

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA STAVEBNÍ ÚSTAV VODNÍCH STAVEB

FACULTY OF CIVIL ENGINEERING INSTITUTE OF WATER STRUCTURES

VYUŽITÍ HEC-RAS PRO STANOVENÍ KAPACITY KORYTA TOKU POD VZDOUVACÍ STAVBOU

BAKALÁŘSKÁ PRÁCE BACHELOR'S THESIS

AUTOR PRÁCE

MICHAL PAVLÍČEK

VEDOUCÍ PRÁCE SUPERVISOR Ing. MIROSLAV ŠPANO, Ph.D.

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ

Studijní program Typ studijního programu Studijní obor Pracoviště B3607 Stavební inženýrství Bakalářský studijní program s prezenční formou studia 3647R015 Vodní hospodářství a vodní stavby Ústav vodních staveb

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

Student

Michal Pavlíček

Název

Využití HEC-RAS pro stanovení kapacity koryta toku pod vzdouvací stavbou

Vedoucí bakalářské práce

Ing. Miroslav Špano, Ph.D.

TPCH

Datum zadání bakalářské práce Datum odevzdání bakalářské práce

30. 11. 201330. 5. 2014

V Brně dne 30. 11. 2013

DĚKANÁT

prof. Ing. Jan Šulc, CSc. Vedoucí ústavu no An Chi S

prof. Ing. Rostislav Drochytka, CSc., MBA Děkan Fakulty stavební VU/T

Podklady a literatura

Boor,B., Kunštácký,J., Patočka,C. (1968) Hydraulika pro vodohospodářské stavby, SNTL Praha. Starý, M. Menšík, P., Marton, D. (2010) Vodohospodářské řešení vodní nádrže Bawanur, studie, Brno. CREA Hydro & Energy (2013) Bawanur - studie proveditelnosti, Erbil. Lokalita Bawanur mapové podklady.

Zásady pro vypracování (zadání, cíle práce, požadované výstupy)

Práce bude přehledně členěna do jednotlivých částí:

- 1) Úvod a cíle práce
- 2) Postup
- 3) Popis lokality
- 4) Předpoklady řešení
- 5) Výpočty
- 6) Vyhodnocení výsledků

7) Závěr

Struktura bakalářské/diplomové práce

VŠKP vypracujte a rozčleňte podle dále uvedené struktury:

- Textová část VŠKP zpracovaná podle Směrnice rektora "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací" a Směrnice děkana "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací na FAST VUT" (povinná součást VŠKP).
- 2. Přílohy textové části VŠKP zpracované podle Směrnice rektora "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací" a Směrnice děkana "Úprava, odevzdávání, zveřejňování a uchovávání vysokoškolských kvalifikačních prací na FAST VUT" (nepovinná součást VŠKP v případě, že přílohy nejsou součástí textové části VŠKP, ale textovou část doplňují).

Ing. Miroslav Špano, Ph.D. Vedoucí bakalářské práce

Abstrakt

Tato bakalářská práce se zabývá výpočtem průběhu hladin v úseku koryta toku pod přehradní hrází vodního díla Bawanur a výpočtem měrných křivek funkčních objektů hráze. Mezi funkční objekty této hráze patří spodní výpusti, hrazené bezpečnostní přelivy a vodní elektrárna. Řešení bylo provedeno pomocí 1D modelu nerovnoměrného ustáleného proudění vytvořeného v programu HEC – RAS. Výsledkem výpočtu je stanovení kapacity funkčních objektů hráze a úseku toku pod ní.

Klíčová slova

HEC-RAS, kapacita vodního toku, proudění v korytech, nerovnoměrné ustálené proudění, kapacita přehradní hráze, spodní výpusti, hrazené bezpečnostní přelivy, vodní elektrárna.

Abstract

The Bachelor's Thesis is focused on a computation of water levels in the open channel reach which is situated beneath the Bawanur Dam. The thesis also includes computation of rating curves of bottom outlet, spillway with tainter gates and hydro-power plant of the dam. Solution was pursued by using one – dimensional model of nonuniform steady flow created in HEC - RAS software. The capacity of the channel reach and the capacity of the dam is a result of computation.

Keywords

HEC – RAS, capacity of open channel, nonuniform steady flow in open channel, capacity of dam, bottom outlet, spillway with tainter gates, hydro – power plant.

Bibliografická citace VŠKP

PAVLÍČEK, Michal. *Využití HEC-RAS pro stanovení kapacity koryta toku pod vzdouvací stavbou*. Brno, 2013. 73 s. Bakalářská práce. Vysoké učení technické v Brně, Fakulta stavební, Ústav vodních staveb. Vedoucí práce Ing. Miroslav Špano, Ph.D.

Prohlášení:

Prohlašuji, že jsem bakalářskou práci zpracoval(a) samostatně a že jsem uvedl(a) všechny použíté informační zdroje.

V Brně dne 29.5.2014

...... podpis autora Michal Pavlíček

Poděkování:

Chtěl bych především poděkovat vedoucímu bakalářské práce Ing. Miroslavovi Španovi, Ph.D. za rady a připomínky k této bakalářské práci. Dále děkuji své rodině a kamarádům za vynikající podporu při celém studiu.

Obsa	ah	
1.	Úvod a cíle práce	8
2.	Popis lokality	9
3.	Postup	11
3.1.	Sumarizace podkladů	11
3.2.	Vytvoření geometrických dat	11
3.2.1.	Vytvoření modelu příčných profilů toku v programu Civil 3D	11
3.2.2.	Export a úprava dat v programu HEC-RAS	13
3.3.	Výpočet měrných křivek funkčních objektů hráze	17
3.3.1.	Spodní výpusti	17
3.3.2.	Bezpečnostní přelivy	21
3.3.3.	Vodní elektrárna	
3.4.	Zadání měrných křivek objektů do programu HEC-RAS	29
3.5.	Předpoklady řešení	
3.5.1.	Nerovnoměrné ustálené proudění	
3.5.2.	Drsnost koryta	
3.5.3.	Vytvoření hrázek a inefektivních ploch	
3.6.	Výpočet nerovnoměrného ustáleného proudění	32
3.6.1.	Metoda po úsecích	
3.6.2.	Okrajové podmínky	
3.6.3.	Průtoky pro výpočet nerovnoměrného ustáleného proudění	34
3.7.	Posouzení vlivu zpětného zatopení na kapacitu funkčních objektů hráze	35
3.7.1.	Posouzení bezpečnostních přelivů	
3.7.2.	Posouzení spodních výpustí a vodní elektrárny	
4.	Vyhodnocení výsledků výpočtu	
4.1.	Kapacita koryta toku	
4.2.	Kapacita funkčních objektů hráze	40
5.	Závěr	
6.	Seznam použité literatury	
7.	Seznam tabulek	
8.	Seznam obrázků	
9.	Seznam použitých zkratek	
10.	Seznam použitých symbolů	
11.	Seznam příloh	

1. Úvod a cíle práce

Tato bakalářská práce se zabývá kapacitou koryta toku a kapacitou přehradní hráze. Kapacita koryta toku je maximální průtok vody korytem, při kterém nedojde k vybřežení. K vybřežení dojde, pokud úroveň hladiny vody v korytě překročí úroveň břehové čáry koryta. Úsek toku je tvořen několika příčnými profily a kapacita úseku je tak velká jako kapacita nejméně kapacitního profilu. Kapacita přehradní hráze vodní nádrže je určena jako součet kapacit jednotlivých funkčních objektů hráze. Kapacita funkčních objektů je maximální průtok, který jsou tyto objekty schopny převést, aniž by hladina v nádrži překročila dohodnutou výškovou kótu. Vodní nádrž má značný vliv na průtok v korytě pod ní. Zásobní funkce nádrže zajišťuje zachycení vody v období nadbytku a využití této zásoby v období nedostatku, takže zmenšuje kolísání průtoků v korytě. Účelem ochranné funkce nádrže je zachycení části povodňových průtoků, tím je dosaženo transformace povodňové vlny. Kapacita koryta toku pod přehradní hrází je důležitá informace pro manipulaci s funkčními objekty.

Cílem této bakalářské práce je stanovení kapacity úseku koryta toku o délce 2062,94 m a kapacity funkčních objektů přehradní hráze Bawanur, pod kterou je řešený úsek toku umístěn. Mezi funkční objekty této hráze patří spodní výpusti, hrazené bezpečnostní přelivy a vodní elektrárna.

Kapacita toku má být stanovena pomocí jednorozměrného (1D) modelu nerovnoměrného ustáleného proudění vytvořeného v programu HEC-RAS. V 1D modelu probíhá výpočet s uvažovanou konstantní průřezovou rychlostí a konstantní polohou hladiny vody v celém průtočném profilu, dle [22]. Kapacita funkčních objektů přehradní hráze má být stanovena pomocí měrných křivek jednotlivých funkčních objektů. Měrné křivky objektů budou vytvořeny pro různá otevření uzávěrů. Kapacita funkčních objektů hráze je obecně vyšší než kapacita koryta toku. Přehradní hráz se navrhuje tak, aby převedla kontrolní povodňovou vlnu, aniž by došlo k porušení stability hráze a vzniklo nebezpečí protržení hráze.

Postup:

- 1. Sumarizace podkladů
- 2. Vytvoření geometrických dat
- 3. Výpočet měrných křivek funkčních objektů hráze
- 4. Zadání měrných křivek objektů do programu HEC-RAS
- 5. Stanovení předpokladů řešení
- 6. Výpočet neustáleného rovnoměrného proudění
- 7. Posouzení vlivu zpětného zatopení na kapacitu funkčních objektů hráze
- 8. Vyhodnocení výsledků výpočtu

2. Popis lokality

Navržená přehrada Bawanur se nachází u města Bawanur v oblasti Kurdistán v Iráku. Umístění vodního díla je zobrazeno na obrázku 2.1. Vodní dílo má plnit funkci zásobní, retenční, zavlažovací, rekreační a hydroenergetickou. Má být vybudováno na toku Dyiala. Přibližně 45 km nad nádrží Bawanur je na daném toku umístěna nádrž Derbendikhan, která bude mít významný vliv na přítoky do nádrže Bawanur.

Dle [1] byly navrženy 3 varianty umístění hráze a následně byla pro další zpracování vybrána varianta P1, umístění různých variant je zobrazeno na obrázku 2.2. Hráz je navržena zemní sypaná se středním těsnícím jádrem. Sklon návodního líce je 1:2,7, a vzdušního 1:2,0. Výška hráze je 23,0 m a délka v koruně hráze je 898,0 m. V patě hráz dosahuje šířky 119,9 m. Koruna o šířce 9,0 m se nachází na kótě 305,00 m n. m. Hladina mrtvého prostoru je na kótě 285,00 m n. m., hladina stálého nadržení 291,50 m n. m., zásobní hladina 301,00 m n. m. a maximální hladina 303,00 m n. m. V hrázi je navrženo 10 spodních výpustí o průměru potrubí 3,0 m, 9 polí hrazených bezpečnostních přelivů se segmentovými uzávěry, každé pole o šířce 14,0 m a vodní elektrárna, ve které se nachází 4 kaplanovy turbíny o průměru oběžného kola 3,0 m, dle [13].

Zátopové území nádrže zabírá dle [6] 20,132 km². Objem nádrže při hladině v úrovni koruny hráze (305,00 m n. m.) je dle [10] 67,599 mil. m³.

Obr. 2.1 Umístění vodního díla Bawanur [19]

Obr. 2.2 Umístění přehradní hráze Bawanur (varianta P1) dle [1]

Řeka Dyiala o délce 445 km a ploše povodí 32600 km² pramení v pohoří Zagros v Íránu a vlévá se do řeky Tigris v Iráku. Šířka dna údolí řeky se pohybuje od 600 do 1200 m, dle [7]. Okolí města Bawanur je dle [9] tvořeno kvartérními fluviálními sedimenty, převážně hrubými štěrky a štěrkopísky. Ve městě Bawanur je průměrný roční úhrn srážek 550 mm, dle [8]. Průměrný roční průtok činí dle [6] $Q_a = 189,5 \text{ m}^3 \cdot \text{s}^{-1}$, v tabulce 2.1 jsou uvedeny N-leté průtoky pro daný úsek toku.

Ν	2	3	5	10	50	100	500	1000	10000
$\begin{bmatrix} Q_{N} \\ [m^{3} \cdot s^{\cdot 1}] \end{bmatrix}$	1277	3098	4051	5302	8185	9438	12383	13664	17962

Tab. 2.1 N-leté průtoky dle [10]

3. Postup

3.1. Sumarizace podkladů

Pro vytvoření geometrických dat a následného vymodelování přehradní hráze Bawanur a úseku koryta pod ní byly použity tyto výchozí podklady:

[1] CREA Hydro & Energy. Bawanur - studie proveditelnosti. Erbil. 2013. 27 s.

[10] Starý, M. Menšík, P., Marton, D. Vodohospodářské řešení vodní nádrže Bawanur, studie, Brno. 2010

[13] Výkresová dokumentace: *CREA Hydro&Energy*, *Feasibility Study & Design For Bawanur Dam, Garmian Irrigation Canal in Garmian*, 2012

[6] High Comittee of Garmian. Bawanur Dam: Project description & Scope of the Work

[11] Zaměření příčných profilů daného úseku toku.

Zaměření příčných profilů daného úseku tvoří výchozí podklad pro vytvoření geometrických dat daného úseku toku. Na daném úseku o délce 2062,94 m bylo zaměřeno 19 příčných profilů koryta toku. V každém profilu bylo zaměřeno přibližně 150-240 bodů. V tabulce 3.1 je uveden příklad zaměření příčného profilu dle [11].

číslo bodu	x[m]	y[m]	z[m n.m.]
1	548599.045	3852910	296.21
2	548586.025	3852921	295.63
3	548577.854	3852927	295.34
4	548575.915	3852929	295.22
5	548572.575	3852932	295
172	546651.241	3854477	339.56

Tab. 3.1 Příklad zaměření příčného profilu (profil 09) dle [11]

3.2. Vytvoření geometrických dat

3.2.1. Vytvoření modelu příčných profilů toku v programu Civil 3D

Civil 3D je aplikace společnosti Autodesk založená na jádru AutoCADu a je zaměřena na dopravní liniové stavby, projekty obytných a obchodních zón, práci s krajinou, potrubí, kanály, skládky odpadu apod. Nabízí také mnoho funkcí pro práci s 3D modelem terénu, vrstevnicemi, svahy, kubaturami, úpravami parcel, staničením apod., dle [12].

Do aplikace Civil 3D byly vloženy jednotlivé body zaměřených příčných profilů koryta toku. Z bodů byl vytvořen povrch TIN, který se skládá z nepravidelné trojúhelníkové sítě. Aplikace vytvoří nepravidelnou trojúhelníkovou síť spojením bodů, které jsou si nejblíže. Výška dalších bodů v povrchu je určena interpolací výšek bodů daného trojúhelníku. Spojením bodů o stejné výšce aplikace vytvoří vrstevnice. Pro přesnější vytvoření povrchu byly zadány břehové čáry koryta jako povinné spojnice bodů povrchu. Na obrázku 3.1 je zobrazena nepravidelná trojúhelníková síť s vyznačenými povinnými spojnicemi.

Obr. 3.1 Výřez z povrchu TIN s povinnými spojnicemi

V ose koryta úseku toku byla vytvořena trasa se staničením, díky které bylo možno v povrchu TIN vytvořit stopy příčných řezů, které byly vytvořeny tak, aby nedocházelo k vzájemnému křížení jednotlivých řezů. Stopy příčných řezů jsou zobrazeny na obrázku 3.2.

Obr. 3.2 Stopy zalomených příčných řezů, povrch TIN zobrazen vrstevnicemi

3.2.2. Export a úprava dat v programu HEC-RAS

Geometrická data byla exportována do programu HEC – RAS 4.1.0. Program byl vytvořen společností U.S. Army Corps of Engineers (USACE), která spadá pod U.S. Department of Defense (Ministerstvo obrany U.S.A.). Program je navržen pro modelování 1D proudění o volné hladině v přirozených nebo umělých korytech. Je možno modelovat nerovnoměrné ustálené nebo neustálené proudění a transport splavenin. Do modelu je možno zahrnout i objekty jako mosty, propustky, jezy, spádové stupně, přehradní hráze apod.

Trasa a příčné řezy toku byly exportovány z programu Civil 3D do programu HEC – RAS. V programu bylo nutno otočit směr staničení toku, jelikož v programu Civil 3D je staničení trasy zobrazeno po směru trasy, ale staničení toku je v programu HEC - RAS zobrazeno proti směru proudu, tudíž i proti směru trasy. Dále bylo nutno otočit i staničení jednotlivých příčných řezů, aby byly zobrazeny v pohledu po směru proudu toku.

Pro vyšší přesnost výpočtu byly vytvořeny interpolované příčné řezy po vzdálenosti maximálně 10 m. Mezi některými řezy bylo nutno upravit řídící přímky interpolace.

Na konci úseku toku byl v programu HEC – RAS vytvořen objekt přehradí hráze (inline structure). Pro vytvoření objektu jsou nutné dva příčné řezy, mezi které se objekt umístí. Proto byl doplněn rozsah úseku o příčný profil umístěný nad objektem. Jelikož zaměření příčných profilů daného úseku toku dle [11] neobsahuje zaměření profilů nad přehradní hrází, byl profil nad hrází vytvořen zkopírováním posledního profilu úseku o cca 170 m výše a mezi tyto dva řezy byl objekt vložen. Do objektu hráze zobrazeného na obrázku 3.3 byly vloženy spodní výpusti, bezpečnostní přelivy a výtoky vodní elektrárny.

Obr. 3.3 Objekt přehradní hráze (Ground – terén, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station - staničení)

Nad profilem hráze bylo schematicky vytvořeno zátopové území nádrže (storage area). A do programu byla vložena čára zatopených objemů nádrže zobrazená na obrázku 3.4.

Obr. 3.4 Čára zatopených objemů nádrže dle [10]

Geometrická data byla podložena výkresem situace daného úseku toku a přehradní hráze s povrchem TIN vytvořeným v programu Civil 3D. Situace geometrických dat daného úseku je zobrazena na obrázku 3.5, na obrázku 3.6 je zobrazen podélný profil daného úseku a příklad příčného profilu je zobrazen na obrázku 3.7.

Obr. 3.5 Situace geometrických dat daného úseku v programu HEC - RAS

Obr. 3.6 Podélný profil daného úseku v programu HEC – RAS (Ground – terén, LOB – levá břehová čára, ROB – pravá břehová čára, Elevation – nadmořská výška, Main Channel Distance – vzdálenost od začátku úseku)

Obr. 3.7 Příklad příčného profilu daného úseku v programu HEC – RAS (Ground – terén, Levee – hrázka, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station - Staničení)

3.3. Výpočet měrných křivek funkčních objektů hráze

3.3.1. Spodní výpusti

Spodní výpusti jsou umístěny ve vtokovém věžovitém objektu ze železobetonu, kde se nachází strojovna uzávěrů a výpustné potrubí. V hrázi je navrženo 10 spodních výpustí o průměru potrubí 3,0 m v osových vzdálenostech 5,0 m. Potrubí je z nerezové oceli. Kóta dna potrubí je 285,00 m n. m. a kóta osy potrubí je 286,50 m n. m. Každá výpust je na kruhovém vtoku vybavena česlemi o šířce 4,60 m a výšce 4,75 m. Jednotlivé česlice jsou kruhového průřezu o tloušť ce 0,08 m, světlost mezi česlicemi je 0,18 m. Na výtokovém potrubí jsou navrženy celkem 3 uzávěry. Havarijní uzávěr (nožové šoupě), provozní uzávěr (nožové šoupě) a regulační uzávěr na výtoku (segment). Mezi provozním a regulačním uzávěrem je z důvodu uzavírání segmentového uzávěru osazen přechodový kus z kruhového průřezu na čtvercový (3,0 m x 3,0 m). Za regulačním uzávěrem je navrženo 5 odtokových kanálů, které jsou svedeny do vývarů, kde jsou umístěny betonové rozrážeče, dle [13] a [1]. Na obrázku 3.8 je zobrazen příčný řez spodní výpustí.

Obr. 3.8 Příčný řez spodní výpustí dle [13]

Výpočet měrných křivek spodních výpustí:

V případě spodních výpustí se jedná o výpočet hydraulicky krátkého potrubí s tlakovým režimem proudění. Byl proveden výpočet měrných křivek výpustí na principu volného výtoku hydraulicky malým otvorem ve svislé stěně (obrázek 3.9).

Výpočty měrných křivek byly provedeny v programu MS Excel 2013 pro 5 úrovní otevření regulačního uzávěru: 30 %, 40 %, 60 %, 80 % a 100 % průtočné plochy pod plně otevřeným segmentem. Rozdíl mezi výpočty pro různá otevření je v hodnotě součinitele místních ztrát na regulačním uzávěru a v průtočné ploše na výtoku. Celková hloubka nádrže byla rozdělena na dílčí části po 1,0 m a pro každou tlačnou výšku bylo vypočteno průtočné množství,

z těchto výsledků byly stanoveny měrné křivky spodních výpustí pro daná otevření regulačního uzávěru. Výpočet byl stanoven až po hladinu stoupající do výšky koruny hráze (305,00 m n. m.). Výsledné měrné křivky jsou zobrazeny na obrázku 3.11.

Obr. 3.9 Schéma volného výtoku otvorem ve svislé stěně dle [3]

Podmínka hydraulicky malého otvoru dle [3]:

 $e_{max} \le 0,\!25 \ h_T$

(3.1)

 e_{max} [m] … největší svislá vzdálenost obrysu otvoru od těžiště otvoru, e_{max} = h_T - h_2 h_T [m] … hloubka těžiště výtokového otvoru pod hladinou

Vzorec pro výtokové množství dle [3]:

$$Q = \mu S \sqrt{2gh_T} \tag{3.2}$$

 $Q [m^3 \cdot s^{-1}] \dots výtokové množství$

μ [-] ... součinitel výtoku

S [m²] ... průtočná plocha výtokového otvoru

hT [m] ... hloubka těžiště výtokového otvoru pod hladinou

g $[m \cdot s^{-2}] \dots$ tíhové zrychlení

Stanovení součinitele výtoku µ dle [14]:

Jelikož se jedná o hydraulicky krátké potrubí je nutno uvažovat ztráty třením po délce a místní ztráty na jednotlivých objektech spodních výpustí.

$$\mu = \frac{1}{\sqrt{\alpha + \xi_1 \frac{S_2^2}{S_{\tilde{C}}^2} + \xi_2 \frac{S_2^2}{S_d^2} + (\xi_3 + \xi_4) \frac{S_2^2}{S_d^2} + \xi_5 \frac{S_2^2}{S_{P\check{R}}^2} + \xi_6 + \lambda \frac{L}{D} \frac{S_2^2}{S_d^2}}}$$
(3.3)

$$\xi_1 = \beta \left(\frac{s}{b}\right)^{4/3} \tag{3.4}$$

$$\frac{1}{\sqrt{\lambda}} = -2\log\left(\frac{2.51}{Re\sqrt{\lambda}} + \frac{\Delta}{3.7D}\right) \tag{3.5}$$

$$Re = \frac{v D}{v}$$

 α [-] ... Coriolisovo číslo, α = 1

L [m] ... délka potrubí, L = 13,05 m dle [13]

- $D_p [m] \dots$ průměr potrubí, $D_p = 3,0 m$ dle [13]
- S₂ [m²]... průtočná plocha na výtoku z potrubí, různé podle otevření (a/D) dle [13]
- a [m] ... výška otvoru pod segmentem při daném otevření
- S_{C} [m²] ... průtočná plocha česlí, S_{C} = 15,39 m² dle [13]

 $S_d [m^2] \dots$ průtočná plocha potrubí, $S_d = 7,07 m^2 dle [13]$

 S_{PR} [m²] ... průtočná plocha za přechodovým kusem, S_{PR} = 9,00 m² dle [13]

 ξ_1 [-] ... součinitel místních ztrát na česlích, $\xi_1 = 0,61$, výpočet dle Kirschnera [17]

 ξ_2 [-] ... součinitel místních ztrát na vtoku, $\xi_2 = 0,1$ stanoveno dle [3]

 ξ_3 [-] ... součinitel místních ztrát na havarijním uzávěru (nožové šoupě), $\xi_3 = 0,10$ stanoveno dle [17]

 ξ_4 [-] ... součinitel místních ztrát na provozním uzávěru (nožové šoupě), $\xi_4 = 0,10$ stanoveno dle [17]

 ξ_5 [-] ... součinitel místních ztrát na přechodovém kusu, $\xi_5 = 0,07$ Bordova ztráta dle [3]

 ξ_6 [-] ... součinitel místních ztrát na regulačním uzávěru (segment), stanoven dle obrázku 3.10 jako pro šoupě v potrubí obdélníkového průřezu dle [2]

 β [-] ... součinitel tvaru česlic, β = 1,79 dle [17]

s [m] ... šířka česlic, s = 0,08 m dle [13]

b [m] ... světlost mezi česlicemi, b = 0,18 m dle [13]

 λ [-] ... součinitel tření, stanoven dle rovnice Colebrook-Whitea (3.5) [3]

 Δ [m] ... absolutní drsnost stěn potrubí, Δ = 0,0005 m (ocel) [1]

Re [-] ... Reynoldsovo kritérium [3]

v [m·s⁻¹] ... průřezová rychlost

 $\upsilon [m^2 \cdot s^{-1}] \dots$ kinematická viskozita vody

Obr. 3.10 Závislost ξ šoupěte na otevření [2]

- a/b₁ [-] ... otevření segmentu
- a [m] ... výška otvoru pod segmentem při daném otevření
- b1 [m] ... výška čtverce přechodového kusu před segmentovým uzávěrem

Obr. 3.11 Měrné křivky pro 1 spodní výpust vypočtenou pro daná otevření regulačního uzávěru, výpočet dle rovnice (3.2).

3.3.2. Bezpečnostní přelivy

V tělese hráze jsou navrženy hrazené bezpečnostní přelivy o 9 polích. Každé pole má šířku 14,0 m a je hrazeno segmentovým uzávěrem. Hrazená výška segmentu je 9,50 m. Pod segmentovým uzávěrem je v [1] navržena Scimemiho přelivná plocha o návrhové přepadové výšce 7,4 m. Kóta koruny Scimemiho přelivné plochy je na kótě 291,50 m n. m. Konstrukce přelivů je oddělena od sypané hráze bočními betonovými pilíři. Za přelivnou plochou se nachází skluz, který ústí do společného obdélníkového vývaru v patě hráze. Vývar i skluz je opatřen betonovými rozrážeči, dle [13]. Na obrázku 3.12 je zobrazen příčný řez bezpečnostním přelivem.

Obr. 3.12 Příčný řez bezpečnostním přelivem [13]

Výpočet měrných křivek bezpečnostních přelivů:

V programu MS Excel 2013 byly provedeny výpočty měrných křivek pro 5 úrovní otevření segmentových uzávěrů: 0 %, 25 %, 50 %, 75 % a 100 % průtočné plochy pod plně otevřeným segmentem. Měrné křivky pro všechna otevření byly vypočteny pro rozsah hladin v nádrži od koruny Scimemiho přelivné plochy (291,50 m n. m.) po hladinu v úrovni koruny hráze (305,00 m n. m.). Výsledné měrné křivky jsou zobrazeny na obrázku 3.15.

Otevření segmentu 0 %:

V případě segmentu s otevřením 0 % (zavřený segment) byl uvažován dokonalý přepad přes ostrou hranu na kótě 301,00 m n. m. (kóta horní hrany segmentu).

Výška mezi korunou ostrohranného přelivu a korunou hráze byla rozdělena na dílčí části po 0,5 m a pro každou přepadovou výšku bylo vypočteno průtočné množství. Z těchto hodnot byla vytvořena měrná křivka přepadu pro zavřený segment.

Podmínka nedokonalého přepadu dle [3] (obrázek 3.13):

$$h_d > s$$
 a současně $\frac{H}{s} < \left(\frac{H}{s}\right)_*$ (3.7)

 h_d [m] ... hloubka dolní vody

s [m] ... výška přelivu

H [m] ... spád hladin

h [m] ... přepadová výška

 $\left(\frac{H}{s}\right)_{*}$ [-] ... mezní poměr spádu hladin a výšky přelivu daný dle tabulky 3.2

Tab. 3.2 Mezní hodnoty pro nedokonalý přepad přes ostrou hranu dle [3]

<u>h</u> s	0,00	0,10	0,20	0,30	0,40	0 ,50	0,75	1,00	1,50	2,00	3,00
$\left(\frac{H}{s}\right)$.	1,00	0,90	0,83	0,78	0,75	0,73	0,68	0,67	0,67	0,71	0,85

Obr. 3.13 Nedokonalý přepad přes ostrou hranu dle [3]

Rovnice dokonalého ostrohranného přepadu dle [3]:

$$Q = m \, b_0 \sqrt{2g} h_0^{\frac{3}{2}} \tag{3.8}$$

 $Q [m^3 \cdot s^{-1}] \dots p$ řepadové množství

m [-] ... součinitel přepadu

b₀ [m] ... účinná šířka přelivu

h₀ [m] ... energetická přepadová výška

Stanovení součinitele přepadu m dle Bazina [3]:

$$m = \left(0,405 + \frac{0,003}{h}\right) \left[1 + 0,55 \left(\frac{h}{h+s_1}\right)^2\right]$$
(3.9)

h [m] ... přepadová výška

s1 [m] ... výška přelivu

Energetická přepadová výška dle [3]:

$$h_0 = h + \frac{\alpha v_0^2}{2g} \tag{3.10}$$

(3.11)

$$v_0 = \frac{q}{s}$$

S [m²] ... průtočná plocha

 $v_0 [m \cdot s^{-1}] \dots p$ řítoková rychlost

 $Q[m^3 \cdot s^{-1}] \dots$ přepadové množství

Vliv přítokové rychlosti:

Jelikož je přítoková rychlost v příčném profilu nad hrází dle rovnice (3.11) rovna cca 0,10 m·s⁻¹ dojde jejím vlivem dle rovnice (3.10) ke zvýšení přepadové výšky o 0,0005 m. Vzhledem k hodnotám vypočtených průtoků je možno považovat vliv přítokové rychlosti za zanedbatelný a rychlost v nádrži je uvažována nulová, $v_0 = 0$ m·s⁻¹, tudíž $h_0 = h$.

Boční kontrakce [3]:

$$b_0 = b - 0.1 \, n \, \xi \, h_0 \tag{3.12}$$

b [m] ... šířka přelivu, b = 14,0 m dle [13]

n [-]... počet zúžení, n = 2 dle[13]

 ξ [-]... součinitel závislosti tvaru pilíře na bočním zúžení, ξ = 0,15 dle [1]

Otevření segmentu 25 %, 50 %, 75 % a 100 %:

Pro daná otevření bylo vypočteno průtočné množství podle úrovně hladiny v nádrži nejdříve jako přepad přes Scimemiho přelivnou plochu, a dále jako výtok pod segmentem (volný výtok obdélníkovým otvorem ve svislé stěně). Přechod mezi přepadem a výtokem pod segmentem byl vypočten jako aritmetický průměr z průtokového množství vypočteného jako přepad a jako výtok otvorem dle [4]. V tabulce 3.3 je stanoveno určení způsobu výpočtu podle úrovně hladiny v nádrži podle [4] na základě schématu výpočtu výtoku pod segmentem zobrazeném na obrázku 3.14.

Tab. 3.3 Stanovení způsobu výpočtu na základě úrovně hladiny v nádrži dle [4]

-	
$h_1 \leq D$	přepad přes Scimemiho přelivnou plochu
D < h ₁ < 1.25D	průměr mezi přepadem a výtokem pod segmentem
$h_1 > D$	výtok pod segmentem

V případě otevření segmentu 25 % hladina v nádrži vystoupá nad horní hranu otevřeného segmentu, tudíž je nutno v této úrovni hladiny počítat výsledné průtočné množství jako součet průtoku vypočteného jako volný výtok obdélníkovým otvorem ve svislé stěně a přepad přes ostrou hranu. Výška mezi korunou přelivné plochy a korunou hráze byla rozdělena na dílčí části po 0,5 m a pro každou přepadovou či tlačnou výšku bylo vypočteno průtočné množství. Z těchto hodnot byly vytvořeny měrné křivky bezpečnostních přelivů pro daná otevření.

Přepad přes Scimemiho přelivnou plochu dle [3]:

Výpočet průtočného množství je téměř shodný jako při přepadu přes ostrou hranu dle vztahu (3.8). Rozdíl je ve stanovení součinitele přepadu. Součinitel přepadu byl stanoven dle Smetany [3] pro návrhovou přepadovou výšku $h_N = 7,40$ m a pro návrhový součinitel přepadu $m_N = 0,51$ dle [1].

$$m = m_N \left(0,63 + 0,37 \sqrt{\frac{h}{h_N}} \right) \tag{3.13}$$

h [m] ... přepadová výška

h_N [m] ... návrhová přepadová výška

Vliv přítokové rychlosti:

Jelikož je přítoková rychlost v příčném profilu nad hrází dle rovnice (3.11) rovna cca 1,0 m·s⁻¹ dojde jejím vlivem dle rovnice (3.10) ke zvýšení přepadové výšky o 0,05 m. Vzhledem k hodnotám vypočtených průtoků je možno považovat vliv přítokové rychlosti za zanedbatelný a rychlost v nádrži je uvažována nulová pro výpočet přepadu i pro výpočet výtoku pod segmentem, $v_0 = 0$ m·s⁻¹, tudíž h₀ = h.

Výtok pod segmentem (volný výtok obdélníkovým otvorem ve svislé stěně za předpokladu nulové přítokové rychlosti) dle [15]:

$$Q = \frac{2}{3} \mu b \sqrt{2g} \left(h_1^{3/2} - h_2^{3/2} \right)$$
(3.14)

μ [-] ... výtokový součinitel

b [m] ... šířka výtokového otvoru

h1 [m] ... výška od koruny přelivu po hladinu vody nádrži

h2 [m] ... výška od spodní hrany segmentu po hladinu v nádrži

Stanovení výtokového součinitele µ dle [5] je znázorněno na obrázku 3.14:

D/h1 [-]... otevření segmentu

D = a [m] ... výška otvoru pod segmentem při daném otevření

θ [°] ... úhel otočení segmentu

Cx [-] ... přepadový součinitel pro danou přepadovou výšku

$$C_x = m\sqrt{2g} \tag{3.15}$$

C [-] ... výtokový součinitel pro danou přepadovou výšku

$$C = \frac{2}{3} \mu \sqrt{2g} \tag{3.16}$$

$$\frac{c}{c_x} = \frac{\frac{2}{3}\mu\sqrt{2g}}{m\sqrt{2g}} \implies \mu = \frac{3}{2}\frac{c}{c_x}m$$
(3.17)

Obr. 3.15 Měrné křivky jednoho pole bezpečnostních přelivů pro daná otevření

3.3.3. Vodní elektrárna

V tělese hráze je navržena vodní elektrárna o celkovém instalovaném výkonu 55 MW. V objektu vodní elektrárny jsou umístěny 4 kaplanovy turbíny o průměru oběžného kola 3,0 m. Hltnost jedné turbíny při turbínovém provozu je dle [6] 80 m³·s⁻¹. Pro volnoběžný provoz byla hltnost stanovena řádovým odhadem na 20 % hltnosti turbínového provozu, což odpovídá hodnotě 16 m³·s⁻¹, dle [23]. Turbíny jsou podle [6] navrženy na návrhový spád 19,20 m. Minimální hladina dolní vody je na kótě 283,50 m n. m. Na vtoku a výtoku na turbíny jsou osazeny uzávěry, dle [13]. Na obrázku 3.12 je zobrazen příčný řez vodní elektrárnou.

Obr. 3.16 Příčný řez vodní elektrárnou [13]

Výpočet měrných křivek vodní elektrárny (VE):

Výpočet měrných křivek VE byl proveden v programu MS Excel 2013 na principu výtoku ponořeným otvorem ve svislé stěně (obrázek 3.17) vždy pro jednu turbínu. Celková hloubka nádrže byla od úrovně hladiny zatopeného vtoku do VE (294,15 m n. m. [13]) po úroveň koruny hráze (305,00 m n. m.) rozdělena na dílčí části po 1,0 m a pro každou úroveň hladiny byla vzhledem k minimální hladině dolní vody (283,50 m n. m. [13]) určena tlačná výška a vypočteno průtočné množství dle vztahu (3.20). Byly vypočteny měrné křivky pro turbínový a volnoběžný provoz.

Výtok ponořeným otvorem ve svislé stěně dle [3]:

Obr. 3.17 Schéma výtoku ponořeným otvorem ve svislé stěně [3]

Vzorec pro výtokové množství dle [3]:

$$Q = \mu_p S \sqrt{2g \left(h + \frac{p_0 - p_c}{\rho g} + \frac{\alpha v_0^2}{2g}\right)}$$
(3.18)

$$Q [m^3 \cdot s^{-1}] \dots v \acute{v} tokov\acute{e} množství
S [m^2] \dots průtočná plocha v \acute{v} tokového otvoru
g [m \cdot s^{-2}] \dots tíhové zrychlení
\rho [kg \cdot m^{-3}] \dots hustota vody
p_0 [Pa] \dots tlak na horní hladinu
p_c [Pa] \dots tlak na dolní hladinu
\alpha [-] \dots Coriolisovo číslo
v_0 [m \cdot s^{-1}] \dots p \check{r} toková rychlost
H [m] … spád hladin$$

$$H = z_1 + y_1 - z_2 - y_1 \qquad \text{(Obr. 3.17)}$$

 μ_p [-] ... součinitel výtoku pro ponořený výtok

Jelikož je tlak na obě hladiny stejný ($p_0 = p_c$) a přítoková rychlost v nádrži uvažována nulová ($v_0 = 0 \text{ m}\cdot\text{s}^{-1}$), lze vztah upravit a stanovit výtokové množství takto:

$$Q = \mu_p S \sqrt{2gH} \tag{3.20}$$

Součinitel výtoku pro ponořený výtok μ_p byl stanoven dle vztahu (3.20) na základě návrhového spádu a hltnosti turbíny. Součinitel výtoku pro turbínový provoz je $\mu_{p,1} = 0,139$ a pro volnoběžný provoz $\mu_{p,2} = 0,028$.

Obr. 3.18 Měrné křivky vodní pro 1 turbínu VE pro turbínový a volnoběžný provoz

3.4. Zadání měrných křivek objektů do programu HEC-RAS

V programu MS Excel 2013 byly vytvořeny měrné křivky pro jednu spodní výpust, jedno pole bezpečnostních přelivů a jednu turbínu VE pro různá otevření uzávěrů. Tyto křivky byly vloženy do programu HEC – RAS a propojeny s vytvořenými geometrickými daty. Program HEC – RAS následně provádí výpočet průtoku funkčními objekty na základě hloubky vody v nádrži.

3.5. Předpoklady řešení

3.5.1. Nerovnoměrné ustálené proudění

Program HEC – RAS nabízí možnost výpočtu nerovnoměrného ustáleného nebo neustáleného proudění. Pro stanovení kapacity koryta a přehradní hráze je dostačující výpočet nerovnoměrného ustáleného proudění.

Při ustáleném proudění se hydraulické charakteristiky (průtok, průtočná plocha, průřezová rychlost apod.) v čase nemění a závisí pouze na poloze, dle [3]. Jelikož se v přirozených nebo upravovaných korytech toků mění průtočná plocha a podélný sklon po délce, vyskytuje se zde proudění nerovnoměrné. Při nerovnoměrném ustáleném proudění se průtok v jednotlivých příčných profilech nemění, ale v každém profilu se mění hloubka, průtočná plocha a průřezová rychlost. Výpočet nerovnoměrného ustáleného proudění se řeší metodou po úsecích (kapitola 3.6.1.).

3.5.2. Drsnost koryta

Hodnoty drsnostního součinitele n byly stanoveny odhadem na základě fotodokumentace (obrázek 3.19) dle [3]. Drsnostní součinitel koryta toku byl stanoven na $n_1 = 0,027$ a drsnostní součinitel inundačního území byl stanoven na $n_2 = 0,045$. V inundačním území bude vysazena vegetace.

Obr. 3.19 Fotodokumentace daného úseku toku [20]

3.5.3. Vytvoření hrázek a inefektivních ploch

Při určení kapacity úseku koryta toku je nutné, aby byla do průtočné plochy profilu při úrovni hladiny pod břehovými čarami započítána jen průtočná plocha koryta, nikoli i průtočná plocha inundačního území. Z tohoto důvodu byly v programu HEC – RAS vytvořeny hrázky (levees) a inefektivní plochy (ineffektive flow areas).

Hrázky (levees) byly ve výpočtu nastaveny v místě levobřežní hráze v jednotlivých příčných profilech. Pokud výšková úroveň hladiny vody v korytě nepřekročí výškovou úroveň

hrázky, tak program oblast v inundačním území za hrázkou nepočítá do aktivní průtočné plochy a hladina vody v této oblasti není vykreslena. Funkce hrázek je znázorněna na obrázku 3.20.

Inefektivní plochy (ineffective flow areas) byly vytvořeny v místě hrázek a v profilech, ve kterých je to vyžadováno terénem, jako v případě pravé inefektivní plochy na obrázku 3.20. Inefektivní plochy byly zadány do výškové úrovně 0,5 m nad terén, z důvodu uvažování nulové rychlosti proudění vody při nízké hladině v inundačním území s vysazenou vegetací. Pokud výšková úroveň vody v korytě nepřekročí výškovou úroveň inefektivní plochy, tak program uvažuje průtočnou plochu v této oblasti jako pasivní a nezahrnuje ji do průtočné plochy koryta. Hladina vody v této oblasti je sice vykreslena, ale průtočná rychlost vody je uvažována nulová. Dále byly bloky inefektivních ploch vytvořeny v profilu nad hrází (obrázek 3.20), z důvodu započítávání jen průtočné plochy v místech funkčních objektů. Na obrázku 3.21 jsou znázorněny infektivní plochy kolem funkčních objektů hráze.

Obr. 3.20 Umístění hrázek a inefektivních ploch v příčném profilu (WS – hladina vody v profilu, Ground – terén, Levee – hrázka, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station – staničení)

Obr. 3.21 Umístění inefektivních ploch v profilu nad hrází (WS – hladina vody v profilu, Ground – terén, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station – staničení)

Obr. 3.22 Umístění inefektivních ploch v podélném řezu hrází (WS – hladina vody v profilu, Ground – terén, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station – staničení)

3.6. Výpočet nerovnoměrného ustáleného proudění

3.6.1. Metoda po úsecích

Pro výpočet nerovnoměrného ustáleného proudění program HEC - RAS používá metodu po úsecích. Metoda po úsecích spočívá v rozdělení řešeného úseku koryta na úseky, které od sebe dělí jednotlivé průtočné profily. Pro úsek j ohraničený profily i a i+1 lze zapsat Bernoulliho rovnici (srovnávací rovina proložena dnem dolního profilu) viz. obrázek 3.23.

Obr. 3.23 Schéma pro výpočet nerovnoměrného proudění metodou po úsecích [3]

Bernoulliho rovnice pro sousední profily [3]:

$$i_{0j} \Delta L_j + h_i + \frac{\alpha v_i^2}{2g} = h_{i+1} + \frac{\alpha v_{i+1}^2}{2g} + h_{zj}$$
(3.21)

i_{0j} [-] ... průměrný podélný sklon koryta daného úseku

 ΔL_j [m] ... délka úseku

h_i, h_{i+1} [m] ... hloubka vody v daném profilu

 α [-] ... Coriolisovo číslo

 $v_i, v_{i+1} [m \cdot s^{-1}] \dots$ průtočná rychlost v daném profilu

 $h_{zj} \ [m] \ \ldots \ celková \ ztrátová výška mechanické energie na daném úseku$

$$h_{z\,j} = h_{t\,j} + h_{m\,j} \tag{3.22}$$

h_{tj} [m] ... ztráty třením po délce

$$h_{tj} = i_{pj} \Delta L_j \tag{3.23}$$

i_{pj} [-] ... průměrný sklon čáry energie

Výpočet sklonu čáry energie vychází z Chézyho rovnice a je založen na průměrných hodnotách C_p , S_p a R_p v daném úseku definovaných dle vztahů (3.24) – (3.27).

$$i_{pj} = \frac{Q^2}{S_{pj}^2 C_{pj}^2 R_{pj}}$$
(3.24)

 $Q[m^3 \cdot s^{-1}] \dots$ průtok daným úsekem koryta

 $S_{pj} [m^2] \dots$ průměrná hodnota průtočné plocha mezi sousedními profily $S_{pj} = \frac{S_i + S_{i+1}}{2}$ (3.25)

 C_{pj} [m^{0,5}·s⁻¹] ... průměrná hodnota Chézyho rychlostního součinitele mezi sousedními profily

$$C_{p\,j} = \frac{C_i + C_{i+1}}{2} \tag{3.26}$$

R_{pj} [m] ... průměrná hodnota hydraulického poloměru mezi sousedními profily

$$R_{p\,j} = \frac{R_i + R_{i+1}}{2} \tag{3.27}$$

h_{mj} [m] ... místní ztráty – způsobeny především tvarovými rozdíly mezi profily

$$h_{m\,j} = \xi \left| \frac{\alpha \, v_{i+1}^2 - \alpha \, v_i^2}{2 \, g} \right| \tag{3.28}$$

 ξ [-] ... součinitel místní ztráty

Při výpočtu se vždy postupuje od profilu, v kterém je známá hloubka vody (okrajová podmínka). Například kritická hloubka vody při přechodu z říčního do bystřinného proudění na začátku skluzu. Při bystřinném proudění výpočet postupuje po proudu a při říčním proti proudu dle obrázku 3.24.

3.6.2. Okrajové podmínky

Aby program mohl začít výpočet průběhu hladin metodou po úsecích, je nutno zadat okrajové podmínky. Podle směru výpočtu metody po úsecích znázorněného na obrázku 3.24 lze pro výpočet říčního proudění (subcritical flow regime) zadat okrajovou podmínku pouze do dolního profilu řešeného úseku a pro výpočet bystřinného proudění (supercritical flow regime) zadat okrajovou podmínku pouze do profilu horního. Pokud není jasné, zda se jedná o říční nebo kritické proudění, je nutno použít smíšený režim proudění (mixed flow regime). V tomto případě je proudění v části řešeného úseku říční a v části bystřinné. Pro smíšený režim proudění je nutno zadat okrajovou podmínku jak v dolním tak v horním profilu úseku. Jako okrajovou podmínku lze zadat výškovou kótu hladiny při určitém průtoku (known W.S.), kritickou hloubku (critical depth), podélný sklon v daném profilu (normal depth) nebo měrnou křivku daného profilu (rating curve).

Pro výpočet daného úseku toku byl použit smíšený režim proudění a jako okrajové podmínky byly zadány podélné sklony toku v horním a dolním profilu získané z geometrických dat. Podélný sklon koryta v horním profilu je $i_{0,h} = 0,003$ a v dolním profilu je $i_{0,d} = 0,001$. Po proběhnutí výpočtu bylo zjištěno, že pro rozsah průtoků menší než Q_{kap} je režim proudění vždy říční.

3.6.3. Průtoky pro výpočet nerovnoměrného ustáleného proudění

Výpočet nerovnoměrného ustáleného proudění byl proveden pro řadu N – letých průtoků, mezi které byly vloženy další průtoky (tabulka 3.4) z důvodu hladšího průběhu měrných křivek objektu hráze a profilů koryta toku. Celkem byl výpočet proveden pro 22 průtoků. Tyto průtoky byly zadány do profilu nad objektem hráze.

i [-]	$Q[m^3\cdot s^{-1}]$	popis	i [-]	$Q [m^3 \cdot s^{-1}]$	popis
1	100	-	12	5303	Q10
2	190	Qa	13	6500	-
3	300	-	14	8185	Q50
4	500	-	15	9438	Q100
5	700	-	16	10000	-
6	900	-	17	12383	Q500
7	1100	-	18	13665	Q1000
8	1277	Q2	19	13730	-
9	2000	-	20	15000	-
10	3098	Q3	21	17410	-
11	4052	Q5	22	17962	Q10000

Tab. 3.4 Průtoky pro výpočet nerovnoměrného ustáleného proudění

3.7. Posouzení vlivu zpětného zatopení na kapacitu funkčních objektů hráze

Po provedení výpočtu nerovnoměrného ustáleného proudění byla z programu HEC – RAS převzata měrná křivka příčného profilu pod hrází (staničení km 2,292). Z důvodu stanovení kóty hladiny vody v profilu pro libovolný průtok v rozsahu měrné křivky byla tato křivka aproximována exponenciální funkcí v programu MS Excel. Na základě pohybu hladiny v tomto profilu bylo provedeno posouzení vlivu zpětného zatopení na kapacitu jednotlivých funkčních objektů hráze. Měrná křivka profilu pod hrází je zobrazena na obrázku 3.25.

Obr. 3.25 Měrná křivka profilu pod hrází (staničení km 2,292)
3.7.1. Posouzení bezpečnostních přelivů

V případě bezpečnostních přelivů bylo pro kapacitní průtok přelivů Q_{kap} = 16640 m³·s⁻¹ posouzeno, zda se jedná o nedokonalý přepad (obrázek 3.26) přes jez dle Bachmětěva [3].

Obr. 3.26 Nedokonalý přepad přes jez [3]

Podmínka nedokonalého přepadu přes jez dle [3]:

 $\begin{aligned} h_{d} + d > s & a \text{ současně} & \frac{H}{s} < \left(\frac{H}{s}\right)_{*} \end{aligned} \tag{3.29} \\ h_{d} [m] \dots \text{ hloubka dolní vody} \\ s [m] \dots \text{ výška přelivu, } s = 1,55 \text{ m dle [13]} \\ H [m] \dots \text{ spád hladin, } H = 13,25 \text{ m} \\ h [m] \dots \text{ přepadová výška, } h = 13,50 \text{ m} \\ d [m] \dots \text{ hloubka vývaru} \\ \left(\frac{H}{s}\right)_{*} [-] \dots \text{ mezní poměr spádu hladin a výšky přelivu dle obrázku 3.27, } \left(\frac{H}{s}\right)_{*} = 1,25 \end{aligned}$

Obr. 3.27 Určení mezních hodnot pro zatopený přepad přes jez dle [3]

$$\frac{H}{s} = 8,55 > \left(\frac{H}{s}\right)_{*} = 1,25$$
 (3.30)

Na základě měrné křivky příčného profilu pod hrází byla stanovena platnost první podmínky ze vztahu (3.29) pro průtoky větší než 14500 m³·s⁻¹. Platnost druhé podmínky byla ověřena výpočtem. Ze vztahu (3.30) vyplývá, že podmínka nebyla splněna a v případě řešených bezpečnostních přelivů se jedná o dokonalý přepad přes jez, tudíž jejich kapacita není ovlivněna zpětným zatopením.

3.7.2. Posouzení spodních výpustí a vodní elektrárny

V případě spodních výpustí je zohledněn vliv zatopení dolní vodou od úrovně osy potrubí na výtoku (265,50 m n. m.). Výtokový objekt vodní elektrárny je zatopen i při minimálním průtoku v toku, tudíž je zohledněn vliv zatopení pro celý výpočet vodní elektrárny.

Výpočet měrných křivek spodních výpustí a vodní elektrárny ovlivněných hladinou dolní vody:

Řešení bylo provedeno pro stav, kdy jsou všechny bezpečnostní přelivy a spodní výpusti plně otevřeny. Na základě měrných křivek spodních výpustí vypočtených v kapitole 3.3.1 jako volný výtok hydraulicky malým otvorem ve svislé stěně, měrných křivek plně otevřených hrazených přelivů stanovených v kapitole 3.3.2 a měrných křivek VE vztažených k minimální hladině v toku dle kapitoly 3.3.3 byl určen kapacitní průtok funkčních objektů hráze pro různé úrovně hladiny v nádrži. Pro tento průtok byla z měrné křivky profilu pod hrází (obrázek 3.25) odečtena úroveň hladiny dolní vody. Pro tuto úroveň hladiny dolní vody byly vypočteny měrné křivky spodních výpustí a VE jako výtok ponořeným otvorem ve svislé stěně dle rovnice (3.20). Na základě nových křivek byly opakovaným iteračním postupem vypočteny měrné křivky spodních výpustí ovlivněných hladinou dolní vody (obrázek 3.28) a měrné křivky VE ovlivněné hladinou dolní vody (obrázek 3.29). Na základě těchto křivek byl stanoven kapacitní průtok funkčních objektů hráze ovlivněných zpětným zatopením dolní vodou.

Řešení bylo dále provedeno pro 3 typy provozu VE: turbínový, volnoběžný a odstavení VE. Výsledky výpočtu jsou znázorněny v tabulce 4.1 a na obrázku 3.28 a 3.29.

Obr. 3.28 Měrné křivky jedné plně otevřené spodní výpusti pro volný výtok a ovlivnění zatopení dolní vodou

Obr. 3.29 Měrné křivky jedné turbíny VE pro spád vztažený v minimální hladině dolní vody a k stoupající hladině dolní vody (turbínový provoz)

4. Vyhodnocení výsledků výpočtu

4.1. Kapacita koryta toku

Pro určení kapacity je nutno nalézt nejméně kapacitní profil daného úseku toku. Kapacita celého úseku je potom rovna kapacitě tohoto profilu. Nejméně kapacitní profil (staničení km 0,355) byl určen pomocí podélného profilu grafického výstupu výsledků výpočtu nerovnoměrného ustáleného proudění v programu HEC – RAS. Poté byl pomocí příčného profilu grafického výstupu výsledků výpočtu (obrázek 4.1) stanoven přibližný rozsah průtoků, při kterém dojde k vybřežení. Byl proveden nový výpočet pro dané rozpětí průtoků s krokem 1 m³·s⁻¹ mezi průtoky. K vybřežení došlo při průtoku 904 m³·s⁻¹, takže kapacita koryta byla stanovena na $Q_{kap} = 903 \text{ m}^3 \cdot \text{s}^{-1}$. Na obrázku 4.2 je znázorněna měrná křivka nejméně kapacitního profilu.

Obr. 4.1 Nejméně kapacitní profil (staničení km 0,355) řešeného úseku toku (WS PF 7 – hladina vody v profilu při průtoku 1000 m³·s⁻¹, WS PF 6 – hladina vody v profilu při průtoku 900 m³·s⁻¹, Ground – terén, Levee – hrázka, Ineff – inefektivní plocha, Bank Sta – břehová čára, Elevation – nadmořská výška, Station – staničení)

Obr. 4.2 Měrná křivka nejméně kapacitního profilu (staničení km 0,355)

4.2. Kapacita funkčních objektů hráze

Kapacita objektu hráze byla stanovena jako součet kapacitních průtoků plně otevřených funkčních objektů. Kapacitní průtoky funkčních objektů byly získány z jejich měrných křivek pro maximální hladinu v nádrži (303,00 m n. m.) a pro hladinu v úrovni koruny hráze (305,00 m n. m.). Bylo uvažováno zpětné ovlivnění dolní vodou.

Řešení bylo provedeno pro 3 typy provozu VE:

- a) Turbínový provoz
- b) Volnoběžný provoz
- c) Odstavení VE

Výsledky řešení jsou zobrazeny v tabulce 4.1 a měrná křivka objektu hráze je znázorněna na obrázku 4.3.

		Výpusti	VE	Přelivy	Celkem
	Hh	Qkap,V	Qkap,VE	Qkap,P	Qkap
_	[m n. m.]	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$
Turbínový	305.00	1064	266	15310	16640
provoz VE	303.00	999	250	11815	13063
Volnoběžný	305.00	1065	53	15310	16428
provoz VE	303.00	1000	50	11815	12865
Odstavení	305.00	1065	0	15310	16375
VE	303.00	1000	0	11815	12815

Tab. 4.1 Kapacitní průtoky funkčních objektů hráze pro různý provoz VE
(pro 10 výpustí, 9 polí bezpečnostních přelivů, 4 turbíny VE)

Obr. 4.3 Měrná křivka objektu hráze pro turbínový provoz VE

5. Závěr

Kapacita daného úseku toku byla stanovena pomocí programu HEC – RAS na $Q_{kap} = 903 \text{ m}^3 \cdot \text{s}^{-1}$. Při ustáleném nerovnoměrném proudění nemá vodní nádrž žádný vliv na průtoky v korytě pod ní. Při neustáleném nerovnoměrném proudění hraje nádrž významnou roli při zachycení části povodňových průtoků akumulací vody v retenčním prostoru. Jelikož je ale charakter údolí nad hrází úzký a dlouhý, tak nádrž disponuje poměrně malým retenčním objemem a nebude mít velký vliv na zachycení velkých povodní.

Jednorozměrný (1D) model je dostačující pro výpočet proudění funkčními objekty hráze a proudění v korytě toku, tudíž i pro stanovení kapacity hráze a úseku koryta toku. Při překročení kapacitního průtoku úseku toku $Q_{kap} = 903 \text{ m}^3 \cdot \text{s}^{-1}$ lze v 1D modelu očekávat nerovnoměrný rozliv vody do poměrně širokého inundačního území, který se projevuje přechodem mezi říčním a bystřinným prouděním a vede k nerealistickým výsledkům výpočtu. V případě řešení problému proudění v inundačním území by bylo vhodné použít 1,5 dimenzionální (1,5D) nebo dvojrozměrný (2D) model proudění. Princip 1,5D modelu proudění vychází z matematického popisu proudění za předpokladu 1D aproximace a 2D model uvažuje plošné rozdělení hloubek a rychlostí v daném území. Tyto typy modelování jsou ovšem oproti 1D modelu náročnější na vstupní data a dobu zpracování, dle [22].

Kapacita objektu hráze byla odečtena z měrných křivek jednotlivých funkčních objektů vypočtených v programu MS Excel 2013 pro hladinu v úrovni koruny hráze (305,00 m n. m.) a pro maximální hladinu v nádrži (303,00 m n. m.). Při řešení bylo uvažováno zpětné zatopení dolní vodou. Byl řešen stav, kdy jsou všechny přelivy a spodní výpusti plně otevřeny v souvislosti s třemi různými provozy vodní elektrárny (turbínový, volnoběžný, odstavení VE). Vypočtené kapacity jednotlivých funkčních objektů jsou uvedeny v tabulce 4.1. Při zpětném zatopení vodou lze očekávat snížení celkové kapacity objektů hráze přibližně o 2%. Maximální kapacita objektů je 13063 m³·s⁻¹ při maximální hladině v nádrži (303,00 m n. m.) a 16640 m³·s⁻¹ při hladině v nádrži na úrovni koruny hráze (305,00 m n. m.).

Výsledky výpočtu jsou zatíženy nejistotami ve vstupních datech. Tyto nejistoty jsou primárně dány stanovením výtokových součinitelů, součinitelů místních ztrát a odhadem drsnosti koryta toku.

6. Seznam použité literatury

[1] CREA Hydro & Energy. Bawanur - studie proveditelnosti. Erbil. 2013. 27 s.

[2] BOOR, Boris, Jiří KUNŠTÁTSKÝ a Cyril PATOČKA. *Hydraulika pro vodohospodářské stavby*. 1. vyd. Praha: SNTL, 1968, 516 s.

[3] JANDORA, Jan a Jan ŠULC. *Hydraulika: modul 01*. Vyd. 1. Brno: Akademické nakladatelství CERM, 2007, 178 s.

[4] HEC-RAS: Hydraulic reference manual, 2010, 417 s.

[5] SENTÜRK, Fuat. *Hydraulics of Dams and Reservoirs*. Highlands Ranch, Colo: Water Resources Publications, 1994, 788 s.

[6] High Comittee of Garmian. Bawanur Dam: Project description & Scope of the Work. 22 s.

[7] Diyala River. In: *Wikipedia: the free encyclopedia* [online]. San Francisco (CA): Wikimedia Foundation, 2001- [cit. 2014-05-13]. Dostupné z: http://en.wikipedia.org/wiki/Diyala_River

[8] Lokalita Bawanur mapové podklady.

[9] Přehrada Bawanur. *CREA Hydro&Energy* [online]. [cit. 2014-05-13]. Dostupné z: http://www.creacz.com/cz/bawanur/

[10] STARÝ, Miloš, Pavel MENŠÍK a Daniel Marton. Vodohospodářské řešení vodní nádrže Bawanur. studie. Brno. 2010. 54 s.

[11] Zaměření příčných profilů daného úseku toku

[12] AutoCAD Civil 3D. CAD STUDIO. [online]. [cit. 2014-05-18]. Dostupné z: http://www.cadstudio.cz/civil3d

[13] Výkresová dokumentace: *CREA Hydro&Energy*, *Feasibility Study & Design For Bawanur Dam, Garmian Irrigation Canal in Garmian*, 2012

[14] KRATOCHVÍL, Jiří. *Projektování přehrad: komplexní projekt HT*. Vyd. 1. Brno: Vysoké učení technické v Brně, 1988, 101 s.

[15] GABRIEL, Pavel. Jezy. 1. vyd. Praha: SNTL, 1989, 453 s.

[16] AUTODESK. Uživatelská příručka AutoCAD Civil 3D. 2013.

[17] KRATOCHVÍL, Jiří a Vlastimil STARA. Přehrady. Vyd. 2. Brno: VUT, 1990, 225 s

[18] PATOČKA, Cyril a Jiří KUNŠTÁCKÝ. Základy hydrauliky a hydrologie pro inženýrské konstrukce a dopravní stavby. Vyd.1. Praha: Státní nakladatelství technické literatury, 1966, 250 s.

[19] Google maps. [online]. [cit. 2014-05-18]. Dostupné z: https://www.maps.google.cz/

[20] Fotodokumentace Bawanur

[21] HEC-RAS: User's Manual, 2010, 790 s.

[22] JANDORA, Jan a Hana UHMANNOVÁ. *Proudění v systémech říčních koryt, Modul 01*. Studijní opora, VUT FAST, Brno, 2007. 119 s.

[23] PÁNA, Pavel, Bc. *Studie převedení extrémních povodní bezpečnostním přelivem a skluzem VD Dalešice*. Diplomová práce. Brno, 2011. Vysoké učení technické v Brně. Fakulta stavební. Ústav vodních staveb. Vedoucí diplomové práce Doc. Ing. Jan Jandora, Ph. D. 118s.

7. Seznam tabulek

Tab. 2.1 N-leté průtoky [10]

Tab. 3.1 Příklad zaměření příčného profilu (PF09) [11]

Tab. 3.2 Mezní hodnoty pro nedokonalý přepad přes ostrou hranu [3]

Tab. 3.3 Stanovení způsobu výpočtu na základě úrovně hladiny v nádrži dle [4]

Tab. 3.4 Průtoky pro výpočet nerovnoměrného ustáleného proudění

Tab. 4.1 Kapacitní průtoky funkčních objektů hráze pro různý provoz pro VE (pro 10 výpustí, 9 polí bezpečnostních přelivů, 4 turbíny VE)

8. Seznam obrázků

Obr. 2.1 Umístění vodního díla Bawanur [19]

Obr. 2.2 Umístění přehradní hráze Bawanur (varianta P1) [1]

Obr. 3.1 Výřez z povrchu TIN s povinnými spojnicemi

Obr. 3.2 Stopy zalomených příčných řezů, povrch TIN zobrazen vrstevnicemi

Obr. 3.3 Objekt přehradní hráze

Obr. 3.4 Čára zatopených objemů nádrže [10]

Obr. 3.5 Situace geometrických dat daného úseku v programu HEC - RAS

Obr. 3.6 Podélný profil daného úseku v programu HEC – RAS

Obr. 3.7 Příklad příčného profilu daného úseku v programu HEC - RAS

Obr. 3.8 Příčný řez spodní výpustí [13]

Obr. 3.9 Schéma volného výtoku otvorem ve svislé stěně [3]

Obr. 3.10 Závislost ξ šoupěte na otevření [2]

Obr. 3.11 Měrné křivky pro 1 spodní výpust vypočtenou jako pro daná otevření regulačního uzávěru (volný výtok hydraulicky malým otvorem)

Obr. 3.12 Příčný řez bezpečnostním přelivem [13]

Obr. 3.13 Nedokonalý přepad přes ostrou hranu [3]

Obr. 3.14 Schéma výpočtu výtoku pod segmentem a určení C/Cx v závislosti na D/h1 [5]

Obr. 3.15 Měrné křivky jednoho pole bezpečnostních přelivů pro daná otevření

Obr. 3.16 Příčný řez vodní elektrárnou [13]

Obr. 3.17 Schéma výtoku ponořeným otvorem ve svislé stěně [3]

Obr. 3.18 Měrné křivky vodní pro 1 turbínu VE pro turbínový a volnoběžný provoz

Obr. 3.19 Fotodokumentace daného úseku toku [20]

Obr. 3.20 Umístění hrázek a inefektivních ploch v příčném profilu

Obr. 3.21 Umístění inefektivních ploch v profilu nad hrází

Obr. 3.22 Umístění inefektivních ploch v příčném řezu hrází

Obr. 3.23 Schéma pro výpočet nerovnoměrného proudění metodou po úsecích [3]

Obr. 3.24 Směr výpočtu při řešení nerovnoměrného proudění metodou po úsecích [3]

Obr. 3.25 Vyhlazená měrná křivka profilu pod hrází (2291,89)

Obr. 3.26 Nedokonalý přepad přes jez [3]

Obr. 3.27 Určení mezních hodnot pro zatopený přepad přes jez [3]

Obr. 3.28 Měrné křivky jedné plně otevřené spodní výpusti pro volný výtok a ovlivnění zatopení dolní vodou

Obr. 3.29 Měrné křivky jedné turbíny VE pro spád vztažený v minimální hladině dolní vody a k stoupající hladině dolní vody (turbínový provoz)

Obr. 4.1 Nejméně kapacitní profil (355,03) řešeného úseku toku (rozsah průtoků pro vybřežení)

Obr. 4.2 Měrná křivka nejméně kapacitního profilu (355,03)

Obr. 4.3 Měrná křivka objektu hráze pro turbínový provoz VE

9. Seznam použitých zkratek

LOB ... levá břehová čára (left overbank)

PF ... průtok (grafické výstupy programu HEC – RAS)

ROB ... pravá břehová čára (right overbank)

TIN ... nepravidelná trojúhelníková síť (triangular irregular network)

VE ... vodní elektrárna

10.Seznam použitých symbolů

 $\left(\frac{H}{s}\right)$ [-]... mezní poměr spádu hladin a výšky přelivu

∆L_j [m] ... délka úseku

 μ [-] … součinitel výtoku otvorem

a [m] ... výška otevření uzávěru

b [m] ... šířka výtokového otvoru

- b₀ [m] ... účinná šířka přelivu
- b1 [m] ... výška čtverce přechodového kusu před segmentovým uzávěrem
- C [-] ... výtokový součinitel
- C [m^{0,5}·s⁻¹] ... Chézyho rychlostní součinitel
- C_x [-] ... součinitel přepadu dle [5]
- d [m] ... hloubka vývaru
- D = a [m] ... výška otvoru pod segmentem při daném otevření
- D_p [m] ... průměr potrubí
- emax [m] ... největší svislá vzdálenost obrysu otvoru od těžiště otvoru
- g $[m \cdot s^{-2}] \dots$ tíhové zrychlení
- h [m] ... přepadová výška
- H [m] ... spád hladin
- h₀ [m] ... energetická přepadová výška
- h1 [m] ... výška od koruny přelivu po hladinu vody nádrži
- h2 [m] ... výška od spodní hrany segmentu po hladinu v nádrži
- h_d [m] ... hloubka dolní vody
- H_i [m n n.] ... úroveň hladiny v nádrži
- $h_i \left[m\right] \dots$ hloubka vody
- h_N [m] ... návrhová přepadová výška
- h_T [m] ... hloubka těžiště výtokového otvoru pod hladinou
- h_{tj} [m] ... ztráty třením po délce
- h_{zj} [m] ... celková ztrátová výška mechanické energie
- ioj [-] ... průměrný podélný sklon koryta
- ipj [-] ... průměrný sklon čáry energie
- L [m] ... délka potrubí
- m [-] ... součinitel přepadu
- m_N [-] ... návrhový součinitel přepadu
- N [rok] ... časové období
- p [Pa] ... tlak
- $Q [m^3 \cdot s^{-1}] \dots průtok$
- R [m] ... hydraulický poloměr
- Re [-] ... Reynoldsovo kritérium

- s [m] ... výška přelivu
- S $[m^2]$... průtočná plocha
- $S_2 \ [m^2]$... průtočná plocha na výtoku z potrubí
- $S_{\check{C}}$ [m²]... průtočná plocha česlí
- $S_{P\check{R}} \; [m^2] \ldots \; průtočná plocha za přechodovým kusem$
- $S_V[m^2]$... zúžená průtočná plocha potrubí
- v [m·s⁻¹] ... průřezová rychlost
- $v_0 \ [m \cdot s^{-1}] \ \dots \ p$ řítoková rychlost
- X [m] ... souřadnice bodu
- Y [m] ... souřadnice bodu
- Z [m n. m.] ... nadmořská výška bodu
- α [-] ... Coriolisovo číslo
- λ [-] ... součinitel tření
- ξ [-] ... součinitel místních ztrát; součinitel závislosti tvaru pilíře na bočním zúžení
- $\rho \; [kg {\cdot} m^{\text{-}3}] \ldots$ hustota vody
- $\upsilon \; [m^2 \cdot s^{\text{-1}}] \; ... \;$ kinematická viskozita vody
- $\boldsymbol{\varTheta} [^{\circ}] \ldots$ úhel otočení segmentu

11.Seznam příloh

Příloha č. 1 – Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 100 %

Příloha č. 2 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 80 %

Příloha č. 3 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 60 %

Příloha č. 4 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 40 %

Příloha č. 5 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 40 %

Příloha č. 6- Výsledky výpočtu měrné křivky pro uzavřený segment pro 1 pole přelivu

Příloha č. 7 - Výsledky výpočtu měrné křivky pro otevření segmentu 25 % pro 1 pole přelivu

Příloha č. 8 - Výsledky výpočtu měrné křivky pro otevření segmentu 50 % pro 1 pole přelivu

Příloha č. 9 - Výsledky výpočtu měrné křivky pro otevření segmentu 75 % pro 1 pole přelivu

Příloha č. 10 - Výsledky výpočtu měrné křivky pro otevření segmentu 100 % pro 1 pole přelivu

Příloha č. 11 - Výsledky výpočtu měrné křivky 1 turbíny VE pro turbínový provoz

Příloha č. 12 - Výsledky výpočtu měrné křivky 1 turbíny VE pro volnoběžný provoz

Příloha č. 13 - Výsledky výpočtu měrných křivek spodních výpustí a vodní elektrárny ovlivněných hladinou dolní vody

a/D=	1		otevření											
a=	3	m	výška otvor	u pod segi	nentem při	daném otevře	ení							
$S_2 =$	9.00	m^2	plocha na v	ýtoku										
ξ ₆ =	0.00		součinitel n	nístních zti	rát na regula	ičním uzávěr	u (segmen	t)						
i	Hw, i	Hi	λο	μi	Qi, 1 výpust	Qi, 10 výpustí	Vi	Rei	λ	λ0-λ				
[-]	[m]	[m n. m.]	[-]	[-]	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$	$[m \cdot s^{-1}]$	[-]	[-]	[•]				
1	18.50	305.00	0.013	0.733	125.71	1257.15	17.78	40822461	0.013	0.000				
2	17.50	304.00	0.013	0.733	122.27	1222.70	17.30	39703825	0.013	0.000				
3	16.50	303.00	0.013	0.733	118.72	1187.25	16.80	38552744	0.013	0.000				
4	15.50	302.00	0.013	0.733	115.07	1150.71	16.28	37366220	0.013	0.000				
5	14.50	301.00	0.013	0.733	111.30	1112.97	15.75	36140763	0.013	0.000				
6	13.50	300.00	0.013	0.733	107.39	1073.91	15.19	34872269	0.013	0.000				
7	12.50	299.00	0.013	0.733	103.34	1033.37	14.62	33555856	0.013	0.000				
8	11.50	298.00	0.013	0.733	99.12	991.17	14.02	32185647	0.013	0.000				
9	10.50	297.00	0.013	0.733	94.71	947.10	13.40	30754450	0.013	0.000				
10	9.50	296.00	0.013	0.733	90.09	900.87	12.74	29253317	0.013	0.000				
11	8.50	295.00	0.013	0.733	85.21	852.14	12.06	27670868	0.013	0.000				
12	7.50	294.00	0.013	0.733	80.04	800.44	11.32	25992254	0.013	0.000				
13	6.50	293.00	0.013	0.733	74.52	745.17	10.54	24197472	0.013	0.000				
14	5.50	292.00	0.013	0.733	68.55	685.46	9.70	22258437	0.013	0.000				
15	4.50	291.00	0.013	0.733	62.00	620.02	8.77	20133514	0.013	0.000				
16	3.50	290.00	0.013	0.733	54.68	546.81	7.74	17756090	0.013	0.000				
17	2.50	289.00	0.013	0.733	46.21	462.14	6.54	15006635	0.013	0.000				
18	2.00	288.50	0.013	0.733	41.33	413.35	5.85	13422342	0.013	0.000				
19	1.50	288.00	0.013	0.733	35.80	357.97	5.06	11624090	0.013	0.000				
20	0.00	286.50	0.013	0.733	0.00	0.00	0.00	0	0.013	0.000				

Příloha č. 1 – Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 100 %

a/D=	0.8		otevření									
a=	2.4	m	výška otvor	u pod segi	nentem při	daném otevře	ení					
$S_2 =$	7.20	m^2	plocha na v	ýtoku								
ξ ₆ =	0.40		součinitel n	nístních zt	rát na regula	ičním uzávěr	u (segmen	t)				
i	Hw, i	Hi	λο	μι	Qi, 1 výpust	Qi, 10 výpustí	Vi	Rei	λ	λ0-λ		
[-]	[m]	[m n. m.]	[-]	[-]	[m ³ ·s ⁻¹]	$[m^3 \cdot s^{-1}]$	[m·s ⁻¹]	[-]	[-]	[-]		
1	18.50	305.00	0.013	0.716	98.22	982.16	13.89	31893166	0.013	0.000		
2	17.50	304.00	0.013	0.716	95.53	955.25	13.51	31019214	0.013	0.000		
3	16.50	303.00	0.013	0.716	92.76	927.56	13.12	30119915	0.013	0.000		
4	15.50	302.00	0.013	0.716	89.90	899.01	12.72	29192925	0.013	0.000		
5	14.50	301.00	0.013	0.716	86.95	869.53	12.30	28235518	0.013	0.000		
6	13.50	300.00	0.013	0.716	83.90	839.01	11.87	27244488	0.013	0.000		
7	12.50	299.00	0.013	0.716	80.73	807.33	11.42	26216021	0.013	0.000		
8	11.50	298.00	0.013	0.716	77.44	774.37	10.96	25145524	0.013	0.000		
9	10.50	297.00	0.013	0.716	73.99	739.93	10.47	24027380	0.013	0.000		
10	9.50	296.00	0.013	0.716	70.38	703.82	9.96	22854597	0.013	0.000		
11	8.50	295.00	0.013	0.716	66.57	665.75	9.42	21618284	0.013	0.000		
12	7.50	294.00	0.013	0.716	62.54	625.36	8.85	20306842	0.013	0.000		
13	6.50	293.00	0.013	0.716	58.22	582.18	8.24	18904641	0.013	0.000		
14	5.50	292.00	0.013	0.716	53.55	535.53	7.58	17389741	0.013	0.000		
15	4.50	291.00	0.013	0.716	48.44	484.40	6.85	15729612	0.013	0.000		
16	3.50	290.00	0.013	0.716	42.72	427.20	6.04	13872214	0.013	0.000		
17	2.50	289.00	0.013	0.716	36.11	361.05	5.11	11724161	0.013	0.000		
18	2.00	288.50	0.013	0.716	32.29	322.93	4.57	10486408	0.013	0.000		
19	1.50	288.00	0.013	0.716	27.97	279.67	3.96	9081496	0.013	0.000		
20	0.00	286.50	0.013	0.716	0.00	0.00	0.00	0	0.013	0.000		

Příloha č. 2 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 80 %

a/D=	0.6		otevření									
a=	1.8	m	výška otvor	u pod segi	nentem při	daném otevř	ení					
$S_2 =$	5.40	m^2	plocha na v	ýtoku								
ξ ₆ =	2.00		součinitel n	nístních ztr	rát na regula	ičním uzávěr	u (segmen	t)				
i	Hw, i	Hi	λο	μi	Qi, 1 výpust	Qi, 10 výpustí	Vi	Rei	λ	λο-λ		
[-]	[m]	[m n. m.]	[-]	[-]	[m ³ ·s ⁻¹]	$[m^3 \cdot s^{-1}]$	[m·s ⁻¹]	[-]	[-]	[-]		
1	18.50	305.00	0.013	0.550	56.55	565.50	8.00	18363162	0.013	0.000		
2	17.50	304.00	0.013	0.550	55.00	550.01	7.78	17859966	0.013	0.000		
3	16.50	303.00	0.013	0.550	53.41	534.06	7.56	17342175	0.013	0.000		
4	15.50	302.00	0.013	0.550	51.76	517.62	7.32	16808442	0.013	0.000		
5	14.50	301.00	0.013	0.550	50.06	500.65	7.08	16257195	0.013	0.000		
6	13.50	300.00	0.013	0.550	48.31	483.08	6.83	15686588	0.013	0.000		
7	12.50	299.00	0.013	0.550	46.48	464.84	6.58	15094426	0.013	0.000		
8	11.50	298.00	0.013	0.550	44.59	445.86	6.31	14478065	0.013	0.000		
9	10.50	297.00	0.013	0.550	42.60	426.03	6.03	13834270	0.013	0.000		
10	9.50	296.00	0.013	0.550	40.52	405.24	5.73	13159016	0.013	0.000		
11	8.50	295.00	0.013	0.550	38.33	383.32	5.42	12447183	0.013	0.000		
12	7.50	294.00	0.013	0.550	36.01	360.06	5.09	11692092	0.013	0.000		
13	6.50	293.00	0.013	0.550	33.52	335.20	4.74	10884746	0.013	0.000		
14	5.50	292.00	0.013	0.550	30.83	308.34	4.36	10012510	0.013	0.000		
15	4.50	291.00	0.013	0.550	27.89	278.90	3.95	9056656	0.013	0.000		
16	3.50	290.00	0.013	0.550	24.60	245.97	3.48	7987220	0.013	0.000		
17	2.50	289.00	0.013	0.550	20.79	207.88	2.94	6750433	0.013	0.000		
18	2.00	288.50	0.013	0.550	18.59	185.94	2.63	6037770	0.013	0.000		
19	1.50	288.00	0.013	0.550	16.10	161.03	2.28	5228863	0.013	0.000		
20	0.00	286.50	0.013	0.550	0.00	0.00	0.00	0	0.013	0.000		

Příloha č. 3 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 60 %

a/D=	0.4		otevření									
a=	1.2	m	výška otvor	u pod segi	nentem při	daném otevř	ení					
$S_2 =$	3.60	m^2	plocha na v	ýtoku								
ξ ₆ =	9.00		součinitel n	nístních zti	rát na regula	ičním uzávěr	u (segmen	t)				
i	Hw, i	Hi	λο	μi	Qi, 1 výpust	Qi, 10 výpustí	Vi	Rei	λ	λο-λ		
[-]	[m]	[m n. m.]	[-]	[-]	[m ³ ·s ⁻¹]	$[m^3 \cdot s^{-1}]$	[m·s ⁻¹]	[-]	[-]	[-]		
1	18.50	305.00	0.013	0.314	21.54	215.41	3.05	6994916	0.013	0.000		
2	17.50	304.00	0.013	0.314	20.95	209.51	2.96	6803238	0.013	0.000		
3	16.50	303.00	0.013	0.314	20.34	203.43	2.88	6606001	0.013	0.000		
4	15.50	302.00	0.013	0.314	19.72	197.17	2.79	6402691	0.013	0.000		
5	14.50	301.00	0.013	0.314	19.07	190.71	2.70	6192709	0.013	0.000		
6	13.50	300.00	0.013	0.314	18.40	184.01	2.60	5975353	0.013	0.000		
7	12.50	299.00	0.013	0.314	17.71	177.07	2.50	5749786	0.013	0.000		
8	11.50	298.00	0.013	0.314	16.98	169.84	2.40	5515001	0.013	0.000		
9	10.50	297.00	0.013	0.314	16.23	162.28	2.30	5269766	0.013	0.000		
10	9.50	296.00	0.013	0.314	15.44	154.36	2.18	5012547	0.013	0.000		
11	8.50	295.00	0.013	0.314	14.60	146.01	2.07	4741395	0.013	0.000		
12	7.50	294.00	0.013	0.314	13.72	137.16	1.94	4453765	0.014	-0.001		
13	6.50	293.00	0.013	0.314	12.77	127.69	1.81	4146230	0.014	-0.001		
14	5.50	292.00	0.013	0.314	11.75	117.45	1.66	3813976	0.014	-0.001		
15	4.50	291.00	0.013	0.314	10.62	106.24	1.50	3449871	0.014	-0.001		
16	3.50	290.00	0.013	0.314	9.37	93.70	1.33	3042501	0.014	-0.001		
17	2.50	289.00	0.013	0.314	7.92	79.19	1.12	2571382	0.014	-0.001		
18	2.00	288.50	0.013	0.314	7.08	70.83	1.00	2299914	0.014	-0.001		
19	1.50	288.00	0.013	0.314	6.13	61.34	0.87	1991784	0.014	-0.001		
20	0.00	286.50	0.013	0.314	0.00	0.00	0.00	0	0.014	0.000		

Příloha č. 4 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 40 %

a/D=	0.3		otevření										
a=	0.9	m	výška otvor	u pod segi	nentem při	daném otevř	ení						
$S_2 =$	2.70	m^2	plocha na v	ýtoku									
ξ ₆ =	23.00		součinitel n	nístních zti	tát na regula	čním uzávěr	u (segmen	t)	-				
i	Hw, i	Hi	λο	μi	Qi, 1 výpust	Qi, 10 výpustí	Vi	Rei	λ	λο-λ			
[-]	[m]	[m n. m.]	[-]	[-]	$[m^{3} \cdot s^{-1}]$	$[m^3 \cdot s^{-1}]$	[m·s ⁻¹]	[-]	[-]	[-]			
1	18.50	305.00	0.014	0.204	10.48	104.83	1.48	3404095	0.014	0.000			
2	17.50	304.00	0.014	0.204	10.20	101.96	1.44	3310814	0.014	0.000			
3	16.50	303.00	0.014	0.204	9.90	99.00	1.40	3214828	0.014	0.000			
4	15.50	302.00	0.014	0.204	9.60	95.96	1.36	3115886	0.014	0.000			
5	14.50	301.00	0.014	0.204	9.28	92.81	1.31	3013698	0.014	0.000			
6	13.50	300.00	0.014	0.204	8.96	89.55	1.27	2907921	0.014	0.000			
7	12.50	299.00	0.014	0.204	8.62	86.17	1.22	2798149	0.014	0.000			
8	11.50	298.00	0.014	0.204	8.27	82.65	1.17	2683890	0.014	0.000			
9	10.50	297.00	0.014	0.204	7.90	78.98	1.12	2564546	0.014	0.000			
10	9.50	296.00	0.014	0.204	7.51	75.12	1.06	2439369	0.014	0.000			
11	8.50	295.00	0.014	0.204	7.11	71.06	1.01	2307412	0.014	0.000			
12	7.50	294.00	0.014	0.204	6.67	66.75	0.94	2167437	0.014	0.000			
13	6.50	293.00	0.014	0.204	6.21	62.14	0.88	2017774	0.014	0.000			
14	5.50	292.00	0.014	0.204	5.72	57.16	0.81	1856082	0.014	0.000			
15	4.50	291.00	0.014	0.204	5.17	51.70	0.73	1678889	0.014	0.000			
16	3.50	290.00	0.014	0.204	4.56	45.60	0.65	1480641	0.014	0.000			
17	2.50	289.00	0.014	0.204	3.85	38.54	0.55	1251370	0.014	0.000			
18	2.00	288.50	0.014	0.204	3.45	34.47	0.49	1119259	0.014	0.000			
19	1.50	288.00	0.014	0.204	2.99	29.85	0.42	969307	0.014	0.000			
20	0.00	286.50	0.014	0.204	0.00	0.00	0.00	0	0.014	0.000			

Příloha č. 5 - Výsledky výpočtu měrné křivky spodních výpustí pro otevření regulačního uzávěru na 40 %

Příloha č. 6- Výsledky výpočtu měrné křivky pro uzavřený segment pro 1 pole přelivu

šířka přelivné hrany součinitel závislosti tvaru pilíře na bočním 14 m b= ξ= 0.15 zúžení 2 počet zúžení n= $0 m \cdot s^{-1}$ rychlost v nádrži $v_0 =$ 9.5 m výška přelivu $s_1 =$ 0 m výška otevření a=

Hi	h=h0	bo	m	Q
[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$
301.00	0.0	14.00	0	0.00
301.50	0.5	13.99	0.412	9.01
302.00	1.0	13.97	0.410	25.37
302.50	1.5	13.96	0.411	46.69
303.00	2.0	13.94	0.413	72.17
303.50	2.5	13.93	0.416	101.40
304.00	3.0	13.91	0.419	134.10
304.50	3.5	13.90	0.422	170.08
305.00	4.0	13.88	0.425	209.20

Příloha č. 7 - Výsledky výpočtu měrné křivky pro otevření segmentu 25 % pro 1 pole přelivu

kóta koruny přel	ivu:	291.50 m n. m.
kóta spodní hran	y segmentu:	294.38 m n. m.
kóta horní hrany	segmentu:	304.83 m n. m.
a/a _{100%} =	0.25	otevření
a=D=	2.88 m	výška otvoru pod segmentem při daném otevření
m _N =	0.51	návrhový součinitel přepadu pro Scimemiho přelivnou plochu
h _N =	7.40 m	návrhová přepadová výška
b=	14 m	šířka pole přelivu
Θ=	65 °	úhel otočení segmentu
1.25a=	3.59 m	výška přechodu mezi přepadem a výtokem
$s_1 =$	13.3 m	výška přelivu

Jev	Hi	h=h0	bo	m	Q								
	[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$								
hu	291.50	0.00	14.00	-	0.00								
řes ho loc	292.00	0.50	13.99	0.370	8.11								
d p smi	292.50	1.00	13.97	0.391	24.17								
spa ime	293.00	1.50	13.96	0.406	46.13								
Pře Sci	293.50	2.00	13.94	0.419	73.25								
pře	294.00	2.50	13.93	0.431	105.08		-	-					
- *a	Hi	h	bo	m	Q ^{přepad}	h 01	h02	m	a/h01	C/C _x	μ	Q ^{VÝTOK}	Q
100	[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$	[m]	[m]	[-]	[-]		[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
řecl a 1	294.50	3.00	13.91	0.441	141.33	3.00	0.13	0.441	0.96	1.006	0.666	141.88	141.61
Pj	295.00	3.50	13.90	0.451	181.79	3.50	0.63	0.451	0.82	1.006	0.681	170.35	176.07

Vý pře	rtok epa	ς+ d		Výtok pod segmentem																			
305.00	[m n. m.]	Hi	304.50	304.00	303.50	303.00	302.50	302.00	301.50	301.00	300.50	300.00	299.50	299.00	298.50	298.00	297.50	297.00	296.50	296.00	295.50	[m n. m.]	Hi
13.50	m	h01	13.00	12.50	12.00	11.50	11.00	10.50	10.00	9.50	9.00	8.50	8.00	7.50	7.00	6.50	6.00	5.50	5.00	4.50	4.00	[m]	h01
10.63	m	h02	10.13	9.63	9.13	8.63	8.13	7.63	7.13	6.63	6.13	5.63	5.13	4.63	4.13	3.63	3.13	2.63	2.13	1.63	1.13	[m]	h02
0.576	[-]	m	0.571	0.567	0.562	0.557	0.551	0.546	0.541	0.535	0.529	0.524	0.518	0.511	0.505	0.498	0.491	0.484	0.476	0.468	0.460	[-]	m
0.21	•	a/h01	0.22	0.23	0.24	0.25	0.26	0.27	0.29	0.30	0.32	0.34	0.36	0.38	0.41	0.44	0.48	0.52	0.58	0.64	0.72	·	a/h01
1.123		C/C _x	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.123	1.122	1.120	1.115	1.113	1.105	1.095	1.08		C/C _x
0.971	[-]	'n	0.963	0.954	0.946	0.937	0.929	0.920	0.911	0.901	0.892	0.882	0.872	0.861	0.850	0.837	0.822	0.808	0.790	0.769	0.745	[-]	μ
600.62	$[m^{3} \cdot s^{-1}]$	Ονάτοκ	583.15	565.52	547.72	529.74	511.57	493.18	474.57	455.70	436.56	417.12	397.33	377.17	356.25	334.57	311.54	288.80	263.86	237.76	209.72	$[m^{3} \cdot s^{-1}]$	0
0.2	m	h=h0																					
13.99	[m]	0q																					
0.423	·	m																					
1.84	[m ³ ·s ⁻¹]	Q PŘEPAD																					
602.46	[m ³ ·s ⁻¹]	Q																					

Г

Příloha č. 8 - Výsledky výpočtu měrné křivky pro otevření segmentu 50 % pro 1 pole přelivu

kóta koruny	přelivu:	291.50
kóta spodní	hrany segmentu:	297.25
kóta horní h	rany segmentu:	307.73
a/a _{100%} =	0.5	otevření
a=D=	5.75 m	výška otvoru pod segmentem při daném otevření
m _N =	0.51	návrhový součinitel přepadu pro Scimemiho přelivnou plochu
h _N =	7.40 m	návrhová přepadová výška
b=	14 m	šířka pole přelivu
θ=	77 °	úhel otočení segmentu
1.25a=	7.19 m	výška přechodu mezi přepadem a výtokem

Jev	Hi	h	bo	m	Q
	[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$
n	291.50	0.00	14.00	-	0.00
vnc	292.00	0.50	13.99	0.370	8.11
eli [,]	292.50	1.00	13.97	0.391	24.17
ĭq c	293.00	1.50	13.96	0.406	46.13
iho	293.50	2.00	13.94	0.419	73.25
chu	294.00	2.50	13.93	0.431	105.08
cim plo	294.50	3.00	13.91	0.441	141.33
S S	295.00	3.50	13.90	0.451	181.79
pře	295.50	4.00	13.88	0.460	226.27
ad	296.00	4.50	13.87	0.468	274.63
řep:	296.50	5.00	13.85	0.476	326.77
Pj	297.00	5.50	13.84	0.484	382.56

	Výtok pod segmentem									Př	ech 1.	nod 25*	- c *a	ca					
305.00	304.50	304.00	303.50	303.00	302.50	302.00	301.50	301.00	300.50	300.00	299.50	299.00	[m n. m.]	Hi	298.50	298.00	297.50	[m n. m.]	Hi
13.50	13.00	12.50	12.00	11.50	11.00	10.50	10.00	9.50	9.00	8.50	8.00	7.50	[m]	h_{01}	7.00	6.50	6.00	[m]	h
7.75	7.25	6.75	6.25	5.75	5.25	4.75	4.25	3.75	3.25	2.75	2.25	1.75	[m]	h02	13.79	13.81	13.82	[m]	\mathbf{p}_0
0.576	0.571	0.567	0.562	0.557	0.551	0.546	0.541	0.535	0.529	0.524	0.518	0.511	[•]	m	0.505	0.498	0.491	[-]	m
0.43	0.44	0.46	0.48	0.50	0.52	0.55	0.58	0.61	0.64	0.68	0.72	0.77	[•]	a/h01	571.09	504.80	441.93	[m ³ ·s ⁻¹]	Q ^{přepad}
1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.045	1.04	1.035		C/C _x	7.00	6.50	6.00	[m]	h_{01}
0.903	0.896	0.888	0.880	0.872	0.864	0.856	0.847	0.839	0.830	0.821	0.807	0.794	[-]	'n	1.25	0.75	0.25	[m]	h_{02}
1046.46	1012.77	978.69	944.19	909.22	873.73	837.67	800.97	763.54	725.28	686.04	642.55	598.03	[m ³ ·s ⁻¹]	Q	0.505	0.498	0.491	[-]	m
															0.82	0.88	96.0	[-]	a/h01
															1.025	1.006	1.006		C/C _x
															0.776	0.752	0.741	[-]	μ
															549.44	494.82	446.54	[m ³ ·s ⁻¹]	QVÝTOK
															560.26	499.81	444.24	[m ³ ·s ⁻¹]	Q

Jev	Hi	h	bo	m	Q	kóta koruny	přelivu:			291.50	m n. m.		
	[m n. m.]	[m]	[m]	[-]	[m ³ ·s ⁻¹]	kóta spodní l	hrany se	gmentu:		300.13	m n. m.		
	291.50	0.00	14.00	-	0.00	kóta horní hr	any seg	mentu:		310.10	m n. m.		
	292.00	0.50	13.99	0.370	8.11	a/a _{100%} =	0.75		otevření				
=	292.50	1.00	13.97	0.391	24.17	a=D =	8.63	m	výška ot	voru pod	segment	em při dané	m otevření
ochi	293.00	1.50	13.96	0.406	46.13	$m_N =$	0.51		návrhov	ý součini	tel přepa	du pro Scim	emiho
ple	293.50	2.00	13.94	0.419	73.25				přelivno	u plochu			
nou	294.00	2.50	13.93	0.431	105.08	h _N =	7.40	m	návrhov	á přepado	ová výška	a	
livi	294.50	3.00	13.91	0.441	141.33	b=	302	m	šířka po	le přelivu			
pře	295.00	3.50	13.90	0.451	181.79	θ=	89	0	úhel oto	čení segn	nentu		
iho	295.50	4.00	13.88	0.460	226.27	1.25a=	10.78	m	výška pì	echodu n	nezi přep	adem a výto	kem
em	296.00	4.50	13.87	0.468	274.63								
cim.	296.50	5.00	13.85	0.476	326.77								
s Sc	297.00	5.50	13.84	0.484	382.56								
pře	297.50	6.00	13.82	0.491	441.93								
ad	298.00	6.50	13.81	0.498	504.80								
řep	298.50	7.00	13.79	0.505	571.09								
머	299.00	7.50	13.78	0.511	640.74								
	299.50	8.00	13.76	0.518	713.70								
	300.00	8.50	13.75	0.524	789.90				21	11			
ca	Hi	h	bo	m	Q ^{přepad}	h01	h02	m	a/h01	C/C _x	μ	Q ^{VÝTOK}	Q
- c *a	[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$	[m]	[m]	[-]	[-]		[-]	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$
hod .25°	300.50	9.00	13.73	0.529	869.30	9.00	0.38	0.529	0.96	1.006	0.799	884.13	876.71
řecl 1.	301.00	9.50	13.72	0.535	951.85	9.50	0.88	0.535	0.91	1.006	0.807	950.14	951.00
Pj	301.50	10.00	13.70	0.541	1037.51	10.00	1.38	0.541	0.86	1.006	0.816	1012.21	1024.86

Příloha č. 9 - Výsledky výpočtu měrné křivky pro otevření segmentu 75 % pro 1 pole přelivu

	$\mathbf{H}_{\mathbf{i}}$	ho1	h02	m	a/h 01	C/C _x	μ	Q
em	[m n. m.]	[m]	[m]	[-]	[-]		[-]	[m ³ ·s ⁻¹]
ente	302.00	10.50	1.88	0.546	0.82	1.001	0.820	1066.29
gm	302.50	11.00	2.38	0.551	0.52	1.001	0.828	1123.38
l se	303.00	11.50	2.88	0.557	0.50	1.001	0.836	1178.85
bod	303.50	12.00	3.38	0.562	0.48	1.001	0.843	1232.99
tok	304.00	12.50	3.88	0.567	0.46	1.001	0.851	1285.97
Vý	304.50	13.00	4.38	0.571	0.44	1.001	0.858	1337.96
	305.00	13.50	4.88	0.576	0.43	1.001	0.865	1389.08

Příloha č. 10 - Výsledky výpočtu měrné křivky pro otevření segmentu 100 % pro 1 pole přelivu

Maximální přepadové množství přes všech 9 polí bezpečnostních přelivů při plně otevřeném segr	nentu je 15310,1 m ³ /s.
---	-------------------------------------

Jev	Hi	h	bo	m	Q	kóta koruny pře	livu:
	[m n. m.]	[m]	[m]	[-]	[m ³ ·s ⁻¹]	kóta spodní hrai	ny segmentu:
	291.50	0.00	14.00	-	0.00	kóta horní hrany	segmentu:
	292.00	0.50	13.99	0.370	8.11	a/a _{100%} =	1
	292.50	1.00	13.97	0.391	24.17	a=D=	11.5 m
	293.00	1.50	13.96	0.406	46.13	$m_N =$	0.51
	293.50	2.00	13.94	0.419	73.25		
shu	294.00	2.50	13.93	0.431	105.08	h _N =	7.40 m
loc	294.50	3.00	13.91	0.441	141.33	b=	14 m
d n	295.00	3.50	13.90	0.451	181.79	Θ=	99 °
ou/	295.50	4.00	13.88	0.460	226.27		
eliv	296.00	4.50	13.87	0.468	274.63		
př	296.50	5.00	13.85	0.476	326.77		
iho	297.00	5.50	13.84	0.484	382.56		
em	297.50	6.00	13.82	0.491	441.93		
im	298.00	6.50	13.81	0.498	504.80		
Sc	298.50	7.00	13.79	0.505	571.09		
řes	299.00	7.50	13.78	0.511	640.74		
d p	299.50	8.00	13.76	0.518	713.70		
spa	300.00	8.50	13.75	0.524	789.90		
Pře	300.50	9.00	13.73	0.529	869.30		
	301.00	9.50	13.72	0.535	951.85		
	301.50	10.00	13.70	0.541	1037.51		
	302.00	10.50	13.69	0.546	1126.24		
	302.50	11.00	13.67	0.551	1218.00		
	303.00	11.50	13.66	0.557	1312.75		

entu:		311.94	m n. m.
1	otevření		
-			

- 11.5 m výška otvoru pod segmentem při daném otevření
- 0.51 návrhový součinitel přepadu pro Scimemiho přelivnou plochu

291.50 m n. m.

303.00 m n. m.

- 7.40 m návrhová přepadová výška
- 14 m šířka pole přelivu
- 99 ° úhel otočení segmentu

	Hi	h	bo	m	Q ^{přepad}	ho1	h02	m	a/h 01	C/C _x	μ	Q ^{výtok}	Q
сса	[m n. m.]	[m]	[m]	[-]	$[m^{3} \cdot s^{-1}]$	[m]	[m]	[-]	[-]		[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
d - 5*a	303.50	12.00	13.64	0.562	1410.46	12.00	0.50	0.562	0.96	1.006	0.847	1443.98	1427.22
cho 1.2:	304.00	12.50	13.63	0.567	1511.09	12.50	1.00	0.567	0.92	1.006	0.855	1526.65	1518.87
Pře(304.50	13.00	13.61	0.571	1614.62	13.00	1.50	0.571	0.88	1.006	0.862	1605.36	1609.99
	305.00	13.50	13.60	0.576	1721.00	13.50	2.00	0.576	0.85	1.006	0.869	1681.24	1701.12

Příloha č. 11 - Výsledky výpočtu měrné křivky 1 turbíny VE pro turbínový provoz

Kóta zatopeného vtoku:	294.15	m n. m.
Osa výtoku:	280.23	m n. m.
Minimální hladina dolní vody:	284.50	m n. m.
4 kaplanovy turbíny D=3000 mm		

$Q^{T} =$	80	m^3/s	hltnost 1 turbíny
H _N =	19.2	m	návrhový spád
b=	7.8	m	šířka výtokového otvoru
h=	3.8	m	výška výtokového otvoru
S=	29.64	m^2	průtočná plocha
$\mu_{p, 1} =$	0.139		součinitel výtoku

Hh	Hd	Hw	μ	Q
[m n. m.]	[m n. m.]	[m]	[-]	$[m^{3} \cdot s^{-1}]$
294.15	282.5	0.00	0.139	0.00
294.15	283.5	10.65	0.139	59.58
295.00	283.5	11.50	0.139	61.91
296.00	283.5	12.50	0.139	64.55
297.00	283.5	13.50	0.139	67.08
298.00	283.5	14.50	0.139	69.52
299.00	283.5	15.50	0.139	71.88
300.00	283.5	16.50	0.139	74.16
301.00	283.5	17.50	0.139	76.38
302.00	283.5	18.50	0.139	78.53
302.70	283.5	19.20	0.139	80.00
304.00	283.5	20.50	0.139	80.00
305.00	283.5	21.50	0.139	80.00

Příloha č. 12 - Výsledky výpočtu měrné křivky 1 turbíny VE pro volnoběžný provoz

$Q^V =$	$16 m^{3}/s$	hltnost 1 turbíny
H _N =	19.2 m	návrhový spád
b=	7.8 m	šířka výtokového otvoru
h=	3.8 m	výška výtokového otvoru
S=	29.64 m^2	průtočná plocha
μ _{p, 2} =	0.028	součinitel výtoku

Hh	Hd	Hw	μ	Q
[m n. m.]	[m n. m.]	[m]	[-]	$[m^{3} \cdot s^{-1}]$
294.15	282.5	0.00	0.028	0.00
294.15	283.5	10.65	0.028	11.92
295.00	283.5	11.50	0.028	12.38
296.00	283.5	12.50	0.028	12.91
297.00	283.5	13.50	0.028	13.42
298.00	283.5	14.50	0.028	13.90
299.00	283.5	15.50	0.028	14.38
300.00	283.5	16.50	0.028	14.83
301.00	283.5	17.50	0.028	15.28
302.00	283.5	18.50	0.028	15.71
302.70	283.5	19.20	0.028	16.00
304.00	283.5	20.50	0.028	16.00
305.00	283.5	21.50	0.028	16.00

Příloha č. 13 - Výsledky výpočtu měrných křivek spodních výpustí a vodní elektrárny ovlivněných hladinou dolní vody

a) Spodní výpusti otevření 100 %

Přelivy otevření 100 %

VE turbínový provoz

	Volný v	ýtok					Vý	pusti					VE		Pře	ivy	
i	$\mathbf{H}_{\mathbf{h}}$	$\mathbf{H}_{\mathbf{d}}$	H _{W,i}	λ ₀	μ _i	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	\mathbf{Q}^{1}
[-]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$	$[m^{3} \cdot s^{-1}]$	[m ³ ·s ⁻¹]
1	305.00	286.5	18.50	0.013	0.733	125.71	1257	17.78	40822461	0.013	0.000	0.139	80.00	320	1701.12	15310	16887
2	303.00	286.5	16.50	0.013	0.733	118.72	1187	16.80	38552744	0.013	0.000	0.139	80.00	320	1312.75	11815	13322
3	302.00	286.5	15.50	0.013	0.733	115.07	1151	16.28	37366220	0.013	0.000	0.139	78.53	314	1126.24	10136	11601
4	300.00	286.5	13.50	0.013	0.733	107.39	1074	15.19	34872269	0.013	0.000	0.139	74.16	297	789.90	7109	8480
5	298.00	286.5	11.50	0.013	0.733	99.12	991	14.02	32185647	0.013	0.000	0.139	69.52	278	504.80	4543	5812
6	296.00	286.5	9.50	0.013	0.733	90.09	901	12.74	29253317	0.013	0.000	0.139	64.55	258	274.63	2472	3631
7	294.15	286.5	7.65	0.013	0.733	80.84	808	11.44	26250890	0.013	0.000	0.139	59.58	238	105.08	946	1992
8	292.00	286.5	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.139	0.00	0	8.11	73	758
9	290.00	286.5	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.139	0.00	0	0.00	0	547
10	288.00	286.5	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.139	0.00	0	0.00	0	358
11	286.5	286.5	0	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.139	0.00	0	0.00	0	0

		1. iterace						Vý	pusti					VE		Pře	livy	
i	Q ¹	$\mathbf{H}_{\mathbf{h}}$	$\mathbf{H}_{\mathbf{d}}$	H _{W,i}	λ ₀	μ _i	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	Q^2
[-]	[m ³ ·s ⁻¹]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	$[m^{3} \cdot s^{-1}]$	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
1	16887	305.00	291.78	13.22	0.013	0.733	106.27	1063	15.03	34506886	0.013	0.000	0.139	66.38	266	1701.12	15310	16638
2	13322	303.00	291.36	11.64	0.013	0.733	99.72	997	14.11	32381468	0.013	0.000	0.139	62.29	249	1312.75	11815	13061
3	11601	302.00	291.11	10.89	0.013	0.733	96.44	964	13.64	31314790	0.013	0.000	0.139	60.24	241	1126.24	10136	11341
4	8480	300.00	290.56	9.44	0.013	0.733	89.81	898	12.71	29164100	0.013	0.000	0.139	56.10	224	789.90	7109	8232
5	5812	298.00	289.89	8.11	0.013	0.733	83.24	832	11.78	27029860	0.013	0.000	0.139	52.00	208	504.80	4543	5584
6	3631	296.00	289.06	6.94	0.013	0.733	77.01	770	10.89	25006043	0.013	0.000	0.139	48.10	192	274.63	2472	3434
7	1992	294.15	288.00	6.15	0.013	0.733	72.47	725	10.25	23532828	0.013	0.000	0.139	45.27	181	105.08	946	1851
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.139	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.139	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.139	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.139	0.00	0	0.00	0	0

		2. iterace						Vý	pusti					VE		Přelivy		
i	Q^2	$\mathbf{H}_{\mathbf{h}}$	H _d	H _{W,i}	λ ₀	μi	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ₀-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	Q ³
[-]	$[m^{3} \cdot s^{-1}]$	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]	$[m^{3} \cdot s^{-1}]$			
1	16638	305.00	291.75	13.25	0.013	0.733	106.37	1064	15.05	34541373	0.013	0.000	0.139	66.45	266	1701.12	15310	16640
2	13061	303.00	291.32	11.68	0.013	0.733	99.87	999	14.13	32430319	0.013	0.000	0.139	62.38	250	1312.75	11815	13063
3	11341	302.00	291.07	10.93	0.013	0.733	96.61	966	13.67	31372517	0.013	0.000	0.139	60.35	241	1126.24	10136	11344
4	8232	300.00	290.51	9.49	0.013	0.733	90.06	901	12.74	29245237	0.013	0.000	0.139	56.26	225	789.90	7109	8235
5	5584	298.00	289.82	8.18	0.013	0.733	83.60	836	11.83	27147961	0.013	0.000	0.139	52.22	209	504.80	4543	5588
6	3434	296.00	288.96	7.04	0.013	0.733	77.55	775	10.97	25182179	0.013	0.000	0.139	48.44	194	274.63	2472	3441
7	1851	294.15	287.87	6.28	0.013	0.733	73.23	732	10.36	23778201	0.013	0.000	0.139	45.74	183	105.08	946	1861
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.139	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.139	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.139	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	1.013	0.335	0.00	0	0.00	0	0.013	0.000	0.139	0.00	0	0.00	0	0

b) Spodní výpusti otevření 100 % Přelivy otevření 100 % VE volnoběžný provoz

	Volný výtok i H _h H _d [-] [m n. m.] [m n. m] 1 305.00 286. 2 303.00 286. 3 302.00 286. 4 300.00 286. 5 298.00 286. 6 296.00 286.						Vý	pusti					VE		Pře	livy	
i	$\mathbf{H}_{\mathbf{h}}$	$\mathbf{H}_{\mathbf{d}}$	H _{W, i}	λο	μ _i	Qi, 1v	Q i, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	\mathbf{Q}^{1}
[-]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ⋅s ⁻¹]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
1	305.00	286.5	18.50	0.013	0.733	125.71	1257	17.78	40822461	0.013	0.000	0.028	16.00	64	1701.12	15310	16631
2	303.00	286.5	16.50	0.013	0.733	118.72	1187	16.80	38552744	0.013	0.000	0.028	16.00	64	1312.75	11815	13066
3	302.00	286.5	15.50	0.013	0.733	115.07	1151	16.28	37366220	0.013	0.000	0.028	15.71	63	1126.24	10136	11350
4	300.00	286.5	13.50	0.013	0.733	107.39	1074	15.19	34872269	0.013	0.000	0.028	14.83	59	789.90	7109	8242
5	298.00	286.5	11.50	0.013	0.733	99.12	991	14.02	32185647	0.013	0.000	0.028	13.90	56	504.80	4543	5590
6	296.00	286.5	9.50	0.013	0.733	90.09	901	12.74	29253317	0.013	0.000	0.028	12.91	52	274.63	2472	3424
7	294.15	286.5	7.65	0.013	0.733	80.84	808	11.44	26250890	0.013	0.000	0.028	11.92	48	105.08	946	1802
8	292.00	286.5	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758
9	290.00	286.5	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547
10	288.00	286.5	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358
11	286.5	286.5	0	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0

		1. iterace						Vý	pusti					VE		Pře	livy	
i	Q ¹	$\mathbf{H}_{\mathbf{h}}$	$\mathbf{H}_{\mathbf{d}}$	H _{W,i}	λο	μ _i	Q i, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Q i, 1p	Qi, 9p	Q^2
[-]	[m ³ ·s ⁻¹]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	$[m^{3} \cdot s^{-1}]$	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
1	16631	305.00	291.75	13.25	0.013	0.733	106.37	1064	15.05	34542354	0.013	0.000	0.028	13.29	53	1701.12	15310	16427
2	13066	303.00	291.33	11.67	0.013	0.733	99.87	999	14.13	32429396	0.013	0.000	0.028	12.48	50	1312.75	11815	12863
3	11350	302.00	291.08	10.92	0.013	0.733	96.61	966	13.67	31370669	0.013	0.000	0.028	12.07	48	1126.24	10136	11151
4	8242	300.00	290.51	9.49	0.013	0.733	90.05	901	12.74	29241689	0.013	0.000	0.028	11.25	45	789.90	7109	8055
5	5590	298.00	289.82	8.18	0.013	0.733	83.59	836	11.83	27144597	0.013	0.000	0.028	10.44	42	504.80	4543	5421
6	3424	296.00	288.96	7.04	0.013	0.733	77.58	776	10.98	25191348	0.013	0.000	0.028	9.69	39	274.63	2472	3286
7	1802	294.15	287.83	6.32	0.013	0.733	73.50	735	10.40	23868540	0.013	0.000	0.028	9.18	37	105.08	946	1717
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0

		2. iterace						Vý	pusti					VE		Pře	livy	
i	\mathbf{Q}^2	$\mathbf{H}_{\mathbf{h}}$	$\mathbf{H}_{\mathbf{d}}$	H _{W,i}	λ ₀	μ _i	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	Q ³
[-]	[m ³ ·s ⁻¹]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	$[m^3 \cdot s^{-1}]$	[m ³ ·s ⁻¹]	$[m^{3} \cdot s^{-1}]$	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]
1	16427	305.00	291.73	13.27	0.013	0.733	106.46	1065	15.06	34571015	0.013	0.000	0.028	13.30	53	1701.12	15310	16428
2	12863	303.00	291.30	11.70	0.013	0.733	99.99	1000	14.15	32467954	0.013	0.000	0.028	12.49	50	1312.75	11815	12865
3	11151	302.00	291.04	10.96	0.013	0.733	96.75	967	13.69	31415769	0.013	0.000	0.028	12.09	48	1126.24	10136	11152
4	8055	300.00	290.47	9.53	0.013	0.733	90.24	902	12.77	29304502	0.013	0.000	0.028	11.27	45	789.90	7109	8057
5	5421	298.00	289.77	8.23	0.013	0.733	83.87	839	11.87	27234538	0.013	0.000	0.028	10.48	42	504.80	4543	5424
6	3286	296.00	288.88	7.12	0.013	0.733	77.98	780	11.03	25320600	0.013	0.000	0.028	9.74	39	274.63	2472	3290
7	1717	294.15	287.74	6.41	0.013	0.733	73.99	740	10.47	24026743	0.013	0.000	0.028	9.24	37	105.08	946	1723
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	1.013	0.335	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0

c) Spodní výpusti otevření 100 % Přelivy otevření 100 % VE vyřazena z provozu

	Volný v	ýtok					Vý	pusti					VE		Pře	livy		
i	H _h	$\mathbf{H}_{\mathbf{d}}$	H _{W,i}	λο	μ _i	Qi, 1v	Q i, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	\mathbf{Q}^{1}	
[-]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]					
1	305.00	286.5	18.50	0.013	0.733	125.71	1257	17.78	40822461	0.013	0.000	0.028	16.00	64	1701.12	15310	16631	
2	303.00	286.5	16.50	0.013	0.733	118.72	1187	16.80	38552744	0.013	0.000	0.028	16.00	64	1312.75	11815	13066	
3	302.00	286.5	15.50	0.013	0.733	115.07	1151	16.28	37366220	0.013	0.000	0.028	15.71	63	1126.24	10136	11350	
4	300.00	286.5	13.50	0.013	0.733	107.39	1074	15.19	34872269	0.013	0.000	0.028	14.83	59	789.90	7109	8242	
5	298.00	286.5	11.50	0.013	0.733	99.12	991	14.02	32185647	0.013	0.000	0.028	13.90	56	504.80	4543	5590	
6	296.00	286.5	9.50	0.013	0.733	90.09	901	12.74	29253317	0.013	0.000	0.028	12.91	52	274.63	2472	3424	
7	294.15	286.5	7.65	0.013	0.733	80.84	808	11.44	26250890	0.013	0.000	0.028	11.92	48	105.08	946	1802	
8	292.00	286.5	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758	
9	290.00	286.5	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547	
10	288.00	286.5	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358	
11	286.5	286.5	0	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0	
	1. iterace				Výpusti								VE			Přelivy		
-----	---------------------------------------	----------------	---------------------------	-------------------	---------	----------------	------------------------------------	------------------------------------	----------------------	----------	-------	-------	-------	------------------------------------	------------------------------------	------------------------------------	------------------------------------	------------------------------------
i	Q1	H _h	$\mathbf{H}_{\mathbf{d}}$	H _{W, i}	λ0	μ _i	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	Q^2
[-]	[m ³ ·s ⁻ 1]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]				
1	16567	305.00	291.75	13.25	0.013	0.733	106.40	1064	15.05	34551299	0.013	0.000	0.028	0.00	0	1701.12	15310	16374
2	13002	303.00	291.32	11.68	0.013	0.733	99.91	999	14.13	32441513	0.013	0.000	0.028	0.00	0	1312.75	11815	12814
3	11287	302.00	291.07	10.93	0.013	0.733	96.65	967	13.67	31384815	0.013	0.000	0.028	0.00	0	1126.24	10136	11103
4	8183	300.00	290.49	9.51	0.013	0.733	90.11	901	12.75	29261400	0.013	0.000	0.028	0.00	0	789.90	7109	8010
5	5534	298.00	289.80	8.20	0.013	0.733	83.68	837	11.84	27173912	0.013	0.000	0.028	0.00	0	504.80	4543	5380
6	3373	296.00	288.93	7.07	0.013	0.733	77.73	777	11.00	25239188	0.013	0.000	0.028	0.00	0	274.63	2472	3249
7	1754	294.15	287.78	6.37	0.013	0.733	73.78	738	10.44	23957194	0.013	0.000	0.028	0.00	0	105.08	946	1683
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	0.013	0.733	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0

	2. iterace				Výpusti								VE			Přelivy		
i	Q ²	H _h	H _d	H _{W,i}	λ0	μ _i	Qi, 1v	Qi, 10v	Vi	Rei	λ	λ0-λ	μ	Qi, 1t	Qi, 4t	Qi, 1p	Qi, 9p	Q ³
[-]	[m ³ ·s ⁻ 1]	[m n. m.]	[m n. m.]	[m]	[-]	[-]	[m ³ ·s ⁻¹]	[m ³ ·s ⁻¹]	[m·s ⁻¹]	[-]	[-]	[-]	[-]	[m ³ ·s ⁻¹]				
1	16374	305.00	291.73	13.27	0.013	0.733	106.49	1065	15.06	34578490	0.013	0.000	0.028	0.00	0	1701.12	15310	16375
2	12814	303.00	291.29	11.71	0.013	0.733	100.02	1000	14.15	32477463	0.013	0.000	0.028	0.00	0	1312.75	11815	12815
3	11103	302.00	291.04	10.96	0.013	0.733	96.78	968	13.69	31426711	0.013	0.000	0.028	0.00	0	1126.24	10136	11104
4	8010	300.00	290.46	9.54	0.013	0.733	90.29	903	12.77	29319549	0.013	0.000	0.028	0.00	0	789.90	7109	8012
5	5380	298.00	289.75	8.25	0.013	0.733	83.94	839	11.87	27256651	0.013	0.000	0.028	0.00	0	504.80	4543	5383
6	3249	296.00	288.86	7.14	0.013	0.733	78.09	781	11.05	25356350	0.013	0.000	0.028	0.00	0	274.63	2472	3253
7	1683	294.15	287.71	6.44	0.013	0.733	74.19	742	10.50	24092442	0.013	0.000	0.028	0.00	0	105.08	946	1688
8	758	292.00	286.50	5.50	0.013	0.733	68.55	685	9.70	22258437	0.013	0.000	0.028	0.00	0	8.11	73	758
9	547	290.00	286.50	3.50	0.013	0.733	54.68	547	7.74	17756090	0.013	0.000	0.028	0.00	0	0.00	0	547
10	358	288.00	286.50	1.50	0.013	0.733	35.80	358	5.06	11624090	0.013	0.000	0.028	0.00	0	0.00	0	358
11	0	286.50	286.50	0.00	1.013	0.335	0.00	0	0.00	0	0.013	0.000	0.028	0.00	0	0.00	0	0