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Abstract

This thesis presents designing new forward slicing solution for the DiffKemp tool. After
strenuous analysis of currently implemented solution in DiffKemp for forward slicing we
decided to retain current solution and extend it by few enhancements that should improve
the analysis provided by DiffKemp in a quite big scope. We have implemented extensions so
DiffKemp can perform analysis on fields of structured types which might represent run-time
parameters and also we extended slicing criterion with the value of analyzed variable. Also
we added support for slicing module kernel parameters. After implementing this solutions,
we did experiments which proved that implemented solution has improved the analysis
performed by DiffKemp.

Abstrakt

Tato praca popisuje navrh a implementéaciu nového rieSenie pre nastroj DiffKemp na au-
tomatické dopredné prerezévanie programov. Po zdlhavej analyze si¢asného rieSenia, sme
sa rozhodli sticasné riesenie ponechat a rozsirit ho o zopar vylepseni. Implementovali sme
rozsirenie ktoré dovoluje DiffKempu vykonavat analyzu nad prvkami Strukturovanych ty-
pov, pridali sme k siicasnému prerezavaciemu kritériu aj hodnotu premennej a na zaver pri-
dali podporu na analyzu parametrov modulov jadra. Po implementovani tychto vylepseni
sme vykonali experimenty ktoré potvrdili zlepSenie analyzi ktord DiffKemp vykonéval.
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Rozsireny abstrakt

Tato praca popisuje navrh a implementaciu nového riesenie pre nastroj DiffKemp na au-
tomatické dopredné prerezavanie programov. Z pociatku sa praca zaobera néastrojom Dif-
fKemp, pre ktory je urceny vysledok tejto prace. Nastroj DiffKemp slizi na porovnavanie
sémantiky dvoch verzii jadra Linuxu. DiffKemp sa spusta vo dvoch fazach. Prvou fazou je
faza generate, ktora sa zaoberd pripravou zdrojovych kédov a zbieranim informéacii ktoré
su urcené pre dant analyzu. Vyslednd analyza je potom spustend az vo fazi compare. Dif-
fKemp na tito analyzu vyuziva LLVM. Framework LLVM je siibor nastrojov, ktoré sluzia
na ulahcenie prace so zdrojovymi kédmi a taktiez umoznuje vykonavat rozne transforma-
cie. DiffKemp v stcastnosti uz obsahuje riesenie na dopredné orezdvanie programov avsak
z dovodu vyslednej kvality riefenie sme sa ho rozhodli analyzovat. Po zdlhavej analyze
stcasného rieSenia, sme sa rozhodli toto riesenie ponechat a rozsirit ho o zopar vylepseni.
KedZe tato praca je celd zalozend na prerezdavani programov rozhodli sme sa opisat pre-
rezavanie programov v samostatnej kapitole. Tato kapitola obsahuje zadefinovanie réznych
pojmov ktoré budeme neskor v praci pouzivat. Jednym z tychto pojmov je aj prerezavacie
kritérium. V naslednej kapitole sme sa venovali implementécii rozsireni, ktoré dovoluje Dif-
fKempu vykondvat analyzu nad prvkami struktirovanych typov. Toto rozsirenie je zalozené
na porovnavani indexov insStrukcie, ktord mé za tlohu, vypocitat ukazatel, ktory ukazuje
na prvok strukturovaného typu. Tato instrukcia sa nazyva Get Element Pointer instrukcia
a kedze tato inStrukcia je ¢asto mylne chapana ako indexovaci operator v jazyku C, rozhodli
sme sa ju blizsie opisat v tejto praci, kedZe je na nej zalozené jedno z rozsireni prezento-
vanych v tejto praci. Dalej sme pridali sme k sti¢asnému prerezavaciemu kritériu aj hodnotu
premennej. Implementacia tohoto rozsirenia zahrnovala dve fazy. V prvej fize sme nahradili
vsetky vyskyty globadlne premennej. Néasledne sme potom spustil rézne standardné trans-
formécie ktoré poskytuje LLVM aby sme odstranili nedostupny kod potom ¢o sme vykonali
prva fazu. Posledné rozsirenie ktoré sme pridali je podpora na analyzu parametrov mod-
ulov jadra. Kedze cast riesenie DiffKempu uz tito podporu obsahovala, rozhodli sme sa ju
pridat aj do zvysku. Na spustanie analyzi pre parametre modulov, sme sa rozhodli pouzit
format podobny sticasnému avsak tak aby spliioval zopar jednoduchych kritérii. Po imple-
mentovani tychto vylepseni sme vykonali samostatné experimenty. Pre rozsirenie ktoré im-
plementovalo pristup k prvkom strukturovanych typov sme nezaznamenali taky tspech ako
sme ocakévali, ¢o bolo pravdepodobne sposobene uz predoslym spravnym vyhodnotenym
z nastroja DiffKemp. U nasledujicich rozsireni sa nam vsak podarilo ukazat ich skuto¢nt
hodnotu a ako sa ndm pomocou nich podarilo vylepsit analyzu ktoré nastroj DiffKemp
vykonaval. Na zaver sme zhodnotili vysledky tejto prace a spomenuli taktiez rozsirenia,
ktoré by mohli taktiez vylepsit analyzu vykondvani nastrojom DiffKemp. Jednym z tychto
rozsireni by mohla byt napriklad implementécia kontroly aliasovania ukazatelov.
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Chapter 1

Introduction

In recent years where CI/CD (continuous integration and continuous delivery) techniques
make it easier and faster to deploy more often, we find a need to analyze programs in such
a pace as they are deployed. Unfortunately, analyzing programs is very complicated and
time-consuming job. The usual solution, which is widely used across all the bigger projects,
is running large set of test cases to find out any bugs. But this solution doesn’t cover all of
the paths the program can get into. The process of running test cases on running program
is called dynamic analysis. Oppose to this methodology is static analysis. This way we can
analyze all of the paths of a program. The task is sadly very complex and usually we can’t
analyze this way whole source code of application. For this purpose we use slicing methods
where we use criterion of slicing. Criterion tells us which part of the application property
we want to analyze. Based on this criterion we can afterwards analyze all of possible paths
this criterion influenced in application. One of the tools out there, that are doing this kind
of analysis is DiffKemp. DiffKemp is able to compare semantics of two version of Linux
kernel by using these methods.

Hence, the goal of this thesis is to propose automatic forward slicer which can slice off
all unnecessary statements from Linux kernel sources based on some parameters it contains.
The parameter we choose is called criterion, based on which, we decide, what statements
can be deleted. Product of slicing is called slice and it contains all of statements (instruc-
tions) which are dependant on certain program variable. The variable usually represents
parameter of Linux kernel module. This way we can prove semantics of both kernel ver-
sions of certain module, is same. The DiffKemp tool, which automatic forward slicer is
intended for, already contains some solution for forward slicing based on provided param-
eters. After learning how the current solution works and analyzing its results, we decided
for retaining current solution because it was producing quality results in most of the cases.
After analysing the current solution we noticed some deficiencies. Because we decided to
retain current solution, we have added support for these deficiencies in form of extensions.
These extensions are including support for slicing against fields of structured data types
which might represent run-time parameters. Next extension is slicing with respect to con-
crete value of global variable. Last but not least extension provides support for analyzing
the kernel module parameters, because current solution only provides support for run-time
parameters.

The rest of thesis is organised as follows. In Chapter 2, is described DiffKemp, a static
analysis tool which we use for analyzing Linux kernel modules (their functions) and compare
these modules as two different versions. The goal of this process is to prove that semantics
of certain parameter of module stays the same between versions. In its subsection we closely



introduce two phases in which DiffKemp performs its analysis. We also introduce LLVM
intermediate representation which is very often referenced when describing how the various
constructs work in DiffKemp. In following Chapter 3, we describe various slicing techniques
and how they are used in practice, also how DiffKemp utilize these, in its own process of
analysis and then we look more in depth for two slicing techniques which are forward slicing
and backward slicing. Next chapter 4, presents brief description of the current solution for
forward slicing in DiffKemp, following introduction of new design of solution, which removes
all shortcomings of old ad-hoc solution. Then in the chapter with Experiments 6 we show
our improvements of current solution really helped improve the results of whole analysis.
Finally, conclusion and future work in Chapter 7, which describes the results of this thesis
and some other extensions which can be made to improve current slicing solution even
more.



Chapter 2

The Diff Kemp Static Analysis Tool

DiffKemp is a static analysis tool that is able to automatically compare semantics of two
versions of the Linux kernel [10]. Generally, it is not possible to compare the whole kernel
at once and hence DiffKemp is designed to compare semantics of individual kernel functions
or parameters. Parameters are usually represented by global variables in the Linux kernel
modules. When comparing semantics of parameters, Diff Kemp compares semantics of all
functions that use the global variable corresponding to the parameter. Therefore, in the
rest of this work, we assume that two functions are compared for semantic equality.

The practical use of DiffKemp is to partially automate checking of backwards compat-
ibility and of stability of parts of the kernel. A kernel user may use some kernel functions
and he may expect that a function does not change its behavior between versions. This is
especially the case for the Kernel Application Binary Interface (KABI), which is a list of
functions that are guaranteed to be stable across minor releases of the Red Hat Enterprise
Linux. For kernel parameters, the situation is similar—if a user sets a kernel parameter
to some value, he expects that the setting will have the same semantics in future versions
and that he can preserve it during an upgrade. Checking whether the behaviour changed is
not possible to be done manually, especially in such a large project, potentially containing
millions of lines of code, as the Linux kernel is.

In order to compare all possible behaviours, DiffKemp uses various ways of static anal-
ysis to check semantic equivalence of two different versions of functions. This analysis is
done on the sources of the Linux kernel. DiffKemp, likewise other static analysis tools, uses
a structural low-level representation of programs for the analysis. In particular, it uses the
intermediate representation of the Clang/LLVM compiler[4], referred to as LLVM IR]5].

In DiffKemp, the semantic comparison is done in two main phases as shown in figure
2.1:

1. Generate — creates a so-called snapshot of Linux kernel containing sources of all
functions to compare, compiled into LLVM IR. This phase uses as the input the
kernel sources and a list of KABI functions and kernel parameters to be compared.

2. Compare — compares semantics of list of functions represented as two snapshots
created in the generate phase.

In the following sections, we describe the individual phases in a more detailed way.



Kernel params
KABI symbols

LLVM
snapshot

\/ EQUAL
LLVM <
— Compare
snapshot
NOT

X EQUAL

+ additional info

Generate —

Kernel source

Figure 2.1: Architecture of DiffKemp - simplified[3]

2.1 Generate Phase

The phase of generating snapshot consist of two sub-processes. First, as shown in the figure
2.2, this phase take as and input the Linux kernel source with list a of KABI functions
or kernel parameters which are to be analyzed. Subsequently, Diffkemp uses the utility
cscope, and searches for definitions of the given functions (or of the functions using the
given parameters) and creates mappings of these to the source files, where it finds these
definitions. Afterwards, the found source files are compiled into LLVM IR. Finally, the
LLVM snapshot is produced and it contains the original and the compiled sources of kernel,
the file functions.yaml with mappings of functions to LLVM IR files and the files of source
finding utility cscope, allowing quick searching of function definitions.

Kernel params Generate
KABI symbols

> Source |C source

. LLVM IR LLVM
> Compiler >
finder

snapshot

Kernel source

Figure 2.2: Generate phase — architecture[3]

2.2 The Compare Phase

The phase compares semantics of all functions from two snapshots created in the generate
phase. This phase consist of three sub-processes as shown in Figure 2.3. First, the compared
functions are simplified using various techniques. The goal of these simplifications is to
remove parts of the functions not relevant for comparison of semantics. For instance, when
comparing functions using a global variable ( representing a kernel parameter), it is not
necessary to compare the whole function. On the contrary, it suffices to compare those
parts of functions that are influenced by the variable. DiffKemp uses a technique called
slicing in order to remove parts of functions not influenced by a variable. Since this phase



is the core of this work, it is described in detail in Chapter 3. After the simplification
the following phase is comparing of semantics of two simplified /sliced functions which ends
either in semantic equivalence or, if the functions are not equal, an additional phase is
run. In this last phase, when it was shown that the compared functions are not the same,
DiffKemp tries to localise the difference between the two and displays the lines in the C
code, where the difference occurs.

Compare
Code LLVM o
LLVM ~ slicing and T Semantic diff > / EQUAL
snapshot . >
simplifying

Y

Difference X NOT

localisation " EQUAL
+ additional info

Figure 2.3: Compare phase — architecture[3]

2.2.1 SimpLL

This utility is the core of the compare phase. As its input it uses the LLVM IR sources
of a pair of compared functions. On these sources, it runs various transformation passes,
that are responsible for code simplifying. An instance of SimpLL is run for every functions
that is compared. It simplifies and compares the given functions. Usually, the functions
are simplified based on criterion, which might influence certain parts of a functions and
therefore comparison of the given functions is easier. In some cases this criterion might
be parameter of the Linux Kernel modules. This part of functionality of code slicing is
implemented inside LLVM pass VarDependencySlicer, which we aim to improve in this
work.

2.3 Current Automatic Forward Slicing Solution

The DiffKemp currently implements solution for automatic forward slicing. By analyzing
how the current solution work we figure it out that retain current solution is better way to
go and we decided to just extend its functionality by few improvements which can improve
analysis in great manner. This improvements are:

1. Slicing with respect to certain field of structured type which represents run-time
parameter.

2. Slicing with respect to concrete value of global variable.
3. Adding support for analyzing module parameters.

First improvement should improve currently performed analysis of DiffKemp a lot, be-
cause there are lot of run-time parameters which are represented as field of global variable



of structured type. This is because if there’s a false positive that DiffKemp marks the
result as not equal but non-equality was in part of the code that wasn’t affected by given
parameter for slicing, it means that after implementing this solution it should be evaluated
correctly. On the other way if there wouldn’t be any improvements by slicing algorithm this
doesn’t necessarily means that it didn’t improved anything but that it might be in all of
the cases difference even in the dependent parts of the code and the equality was previously
evaluated correctly even tough it has contained the code which shouldn’t be analyzed.

Second improvement improves the cases where current solution produces non-equal re-
sults for all possible values of global variable. In practice, users which would probably
wanted to run the analysis wanted to test their current setup with concrete values that
they have set. Slicing of the code based on the concrete values could potentially improve
results because once again, the difference might be located in independent part of the code
based on the concrete value of variable.

Last improvement is improvement in wider scope, because current slicing parameters
set in current slicing algorithm are quite general, but DiffKemp provides support only for
run-time parameters or the functions of the Kernel Application Binary Interface (KABI).
So we added support also for analyzing module parameters because they are represented
the same as run-time parameters are.

For implementing these extension and also for the current forward slicing algorithm is
enormously used the LLVM framework. This framework provide easy manipulation with
code which we analyze. LLVM is not only used for slicing solution but is largely used
in other parts of Diff Kemp. Because this thesis highly reference LLVM key concepts, we
introduce these concepts in next subsection 2.4

2.4 LLVM intermediate representation

Huge part of the current solution is based on a LLVM framework. The LLVM framework
is a collection of modular and reusable compiler and tool-chain technologies [6]. The most
important sub-project of LLVM framework for this thesis is LLVM Core. The LLVM
Core libraries provide a modern source- and target-independent optimizer, along with code
generation support. These libraries are built around a well specified code representation
known as the LLVM intermediate representation (,LLVM IR*). LLVM IR is a Static Single
Assignment (SSA) based representation that provides type safety, low-level operations,
flexibility, and the capability of representing ‘all’ high-level languages cleanly.

The LLVM code representation is designed to be used in three different forms: as an
in-memory compiler IR, as an on-disk bitcode representation, and as a human readable
assembly language representation[5]. The three different forms of LLVM are all equivalent.
For purpose of this thesis there are two concepts from LLVM which must be explained
to fully understand presented solution. These are global variable representation and GEP
instruction. In the next subsection 2.4.1 we’ll introduce how global variable are defined in
LLVM IR and after that we’ll describe how GEP instruction works in section 2.4.2.

2.4.1 Global variables representation in LLVM IR

Global variables define regions of memory allocated at compilation time instead of run-time.
To define global variable we must first assign itself an identifier. LLVM identifiers come in
two basic types: global and local. Global identifiers (functions, global variables) begin with



the ’Q’ character[5]. Local identifiers (register names, types) begin with the '%’ character.
So definition of global variable might look like something like this:

@global_variable = ...

The three dots represent all creation parameters for defining global variable. It might
contain linkage type, alignment, if it’s constant or not, type and default value. For purpose
of this thesis we just need to remember that global variable are defined with type and might
have default value i.g. initializer. By C standard, global variable is always initialized with
zero, unless it is external. Also worth to mention is that identifier of global variable doesn’t
represent the global variable itself but it only represent pointer to place in memory where
given global variable starts. For working with the global variable we have to load a global
variable with load instruction. This approach has its restrictions when dealing with the
global variable of structured data types and we’ll describe it more closely in the following
chapter 4.

2.4.2 GEP instructions in LLVM IR

Component part of the proposed solutions in this thesis are extensions which makes use of
GEP instruction. GEP is shortcut for Get Element Pointer which is pretty self-explanatory
of what this instructions does. Anyway there are still some thing which are often misun-
derstood about this instruction. What GEP instruction really does is that it calculates
resulting pointer based on the arguments given to the instruction, but it never reads a
memory. The first argument is always a type used as the basis for the calculations. The
second argument is always a pointer or a vector of pointers, and is the base address to
start from. The remaining arguments are indices that indicate which of the elements of the
aggregate object are indexed[5]. The interpretation of each index is dependent on the type
being indexed into.

First index of GEP instruction

The first type indexed must be a pointer value, however the following types can be struc-
tured types as arrays, vectors or structs. Also the first index must always index into the
second argument pointer type. This is often misunderstood because people tend to relate it
to known concepts from other programming paradigms, most notably C array indexing and
field selection. Confusion with first index in GEP instruction usually arises when people
think of GEP instruction like it was C indexing operator[7]. Let’s look at this example:

AType *Foo;

X = &Foo->F;

There might be temptation to say there would be only one index and thus selection of field
F. But Foo is pointer and therefore must be indexed explicitly. So we would provide GEP
instruction two indices. The first operand indexes through the pointer and the second one
select field F of the structure. This would analogically be implemented in C like this:

X = &Foo[0] .F;



Type of the index

The type of each index argument depends on the type it is indexing into. When indexing
into a (optionally packed) structure, only i32 integer constants are allowed (when using a
vector of indices they must all be the same i32 integer constant). When indexing into an
array, pointer or vector, integers of any width are allowed, and they are not required to be
constant. These integers are treated as signed values where relevant.

In the following listings is shown how the C code would be interpreted by Clang compiler:

struct RT {
char A;
int B[10] [20];
char C;
};
struct ST {
int X;
double Y;
struct RT Z;
};

int *foo(struct ST *s) {
return &s[1].Z.B[5][13];
}

The LLVM code generated by Clang would be then:

Y%struct.RT
Y%struct.ST

type { i8, [10 x [20 x i32]], i8 }
type { i32, double, %struct.RT }

define i32% @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
entry:

farrayidx = \

getelementptr inbounds ¥%struct.ST, %struct.ST* %s, \

i6é4 1, i32 2, i32 1, i64 5, i64 13

ret i32% jarrayidx

}

Although the syntax of LLVM IR is little bit different from C syntax and as we men-
tioned earlier that is more like assembly we can easily associated certain parts of the code
in LLVM IR with C code. At the beginning we define our structures. As shown above,
defining structures is just declaring that it will contain fields of certain types. Next we
define function foo with argument of the struct type we declared earlier.

Finally we get to the GEP instruction. Let’s look at it more closely. In this chapter
we mentioned that the first argument is type used as basis for calculation and the second
one is actual base address from which the calculation is made. Remaining arguments as we
mentioned earlier are the indices. Every index consist of pair of type and value. As we can
see in C code fragment first index is 1. This is index into the pointer so we don’t have to use
explicit 0 as shown in previous chapter. This index is 164 type, which implicitly indicates
that the machine where the code will be run is 64 bit architecture, because pointers are just
memory addresses and knowing the address is 64 bit long we derive previous statement.
Next argument is index 2 with i32 type. As we already know indices indexing fields of

10



structure must be i32 types and the field with index 2 is the structure of struct RT type.
The next index 1 indexes into field of array of type struct RT. Again we index into structure
so the index type is i32. Finally we index into two dimensional array of integers which is
the same as it is in the C code fragment.

With the base knowledge of the LLVM we can now introduce proposed solution which
are presented further in this thesis.
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Chapter 3

Program slicing

Program slicing is a viable technique for simplifying programs by focusing on selected
aspects of semantics. It was firstly introduced by Mark Weiser[11] and it was motivated
by the need to help students understand and debug their programs. Nowadays, it is used
to restrict the focus of a task to specific sub-components of a program. This is done by
removing every statement and predicate in the program, which is not part of the interest.
This process then produces a set of program statements and predicates which is called the
slice.

From the formal point of view, the produced slice is based on the concept of slicing
criterion. Slicing criterion is a pair <p, V> [9], where p is a program point and V is a
subset of program variables. A program slice on the slicing criterion <p, V> is then defined
as subset of program statements that preserves the behavior of the original program at the
program point p with respect to the program variables in V. Since this slicing method,
defined by Mark Weiser, preserves behaviour on every input of original program, it was
named a static slicing to differentiate it from other slicing methods that preserve behaviour
of the original program for certain subset of inputs only.

In contrast of static slicing [9], there are many others slicing techniques. The most
known is probably the dynamic slicing method, which uses dynamic analysis to identify all
the statements that affect the variables of interest, on the particular anomalous execution.
This approach is used, besides debugging, in software testing, software maintenance and
program comprehension. Other methodologies might be quasi static slicing which is a
hybrid slicing method ranging between static and dynamic slicing. Other than that is a
method derived from dynamic slicing called simultaneous dynamic slicing, which is similar
to dynamic slicing, but slices the program against set of test cases instead of a single test
case. These methods are not part of this work, but they are listed just for completeness of
known slicing methods. This work focuses on implementing an automatic forward slicer.
Forward slicing is a sub-methodology of static slicing, described in more detail in Section
3.2. Before describing the main slicing techniques, we introduce the Program Dependence
Graph, which is the key structure of all slicing methods.

Program Dependence Graph (PDG) [1] is a program representation where nodes
represent program statements and predicates, while edges carry information about control
and data dependencies between the nodes.

PDG can be understood as combination of Control Flow Graph (CFG) and Data Flow
Graph (DFG).
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In the following, we describe the two main methods of static slicing, namely the back-
ward and the forward slicing. These are important for understanding the solution that this
paper work presents.

3.1 Backward Slicing

The most known way of program slicing is the backward static slicing. Every developer has
probably met with this way of slicing even if it was not automatic nor it was producing any
slice as output.

The way most of the developers probably met with this kind of slicing is because of a
static analysis of their written programs. When statically analyzing a program we usually
meet with a need of knowing why is the value of a certain variable in a particular point
of program exactly as it is. Backtracking the analyzed code until all statements, which
affected value of variable, are found, we are able to tell that these statements are product
of backward slicing.

This is how a simple definition of backward slicing might be: backward slicing is a way
of finding all program statements that might have affected the value of certain variable in
a particular point of program [2]. However, the above mentioned definition is quite naive
and therefore we define it more formally including all dependencies. To this, we use the
Program Dependence Graph, which contains of all program dependencies. Using PDG, we
can find an algorithmic way of finding dependencies on certain point of program. The PDG
based algorithm considers slicing criteria of type <p, V>, where p is a program point and
V is the set of variables referenced at p. A slice with respect to such a slicing criterion
consists of the set of nodes that directly or indirectly affect the computation of the variables
in V at node p. This formal definition of backward slicing requires the backward traversal
of PDG. As oppose there is a other way of slicing, which uses a forward traversal of PDG,
called the forward slicing.

3.2 Forward Slicing

Formally, a forward slice is defined as the set of program statements and predicates affected
by the computation of the value of a variable v at a program point p, defined in the slicing
criterion. It could represent a program comprehension of certain parts of the program. This
behaviour is useful when we change a certain part of program and we want to know which
parts of the program has been influenced, so we can confirm changing the program point
will not cause any unsolicited behaviour. Similar principles are also used in DiffKemp.
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Chapter 4

Proposed Extensions of Slicing in
Diff Kemp

The primary goal of this work to extend the existing approach to slicing present in DiffKemp
so that it is capable to handle more cases of comparison of Linux kernel run-time and module
parameters. Therefore, we first investigate the existing solution and identify its drawbacks.
The main principle of the current slicing algorithm is presented in Section 4.1.

The algorithm is capable to slice a program against a global variable, which is a general
way kernel represents parameters. It is based on tracking how the parameters influences
as control flow of the program, as well as as data flow of the variables. This solution is
satisfactory for most of the cases we compare. Unfortunately, some run-time parameters
are not represented by an entire variable but by a single structure field of a variable only.
For such parameters, slicing against the entire variable may be insufficient to determine
semantic equality, therefore adding support for slicing again a particular field of a variable
could potentially increase quality of the analysis done for the run-time parameters. A
proposal for such a solution is presented in Section 4.2.

Sometimes are not compared functions equal when we slice and compare with respect
to certain variable. In some cases, it can happen that when the value is set for a variable it
might change the result because it will filter non-dependent code out, based on the provided
value. Process how this is done is fully explained in the next section 4.3.

Moreover, the DiffKemp doesn’t currently support analysis of kernel module parame-
ters, but the tool for comparison and simplifying named SimpLL does. Therefore to these
proposed solutions we add an interface for DiffKemp to work with kernel module parame-
ters. This interface will allow running the DiffKemp tool for analyzing semantics of kernel
module parameters by passing the module kernel paramters to the interface of SimpLL.
To implement this, proposed solution includes similar structure as is already known from
KABI functions and their function.yaml file which is generated in snapshot and similar
approach is chosen for modules and their parameters.

4.1 Current slicing solution in DiffKemp

Current slicing algorithm takes a function f as input and global variable g as inputs. The
output is the function f’ that is the minimal slice of f containing all instructions that
are dependent on the value of g in some way. Current solution works in the three main
phases: (1) computing control and data-dependent instructions that are to be preserved,
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(2) restoring the data-flow among the dependent instructions, and (3) restoring the control
flow among the dependent instructions and those needed to preserve the data-flow so that
the produced CFG is valid. These phases are most of the time evaluated correctly but there
are some cases where evaluations might be wrong. Most of the incorrect evaluations which
instructions to slice off happen in the first phase. Because of that, extensions proposed
in this chapter focus on improving the evaluations in the first phase and how the first
phase of the algorithm works. To understand how proposed solutions works, we need to
understand how the first phase of current slicing solution works. This is described in the
next Subsection 4.1.1.

4.1.1 Computing control and data-dependent instructions in current slic-
ing algorithm

Currently integrated slicing solution for calculating dependence of the instruction has got a
function and a global variable as slicing criterion. At the start of the algorithm it initialize
an empty set of the dependent instructions. Then it iterates through the instructions of the
function. On an every instruction it checks whether it contains the given global variable as
an operand or if there is the operand which represents an instruction which is already in set
of dependent instructions. This covers how data dependence is calculated, but there must
be also control flow dependence computed to include all dependent instructions. Control
flow dependence happens when we mark branching instruction as dependent. Branching
instruction takes three arguments, result of condition based on which jump is made to
first label given as second argument if the condition is true or second label given by third
argument, if condition evaluates to false. Afterwards the basic blocks affected by this
branching instruction are added to the set of dependent instructions.

However this solution is simple and thus it in most of the cases produces correct results,
there are some shortcomings in a way of dealing with structured data types which we’ll
describe in the next Section 4.2.

4.2 Adding support to slicing against concrete fields of struc-
tured data types

As described in previous Section it is common case that run-time parameters are represented
as field of structured data types (e.g. arrays, vectors and structures). DiffKemp currently
doesn’t support slicing against the fields of structured data types. DiffKemp currently slices
with respect to all fields of structured type. In previous chapter it is described that when
looking for dependence of an instruction we look if one of the operands is global variable.
Then in Chapter 2 in Section 2.4.2 is implicitly said that access to the structured data
types is done by GEP instruction which calculates final pointer which represents wanted
field. As we said earlier we get global variable which is represent all the fields of structured
data type. While iterating through the instructions we find instruction that uses the given
global variable but it’s not using the certain field which represent the run-time parameter.
Even tough, the current solution marks the instruction as dependent because it does not
take into account the indices that GEP instruction uses. These indices are used to calculate
the final pointer that represents wanted field. On the other way it compares only the base
pointer of GEP instruction which are the same but the GEP instruction does not point to
the same field. This evaluation is wrong and therefore we propose solution for removing
this insufficiency.
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There’s also question when we compare only indices for GEP instruction, if there are
going to be other instruction which will suffer of this wrong evaluation mentioned above.
As we mentioned in the chapter about GEP instruction, GEP instruction does not read
memory, it only calculate new pointer from base address. In case of primitive data types
there’s no real point to calculate a new pointer because this would represent completely
different object in the memory and unless there’s some weird pointer arithmetic going on,
we don’t want that. So to work with the global variable of the primitive type we would use
load instruction which takes as argument the identifier of global variable (named memory
address where global variable is stored). In case of structured type, the base pointer is
can not be load, because we can load only first class objects which are basically primitive
types. This is why we use GEP instruction to access field of structured type. After GEP
instruction returns the pointer which points to memory address of certain field we can
load this pointer then. Because of this we cannot include check for load instruction for
structured types because this can not be done and GEP instruction with primitive types
because there is no meaning for that.

4.2.1 GEP Instruction Dependence

Run-time parameters are defined in certain modules of Linux kernel based on which group
of the run-time parameters they fall in. In these modules there’s an array of structures of
run-time parameters definitions. Every definition contains the name of run-time parameter,
data field, which is the pointer to data which represents the global variable representing run-
time parameter, and some other fields which are not needed to be explained for purpose of
this thesis. For our analysis is the most important the data field which contains the pointer
to a global variable. In LLVM intermediate representation is this assignment expressed
as GEP instruction in case of structured types, which contains the global variable (base
pointer) and the indices that represent concrete field. Or they contain only the global
variable identifier which represent the global variable of primitive data type.

This way we can gain indices for the GEP instruction and therefore we can extend our
slicing criterion or an input to current slicing algorithm by these indices. Afterwards when
iterating throughout the instructions of the given function we can handle GEP instruction
dependence just by comparing their indices if they contain also the global variable as the
second operand which represents base pointer from which computation of new pointer is
made.

4.2.2 Call Instruction Dependence

Most of the accesses to a field of structured type will be represented as GEP instructions.
Thanks to the SSA form of LLVM IR we can check all the uses of the GEP instruction to
find all dependent instructions. But there’s also one more case where this kind of behaviour
isn’t sufficient. Now we check whether GEP instructions contains also the right indices. But
what if there’s call instruction which calls the function which uses as argument given global
variable without indices. Then inside the body of function it uses the GEP instruction
to compute new pointer representing the field of structured data type. In this case, call
instruction is dependent only if it uses exact access into to structured type as defined run-
time parameter. While looking inside the function which was called by the call instruction
there might occur recursion when there’s not usage of exact access into structured type but
we still cannot presume it’s not dependant because there’s also call with the global variable
which holds the whole structured type, hence it’s the same case with we have started at
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the beginning. Solution of this problem will be standalone function which checks if the call
instruction is dependent. This function iterates throughout the instructions of the called
function and check if two cases occur. The first case is check whether the instruction is
GEP instruction which uses exact access to structured type, i.e. global variable pointer and
indices match. If they are, function ends with statement that call instruction is dependent.
The second case which is more complicated, check the call instructions. This is the place
where the above mentioned recursion comes in use. This function just recursively calls itself
to just check if the inner functions contains GEP instruction. If the whole recursion check
doesn’t return anything and no dependent instructions are found, given call instruction
isn’t dependent.

4.2.3 Other Instructions Dependence

Other instructions should compute the dependence the same way as they are already com-
puting because thanks to SSA form most of the instructions will be using the previous
instruction which loaded the pointer from the GEP instruction calculations and as we
described earlier computation whether instruction is dependent basically depends on two
criterion, whether it contains the global variable or other dependent instruction as its
operand. But there’s some point worth to mention about the LOAD instruction. As we
already mentioned in previous section there’s no point for the primitive type global variable
to make GEP on itself, there’s also no point for structured type global variable make LOAD
on themselves because even LLVM prohibits it, because LOAD instruction can be used only
on first class, which are simply said the primitive data types. Therefore we don’t need to
make any additional checks when computing dependence with or without GEP instruction
indices because there will be no other occurrences of LOAD instruction or GEP instruction
when is one of the cases mentioned above.

4.3 Slicing w.r.t. a Concrete Value of a Parameter

Presented solution here, isn’t fully capable of slicing off all the statements that aren’t
dependant on certain value of parameter (i.g. global variable). Instead it’s series of trans-
formations which leads to removing all the unneeded statements. First part of this solution,
is getting value of parameter. This can be done by using default value which is set when
variable is defined or we can define new slicing criterion with respect to value of variable.
Let’s say the slicing criterion <p, V, ¢>, where p, V we already know and i represents the
value of variable. Because we slice against certain value of variable and not for all possible
values this methodology is similar to dynamic slicing while preserving static slicing method-
ology. This kind of approach is similar quasi static slicing except there is no execution of
program. Nonetheless, we already know the value of variable by simple definition above,
so we don’t have to use any new techniques for slicing. Next step of our series of transfor-
mation is to replace all the occurrences of variable by its constant value. This way all of
the unreachable statements will be clearly recognizable, because branching of program will
be conditioned by simple constant condition. After that, we call Dead Code Elimination
pass|8], which is customized to detect these conditions and remove whole unreachable basic
blocks and simplify CFG of the program. In the following listings is shown, how to whole
process of slicing with respect to value of variable, consisting of four basic-blocks, BB1 and
BB4, which aren’t dependant on the variable and BB2 and BB3, which are.

17



global_variable = O; global_variable = O; global_variable = O;
BB1 if(global_variable!=0) if( 0 !'=0)
if(global_variable!= 0) BB2 BB2

BB2 else else
else BB3 BB3

BB3 . . . . . .
BB4 Listing 4.2: After slicing Listing 4.3: Replacing all

w.r.t. variable occurrences

Listing 4.1: Original part of
the program

In the listing 4.1 is shown initial set of statements, which are going to be sliced. Next
in the listing 4.2 is shown the removal of BB1 and BB4 as we mentioned they are not
dependant on variable. After that, replacing value of variable in all its occurrences takes
place in listing 4.3 and lastly the dead code elimination removes all unreachable basic-blocks.
Therefore the BB3 has left.

4.4 Adding support for slicing against kernel module param-
eters

Component part of the previous solution is also the support for slicing against module
parameters (and its values if needed). As mentioned above SimpLL tool already contains
the support for slicing against run-time parameters because of run-time parameters same
as module parameters are represented as the global variables in the source code. This way
we only need to implement support only in the python interface of DiffKemp. This comes
under two parts: generate phase and compare phase.

4.4.1 Generate phase

The Generate phase proposes solution similar for two other use cases of the DiffKemp.
Analysis of KABI functions in Diffkemp and run-time parameters analysis takes as input
for a generate phase the file containing all information needed for generating the snapshot.
We chose this way because we wanted to maintain the way of how DiffKemp works. Now,
when we know that we will use file containing information about how snapshot will be
created we must decide which format to use to present the information for slicing. There
are lot’s of serializations format as json, xml, yaml which could be used as the list of the
parameters with its values. However there are some requirement that must be met before
choosing one.

First requirement, most important was to be really easy processed by machine. Serial-
ization formats like json, yaml are supposed be processed easily, otherwise xml is bit harder
when it comes to defining right structure for XML document and making XPath queries,
which are used for access to certain part of the XML document. This process is compli-
cated and also is quite limited for access to elements which must fulfil certain conditions.
Therefore we chose not to use xml format.

Second requirement which was needed to be satisfied is the file must be easily written by
hand, this means that for testing and other purposes file can be written by user in least time
as possible. Again, this is where XML would be removed from considered options because
of its opening and closing tags, attributes and other syntactic trash which is hard to be
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written by hand. But json fall short too in this situation where this kind of requirement
is needed. Even though json is much easier to be written by hand than the xml format, it
has still some cons due to which we decided not to use this option either. Therefore yaml
is what’s left, but unfortunately we decided not to use this option too. This is because of
the last requirement.

We wanted that the file could be automatically generated on the host machined for easier
analysis of host system configuration. There was no tool which could directly generate yaml
file with the configuration of the module parameters. We decided to use format of output of
sysctl -a command which generates all sysctl paramaters in format of key = value pairs.
This format was used along with all information needed for analysis of module parameters
and in the results it will be:

<module directory>/<module name>:<parameter> [ = <value> ]

Module directory represents directory of the kernel where the file with the module name
will be found. After that in the built module we find given parameter. Value in this format
is optional and it only defines whether solution mentioned in previous section will be used.
Then we generate snapshot.yaml file which contains all of this information for snapshot to
be loaded and snapshot folder with its built modules that contains module parameters.

4.4.2 Compare phase

After the snapshot is produced we can proceed to next phase of comparison. This phase
was more or less prepared for analysis against module parameters because the snapshot
file already contains name of the global variable, which is supported in SimpLL tool,in
contrary to sysctl/module parameter name which are not mentioned in snapshot.yaml file.
Only support that was needed to be added was for the value to be read from snapshot and
then make corresponding call to SimpLL tool to make slicing w.r.t value of variable, more
explained in the previous Section 4.3.
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Chapter 5

Implementation of proposed
solutions

Implementation of DiffKemp consist of two parts: Python part which handles running
all parts of the analysis made by DiffKemp, contains loads of module which simplifies
manipulating with source code, compiling modules into LLVM IR or finding and gathering
information need for analysis. The other part of DiffKemp is written in C++. This part is
run in instances from DiffKemp’s Python part and is in charge of preprocessing modules and
simplifying them. The current implementation of DiffKemp is more specificaly described
in Section 5.1

In the following section we describe implementation of proposed solutions. In Section 5.2
we describe how the solution of slicing with respect to concrete field of structured type was
implemented. After that in Section 5.3 is described the slicing against the value of concrete
value of a parameter and lastly in Section ?? how the support for module parameters was
added.

5.1 Current implementation of the DiffKemp

From the previous chapter about DiffKemp we already know that DiffKemp analysis consists
of two phases: Generate and Compare Phase. These phases are represented as two functions
in DiffKemp’s part written Python. In these functions there are various task which are run
based on specification of the phase. In the next Subsection 5.1.1 we describe how the
Generate phase is implemented and right after that we take a look at the Compare phase
in Subsection 5.1.2.

5.1.1 The Generate phase

Generate phase/functions takes as input three mandatory arguments and several optional.
These are kernel directory, from which the snapshot is generated snapshot, snapshot direc-
tory, function list or list of run-time parameters which are going to be analyzed and are
listed line by line.

After calling the function generate with these parameters, it iterates throughout the
lines of the function list and run various task based on whether function list is list of KABI
functions or the list of run-time (sysctl) parameters. Then it stores serialized information
extracted from generate phase into snapshot directory which was defined by second argu-
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ment inside file named snapshot.yaml with all needed modules compiled into LLVM IR.
In pseudo-code it might looked like this:

function generate(kernel_dir, snapshot_dir, function_list, is_sysctl=False):
snapshot = Snapshot(kernel_dir, snapshot_dir)
for line in function_list:
if is_sysctl:
Do something with sysctl
else:
Do something with function from KABI list
snapshot.write_snapshot_to_file()

Various tasks are run based on whether function list represent the the list of KABI functions
or run-time parameters. In following subsections is described the processes which must be
handled in both cases.

List of KABI functions

When the function list is a list of KABI functions, generate phase takes the name of the
KABI function, it searches throughout source code of the given kernel directory with utility
named cscope. For every file with found definition of the given symbol it compiles it into
LLVM IR. Now the information is stored into snapshot object which represents whole
snapshot for compare phase. In pseudo-code it would look like this:

srcs = find_sources_with_symbol (symbol)
for src in srcs:
module = build_module_from_source(src)
if not module.has_function(symbol):
continue
snapshot.add_function(symbol, module)

This is simple example how generate function works in DiffKemp for KABI functions. More
complicated case is explained in next section.

List of run-time parameters

In case of run-time parameters there is a bit longer flow of things which needs to be done
for snapshot. Firstly, we must find module where the run-time parameter is defined. As
mentioned in previous chapter for every run-time parameter group there’s file which con-
tains definition of run-time parameters. These definitions contains various fields. The
most important for us there are procname, which represents name of run-time parameter,
data which represents which global variable contains the value of run-time parameter and
proc_handler which is the function which runs every time user sets up the parameter.

Now, when we have got module with run-time parameters definitions, we can parse the
function list. In the introduction of this section we said that function list contains only one
entry at the line, but in this case of run-time parameters there might be a pattern which
can represent more than one parameter. Pattern is parsed and after that is every name of
run-time parameter which can be represented by the pattern is returned. These returned
names of parameters are then looped throughout for cycle and for each we perform another
set of tasks.
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For each symbol representing run-time parameter we first get it’s proc_handler function
if it has some. If it is, we find the module which contains definition of this function and we
compile it into LLVM IR. Afterwards we just add collected information into snapshot object.
Next, we extract the data variable from run-time parameters definition. These variables are
represented by object KernelParam which holds information about data variable name and
its indices from the GEP instruction. Continuing the process, we find all the sources which
contains all the usages of name of variable representing the run-time parameter. Now, we
compile these sources into the modules. In these modules we find again all functions using
the given variable name. We add all of these functions into the snapshot object, but we skip
now proc_handler function because that’s already contained inside the snapshot object.
Little peek how the implementation of this might be done can be seen in the listing below:

sysctl_module = get_sysctl_module(symbol)
sysctl_params_list = parse_sysctls_pattern(pattern)
for sysctl_param in sysctl_params_list:
proc_handler_function_name = get_proc_handler(sysctl_param)
if proc_handler_function_name:
sysctl_module = get_module_for_symbol(sysctl_param)
snapshot.add_function(sysctl_param, sysctl_module, glob_var=None)

kernel _param = get_data_variable(sysctl_param)
if not kernmel_param:
continue
for src in find_src_using_symbol (kernel_param) :
module = build_module_from_source(src)
for fun in get_functions_using param(module, kernel_param) :
snapshot.add_function(
sysctl_param, module, fun, glob_var=kernel_param.name)

5.1.2 The Compare phase

The Compare phase is more complicated than the generate phase, but for our solutions
there’s no need fully understand how its implemented. In a simple explanation, the com-
pare phase loads all the information from snapshot.yaml file. Subsequently it runs SimpLL
instance that does the pre-processing and module comparison for each entry inside of snap-
shot.yaml file. Afterwards in the Python part it evaluates the produced results of SimpLL
and then it prints all the results and diffs into directory and for each result there’s a new
file containing result and diff if there’s difference between two versions. Further proposed
extensions of improving slicing algorithm are mostly part of the tool SimpLL. To under-
stand how certain parts are implemented we’ll describe SimpLL implementation in next
subsection.

SimpLL

Main function of SimpLL contains very simple flow how analysis in this tool is made. First
thing done is parsing command line arguments. LLVM provides very powerful interface
for dealing with command line arguments. This interface provides template class cl::opt,
where you create an object of this class with name of the option which will represent the
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command line argument. After feeding function cl::ParseCommandLineOptions with ar-
guments of the main function, it stores the value of given arguments from command line
into cl::opt object corresponding to that option. After parsing command line options is
finished, object of Config class is constructed based on the provided options. Construc-
tion of Config object does two things: converts command line options into corresponding
LLVM objects (-var option into 11vm: :GlobalVariable class and so on) and stores all the
information needed for further analysis.

Next, SimpLL runs the function processAndCompare. This function runs preprocess-
ing of modules and afterwards compares the functions. For purpose of this thesis is the
most important the preproccess phase which runs various LLVM passes that simplifies and
removes all unnecessary code that can mess up semantic equivalency analysis afterwards.
One of these passes is VarDependencySlicer which is modified in extension presented in
the next Section 5.2 to improve overall analysis.

5.2 Slicing w.r.t certain field of structured data type repre-
senting run-time parameter

Implementation of this extension can be resolved into three parts which are divided into
these part based of DiffKemp functionality which are self-sufficient so this extension doesn’t
affect other parts of DiffKemp functionality and also this way it’s more easily tested if
everything works as it should be.

5.2.1 SimpLL

The biggest part of the implementation is implemented inside part of the DiffKemp called
SimpLL. When running analysis with run-time parameters SimpLL takes as input SimpLL
these arguemnts: path to the first file which represents module in older version of kernel,
path to the second file which represent the same module in newer version of kernel, an
option -fun with the name of the function containing run-time parameter, an option -var
with name of the global variable which represent the run-time parameter. Part of the
new extensions of SimpLL is also new option -index which represents the index into GEP
instruction. This option is implemented with the class of cl::1ist where a cl is the
namespace from LLVM library which handles command line arguments. Using this class
for an implementation of command line option for SimpLL means, that this option can be
stacked one after another and thus provide more indices for analysis because as we already
know GEP instruction can contain more than one index. Instance of class cl::1list is
vector like object. After we extract all the indices from command line, we propagate them
through the flow of SimpLL until reached VarDependencySlicer pass. Modifications of the
VarDependencySlicer which handles GEP instruction indices are further described in more
detail in the next subsection.

5.2.2 VarDependencySlicer pass and GEP instruction dependence

VarDependencySlicer pass represent the current slicing solution presented in previous chap-
ter. In previous Chapter 4, we also proposed solution which extends the current algorithm
in VarDependencySlicer. This solution was presented in two main branches of implementa-
tion: the GEP instruction dependence and Call instruction dependence.
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GEP dependence computation consist of comparing the given indices with indices of
GEP instruction which has also operand of GlobalVariable class which was given as value
of option -var and converted into the instance of this class.

Unfortunately given indices can be in various forms. As we mentioned in previous
chapter we get the indices from the modules where run-time parameters are defined. These
definitions contain a GEP instruction with the index into given GlobalVariable operand
which basically a base address for computation. As we already know, every index in the
GEP instruction has its type based on which type we index into. Also we know that same
index with different type does not mean that the calculation that GEP does, will be the
same. Unfortunately in these definitions the type into we index first (second argument of
GEP instruction) is bitcasted into i8* (bitcasting means changin value into some type we
choose without changing the bits) . This will completely change indices and these indices
will never match with the ones that are in the modules.

Solution for this is method of GEPInstruction class called accumulateConstantOffset.
This method calculates bitcasted offset based on the given data layout of module. This way
we can compare the bitcasted index and calculated constant offset and tell apart depen-
dent and independent instruction. There is also one more problem with implementation
of computation of GEP dependence. This is rather clean code problem than the principal
problem but solution for this isn’t the simple one.

In practice there are two way how GEP instruction is placed in a code: as the stan-
dalone instruction the GetElementPtrInstr and as operand of some other isntruction
GEPOperand. Implementation of comparing the indices is same for both but we can not con-
vert GEPOperand into GetElementPtrInstr. LLVM library does this but it does not always
work and if it’s not than the LLVM library will convert it into GetElementPtrConstantExpr.
This class is private for only the LLVM library so we cannot use it. Instead we used a little
hack and we dyn_cast GetElementPtrInstr to GEPOperand other way around as we tried.

Second part of the solution is computation of call instruction dependence. However this
solution is more complicated than GEP computation so it is described in next Section .

5.2.3 Compare phase and computation of the Call instruction depen-
dence

Computation of the Call instruction dependence was described in previous chapter. It
was implemented as it was explained in Chapter 4, however there is one implementation
detail that was left out. As we iterate through the instructions when we discover the Call
instruction we must first find out what function it is calling. When we retrieve the Function
object which represent the called function we can iterate through the object to look inside
the function and make additional check whether the function is dependent or not. Problem
occurs when the function which is called isn’t part of the module which is preprocessed.
This is called in DiffKemp an missing definition.

When dealing with Call instruction we must differ between full dependence of call
instruction and dependence only by global variable, thus pointer which represents all fields
of structured data type object. In case of full dependence it is pretty obvious that function
is dependent because there’s no reason to pass pointer to field of structured data type
which represents run-time parameter. On the other way, when function receives only the
base pointer we can’t decide whether the function call is dependent or not, and hence we
decide based of the content of function. First thing we do is that we try to obtain Function
object. This is done by method GetCalledFunction provided by CallInstr class which
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represents Call instruction. When we receive the function object from method call, we can
perform various operations on the object. So we make sure that function exists within
the compiled module. Every Function object has method called isDeclaration which
tells if the function is declaration. If it is, module doesn’t contain the body of function
and thus we can’t iterate through, to check dependence of inner instructions and thus we
can’t surely tell if function is dependent. Although we can’t decide of the result of analysis
now, we can link the module which contains the called function and analyze it afterwards.
Object OverallResult, which represent results of Analysis, contains field which is called
MissingDefs. This field contains all the missing definitions of the function. This feature
was mainly used during comparison phase of analysis where we must look inside to functions
to tell if they’re same or not. We use the MissingDef in this case too so we can gain all
the instruction in Function body from another module.

After adding Function object to MissingDefs field, SimpLL converts this object into
yaml representation. Python part of the DiffKemp tool reads it, and then compiles the
module which contains the function in missing definitions and links it with current analysed
module. Then it runs whole analysis again. Analysis ends when the results from SimpLL
are produced and DiffKemp is able to evaluate them. However the function returning
results isn’t run when missing definitions occurred while preproccessing. When for example
we can’t find function’s definitions while in the phase of preprocessing, SimpLL would
produced no results with only missing definitions. If this would happend multiple times
where function cannot by found for some reason we must secure that DiffKemp produces
evaluation at least with the information is has got. This way we must handle condition
where DiffKemp received no results but also were unable to find the missing definitions
which received. Then we run SimpLL with information that it shouldn’t return any missing
definitions and try to make analysis only with the information that is present. Although
this might seem unlikely that the function definition would be missing but this could be
because DiffKemp couldn’t compile the function definition into LLVM IR or couldn’t find
it using cscope utility. Pseudo algorithm how this would work is shown below:

run_analysis = True
dont_return_missing_defs_while_preprocessing = False

while run_analysis:
run_analysis = False
OverallResult = run_simpll (module, dont_return_missing defs_while_preprocessing)
if OverallResult.MissingDefs:
try:
for function in OverallResult.MissingDefs
link function_to_module(function, module)
run_analysis = True
continue
except:
if not OverallResult.result and not run_analysis:
run_analysis = True
dont_return_missing defs_while_preprocessing = True

process_and_print_results(OverallResult)
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When exception is caught that we were unable to compile and link module to our current
module we check also that it doesn’t contain any result. That’s because we might get
returned missing definition also after preprocess phase where results are already produced.
So this way we won’t run new analysis because without the new missing definition linked,
the result would be the same. After running SimpLL, VarDependencySlicer pass is run,
where whole implementation for computing Call instruction dependence takes place. How
the implementation of this algorithm would look like is shown in next listing.

check_call_instruction_dependence(CallInstruction, OverallResult):
dependent = check_if_instruction_is_fully_dependent(CallInstruction)
if dependent:
return True
else:
dependent = check_if_instruction_is_maybe_dependent (CallInstruction)
if not dependent:
return False
function = getCallerFunction(Calllnstruction)
if function.isDeclaration:
OverallResult.MissingDefs = function
return False
for instruction in function:
dependent = check_if_instruction_is_fully_dependent (instruction)
if dependent:
# we don’t need missing def when we discover that function is dependent
del OverallResult.MissingDefs
return True
if True == check_call_instruction_dependence(instruction)
return True

return False

5.3 Slicing w.r.t a Concrete Value of a Parameter

Implementation of this solution is mainly contained inside the SimpLL. This extension
supports three way of slicing w.r.t to a variable: slicing for all possible values therefore
just using the code related to global variable, slicing against the default value of global
variable and slicing with respect to concrete value of variable with corresponding type. The
first way is already supported by SimpLL with command line option -var and argument of
name of the global variable. Then the second one and third are supported due to extending
format of the option -var argument. Now, the argument can contain not only name of the
variable but also the value, which should it contain and these two are colon separated. Also
it supports keyword default or the variable value can be empty, if we want to use default
value of given global variable for analysis. Now as we mentioned in the previous chapter, we
don’t slice off the independent instructions based on value but we just replace them with the
object representing their value in instructions which uses the loaded global variable. After
the replacement we use standard program tranforamtions like Dead Code Elimination to
slice off all independent instructions. This process is done in VarValueDependencySlicer
which is described in next section 5.3.1.
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5.3.1 VarValueDependencySlicer

VarValueDependencySlicer is a LLVM pass which inherits from the ModulePass class. This
means that transformation which is done by LLVM pass, is performed above whole LLVM
module which was sent into SimpLL as input. This is because it’s faster and more simple
to iterate through the usages of GlobalVariable class in LLVM than it would be to iterate
through the instruction of the function. While iterating through instructions we would had
to also iterate throughout its operands and check if any of them is global variable which
we are looking for. Reasoning behind this is A /B testing that the general module has more
instructions in function than the module has usages of certain global variable. On the
other hand flow of this LLVM pass is very simple. In the beginning, takes as arguments
module, global variable and the value which is to be replaced for every occurrence of the
given global variable. This value can be also null which means that default value should
be used for replacement. Using default value it’s easier for us because every global variable
object has function getInitializer which returns value which has been set when global
variable was initialized. This way we get right instance of Constant class which is used
later for replacement, because the function used for replacement uses Constant class type
as argument.

Further, it iterates all usages of global variable as we mentioned previously. When usage
of the Global Variable is found we try to dyn_cast it into load instruction. Anyway after
we find out that current instruction is load instruction we replace all is usages again with
the Constant object of corresponding type. This is done by the function which provides
LLVM interface of Value class called replaceAllUsesWith which takes as argument an
object containing value of variable that we want to replace all uses of load instruction with.
However the current flow of this implementation is quite simple there’s a tricky part when
converting string argument from command line option into corresponding Constant object
type.

This part is done with dyn_casting global variable initializer into various specific
Constant object types ( e.g. ConstantInt or ConstantFP classes). When we find out
which type of specific class it is, we call it’s constructor with string argument. Construc-
tor then returns an object of specific Constant type and we return it from the function.
However the function return the Constant class not the specific sub-classes but due to in-
heritance from Constant object the casting to superclass is done automatically by Clang
compiler.

5.4 Supporting slicing against kernel module parameters in
python interface

In this section we shortly introduce how the interface for dealing with kernel module pa-
rameters was implemented into the current generate phase. As we mentioned in previous
chapter this part is needed to be implement only for snapshot generation because SimpLL
already support it in its interface the global variables and global variables are representing
as the run-time parameters so do they the module parameters. As we know from the pre-
vious section there is loop which takes lines from the function list. In this loop there’s if
condition so we can make different flow whether we analyse run-time parameters or KABI
functions. This way we have added the third branch of the if condition which takes care
of module-parameters. First we parse the entry from function list based on the format we
introduced in previous chapter. After that we find module and compile it into LLVM IR
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from the given module directory and module name. Then it finds global variable which
represent module parameter. Rest of the flow is same then as it is for run-time parameters
when we find all functions using that global variable in all the possible modules. Then we
add the found functions into the snapshot.
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Chapter 6

Experimenting with implemented
solutions

The goal of the experiments of the first two implemented solutions is to prove that results of
analysis made by DiffKemp were improved after implementing these solution and integrating
them into the current solution of the DiffKemp. For the last solution implemented, we show
how can we compare many module parameters in such a easy way just by creating list of
them. In the next Section 6.1 we will show what results experiments have returned while
testing the first extension which is responsible for slicing against concrete field of structured
types. After that, in Section 6.2 we show how we can make an analysis of kernel modules
while using the second extension which performs analysis with respect to a concrete value
of global variable.

6.1 Slicing against concrete fields of structured types exper-
iments

Experiments of testing functionality of this extension have been tested on CentOs kernel
version 7.3 and 7.4. We’ve generated snapshots containing indices of global variables repre-
senting run-time parameters and tested list of run-time parameters presented in Table 6.1
with results they have returned with or without the extension.

After running analysis with extension we can see that no results have turned from
Equal state into Not Equal. Also no Errors occurred during analysis which means that
implemented solution did not mess up analysis made by DiffKemp. Sadly in the tested
list of run-time parameters has occurred only one conversion from Not Fqual state to
Equal. After analyzing given case by hand we could confirm that implemented solution has
really done what it was supposed to do. This low number of successful cases after adding
our solution might be because most of the cases we're evaluated as Fqual for the set of
instruction that covered whole global variable not only the field we wanted. After that
subset should be evaluated equally as the given set and therefore still it evaluates to Equal.

To conclude this, we have implemented solution that works for slicing with respect
to concrete field of variable, however there wasn’t much cases as we expected to improve
whole analysis performed by DiffKemp. In the future work we aim for verifying if the given
solution didn’t work for other cases because of some nuances or if there wasn’t just that
many cases to improve analysis as we firstly assumed.
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Run-time parameter Function Results ; ; .
w /o extension|with extension
net.core.rmem__defaul sock init data Equal Equal
sock_ setsockopt Not Equal Not Equal
net.core.rmem_max tcp_select_initial _window | Equal Equal
set_ sock_ size Equal Equal
het corewmem  default ip_send_ unicast_ reply Equal Equal
— sock init data Equal Equal
sock_ setsockopt Not Equal Not Equal
net.core.wmem__max :
set_ sock_ size Equal Equal
. . |devinet_ init net Equal Equal
net.ipvd.conf.all forwarding _ devinet_ sysctl_register |Equal Equal
. devinet__init_ net Equal Equal
net.ipvd.confall.rp_filter _ devinet_ sysctl_register Egual Egual
tcp_v4_rev Equal Equal
. tcp__v4__connect Not Equal Not Equal
net.ipv4.tep_tw_recycle tcgiskiexitibatch Equalq Equalq
tep_ time_ wait Not Equal Equal

Table 6.1: Results of analysis between 7.3 and 7.4 CentOs kernel

6.2 Slicing w.r.t to concrete value of global variable experi-
ments on the kernel modules

This experiments will be performed on two upstream versions of the Linux kernel, on 3.10
and 4.11. We have decided to use kernel modules in which we have found that they are
unequal, but could be equal for certain values. Subsequently we generated snapshots for
both version of Linux Kernel and for each we also generated snapshot which uses values
and which is not. After running the experiments we have got results as shown in Table 6.2.

As we can see from Table 6.2, we have performed analysis on the kernel module param-
eters. We implied earlier that adding support to analysis of kernel module parameter will
make it easier and faster to analyse difference in kernel modules. From the reported statis-
tics from DiffKemp while comparing the two versions of kernel it returned that DiffKemp
compared 48 functions. This is quite a lot for such a small number of tested parameters.
However this analysis took maximum of 10 minutes with the time of generating snapshots
for analysis and subsequent comparison of these. If we would wanted find out if semantics
of 48 functions is equal or not by a hand, it would take much more effort and time, it
could take possibly time of more than several hours rather than 10 minutes which lasted
the analysis made by DiffKemp.

Also in Table 6.2, we have shown impact of implementing extension which slices w.r.t.
certain value of global variable which represents the module parameter. As we can see
most of the cases has resulted into Not Equal. After implementing the solution some cases
has turned into the Fqual result. This could be caused by removing the code that wasn’t
dependent of the value of variable and also the code that was marked as dependent didn’t
contain non-equal code. After analyzing the results, which produced Equal result and was
previously marked as Not Equal, we could confirm that these results are correct. As we
can see the results marked as Equal without using the extension, retained the result given
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Results of analysis

Module Parameter |Function Value -

w /o value|with value
nf nat__ debug snmp__parse_mangle default |Not Equal |Not Equal
snmp__basic mangle_ address default | Equal Equal
drbd fault_ devs _drbd__insert_fault default | Equal Equal

tcpprobe_ init 0 Not Equal |Equal
. tcpprobe_ avail 0 Equal Equal
tep_probe | bufsize tcpprobe__read 0 Equal Equal
tcp__probe__used 0 Equal Equal
nbd max_ part nbd__init -1 Not Equal |Equal
ipmi . set_ param_ wdog__ifnum |default|Not Equal |Equal
ifnum to usef—— -
_ watchdog ipmi_ register_ watchdog |default|Not Equal |[Not Equal
Ip reset Ip_ register default [Not Equal |Equal
applicom | mem applicom__init default |[Not Equal |Not Equal
ac_ioctl default | Equal Equal

Table 6.2: Comparison of kernel modules parameters from upstream versions 3.10 and 4.11
with results of analysis with extension, which adds value of parameter to slicing criterion

without extension and was marked it as FEqual too, because when set of instructions was
marked as Equal at first, then the subset of this set must also be marked as Equal.

To conclude this, implemented solution really helped the analysis made by DiffKemp
and also it dramatically made it easier to analyse the kernel module parameters.
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Chapter 7

Conclusion

The goal of this thesis was to propose solution for automatic forward slicing of Linux kernel
modules. Subsequently we implemented this proposed solutions and we made the com-
parison between two kernel versions for experimentally prove that implemented solutions
improved analysis made by DiffKemp.

At the beginning we have described a static analysis tool DiffKemp with LLVM frame-
work which was used to implement an automatic forward slicer for DiffKemp. Automatic
forward slicer aims for simplifying analysis of semantic differences between two version of
Linux kernel. The purpose of this approach is to remove all statements that aren’t de-
pendant on certain function or parameter and thus make it easier for semantic analyzer
to compare certain semantic of analyzed source. DiffKemp has already contained auto-
matic forward slicing solution and after extensive analysis and testing we decided to extend
its current functionality by few most solutions that should be most efficient based on our
assumptions. We have implemented slicing against the fields of structured types which re-
moves considerable chunk of independent code. Also we extended current slicing criterion
with the optional value parameter for the global value which represent run-time or mod-
ule parameters. And as we mentioned we added also the support for slicing with respect
to module parameters which also makes it easier to analyze, because number of functions
containing the module parameters that are analyzed is quite extensive. After running the
experiments we noticed that first implemented solution didn’t improved the analysis made
by DiffKemp, which could be potentially caused by DiffKemp returning Equal result for
set of instruction and therefore subset created by implementing solution from this thesis
should return same results. Otherwise experiments with solution providing support for
kernel module parameters has made easier analysis and much more faster than it would by
done by a hand. Also last extension which adds value of global variable into slicing criterion
has also improved analysis done by DiffKemp in a quite big scope.

We implemented three extensions for DiffKemp to improve analysis it performs but there
are still some extension which can be done to improve automatic forward slicing solution
which DiffKemp uses. This extension could be for example taking into account pointer
aliasing when slicing off the statements which might alias with dependent instructions.
Also it’s good idea to provide support for slicing w.r.t certain value with string type and
accesses to structured types. We planned to extend the current solution later in the future
because this would be quite extensive amount of work but it wouldn’t cover much cases
because there are less string-typed run-time parameters than there are other types.
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