
T
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF INTELLIGENT SYSTEMS
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

AUTOMATIC FORWARD SLICING OF PROGRAMS
A U T O M A T I C K É DOPŘEDNĚ PROŘEZÁVÁNÍ P R O G R A M Ů

BACHELOR'S THESIS
B A K A L Á Ř S K Á PRÁCE

AUTHOR
A U T O R PRÁCE

SUPERVISOR
V E D O U C Í PRÁCE

NIKOLAS PATRIK

Ing. VIKTOR MALÍK,

BRNO 2020

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2019/2020

Bachelor's Thesis Specification |||||||||||||||||||||||||
23100

Student: Patrik Nikolas
Programme: Information Technology
Title: Automatic Forward Slicing of Programs
Category: Software analysis and testing
Assignment:

1. Get acquainted with DiffKemp, a tool for automatic comparison of semantics of functions and
parameters of the GNU/Linux kernel.

2. Study existing methods for static slicing of programs.
3. Design a method for static forward slicing of programs that would be able to safely remove

code that is independent of a value of a chosen parameter of the GNU/Linux kernel.
4. Implement the proposed method as a part of program pre-processing within the DiffKemp

project.
5. Evaluate the created solution on at least two publicly available versions of the GNU/Linux

kernel. Discuss the influence of your extension on results of the analysis performed by
DiffKemp.

Recommended literature:
• Official website of DiffKemp: https://github.com/viktormalik/diffkemp
• A. De Lucia, "Program slicing: methods and applications," Proceedings First IEEE

International Workshop on Source Code Analysis and Manipulation, Florence, Italy, 2001,
pp. 142-149.

• Harman, Mark & Hierons, Robert. (2001). An Overview of Program Slicing. Software Focus.
Requirements for the first semester:

• The first two points of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Malik Viktor, Ing.
Head of Department: Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: July 31, 2020
Approval date: July 25, 2020

Bachelor's Thesis Specification/23100/2019/xpatri00 Page 1/1

https://github.com/viktormalik/diffkemp
https://www.fit.vut.cz/study/theses/

Abstract
This thesis presents designing new forward sl icing solution for the Di f fKemp tool . After
strenuous analysis of currently implemented solution in Di f fKemp for forward sl icing we
decided to retain current solution and extend it by few enhancements that should improve
the analysis provided by Di f fKemp in a quite big scope. We have implemented extensions so
Di f fKemp can perform analysis on fields of structured types which might represent run-time
parameters and also we extended sl icing criterion w i th the value of analyzed variable. A lso
we added support for sl icing module kernel parameters. After implementing this solutions,
we d id experiments which proved that implemented solution has improved the analysis
performed by Di f fKemp.

Abstrakt
Táto práca popisuje návrh a implementáciu nového riešenie pre nástroj Di f fKemp na au­
tomatické dopredné prerezávanie programov. Po zdĺhavej analýze súčasného riešenia, sme
sa rozhodl i súčasné riešenie ponechať a rozšíriť ho o zopár vylepšení. Implementovali sme
rozšírenie ktoré dovoľuje D i f fKempu vykonávať analýzu nad prvkami štruktúrovaných ty­
pov, pr ida l i sme k súčasnému prerezávaciemu kritériu aj hodnotu premennej a na záver pr i ­
dal i podporu na analýzu parametrov modulov jadra. Po implementovaní týchto vylepšení
sme vykonal i experimenty ktoré potvrd i l i zlepšenie analýzi ktorú Di f fKemp vykonával.

Keywords
static analysis, Di f fKemp, forward slicing, l l vm, l l vm ir , clang

Kľúčové slová
statická analýza, Di f fKemp, dopredné orezávanie programov, l l vm, l l vm ir , clang

Reference
P A T R I K , Nikolas. Automatic Forward Slicing of Programs. Brno , 2020. Bachelor's thesis.
Brno Universi ty of Technology, Faculty of Information Technology. Supervisor Ing. V i k t o r
Ma l i k ,

Rozšírený abstrakt
Táto práca popisuje návrh a implementáciu nového riešenie pre nástroj DiŕľKemp na au­
tomatické dopredné prerezávanie programov. Z počiatku sa práca zaoberá nástrojom Dif-
fKemp, pre ktorý je určený výsledok tejto práce. Nástroj Di f fKemp slúži na porovnávanie
sémantiky dvoch verzií j adra L i n u x u . D i f fKemp sa spúšťa vo dvoch fázach. P r vou fázou je
fáza generate, ktorá sa zaoberá prípravou zdrojových kódov a zbieraním informácií ktoré
sú určené pre danú analýzu. Výsledná analýza je potom spustená až vo fázi compare. Dif­
fKemp na túto analýzu využíva L L V M . Framework L L V M je súbor nástrojov, ktoré slúžia
na uľahčenie práce so zdrojovými kódmi a taktiež umožňuje vykonávať rôzne transformá­
cie. D i f fKemp v súčastnosti už obsahuje riešenie na dopredné orezávanie programov avšak
z dôvodu výslednej kval i ty riešenie sme sa ho rozhodl i analyzovať. Po zdĺhavej analýze
súčasného riešenia, sme sa rozhodl i toto riešenie ponechať a rozšíriť ho o zopár vylepšení.
Keďže táto práca je celá založená na prerezávaní programov rozhodl i sme sa opísať pre­
rezávanie programov v samostatnej kapitole. Táto kapi to la obsahuje zadefinovanie rôznych
pojmov ktoré budeme neskôr v práci používať. Jedným z týchto pojmov je aj prerezávacie
kritérium. V následnej kapitole sme sa venovali implementácií rozšírení, ktoré dovoľuje Dif-
fKempu vykonávať analýzu nad prvkami štruktúrovaných typov. Toto rozšírenie je založené
na porovnávaní indexov inštrukcie, ktorá má za úlohu, vypočítať ukazatel , ktorý ukazuje
na prvok štruktúrovaného typu. Táto inštrukcia sa nazýva Get Element Pointer inštrukcia
a keďže táto inštrukcia je často mylne chápaná ako indexovací operátor v j a zyku C, rozhodl i
sme sa j u bližšie opísať v tejto práci, keďže je na nej založené jedno z rozšírení prezento­
vaných v tejto práci. Ďalej sme pr ida l i sme k súčasnému prerezávaciemu kritériu aj hodnotu
premennej. Implementácia tohoto rozšírenia zahrňovala dve fázy. V prvej fáze sme nahradi l i
všetky výskyty globálne premennej. Následne sme potom spust i l rôzne štandardné trans­
formácie ktoré poskytuje L L V M aby sme odstránili nedostupný kód potom čo sme vykonal i
prvú fázu. Posledné rozšírenie ktoré sme pr ida l i je podpora na analýzu parametrov mod­
ulov jadra. Keďže časť riešenie D i f fKempu už túto podporu obsahovala, rozhodl i sme sa j u
pridať aj do zvyšku. N a spúšťanie analýzi pre parametre modulov, sme sa rozhodl i použiť
formát podobný súčasnému avšak tak aby splňoval zopár jednoduchých kritérií. P o imple­
mentovaní týchto vylepšení sme vykonal i samostatné experimenty. Pre rozšírenie ktoré im­
plementovalo prístup k prvkom štruktúrovaných typov sme nezaznamenali taký úspech ako
sme očakávali, čo bolo pravdepodobne spôsobené už predošlým správnym vyhodnoteným
z nástroja Di f fKemp. U nasledujúcich rozšírení sa nám však podari lo ukázať ich skutočnú
hodnotu a ako sa nám pomocou nich podari lo vylepšiť analýzu ktoré nástroj Di f fKemp
vykonával. N a záver sme zhodnot i l i výsledky tejto práce a spomenuli taktiež rozšírenia,
ktoré by mohl i taktiež vylepšiť analýzu vykonávanú nástrojom Di f fKemp. Jedným z týchto
rozšírení by mohla byť napríklad implementácia kontroly aliasovania ukazateľov.

Automatic Forward Slicing of Programs

Declaration
I hereby declare that this Bachelor's thesis was prepared as an original work by the author
under the supervision of Ing. V i k t o r M a l i k acknowledgment

Nikolas Pa t r ik
Ju l y 29, 2020

Contents

1 I n t r o d u c t i o n 3

2 T h e D i f f K e m p S t a t i c A n a l y s i s T o o l 5
2.1 Generate Phase 6
2.2 The Compare Phase 6

2.2.1 S i m p L L 7
2.3 Current Automat i c Forward Sl ic ing Solut ion 7
2.4 L L V M intermediate representation 8

2.4.1 G loba l variables representation in L L V M IR 8
2.4.2 G E P instructions in L L V M IR 9

3 P r o g r a m s l i c i n g 12
3.1 Backward Sl ic ing 13
3.2 Forward Sl ic ing 13

4 P r o p o s e d E x t e n s i o n s o f S l i c i n g i n D i f f K e m p 14
4.1 Current sl icing solution in D i f fKemp 14

4.1.1 Comput ing control and data-dependent instructions in current slicing
algor i thm 15

4.2 Add ing support to sl icing against concrete fields of structured data types . 15
4.2.1 G E P Instruction Dependence 16
4.2.2 C a l l Instruction Dependence 16
4.2.3 Other Instructions Dependence 17

4.3 Sl ic ing w.r.t. a Concrete Value of a Parameter 17
4.4 Add ing support for sl icing against kernel module parameters 18

4.4.1 Generate phase 18
4.4.2 Compare phase 19

5 I m p l e m e n t a t i o n o f p r o p o s e d s o l u t i o n s 20
5.1 Current implementat ion of the Di f fKemp 20

5.1.1 The Generate phase 20
5.1.2 The Compare phase 22

5.2 Sl ic ing w.r.t certain field of structured data type representing run-t ime pa­
rameter 23
5.2.1 S i m p L L 23
5.2.2 VarDependencySlicer pass and G E P instruct ion dependence 23
5.2.3 Compare phase and computat ion of the C a l l instruct ion dependence 24

5.3 Sl ic ing w.r.t a Concrete Value of a Parameter 26

1

5.3.1 VarValueDependencySlicer 27
5.4 Support ing sl icing against kernel module parameters i n python interface . . 27

6 E x p e r i m e n t i n g w i t h i m p l e m e n t e d s o l u t i o n s 29
6.1 Sl ic ing against concrete fields of structured types experiments 29
6.2 Sl ic ing w.r.t to concrete value of global variable experiments on the kernel

modules 30

7 C o n c l u s i o n 32

B i b l i o g r a p h y 33

2

C h a p t e r 1

Introduct ion

In recent years where C I / C D (continuous integration and continuous delivery) techniques
make it easier and faster to deploy more often, we find a need to analyze programs in such
a pace as they are deployed. Unfortunately, analyzing programs is very complicated and
t ime-consuming job. The usual solution, which is widely used across a l l the bigger projects,
is running large set of test cases to find out any bugs. B u t this solution doesn't cover a l l of
the paths the program can get into. The process of running test cases on running program
is called dynamic analysis. Oppose to this methodology is static analysis. Th is way we can
analyze a l l of the paths of a program. The task is sadly very complex and usually we can't
analyze this way whole source code of appl icat ion. For this purpose we use sl icing methods
where we use criterion of sl icing. Cr i te r ion tells us which part of the appl icat ion property
we want to analyze. Based on this criterion we can afterwards analyze a l l of possible paths
this criterion influenced in appl icat ion. One of the tools out there, that are doing this k ind
of analysis is Di f fKemp. D i f fKemp is able to compare semantics of two version of L inux
kernel by using these methods.

Hence, the goal of this thesis is to propose automatic forward sheer which can slice off
a l l unnecessary statements from L inux kernel sources based on some parameters it contains.
The parameter we choose is called criterion, based on which, we decide, what statements
can be deleted. Product of sl icing is called slice and it contains a l l of statements (instruc­
tions) which are dependant on certain program variable. The variable usual ly represents
parameter of L inux kernel module. Th is way we can prove semantics of both kernel ver­
sions of certain module, is same. The Di f fKemp tool, which automatic forward sheer is
intended for, already contains some solution for forward sl icing based on provided param­
eters. After learning how the current solution works and analyzing its results, we decided
for retaining current solution because it was producing quality results in most of the cases.
After analysing the current solution we noticed some deficiencies. Because we decided to
retain current solution, we have added support for these deficiencies in form of extensions.
These extensions are inc luding support for sl icing against fields of structured data types
which might represent run-t ime parameters. Next extension is sl icing w i th respect to con­
crete value of global variable. Last but not least extension provides support for analyzing
the kernel module parameters, because current solution only provides support for run-time
parameters.

The rest of thesis is organised as follows. In Chapter 2, is described Di f fKemp, a static
analysis tool which we use for analyz ing L inux kernel modules (their functions) and compare
these modules as two different versions. The goal of this process is to prove that semantics
of certain parameter of module stays the same between versions. In its subsection we closely

3

introduce two phases in which Di f fKemp performs its analysis. We also introduce L L V M
intermediate representation which is very often referenced when describing how the various
constructs work in Di f fKemp. In following Chapter 3, we describe various sl icing techniques
and how they are used i n practice, also how Di f fKemp uti l ize these, in its own process of
analysis and then we look more in depth for two sl icing techniques which are forward sl icing
and backward slicing. Next chapter 4, presents brief description of the current solution for
forward sl icing in Di f fKemp, following introduct ion of new design of solution, which removes
al l shortcomings of old ad-hoc solution. Then in the chapter w i th Exper iments 6 we show
our improvements of current solution really helped improve the results of whole analysis.
F inal ly , conclusion and future work in Chapter 7, which describes the results of this thesis
and some other extensions which can be made to improve current sl icing solution even
more.

4

C h a p t e r 2

The Di f fKemp Static Analys is Tool

Dif fKemp is a static analysis tool that is able to automatical ly compare semantics of two
versions of the L inux kernel [10]. Generally, it is not possible to compare the whole kernel
at once and hence Di f fKemp is designed to compare semantics of ind iv idua l kernel functions
or parameters. Parameters are usually represented by global variables i n the L inux kernel
modules. W h e n comparing semantics of parameters, D i f fKemp compares semantics of a l l
functions that use the global variable corresponding to the parameter. Therefore, i n the
rest of this work, we assume that two functions are compared for semantic equality.

The pract ical use of D i f fKemp is to part ia l ly automate checking of backwards compat­
ib i l i ty and of stabi l i ty of parts of the kernel. A kernel user may use some kernel functions
and he may expect that a function does not change its behavior between versions. This is
especially the case for the Kerne l App l i ca t i on B inary Interface (K A B I) , which is a list of
functions that are guaranteed to be stable across minor releases of the Red Hat Enterprise
L inux . For kernel parameters, the s i tuat ion is s im i l a r—i f a user sets a kernel parameter
to some value, he expects that the setting w i l l have the same semantics i n future versions
and that he can preserve it dur ing an upgrade. Checking whether the behaviour changed is
not possible to be done manually, especially in such a large project, potential ly containing
mill ions of lines of code, as the L inux kernel is.

In order to compare a l l possible behaviours, D i f fKemp uses various ways of static anal­
ysis to check semantic equivalence of two different versions of functions. This analysis is
done on the sources of the L inux kernel. Di f fKemp, likewise other static analysis tools, uses
a s tructura l low-level representation of programs for the analysis. In part icular, it uses the
intermediate representation of the C l a n g / L L V M compiler[4], referred to as L L V M IR[5].

In Di f fKemp, the semantic comparison is done i n two main phases as shown in figure
2.1:

1. G e n e r a t e - creates a so-called snapshot of L inux kernel containing sources of a l l
functions to compare, compiled into L L V M IR. This phase uses as the input the
kernel sources and a list of K A B I functions and kernel parameters to be compared.

2. C o m p a r e - compares semantics of list of functions represented as two snapshots
created in the generate phase.

In the following sections, we describe the ind iv idua l phases in a more detailed way.

5

Kernel params
KABI symbols

Kernel source

LLVM
snapshot

LLVM
snapshot

E Q U A L

N O T
E Q U A L X

+ addit ional info

Figure 2.1: Architecture of Di f fKemp - simplified[3]

2.1 Generate Phase

The phase of generating snapshot consist of two sub-processes. F i rs t , as shown in the figure
2.2, this phase take as and input the L inux kernel source w i th list a of K A B I functions
or kernel parameters which are to be analyzed. Subsequently, Diffkemp uses the ut i l i ty
cscope, and searches for definitions of the given functions (or of the functions using the
given parameters) and creates mappings of these to the source files, where it finds these
definitions. Afterwards, the found source files are compiled into L L V M IR. F inal ly , the
L L V M snapshot is produced and it contains the original and the compiled sources of kernel,
the file functions. yaml w i th mappings of functions to L L V M IR files and the files of source
finding ut i l i ty cscope, al lowing quick searching of function definitions.

Kernel params
K A B I symbols

Kernel source

Generate

Source C source Compiler LLVM IR L L V M
finder

Compiler snapshot

Figure 2.2: Generate phase - architecture[3]

2.2 The Compare Phase

The phase compares semantics of a l l functions from two snapshots created in the generate
phase. This phase consist of three sub-processes as shown in Figure 2.3. F i r s t , the compared
functions are simplif ied using various techniques. The goal of these simplifications is to
remove parts of the functions not relevant for comparison of semantics. For instance, when
comparing functions using a global variable (representing a kernel parameter), it is not
necessary to compare the whole function. O n the contrary, it suffices to compare those
parts of functions that are influenced by the variable. D i f fKemp uses a technique called
slicing i n order to remove parts of functions not influenced by a variable. Since this phase

Ü

is the core of this work, it is described in detai l in Chapter 3. After the simpli f ication
the following phase is comparing of semantics of two simplified/sliced functions which ends
either i n semantic equivalence or, i f the functions are not equal, an addit ional phase is
run. In this last phase, when it was shown that the compared functions are not the same,
Di f fKemp tries to localise the difference between the two and displays the lines i n the C
code, where the difference occurs.

L L V M
snapshot

C o m p a r e

C o d e
s l i c i ng a n d
s i m p l i f y i n g

L L V M

IR
S e m a n t i c dif f

Di f ference
l o c a l i s a t i o n

E Q U A L

X N O T
E Q U A L

+ addi t ional info

Figure 2.3: Compare phase - architecture[3]

2 .2 .1 S i m p L L

This ut i l i ty is the core of the compare phase. A s its input it uses the L L V M IR sources
of a pair of compared functions. O n these sources, it runs various transformation passes,
that are responsible for code simpli fying. A n instance of SimpLL is run for every functions
that is compared. It simplifies and compares the given functions. Usually, the functions
are simplif ied based on criterion, which might influence certain parts of a functions and
therefore comparison of the given functions is easier. In some cases this criterion might
be parameter of the L inux Kerne l modules. Th is part of functionality of code sl icing is
implemented inside L L V M pass VarDependencySlicer, which we a im to improve i n this
work.

2.3 Curren t Au tomat i c Forward Sl ic ing So lut ion

The Di f fKemp currently implements solution for automatic forward slicing. B y analyzing
how the current solution work we figure it out that retain current solution is better way to
go and we decided to just extend its functionality by few improvements which can improve
analysis i n great manner. Th is improvements are:

1. Sl ic ing w i th respect to certain field of structured type which represents run-time
parameter.

2. Sl ic ing w i th respect to concrete value of global variable.

3. Add ing support for analyz ing module parameters.

F i rs t improvement should improve currently performed analysis of Di f fKemp a lot, be­
cause there are lot of run-t ime parameters which are represented as field of global variable

7

of structured type. Th is is because i f there's a false positive that Di f fKemp marks the
result as not equal but non-equality was in part of the code that wasn't affected by given
parameter for slicing, it means that after implementing this solution it should be evaluated
correctly. O n the other way i f there wouldn't be any improvements by sl icing a lgor i thm this
doesn't necessarily means that it d idn ' t improved anything but that it might be in a l l of
the cases difference even in the dependent parts of the code and the equality was previously
evaluated correctly even tough it has contained the code which shouldn't be analyzed.

Second improvement improves the cases where current solution produces non-equal re­
sults for a l l possible values of global variable. In practice, users which would probably
wanted to run the analysis wanted to test their current setup w i th concrete values that
they have set. Sl ic ing of the code based on the concrete values could potential ly improve
results because once again, the difference might be located in independent part of the code
based on the concrete value of variable.

Last improvement is improvement in wider scope, because current sl icing parameters
set i n current sl icing a lgor i thm are quite general, but Di f fKemp provides support only for
run-t ime parameters or the functions of the Kerne l App l i ca t i on B inary Interface (K A B I) .
So we added support also for analyzing module parameters because they are represented
the same as run-t ime parameters are.

For implementing these extension and also for the current forward sl icing a lgor i thm is
enormously used the L L V M framework. Th is framework provide easy manipulat ion w i th
code which we analyze. L L V M is not only used for sl icing solution but is largely used
in other parts of Di f fKemp. Because this thesis highly reference L L V M key concepts, we
introduce these concepts i n next subsection 2.4

2.4 L L V M intermediate representation

Huge part of the current solution is based on a L L V M framework. The L L V M framework
is a collection of modular and reusable compiler and tool-chain technologies [6]. The most
important sub-project of L L V M framework for this thesis is L L V M Core. The L L V M
Core libraries provide a modern source- and target-independent optimizer, along w i th code
generation support. These libraries are bui lt around a well specified code representation
known as the L L V M intermediate representation („LLVM IR") . L L V M IR is a Stat ic Single
Assignment (SSA) based representation that provides type safety, low-level operations,
flexibility, and the capabi l i ty of representing ' a l l ' high-level languages cleanly.

The L L V M code representation is designed to be used i n three different forms: as an
in-memory compiler IR, as an on-disk bitcode representation, and as a human readable
assembly language representation[5]. The three different forms of L L V M are a l l equivalent.
For purpose of this thesis there are two concepts from L L V M which must be explained
to fully understand presented solution. These are global variable representation and G E P
instruct ion. In the next subsection 2.4.1 we' l l introduce how global variable are defined in
L L V M IR and after that we' l l describe how G E P instruct ion works in section 2.4.2.

2.4.1 Global variables representation in L L V M I R

Globa l variables define regions of memory allocated at compi lat ion t ime instead of run-time.
To define global variable we must first assign itself an identifier. L L V M identifiers come in
two basic types: global and local. G loba l identifiers (functions, global variables) begin w i th

8

the '@' character[5]. L o ca l identifiers (register names, types) begin w i th the '%' character.
So definition of global variable might look like something like this:

@global_variable = ...

The three dots represent a l l creation parameters for defining global variable. It might
contain linkage type, alignment, if it 's constant or not, type and default value. For purpose
of this thesis we just need to remember that global variable are defined w i th type and might
have default value i.g. init ial izer. B y C standard, global variable is always init ia l ized w i th
zero, unless it is external. A lso worth to mention is that identifier of global variable doesn't
represent the global variable itself but it only represent pointer to place i n memory where
given global variable starts. For working w i th the global variable we have to load a global
variable w i th load instruct ion. Th is approach has its restrictions when dealing w i th the
global variable of structured data types and we' l l describe it more closely in the following
chapter 4.

2.4.2 G E P instructions in L L V M I R

Component part of the proposed solutions in this thesis are extensions which makes use of
G E P instruct ion. G E P is shortcut for Get Element Pointer which is pretty self-explanatory
of what this instructions does. Anyway there are st i l l some thing which are often misun­
derstood about this instruct ion. W h a t G E P instruct ion really does is that it calculates
resulting pointer based on the arguments given to the instruct ion, but it n e v e r r e a d s a
m e m o r y . The first argument is always a type used as the basis for the calculations. The
second argument is always a pointer or a vector of pointers, and is the base address to
start from. The remaining arguments are indices that indicate which of the elements of the
aggregate object are indexed[5]. The interpretation of each index is dependent on the type
being indexed into.

F i r s t i n d e x o f G E P i n s t r u c t i o n

The first type indexed must be a pointer value, however the following types can be struc­
tured types as arrays, vectors or structs. A lso the first index must always index into the
second argument pointer type. This is often misunderstood because people tend to relate it
to known concepts from other programming paradigms, most notably C array indexing and
field selection. Confusion w i th first index i n G E P instruct ion usual ly arises when people
th ink of G E P instruct ion like it was C indexing operator[7]. Let 's look at this example:

AType *Foo;

X = &Foo->F;

There might be temptat ion to say there would be only one index and thus selection of field
F. B u t Foo is pointer and therefore must be indexed explicit ly. So we would provide G E P
instruct ion two indices. The first operand indexes through the pointer and the second one
select field F of the structure. Th is would analogically be implemented i n C like this:

X = &Foo[0].F;

9

T y p e o f t h e i n d e x

The type of each index argument depends on the type it is indexing into. W h e n indexing
into a (optionally packed) structure, only 132 integer constants are allowed (when using a
vector of indices they must a l l be the same 132 integer constant). W h e n indexing into an
array, pointer or vector, integers of any w id th are allowed, and they are not required to be
constant. These integers are treated as signed values where relevant.

In the following listings is shown how the C code would be interpreted by C lang compiler:

struct RT {

char A;

int B[10] [20] ;

char C;

};

struct ST {

int X;

double Y;

struct RT Z;

};

int *foo(struct ST *s) {

return &s [1] .Z.B[5] [13] ;

}

The L L V M code generated by C lang would be then:

"/.struct.RT = type { i 8 , [10 x [20 x i 3 2]] , i8 }

%struct. ST = type { i32, double, °/
0
struct. RT }

define i32* @foo (%struct .ST* °/
0
s) nounwind uwtable readnone optsize ssp {

entry:

%arrayidx = \

getelementptr inbounds °/
0
struct .ST, °/

0
struct.ST* % s , \

i64 1, i32 2, i32 1, i64 5, i64 13

ret i32* °/
0
arrayidx

}

Al though the syntax of L L V M IR is l i tt le bit different from C syntax and as we men­
tioned earlier that is more like assembly we can easily associated certain parts of the code
in L L V M IR w i th C code. A t the beginning we define our structures. A s shown above,
defining structures is just declaring that it w i l l contain fields of certain types. Next we
define function f oo w i th argument of the struct type we declared earlier.

F ina l l y we get to the G E P instruct ion. Let 's look at it more closely. In this chapter
we mentioned that the first argument is type used as basis for calculat ion and the second
one is actual base address from which the calculat ion is made. Remaining arguments as we
mentioned earlier are the indices. Every index consist of pair of type and value. A s we can
see in C code fragment first index is 1. This is index into the pointer so we don't have to use
explicit 0 as shown in previous chapter. Th is index is i64 type, which impl i c i t l y indicates
that the machine where the code w i l l be run is 64 bit architecture, because pointers are just
memory addresses and knowing the address is 64 bit long we derive previous statement.
Next argument is index 2 w i th i32 type. A s we already know indices indexing fields of

10

structure must be i32 types and the field w i th index 2 is the structure of struct RT type.
The next index 1 indexes into field of array of type struct RT. Aga in we index into structure
so the index type is i32. F ina l l y we index into two dimensional array of integers which is
the same as it is i n the C code fragment.

W i t h the base knowledge of the L L V M we can now introduce proposed solution which
are presented further in this thesis.

11

C h a p t e r 3

Program slicing

Program slicing is a viable technique for simpli fying programs by focusing on selected
aspects of semantics. It was firstly introduced by M a r k Weiserf l l] and it was motivated
by the need to help students understand and debug their programs. Nowadays, it is used
to restrict the focus of a task to specific sub-components of a program. Th i s is done by
removing every statement and predicate in the program, which is not part of the interest.
Th is process then produces a set of program statements and predicates which is called the
slice.

From the formal point of view, the produced slice is based on the concept of slicing
criterion. Sl ic ing criterion is a pair <p, V> [9], where p is a program point and V is a
subset of program variables. A program slice on the sl icing criterion <p, V > is then defined
as subset of program statements that preserves the behavior of the original program at the
program point p w i th respect to the program variables in V . Since this sl icing method,
defined by M a r k Weiser, preserves behaviour on every input of original program, it was
named a static slicing to differentiate it from other sl icing methods that preserve behaviour
of the orig inal program for certain subset of inputs only.

In contrast of static slicing [9], there are many others sl icing techniques. The most
known is probably the dynamic slicing method, which uses dynamic analysis to identify a l l
the statements that affect the variables of interest, on the part icular anomalous execution.
Th is approach is used, besides debugging, in software testing, software maintenance and
program comprehension. Other methodologies might be quasi static slicing which is a
hybr id sl icing method ranging between static and dynamic sl icing. Other than that is a
method derived from dynamic sl icing called simultaneous dynamic slicing, which is s imilar
to dynamic slicing, but slices the program against set of test cases instead of a single test
case. These methods are not part of this work, but they are l isted just for completeness of
known slicing methods. This work focuses on implementing an automatic forward sheer.
Forward sl icing is a sub-methodology of static slicing, described in more detai l i n Section
3.2. Before describing the main sl icing techniques, we introduce the Program Dependence
Graph , which is the key structure of a l l sl icing methods.

P r o g r a m D e p e n d e n c e G r a p h (P D G) [1] is a program representation where nodes
represent program statements and predicates, while edges carry information about control
and data dependencies between the nodes.

P D G can be understood as combinat ion of Cont ro l F l ow G r a p h (C F G) and D a t a F low
Graph (D F G) .

12

In the following, we describe the two main methods of static slicing, namely the back­
ward and the forward slicing. These are important for understanding the solution that this
paper work presents.

3.1 Backward Sl ic ing

The most known way of program sl icing is the backward static sl icing. Every developer has
probably met w i th this way of sl icing even if it was not automatic nor it was producing any
slice as output.

The way most of the developers probably met w i th this k ind of sl icing is because of a
static analysis of their wr i t ten programs. W h e n stat ical ly analyzing a program we usually
meet w i th a need of knowing why is the value of a certain variable i n a part icular point
of program exactly as it is. Backtracking the analyzed code unt i l a l l statements, which
affected value of variable, are found, we are able to tel l that these statements are product
of backward slicing.

This is how a simple definition of backward sl icing might be: backward slicing is a way
of f inding a l l program statements that might have affected the value of certain variable in
a part icular point of program [2]. However, the above mentioned definition is quite naive
and therefore we define it more formally inc luding a l l dependencies. To this, we use the
Program Dependence Graph , which contains of a l l program dependencies. Us ing P D G , we
can find an algorithmic way of f inding dependencies on certain point of program. The P D G
based algor i thm considers sl icing cr iter ia of type <p, V > , where p is a program point and
V is the set of variables referenced at p. A slice w i th respect to such a sl icing criterion
consists of the set of nodes that directly or indirect ly affect the computat ion of the variables
in V at node p. Th is formal definition of backward sl icing requires the backward traversal
of P D G . As oppose there is a other way of sl icing, which uses a forward traversal of P D G ,
called the forward slicing.

3.2 Forward Sl ic ing

Formally, a forward slice is defined as the set of program statements and predicates affected
by the computat ion of the value of a variable v at a program point p, defined in the slicing
criterion. It could represent a program comprehension of certain parts of the program. This
behaviour is useful when we change a certain part of program and we want to know which
parts of the program has been influenced, so we can confirm changing the program point
w i l l not cause any unsolicited behaviour. Simi lar principles are also used in Di f fKemp.

13

C h a p t e r 4

Proposed Extensions of Sl ic ing in
Di f fKemp

The pr imary goal of this work to extend the existing approach to sl icing present i n Di f fKemp
so that it is capable to handle more cases of comparison of L inux kernel run-t ime and module
parameters. Therefore, we first investigate the existing solution and identify its drawbacks.
The ma in principle of the current sl icing a lgor i thm is presented i n Section 4.1.

The a lgor i thm is capable to slice a program against a global variable, which is a general
way kernel represents parameters. It is based on tracking how the parameters influences
as control flow of the program, as well as as data flow of the variables. Th i s solution is
satisfactory for most of the cases we compare. Unfortunately, some run-t ime parameters
are not represented by an entire variable but by a single structure field of a variable only.
For such parameters, sl icing against the entire variable may be insufficient to determine
semantic equality, therefore adding support for sl icing again a part icular field of a variable
could potential ly increase quality of the analysis done for the run-t ime parameters. A
proposal for such a solution is presented i n Section 4.2.

Sometimes are not compared functions equal when we slice and compare w i th respect
to certain variable. In some cases, it can happen that when the value is set for a variable it
might change the result because it w i l l filter non-dependent code out, based on the provided
value. Process how this is done is fully explained i n the next section 4.3.

Moreover, the Di f fKemp doesn't currently support analysis of kernel module parame­
ters, but the too l for comparison and simpli fying named S i m p L L does. Therefore to these
proposed solutions we add an interface for Di f fKemp to work w i th kernel module parame­
ters. Th is interface w i l l allow running the Di f fKemp tool for analyzing semantics of kernel
module parameters by passing the module kernel paramters to the interface of S i m p L L .
To implement this, proposed solution includes similar structure as is already known from
K A B I functions and their function.yaml file which is generated in snapshot and similar
approach is chosen for modules and their parameters.

4.1 Curren t s l ic ing so lut ion in D i f fKemp

Current sl icing a lgor i thm takes a function / as input and global variable g as inputs. The
output is the function /' that is the min ima l slice of f containing a l l instructions that
are dependent on the value of g i n some way. Current solution works i n the three main
phases: (1) comput ing control and data-dependent instructions that are to be preserved,

14

(2) restoring the data-flow among the dependent instructions, and (3) restoring the control
flow among the dependent instructions and those needed to preserve the data-flow so that
the produced C F G is val id. These phases are most of the t ime evaluated correctly but there
are some cases where evaluations might be wrong. Most of the incorrect evaluations which
instructions to slice off happen i n the first phase. Because of that, extensions proposed
in this chapter focus on improving the evaluations i n the first phase and how the first
phase of the a lgor i thm works. To understand how proposed solutions works, we need to
understand how the first phase of current sl icing solution works. Th is is described i n the
next Subsection 4.1.1.

4.1.1 Computing control and data-dependent instructions in current slic­
ing algorithm

Current ly integrated sl icing solution for calculat ing dependence of the instruct ion has got a
function and a global variable as sl icing criterion. A t the start of the a lgor i thm it init ial ize
an empty set of the dependent instructions. Then it iterates through the instructions of the
function. O n an every instruct ion it checks whether it contains the given global variable as
an operand or i f there is the operand which represents an instruct ion which is already in set
of dependent instructions. Th is covers how data dependence is calculated, but there must
be also control flow dependence computed to include a l l dependent instructions. Contro l
flow dependence happens when we mark branching instruct ion as dependent. Branching
instruct ion takes three arguments, result of condit ion based on which jump is made to
first label given as second argument if the condit ion is true or second label given by th i rd
argument, if condit ion evaluates to false. Afterwards the basic blocks affected by this
branching instruct ion are added to the set of dependent instructions.

However this solution is simple and thus it i n most of the cases produces correct results,
there are some shortcomings i n a way of dealing w i th structured data types which we' l l
describe in the next Section 4.2.

4.2 A d d i n g support to s l ic ing against concrete fields of struc­
tured data types

As described in previous Section it is common case that run-t ime parameters are represented
as field of structured data types (e.g. arrays, vectors and structures). D i f fKemp currently
doesn't support sl icing against the fields of structured data types. D i f fKemp currently slices
w i th respect to a l l fields of structured type. In previous chapter it is described that when
looking for dependence of an instruct ion we look i f one of the operands is global variable.
Then i n Chapter 2 i n Section 2.4.2 is impl ic i t l y said that access to the structured data
types is done by G E P instruct ion which calculates final pointer which represents wanted
field. A s we said earlier we get global variable which is represent a l l the fields of structured
data type. Wh i l e i terat ing through the instructions we find instruct ion that uses the given
global variable but it 's not using the certain field which represent the run-t ime parameter.
Even tough, the current solution marks the instruct ion as dependent because it does not
take into account the indices that G E P instruct ion uses. These indices are used to calculate
the final pointer that represents wanted field. O n the other way it compares only the base
pointer of G E P instruct ion which are the same but the G E P instruct ion does not point to
the same field. Th is evaluation is wrong and therefore we propose solution for removing
this insufficiency.

15

There's also question when we compare only indices for G E P instruct ion, i f there are
going to be other instruct ion which w i l l suffer of this wrong evaluation mentioned above.
As we mentioned in the chapter about G E P instruct ion, G E P instruct ion does not read
memory, it only calculate new pointer from base address. In case of pr imit ive data types
there's no real point to calculate a new pointer because this would represent completely
different object i n the memory and unless there's some weird pointer ar i thmetic going on,
we don't want that. So to work w i th the global variable of the pr imit ive type we would use
load instruct ion which takes as argument the identifier of global variable (named memory
address where global variable is stored). In case of structured type, the base pointer is
can not be load, because we can load only first class objects which are basically pr imit ive
types. Th is is why we use G E P instruct ion to access field of structured type. After G E P
instruct ion returns the pointer which points to memory address of certain field we can
load this pointer then. Because of this we cannot include check for load instruct ion for
structured types because this can not be done and G E P instruct ion w i th pr imit ive types
because there is no meaning for that.

4.2.1 G E P Instruction Dependence

Run-t ime parameters are defined i n certain modules of L inux kernel based on which group
of the run-t ime parameters they fall i n . In these modules there's an array of structures of
run-t ime parameters definitions. Every definition contains the name of run-t ime parameter,
data field, which is the pointer to data which represents the global variable representing run­
t ime parameter, and some other fields which are not needed to be explained for purpose of
this thesis. For our analysis is the most important the data field which contains the pointer
to a global variable. In L L V M intermediate representation is this assignment expressed
as G E P instruct ion i n case of structured types, which contains the global variable (base
pointer) and the indices that represent concrete field. O r they contain only the global
variable identifier which represent the global variable of pr imit ive data type.

This way we can gain indices for the G E P instruct ion and therefore we can extend our
slicing criterion or an input to current sl icing a lgor i thm by these indices. Afterwards when
iterating throughout the instructions of the given function we can handle G E P instruct ion
dependence just by comparing their indices if they contain also the global variable as the
second operand which represents base pointer from which computat ion of new pointer is
made.

4.2.2 Cal l Instruction Dependence

Most of the accesses to a field of structured type w i l l be represented as G E P instructions.
Thanks to the S S A form of L L V M IR we can check a l l the uses of the G E P instruct ion to
find a l l dependent instructions. B u t there's also one more case where this k ind of behaviour
isn't sufficient. Now we check whether G E P instructions contains also the right indices. Bu t
what i f there's ca l l instruct ion which calls the function which uses as argument given global
variable without indices. Then inside the body of function it uses the G E P instruct ion
to compute new pointer representing the field of structured data type. In this case, cal l
instruct ion is dependent only i f it uses exact access into to structured type as defined run­
t ime parameter. Wh i l e looking inside the function which was called by the cal l instruct ion
there might occur recursion when there's not usage of exact access into structured type but
we s t i l l cannot presume it 's not dependant because there's also ca l l w i th the global variable
which holds the whole structured type, hence i t 's the same case w i th we have started at

16

the beginning. Solut ion of this problem w i l l be standalone function which checks i f the cal l
instruct ion is dependent. Th is function iterates throughout the instructions of the called
function and check i f two cases occur. The first case is check whether the instruct ion is
G E P instruct ion which uses exact access to structured type, i.e. global variable pointer and
indices match. If they are, function ends w i th statement that ca l l instruct ion is dependent.
The second case which is more complicated, check the cal l instructions. Th is is the place
where the above mentioned recursion comes in use. Th is function just recursively calls itself
to just check i f the inner functions contains G E P instruct ion. If the whole recursion check
doesn't return anything and no dependent instructions are found, given cal l instruct ion
isn't dependent.

4.2.3 Other Instructions Dependence

Other instructions should compute the dependence the same way as they are already com­
put ing because thanks to S S A form most of the instructions w i l l be using the previous
instruct ion which loaded the pointer from the G E P instruct ion calculations and as we
described earlier computat ion whether instruct ion is dependent basically depends on two
criterion, whether it contains the global variable or other dependent instruct ion as its
operand. Bu t there's some point worth to mention about the L O A D instruct ion. A s we
already mentioned in previous section there's no point for the pr imit ive type global variable
to make G E P on itself, there's also no point for structured type global variable make L O A D
on themselves because even L L V M prohibits it , because L O A D instruct ion can be used only
on f i rs t c lass , which are s imply said the pr imit ive data types. Therefore we don't need to
make any addi t ional checks when computing dependence w i th or without G E P instruct ion
indices because there w i l l be no other occurrences of L O A D instruct ion or G E P instruct ion
when is one of the cases mentioned above.

4.3 S l ic ing w.r.t . a Concrete Value of a Parameter

Presented solution here, isn't fully capable of sl icing off a l l the statements that aren't
dependant on certain value of parameter (i.g. global variable). Instead it 's series of trans­
formations which leads to removing a l l the unneeded statements. F i rs t part of this solution,
is getting value of parameter. Th is can be done by using default value which is set when
variable is defined or we can define new slicing criterion w i th respect to value of variable.
Let 's say the sl icing criterion <p, V, i>, where p, V we already know and i represents the
value of variable. Because we slice against certain value of variable and not for a l l possible
values this methodology is similar to dynamic sl icing while preserving static sl icing method­
ology. This k ind of approach is similar quasi static slicing except there is no execution of
program. Nonetheless, we already know the value of variable by simple definition above,
so we don't have to use any new techniques for slicing. Next step of our series of transfor­
mat ion is to replace a l l the occurrences of variable by its constant value. This way a l l of
the unreachable statements w i l l be clearly recognizable, because branching of program wi l l
be conditioned by simple c o n s t a n t condit ion. After that, we cal l Dead Code Elimination
pass[8], which is customized to detect these conditions and remove whole unreachable basic
blocks and simplify C F G of the program. In the following listings is shown, how to whole
process of sl icing w i th respect to value of variable, consisting of four basic-blocks, B B 1 and
B B 4 , which aren't dependant on the variable and B B 2 and B B 3 , which are.

17

global_variable = 0;

BB1

if(global_variable!= 0)

BB2

else

BB3

BB4

L is t ing 4.1: Or ig ina l part of
the program

global_variable = 0;

if(global_variable!=0)

BB2

else

BB3

L is t ing 4.2: After sl icing
w.r.t. variable

global_variable = 0;

i f (0 != 0)

BB2

else

BB3

L is t ing 4.3: Replacing a l l
occurrences

In the l ist ing 4.1 is shown in i t ia l set of statements, which are going to be sliced. Next
in the l ist ing 4.2 is shown the removal of B B 1 and B B 4 as we mentioned they are not
dependant on variable. After that, replacing value of variable i n a l l its occurrences takes
place in l ist ing 4.3 and lastly the dead code elimination removes a l l unreachable basic-blocks.
Therefore the B B 3 has left.

4.4 A d d i n g support for s l ic ing against kernel module param­
eters

Component part of the previous solution is also the support for slicing against module
parameters (and its values i f needed). A s mentioned above S i m p L L tool already contains
the support for sl icing against run-t ime parameters because of run-t ime parameters same
as module parameters are represented as the global variables i n the source code. Th is way
we only need to implement support only i n the python interface of Di f fKemp. Th is comes
under two parts: generate phase and compare phase.

4.4.1 Generate phase

The Generate phase proposes solution similar for two other use cases of the Di f fKemp.
Analysis of K A B I functions i n Diffkemp and run-t ime parameters analysis takes as input
for a generate phase the file containing a l l information needed for generating the snapshot.
We chose this way because we wanted to mainta in the way of how Di f fKemp works. Now,
when we know that we w i l l use file containing information about how snapshot w i l l be
created we must decide which format to use to present the information for slicing. There
are lot's of serializations format as json, xml, yaml which could be used as the list of the
parameters w i th its values. However there are some requirement that must be met before
choosing one.

F irs t requirement, most important was to be really easy processed by machine. Serial­
izat ion formats like json, yaml are supposed be processed easily, otherwise xml is bit harder
when it comes to defining right structure for X M L document and making X P a t h queries,
which are used for access to certain part of the X M L document. Th is process is compli­
cated and also is quite l imited for access to elements which must fulfil certain conditions.
Therefore we chose not to use xml format.

Second requirement which was needed to be satisfied is the file must be easily wr i t ten by
hand, this means that for testing and other purposes file can be wr i t ten by user in least time
as possible. Aga in , this is where X M L would be removed from considered options because
of its opening and closing tags, attributes and other syntactic trash which is hard to be

18

writ ten by hand. Bu t json fal l short too in this s i tuat ion where this k ind of requirement
is needed. Even though json is much easier to be wri t ten by hand than the xml format, it
has s t i l l some cons due to which we decided not to use this opt ion either. Therefore yaml
is what 's left, but unfortunately we decided not to use this opt ion too. This is because of
the last requirement.

We wanted that the file could be automatical ly generated on the host machined for easier
analysis of host system configuration. There was no tool which could directly generate yaml
file w i th the configuration of the module parameters. We decided to use format of output of
sysctl -a command which generates a l l sysctl paramaters i n format of key = value pairs.
Th is format was used along w i th a l l information needed for analysis of module parameters
and i n the results it w i l l be:

<module directory>/<module name>:<parameter> [= <value>]

Module directory represents directory of the kernel where the file w i th the module name
w i l l be found. After that i n the bui l t module we find given parameter. Value i n this format
is opt ional and it only defines whether solution mentioned i n previous section w i l l be used.
Then we generate snapshot.yaml file which contains a l l of this information for snapshot to
be loaded and snapshot folder w i th its bui l t modules that contains module parameters.

4.4.2 Compare phase

After the snapshot is produced we can proceed to next phase of comparison. Th is phase
was more or less prepared for analysis against module parameters because the snapshot
file already contains name of the global variable, which is supported i n S i m p L L tool , in
contrary to sysctl/module parameter name which are not mentioned i n snapshot.yaml file.
On ly support that was needed to be added was for the value to be read from snapshot and
then make corresponding ca l l to S i m p L L tool to make sl icing w.r.t value of variable, more
explained i n the previous Section 4.3.

19

C h a p t e r 5

Implementation of proposed
solutions

Implementation of D i f fKemp consist of two parts: P y thon part which handles running
al l parts of the analysis made by Di f fKemp, contains loads of module which simplifies
manipulat ing w i th source code, compi l ing modules into L L V M IR or finding and gathering
information need for analysis. The other part of D i f fKemp is wr i t ten in C + + . Th is part is
run in instances from Di f fKemp's Py thon part and is in charge of preprocessing modules and
simpli fying them. The current implementat ion of D i f fKemp is more specificaly described
in Section 5.1

In the following section we describe implementat ion of proposed solutions. In Section 5.2
we describe how the solution of sl icing w i th respect to concrete field of structured type was
implemented. After that i n Section 5.3 is described the sl icing against the value of concrete
value of a parameter and lastly i n Section ?? how the support for module parameters was
added.

5.1 Curren t implementat ion of the D i f fKemp

From the previous chapter about Di f fKemp we already know that Di f fKemp analysis consists
of two phases: Generate and Compare Phase. These phases are represented as two functions
in Di f fKemp's part wr i t ten Py thon . In these functions there are various task which are run
based on specification of the phase. In the next Subsection 5.1.1 we describe how the
Generate phase is implemented and right after that we take a look at the Compare phase
in Subsection 5.1.2.

5.1.1 The Generate phase

Generate phase/functions takes as input three mandatory arguments and several optional.
These are kernel directory, from which the snapshot is generated snapshot, snapshot direc­
tory, function list or list of run-t ime parameters which are going to be analyzed and are
listed line by line.

After cal l ing the function generate w i th these parameters, it iterates throughout the
lines of the function list and run various task based on whether function list is list of K A B I
functions or the list of run-t ime (sysctl) parameters. Then it stores serialized information
extracted from generate phase into snapshot directory which was defined by second argu-

20

ment inside file named s n a p s h o t . y a m l w i th a l l needed modules compiled into L L V M IR.
In pseudo-code it might looked like this:

function generate(kernel_dir, snapshot_dir, f u n c t i o n _ l i s t , is_sysctl=False):

snapshot = Snapshot(kernel_dir, snapshot_dir)

for l i n e i n f u n c t i o n _ l i s t :

i f i s _ s y s c t l :

Do something with sys c t l

else:

Do something with function from KABI l i s t

snapshot.write_snapshot_to_file()

Various tasks are run based on whether function list represent the the list of K A B I functions
or run-t ime parameters. In following subsections is described the processes which must be
handled i n bo th cases.

L i s t o f K A B I f u n c t i o n s

W h e n the function list is a list of K A B I functions, generate phase takes the name of the
K A B I function, it searches throughout source code of the given kernel directory w i th ut i l i ty
named cscope. For every file w i th found definition of the given symbol it compiles it into
L L V M IR. Now the information is stored into snapshot object which represents whole
snapshot for compare phase. In pseudo-code it would look like this:

srcs = find_sources_with_symbol(symbol)

for src i n srcs:

module = build_module_from_source(src)

i f not module.has_function(symbol):

continue

snapshot.add_function(symbol, module)

This is simple example how generate function works in D i f fKemp for K A B I functions. More
complicated case is explained i n next section.

L i s t o f r u n - t i m e p a r a m e t e r s

In case of run-t ime parameters there is a bit longer flow of things which needs to be done
for snapshot. F irst ly , we must find module where the run-t ime parameter is defined. A s
mentioned in previous chapter for every run-t ime parameter group there's file which con­
tains definition of run-t ime parameters. These definitions contains various fields. The
most important for us there are procname, which represents name of run-t ime parameter,
data which represents which global variable contains the value of run-t ime parameter and
proc_handler which is the function which runs every t ime user sets up the parameter.

Now, when we have got module w i th run-t ime parameters definitions, we can parse the
function l ist. In the introduct ion of this section we said that function list contains only one
entry at the line, but in this case of run-t ime parameters there might be a pattern which
can represent more than one parameter. Pa t te rn is parsed and after that is every name of
run-t ime parameter which can be represented by the pattern is returned. These returned
names of parameters are then looped throughout for cycle and for each we perform another
set of tasks.

21

For each symbol representing run-t ime parameter we first get it 's proc_handler function
if it has some. If it is, we find the module which contains definition of this function and we
compile it into L L V M IR. Afterwards we just add collected information into snapshot object.
Next, we extract the data variable from run-t ime parameters definition. These variables are
represented by object KernelParam which holds information about data variable name and
its indices from the G E P instruct ion. Cont inuing the process, we find a l l the sources which
contains a l l the usages of name of variable representing the run-t ime parameter. Now, we
compile these sources into the modules. In these modules we find again a l l functions using
the given variable name. We add a l l of these functions into the snapshot object, but we skip
now proc_handler function because that 's already contained inside the snapshot object.
L i t t l e peek how the implementat ion of this might be done can be seen in the l ist ing below:

sysctl_module = get_sysctl_module(symbol)

sysctl_params_list = parse_sysctls_pattern(pattern)

for sysctl_param in sysctl_params_list:

proc_handler_function_name = get_proc_handler(sysctl_param)

i f proc_handler_function_name:

sysctl_module = get_module_for_symbol(sysctl_param)

snapshot.add_function(sysctl_param, sysctl_module, glob_var=None)

kernel_param = get_data_variable(sysctl_param)

i f not kernel_param:

continue

for src i n find_src_using_symbol(kernel_param):

module = build_module_from_source(src)

for fun in get_functions_using_param(module, kernel_param):

snapshot.add_function(

sysctl_param, module, fun, glob_var=kernel_param.name)

5.1.2 The Compare phase

The Compare phase is more complicated than the generate phase, but for our solutions
there's no need fully understand how its implemented. In a simple explanation, the com­
pare phase loads a l l the information from snapshot.yami file. Subsequently it runs S i m p L L
instance that does the pre-processing and module comparison for each entry inside of snap-
shot.yaml file. Afterwards in the P y t h o n part it evaluates the produced results of S i m p L L
and then it prints a l l the results and diffs into directory and for each result there's a new
file containing result and diff if there's difference between two versions. Further proposed
extensions of improving sl icing a lgor i thm are mostly part of the too l S i m p L L . To under­
stand how certain parts are implemented we' l l describe S i m p L L implementat ion i n next
subsection.

S i m p L L

M a i n function of S i m p L L contains very simple flow how analysis i n this too l is made. F i rs t
th ing done is parsing command line arguments. L L V M provides very powerful interface
for dealing w i th command line arguments. Th is interface provides template class c l : :opt,

where you create an object of this class w i th name of the option which w i l l represent the

22

command line argument. After feeding function c l : :ParseCommandLineOptions w i th ar­
guments of the main function, it stores the value of given arguments from command line
into c l : :opt object corresponding to that opt ion. After parsing command line options is
finished, object of Config class is constructed based on the provided options. Construc­
t ion of Config object does two things: converts command line options into corresponding
L L V M objects (-var opt ion into llvm: : Global Variable class and so on) and stores a l l the
information needed for further analysis.

Next, S i m p L L runs the function processAndCompare. This function runs preprocess­
ing of modules and afterwards compares the functions. For purpose of this thesis is the
most important the preproccess phase which runs various L L V M passes that simplifies and
removes a l l unnecessary code that can mess up semantic equivalency analysis afterwards.
One of these passes is VarDependencySlicer which is modified i n extension presented in
the next Section 5.2 to improve overall analysis.

5.2 S l ic ing w.r.t certa in field of s t ructured data type repre­
senting run- t ime parameter

Implementation of this extension can be resolved into three parts which are div ided into
these part based of Di f fKemp functionality which are self-sufficient so this extension doesn't
affect other parts of Di f fKemp functionality and also this way it 's more easily tested i f
everything works as it should be.

5.2.1 S i m p L L

The biggest part of the implementation is implemented inside part of the Di f fKemp called
S i m p L L . W h e n running analysis w i th run-t ime parameters S i m p L L takes as input S i m p L L
these arguemnts: path to the first file which represents module in older version of kernel,
path to the second file which represent the same module in newer version of kernel, an
option -fun w i th the name of the function containing run-t ime parameter, an option -var
wi th name of the global variable which represent the run-t ime parameter. Par t of the
new extensions of S i m p L L is also new option -index which represents the index into G E P
instruct ion. This opt ion is implemented w i t h the class of c l : : l i s t where a c l is the
namespace from L L V M l ibrary which handles command line arguments. Us ing this class
for an implementat ion of command line opt ion for S i m p L L means, that this opt ion can be
stacked one after another and thus provide more indices for analysis because as we already
know G E P instruct ion can contain more than one index. Instance of class c l : : l i s t is
vector like object. After we extract a l l the indices from command line, we propagate them
through the flow of S i m p L L unt i l reached VarDependencySlicer pass. Modif ications of the
VarDependencySlicer which handles G E P instruct ion indices are further described i n more
detai l i n the next subsection.

5.2.2 VarDependencySlicer pass and G E P instruction dependence

VarDependencySlicer pass represent the current sl icing solution presented i n previous chap­
ter. In previous Chapter 4, we also proposed solution which extends the current a lgor i thm
in VarDependencySlicer. This solution was presented in two main branches of implementa­
t ion: the G E P instruct ion dependence and C a l l instruct ion dependence.

23

G E P dependence computat ion consist of comparing the given indices w i th indices of
G E P instruct ion which has also operand of Global Variable class which was given as value
of opt ion -var and converted into the instance of this class.

Unfortunately given indices can be in various forms. A s we mentioned i n previous
chapter we get the indices from the modules where run-t ime parameters are defined. These
definitions contain a G E P instruct ion w i th the index into given Global Variable operand
which basically a base address for computat ion. A s we already know, every index i n the
G E P instruct ion has its type based on which type we index into. A lso we know that same
index w i th different type does not mean that the calculat ion that G E P does, w i l l be the
same. Unfortunately i n these definitions the type into we index first (second argument of
G E P instruction) is bitcasted into i 8 * (bitcasting means changin value into some type we
choose without changing the bits) . Th is w i l l completely change indices and these indices
w i l l never match w i th the ones that are i n the modules.

Solution for this is method of GEPInstruction class called accumulateConstantOf f set.
This method calculates bitcasted offset based on the given data layout of module. Th is way
we can compare the bitcasted index and calculated constant offset and te l l apart depen­
dent and independent instruct ion. There is also one more problem w i th implementat ion
of computat ion of G E P dependence. Th is is rather clean code problem than the pr inc ipal
problem but solution for this isn't the simple one.

In practice there are two way how G E P instruct ion is placed i n a code: as the stan­
dalone instruct ion the GetElementPtrlnstr and as operand of some other isntruct ion
GEPOperand. Implementation of comparing the indices is same for both but we can not con­
vert GEPOperand into GetElementPtrlnstr. L L V M l ibrary does this but it does not always
work and if i t 's not than the L L V M l ibrary w i l l convert it into GetElementPtrConstantExpr.
This class is private for only the L L V M l ibrary so we cannot use it . Instead we used a l itt le
hack and we dyn_cast GetElementPtrlnstr to GEPOperand other way around as we tried.

Second part of the solution is computat ion of ca l l instruct ion dependence. However this
solution is more complicated than G E P computat ion so it is described i n next Section .

5.2.3 Compare phase and computation of the Cal l instruction depen­
dence

Computat ion of the C a l l instruct ion dependence was described i n previous chapter. It
was implemented as it was explained i n Chapter 4, however there is one implementat ion
detai l that was left out. A s we iterate through the instructions when we discover the C a l l
instruct ion we must first find out what function it is call ing. W h e n we retrieve the Funct ion
object which represent the called function we can iterate through the object to look inside
the function and make addit ional check whether the function is dependent or not. Prob lem
occurs when the function which is called isn't part of the module which is preprocessed.
Th is is called i n Di f fKemp an missing definition.

W h e n dealing w i th C a l l instruct ion we must differ between ful l dependence of cal l
instruct ion and dependence only by global variable, thus pointer which represents a l l fields
of structured data type object. In case of ful l dependence it is pretty obvious that function
is dependent because there's no reason to pass pointer to field of structured data type
which represents run-t ime parameter. O n the other way, when function receives only the
base pointer we can't decide whether the function cal l is dependent or not, and hence we
decide based of the content of function. F i rs t th ing we do is that we t ry to obtain Funct ion
object. Th is is done by method GetCalledFunction provided by C a l l l n s t r class which

24

represents C a l l instruct ion. W h e n we receive the function object from method cal l , we can
perform various operations on the object. So we make sure that function exists w i th in
the compiled module. Every Function object has method called isDeclaration which
tells i f the function is declaration. If it is, module doesn't contain the body of function
and thus we can't iterate through, to check dependence of inner instructions and thus we
can't surely te l l i f function is dependent. A l though we can't decide of the result of analysis
now, we can l ink the module which contains the called function and analyze it afterwards.
Object OverallResult, which represent results of Analys is , contains field which is called
MissingDefs. Th is field contains a l l the missing definitions of the function. Th is feature
was mainly used dur ing comparison phase of analysis where we must look inside to functions
to te l l if they're same or not. We use the MissingDef in this case too so we can gain a l l
the instruct ion i n Funct ion body from another module.

After adding Function object to MissingDefs field, S i m p L L converts this object into
yaml representation. P y t h o n part of the Di f fKemp tool reads i t , and then compiles the
module which contains the function i n missing definitions and l inks it w i th current analysed
module. Then it runs whole analysis again. Analys is ends when the results from S i m p L L
are produced and Di f fKemp is able to evaluate them. However the function returning
results isn't run when missing definitions occurred while preproccessing. W h e n for example
we can't find function's definitions while i n the phase of preprocessing, S i m p L L would
produced no results w i th only missing definitions. If this would happend mult iple times
where function cannot by found for some reason we must secure that D i f fKemp produces
evaluation at least w i th the information is has got. Th is way we must handle condit ion
where Di f fKemp received no results but also were unable to find the missing definitions
which received. Then we run S i m p L L w i th information that it shouldn't return any missing
definitions and try to make analysis only w i th the information that is present. A l though
this might seem unlikely that the function definition would be missing but this could be
because Di f fKemp couldn't compile the function definition into L L V M IR or couldn't find
it using cscope ut i l i ty. Pseudo algor i thm how this would work is shown below:

run_analysis = True

dont_return_missing_defs_while_preprocessing = False

while run_analysis:

run_analysis = False

OverallResult = run_simpll(module, dont_return_missing_defs_while_preprocessing)

i f OverallResult.MissingDefs:

try:

for function i n OverallResult.MissingDefs

link_function_to_module(function, module)

run_analysis = True

continue

except:

i f not OverallResult.result and not run_analysis:

run_analysis = True

dont_return_missing_defs_while_preprocessing = True

process_and_print_results(OverallResult)

25

W h e n exception is caught that we were unable to compile and l ink module to our current
module we check also that it doesn't contain any result. That ' s because we might get
returned missing definition also after preprocess phase where results are already produced.
So this way we won't run new analysis because without the new missing definition l inked,
the result would be the same. After running S i m p L L , VarDependencySlicer pass is run,
where whole implementat ion for computing C a l l instruct ion dependence takes place. How
the implementat ion of this a lgor i thm would look like is shown in next l ist ing.

check_call_instruction_dependence(Calllnstruction, OverallResult):

dependent = check_if_instruction_is_fully_dependent(Calllnstruction)

i f dependent:

return True

else:

dependent = check_if_instruction_is_maybe_dependent(Calllnstruction)

i f not dependent:

return False

function = getCallerFunction(Calllnstruction)

i f function.isDeclaration:

OverallResult.MissingDefs = function

return False

for instruction i n function:

dependent = check_if_instruction_is_fully_dependent(instruction)

i f dependent:

we don't need missing def when we discover that function i s dependent

del OverallResult.MissingDefs

return True

i f True == check_call_instruction_dependence(instruction)

return True

return False

5.3 S l ic ing w.r.t a Concrete Va lue of a Parameter

Implementation of this solution is mainly contained inside the S i m p L L . This extension
supports three way of sl icing w.r.t to a variable: sl icing for a l l possible values therefore
just using the code related to global variable, sl icing against the default value of global
variable and sl icing w i th respect to concrete value of variable w i th corresponding type. The
first way is already supported by S i m p L L w i th command line opt ion -var and argument of
name of the global variable. Then the second one and th i rd are supported due to extending
format of the option -var argument. Now, the argument can contain not only name of the
variable but also the value, which should it contain and these two are colon separated. A lso
it supports keyword default or the variable value can be empty, i f we want to use default
value of given global variable for analysis. Now as we mentioned in the previous chapter, we
don't slice off the independent instructions based on value but we just replace them w i th the
object representing their value i n instructions which uses the loaded global variable. After
the replacement we use standard program tranforamtions like Dead Code E l im ina t i on to
slice off a l l independent instructions. Th is process is done in VarValueDependencySlicer
which is described in next section 5.3.1.

26

5.3.1 VarValueDependencySlicer

VarValueDependencySl icer is a L L V M pass which inherits from the ModulePass class. Th is
means that transformation which is done by L L V M pass, is performed above whole L L V M
module which was sent into S i m p L L as input. Th is is because it 's faster and more simple
to iterate through the usages of GlobalVar iable class in L L V M than it would be to iterate
through the instruct ion of the function. Wh i l e i terating through instructions we would had
to also iterate throughout its operands and check i f any of them is global variable which
we are looking for. Reasoning behind this is A / B testing that the general module has more
instructions in function than the module has usages of certain global variable. O n the
other hand flow of this L L V M pass is very simple. In the beginning, takes as arguments
module, global variable and the value which is to be replaced for every occurrence of the
given global variable. This value can be also n u l l which means that default value should
be used for replacement. Us ing default value i t 's easier for us because every global variable
object has function g e t l n i t i a l i z e r which returns value which has been set when global
variable was init ia l ized. Th is way we get right instance of Constant class which is used
later for replacement, because the function used for replacement uses Constant class type
as argument.

Further, it iterates a l l usages of global variable as we mentioned previously. W h e n usage
of the G loba l Variable is found we t ry to dyn_cast it into load instruct ion. Anyway after
we find out that current instruct ion is load instruct ion we replace a l l is usages again w i th
the Constant object of corresponding type. This is done by the function which provides
L L V M interface of Value class called replaceAHUsesWith which takes as argument an
object containing value of variable that we want to replace a l l uses of load instruct ion wi th .
However the current flow of this implementat ion is quite simple there's a tr icky part when
converting str ing argument from command line opt ion into corresponding Constant object
type.

This part is done w i th dyn_casting global variable init ial izer into various specific
Constant object types (e.g. Constantlnt or ConstantFP classes). W h e n we find out
which type of specific class it is, we cal l i t 's constructor w i th str ing argument. Construc­
tor then returns an object of specific Constant type and we return it from the function.
However the function return the Constant class not the specific sub-classes but due to in ­
heritance from Constant object the casting to superclass is done automatical ly by C lang
compiler.

5.4 Suppor t ing s l ic ing against kernel module parameters i n
py thon interface

In this section we shortly introduce how the interface for dealing w i th kernel module pa­
rameters was implemented into the current generate phase. A s we mentioned i n previous
chapter this part is needed to be implement only for snapshot generation because S i m p L L
already support it i n its interface the global variables and global variables are representing
as the run-t ime parameters so do they the module parameters. A s we know from the pre­
vious section there is loop which takes lines from the function list. In this loop there's i f
condit ion so we can make different flow whether we analyse run-t ime parameters or K A B I
functions. Th is way we have added the th i rd branch of the if condit ion which takes care
of module-parameters. F i rs t we parse the entry from function list based on the format we
introduced i n previous chapter. After that we find module and compile it into L L V M IR

27

from the given module directory and module name. Then it finds global variable which
represent module parameter. Rest of the flow is same then as it is for run-t ime parameters
when we find a l l functions using that global variable in a l l the possible modules. Then we
add the found functions into the snapshot.

28

C h a p t e r 6

Exper iment ing w i th implemented
solutions

The goal of the experiments of the first two implemented solutions is to prove that results of
analysis made by Di f fKemp were improved after implementing these solution and integrating
them into the current solution of the Di f fKemp. For the last solution implemented, we show
how can we compare many module parameters i n such a easy way just by creating list of
them. In the next Section 6.1 we w i l l show what results experiments have returned while
testing the first extension which is responsible for sl icing against concrete field of structured
types. After that, i n Section 6.2 we show how we can make an analysis of kernel modules
while using the second extension which performs analysis w i th respect to a concrete value
of global variable.

6.1 S l ic ing against concrete fields of s t ructured types exper­
iments

Experiments of testing functionality of this extension have been tested on CentOs kernel
version 7.3 and 7.4. We've generated snapshots containing indices of global variables repre­
senting run-t ime parameters and tested list of run-t ime parameters presented in Table 6.1
w i th results they have returned w i th or without the extension.

After running analysis w i th extension we can see that no results have turned from
Equal state into Not Equal. A lso no Errors occurred dur ing analysis which means that
implemented solution d id not mess up analysis made by Di f fKemp. Sadly i n the tested
list of run-t ime parameters has occurred only one conversion from Not Equal state to
Equal. After analyz ing given case by hand we could confirm that implemented solution has
really done what it was supposed to do. This low number of successful cases after adding
our solution might be because most of the cases we're evaluated as Equal for the set of
instruct ion that covered whole global variable not only the field we wanted. After that
subset should be evaluated equally as the given set and therefore s t i l l it evaluates to Equal.

To conclude this, we have implemented solution that works for sl icing w i th respect
to concrete field of variable, however there wasn't much cases as we expected to improve
whole analysis performed by Di f fKemp. In the future work we a im for verifying if the given
solution d idn ' t work for other cases because of some nuances or if there wasn't just that
many cases to improve analysis as we firstly assumed.

29

R u n - t i m e p a r a m e t e r F u n c t i o n
R e s u l t s

R u n - t i m e p a r a m e t e r F u n c t i o n
w / o e x t e n s i o n w i t h e x t e n s i o n

net. core .rmem defaul s o c k _ i n i t _ d a t a E q u a l E q u a l

net. core .rmem max
sock setsockopt Not E q u a l Not Equa l

net. core .rmem max t cp_s e l e c t _ in i t i a l _w indow E q u a l E q u a l net. core .rmem max
se t_sock_s i ze E q u a l E q u a l

net. core.wmem default
i p _ s e n d _ u n i c a s t _ r e p l y E q u a l E q u a l

net. core.wmem default
s o c k _ i n i t _ d a t a E q u a l E q u a l

net. core. w m e m m a x
sock setsockopt Not E q u a l Not Equa l

net. core. w m e m m a x
se t_sock_s i ze E q u a l E q u a l

net. ipv4. conf .all . forwarding
dev ine t _ in i t _ne t E q u a l E q u a l

net. ipv4. conf .all . forwarding
_dev ine t _sysc t l _ r eg i s t e r E q u a l E q u a l

net. ipv4.conf.al l .rp_f i l ter
d e v ine t _ in i t _ne t E q u a l E q u a l

net. ipv4.conf.al l .rp_f i l ter
_dev ine t _sysc t l _ r eg i s t e r E q u a l E q u a l

net. ipv4. t cp _ tw_ r e cy c l e

t c p _ v 4 _ r c v E q u a l E q u a l

net. ipv4. t cp _ tw_ r e cy c l e
t cp_v4_connec t Not E q u a l Not Equa l

net. ipv4. t cp _ tw_ r e cy c l e
t c p _ s k _ e x i t _ b a t c h E q u a l E q u a l

net. ipv4. t cp _ tw_ r e cy c l e

t c p _ t i m e _ w a i t Not E q u a l E q u a l

Table 6.1: Results of analysis between 7.3 and 7.4 CentOs kernel

6.2 S l ic ing w.r.t to concrete value of global variable experi­
ments on the kernel modules

This experiments w i l l be performed on two upstream versions of the L inux kernel, on 3.10
and 4 .11 . We have decided to use kernel modules in which we have found that they are
unequal, but could be equal for certain values. Subsequently we generated snapshots for
both version of L inux Kerne l and for each we also generated snapshot which uses values
and which is not. After running the experiments we have got results as shown in Table 6.2.

As we can see from Table 6.2, we have performed analysis on the kernel module param­
eters. We impl ied earlier that adding support to analysis of kernel module parameter w i l l
make it easier and faster to analyse difference in kernel modules. F r om the reported statis­
tics from Di f fKemp while comparing the two versions of kernel it returned that Di f fKemp
compared 48 functions. Th is is quite a lot for such a smal l number of tested parameters.
However this analysis took max imum of 10 minutes w i th the t ime of generating snapshots
for analysis and subsequent comparison of these. If we would wanted find out if semantics
of 48 functions is equal or not by a hand, it would take much more effort and time, it
could take possibly t ime of more than several hours rather than 10 minutes which lasted
the analysis made by Di f fKemp.

Also in Table 6.2, we have shown impact of implementing extension which slices w.r.t.
certain value of global variable which represents the module parameter. A s we can see
most of the cases has resulted into Not Equal. After implementing the solution some cases
has turned into the Equal result. Th is could be caused by removing the code that wasn't
dependent of the value of variable and also the code that was marked as dependent didn' t
contain non-equal code. After analyz ing the results, which produced Equal result and was
previously marked as Not Equal, we could confirm that these results are correct. A s we
can see the results marked as Equal without using the extension, retained the result given

30

M o d u l e P a r a m e t e r F u n c t i o n V a l u e
R e s u l t s o f a n a l y s i s

M o d u l e P a r a m e t e r F u n c t i o n V a l u e
w / o v a l u e w i t h v a l u e

n f _ n a t _
snmp_bas i c

debug
snmp_parse_mang l e default Not E q u a l Not E q u a l n f _ n a t _

snmp_bas i c
debug

mangle_address default E q u a l E q u a l
d rbd faul t_devs _ d r b d _ i n s e r t _ f a u l t default E q u a l E q u a l

t cp_probe bufsize

t cpprobe_ in i t 0 Not E q u a l E q u a l

t cp_probe bufsize
t cpprobe_ava i l 0 E q u a l E q u a l

t cp_probe bufsize
t cpprobe_read 0 E q u a l E q u a l

t cp_probe bufsize

t c p _ p r o b e _ u s e d 0 E q u a l E q u a l
nbd m a x _ p a r t n b d _ i n i t -1 Not E q u a l E q u a l
ipmi
_wa tchdog

i f n u m _ t o _ u s e
s e t _ p a r a m _ w d o g _ i f n u m default Not E q u a l E q u a l ipmi

_wa tchdog
i f n u m _ t o _ u s e

ipmi_reg is te r_watchdog default Not E q u a l Not E q u a l

lp reset lp_reg ister default Not E q u a l E q u a l

appl icom mem
appl icom init default Not E q u a l Not E q u a l

appl icom mem
a c _ i o c t l default E q u a l E q u a l

Table 6.2: Compar ison of kernel modules parameters from upstream versions 3.10 and 4.11
w i th results of analysis w i th extension, which adds value of parameter to sl icing criterion

without extension and was marked it as Equal too, because when set of instructions was
marked as Equal at first, then the subset of this set must also be marked as Equal.

To conclude this, implemented solution really helped the analysis made by Di f fKemp
and also it dramatical ly made it easier to analyse the kernel module parameters.

31

C h a p t e r 7

Conclusion

The goal of this thesis was to propose solution for automatic forward sl icing of L inux kernel
modules. Subsequently we implemented this proposed solutions and we made the com­
parison between two kernel versions for experimentally prove that implemented solutions
improved analysis made by Di f fKemp.

A t the beginning we have described a static analysis too l D i f fKemp w i th L L V M frame­
work which was used to implement an automatic forward sheer for Di f fKemp. Automat ic
forward sheer aims for simpli fying analysis of semantic differences between two version of
L inux kernel. The purpose of this approach is to remove a l l statements that aren't de­
pendant on certain function or parameter and thus make it easier for semantic analyzer
to compare certain semantic of analyzed source. D i f fKemp has already contained auto­
matic forward sl icing solution and after extensive analysis and testing we decided to extend
its current functionality by few most solutions that should be most efficient based on our
assumptions. We have implemented sl icing against the fields of structured types which re­
moves considerable chunk of independent code. A lso we extended current sl icing criterion
w i th the opt ional value parameter for the global value which represent run-t ime or mod­
ule parameters. A n d as we mentioned we added also the support for sl icing w i th respect
to module parameters which also makes it easier to analyze, because number of functions
containing the module parameters that are analyzed is quite extensive. After running the
experiments we noticed that first implemented solution d idn ' t improved the analysis made
by Di f fKemp, which could be potential ly caused by Di f fKemp returning E q u a l result for
set of instruct ion and therefore subset created by implementing solution from this thesis
should return same results. Otherwise experiments w i th solution providing support for
kernel module parameters has made easier analysis and much more faster than it would by
done by a hand. A lso last extension which adds value of global variable into sl icing criterion
has also improved analysis done by Di f fKemp in a quite big scope.

We implemented three extensions for Di f fKemp to improve analysis it performs but there
are s t i l l some extension which can be done to improve automatic forward sl icing solution
which Di f fKemp uses. Th is extension could be for example taking into account pointer
aliasing when sl icing off the statements which might alias w i th dependent instructions.
A lso it 's good idea to provide support for sl icing w.r.t certain value w i th str ing type and
accesses to structured types. We planned to extend the current solution later in the future
because this would be quite extensive amount of work but it wouldn't cover much cases
because there are less string-typed run-t ime parameters than there are other types.

32

Bibl iography

[1] F E R R A N T E , J . , O T T E N S T E I N , K . and W A R R E N , J . The Program Dependence G r a p h

and Its Use i n Opt imiza t ion . ACM Transactions on Programming Languages and
Systems. July 1987, vol. 9, p. 319-349. D O I : 10.1145/24039.24041.

[2] H A R M A N , M . and H I E R O N S , R. A n Overview of Program Sl ic ing. Software Focus.
december 2001, vol. 2. D O I : 10.1002/swf.41.

[3] I N G . V I K T O R M A L Í K . DevConf - DiffKemp [online]. 2019. Last updated on
2019-08-16 [cit. 28-07-2020]. Available at: https://sched.co/RknV.

[4] L A T T N E R , C . Introduction to L L V M . LLVM [online]. 2012 J u l 07. Available at:
http: / / www.aosabook.org/en/llvm.html.

[5] L L V M P R O J E C T . L L V M Language Reference Manua l . LLVM [online]. 2020. Last
updated on 2020-01-23 [cit. 24. January 2020]. Available at:
https: //llvm.org/docs/LangRef .htm.

[6] L L V M P R O J E C T . L L V M Compi ler Infrastructure. LLVM [online]. 2020. Last
updated on 2020-03-24 [cit. 25-07-2020]. Available at: https://llvm.org/.

[7] L L V M P R O J E C T . The Often Misunderstood G E P Instruction. LLVM [online]. 2020.
Last updated on 2020-07-28 [cit. 28-07-2020]. Available at:
https: //llvm.org/docs/GetElementPtr.html.

[8] L L V M P R O J E C T . L L V M ' S Analys is and Transform Passes. LLVM [online]. 2020.
Last updated on 2020-01-23 [cit. 24. January 2020]. Available at:
https: //llvm.org/docs/Passes.html.

[9] L U C I A , A . Program slicing: methods and applications. In:. February 2001, p. 142 -
149. D O I : 10.1109/SCAM.2001.972675. I S B N 0-7695-1387-5.

[10] M A L Í K , V . Di f fKemp. GitHub [online]. 2019 J u l 10. Ed i t ed 16 Oct 2019 [cit.
24. January 2020]. Available at: https://github.com/viktormalik/diffkemp.

[11] W E I S E R , M . D . Program Slices: Formal, Psychological, and Practical Lnvestigations
of an Automatic Program Abstraction Method. U S A , 1979. Dissertat ion. University
of Mich igan . AAI8007856.

33

https://sched.co/RknV
http://www.aosabook.org/
https://llvm.org/
https://github.com/viktormalik/diffkemp

