práškové metalurgie, s doplňkovými úpravami atd., které mohou dokonce konkurovat karbidům, pokud jde o výhody. [8]

Vylepšení se týká i používaných strojů. Výrobci nástrojů používají stroje, které jsou stále přesnější a mají lepší povrchovou úpravu. CNC stroje se superfinišováním, vyhýbáním se mikrotrhlinám a zanecháním určitého Ra na povrchu, což ještě před několika lety nebylo nepředstavitelné. Kromě toho jsou lisy pro tváření za studena stále rychlejší a lépe řízené. [8]

Obr. 16 Protlačovací nástroj od výrobce TEMSA [8].

Simulace je skvělým spojencem při tváření za studena, ale je to představivost a znalosti techniků, kteří navrhují řešení, jak snížit náklady a zlepšit výkon nebo dokonce umožnit výrobu tvářecích dílů, které se dříve zdály, jako by je bylo možné pouze soustružit. Je možnost dosahovat tolerance až 0,005 mm. [8]

Povlaky jsou použity ke zlepšení vlastností některých typů nástrojů. Každý povlak poskytuje nástroji specifické doplňkové vlastnosti, ať už se jedná o průtlačník nebo průtlačnici. Použity jsou napčíklad: TiN, TiAlN, AlCrN. [8]

Kde se lze setkat s výrobky zpětného protlačování? Jsou používány i při denní hygieně většiny z nás. Například výroba hliníkových plechovek sprejů pro deodoranty viz obr 17. c). Firma Mall + Herlan vyrábí celé linky na tyto plechovky a je schopna dosáhnout až 250 kusů za minutu viz obr. 17 d). Ročně vyrobí až 70 milionů plechovek. Polotovar je ve tvaru mince viz obr. 17 a). Nejdříve je lubrikován mazivem v lubrikačním sudu. Poté jsou polotovary zpětně protlačeny viz obr. 17 b). silou odpovídající až 400 tun. Protlačky pokračují do žehlícího stroje, kde je optimalizována tloušťka stěny a dno je tvarováno, aby byl výrobek co nejlehčí. Dále je proveden ořez kotoučovými noži na přesnou délku. Dokončení povrchu je provedeno rotujícími kartáči. Oplach je proveden ve vodě o teplotě 80 °C. Po nabarvení a potisknutí jsou plechovky připravené na dokončení hrdla. Zužení hrdla probíhá v desítkách operací na kruhovém stroji. Vytvoření hrdla je posledním krokem linky a plechovky jsou expedovány. [9]

ÚST FSI VUT V BRNĚ

- d) Výrobní linka na plechovky sprejů.
- Obr. 17 Výroba plechovky pro sprej Mall + Herrman [9].

Techonologie objemového tváření za studena sahá až k výrobě ozubených kol. Využítím výhod této technologie jsou vyráběny ozubená kola protlačováním, viz obr. 18. Po řezání tyčového dutého materiálu je polotovar (obr. 18 a) umístěn do první průtlačnice (obr. 18 c), v níž jsou předtvořeny zuby a tvar součásti. V druhé operaci (obr. 18 d) je díl dokončen včetně drážky pro pero (obr. 18 b).

Obr. 18 Výroba ozubeného kola tvářením za studena ve 2 operacích [9].

Protlačováním lze vyrábět i drážkované hřídele. Na obr. 19 je zobrazen kus před a po výrobě drážek protlačováním. Bez úběru materiálu je dosaženo kvalitního povrchu a vysoké pevnosti drážek.

Obr. 19 Výroba drážkovaného hřídele tvářením za studena [9].

3 NÁVRH VÝROBY DÍLCE

Technologie výroby je zvolena objemové tváření za studena. Vyplývá to z počtu kusů, tvaru součásti a další zmíněné kritéria této metody viz kapitola 1.1. Pro objem výroby 120 000 ks ročně je to efektivnější a úspornější volba než obrábění.

Dílec při původní výrobě vykazuje defekt – přeložku, která je nežádoucí a musí být odstraněna. Dosaženo toho bude optimalizací výrobního postupu. To znamená navrhnout postup výroby a pomocí simulačního softwaru na bázi metody konečných prvků simulovat proces.

Nejdříve je nutné navrhnout 4 varianty výroby dílce. Snahou je docílit co nejvíce rovnoměrného přetvoření v celém objemu. Ze 4 variant bude vybraná 1 nejlepší a budeme simulovat proces výroby a zkoumat, zda se vytvoří defekt. Pokud ano, upravím podle výsledků simulace geometrii varianty a znovu bude simulovaný průběh výroby dílce. Cílem je získat takovou variantu výroby, která nebude vykazovat žádné přeložky, nadměrné nebo příliš nerovnoměrné přetvoření.

Řešená součást je rotačního tvaru, má několik průměrů a dvě díry. Tím, že se průřez kolmý mění, budou se měnit i mechanické vlastnosti. Proto jsem rozdělil součást na oblasti podle obr. 20. V průřezech A až F budu počítat hodnoty přetvoření a budu upravovat geometrii polotovaru a rozměrů jednotlivých operací, dokud nedostáhnu optimálního výsledku. (Záměrně bylo vynecháno písmeno D, aby nedošlo k záměně za průměr.)

Obr. 20 Označení částí s různým průřezem.

3.1 Varianta 1 až 5

Při návrhu varianty 1 jsme vycházeli z požadavku rovnoměrnosti mechanických vlastností dílce. Na základě toho byl proveden technologický návrh výroby. Na obr. 21. je model 5 operací výroby součásti.

Obr. 21. Model 5 operací výroby – varianta 1.

Rozměry dílce v jednotlivých operacích jsou počítány podle vzorců v příloze 1. Musí být dodržen zákon zachování objemu. Proto v jednotlivých operacích jsou navrhovány rozměry tak, aby byl zachován objem jednotlivých částí A až F podle obr. 20 (objem hlavy v části A musí zůstat v části A ve všech operacích). Proto byly zjištěny objemy částí s konstantním průřezem označené V_A až V_F . Zároveň musí být dodrženy technologické parametry pro protlačování, jako je kuželová část při redukci průměrů a zaoblení hran. Ve výpočtech zanedbáváme zaoblení a zkosení pro zjednodušení. Objem hotové součásti je 9075,02 mm³.

Určení rozměrů součásti v jednotlivých operacích je provedeno kombinací výpočtů v Excelu, zjišťování objemů z modelu součásti výpočetní technikou. Budou uvedeny některé výpočty, ostatní jsou v příloze, nebo nejsou v práci uvedeny kvůli velkému rozsahu.

Obr. 21. Označení objemů pro výpočet rozměrů

Ve 3. operaci byla označena výška části pod hlavou h₅, průměr je D₁. Objem válcové části část je označen V_G. Zjištění objemu V_A, V_B, V_C a dalších je pomocí softwaru Inventor 2020. Objem V_K je známý, protože má průměr 28 mm a výšku 4 mm jako na hotové součásti. Objem V_H je také známý, protože se jedná o zkosení 45° mezi průměry D₁ a D₂. Tudíž zjistíme objem V_G následovně:

 $V_G = V_A + V_B + V_C - V_K - V_H = 2148,9 + 2836 + 493,58 - 2463 - 511,032 = 2504,38 \ mm^3$

Objem V_J odpovídá součtu V_H a V_H . Tím je zachováno stejné množství materiálu v oblasti dolního dříku. Vypočte se takto:

 $V_I = V_E + V_F = 514,81 + 3081,8 = 3596,6 \ mm^3$

Při výpočtu je vycházeno z objemu válce podle vztahu:

$$V = \frac{\pi \cdot D^{2}}{4} \cdot h$$
(3.1)

kde: V - objem válce [mm³]

D - průměr válce [mm]

h - výška válce [mm]

Rozměry jsou počítány ze zjištěných objemů podle upraveného vzorce 3.1.

$$h_{5} = \frac{4 \cdot V_{G}}{\pi \cdot D_{1}^{2}} = \frac{4 \cdot 2504,38}{\pi \cdot 20^{2}} = 7,98 \text{ mm}$$

$$h_{3} = \frac{4 \cdot V_{J}}{\pi \cdot D_{2}^{2}} = \frac{4 \cdot 3596,6}{\pi \cdot 20^{2}} = 17,19 \text{ mm}$$

$$h_{2} = \frac{4 \cdot (V_{K} + V_{G})}{\pi \cdot D_{1}^{2}} = \frac{4 \cdot (2463,01 + 2504,38)}{\pi \cdot 20^{2}} = 15,82 \text{ mm}$$

$$h_{1} = \frac{4 * V_{\check{C}EP}}{\pi * D_{1}^{2}} = \frac{4 \cdot 9075,01}{\pi \cdot 20^{2}} = 28,62 \text{ mm}$$

$$h_0 = \frac{4 \cdot V_{\check{C}EP}}{\pi \cdot D_0^2} = \frac{4 \cdot 9075,01}{\pi \cdot 18^2} = 35,68 \text{ mm}$$

Analogicky byly počítány i další rozměry jednotlivých výšek. Pro jednotlivé operace bude počítáno logaritmické přetvoření. První operace je předpěchování viz obr. 22. Tím jsou zarovnána čela po dělení a je vytvořeno v celém objemu přetvoření φ_{v1op1} , čímž se zpevní součást. Objem tělesa je po předpěchování konstantní, stejně jako ve všech operacích.

Přetvoření φ_{v1op1} se vypočítá podle vzorce 1.4.:

$$\varphi_{v1op1} = ln \frac{D_1^2}{D_0^2} = ln \frac{20^2}{18^2} = 0,2107$$

kde: φ_{v1op1} - logaritmické přetvoření v 1. operaci 1. varianty [-]
 D_l, D_0 - průměry obrobku viz obr. 22 [mm]

Obr. 22 Diagram logaritmického přetvoření varianty 1, operace 1.

Ve druhé operaci je redukován průměr D₁ na D₂, protože v části dříku je potřeba dosáhnout průměru 16 mm. Tím je vytvořeno přetvoření v oblasti dříku φ_{v1op2} . Výsledný diagram přetvoření po 2. operaci je na obr. 23.

$$\varphi_{v1op2} = ln \frac{D_2^2}{D_1^2} = ln \frac{16^2}{20^2} = -0,446$$

Obr. 23 Diagram logaritmického přetvoření varianty 1, operace 2.

Ve třetí operaci je pěchován průměr D₁ na průměr hlavy D₃. Tím dosáhneme přetvoření v oblasti hlavy φ_{v1op3} . Výsledný diagram přetvoření po 2. operaci je na obr. 24.

$$\varphi_{v1op3} = ln \frac{D_3^2}{D_1^2} = ln \frac{28^2}{20^2} = -0,673$$

Obr. 24 Diagram logaritmického přetvoření varianty 1, operace 3.

Ve čtvrté operaci je dopředně dutě protlačován spodní dřík o průměru D₂. Výsledkem je dřík s dírou o průměru D₅. Tím dosáhneme přetvoření v oblasti dříku φ_{v1op4} . Výsledný diagram přetvoření po 2. operaci je na obr. 25.

$$\varphi_{v1op4} = ln \frac{D_2^2 - D_5^2}{D_2^2} = ln \frac{16^2 - 10^2}{16^2} = -0,495$$

Obr. 25 Diagram logaritmického přetvoření varianty 1, operace 4.

Pátá operace je tvorba díry o průměru D₅ v horní části dílce zpětným protlačováním a kalibrace konečného tvaru. Díra je vedena oblastí hlavy s průměrem D₃ a průměrem D₁. Operací je dosaženo přetvoření v oblasti hlavy φ_{v10p5A} a přetvoření v části B φ_{v10p5B} . Výsledný diagram přetvoření po 2. operaci je na obr. 26.

$$\varphi_{v1op5A} = ln \frac{D_3^2 - D_5^2}{D_1^2} = ln \frac{20^2 - 10^2}{20^2} = -0.136$$

$$\varphi_{\nu_{1}op_{5B}} = ln \frac{D_1^2 - D_5^2}{D_1^2} = ln \frac{20^2 - 10^2}{20^2} = -0,287$$

Obr. 26 Diagram logaritmického přetvoření varianty 1, operace 5.

Důležitá je absolutní hodnota logaritmického přetvoření v jednotlivých průřezech získaná součtem jednotlivých přetvoření. Smí být menší než 1,4, aby nedošlo k porušení materiálu. Ve variantě 1 nebylo dosaženo maximální meze 1,4, což znamená, že by se dala varianta 1 pro výrobu součásti použít. Logaritmické přetvoření by mělo být ve všech průřezech ideálně konstantní. V této variantě dosahuje hodnot od 0,21 v části C do 1,15 v části F. Proto budou navrženy další varianty, v nichž budou upraveny rozměry polotovaru, abychom zjistili, zda lze dosáhnout rovnoměrnějšího přetvoření. Hodnoty přetvoření jsou uvedeny v tab. 7. a v grafu na obr. 27.

Hodnota přetvoření v oblasti A pro variantu 1:

$$\varphi_A = |\varphi_{v1op1}| + |\varphi_{v1op3}| + |\varphi_{v1op5A}|$$

$$\varphi_A = |0,1026| + |0,673| + |-0,136| = 0,912$$

Tab. 7 Celkové absolutní hodnoty logaritmického přetvoření v jednotlivých průřezech.

Obr. 27 Graf zobrazující celkové absolutní hodnoty logaritmického přetvoření v jednotlivých průřezech při průměru polotovaru 19 mm.

Součástí návrhu je určit průměr polotovaru. Pro zjištění optimálního průměru polotovaru byly provedeny obdobné výpočty přetvoření a byla hledána varianta s nejrovnoměrnějším přetvořením v celém objemu. Zkoumány byly průměry od 16 do 28 mm. V příloze 2 jsou

výsledky výpočtů. Nejvhodnější rozměr polotovaru je blízky 20 mm. Jelikož je potřeba mít finální rozměr první operace 20 mm, při předpěchování nelze použít stejný rozměr jako polotovar. Nevešel by se do průtlačnice, protože v každé předchozí operaci musí být průměr menší o 0,02 mm. Proto volím nejbližší nižší normalizovaný průměr polotovaru 18 mm, protože ze všech přípustných variant má nejvíce rovnoměrné přetvoření a zároveň nepřesahuje mezní hodnotu 1,4 a prodává se jako standardní tyčový materiál.

Obr. 28 varianty 1 až 5

Další varianty průměru polotovaru jsou uvedeny v příloze 5 i s výpočty a náhled konstrukce je na obr. 28. Odlišné varianty jsou navrženy proto, abychom se podívali na problematiku návrhu

technologie výroby znovu a z jiného pohledu se snahou dosáhnout lepšího řešení. Ze všech návrhů bude vybrána 1 nejlepší varianta a ta bude simulována softwarem.

Potřebujeme znát rychlost přetvoření pro účel simulace a výpočtů. Tu zjistíme z počtu zdvihů stroje za minutu. Bude předběžně vycházeno ze stroje CBF-240L, což je postupový automat pro výrobu součástí objemovým tvářením. Volba stroje bude více rozebrána později v práci, až bude známo více dat pro jeho zvolení. Rychlost přetvoření bude zjištěna podle rychlosti pohybu nástroje a délky pohybu nástroje. Rychlost stroje je 50 až 80 ks/min. Volím rychlost 70 ks/min.

Je třeba určit celkovou dráhu pohybu nástroje. Nejdelší pracovní dráhou je 4. operace, kdy dochází k tvorbě díry o výšce $h_{11} = 24$ mm. Dodatečný odjezd volím 5 mm. Prostor pro vyhození dílce je celá délka tj. 45 mm. Součtem těchto vzdáleností je získána výška zdvihu stroje. Vynásobením dvěma je získána celková dráha nástroje.

Celková dráha je:

$$L_{c} = 2 \cdot (L_{prac} + L_{dílce} + L_{přídavek})$$

$$kde: L_{c} - celková dráha nástroje [mm]$$

$$L_{prac} - nejdelší pracovní dráha nástroje [mm]$$

$$L_{dílce} - největší rozměr dílce nástroje [mm]$$

$$L_{přídavek} - dodatečný odjezd nástroje [mm]$$
(3.2)

 $L_c = 2 \cdot (24 + 45 + 5) = 148 \,\mathrm{mm}$

Za minutu stroj vykoná 200krát dráhu 148 mm. Průměrnou rychlost pohybu nástroje vypočítám tak, že vynásobím celkovou dráhu nástroje počtem zdvihů za minutu. Průměrná rychlost tedy je:

$$v = L_c \cdot n$$
(3.3)
kde: v - průměrná rychlost pohybu nástroje [mm/min]

n - počet zdvihů za minutu [min⁻¹]

$$v = 148 \cdot 70 = 10\,360\,mm/min = 10,36\,m/min = 0,1726\,m/s$$

Průměrná rychlost pohybu nástroje se zanedbáním změny rychlosti v průběhu pohybu kliky je 0,1726 m/s. V polovině výšky zdvihu je rychlost vyšší a v horní a dolní úvrati je nižší. Pro zjednodušení bude nadále počítáno s průměrnou rychlostí pohybu nástroje. Bude využita v simulaci jako vstupní parametr a také ve výpočtech.

Technologický postup výroby byl navržen v 5 variantách. Z nich byla vybrána varianta 1 jako nejlepší z pohledu technologie a jednoduchosti výroby. Následně byla simulována pro ocel 12 050, součinitel tření 0,05 a materiálový model GMT, jehož parametry jsou v příloze 3. Výsledky simulace jsou na obr. 29. Předpěchování viz obr. 29 a) proběhlo bez problémů. Redukce průměru D₂ také proběhla dobře viz obr. 29 b). Při op. 3 viz obr. 29 c) byl u hlavy problém s ostrým rohem kvůli výpočtům programu. Proto musel být v modelu vytvořen rádius R0,1 až R1 na všech hranách. Ve čtvrté operaci vznikla přeložka kvůli ztrátě vzpěrné stability viz obr. 29 d), což je nepřijatelný defekt, který musí být odstraněn. V páté operaci viz obr. 29 e) vznikla přeložka v oblasti dolního trnu. To bylo způsobeno ostrou hranou trnu.

Obr. 29 Simulace varianty 1.

Simulace nepřinesla požadované výsledky. Vznikly nepřijatelné defekty, proto je potřeba upravit nástroje a provést simulace znovu. Varianty 2 až 5 nejsou simulované, protože by pravděpodobně vykazovaly stejné chyby kvůli podobné konstrukci a je potřeba navrhnout další variantu, a to variantu číslo 6.

3.2 Varianta 6 až 8

Varianta 6 je na obr. 30. Byly upraveny operace 3. a 4. Ve 3. operaci předtváříme obě díry a zároveň pěchujeme hlavu. Díry budou vytvořeny na 2 operace, aby nedocházelo ke ztrátě vzpěrné stability a tvorbě přeložky v oblasti hlavy, jako ve 4. operaci ve variantě 1. Tím, že pěchujeme hlavu a zároveň předtváříme díry nám odpadá 3. operace, která sloužila k samotnému pěchování hlavy. Výpočty logaritmického přetvoření byly provedeny analogicky jako ve variantě 1. Výsledné celkové absolutní hodnoty logaritmického přetvoření v jednotlivých průřezech při průměru polotovaru 18 mm jsou shodné s variantou 1 viz obr. 27.

Simulace varianty 6 nebyla úspěšná, protože při operaci 4 by došlo k ustřižení části materiálu v oblasti hlavy v obr. 31 d). Je to z důvodu rozpěchování hlavy příliš do šířky v operaci 3 viz obr. 31 c). Operace 1 a 2 proběhly bez komplikací viz obr. 31 a) a b). Bude třeba upravit opět geometrii nástrojů, aby bylo zamezeno ustřižení z důvodu rozpěchování.

Obr. 31 Simulace varianty 6.

Postupně musely vzniknout návrhy variant 7. a 8., které měly za cíl zamezit ustřižení materiálu ve 4. operaci. Jsou uvedeny v příloze 5, zde je jen shrnutí a náhled viz obr 32. Zahloubení bude vytvořeno částečně už ve 2. operaci.

Obr. 32 Návrh varianty 7. a 8.

Při simulaci 7. varianty viz obr. 33 bylo zjištěno, že vznikly nepřijatelné přeložky již ve 3. operaci, a tudíž musí být upraven tvar nástrojů. Následovala 8. varianta viz obr. 32. Hlava je tvářena až ve 4. operaci. Uzavřené pěchování hlavy zamezilo přeložce v horním zahloubení, ale stále zůstává přeložka v oblasti redukčního kužele kvůli ztrátě vzpěrné stability. Ustřižení materiálu ve 4. operaci bylo také úspěšně zamezeno.

Obr. 33 Vzniklé defekty ve variantách 7. a 8.

3.3 Varianta 10

Po variantě 8 následovala varianta 9, která opět vykazovala přeložky a nemohla být použita. Je uvedena v příloze 5. Postupným upravováním tvaru nástrojů v jednotlivých operacích a simulacemi byla zjištěna optimální varianta č. 10, protože nevykazuje defekty, jako jsou přeložky. Jednotlivé operace jsou na obr. 34.

Obr. 34 Návrh varianty 10.

Po návrhu byla varianta ověřena simulací. První operace je na obr. 35 a proběhla v pořádku. Jedná se o předpěchování z průměru 18 mm na 20 mm.

Obr. 35 Průběh simulace 1. operace varianty 10.

Ve 2. operaci viz obr. 36 nebyly zjištěny defekty. Při návrhu nástroje bude navržena průtlačnice vyšší, než je v model v simulaci protože materiál by mohl vykazovat defekt v oblasti horní hrany. Ve chvíli, kdy horní trn tvoří horní díru, dochází k rozšíření obvodu a následému zmenšení o hranu průtlačnice při vtlačování materiálu do dutiny. Vyšší průtlačnice by tomuto jevu zabránila, pokud by na začátku operace byl celý špalík v dutině.

Obr. 36 Průběh simulace 2. operace varianty 10.

3. operacie proběhla v pořádku. Cílem bylo zvětšit hloubku děr a připravit součást na poslední operaci. Průběh simulace je na obr. 37.

Obr. 37 Průběh simulace 3. operace varianty 10.
Ve 4. operaci je cílem rozpěchovat hlavu, dokončit díry a zkalibrovat součást na konečný tvar. Průběh je na obr. 38. Nevznikly defekty, tudíž byla navržena první použitelná varianta.

Obr. 38 Průběh simulace 4. operace varianty 10.

Simulace varianty 10 je na obr. 39. Je patrné, že nevznikly defekty, takže optimalizace byla úspěšná a variantu lze použít pro výrobu součásti. Výsledku bez defektů bylo dosaženo úpravami nástrojů, jako je změna délky průtlačníku pro výrobu díry, různé varianty výroby hlavy od otevřeného po uzavřené pěchování a změny redukčních úhlů. Je patrné, že v určitých oblastech jako je například dno díry je logaritmické přetvoření vysoké viz stupnice na obr. 39. Je to způsobeno ostrou špičkou trnu. Další optimalizace by se týkala zaoblení hran, aby se snížilo napětí a logaritmické přetvoření v těchto oblastech.

Obr. 39 Výsledky operací varianty 10.

3.4 Výpočet tvářecích sil a prací

Je nutné sílu, která vzniká při tváření. Pro variantu 10 budou v práci uvedeny vybrané výpočty přetvárných odporů tvářecí práce a síly ve druhé operaci a ve čtvrté viz obr. 34. Také budou zjištěny ze simulací v programu Simufact Forming. Hodnoty budou sloužit jako popis procesu tváření a jako podklady pro návrh stroje a nástrojů.

První operace je shodná s variantou 1 a platí pro ni obr. 22. Logaritmické přetvoření je 0,2107. Průběh síly je na obr. 40. Prakticky skončí proces pěchování u přibližně u 250 kN a s touto silou bude počítáno při návrhu stroje.

Obr. 40 Průběh síly v 1. operaci.

Ve druhé operaci viz obr. 34 probíhá redukce na průměr D_2 dopředným protlačováním. Zároveň jsou tvářeny díry o průměru D_5 . Tvorba horní díry lze považovat za zpětné protlačování. Tvorba spodní díry nebude řešena, protože by vyžadovala složitější výpočet. Logaritmické přetvoření bude počítáno zvlášť pro jednotlivé průřezy podle obr. 20. Schéma průběhu logaritmického přetvoření je na obr. 41.

Obr. 41 Schéma logaritmického přetvoření operace 2 varianta 10.

Logaritmické přetvoření v průřezu A2 ve 2. operaci vychází ze vztahu 1.4 a byl upraven na:

$$\varphi_{A2} = \varphi_{predpech} + \left| ln \frac{D_1^2 - D_5^2}{D_1^2} \right| = 0,2107 + \left| ln \frac{20^2 - 10^2}{20^2} \right|$$
$$= 0,2017 + |-0,2877| = 0,4984$$
kde: φ_{A2} - Přetvoření v průřezu A ve 2. operaci [-]

Logaritmické přetvoření v průřezu B2 ve 2. operaci:

$$\varphi_{B2} = \varphi_{predpech} = 0,2107$$

kde: φ_{B2} - Přetvoření v průřezu B ve 2. operaci [-]

Logaritmické přetvoření v kuželové části C2 v 2. operaci [11]

$$\varphi_{C2} = \varphi_{predpech} + \left| -ln \frac{D_1^2}{D_2^2} \right| = 0,2107 + \left| -ln \frac{20^2}{16^2} \right| = 0,6570$$

kde: φ_{C2} - Přetvoření v průřezu C ve 2. operaci [-]

Logaritmické přetvoření v průřezu E2 ve 2. operaci:

$$\varphi_{E2} = \varphi_{predpech} + \left| ln \frac{D_2^2}{D_1^2} \right| = 0,2107 + \left| ln \frac{16^2}{20^2} \right| = 0,6570$$

kde: φ_{E2} - Přetvoření v průřezu A ve 2. operaci [-]

Logaritmické přetvoření v průřezu F2 ve 2. operaci:

$$\varphi_{F2} = \varphi_{predpech} + \left| ln \frac{D_2^2 - D_5^2}{D_1^2} \right| = 0,2107 + \left| ln \frac{16^2 - 10^2}{20^2} \right| = 1,1523$$

kde: φ_{F2} - Přetvoření v průřezu F ve 2. operaci [-]

3.4.1 Výpočet dopředného protlačování ve 2. operaci

Součást je tvářena kombinací dopředného, zpětného a dalších způsobů protlačování. Pro zjednodušení výpočtu uvažuji, že v 2. operaci bude nejdříve materiál dopředně protlačován v 1. fázi podle. Ve 2. fázi bude zpětně protlačována horní díra. Ve 3. fázi bude se bude protlačována spodní díra. V následujících výpočtech řeším pouze dopředné protlačování podle obr. 23. Geometrie obecné průtlačnice pro dopředné protlačování je na obr. 42. Dělí se na 3 části. Válcový kontejner, kuželová průtlačnice a kalibrační očko.

Obr. 42 Geometrie průtlačnice [11].

Přirozený přetvárný odpor získaný experimentálním měřením v 2. operaci v části B pro ocel 12 050 je vypočítán podle popisu (1.1) [12]:

$$\begin{split} \sigma_{pB2} &= 466,97 \cdot \varphi_{predpech}^3 - 1246,23 \cdot \varphi_{predpech}^2 + 1413,06 \\ &\cdot \varphi_{predpech} + 508,77 \\ \sigma_{pB2} &= 466,97 \cdot 0,2107^3 - 1246,23 \cdot 0,2107^2 + 1413,06 \cdot 0,2107 \\ &+ 508,77 \\ \sigma_{pB2} &= 755,65 \ MPa \\ &\text{kde: } \sigma_{pB2} \quad - \quad \text{Přirozený přetvárný odpor v průřezu B ve 2. operaci [MPa]} \end{split}$$

Ideální měrná přetvárná práce v 2. operaci v části B pro ocel 12 050 je [12]:

$$\begin{array}{l} A_{jidB2} = 0.51 \cdot \varphi_{predpech}^{1.4665} + 0.41 \cdot \varphi_{predpech} \\ A_{jidB2} = 0.51 \cdot 0.2107^{1.4665} + 0.41 \cdot 0.2107 \\ A_{jidB2} = 0.1383 \, Jmm^3 \\ \text{kde:} \, A_{jidB2} & - \quad \text{Ideální měrná přetvárná práce v 2. operaci v části B [Jmm^3]} \end{array}$$

Přirozený přetvárný odpor získaný experimentálním měřením v 2. operaci v části E pro ocel 12 050 se vypočítá podle vztahu [12]:

$$\begin{split} \sigma_{pE2} &= 466,97 \cdot \varphi_{E2}{}^3 - 1246,23 \cdot \varphi_{E2}{}^2 + 1413,06 \cdot \varphi_{E2} + 508,77 \\ \sigma_{pE2} &= 466,97 \cdot 0,6570^3 - 1246,23 \cdot 0,6570^2 + 1413,06 \cdot 0,6570 + 508,77 \\ \sigma_{pE2} &= 1031,65 \ MPa \\ \text{kde:} \ \sigma_{pE2} \quad - \quad \text{Přirozený přetvárný odpor v průřezu E ve 2. operaci [MPa]} \end{split}$$

Ideální měrná přetvárná práce v 2. operaci v části E pro ocel 12 050 je [12]:

$$A_{jidE2} = 0.51 \cdot \varphi_{E2}^{1.4665} + 0.41 \cdot \varphi_{E2}$$

 $A_{jidE2} = 0,51 \cdot 0,6570^{1,4665} + 0,41 \cdot 0,6750$ $A_{jidE2} = 0,5448 Jmm^{3}$ kde: A_{jidE2} - Ideální měrná přetvárná práce v 2. operaci v části E [Jmm³]

Střední rychlost deformace pro ocel 12 050 je [12]:

Obr. 43 – napětí v kalibračním očku [11].

3.4.2 Kalibrační očko

Nejdříve bude řešeno radiální napětí v kalibračním očku viz obr. 43. Kalibrační očko je výstup z kuželové části průtlačnice. Radiální napětí působí kolmo na stěnu průtlačnice.

Radiální napětí pro okrajovou podmínku $z = L_3 = h_3$:

 $\sigma_{r3E2(z=h_3)} = -\sigma_{pE2}$ $\sigma_{r3E2(z=h_3)} = -1031,65 MPa$ kde: σ_{r3E2} - Radiální napětí v části E2 [MPa]

Radiální napětí pro okrajovou podmínku z = 0:

 $\sigma_{r_{3}E_{2(z=0)}=-\sigma pE_{2}}$ $\sigma_{r_{3}E_{2(z=0)}=-1031,65} MPa$

Smykové napětí v kalibračním očku je napětí na stěně průtlačnice působící rovnoběžně s osou ve směru pohybu materiálu. Je to napětí vzniklé třením a radiálním napětím. Vypočítá se podle vztahu:

$$\tau_{f3E2} = f_3 \cdot \sigma_{r3E2} = f_3 \cdot - \sigma_{pE2}$$

kde: τ_{f3E2} - smykové napětí v části E2 [MPa]
 f_3 - součinitel tření na rozhraní materiál-průtlačnice [-]

Smykové napětí pro okrajovou podmínku z = L₃ = h₃ (obr. 34); $\sigma_{r_{3E2}(z=h_3)} = -\sigma_{pE2}$

 $\tau_{f3E2(z=h_3)} = f_3 \cdot - \sigma_{pE2} = 0.05 \cdot - 1031.65 = -51.58 MPa$

Smykové napětí pro okrajovou podmínku z = 0; $\sigma_{r3E2(z=0)} = -\sigma_{pE2}$

 $\tau_{f3E2(z=0)} = f_3 \cdot - \sigma_{pE2} = 0,05 \cdot -1031,65 = -51,58 MPa$

Osové napětí v kalibračním očku je napětí, které posouvá materiál směrem protlačování. Vypočítá se podle vztahu:

$$\sigma_{z3E2} = -4 \frac{f_3}{D_2} \cdot \sigma_{pE2} \cdot z = f_3 \cdot - \sigma_{pE2}$$

kde: σ_{z3E2} - osové napětí v kalibračním očku v části E2 [MPa]

Osové napětí pro okrajovou podmínku $z = L_3 = h_3$ (obr. 34);

$$\sigma_{z3E2(z=0)} = -4 \frac{f_3}{D_2} \cdot \sigma_{pE2} \cdot z = -4 \frac{0.05}{16} \cdot 1031,65 \cdot 24 = -309,5 MPa$$

Osové napětí pro okrajovou podmínku z = 0;

$$\sigma_{z3E2(z=0)} = -4 \frac{f_3}{D_2} \cdot \sigma_{pE2} \cdot 0 = 0 MPa$$

3.4.3 Kuželová průtlačnice

Obr. 44 Geometrický model kuželové průtlačnice [11].

Osové napětí v kuželové průtlačnici je řešeno podle obecného vztahu podle obr. 34 [11]:

$$\sigma_{\rho} = -\sigma_{p} \left[\left(4 \cdot f_{3} \cdot \frac{L_{3}}{D_{3}} \cdot \frac{\sigma_{p3}}{\sigma_{p}} + \frac{tg\alpha}{f_{2}} + 1 \right) \cdot \left(\frac{D}{D_{3}} \right)^{\frac{2 \cdot f_{2}}{tg\alpha}} - \frac{tg\alpha}{f_{2}} - 1 \right]$$

kde: σ_{ρ} - osové napětí v kalibračním očku [MPa]
 f_{2} - součinitel tření na rozhraní materiál-průtlačnice [-]
 α - redukční úhel kužele [-]

Osové napětí pro okrajovou podmínku D = D₂ podle obr. 44, ale D=D₁ viz obr. 34 a toto označení bude nadále používáno; platí $\sigma_{\rho} = \sigma_{ps}$

$$\sigma_{\rho B2(D=D_1)} = -\sigma_{ps} \left[\left(4 \cdot f_3 \cdot \frac{h_3}{D_2} \cdot \frac{\sigma_{pE2}}{\sigma_{ps}} + \frac{tg\alpha}{f_2} + 1 \right) \cdot \left(\frac{D_1}{D_2} \right)^{\frac{2 \cdot f_2}{tg\alpha}} - \frac{tg\alpha}{f_2} - 1 \right] = -1220,78 \left[\left(4 \cdot 0,05 \cdot \frac{24}{16} \cdot \frac{1031,65}{1220,78} + \frac{tg45^\circ}{0,05} + 1 \right) \cdot \left(\frac{20}{16} \right)^{\frac{2 \cdot 0,05}{tg45^\circ}} - \frac{tg45^\circ}{0,05} - 1 \right] = -897,31 MPa$$

Osové napětí pro okrajovou podmínku D=D₂ viz obr. 34; $\sigma_{\rho} = \sigma_{ps}$

$$\sigma_{\rho E2(D=D_2)} = -\sigma_{ps} \left[\left(4 \cdot f_3 \cdot \frac{h_3}{D_2} \cdot \frac{\sigma_{pE2}}{\sigma_{ps}} + \frac{tg\alpha}{f_2} + 1 \right) \cdot \left(\frac{D_2}{D_2} \right)^{\frac{2 \cdot f_2}{tg\alpha}} - \frac{tg\alpha}{f_2} - 1 \right] = \\ = -1220,78 \left[\left(4 \cdot 0,05 \cdot \frac{24}{16} \cdot \frac{1031,65}{1220,78} + \frac{tg45^\circ}{0,05} + 1 \right) \cdot \left(\frac{20}{20} \right)^{\frac{2 \cdot 0,05}{tg45^\circ}} - \frac{tg45^\circ}{0,05} - 1 \right] \\ = -309,495 \, MPa$$

Střední napětí:

$$\sigma_{ps} = \frac{1000 \cdot A_{jidE2}}{\varphi_{E2} - \varphi_{B2}} = \frac{1000 \cdot 0.5448}{0.3240 - 0.2107} = 1220,78 MPa$$

kde: σ_{ps} - střední napětí v kuželové průtlačnici [MPa]

Radiální napětí působící na stěnu kuželové průtlačnice je dáno vztahem:

$$\sigma_{\varphi} = \sigma_{\rho} - \sigma_{p}$$

kde: σ_{φ} - radiální napětí v kuželové průtlačnici [MPa]

Radiální napětí pro okrajovou podmínku D=D₁ podle obr. 34; $\sigma_p = \sigma_{ps}$; $\sigma_\rho = \sigma_{\rho B2(D=D1)} \rightarrow \sigma_{\phi B2(D=D_1)} = \sigma_{\rho B2(D=D_1)} - \sigma_{ps} = -897,31 - 1220,78 = -2100,1 MPa$

Radiální napětí pro okrajovou podmínku D=D₂ podle obr. 34; $\sigma_p = \sigma_{ps}$; $\sigma_\rho = \sigma_{\rho E2(D=D_2)} \rightarrow \sigma_{\phi E2(D=D_2)} = \sigma_{\rho E2(D=D_2)} - \sigma_{ps} = -309,495 - 1220,78 = -1530,28 MPa$

Smykové napětí působící na stěnu v kuželové průtlačnici

$$\tau_f = f_2 \cdot \sigma_{\varphi}$$

Smykové napětí pro okrajovou podmínku D=D₁ podle obr. 34; $\sigma_{\varphi} = \sigma_{\varphi B2(D=D_1)} \rightarrow \tau_{fB2(D=D_1)} = f_2 \cdot \sigma_{\varphi B2(D=D_1)} = 0.05 \cdot (-2100.1) = -105.00 MPa$

Smykové napětí pro okrajovou podmínku D=D₂ podle obr. 34; $\sigma_{\phi} = \sigma_{\phi E2(D=D_2)} \rightarrow \tau_{fE2(D=D_2)} = f_2 \cdot \sigma_{\phi E2(D=D_2)} = 0.05 \cdot (-1274.21) = -76.51 MPa$

3.4.4 Kontejner a síla pro dopředné protlačování

Obr. 45 Matematický model pro kontejner [11].

Osové napětí v kontejneru je určeno podle vztahu:

$$\sigma_z = \sigma_{\rho 2} \cdot e^{0.43 \frac{4 \cdot f_1}{D_1} z}$$

kde: σ_z - osové napětí v kontejneru [MPa]
 f_1 - součinitel tření na rozhraní materiál-průtlačnice [-]

Osové napětí pro okrajovou podmínku z = L₁ podle obr. 45 ale z = h₂ podle obr. 23 a toto označení bude nadále používáno; $\sigma_{\rho B2(D=D1)} \rightarrow$

$$\sigma_{zA2(z=h_2)} = \sigma_{\rho B2(D=D_1)} \cdot e^{0.43\frac{4\cdot f_1}{D_1}h_2} = -897,31 \cdot e^{0.43\frac{4\cdot 0.05}{20}16,97} = -945,83 MPa$$

Osové napětí pro okrajovou podmínku $z = 0; \sigma_{\rho B2(D=D1)} \rightarrow$

$$\sigma_{zB2(z=0)} = \sigma_{\rho B2(D=D_1)} \cdot e^{0.43 \frac{4 \cdot f_1}{D_1} 0} = -897,31 \cdot e^{0.43 \frac{4 \cdot 0.05}{20} 0} = -879,31 \, MPa$$

Radiální napětí v kontejneru je určeno podle vztahu:

$$\sigma_r = 0,43 \cdot \sigma_z$$

Osové napětí pro okrajovou podmínku $z = L_1$ podle obr. 45 ale $z = h_2$ podle obr. 23 a toto označení bude nadále používáno; $\sigma_{zA2(z=h_2)}$

$$\sigma_{rA2(z=h_2)} = 0,43 \cdot \sigma_{zA2(z=h_2)} = 0,43 \cdot (-945,83) = -406,71 MPa$$

Osové napětí pro okrajovou podmínku z = 0 podle obr. 34; $\sigma_{zB2(z=0)}$

$$\sigma_{rB2(z=0)} = 0.43 \cdot \sigma_{zB2(z=0)} = 0.43 \cdot (-879.31) = -387.1 MPa$$

Smykové napětí

 $\tau_{f1} = f_1 \cdot \sigma_r$

Smykové napětí pro okrajovou podmínku z = h₂ podle obr. 34; σ_{rA} (z=h₂)

$$\tau_{fA2} = f_1 \cdot \sigma_{rA2(z=h_2)} = 0.05 \cdot (-406.71) = -20.34 MPa$$

Smykové napětí pro okrajovou podmínku z = 0 podle obr. 34; $\sigma_{rB2(z=0)}$

 $\tau_{fB2} = f_1 \cdot \sigma_{rB} (z=0) = 0.05 \cdot (-387.1) = -18.9 MPa$

Po zjištění dílčích napětí lze vypočítat celkovou sílu. Protlačovací síla při dopředném protlačování ve 2. operaci je:

$$\begin{split} F_{2dop\check{r}.} &= \sigma_{zA2(z=h_2)} \cdot S_{A2} = -\sigma_{zA2(z=h_2)} \cdot S_{A2} = -\sigma_{zA2} \cdot \frac{\pi \cdot D_1^2}{4} \\ F_{2dop\check{r}.} &= -(-945,83) \cdot \frac{\pi \cdot 20^2}{4} \\ F_{2dop\check{r}.} &= 296992,2 N \\ \text{kde: } F_{2dop\check{r}.} &= \text{síla pro dopředné protlačování podle obr. 23 [N]} \\ f_1 &= \text{součinitel tření na rozhraní materiál-průtlačnice [-]} \end{split}$$

Práce v 2. operaci při dopředném protlačování:

$$\begin{array}{l} A_{2dop\check{r}.} = F_{A2} \cdot h = F_1 \cdot (h_4 - h_2) \\ A_{2dop\check{r}.} = 296992,2 \cdot (0,0358 - 0,01582) \\ A_{2dop\check{r}.} = 5933,9 J \\ \text{kde: } A_{2dop\check{r}.} & - \text{ práce pro dopředné protlačování podle obr. 23 [J]} \\ h_2, h_4 & - \text{ rozměry viz obr. 34 [m]} \end{array}$$

3.4.5 Výpočet zpětného protlačování horní díry

Je spočítáno, jaké napětí a síly jsou ve 2. operaci při uvažování pouze dopředného protlačování. Nyní bude uvažováno pouze tváření horní díry o průměru 10 mm a délce 4,91 mm (obr. 46). Bude počítáno jako zpětné protlačování, protože materiál bude téct opačným směrem, než je pohyb nástroje.

Obr. 46 2. operace varianta 10.

Tloušťka dna *b* je počítána jako:

$$b = h_4 - h_{24} = 16,97 - 4,91 = 12,05 mm$$

kde: b - tloušťka dna [mm]

Běžně se používá Dipperova metoda pro výpočet zpětného protlačování. Kontrola předpokladů použití metody:

$$y = \frac{D_5^2}{D_1^2} \ge 0.5$$
$$y = \frac{10^2}{20^2} = 0.25 \le 0.5$$

kde: y - poměr průměrů pro použití Dipperovi metody [-]

Není splněna podmínka, takže vztah podle Dippera nelze použít. Výpočet deformačního odporu bude počítán podle Siebela. Je vhodný, protože uvažuje s předpokladem větší tloušťky stěny než Dipperův vztah. Pro určení přirozeného přetvárného odporu bude užito vztahu z [12] a logaritmického přetvoření ze vztahu φ_{A2} kapitola 3.4.

Přirozený přetvárný odpor v části A2 podle popisu (1.1):

$$\sigma_{pA} = 466,97 \cdot \varphi_{A2}^{3} - 1246,23 \cdot \varphi_{A2}^{2} + 1413,06 \cdot \varphi_{A2} + 508,77$$

$$\sigma_{pA2} = 466,97 \cdot 0,4984^{3} - 1246,23 \cdot 0,4984^{2} + 1413,06 \cdot 0,4984 + 508,77$$

$$\sigma_{pA2} = 961,29 MPa$$

kde: σ_{pA2} - Přirozený přetvárný odpor v průřezu A ve 2. operaci [MPa]

Deformační odpor podle Siebela v 2. operaci v části A2:

$$\sigma_{dA2} = \sigma_{pA2} \cdot 1,152 \cdot \frac{D_1^2}{D_5^2} \left(\log \frac{D_1^2}{D_1^2 - D_5^2} + \frac{D_1^2}{D_1^2 - D_5^2} \cdot \log \frac{D_1^2}{D_5^2} + \log \frac{D_5^2}{D_1^2 - D_5^2} \right)$$

$$\sigma_{dA2} = 961,29 \cdot 1,152 \cdot \frac{20^2}{10^2} \left(\log \frac{20^2}{20^2 - 10^2} + \frac{20^2}{20^2 - 10^2} \cdot \log \frac{20^2}{10^2} + \log \frac{10^2}{20^2 - 10^2} \right)$$

$$\sigma_{dA2} = 1995,82 \text{ MPa}$$

kde: σ_{dA2} - Deformační odpor v průřezu A ve 2. operaci [MPa]

Síla v 2. operaci v části A2 při zpětném protlačování:

$$F_{A2} = \sigma_{dA2} \cdot S_{A2} = \sigma_{dA2} \cdot \frac{\pi \cdot D_5^2}{4}$$
$$F_{A2} = 1995,85 \cdot \frac{\pi \cdot 10^2}{4}$$
$$F_{A2} = 156\ 672N = 156,67\ kN$$

Výsledek jsem zaokrouhlil a převedl na kN, abych v dalším výpočtu mohl počítat v mm a vyšly mi Jouly.

Práce v 2. operaci v části A2:

 $A_{A2} = F_{A2} \cdot h = F_1 \cdot h_{24}$ $A_{A2} = 156,67 \cdot 4,91$ $A_{A2} = 769,26 J$ kde: h_{24} - Hloubka horní díry ve 2. operaci [mm]

Další výpočty pro zjištění sil budou provedeny v programu Simufact. Průběh síly je na obr. 47. i s odpovídajícím průběhem simulace operace. Když zanedbáme konec operace, nejprudší nárůst síly je při tváření dolní díry od zdvihu 10 mm. Porovnáním síly pro dopředné protlačování 295 kN a simulací zjištěných 302 kN, je zjištěno, že výsledek je mírně odlišný. To může být způsobeno překryvem operací, kdy je zároveň s dopředným protlačováním tvářena horní díra, tudíž je potřeba vyšší síla. Také je fakt, že Simufact používá materiálový model GMT viz vztah (1.3) pro zjištění přetvárného odporu na rozdíl od popisu podle vztahu (1.1). Celková síla v 2. operaci je 1 003 kN a bude užita ve výpočtu celkové síly.

Pro zajímavost je uvedeno porovnání, jak by vypadal průběh síly, kdyby polotovar pro 1. operaci nebyl 18 mm, ale 19 mm. Na obr. 47 a 48 je vidět rozdíl v síle. Celá křivka je položená níže, protože je přetvoření nižší a tím pádem nižší přetvárný odpor i síla. Jak bylo již uvedeno, lepší varianta by byla s polotovarem blízkým 20 mm, ale nejbližší nižší normalizovaný je 18 mm a tím pádem je použit.

Obr. 47. Průběh síly ve 2. operaci a zobrazení simulace.

Obr. 48. Průběh síly ve 2. operaci a zobrazení simulace pro polotovar 19 mm.

Pro zjištění síly ve 3. operaci bylo využito programu Simufact a je zobrazena na obr. 49. Je tvarově podobná 2. operaci. Cílem je zvětšit díry. Nejvyšší síla v průběhu tváření je 709 kN a bude použita pro výpočet celkové síly.

Obr. 49. 3. operace průběh síly.

3.4.6 Výpočet 4. operace – pěchování hlavy na průměr 28

Ve 4. operaci bude uveden postup výpočtu rozpěchování hlavy podle obr. 50. Je to poslední operace, kdy dojde ke zhotovení finálního tvaru součásti. Probíhá zde pěchování a kombinované protlačování.

4. op

Obr. 50. operace varianta 10.

Logaritmické přetvoření v průřezu A4, což je oblast A ve 4. operaci:

$$\varphi_{A4} = \varphi_{A2} + \varphi_{hlava} = \varphi_{A2} + \left| ln \frac{D_3^2 - D_5^2}{D_1^2 - D_5^2} \right| = 0,4984 + \left| ln \frac{28^2 - 10^2}{20^2 - 10^2} \right|$$

= 1,3225
kde: φ_{A4} - přetvoření v průřezu A ve 4. operaci [-]
 D_3 - průměr hlavy [mm]
 φ_{hlava} - přetvoření vzniklé rozpěchováním hlavy [-]

Přirozený přetvárný odpor v části A4

$$\begin{split} \sigma_{pA} &= 466,97 \cdot \varphi_{A4}{}^3 - 1246,23 \cdot \varphi_{A4}{}^2 + 1413,06 \cdot \varphi_{A4} + 508,77 \\ \sigma_{pA} &= 466,97 \cdot 1,3225^3 - 1246,23 \cdot 1,3225^2 + 1413,06 \cdot 1,3225 + 508,77 \\ \sigma_{pA4} &= 1278,05 \, MPa \end{split}$$

kde: σ_{pA4} - Přirozený přetvárný odpor v průřezu A ve 4. operaci [-]

Deformační odpor podle modelu Siebela bude použit pro výpočet pěchování hlavy ve 4. operaci. Jelikož se nejedná o tvar válce, ale prstence, musí být odvozen Siebelův vztah pro určení deformačního odporu. Vztah vychází z geometrického modelu pro pěchování prstence.

Obr. 51 Geometrický model prstence pro výpočet hlavy ve 4. operaci [14].

Matematický model vychází z diferenciální rovnice:

$$\frac{d\sigma_z}{dr} + \frac{\tau}{h} = 0$$
(3.1)

kde: σ_z - osové napětí [MPa]

 r - poloměr prstence[mm]

 τ - třecí napětí na obvodu prstence [MPa]

 h - výška prstence[mm]

Diferenciální rovnice je integrována za předpokladu τ = -f \cdot σ_p

$$\int d\sigma_z = -\frac{2\tau}{h} \int dr \to \sigma_z = -\frac{2\tau}{h} r + C \to \sigma_z = -\frac{2 \cdot f \cdot \sigma_p}{h} r + C$$
kde: σ_p - přirozený přetvárný odpor [MPa]
 f - součinitel tření [-]
(3.2)

Okrajové podmínky předpokládáme $r = \frac{D}{2}$, $\sigma_z = -\sigma_p$ a dosazením do rovnice 3.2 získáme vztah:

$$-\sigma_p = \frac{2 \cdot f \cdot \sigma_p}{h} \cdot \frac{D}{2} + C \tag{3.3}$$

Konstanta C je:

$$C = -\sigma_p - \frac{2 \cdot f \cdot \sigma_p}{h} \cdot \frac{D}{2}$$
(3.4)

Dosazením do vztahu 3.3 a úpravou je získán vztah:

$$\sigma_{z} = \frac{2 \cdot f \cdot \sigma_{p}}{h} r - \sigma_{p} - \frac{2 \cdot f \cdot \sigma_{p}}{h} \cdot \frac{D}{2}$$

$$\sigma_{z} = -\sigma_{p} \left[1 + \frac{2 \cdot f}{h} \cdot \left(\frac{D}{2} - r\right) \right]$$
(3.5)

Dosazením okrajových podmínek $r = \frac{D}{2}$, $r = \frac{d}{2}$ je získán vztah:

$$\sigma_{zmin} = -\sigma_p$$

$$\sigma_{zmax} = -\sigma_p \left[1 + \frac{2 \cdot f}{h} \cdot \left(\frac{D}{2} - \frac{d}{2} \right) \right]$$
(3.6)

Deformační odpor získáme ze vztahu

$$\sigma_d = \sigma_{zmin} - \frac{1}{3} (\sigma_{zmax} - \sigma_{zmin}) \tag{3.7}$$

$$\sigma_d = \sigma_p \cdot \left[1 + \frac{f \cdot (D-d)}{3 \cdot h} \right] \tag{3.8}$$

Dosadím podle označení v obr. 51

$$\sigma_{dA4} = \sigma_{pA4} \cdot \left[1 + \frac{f \cdot (D_3 - D_5)}{3 \cdot h_9} \right]$$

$$\sigma_{dA4} = 1278,05 \cdot \left[1 + \frac{0,05 \cdot (28 - 10)}{3 \cdot 4} \right] = 1373,91 MPa$$
kde: σ_{dA4} - osové napětí [MPa]
 D_3, D_5 - průměr hlavy a díry viz obr. 34 [mm]
 h_9 - výška hlavy [mm]
(3.9)

Síla ve 4. operaci při pěchování hlavy:

$$F_{A4} = \sigma_{dA4} \cdot S_{A4} = \sigma_{dA4} \cdot \frac{\pi \cdot (D_3^2 - D_5^2)}{4}$$

$$F_{A4} = 1373,91 \cdot \frac{\pi \cdot (28^2 - 10^2)}{4}$$

$$F_{A4} = 737\,705N = 737,705\,kN$$
kde: F_{A4} - síla potřebná pro pěchování hlavy [N]
$$(3.10)$$

Výsledek jsem zaokrouhlil a převedl na kN, abych v dalším výpočtu mohl počítat v mm a vyšly mi Jouly.

Práce v 2. operaci v části A2:

$$\begin{array}{l} A_{A4} = F_{A4} \cdot h = F_{A4} \cdot (h_{27} - h_9) \\ A_{A4} = 737,705 \cdot (9,12 - 4) \\ A_{A4} = 3777,05 J \\ \text{kde:} \quad A_{A4} \quad - \quad \text{práce potřebná pro pěchování hlavy [J]} \end{array}$$

Simulací bylo zjištěno, že síla ve 4. operaci odpovídá 1 080 kN při zdvihu 9,69 mm. Průběh je na obr. 52. Je to poslední operace, kde výsledkem je zkalibrovaná součást.

Obr. 52 Průběh síly ve 4. operaci.

Celková síla je součet sil v jednotlivých operacích zjištěných simulací viz tab. 8.

 $F_C = F_1 + F_2 + F_3 + F_4 = 250 + 1\,003 + 709 + 1\,080 = 3\,042\,kN$

kde: F_C - celková síla ve čtyřech operacích $F_{1,2,3,4,}$ - Síly v operacích 1 až 4 Tab. 8 Síly v jednotlivých operacích.

Síla	Síla	Síla	Síla
1. operace	2. operace	3. operace	4. operace
250 kN	1 003 kN	709 kN	1 080 kN

3.5. Návrh stroje a nástroje

Pro 4 tvářecí operace, kde je potřeba kombinovat pěchování, dopředné, zpětné a další metody protlačování se nejlépe hodí postupový tvářecí nástroj. Ten je umístěn v tvářecím stroj, který zajišťuje pohyb a sílu. Je volen podle parametrů jako je síla, průměr dutin, maximální průměr součásti, počet tvářecích matric a podobně. Potřebná síla odpovídá 3 042 kN, a průměr polotovaru 18 mm, proto je volen stroj CBF-204L viz obr. 53. Jeho technické údaje odpovídají potřebám výroby součásti. Popis je v příloze 6. Má 4 stanice, takže je možné zhotovit všechny 4 tvářecí operace. Průměry polotovaru jsou do 23 mm.

Obr. 53 Stroj CBF-204L.

Materiál nástrojů musí splňovat požadavky na vysokou únosnost, nízké opotřebení a další parametry. Z toho důvodu jsou průtlačníky, pěchovníky i průtlačnice z materiálu OCEL 19 830. Vlastnosti jsou v tabulce 9. Objímka je volena z materiálu ocel 19 452 a vlastnosti jsou v tab. 10.

Tab.9 Mechanické	vlastnosti	oceli OCEL	19 830	[15].

Materiál	Rm [MPa]	Rp _{0,2} [MPa]	σ_{dov} [MPa]	R _d [MPa]	E [MPa]	μ[-]
19 830	1665	1480	1425	3670	220000	0,33

Tab.10 Mechanické vlastnosti oceli OCEL 19 452 [15].

Materiál	Rm [MPa]	Rp _{0,2} [MPa]	σ_{dov} [MPa]	R _d [MPa]	E [MPa]	μ[-]
19 452	1745	1560	1500	3040	206000	0,3

Optimalizační výpočet složené průtlačnice z průtlačnice a objímek bude proveden v programu Optimal, který je dostupný na VUT FSI v Brně na Ústavu strojírenské technologie – Odbor tváření kovů a plastů. V kapitole 2.4. je popsána kontrola nástrojů a také je v ní uvedený úplný geometrický model na obr. 15. Vstupní hodnoty pro simulaci jsou v tab. 9, 10 a 11. Pro průtlačnice i objímku je použita podmínka maximálních smykových napětí. Vybrané použité veličiny v programu jsou:

- měrný dělící poloměr r₂/r₁,
- dělící poloměr mezi průtlačnicí a objímkou r2,
- změnu vnějšího poloměru průtlačnice Δr_2 ,
- změnu vnitřního poloměru objímky∆r₂₂,
- celkový přesah $\Delta r_{\rm C}$.
- vnitřní poloměr průtlačnice r₃ je největší vnější poloměr výlisku a ten se nachází ve 4. operaci
- teplota okolí je 20 °C
- popouštěcí teplota T_p se vztahuje na materiál objímky
- koeficient tepelné roztažnosti pro průtlačnici α₁ a pro objímku α₂

Tab.11 Vstupní hodnoty pro výpočet [16].

r ₁ [mm]	r ₃ [mm]	T ₀ [°C]	T _p [°C]	α_1 [-]	α ₂ [-]
14	62,5	20	370	0,0000124	0,000013

Dále lze zvolit i pro možnost zapouzdření za tepla, protože v tom případě materiál vlivem tepelné roztažnosti pracuje. V našem případě je voleno zapouzdření za studena, protože je předpokládáno pouzdření na kužel bez předehřevu. [15]

Stanovení hodnot pouzdření je provedeno programem OPTIM, který umožňuje po zadání vstupních hodnot a zvolení podmínek pro průtlačnici a objímku přímé stanovení všech důležitých veličin, nutných pro dimenzování průtlačnice s jednou objímkou.

Tab. 13 výsledné hodnoty z programu OPTIM.

Veličiny			Výsledky
Poměrný dělící poloměr	r_2/r_1	[mm]	2,07
Maximální radiální tlak	\mathbf{p}_1	[MPa]	1135
Kontaktní tlak	p ₂	[MPa]	587,37
Dělící poloměr	\mathbf{r}_2	[mm]	29,1
Stažení vnějšího průměru průtlačnice	Δr_2	[mm]	0,01991
Roztažení vnitřního průměru objímky	Δr_{22}	[mm]	0,00289
Vypočtený přesah	$\Delta r_{\rm C}$	[mm]	0,0228
Kontaktní předpětí	\overline{p}_2	[MPa]	118,31
Zvětšení kontaktního tlaku od pl	p′2	[MPa]	469,0629
Stažení funkčního průměru průtlačnice	$2\Delta r_l$	[mm]	-0,01959

Pro zadané parametry byly s využitím počítačové podpory zjištěny napěťové poměry mezi napětími, poměry mezi vnitřním a vnějším poloměrem objímky a to 2,07. Vnější poloměr průtlačnice je 29,1 mm. Tlak mezi průtlačnicí a objímkou je 587,37 MPa a to je méně než tlak dovolený a tím pádem bude použita 1 objímka. Vzhledem k předpokládanému pouzdření na kužel bylo toto uvažováno bez předehřevu.

Nástroj je navržen na základě vypočítaných parametrů, počtu objímek a tvaru součísti v jednotlivých operacích. Na obr. 54 je část výkresu se 4. operací. Je tvořen uspořádanými

průtlačnicemi vedle sebe, které tvoří dolní polovinu nástroje. Horní polovina je složená z upínacích hlav pro pěchovníky a průtlačníky. Průtlačník ve čtvrté operaci je upevněn v pouzdru, aby držel v dané poloze. Okolo průtlačníku je pěchovník, kterým je pěchována hlava a zároveň je posuvný a louží jako stěrač součásti z průtlačníku. Okolo pěchovníku je vložka, která zajistí uzavřené pěchování, aby se hlava nerozpěchovala příliš do šířky. Průtlačníky pro zpětné protlačování horní díry jsou pro 2., 3., a 4. operaci podobné konstrukcí. Liší se délkou a průměrem. Je nutné vždy v předchozí operaci o 0,02 mm zvětšit otvor v průtlačníku pro zpětné protlačování je to zmenšení průměru v předchozí operaci o 0,02 mm. Součást č. 21 viz výkres sestavy slouží jako pěchovník a zároveň jako stěrač z trnu č. 22. Pouzdro č. 5 drží pěchovník centricky ve správné poloze a vede vyhazovač č. 23. Má osazení pro pěchovník. Je stejné pro operace 2, 3, 4. Opěrná deska č. 14 tlačí na pěchovník a má otvor, kterým také vede vyhazovače č. 23. Průtlačnice i objímky jsou navrženy podle rozměrů dílce a podle pevnostních výpočtů udávajících poměr mezi poloměrem průtlačnice a objímky.

Obr. 54 Část sestavy 4. operace

4 TECHNICKO-EKONOMICKÉ ZHODNOCENÍ

Cílem každého podnikání je zisk. Je zjistitelný z rozdílu nákladů a příjmů. Bude vypočítáno, kolik nás bude výroba stát celkem a výsledek bude zvýšen o marži 20 %.

Náklady se dělí na fixní, které jsou stejné pro jakýkoliv počet kusů a variabilní závislé na počtu kusů. Variabilní se dále dělí na náklady na materiál, na mzdy a energie. Náklady na materiál vychází z počtu kusů, ceny materiálu a spotřebě materiálu, což je objem polotovaru vynásobený hustotou. Počet kusů je roční objem výroby. Cena materiálu byla zjištěna z Ferony, kdy mi bylo sděleno, že všechny polotovary z oceli 12 050 se prodávají nezávisle na množství za cenu 61 Kč za kg k datu 20.4.2022.

Přímé náklady na materiál:

$$N_{1} = n \cdot S \cdot C_{m} = n \cdot V_{\check{c}ep} \cdot \rho \cdot C_{m}$$

$$N_{1} = n \cdot V_{\check{c}ep} \cdot \rho \cdot C_{m} = 120\ 000 \cdot 9075 \cdot 10^{-9} \cdot 7870 \cdot 61 = 522\ 796,23\ K\check{c}$$

$$kde:\ N_{1} - p\check{r}im\acute{e} n\acute{k}lady na materiál [K\check{c}]$$

$$S - spotřeba materiálu [kg \cdot ks^{-1}]$$

$$V_{\check{c}ep} - objem \check{c}epu [m^{3}]$$

$$C_{m} - cena materiálu podle obchodního zástupce Ferony 20.4.2022 [K\check{c} \cdot kg^{-1}]$$

$$n - po\check{c}et vyrobených kusů za rok [ks]$$

$$\rho - hustota oceli 12\ 050 [kg \cdot m^{-3}] [13]$$

$$(4.1)$$

Výrobní čas je závislý na výrobnosti. Stroj vyrobí 70 ks za minutu. Vytíženost stroje se počítá 80 %. U některých automatů až 85 %. Zbylých 15 % je čas na přípravu. To je 4200 ks za hodinu. 1 kus trvá vyrobit 0,000238 hodin.

 $t_{A1} = \frac{1}{n_{sh} \cdot v_s} = \frac{1}{n_{sm} \cdot 60 \cdot v_s} = \frac{1}{70 \cdot 60 \cdot 0.85} = 0,00028 \text{ hod}$ kde: t_{A1} - čas na výrobu 1 kusu [hod] n_{sh} - počet vyrobených kusů hodinu na stroji CBF-204 L [ks] n_{sm} - počet vyrobených kusů minutu na stroji CBF-204 L [ks] v_s - vytíženost stroje [-]

Čas na přípravu 1 kusu:

 $t_{B1} = t_{A1} \cdot v_p = 0,00028 \cdot 0,15 = 4,2 \cdot 10^{-5} h$

kde: t_{B1} - čas na přípravu l kusu [hod] v_p - podíl času přípravy z celkového času práce stroje [-]

Přímé náklady na mzdy jsou:

 $t = t_A + t_B = 0,00028 + 4,2^{-5} = 0,000322 \ hod$

kde: *t* - výrobní čas [hod]

 $N_2 = t \cdot M \cdot n = 0,000322 \cdot 650 \cdot 120000 = 25\,126\,\text{Kč}$

kde: N₂ - přímé náklady na mzdy [Kč]
M - hodinová mzda včetně odvodů [Kč/hod]

Přímé náklady na energie

$$\begin{split} N_{3} &= P \cdot \eta \cdot t_{A1} \cdot C_{E} \cdot n \end{split} \tag{4.5} \\ N_{3} &= P \cdot \eta \cdot t_{A1} \cdot C_{E} \cdot n = 55 \cdot 0.75 \cdot 0.00028 \cdot 8.3 \cdot 120\ 000 = 11\ 508\ \text{Kč} \\ \text{kde: } N_{3} &= \text{přímé náklady na energie [Kč]} \\ P &= \text{příkon stroje [kW]} \\ \eta &= \text{účinnost elektromotoru stroje [-]} \\ C_{E} &= \text{cena elektřiny na burze } 14.4.2022\ \text{zvětšená o distribuční poplatky } 40\ \% \\ &= \text{z konečné ceny elektřiny [Kč·kWh^{-1}] [17]} \end{split}$$

Celkové přímé náklady:

$$N_{C} = N_{1} + N_{2} + N_{3}$$

$$N_{C} = N_{1} + N_{2} + N_{3} = 522\ 796,23 + 25\ 126 + 11\ 508 =$$

$$N_{C} = 559\ 430,68\ \text{Kč}$$

$$\text{kde:}\ N_{C} - \text{celkové přímé náklady}\ [\text{Kč}]$$

$$(4.6)$$

Přímé náklady na 1 kus:

$$N_{C1} = \frac{N_C}{n} = \frac{559\,430,68}{120\,000} = 4,66\,\text{K}\check{c} \tag{4.7}$$

Fixní náklady tvoří náklady na nástroje a na konstrukci. Cena nástroje je odhadována na 3000 Kč/kg a váha na 300 kg. Doba konstrukce nástroje je odhadována na 500 hodin, sazba je 1000 Kč na hodinu. Odhad fixních nákladů je vypočítán podle vztahu:

$$N_F = C_N \cdot H_N + t_K \cdot M_K \tag{4.8}$$

$$N_F = C_N \cdot H_N + t_K \cdot M_K = 3000 \cdot 300 + 500 \cdot 1000 =$$

 $N_F = 1 \ 400 \ 000 \ \text{Kč}$

kde: C_N	-	cena nástroje odhad [Kč·kg ⁻¹]
H_N	-	odhadovaná hmotnost nástroje [kg]
t_K	-	čas konstrukce [hod]
M_K	-	konstruktérská hodinová sazba [Kč·hod-1]

Zisk 20 % za jeden rok

$$Z_{20} = (N_F + N_C) \cdot 0,2$$
(4.9)
 $Z_{20} = (N_F + N_C) \cdot 0,2 = (1\ 400\ 000\ +\ 559\ 430,68) \cdot 0,15 =$
 $Z_{20} = 391\ 883,14\ \text{Kč}$
kde: Z_{20} - Zisk 20 % za jeden rok [Kč]

Cena jednoho kusu při zachování zisku 20 %:

$$C_{20} = \frac{N_C + N_F + Z_{20}}{n}$$

$$C_{20} = \frac{N_C + N_F + Z_{20}}{n} = \frac{1\,400\,000 + 559\,430,68 + 391\,886,14}{120\,000} = 19,59 \,\text{Kč}$$
kde: C_{20} - cena jednoho kusu při zachování zisku 20 % [Kč]

(4.7)

Rovnovážný bod se určí podle vztahu:

$$R = \frac{N_F}{C_{20} - N_{C1}}$$

$$R = \frac{N_F}{C_{20} - N_{C1}} = \frac{1\,400\,000}{19,59 - 4,66} = 93\,755,96\,ks$$
kde: R - rovnovážný bod [ks]

Z vypočítaných hodnot je sestaven graf návratnosti viz obr. 55. Vykresleny byly křivky v závislosti na počtu kusů. Červená křivka znázorňuje součet fixních a variabilních nákladů v závislosti na počtu kusů. Zelená křivka jsou tržby, což je počet kusů vynásobený cenou za jeden kus se ziskem 20 %. Rozdíl je ztráta nebo zisk. Rovnovážný bod je okamžik, kdy se výroba dostane do zisku, v tu chvíli jsou tržby vyšší než náklady.

Návratnost výroby metodou objemového tváření bude porovnána s návratností výroby součásti třískovým obráběním. Přímé náklady na materiál budou rozdílné ve spotřebě materiálu, protože při obrábění vzniká odpad. Největší průměr obrobku je Ø 28 mm, proto je volen polotovar Ø 30 x 49 mm. Při obrábění bude použito více nástrojů a bude potřeba delší čas. Tím pádem bude bod zvratu ležet jinde.

Přímé náklady na materiál:

N ₁ =	$= n \cdot S \cdot$	$C_m =$	n ·	$V_p \cdot \rho \cdot C_m$	(4.1)
<i>N</i> ₁	$= n \cdot V_{\check{c}}$	$e_{ep}\cdot ho$	$\cdot C_m$	$f = 120\ 000 \cdot 0,0000346185 \cdot 7870 \cdot 61 = 1\ 994\ 316,4\ Kč$	
	kde:	n	- "	počet vyrobených kusů za rok [ks]	
		S	-	spotřeba materiálu [kg·ks ⁻¹]	
		V_p	-	objem polotovaru pro obrábění [m ³]	
		C_m	-	cena materiálu podle obchodního zástupce Ferony 20.4.2022 [Kč·kg ⁻¹]	
		n	-	počet vyrobených kusů za rok [ks]	
		ρ	-	hustota oceli 12 050 [kg·m ⁻³] [13]	

Výrobní čas pro třískové obrábění je odhadován na 0,25 hod. Výrobní dávka je volena 15 000 kusů. Dávkový čas na přípravu je odhadován na 0,15 hod. Výrobní čas

$$t = t_{A1} + \frac{t_B}{d_v} = 0,25 + \frac{0,15}{15000} = 0,25001 \text{ hod}$$

kde: t - výrobní čas [hod]
 d_v - velikost výrobní dávky [ks]

Přímé náklady na mzdy jsou:

 $N_2 = t \cdot M \cdot n = 0,25001 \cdot 650 \cdot 120000 = 19500780$ Kč

kde: N₂ - přímé náklady na mzdy [Kč] M - hodinová mzda včetně odvodů [Kč/hod]

Přímé náklady na energie

 $N_3 = P \cdot \eta \cdot t_{A1} \cdot C_E \cdot n = 18 \cdot 0.75 \cdot 0.25 \cdot 8.3 \cdot 120\ 000 =$

= 3361500 Kč,

kde:	N_3	-	přímé náklady na energie [Kč]
	Р	-	příkon stroje [kW]
	η	-	účinnost elektromotoru stroje [-]
	C_E	-	cena elektřiny na burze 14.4.2022 zvětšená o distribuční poplatky 40 % z konečné ceny elektřiny [Kč·kWh ⁻¹] [17]

Celkové přímé náklady:

 $N_{C} = N_{1} + N_{2} + N_{3} = 1\,994\,316,4 + 19\,500\,780 + 3\,361\,500 =$ = 24 856 596,4 Kč

Přímé náklady na 1 kus: $N_{C1} = \frac{N_C}{n} = \frac{24\,856\,596,4}{120\,000} = 207,32\,K$ č

Ekonomické zhodnocení

Při porovnání přímých nákladů na výrobu 1 kusu je patrné, že výroba objemovým tvářením je jednoznačně výhodnější, a proto bude použita. Rovnovážný bod je 93 756 kusů, od této chvíle se výroba začne vyplácet. Při ročním objemu výroby 120 000 kusů je předpokládaný zisk 391899,97 Kč. Pro přesné určení ekonomiky je známo málo vstupních dat, proto se reálná čísla mohou lišit.

Technické zhodnocení

Z deseti variant výroby navržených v rámci práce se jako nejvhodnější jeví varianta 10. Má nejrovnoměrnější logaritmické přetvoření v celém objemu, které nabývá hodnot od 0,2107 do 1,3225 a zároveň je v přípustném intervalu do 1,4. Hotová součást bude mít výhody plynoucí z metody objemového tváření oproti obrábění, což je nepřerušený průběh vláken kopírující tvar součásti, zvýšenou pevnost kvůli přetvoření a kvalitní povrch. Ekonomicky i ekologicky podstatná úspora materiálu, nízké množství odpadu a nižší spotřeba energie v porovnání s obráběním.

ZÁVĚR

Cíl práce zamezit vzniku defektu uvnitř dutého čepu pro automobilový průmysl byl dosažen optimalizací technologie výroby. Je doporučeno dílec vyrábět na navrženém nástroji, protože nevznikají přeložky. Zvolená technologie výroby je objemové tváření za studena, protože při velkosériové výrobě 120 000 kusů ročně je téměř bezodpadní, benefituje z lepších mechanických vlastností a nižších nákladů. Materiál je ocel 12 050.

Byly navrženy 4 varianty výroby a tvar nástrojů v jednotlivých operacích byl optimalizován pro dosažení co nejrovnoměrnějšího přetvoření. Simulace odhalila vznik defektu. Proto bylo navrženo a simulováno dalších 6 variant, z nichž pouze č. 10 viz obr. 32 byla bez defektů a je tedy vhodná pro výrobu.

Původně byla součást vyráběna na 5 operací a optimalizací byl počet snížen na 4 operace, čímž se sníží náklady na nástroje. Operace jsou předpěchování v první operaci a kombinace protlačování a pěchování v dalších. Ve druhé operaci probíhá dopředné protlačování pro redukci průměru a zároveň jsou tvářeny díry. Třetí operací jsou díry prohloubeny a čtvrtou je rozpěchována hlava, dokončen a zkalibrován finální tvar. Polotovar je kruhová tyč Ø 18 x 35,68. Doporučené dělení je přesné stříhání. Byly spočítány vybrané hodnoty logaritmického přetvoření, přetvárných odporů a sil. Přetvoření dosahuje maximální hodnoty 1,3225 v oblasti hlavy. Celková potřebná síla je 3 042 kN. Snížení počtu tvářecích operací by bylo možné dosáhnout poloohřevem.

Stroj je zvolen CBF-204L z hlediska rozměrů matrice a maximálního průměru polotovaru. Síla stroje je bohatě dostačující. Byl proveden pevnostní výpočet průtlačnice pomocí programu OPTIM97, ze kterého vyplývá použití 1 bandáže. Pro výrobu byl zvolen postupový nástroj. Výkresová dokumentace navrženého nástroje je v příloze. Skládá se z výkresu sestavy a výrobních výkresů průtlačníku, pěchovníku a průtlačnice.

Cena výroby jednoho kusu objemovým tvářením je 19,59 Kč a při výrobnosti 120 000 ks ročně je zisk 391 833,14 Kč. Rovnovážný bod, kdy se výroba dostane do zisku je od 93 756 kusů. Fixní náklady na konstrukci nástroje jsou odhadovány na 1 400 000 Kč. Celkové přímé náklady jsou 559 431 Kč. Bylo provedeno ekonomické srovnání s metodou výroby třískovým obráběním, kde bylo zjištěno, že objemové tváření za studena má výrazně nižší náklady.

SEZNAM POUŽITÝCH ZDROJŮ

- 1. ELFMARK, Jiří, a kol. Tváření kovů: Technický průvodce, sv 62. 1.vyd. Praha: SNTL. 1992. 524 s. ISBN 80-03-00651-1.
- 2. FOREJT, Milan a Miroslav PÍŠKA. *Teorie obrábění, tváření a nástroje*. 1. vyd. Brno: Akademické vydavatelství CERM, s. r. o., 2006. 217 s. ISBN 80-214-2374-9.
- 3. JOPEK, Miroslav. *Modelování mechanického chování ocelí za vyšších rychlostí deformace*. Brno, 2003. ISBN 80-2014-2437-0. Disertační práce. VUT.
- 4. Uhlíková ocel k zušlechťování a povrchovému kalení [online]. Brno: VUT, 2013 [cit. 2022-04-28]. Dostupné z: http://ust.fme.vutbr.cz/tvareni/img/databaze/ocel_12050.3.pdf
- 5. HONDL Jiří: *Výroba krátkého hřídele protlačováním*. Brno: Vysoké učení technické v Brně, Fakulta strojního inženýrství, 2012. 54 s. Vedoucí diplomové práce prof. Ing. Milan Forejt, CSc.
- 6. LENFELD, Petr. *Technologie II*. Liberec: Technická univerzita v Liberci, 2005. ISBN 80-7372-020-5.
- HATEBUR UMFORMMASCHINEN AG. Hatebur COLDmatic CM 45ECO produkts [online]. Hatebur Umformmaschinen AG: Hatebur Umformmaschinen, 2013, 2013 [cit. 2022-04-28]. Dostupné z: https://www.hatebur.com/en/machinesaccessories/machines/product/detail/cm-4-5eco/brand/hatebur/model/coldmatic
- 8. TEMSA. Temsa cold forming [online]. Temsa: Temsa, 2022 [cit. 2022-04-28]. Dostupné z: https://www.hatebur.com/en/machines-accessories/machines/product/detail/cm-4-5eco/brand/hatebur/model/coldmatic
- 9. Mall + Herlan. Mall + Herlan production line for iMPact extruded monoblock aerosol cans [online]. Mall + Herlan: Mall + Herlan, 2019 [cit. 2022-04-28]. Dostupné z: https://www.youtube.com/watch?v=RVRvmLtVRgU Colf forming https://www.youtube.com/watch?v=jXMbXl-aMkI
- MEYERS, Marc A., Krishan Kumar CHAWLA. *Mechanical behavior of materials: 2nd ed*. Cambridge. Cambridge University Press: Cambridge: Cambridge University Press, 2009. ISBN 9780521866750.
- 11. MIROSLAV, Jopek. Dopředné protlačování (podklady do cvičení). Brno, 2022.
- 12. Poradenské příručky
- OBRÁBĚNÍ-KOVOVÝROBA: Tomáš Svoboda [online]. Brno: https://www.obrabenikovo.cz/, 2015 [cit. 2022-04-28]. Dostupné z: https://media0.obrabenikovo.cz/files/media0:571926fc1f8f5.pdf.upl/12050.pdf
- 14. KOSEK, Lukáš. *Výroba pouzdra pružiny objemovým tvářením*. VUT FSI Brno, 2013. Diplomová práce. VUT.
- 15. LEINVEBER, Jan a Pavel VÁVRA. *Strojnické tabulky*. 4., dopl. vyd. Úvaly: Albra, 2008. ISBN 978-80-7361-051-7.
- 16. FOREJT, Milan. Vybrané statě z teorie tváření. VUT FSI Brno, 2009.
- 17. DVOŘÁK, Milan, František GAJDOŠ a Karel NOVOTNÝ. *Technologie tváření*. Brno: Akademické nakladatelství CERM, 2003. ISBN 978-80-214-4747-9.

SEZNAM POUŽITÝCH SYMBOLŮ A ZKRATEK

Symboly

Označení	Legenda	Jednotka
А	kvazistatická mez kluzu [MPa]	[MPa]
A _{jidB2}	ideální měrná přetvárná práce v 2. operaci v části B	[Jmm ³]
A _{jidE2}	ideální měrná přetvárná práce v 2. operaci v části E	[Jmm ³]
A _{2dopř.}	práce pro dopředné protlačování	[J]
В	pevnostní parametr [-]	[-]
b	tloušťka blány	[mm]
С	citlivost na rychlost deformace [-]	[-]
C _N	cena nástroje odhad	[Kč∙kg⁻¹]
C_{m}	cena materiálu	[Kč·kg ⁻¹]
C_1 , C_2	materiálové konstatnty	[-]
D_0	průměr polotovaru	[mm]
d	průměr	[mm]
do	průměr čepu	[mm]
F _{2dopř.}	síla pro dopředné protlačování podle	[N]
f _{1,2,3}	součinitel tření	[-]
h	výška dílce	[mm]
Δh	dráha, po kterou probíhá přetvoření	[m]
L _c	celková dráha nástroje	[mm]
L _{prac}	nejdelší pracovní dráha nástroje	[mm]
L _{dílce}	největší rozměr dílce nástroje	[mm]
L _{přídavek}	dodatečný odjezd nástroje	[mm]
N ₁	Přímé náklady na materiál	[Kč]
N_2	přímé náklady na mzdy	[Kč]
N_3	přímé náklady na energie	[Kč]
N _C	celkové přímé náklady	[Kč]
N _F	fixní náklady	[Kč]
n	exponent zpevnění	[-]
n _m	počet zdvihů za minutu	$[\min^{-1}]$
n_1, n_2	materiálové konstatnty	[-]
m	exponent citlivosti s ohledem na rychlost deformace [-]	[mm]
\mathbf{p}_1	maximální radiální tlak	[MPa]
p ₂	kontaktní tlak	[MPa]
$\Delta r_{\rm C}$	vypočtený přesah	[mm]
T	teplota materiálu při 23 °C	[K]
T ₀	referenční teplota při 20 °C	[K]
T _m	teplota tavení	[K]
t	výrobní čas	[hod]
t _A	čas na výrobu 1 kusu	[hod]
t _{B1}	čas na přípravu I kusu	[hod]
V _{čep}	objem čepu	[m ³]
V	rychlost pohybu nástroje	$[\mathbf{m} \cdot \mathbf{s}^{-1}]$
V _S	vytiženost stroje	[-]
S	spotřeba materiálu	[kg·ks ⁻¹]
у	poměr průměrů pro použití Dipperovy metody	[-]
Z ₂₀	zisk 20 % za jeden rok	[Kč]

α	redukční úhel kužele	[-]
α _{1,2}	koeficient tepelné roztažnosti pro průtlačnici a objímku	[-]
φ	logaritmické přetvoření	[-]
φ_{v1op1}	logaritmické přetvoření v 1. operaci 1. varianty	[-]
ϕ_{v1op2}	logaritmické přetvoření v 1. operaci 2. varianty	[-]
ϕ_{v1op3}	logaritmické přetvoření v 1. operaci 2. varianty	[-]
ϕ_{v1op4}	logaritmické přetvoření v 1. operaci 3. varianty	[-]
ϕ_{v1op5A}	logaritmické přetvoření v 1. operaci 4. varianty část A	[-]
φ _{v1op5B}	logaritmické přetvoření v 1. operaci 5. varianty část B	[-]
φ _A	přetvoření v části A	[-]
$\phi_{predpech}$	přetvoření vzniklé předpěchováním v 1. operaci	[-]
ϕ_{A2}	přetvoření v průřezu A ve 2. operaci	[-]
ϕ_{B2}	přetvoření v průřezu B ve 2. operaci	[-]
ϕ_{C2}	přetvoření v průřezu C ve 2. operaci	[-]
ϕ_{D2}	přetvoření v průřezu D ve 2. operaci	[-]
ϕ_{hlava}	přetvoření vzniklé rozpěchováním hlavy	[-]
φ	rychlost přetvoření	[s ⁻¹]
φ ₀	referenční rychlost přetvoření při rychlosti deformace 1 s ⁻¹	[-]
$\dot{\phi}_{st\check{r}}$	střední rychlost deformace pro ocel 12 050	[-]
ρ	hustota	[kg·m ⁻³]
σ_{dA2}	deformační odpor v průřezu A ve 2. operaci	[MPa]
σ_{pB2}	přirozený přetvárný odpor v průřezu B ve 2. operaci	[MPa]
σ_{pE2}	přirozený přetvárný odpor v průřezu B ve 2. operaci	[MPa]
σ_{ps}	střední napětí v kuželové průtlačnici	[MPa]
$\sigma_{r3i(z=x)}$	radiální napětí v části <i>i</i> pro okrajovou podmínku z=x	[MPa]
$\sigma_{r3i(z=0)}$	radiální napětí v části <i>i</i> pro okrajovou podmínku z=0	[MPa]
σ_{z3i}	osové napětí v kalibračním očku v části <i>i</i>	[MPa]
$\sigma_{ ho}$	osové napětí v kalibračním očku	[MPa]
σ_{φ}	radiální napětí v kuželové průtlačnici	[MPa]
τ	smykové napětí	[MPa]
τ_{f3E2}	smykové napětí v části E2	[MPa]

SEZNAM PŘÍLOH

- Příloha 1 Výpočty rozměrů v jednotlivých operacích u první varianty
- Příloha 2 Návrh rozměrů polotovaru varianty 1.
- Příloha 3 Materiálový model GMT používaný v simulacích
- Příloha 4 Varianty 2 až 9
- Příloha 5 Technická specifikace zvoleného stroje CBF-204L

Seznam výkresů

Výkres sestavy DP-200570-00 Výrobní výkres průtlačník 4. op. DP-200570-22 Výrobní výkres pěchovník 4.op DP-200570-21 Výrobní výkres průtlačnice 12 4.op DP-200570-26 Výrobní výkres průtlačnice 13 4.op DP-200570-27

Příloha 1 Výpočty rozměrů v jednotlivých operacích u první varianty

Při objemovém tváření musí platit zákon zachování objemu. Proto v jednotlivých operacích navrhujeme rozměry tak, aby byl zachován objem a zároveň musí být dodrženy technologické parametry pro protlačování, jako je zkosení přechodů při redukci průměrů a zaoblení hran.

Náčrt varianty 1

Určení objemu:

Objemy jsou určeny dle softwaru Inventor 2020

Celkový objem $V_{CEP} = 9075,022 \text{ mm}^3$

Objemy jednotlivých částí podle obr. 3 jsou v tab.

Tabulka objemů jednotlivých částí

V _{ČEP} [mm ³]	V _A [mm ³]	V _B [mm ³]	V _C [mm ³]	$V_D [mm^3]$	V _E [mm ³]
9075,02	2148,85	2835,987	493,581	514,810	3081,794

V _B [mm ³]	V _C [mm ³]	$V_D [mm^3]$	V _E [mm ³]	Díra nahoře	Díra dole
2835,987	493,581	514,810	3081,794	1225,741	1932,599

Vzorce pro zjištění přetvoření v jednotlivých průřezech:

Určení rozměrů:

Zjištění objemu V_G a dalších pomocí software Inventor 2020.

Příklady vzorců pro výpočet rozměrů jednotlivých výšek:

$$h_{5} = \frac{4 * V_{G}}{\pi * D_{1}^{2}}$$
$$h_{5} = 3,45576$$

$$h_3 = \frac{4 * V_j}{\pi * D_2^2}$$

h3 = 8,28 mm

$$h_{2} = \frac{4 * (V_{F} + V_{G})}{\pi * D_{1}^{2}}$$

$$h_{2} = 24,7182$$

$$h_{1} = \frac{4 * V_{\check{C}EP}}{\pi * D_{1}^{2}}$$

$$h_{1} = 12,84504$$

$$h_0 = rac{4 * V_{\check{C}EP}}{\pi * D_0^2}$$

$$h0 = 28,901$$

Příloha 2

Návrh rozměrů polotovaru varianty 1.

Cílem je dosáhnout rovnoměrného přetvoření. Proto upravím polotovar na průměr 16 a vypočítám přetvoření v průřezech.

Pokud upravím průměr D_0 na 16 mm, dostanu tyto rozměry viz obr. 100:

Tab. 100 Hlavní rozměry v jednotlivých operacích pro variantu 1 a průměr polotovaru 16 mm.

		D0		D1		D2		D3		D4	D5	
			16		20		16		28			10
h0		h1		h2		h3		h4		h5	h6	
	45,16		28,62		15,82		17,90		4,00	7,98		29,50
		h7		h8		h9		h10		h11	h12	
			27,50		17,50		4,00		15,00	24,00		27,50

	φA	φВ	φC	φE	φF	
	1,25568	0,73397	0,44629	0,89257	1,3879	
PŘEDPĚCH	0,44629	0,44629	0,44629	0,44629	0,44629	
hlava	0,67294					
díra - dopř. Duté	-0,13645	-0,28768				
Dřík II - dopř. DOL			-0,44629	-0,44629		
díra - dopř. DOLE					-0,49532	
sum	0,98278	0,15861	0,44629	0	0	
	1					
sum abs	1,25568	0,73397	0,44629	0,89257	1,3879	

Přetvoření v jednotlivých částech součásti

Graf logaritmického přetvoření v jednotlivých průřezech ve var. 1 při průměru polotovaru 16 mm.

Přetvoření v části F přesáhlo téměř hodnotu 1,4, což je mezní hodnota a bude hledána vhodnější varianta 16 mm.

Nyní zjistíme, jak by vypadal výsledek při použítí průměru polotovaru $D_0 = 28$ mm.

Přetvoření v jednotlivých částech součásti při použítí průměru polotovaru $D_0 = 28 \text{ mm}$

Při použítí průměru polotovaru $D_0 = 28$ mm jsme se dostali opět za hodnotu přetvoření 1,3. To znamená, že varianta je na mezní hodnotě a bude hledána další varianta.

Dosazováním různých průměrů a polotovaru bylo zjištěno, že nejnižší a nejrovnoměrnější přetvoření dosahuje varianta s průměrem polotovaru 18 mm. Nejvhodnější varianta kvůli velice blízkým hodnotám přetvoření v průřezu A a E je s průměrem polotovaru 18 mm. Zároveň dosahuje rozdílu jednotlivých přetvoření maximálně pouze 0,8, což je minimum v porovnání s dalšími variantami.

Přetvoření v jednotlivých částech součásti při použítí průměru polotovaru $D_0 = 28 \text{ mm}$ Výpočty ukazují, že ve všech variantách jsou velmi podobné přetvoření v jednotlivých průřezech. Proto jsem udělal teoretický výpočet, jak by to vypadalo, kdybychom z polotovaru rovnou tvářeli hotovou součást. Dosadil jsem průměr polotovaru 16 mm a 28 mm, což jsou největší a nejmenší průměr součásti.

Náčrt teoretické varianty bez mezioperací

Logaritmické přetvoření v jednotlivých částech součásti při použítí varianty bez mezioperací a průměru polotovaru $D_0 = 28 \text{ mm}$

Logaritmické přetvoření v jednotlivých částech součásti při použítí varianty bez mezioperací a průměru polotovaru $D_0 = 16 \text{ mm}$

Logaritmické přetvoření v jednotlivých částech součásti při použítí varianty bez mezioperací a průměru polotovaru $D_0 = 19 \text{ mm}$

Logaritmické přetvoření v jednotlivých částech součásti při použítí varianty bez mezioperací a průměru polotovaru $D_0 = 20,5 \text{ mm}$

Další zajímavá varianta by byla D0 = 20,5, protože přetvoření A, B, D jsou málo rozdílné a maximální přetvoření je 1. Jako nejvhodnější volím variantu s polotovarem o průměru 19 mm, protože je nejrovnoměrnější přetvoření v celém objemu a zároveň nedosahuje kritické hodnoty.

Příloha 3

Materiálový model GMT používaný v simulacích

$\sigma_{F} = \mathbf{c}_{1} \cdot \mathbf{e}^{(c_{2} \cdot \tau)} \cdot \boldsymbol{\varphi}^{(n_{1} \cdot \tau + n_{2})}$ $\cdot \mathbf{e}^{(\frac{l_{1} \cdot \tau + l_{2}}{\varphi})} \cdot \dot{\boldsymbol{\varphi}}^{(m_{1} \cdot \tau + m_{2})}$								
Name	Abbr.	Value						
Temperature min	т	20.0	°C					
Temperature max	Т	300.0	°C					
Strain min	φ	0.05	-					
Strain max	φ	1.0	-					
Strain rate min	$\dot{\varphi}$	0.01	1/s					
Strain rate max	$\dot{\varphi}$	10.0	1/s					
Parameter 01	c1	1104.7	-					
Parameter 02	c2	-0.000752603	~					
Parameter 03	n1	-3.29572e-5	-					
Parameter 04	n2	0.205108	-					
Parameter 05	11	-1.21493e-11	-					
Parameter 06	12	1.20467e-9	-					
Parameter 07	m1	-5.53049e-6	-					
Parameter 08	m2	0.0236072	-					

Hodnoty materiálového modelu GMT použitý pro simulace

Nastavení materiálového modelu GMT použitý pro simulace
Příloha 4

Varianty 2 až 9

Další varianty jsou navrženy proto, abychom se podívali na problematiku znovu a z jiného pohledu. Cílem je vytvořit 4 varianty, ze kterých vybereme 1 top variantu a tu budeme simulovat. Druhá varianta výroby je na obr. 114. V druhé variante postupujeme: Předpěchování, protlačování dříku, dopředné duté protlačování + pěchování. Je to z důvodu snížení počtu operací na teoretické minimum pro úsporu nákladů na výrobu nástrojů.

	D0	D1=D4	D2	D3	D4	D5
	19	20	16	28	20	10
h0	h1	h2	h3	h4	h5	h6
32,02364	28,90134	24,71828	17,89711	4	7,975723	29,5
	h7	h8	h9	h10		
	27,5	17,5	4	11,91		

Náčrt varianty 2 a vybrané rozměry

Logaritmické přetvoření v jednotlivých částech součásti při použítí varianty 2 a průměru polotovaru $D_0 = 19 \mbox{ mm}$

Varianta 3

Varianta 4

Varianta 5

Náčrt varianty 5

Náčrt varianty 6

Varianta 7 operace 1 - totožná pro variantu 8 a 9

OP3 - Results - 2 Sub-stage: Forming Progress: 38.04% Die

Varianta 7 operace 3 konec

Operace 4 už nebyla simulovaná, protože ve 3. operaci došlo k nepřijatelnému defektu. Opět ztráta vzpěrné stability byla příčinou vzniku přeložky.

Varianta 8

Ve variantě 8 jsou operace 1 a 2 stejné. Odlišné je jen 3. operace viz obr 124.

Tentokát ve 3. operaci není pěchována hlava, protože se nám volné pěchování hlavy neosvědčilo a spíše je ve 3. operaci potřeba zhotovit hlubší díry. Až následně se bude formovat hlava ve 4. operaci. Po konstrukčních úpravách operace 3 byly opět provedeny simulace.

OP3 - Results - 1 Sub-stage: Forming Progress: 3.49%

OP3 - Results - 1 Sub-stage: Forming Progress: 37.82%

Varianta 8 operace 3: 35 %

OP3 - Results - 1 Sub-stage: Forming Progress: 44.40%

Varianta 8 operace 3: 45 %

OP3 - Results - 1 Sub-stage: Forming Progress: 54.17%

Varianta 8 operace 3: 55 %

varianta 8 - v operaci 3 drobná přeložka

Ve variantě 8 v operaci 3 vznikla drobná přeložka. Operaci 3 budu muset optimalizovat změnou tvaru nástrojů. Je volen úhel redukce 30° místo původních 45°. Operace 4 už nebyla simulovaná, protože ve 3. operaci došlo k nepřijatelnému defektu.

Varianta 9

Náčrt varianty 9

OP3 - Results - 1 Sub-stage: Forming Progress: 16.65%

Varianta 9 operace 3 začátek

Varianta 9 operace 3 průběh

OP3 - Results - 1 Sub-stage: Forming Progress: 42.77%

Varianta 9 operace 3 počátek vzniku přeložky

OP3 - Results - 1 Sub-stage: Forming Progress: 50.90% Varianta 9 operace 3 výskyt defektu

Varianta 9 operace 3 zvětšení defektu

V operaci 9 vznikl malý defekt.

OP4 - Results - 1 Sub-stage: Forming Progress: 100.00%

Varianta 9 operace 4

Effective plastic strain				
1	4.15			
1	2.79			
1	1.43			
1	0.08			
1	3.72			
- 7	.36			
- 6	6.00			
- 4	1.64			
- 3	3.28			
1	.92			
- 0).57			
max: 1 min:	4.15 D.43			

Varianta 9 operace 5

První operace je shodná s variantou 1 a platí pro ni obr. 22. Logaritmické přegvoření je 0,2107. Průběh síly je na obr. 34. Nejvyšší síla je na konci operace a to **656,43 kN** zjištěná ve chvíli vyplnění celého prostoru mezi průtlačníkem a průtlačnicí. Tato hodnota nebude uvažována, protože simulace počítá s tuhým materiálem nástroje. Prakticky ale skončí proces pěchování u přibližně u 250 kN a následný vzrůst je dán všestranným tlakem. Materiál nemá kam téct, tak se síla zvyšuje. Pro volbu stroje bude počítáno se silou v průběhu tváření, která se pohybuje mezi 180 až 300 kN. Volím pro výpočet sílu 300 kN.

Síla operace 1 průměr polotovaru 19

Síla operace 2 průměr polotovaru 19

Síla operace 4 průměr polotovaru 19

Příloha 5

CBF-204L Model CBF-164S CBF-164LL CBF-204LL CBF-254S Unit CBF-254L Forging station No. 4 4 4 4 4 4 210,000 210,000 350,000 350,000 430,000 430,000 Forging force kgs Max. cut-off dia. mm φ18 φ18 φ23 φ23 φ26 φ30 Max.cut-off length mm 195 350 240 360 253 320 Speed Range pcs/min 70-110 40-70 50-80 40-65 40-70 35-62 P.K.O.Stroke 40 46 46 46 40 mm 46 K.O.Stroke mm 170 320 220 325 175 280 Main slider stroke mm 260 490 346 496 330 446 45 55 55 75 90 90 Main motor kw Cut-off die. dia. φ 60∗90L φ64*100L ¢75∗120L ¢75∗120L φ 80*130L φ 99∗150L mm Punch die. dia. mm φ 75*185L φ 75∗185L ф90+215L \$ 90+215L φ 120∗270L ¢ 120+270L 0 125*240L Main die. dia. φ100*190L φ100*345L 125*345L φ 140*250L ¢ 148+300L mm d 120 140 140 160 Die pitch mm 120 160 43,000 60,000 62,000 75,000 105,000 Approx. weight kgs 131,000 10-16 10-16 12-20 12-20 14-25.4 16-25.4 Normal bolt size mm Hex 35-175 Socket 35-165 Shank length of blank mm 20-152 100-305 25-200 100-305 60-254

Technická specifikace zvoleného stroje CBF-204L