
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INTELLIGENT SYSTEMS 
ÚSTAV INTELIGENTNÍCH SYSTÉMŮ 

AUTOMATIC FORWARD SLICING OF PROGRAMS 
A U T O M A T I C K É DOPŘEDNĚ PROŘEZÁVÁNÍ P R O G R A M Ů 

BACHELOR'S THESIS 
B A K A L Á Ř S K Á PRÁCE 

AUTHOR 
A U T O R PRÁCE 

SUPERVISOR 
V E D O U C Í PRÁCE 

NIKOLAS PATRIK 

Ing. VIKTOR MALÍK, 

BRNO 2020 



Brno University of Technology 
Faculty of Information Technology 

Department of Intelligent Systems (DITS) Academic year 2019/2020 

Bachelor's Thesis Specification ||||||||||||||||||||||||| 
23100 

Student: Patrik Nikolas 
Programme: Information Technology 
Title: Automatic Forward Slicing of Programs 
Category: Software analysis and testing 
Assignment: 

1. Get acquainted with DiffKemp, a tool for automatic comparison of semantics of functions and 
parameters of the GNU/Linux kernel. 

2. Study existing methods for static slicing of programs. 
3. Design a method for static forward slicing of programs that would be able to safely remove 

code that is independent of a value of a chosen parameter of the GNU/Linux kernel. 
4. Implement the proposed method as a part of program pre-processing within the DiffKemp 

project. 
5. Evaluate the created solution on at least two publicly available versions of the GNU/Linux 

kernel. Discuss the influence of your extension on results of the analysis performed by 
DiffKemp. 

Recommended literature: 
• Official website of DiffKemp: https://github.com/viktormalik/diffkemp 
• A. De Lucia, "Program slicing: methods and applications," Proceedings First IEEE 

International Workshop on Source Code Analysis and Manipulation, Florence, Italy, 2001, 
pp. 142-149. 

• Harman, Mark & Hierons, Robert. (2001). An Overview of Program Slicing. Software Focus. 
Requirements for the first semester: 

• The first two points of the assignment. 
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/ 
Supervisor: Malik Viktor, Ing. 
Head of Department: Hanacek Petr, doc. Dr. Ing. 
Beginning of work: November 1, 2019 
Submission deadline: July 31, 2020 
Approval date: July 25, 2020 

Bachelor's Thesis Specification/23100/2019/xpatri00 Page 1/1 

https://github.com/viktormalik/diffkemp
https://www.fit.vut.cz/study/theses/


Abstract 
This thesis presents designing new forward sl icing solution for the Di f fKemp tool . After 
strenuous analysis of currently implemented solution in Di f fKemp for forward sl icing we 
decided to retain current solution and extend it by few enhancements that should improve 
the analysis provided by Di f fKemp in a quite big scope. We have implemented extensions so 
Di f fKemp can perform analysis on fields of structured types which might represent run-time 
parameters and also we extended sl icing criterion w i th the value of analyzed variable. A lso 
we added support for sl icing module kernel parameters. After implementing this solutions, 
we d id experiments which proved that implemented solution has improved the analysis 
performed by Di f fKemp. 

Abstrakt 
Táto práca popisuje návrh a implementáciu nového riešenie pre nástroj Di f fKemp na au­
tomatické dopredné prerezávanie programov. Po zdĺhavej analýze súčasného riešenia, sme 
sa rozhodl i súčasné riešenie ponechať a rozšíriť ho o zopár vylepšení. Implementovali sme 
rozšírenie ktoré dovoľuje D i f fKempu vykonávať analýzu nad prvkami štruktúrovaných ty­
pov, pr ida l i sme k súčasnému prerezávaciemu kritériu aj hodnotu premennej a na záver pr i ­
dal i podporu na analýzu parametrov modulov jadra. Po implementovaní týchto vylepšení 
sme vykonal i experimenty ktoré potvrd i l i zlepšenie analýzi ktorú Di f fKemp vykonával. 
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Rozšírený abstrakt 
Táto práca popisuje návrh a implementáciu nového riešenie pre nástroj DiŕľKemp na au­
tomatické dopredné prerezávanie programov. Z počiatku sa práca zaoberá nástrojom Dif-
fKemp, pre ktorý je určený výsledok tejto práce. Nástroj Di f fKemp slúži na porovnávanie 
sémantiky dvoch verzií j adra L i n u x u . D i f fKemp sa spúšťa vo dvoch fázach. P r vou fázou je 
fáza generate, ktorá sa zaoberá prípravou zdrojových kódov a zbieraním informácií ktoré 
sú určené pre danú analýzu. Výsledná analýza je potom spustená až vo fázi compare. Dif­
fKemp na túto analýzu využíva L L V M . Framework L L V M je súbor nástrojov, ktoré slúžia 
na uľahčenie práce so zdrojovými kódmi a taktiež umožňuje vykonávať rôzne transformá­
cie. D i f fKemp v súčastnosti už obsahuje riešenie na dopredné orezávanie programov avšak 
z dôvodu výslednej kval i ty riešenie sme sa ho rozhodl i analyzovať. Po zdĺhavej analýze 
súčasného riešenia, sme sa rozhodl i toto riešenie ponechať a rozšíriť ho o zopár vylepšení. 
Keďže táto práca je celá založená na prerezávaní programov rozhodl i sme sa opísať pre­
rezávanie programov v samostatnej kapitole. Táto kapi to la obsahuje zadefinovanie rôznych 
pojmov ktoré budeme neskôr v práci používať. Jedným z týchto pojmov je aj prerezávacie 
kritérium. V následnej kapitole sme sa venovali implementácií rozšírení, ktoré dovoľuje Dif-
fKempu vykonávať analýzu nad prvkami štruktúrovaných typov. Toto rozšírenie je založené 
na porovnávaní indexov inštrukcie, ktorá má za úlohu, vypočítať ukazatel , ktorý ukazuje 
na prvok štruktúrovaného typu. Táto inštrukcia sa nazýva Get Element Pointer inštrukcia 
a keďže táto inštrukcia je často mylne chápaná ako indexovací operátor v j a zyku C, rozhodl i 
sme sa j u bližšie opísať v tejto práci, keďže je na nej založené jedno z rozšírení prezento­
vaných v tejto práci. Ďalej sme pr ida l i sme k súčasnému prerezávaciemu kritériu aj hodnotu 
premennej. Implementácia tohoto rozšírenia zahrňovala dve fázy. V prvej fáze sme nahradi l i 
všetky výskyty globálne premennej. Následne sme potom spust i l rôzne štandardné trans­
formácie ktoré poskytuje L L V M aby sme odstránili nedostupný kód potom čo sme vykonal i 
prvú fázu. Posledné rozšírenie ktoré sme pr ida l i je podpora na analýzu parametrov mod­
ulov jadra. Keďže časť riešenie D i f fKempu už túto podporu obsahovala, rozhodl i sme sa j u 
pridať aj do zvyšku. N a spúšťanie analýzi pre parametre modulov, sme sa rozhodl i použiť 
formát podobný súčasnému avšak tak aby splňoval zopár jednoduchých kritérií. P o imple­
mentovaní týchto vylepšení sme vykonal i samostatné experimenty. Pre rozšírenie ktoré im­
plementovalo prístup k prvkom štruktúrovaných typov sme nezaznamenali taký úspech ako 
sme očakávali, čo bolo pravdepodobne spôsobené už predošlým správnym vyhodnoteným 
z nástroja Di f fKemp. U nasledujúcich rozšírení sa nám však podari lo ukázať ich skutočnú 
hodnotu a ako sa nám pomocou nich podari lo vylepšiť analýzu ktoré nástroj Di f fKemp 
vykonával. N a záver sme zhodnot i l i výsledky tejto práce a spomenuli taktiež rozšírenia, 
ktoré by mohl i taktiež vylepšiť analýzu vykonávanú nástrojom Di f fKemp. Jedným z týchto 
rozšírení by mohla byť napríklad implementácia kontroly aliasovania ukazateľov. 
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C h a p t e r 1 

Introduct ion 

In recent years where C I / C D (continuous integration and continuous delivery) techniques 
make it easier and faster to deploy more often, we find a need to analyze programs in such 
a pace as they are deployed. Unfortunately, analyzing programs is very complicated and 
t ime-consuming job. The usual solution, which is widely used across a l l the bigger projects, 
is running large set of test cases to find out any bugs. B u t this solution doesn't cover a l l of 
the paths the program can get into. The process of running test cases on running program 
is called dynamic analysis. Oppose to this methodology is static analysis. Th is way we can 
analyze a l l of the paths of a program. The task is sadly very complex and usually we can't 
analyze this way whole source code of appl icat ion. For this purpose we use sl icing methods 
where we use criterion of sl icing. Cr i te r ion tells us which part of the appl icat ion property 
we want to analyze. Based on this criterion we can afterwards analyze a l l of possible paths 
this criterion influenced in appl icat ion. One of the tools out there, that are doing this k ind 
of analysis is Di f fKemp. D i f fKemp is able to compare semantics of two version of L inux 
kernel by using these methods. 

Hence, the goal of this thesis is to propose automatic forward sheer which can slice off 
a l l unnecessary statements from L inux kernel sources based on some parameters it contains. 
The parameter we choose is called criterion, based on which, we decide, what statements 
can be deleted. Product of sl icing is called slice and it contains a l l of statements (instruc­
tions) which are dependant on certain program variable. The variable usual ly represents 
parameter of L inux kernel module. Th is way we can prove semantics of both kernel ver­
sions of certain module, is same. The Di f fKemp tool, which automatic forward sheer is 
intended for, already contains some solution for forward sl icing based on provided param­
eters. After learning how the current solution works and analyzing its results, we decided 
for retaining current solution because it was producing quality results in most of the cases. 
After analysing the current solution we noticed some deficiencies. Because we decided to 
retain current solution, we have added support for these deficiencies in form of extensions. 
These extensions are inc luding support for sl icing against fields of structured data types 
which might represent run-t ime parameters. Next extension is sl icing w i th respect to con­
crete value of global variable. Last but not least extension provides support for analyzing 
the kernel module parameters, because current solution only provides support for run-time 
parameters. 

The rest of thesis is organised as follows. In Chapter 2, is described Di f fKemp, a static 
analysis tool which we use for analyz ing L inux kernel modules (their functions) and compare 
these modules as two different versions. The goal of this process is to prove that semantics 
of certain parameter of module stays the same between versions. In its subsection we closely 

3 



introduce two phases in which Di f fKemp performs its analysis. We also introduce L L V M 
intermediate representation which is very often referenced when describing how the various 
constructs work in Di f fKemp. In following Chapter 3, we describe various sl icing techniques 
and how they are used i n practice, also how Di f fKemp uti l ize these, in its own process of 
analysis and then we look more in depth for two sl icing techniques which are forward sl icing 
and backward slicing. Next chapter 4, presents brief description of the current solution for 
forward sl icing in Di f fKemp, following introduct ion of new design of solution, which removes 
al l shortcomings of old ad-hoc solution. Then in the chapter w i th Exper iments 6 we show 
our improvements of current solution really helped improve the results of whole analysis. 
F inal ly , conclusion and future work in Chapter 7, which describes the results of this thesis 
and some other extensions which can be made to improve current sl icing solution even 
more. 
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C h a p t e r 2 

The Di f fKemp Static Analys is Tool 

Dif fKemp is a static analysis tool that is able to automatical ly compare semantics of two 
versions of the L inux kernel [10]. Generally, it is not possible to compare the whole kernel 
at once and hence Di f fKemp is designed to compare semantics of ind iv idua l kernel functions 
or parameters. Parameters are usually represented by global variables i n the L inux kernel 
modules. W h e n comparing semantics of parameters, D i f fKemp compares semantics of a l l 
functions that use the global variable corresponding to the parameter. Therefore, i n the 
rest of this work, we assume that two functions are compared for semantic equality. 

The pract ical use of D i f fKemp is to part ia l ly automate checking of backwards compat­
ib i l i ty and of stabi l i ty of parts of the kernel. A kernel user may use some kernel functions 
and he may expect that a function does not change its behavior between versions. This is 
especially the case for the Kerne l App l i ca t i on B inary Interface ( K A B I ) , which is a list of 
functions that are guaranteed to be stable across minor releases of the Red Hat Enterprise 
L inux . For kernel parameters, the s i tuat ion is s im i l a r—i f a user sets a kernel parameter 
to some value, he expects that the setting w i l l have the same semantics i n future versions 
and that he can preserve it dur ing an upgrade. Checking whether the behaviour changed is 
not possible to be done manually, especially in such a large project, potential ly containing 
mill ions of lines of code, as the L inux kernel is. 

In order to compare a l l possible behaviours, D i f fKemp uses various ways of static anal­
ysis to check semantic equivalence of two different versions of functions. This analysis is 
done on the sources of the L inux kernel. Di f fKemp, likewise other static analysis tools, uses 
a s tructura l low-level representation of programs for the analysis. In part icular, it uses the 
intermediate representation of the C l a n g / L L V M compiler[4], referred to as L L V M IR[5]. 

In Di f fKemp, the semantic comparison is done i n two main phases as shown in figure 
2.1: 

1. G e n e r a t e - creates a so-called snapshot of L inux kernel containing sources of a l l 
functions to compare, compiled into L L V M IR. This phase uses as the input the 
kernel sources and a list of K A B I functions and kernel parameters to be compared. 

2. C o m p a r e - compares semantics of list of functions represented as two snapshots 
created in the generate phase. 

In the following sections, we describe the ind iv idua l phases in a more detailed way. 
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Kernel params 
KABI symbols 

Kernel source 

LLVM 
snapshot 

LLVM 
snapshot 

E Q U A L 

N O T 
E Q U A L X 

+ addit ional info 

Figure 2.1: Architecture of Di f fKemp - simplified[3] 

2.1 Generate Phase 

The phase of generating snapshot consist of two sub-processes. F i rs t , as shown in the figure 
2.2, this phase take as and input the L inux kernel source w i th list a of K A B I functions 
or kernel parameters which are to be analyzed. Subsequently, Diffkemp uses the ut i l i ty 
cscope, and searches for definitions of the given functions (or of the functions using the 
given parameters) and creates mappings of these to the source files, where it finds these 
definitions. Afterwards, the found source files are compiled into L L V M IR. F inal ly , the 
L L V M snapshot is produced and it contains the original and the compiled sources of kernel, 
the file functions. yaml w i th mappings of functions to L L V M IR files and the files of source 
finding ut i l i ty cscope, al lowing quick searching of function definitions. 

Kernel params 
K A B I symbols 

Kernel source 

Generate 

Source C source Compiler LLVM IR L L V M 
finder 

Compiler snapshot 

Figure 2.2: Generate phase - architecture[3] 

2.2 The Compare Phase 

The phase compares semantics of a l l functions from two snapshots created in the generate 
phase. This phase consist of three sub-processes as shown in Figure 2.3. F i r s t , the compared 
functions are simplif ied using various techniques. The goal of these simplifications is to 
remove parts of the functions not relevant for comparison of semantics. For instance, when 
comparing functions using a global variable ( representing a kernel parameter), it is not 
necessary to compare the whole function. O n the contrary, it suffices to compare those 
parts of functions that are influenced by the variable. D i f fKemp uses a technique called 
slicing i n order to remove parts of functions not influenced by a variable. Since this phase 
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is the core of this work, it is described in detai l in Chapter 3. After the simpli f ication 
the following phase is comparing of semantics of two simplified/sliced functions which ends 
either i n semantic equivalence or, i f the functions are not equal, an addit ional phase is 
run. In this last phase, when it was shown that the compared functions are not the same, 
Di f fKemp tries to localise the difference between the two and displays the lines i n the C 
code, where the difference occurs. 

L L V M 
snapshot 

C o m p a r e 

C o d e 
s l i c i ng a n d 
s i m p l i f y i n g 

L L V M 

IR 
S e m a n t i c dif f 

Di f ference 
l o c a l i s a t i o n 

E Q U A L 

X N O T 
E Q U A L 

+ addi t ional info 

Figure 2.3: Compare phase - architecture[3] 

2 .2 .1 S i m p L L 

This ut i l i ty is the core of the compare phase. A s its input it uses the L L V M IR sources 
of a pair of compared functions. O n these sources, it runs various transformation passes, 
that are responsible for code simpli fying. A n instance of SimpLL is run for every functions 
that is compared. It simplifies and compares the given functions. Usually, the functions 
are simplif ied based on criterion, which might influence certain parts of a functions and 
therefore comparison of the given functions is easier. In some cases this criterion might 
be parameter of the L inux Kerne l modules. Th is part of functionality of code sl icing is 
implemented inside L L V M pass VarDependencySlicer, which we a im to improve i n this 
work. 

2.3 Curren t Au tomat i c Forward Sl ic ing So lut ion 

The Di f fKemp currently implements solution for automatic forward slicing. B y analyzing 
how the current solution work we figure it out that retain current solution is better way to 
go and we decided to just extend its functionality by few improvements which can improve 
analysis i n great manner. Th is improvements are: 

1. Sl ic ing w i th respect to certain field of structured type which represents run-time 
parameter. 

2. Sl ic ing w i th respect to concrete value of global variable. 

3. Add ing support for analyz ing module parameters. 

F i rs t improvement should improve currently performed analysis of Di f fKemp a lot, be­
cause there are lot of run-t ime parameters which are represented as field of global variable 
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of structured type. Th is is because i f there's a false positive that Di f fKemp marks the 
result as not equal but non-equality was in part of the code that wasn't affected by given 
parameter for slicing, it means that after implementing this solution it should be evaluated 
correctly. O n the other way i f there wouldn't be any improvements by sl icing a lgor i thm this 
doesn't necessarily means that it d idn ' t improved anything but that it might be in a l l of 
the cases difference even in the dependent parts of the code and the equality was previously 
evaluated correctly even tough it has contained the code which shouldn't be analyzed. 

Second improvement improves the cases where current solution produces non-equal re­
sults for a l l possible values of global variable. In practice, users which would probably 
wanted to run the analysis wanted to test their current setup w i th concrete values that 
they have set. Sl ic ing of the code based on the concrete values could potential ly improve 
results because once again, the difference might be located in independent part of the code 
based on the concrete value of variable. 

Last improvement is improvement in wider scope, because current sl icing parameters 
set i n current sl icing a lgor i thm are quite general, but Di f fKemp provides support only for 
run-t ime parameters or the functions of the Kerne l App l i ca t i on B inary Interface ( K A B I ) . 
So we added support also for analyzing module parameters because they are represented 
the same as run-t ime parameters are. 

For implementing these extension and also for the current forward sl icing a lgor i thm is 
enormously used the L L V M framework. Th is framework provide easy manipulat ion w i th 
code which we analyze. L L V M is not only used for sl icing solution but is largely used 
in other parts of Di f fKemp. Because this thesis highly reference L L V M key concepts, we 
introduce these concepts i n next subsection 2.4 

2.4 L L V M intermediate representation 

Huge part of the current solution is based on a L L V M framework. The L L V M framework 
is a collection of modular and reusable compiler and tool-chain technologies [6]. The most 
important sub-project of L L V M framework for this thesis is L L V M Core. The L L V M 
Core libraries provide a modern source- and target-independent optimizer, along w i th code 
generation support. These libraries are bui lt around a well specified code representation 
known as the L L V M intermediate representation ( „LLVM IR" ) . L L V M IR is a Stat ic Single 
Assignment (SSA) based representation that provides type safety, low-level operations, 
flexibility, and the capabi l i ty of representing ' a l l ' high-level languages cleanly. 

The L L V M code representation is designed to be used i n three different forms: as an 
in-memory compiler IR, as an on-disk bitcode representation, and as a human readable 
assembly language representation[5]. The three different forms of L L V M are a l l equivalent. 
For purpose of this thesis there are two concepts from L L V M which must be explained 
to fully understand presented solution. These are global variable representation and G E P 
instruct ion. In the next subsection 2.4.1 we' l l introduce how global variable are defined in 
L L V M IR and after that we' l l describe how G E P instruct ion works in section 2.4.2. 

2.4.1 Global variables representation in L L V M I R 

Globa l variables define regions of memory allocated at compi lat ion t ime instead of run-time. 
To define global variable we must first assign itself an identifier. L L V M identifiers come in 
two basic types: global and local. G loba l identifiers (functions, global variables) begin w i th 
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the '@' character[5]. L o ca l identifiers (register names, types) begin w i th the '%' character. 
So definition of global variable might look like something like this: 

@global_variable = ... 

The three dots represent a l l creation parameters for defining global variable. It might 
contain linkage type, alignment, if it 's constant or not, type and default value. For purpose 
of this thesis we just need to remember that global variable are defined w i th type and might 
have default value i.g. init ial izer. B y C standard, global variable is always init ia l ized w i th 
zero, unless it is external. A lso worth to mention is that identifier of global variable doesn't 
represent the global variable itself but it only represent pointer to place i n memory where 
given global variable starts. For working w i th the global variable we have to load a global 
variable w i th load instruct ion. Th is approach has its restrictions when dealing w i th the 
global variable of structured data types and we' l l describe it more closely in the following 
chapter 4. 

2.4.2 G E P instructions in L L V M I R 

Component part of the proposed solutions in this thesis are extensions which makes use of 
G E P instruct ion. G E P is shortcut for Get Element Pointer which is pretty self-explanatory 
of what this instructions does. Anyway there are st i l l some thing which are often misun­
derstood about this instruct ion. W h a t G E P instruct ion really does is that it calculates 
resulting pointer based on the arguments given to the instruct ion, but it n e v e r r e a d s a 
m e m o r y . The first argument is always a type used as the basis for the calculations. The 
second argument is always a pointer or a vector of pointers, and is the base address to 
start from. The remaining arguments are indices that indicate which of the elements of the 
aggregate object are indexed[5]. The interpretation of each index is dependent on the type 
being indexed into. 

F i r s t i n d e x o f G E P i n s t r u c t i o n 

The first type indexed must be a pointer value, however the following types can be struc­
tured types as arrays, vectors or structs. A lso the first index must always index into the 
second argument pointer type. This is often misunderstood because people tend to relate it 
to known concepts from other programming paradigms, most notably C array indexing and 
field selection. Confusion w i th first index i n G E P instruct ion usual ly arises when people 
th ink of G E P instruct ion like it was C indexing operator[7]. Let 's look at this example: 

AType *Foo; 

X = &Foo->F; 

There might be temptat ion to say there would be only one index and thus selection of field 
F. B u t Foo is pointer and therefore must be indexed explicit ly. So we would provide G E P 
instruct ion two indices. The first operand indexes through the pointer and the second one 
select field F of the structure. Th is would analogically be implemented i n C like this: 

X = &Foo[0].F; 
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T y p e o f t h e i n d e x 

The type of each index argument depends on the type it is indexing into. W h e n indexing 
into a (optionally packed) structure, only 132 integer constants are allowed (when using a 
vector of indices they must a l l be the same 132 integer constant). W h e n indexing into an 
array, pointer or vector, integers of any w id th are allowed, and they are not required to be 
constant. These integers are treated as signed values where relevant. 

In the following listings is shown how the C code would be interpreted by C lang compiler: 

struct RT { 

char A; 

int B[10] [20] ; 

char C; 

}; 

struct ST { 

int X; 

double Y; 

struct RT Z; 

}; 

int *foo(struct ST *s) { 

return &s [1] .Z.B[5] [13] ; 

} 

The L L V M code generated by C lang would be then: 

"/.struct.RT = type { i 8 , [10 x [20 x i 3 2 ] ] , i8 } 

%struct. ST = type { i32, double, °/
0
struct. RT } 

define i32* @foo (%struct .ST* °/
0
s) nounwind uwtable readnone optsize ssp { 

entry: 

%arrayidx = \ 

getelementptr inbounds °/
0
struct .ST, °/

0
struct.ST* % s , \ 

i64 1, i32 2, i32 1, i64 5, i64 13 

ret i32* °/
0
arrayidx 

} 

Al though the syntax of L L V M IR is l i tt le bit different from C syntax and as we men­
tioned earlier that is more like assembly we can easily associated certain parts of the code 
in L L V M IR w i th C code. A t the beginning we define our structures. A s shown above, 
defining structures is just declaring that it w i l l contain fields of certain types. Next we 
define function f oo w i th argument of the struct type we declared earlier. 

F ina l l y we get to the G E P instruct ion. Let 's look at it more closely. In this chapter 
we mentioned that the first argument is type used as basis for calculat ion and the second 
one is actual base address from which the calculat ion is made. Remaining arguments as we 
mentioned earlier are the indices. Every index consist of pair of type and value. A s we can 
see in C code fragment first index is 1. This is index into the pointer so we don't have to use 
explicit 0 as shown in previous chapter. Th is index is i64 type, which impl i c i t l y indicates 
that the machine where the code w i l l be run is 64 bit architecture, because pointers are just 
memory addresses and knowing the address is 64 bit long we derive previous statement. 
Next argument is index 2 w i th i32 type. A s we already know indices indexing fields of 
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structure must be i32 types and the field w i th index 2 is the structure of struct RT type. 
The next index 1 indexes into field of array of type struct RT. Aga in we index into structure 
so the index type is i32. F ina l l y we index into two dimensional array of integers which is 
the same as it is i n the C code fragment. 

W i t h the base knowledge of the L L V M we can now introduce proposed solution which 
are presented further in this thesis. 
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C h a p t e r 3 

Program slicing 

Program slicing is a viable technique for simpli fying programs by focusing on selected 
aspects of semantics. It was firstly introduced by M a r k Weiserf l l ] and it was motivated 
by the need to help students understand and debug their programs. Nowadays, it is used 
to restrict the focus of a task to specific sub-components of a program. Th i s is done by 
removing every statement and predicate in the program, which is not part of the interest. 
Th is process then produces a set of program statements and predicates which is called the 
slice. 

From the formal point of view, the produced slice is based on the concept of slicing 
criterion. Sl ic ing criterion is a pair <p, V> [9], where p is a program point and V is a 
subset of program variables. A program slice on the sl icing criterion <p, V > is then defined 
as subset of program statements that preserves the behavior of the original program at the 
program point p w i th respect to the program variables in V . Since this sl icing method, 
defined by M a r k Weiser, preserves behaviour on every input of original program, it was 
named a static slicing to differentiate it from other sl icing methods that preserve behaviour 
of the orig inal program for certain subset of inputs only. 

In contrast of static slicing [9], there are many others sl icing techniques. The most 
known is probably the dynamic slicing method, which uses dynamic analysis to identify a l l 
the statements that affect the variables of interest, on the part icular anomalous execution. 
Th is approach is used, besides debugging, in software testing, software maintenance and 
program comprehension. Other methodologies might be quasi static slicing which is a 
hybr id sl icing method ranging between static and dynamic sl icing. Other than that is a 
method derived from dynamic sl icing called simultaneous dynamic slicing, which is s imilar 
to dynamic slicing, but slices the program against set of test cases instead of a single test 
case. These methods are not part of this work, but they are l isted just for completeness of 
known slicing methods. This work focuses on implementing an automatic forward sheer. 
Forward sl icing is a sub-methodology of static slicing, described in more detai l i n Section 
3.2. Before describing the main sl icing techniques, we introduce the Program Dependence 
Graph , which is the key structure of a l l sl icing methods. 

P r o g r a m D e p e n d e n c e G r a p h ( P D G ) [1] is a program representation where nodes 
represent program statements and predicates, while edges carry information about control 
and data dependencies between the nodes. 

P D G can be understood as combinat ion of Cont ro l F l ow G r a p h ( C F G ) and D a t a F low 
Graph ( D F G ) . 
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In the following, we describe the two main methods of static slicing, namely the back­
ward and the forward slicing. These are important for understanding the solution that this 
paper work presents. 

3.1 Backward Sl ic ing 

The most known way of program sl icing is the backward static sl icing. Every developer has 
probably met w i th this way of sl icing even if it was not automatic nor it was producing any 
slice as output. 

The way most of the developers probably met w i th this k ind of sl icing is because of a 
static analysis of their wr i t ten programs. W h e n stat ical ly analyzing a program we usually 
meet w i th a need of knowing why is the value of a certain variable i n a part icular point 
of program exactly as it is. Backtracking the analyzed code unt i l a l l statements, which 
affected value of variable, are found, we are able to tel l that these statements are product 
of backward slicing. 

This is how a simple definition of backward sl icing might be: backward slicing is a way 
of f inding a l l program statements that might have affected the value of certain variable in 
a part icular point of program [2]. However, the above mentioned definition is quite naive 
and therefore we define it more formally inc luding a l l dependencies. To this, we use the 
Program Dependence Graph , which contains of a l l program dependencies. Us ing P D G , we 
can find an algorithmic way of f inding dependencies on certain point of program. The P D G 
based algor i thm considers sl icing cr iter ia of type <p, V > , where p is a program point and 
V is the set of variables referenced at p. A slice w i th respect to such a sl icing criterion 
consists of the set of nodes that directly or indirect ly affect the computat ion of the variables 
in V at node p. Th is formal definition of backward sl icing requires the backward traversal 
of P D G . As oppose there is a other way of sl icing, which uses a forward traversal of P D G , 
called the forward slicing. 

3.2 Forward Sl ic ing 

Formally, a forward slice is defined as the set of program statements and predicates affected 
by the computat ion of the value of a variable v at a program point p, defined in the slicing 
criterion. It could represent a program comprehension of certain parts of the program. This 
behaviour is useful when we change a certain part of program and we want to know which 
parts of the program has been influenced, so we can confirm changing the program point 
w i l l not cause any unsolicited behaviour. Simi lar principles are also used in Di f fKemp. 
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C h a p t e r 4 

Proposed Extensions of Sl ic ing in 
Di f fKemp 

The pr imary goal of this work to extend the existing approach to sl icing present i n Di f fKemp 
so that it is capable to handle more cases of comparison of L inux kernel run-t ime and module 
parameters. Therefore, we first investigate the existing solution and identify its drawbacks. 
The ma in principle of the current sl icing a lgor i thm is presented i n Section 4.1. 

The a lgor i thm is capable to slice a program against a global variable, which is a general 
way kernel represents parameters. It is based on tracking how the parameters influences 
as control flow of the program, as well as as data flow of the variables. Th i s solution is 
satisfactory for most of the cases we compare. Unfortunately, some run-t ime parameters 
are not represented by an entire variable but by a single structure field of a variable only. 
For such parameters, sl icing against the entire variable may be insufficient to determine 
semantic equality, therefore adding support for sl icing again a part icular field of a variable 
could potential ly increase quality of the analysis done for the run-t ime parameters. A 
proposal for such a solution is presented i n Section 4.2. 

Sometimes are not compared functions equal when we slice and compare w i th respect 
to certain variable. In some cases, it can happen that when the value is set for a variable it 
might change the result because it w i l l filter non-dependent code out, based on the provided 
value. Process how this is done is fully explained i n the next section 4.3. 

Moreover, the Di f fKemp doesn't currently support analysis of kernel module parame­
ters, but the too l for comparison and simpli fying named S i m p L L does. Therefore to these 
proposed solutions we add an interface for Di f fKemp to work w i th kernel module parame­
ters. Th is interface w i l l allow running the Di f fKemp tool for analyzing semantics of kernel 
module parameters by passing the module kernel paramters to the interface of S i m p L L . 
To implement this, proposed solution includes similar structure as is already known from 
K A B I functions and their function.yaml file which is generated in snapshot and similar 
approach is chosen for modules and their parameters. 

4.1 Curren t s l ic ing so lut ion in D i f fKemp 

Current sl icing a lgor i thm takes a function / as input and global variable g as inputs. The 
output is the function /' that is the min ima l slice of f containing a l l instructions that 
are dependent on the value of g i n some way. Current solution works i n the three main 
phases: (1) comput ing control and data-dependent instructions that are to be preserved, 
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(2) restoring the data-flow among the dependent instructions, and (3) restoring the control 
flow among the dependent instructions and those needed to preserve the data-flow so that 
the produced C F G is val id. These phases are most of the t ime evaluated correctly but there 
are some cases where evaluations might be wrong. Most of the incorrect evaluations which 
instructions to slice off happen i n the first phase. Because of that, extensions proposed 
in this chapter focus on improving the evaluations i n the first phase and how the first 
phase of the a lgor i thm works. To understand how proposed solutions works, we need to 
understand how the first phase of current sl icing solution works. Th is is described i n the 
next Subsection 4.1.1. 

4.1.1 Computing control and data-dependent instructions in current slic­
ing algorithm 

Current ly integrated sl icing solution for calculat ing dependence of the instruct ion has got a 
function and a global variable as sl icing criterion. A t the start of the a lgor i thm it init ial ize 
an empty set of the dependent instructions. Then it iterates through the instructions of the 
function. O n an every instruct ion it checks whether it contains the given global variable as 
an operand or i f there is the operand which represents an instruct ion which is already in set 
of dependent instructions. Th is covers how data dependence is calculated, but there must 
be also control flow dependence computed to include a l l dependent instructions. Contro l 
flow dependence happens when we mark branching instruct ion as dependent. Branching 
instruct ion takes three arguments, result of condit ion based on which jump is made to 
first label given as second argument if the condit ion is true or second label given by th i rd 
argument, if condit ion evaluates to false. Afterwards the basic blocks affected by this 
branching instruct ion are added to the set of dependent instructions. 

However this solution is simple and thus it i n most of the cases produces correct results, 
there are some shortcomings i n a way of dealing w i th structured data types which we' l l 
describe in the next Section 4.2. 

4.2 A d d i n g support to s l ic ing against concrete fields of struc­
tured data types 

As described in previous Section it is common case that run-t ime parameters are represented 
as field of structured data types (e.g. arrays, vectors and structures). D i f fKemp currently 
doesn't support sl icing against the fields of structured data types. D i f fKemp currently slices 
w i th respect to a l l fields of structured type. In previous chapter it is described that when 
looking for dependence of an instruct ion we look i f one of the operands is global variable. 
Then i n Chapter 2 i n Section 2.4.2 is impl ic i t l y said that access to the structured data 
types is done by G E P instruct ion which calculates final pointer which represents wanted 
field. A s we said earlier we get global variable which is represent a l l the fields of structured 
data type. Wh i l e i terat ing through the instructions we find instruct ion that uses the given 
global variable but it 's not using the certain field which represent the run-t ime parameter. 
Even tough, the current solution marks the instruct ion as dependent because it does not 
take into account the indices that G E P instruct ion uses. These indices are used to calculate 
the final pointer that represents wanted field. O n the other way it compares only the base 
pointer of G E P instruct ion which are the same but the G E P instruct ion does not point to 
the same field. Th is evaluation is wrong and therefore we propose solution for removing 
this insufficiency. 
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There's also question when we compare only indices for G E P instruct ion, i f there are 
going to be other instruct ion which w i l l suffer of this wrong evaluation mentioned above. 
As we mentioned in the chapter about G E P instruct ion, G E P instruct ion does not read 
memory, it only calculate new pointer from base address. In case of pr imit ive data types 
there's no real point to calculate a new pointer because this would represent completely 
different object i n the memory and unless there's some weird pointer ar i thmetic going on, 
we don't want that. So to work w i th the global variable of the pr imit ive type we would use 
load instruct ion which takes as argument the identifier of global variable (named memory 
address where global variable is stored). In case of structured type, the base pointer is 
can not be load, because we can load only first class objects which are basically pr imit ive 
types. Th is is why we use G E P instruct ion to access field of structured type. After G E P 
instruct ion returns the pointer which points to memory address of certain field we can 
load this pointer then. Because of this we cannot include check for load instruct ion for 
structured types because this can not be done and G E P instruct ion w i th pr imit ive types 
because there is no meaning for that. 

4.2.1 G E P Instruction Dependence 

Run-t ime parameters are defined i n certain modules of L inux kernel based on which group 
of the run-t ime parameters they fall i n . In these modules there's an array of structures of 
run-t ime parameters definitions. Every definition contains the name of run-t ime parameter, 
data field, which is the pointer to data which represents the global variable representing run­
t ime parameter, and some other fields which are not needed to be explained for purpose of 
this thesis. For our analysis is the most important the data field which contains the pointer 
to a global variable. In L L V M intermediate representation is this assignment expressed 
as G E P instruct ion i n case of structured types, which contains the global variable (base 
pointer) and the indices that represent concrete field. O r they contain only the global 
variable identifier which represent the global variable of pr imit ive data type. 

This way we can gain indices for the G E P instruct ion and therefore we can extend our 
slicing criterion or an input to current sl icing a lgor i thm by these indices. Afterwards when 
iterating throughout the instructions of the given function we can handle G E P instruct ion 
dependence just by comparing their indices if they contain also the global variable as the 
second operand which represents base pointer from which computat ion of new pointer is 
made. 

4.2.2 Cal l Instruction Dependence 

Most of the accesses to a field of structured type w i l l be represented as G E P instructions. 
Thanks to the S S A form of L L V M IR we can check a l l the uses of the G E P instruct ion to 
find a l l dependent instructions. B u t there's also one more case where this k ind of behaviour 
isn't sufficient. Now we check whether G E P instructions contains also the right indices. Bu t 
what i f there's ca l l instruct ion which calls the function which uses as argument given global 
variable without indices. Then inside the body of function it uses the G E P instruct ion 
to compute new pointer representing the field of structured data type. In this case, cal l 
instruct ion is dependent only i f it uses exact access into to structured type as defined run­
t ime parameter. Wh i l e looking inside the function which was called by the cal l instruct ion 
there might occur recursion when there's not usage of exact access into structured type but 
we s t i l l cannot presume it 's not dependant because there's also ca l l w i th the global variable 
which holds the whole structured type, hence i t 's the same case w i th we have started at 
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the beginning. Solut ion of this problem w i l l be standalone function which checks i f the cal l 
instruct ion is dependent. Th is function iterates throughout the instructions of the called 
function and check i f two cases occur. The first case is check whether the instruct ion is 
G E P instruct ion which uses exact access to structured type, i.e. global variable pointer and 
indices match. If they are, function ends w i th statement that ca l l instruct ion is dependent. 
The second case which is more complicated, check the cal l instructions. Th is is the place 
where the above mentioned recursion comes in use. Th is function just recursively calls itself 
to just check i f the inner functions contains G E P instruct ion. If the whole recursion check 
doesn't return anything and no dependent instructions are found, given cal l instruct ion 
isn't dependent. 

4.2.3 Other Instructions Dependence 

Other instructions should compute the dependence the same way as they are already com­
put ing because thanks to S S A form most of the instructions w i l l be using the previous 
instruct ion which loaded the pointer from the G E P instruct ion calculations and as we 
described earlier computat ion whether instruct ion is dependent basically depends on two 
criterion, whether it contains the global variable or other dependent instruct ion as its 
operand. Bu t there's some point worth to mention about the L O A D instruct ion. A s we 
already mentioned in previous section there's no point for the pr imit ive type global variable 
to make G E P on itself, there's also no point for structured type global variable make L O A D 
on themselves because even L L V M prohibits it , because L O A D instruct ion can be used only 
on f i rs t c lass , which are s imply said the pr imit ive data types. Therefore we don't need to 
make any addi t ional checks when computing dependence w i th or without G E P instruct ion 
indices because there w i l l be no other occurrences of L O A D instruct ion or G E P instruct ion 
when is one of the cases mentioned above. 

4.3 S l ic ing w.r.t . a Concrete Value of a Parameter 

Presented solution here, isn't fully capable of sl icing off a l l the statements that aren't 
dependant on certain value of parameter (i.g. global variable). Instead it 's series of trans­
formations which leads to removing a l l the unneeded statements. F i rs t part of this solution, 
is getting value of parameter. Th is can be done by using default value which is set when 
variable is defined or we can define new slicing criterion w i th respect to value of variable. 
Let 's say the sl icing criterion <p, V, i>, where p, V we already know and i represents the 
value of variable. Because we slice against certain value of variable and not for a l l possible 
values this methodology is similar to dynamic sl icing while preserving static sl icing method­
ology. This k ind of approach is similar quasi static slicing except there is no execution of 
program. Nonetheless, we already know the value of variable by simple definition above, 
so we don't have to use any new techniques for slicing. Next step of our series of transfor­
mat ion is to replace a l l the occurrences of variable by its constant value. This way a l l of 
the unreachable statements w i l l be clearly recognizable, because branching of program wi l l 
be conditioned by simple c o n s t a n t condit ion. After that, we cal l Dead Code Elimination 
pass[8], which is customized to detect these conditions and remove whole unreachable basic 
blocks and simplify C F G of the program. In the following listings is shown, how to whole 
process of sl icing w i th respect to value of variable, consisting of four basic-blocks, B B 1 and 
B B 4 , which aren't dependant on the variable and B B 2 and B B 3 , which are. 
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global_variable = 0; 

BB1 

if(global_variable!= 0) 

BB2 

else 

BB3 

BB4 

L is t ing 4.1: Or ig ina l part of 
the program 

global_variable = 0; 

if(global_variable!=0) 

BB2 

else 

BB3 

L is t ing 4.2: After sl icing 
w.r.t. variable 

global_variable = 0; 

i f ( 0 != 0 ) 

BB2 

else 

BB3 

L is t ing 4.3: Replacing a l l 
occurrences 

In the l ist ing 4.1 is shown in i t ia l set of statements, which are going to be sliced. Next 
in the l ist ing 4.2 is shown the removal of B B 1 and B B 4 as we mentioned they are not 
dependant on variable. After that, replacing value of variable i n a l l its occurrences takes 
place in l ist ing 4.3 and lastly the dead code elimination removes a l l unreachable basic-blocks. 
Therefore the B B 3 has left. 

4.4 A d d i n g support for s l ic ing against kernel module param­
eters 

Component part of the previous solution is also the support for slicing against module 
parameters (and its values i f needed). A s mentioned above S i m p L L tool already contains 
the support for sl icing against run-t ime parameters because of run-t ime parameters same 
as module parameters are represented as the global variables i n the source code. Th is way 
we only need to implement support only i n the python interface of Di f fKemp. Th is comes 
under two parts: generate phase and compare phase. 

4.4.1 Generate phase 

The Generate phase proposes solution similar for two other use cases of the Di f fKemp. 
Analysis of K A B I functions i n Diffkemp and run-t ime parameters analysis takes as input 
for a generate phase the file containing a l l information needed for generating the snapshot. 
We chose this way because we wanted to mainta in the way of how Di f fKemp works. Now, 
when we know that we w i l l use file containing information about how snapshot w i l l be 
created we must decide which format to use to present the information for slicing. There 
are lot's of serializations format as json, xml, yaml which could be used as the list of the 
parameters w i th its values. However there are some requirement that must be met before 
choosing one. 

F irs t requirement, most important was to be really easy processed by machine. Serial­
izat ion formats like json, yaml are supposed be processed easily, otherwise xml is bit harder 
when it comes to defining right structure for X M L document and making X P a t h queries, 
which are used for access to certain part of the X M L document. Th is process is compli­
cated and also is quite l imited for access to elements which must fulfil certain conditions. 
Therefore we chose not to use xml format. 

Second requirement which was needed to be satisfied is the file must be easily wr i t ten by 
hand, this means that for testing and other purposes file can be wr i t ten by user in least time 
as possible. Aga in , this is where X M L would be removed from considered options because 
of its opening and closing tags, attributes and other syntactic trash which is hard to be 
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writ ten by hand. Bu t json fal l short too in this s i tuat ion where this k ind of requirement 
is needed. Even though json is much easier to be wri t ten by hand than the xml format, it 
has s t i l l some cons due to which we decided not to use this opt ion either. Therefore yaml 
is what 's left, but unfortunately we decided not to use this opt ion too. This is because of 
the last requirement. 

We wanted that the file could be automatical ly generated on the host machined for easier 
analysis of host system configuration. There was no tool which could directly generate yaml 
file w i th the configuration of the module parameters. We decided to use format of output of 
sysctl -a command which generates a l l sysctl paramaters i n format of key = value pairs. 
Th is format was used along w i th a l l information needed for analysis of module parameters 
and i n the results it w i l l be: 

<module directory>/<module name>:<parameter> [ = <value> ] 

Module directory represents directory of the kernel where the file w i th the module name 
w i l l be found. After that i n the bui l t module we find given parameter. Value i n this format 
is opt ional and it only defines whether solution mentioned i n previous section w i l l be used. 
Then we generate snapshot.yaml file which contains a l l of this information for snapshot to 
be loaded and snapshot folder w i th its bui l t modules that contains module parameters. 

4.4.2 Compare phase 

After the snapshot is produced we can proceed to next phase of comparison. Th is phase 
was more or less prepared for analysis against module parameters because the snapshot 
file already contains name of the global variable, which is supported i n S i m p L L tool , in 
contrary to sysctl/module parameter name which are not mentioned i n snapshot.yaml file. 
On ly support that was needed to be added was for the value to be read from snapshot and 
then make corresponding ca l l to S i m p L L tool to make sl icing w.r.t value of variable, more 
explained i n the previous Section 4.3. 
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C h a p t e r 5 

Implementation of proposed 
solutions 

Implementation of D i f fKemp consist of two parts: P y thon part which handles running 
al l parts of the analysis made by Di f fKemp, contains loads of module which simplifies 
manipulat ing w i th source code, compi l ing modules into L L V M IR or finding and gathering 
information need for analysis. The other part of D i f fKemp is wr i t ten in C + + . Th is part is 
run in instances from Di f fKemp's Py thon part and is in charge of preprocessing modules and 
simpli fying them. The current implementat ion of D i f fKemp is more specificaly described 
in Section 5.1 

In the following section we describe implementat ion of proposed solutions. In Section 5.2 
we describe how the solution of sl icing w i th respect to concrete field of structured type was 
implemented. After that i n Section 5.3 is described the sl icing against the value of concrete 
value of a parameter and lastly i n Section ?? how the support for module parameters was 
added. 

5.1 Curren t implementat ion of the D i f fKemp 

From the previous chapter about Di f fKemp we already know that Di f fKemp analysis consists 
of two phases: Generate and Compare Phase. These phases are represented as two functions 
in Di f fKemp's part wr i t ten Py thon . In these functions there are various task which are run 
based on specification of the phase. In the next Subsection 5.1.1 we describe how the 
Generate phase is implemented and right after that we take a look at the Compare phase 
in Subsection 5.1.2. 

5.1.1 The Generate phase 

Generate phase/functions takes as input three mandatory arguments and several optional. 
These are kernel directory, from which the snapshot is generated snapshot, snapshot direc­
tory, function list or list of run-t ime parameters which are going to be analyzed and are 
listed line by line. 

After cal l ing the function generate w i th these parameters, it iterates throughout the 
lines of the function list and run various task based on whether function list is list of K A B I 
functions or the list of run-t ime (sysctl) parameters. Then it stores serialized information 
extracted from generate phase into snapshot directory which was defined by second argu-
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ment inside file named s n a p s h o t . y a m l w i th a l l needed modules compiled into L L V M IR. 
In pseudo-code it might looked like this: 

function generate(kernel_dir, snapshot_dir, f u n c t i o n _ l i s t , is_sysctl=False): 

snapshot = Snapshot(kernel_dir, snapshot_dir) 

for l i n e i n f u n c t i o n _ l i s t : 

i f i s _ s y s c t l : 

Do something with sys c t l 

else: 

Do something with function from KABI l i s t 

snapshot.write_snapshot_to_file() 

Various tasks are run based on whether function list represent the the list of K A B I functions 
or run-t ime parameters. In following subsections is described the processes which must be 
handled i n bo th cases. 

L i s t o f K A B I f u n c t i o n s 

W h e n the function list is a list of K A B I functions, generate phase takes the name of the 
K A B I function, it searches throughout source code of the given kernel directory w i th ut i l i ty 
named cscope. For every file w i th found definition of the given symbol it compiles it into 
L L V M IR. Now the information is stored into snapshot object which represents whole 
snapshot for compare phase. In pseudo-code it would look like this: 

srcs = find_sources_with_symbol(symbol) 

for src i n srcs: 

module = build_module_from_source(src) 

i f not module.has_function(symbol): 

continue 

snapshot.add_function(symbol, module) 

This is simple example how generate function works in D i f fKemp for K A B I functions. More 
complicated case is explained i n next section. 

L i s t o f r u n - t i m e p a r a m e t e r s 

In case of run-t ime parameters there is a bit longer flow of things which needs to be done 
for snapshot. F irst ly , we must find module where the run-t ime parameter is defined. A s 
mentioned in previous chapter for every run-t ime parameter group there's file which con­
tains definition of run-t ime parameters. These definitions contains various fields. The 
most important for us there are procname, which represents name of run-t ime parameter, 
data which represents which global variable contains the value of run-t ime parameter and 
proc_handler which is the function which runs every t ime user sets up the parameter. 

Now, when we have got module w i th run-t ime parameters definitions, we can parse the 
function l ist. In the introduct ion of this section we said that function list contains only one 
entry at the line, but in this case of run-t ime parameters there might be a pattern which 
can represent more than one parameter. Pa t te rn is parsed and after that is every name of 
run-t ime parameter which can be represented by the pattern is returned. These returned 
names of parameters are then looped throughout for cycle and for each we perform another 
set of tasks. 
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For each symbol representing run-t ime parameter we first get it 's proc_handler function 
if it has some. If it is, we find the module which contains definition of this function and we 
compile it into L L V M IR. Afterwards we just add collected information into snapshot object. 
Next, we extract the data variable from run-t ime parameters definition. These variables are 
represented by object KernelParam which holds information about data variable name and 
its indices from the G E P instruct ion. Cont inuing the process, we find a l l the sources which 
contains a l l the usages of name of variable representing the run-t ime parameter. Now, we 
compile these sources into the modules. In these modules we find again a l l functions using 
the given variable name. We add a l l of these functions into the snapshot object, but we skip 
now proc_handler function because that 's already contained inside the snapshot object. 
L i t t l e peek how the implementat ion of this might be done can be seen in the l ist ing below: 

sysctl_module = get_sysctl_module(symbol) 

sysctl_params_list = parse_sysctls_pattern(pattern) 

for sysctl_param in sysctl_params_list: 

proc_handler_function_name = get_proc_handler(sysctl_param) 

i f proc_handler_function_name: 

sysctl_module = get_module_for_symbol(sysctl_param) 

snapshot.add_function(sysctl_param, sysctl_module, glob_var=None) 

kernel_param = get_data_variable(sysctl_param) 

i f not kernel_param: 

continue 

for src i n find_src_using_symbol(kernel_param): 

module = build_module_from_source(src) 

for fun in get_functions_using_param(module, kernel_param): 

snapshot.add_function( 

sysctl_param, module, fun, glob_var=kernel_param.name) 

5.1.2 The Compare phase 

The Compare phase is more complicated than the generate phase, but for our solutions 
there's no need fully understand how its implemented. In a simple explanation, the com­
pare phase loads a l l the information from snapshot.yami file. Subsequently it runs S i m p L L 
instance that does the pre-processing and module comparison for each entry inside of snap-
shot.yaml file. Afterwards in the P y t h o n part it evaluates the produced results of S i m p L L 
and then it prints a l l the results and diffs into directory and for each result there's a new 
file containing result and diff if there's difference between two versions. Further proposed 
extensions of improving sl icing a lgor i thm are mostly part of the too l S i m p L L . To under­
stand how certain parts are implemented we' l l describe S i m p L L implementat ion i n next 
subsection. 

S i m p L L 

M a i n function of S i m p L L contains very simple flow how analysis i n this too l is made. F i rs t 
th ing done is parsing command line arguments. L L V M provides very powerful interface 
for dealing w i th command line arguments. Th is interface provides template class c l : :opt, 

where you create an object of this class w i th name of the option which w i l l represent the 
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command line argument. After feeding function c l : :ParseCommandLineOptions w i th ar­
guments of the main function, it stores the value of given arguments from command line 
into c l : :opt object corresponding to that opt ion. After parsing command line options is 
finished, object of Config class is constructed based on the provided options. Construc­
t ion of Config object does two things: converts command line options into corresponding 
L L V M objects (-var opt ion into llvm: : Global Variable class and so on) and stores a l l the 
information needed for further analysis. 

Next, S i m p L L runs the function processAndCompare. This function runs preprocess­
ing of modules and afterwards compares the functions. For purpose of this thesis is the 
most important the preproccess phase which runs various L L V M passes that simplifies and 
removes a l l unnecessary code that can mess up semantic equivalency analysis afterwards. 
One of these passes is VarDependencySlicer which is modified i n extension presented in 
the next Section 5.2 to improve overall analysis. 

5.2 S l ic ing w.r.t certa in field of s t ructured data type repre­
senting run- t ime parameter 

Implementation of this extension can be resolved into three parts which are div ided into 
these part based of Di f fKemp functionality which are self-sufficient so this extension doesn't 
affect other parts of Di f fKemp functionality and also this way it 's more easily tested i f 
everything works as it should be. 

5.2.1 S i m p L L 

The biggest part of the implementation is implemented inside part of the Di f fKemp called 
S i m p L L . W h e n running analysis w i th run-t ime parameters S i m p L L takes as input S i m p L L 
these arguemnts: path to the first file which represents module in older version of kernel, 
path to the second file which represent the same module in newer version of kernel, an 
option -fun w i th the name of the function containing run-t ime parameter, an option -var 
wi th name of the global variable which represent the run-t ime parameter. Par t of the 
new extensions of S i m p L L is also new option -index which represents the index into G E P 
instruct ion. This opt ion is implemented w i t h the class of c l : : l i s t where a c l is the 
namespace from L L V M l ibrary which handles command line arguments. Us ing this class 
for an implementat ion of command line opt ion for S i m p L L means, that this opt ion can be 
stacked one after another and thus provide more indices for analysis because as we already 
know G E P instruct ion can contain more than one index. Instance of class c l : : l i s t is 
vector like object. After we extract a l l the indices from command line, we propagate them 
through the flow of S i m p L L unt i l reached VarDependencySlicer pass. Modif ications of the 
VarDependencySlicer which handles G E P instruct ion indices are further described i n more 
detai l i n the next subsection. 

5.2.2 VarDependencySlicer pass and G E P instruction dependence 

VarDependencySlicer pass represent the current sl icing solution presented i n previous chap­
ter. In previous Chapter 4, we also proposed solution which extends the current a lgor i thm 
in VarDependencySlicer. This solution was presented in two main branches of implementa­
t ion: the G E P instruct ion dependence and C a l l instruct ion dependence. 
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G E P dependence computat ion consist of comparing the given indices w i th indices of 
G E P instruct ion which has also operand of Global Variable class which was given as value 
of opt ion -var and converted into the instance of this class. 

Unfortunately given indices can be in various forms. A s we mentioned i n previous 
chapter we get the indices from the modules where run-t ime parameters are defined. These 
definitions contain a G E P instruct ion w i th the index into given Global Variable operand 
which basically a base address for computat ion. A s we already know, every index i n the 
G E P instruct ion has its type based on which type we index into. A lso we know that same 
index w i th different type does not mean that the calculat ion that G E P does, w i l l be the 
same. Unfortunately i n these definitions the type into we index first (second argument of 
G E P instruction) is bitcasted into i 8 * (bitcasting means changin value into some type we 
choose without changing the bits) . Th is w i l l completely change indices and these indices 
w i l l never match w i th the ones that are i n the modules. 

Solution for this is method of GEPInstruction class called accumulateConstantOf f set. 
This method calculates bitcasted offset based on the given data layout of module. Th is way 
we can compare the bitcasted index and calculated constant offset and te l l apart depen­
dent and independent instruct ion. There is also one more problem w i th implementat ion 
of computat ion of G E P dependence. Th is is rather clean code problem than the pr inc ipal 
problem but solution for this isn't the simple one. 

In practice there are two way how G E P instruct ion is placed i n a code: as the stan­
dalone instruct ion the GetElementPtrlnstr and as operand of some other isntruct ion 
GEPOperand. Implementation of comparing the indices is same for both but we can not con­
vert GEPOperand into GetElementPtrlnstr. L L V M l ibrary does this but it does not always 
work and if i t 's not than the L L V M l ibrary w i l l convert it into GetElementPtrConstantExpr. 
This class is private for only the L L V M l ibrary so we cannot use it . Instead we used a l itt le 
hack and we dyn_cast GetElementPtrlnstr to GEPOperand other way around as we tried. 

Second part of the solution is computat ion of ca l l instruct ion dependence. However this 
solution is more complicated than G E P computat ion so it is described i n next Section . 

5.2.3 Compare phase and computation of the Cal l instruction depen­
dence 

Computat ion of the C a l l instruct ion dependence was described i n previous chapter. It 
was implemented as it was explained i n Chapter 4, however there is one implementat ion 
detai l that was left out. A s we iterate through the instructions when we discover the C a l l 
instruct ion we must first find out what function it is call ing. W h e n we retrieve the Funct ion 
object which represent the called function we can iterate through the object to look inside 
the function and make addit ional check whether the function is dependent or not. Prob lem 
occurs when the function which is called isn't part of the module which is preprocessed. 
Th is is called i n Di f fKemp an missing definition. 

W h e n dealing w i th C a l l instruct ion we must differ between ful l dependence of cal l 
instruct ion and dependence only by global variable, thus pointer which represents a l l fields 
of structured data type object. In case of ful l dependence it is pretty obvious that function 
is dependent because there's no reason to pass pointer to field of structured data type 
which represents run-t ime parameter. O n the other way, when function receives only the 
base pointer we can't decide whether the function cal l is dependent or not, and hence we 
decide based of the content of function. F i rs t th ing we do is that we t ry to obtain Funct ion 
object. Th is is done by method GetCalledFunction provided by C a l l l n s t r class which 
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represents C a l l instruct ion. W h e n we receive the function object from method cal l , we can 
perform various operations on the object. So we make sure that function exists w i th in 
the compiled module. Every Function object has method called isDeclaration which 
tells i f the function is declaration. If it is, module doesn't contain the body of function 
and thus we can't iterate through, to check dependence of inner instructions and thus we 
can't surely te l l i f function is dependent. A l though we can't decide of the result of analysis 
now, we can l ink the module which contains the called function and analyze it afterwards. 
Object OverallResult, which represent results of Analys is , contains field which is called 
MissingDefs. Th is field contains a l l the missing definitions of the function. Th is feature 
was mainly used dur ing comparison phase of analysis where we must look inside to functions 
to te l l if they're same or not. We use the MissingDef in this case too so we can gain a l l 
the instruct ion i n Funct ion body from another module. 

After adding Function object to MissingDefs field, S i m p L L converts this object into 
yaml representation. P y t h o n part of the Di f fKemp tool reads i t , and then compiles the 
module which contains the function i n missing definitions and l inks it w i th current analysed 
module. Then it runs whole analysis again. Analys is ends when the results from S i m p L L 
are produced and Di f fKemp is able to evaluate them. However the function returning 
results isn't run when missing definitions occurred while preproccessing. W h e n for example 
we can't find function's definitions while i n the phase of preprocessing, S i m p L L would 
produced no results w i th only missing definitions. If this would happend mult iple times 
where function cannot by found for some reason we must secure that D i f fKemp produces 
evaluation at least w i th the information is has got. Th is way we must handle condit ion 
where Di f fKemp received no results but also were unable to find the missing definitions 
which received. Then we run S i m p L L w i th information that it shouldn't return any missing 
definitions and try to make analysis only w i th the information that is present. A l though 
this might seem unlikely that the function definition would be missing but this could be 
because Di f fKemp couldn't compile the function definition into L L V M IR or couldn't find 
it using cscope ut i l i ty. Pseudo algor i thm how this would work is shown below: 

run_analysis = True 

dont_return_missing_defs_while_preprocessing = False 

while run_analysis: 

run_analysis = False 

OverallResult = run_simpll(module, dont_return_missing_defs_while_preprocessing) 

i f OverallResult.MissingDefs: 

try: 

for function i n OverallResult.MissingDefs 

link_function_to_module(function, module) 

run_analysis = True 

continue 

except: 

i f not OverallResult.result and not run_analysis: 

run_analysis = True 

dont_return_missing_defs_while_preprocessing = True 

process_and_print_results(OverallResult) 
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W h e n exception is caught that we were unable to compile and l ink module to our current 
module we check also that it doesn't contain any result. That ' s because we might get 
returned missing definition also after preprocess phase where results are already produced. 
So this way we won't run new analysis because without the new missing definition l inked, 
the result would be the same. After running S i m p L L , VarDependencySlicer pass is run, 
where whole implementat ion for computing C a l l instruct ion dependence takes place. How 
the implementat ion of this a lgor i thm would look like is shown in next l ist ing. 

check_call_instruction_dependence(Calllnstruction, OverallResult): 

dependent = check_if_instruction_is_fully_dependent(Calllnstruction) 

i f dependent: 

return True 

else: 

dependent = check_if_instruction_is_maybe_dependent(Calllnstruction) 

i f not dependent: 

return False 

function = getCallerFunction(Calllnstruction) 

i f function.isDeclaration: 

OverallResult.MissingDefs = function 

return False 

for instruction i n function: 

dependent = check_if_instruction_is_fully_dependent(instruction) 

i f dependent: 

# we don't need missing def when we discover that function i s dependent 

del OverallResult.MissingDefs 

return True 

i f True == check_call_instruction_dependence(instruction) 

return True 

return False 

5.3 S l ic ing w.r.t a Concrete Va lue of a Parameter 

Implementation of this solution is mainly contained inside the S i m p L L . This extension 
supports three way of sl icing w.r.t to a variable: sl icing for a l l possible values therefore 
just using the code related to global variable, sl icing against the default value of global 
variable and sl icing w i th respect to concrete value of variable w i th corresponding type. The 
first way is already supported by S i m p L L w i th command line opt ion -var and argument of 
name of the global variable. Then the second one and th i rd are supported due to extending 
format of the option -var argument. Now, the argument can contain not only name of the 
variable but also the value, which should it contain and these two are colon separated. A lso 
it supports keyword default or the variable value can be empty, i f we want to use default 
value of given global variable for analysis. Now as we mentioned in the previous chapter, we 
don't slice off the independent instructions based on value but we just replace them w i th the 
object representing their value i n instructions which uses the loaded global variable. After 
the replacement we use standard program tranforamtions like Dead Code E l im ina t i on to 
slice off a l l independent instructions. Th is process is done in VarValueDependencySlicer 
which is described in next section 5.3.1. 
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5.3.1 VarValueDependencySlicer 

VarValueDependencySl icer is a L L V M pass which inherits from the ModulePass class. Th is 
means that transformation which is done by L L V M pass, is performed above whole L L V M 
module which was sent into S i m p L L as input. Th is is because it 's faster and more simple 
to iterate through the usages of GlobalVar iable class in L L V M than it would be to iterate 
through the instruct ion of the function. Wh i l e i terating through instructions we would had 
to also iterate throughout its operands and check i f any of them is global variable which 
we are looking for. Reasoning behind this is A / B testing that the general module has more 
instructions in function than the module has usages of certain global variable. O n the 
other hand flow of this L L V M pass is very simple. In the beginning, takes as arguments 
module, global variable and the value which is to be replaced for every occurrence of the 
given global variable. This value can be also n u l l which means that default value should 
be used for replacement. Us ing default value i t 's easier for us because every global variable 
object has function g e t l n i t i a l i z e r which returns value which has been set when global 
variable was init ia l ized. Th is way we get right instance of Constant class which is used 
later for replacement, because the function used for replacement uses Constant class type 
as argument. 

Further, it iterates a l l usages of global variable as we mentioned previously. W h e n usage 
of the G loba l Variable is found we t ry to dyn_cast it into load instruct ion. Anyway after 
we find out that current instruct ion is load instruct ion we replace a l l is usages again w i th 
the Constant object of corresponding type. This is done by the function which provides 
L L V M interface of Value class called replaceAHUsesWith which takes as argument an 
object containing value of variable that we want to replace a l l uses of load instruct ion wi th . 
However the current flow of this implementat ion is quite simple there's a tr icky part when 
converting str ing argument from command line opt ion into corresponding Constant object 
type. 

This part is done w i th dyn_casting global variable init ial izer into various specific 
Constant object types ( e.g. Constantlnt or ConstantFP classes). W h e n we find out 
which type of specific class it is, we cal l i t 's constructor w i th str ing argument. Construc­
tor then returns an object of specific Constant type and we return it from the function. 
However the function return the Constant class not the specific sub-classes but due to in ­
heritance from Constant object the casting to superclass is done automatical ly by C lang 
compiler. 

5.4 Suppor t ing s l ic ing against kernel module parameters i n 
py thon interface 

In this section we shortly introduce how the interface for dealing w i th kernel module pa­
rameters was implemented into the current generate phase. A s we mentioned i n previous 
chapter this part is needed to be implement only for snapshot generation because S i m p L L 
already support it i n its interface the global variables and global variables are representing 
as the run-t ime parameters so do they the module parameters. A s we know from the pre­
vious section there is loop which takes lines from the function list. In this loop there's i f 
condit ion so we can make different flow whether we analyse run-t ime parameters or K A B I 
functions. Th is way we have added the th i rd branch of the if condit ion which takes care 
of module-parameters. F i rs t we parse the entry from function list based on the format we 
introduced i n previous chapter. After that we find module and compile it into L L V M IR 
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from the given module directory and module name. Then it finds global variable which 
represent module parameter. Rest of the flow is same then as it is for run-t ime parameters 
when we find a l l functions using that global variable in a l l the possible modules. Then we 
add the found functions into the snapshot. 
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C h a p t e r 6 

Exper iment ing w i th implemented 
solutions 

The goal of the experiments of the first two implemented solutions is to prove that results of 
analysis made by Di f fKemp were improved after implementing these solution and integrating 
them into the current solution of the Di f fKemp. For the last solution implemented, we show 
how can we compare many module parameters i n such a easy way just by creating list of 
them. In the next Section 6.1 we w i l l show what results experiments have returned while 
testing the first extension which is responsible for sl icing against concrete field of structured 
types. After that, i n Section 6.2 we show how we can make an analysis of kernel modules 
while using the second extension which performs analysis w i th respect to a concrete value 
of global variable. 

6.1 S l ic ing against concrete fields of s t ructured types exper­
iments 

Experiments of testing functionality of this extension have been tested on CentOs kernel 
version 7.3 and 7.4. We've generated snapshots containing indices of global variables repre­
senting run-t ime parameters and tested list of run-t ime parameters presented in Table 6.1 
w i th results they have returned w i th or without the extension. 

After running analysis w i th extension we can see that no results have turned from 
Equal state into Not Equal. A lso no Errors occurred dur ing analysis which means that 
implemented solution d id not mess up analysis made by Di f fKemp. Sadly i n the tested 
list of run-t ime parameters has occurred only one conversion from Not Equal state to 
Equal. After analyz ing given case by hand we could confirm that implemented solution has 
really done what it was supposed to do. This low number of successful cases after adding 
our solution might be because most of the cases we're evaluated as Equal for the set of 
instruct ion that covered whole global variable not only the field we wanted. After that 
subset should be evaluated equally as the given set and therefore s t i l l it evaluates to Equal. 

To conclude this, we have implemented solution that works for sl icing w i th respect 
to concrete field of variable, however there wasn't much cases as we expected to improve 
whole analysis performed by Di f fKemp. In the future work we a im for verifying if the given 
solution d idn ' t work for other cases because of some nuances or if there wasn't just that 
many cases to improve analysis as we firstly assumed. 
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R u n - t i m e p a r a m e t e r F u n c t i o n 
R e s u l t s 

R u n - t i m e p a r a m e t e r F u n c t i o n 
w / o e x t e n s i o n w i t h e x t e n s i o n 

net. core .rmem defaul s o c k _ i n i t _ d a t a E q u a l E q u a l 

net. core .rmem max 
sock setsockopt Not E q u a l Not Equa l 

net. core .rmem max t cp_s e l e c t _ in i t i a l _w indow E q u a l E q u a l net. core .rmem max 
se t_sock_s i ze E q u a l E q u a l 

net. core.wmem default 
i p _ s e n d _ u n i c a s t _ r e p l y E q u a l E q u a l 

net. core.wmem default 
s o c k _ i n i t _ d a t a E q u a l E q u a l 

net. core. w m e m m a x 
sock setsockopt Not E q u a l Not Equa l 

net. core. w m e m m a x 
se t_sock_s i ze E q u a l E q u a l 

net. ipv4. conf .all . forwarding 
dev ine t _ in i t _ne t E q u a l E q u a l 

net. ipv4. conf .all . forwarding 
_dev ine t _sysc t l _ r eg i s t e r E q u a l E q u a l 

net. ipv4.conf.al l .rp_f i l ter 
d e v ine t _ in i t _ne t E q u a l E q u a l 

net. ipv4.conf.al l .rp_f i l ter 
_dev ine t _sysc t l _ r eg i s t e r E q u a l E q u a l 

net. ipv4. t cp _ tw_ r e cy c l e 

t c p _ v 4 _ r c v E q u a l E q u a l 

net. ipv4. t cp _ tw_ r e cy c l e 
t cp_v4_connec t Not E q u a l Not Equa l 

net. ipv4. t cp _ tw_ r e cy c l e 
t c p _ s k _ e x i t _ b a t c h E q u a l E q u a l 

net. ipv4. t cp _ tw_ r e cy c l e 

t c p _ t i m e _ w a i t Not E q u a l E q u a l 

Table 6.1: Results of analysis between 7.3 and 7.4 CentOs kernel 

6.2 S l ic ing w.r.t to concrete value of global variable experi­
ments on the kernel modules 

This experiments w i l l be performed on two upstream versions of the L inux kernel, on 3.10 
and 4 .11 . We have decided to use kernel modules in which we have found that they are 
unequal, but could be equal for certain values. Subsequently we generated snapshots for 
both version of L inux Kerne l and for each we also generated snapshot which uses values 
and which is not. After running the experiments we have got results as shown in Table 6.2. 

As we can see from Table 6.2, we have performed analysis on the kernel module param­
eters. We impl ied earlier that adding support to analysis of kernel module parameter w i l l 
make it easier and faster to analyse difference in kernel modules. F r om the reported statis­
tics from Di f fKemp while comparing the two versions of kernel it returned that Di f fKemp 
compared 48 functions. Th is is quite a lot for such a smal l number of tested parameters. 
However this analysis took max imum of 10 minutes w i th the t ime of generating snapshots 
for analysis and subsequent comparison of these. If we would wanted find out if semantics 
of 48 functions is equal or not by a hand, it would take much more effort and time, it 
could take possibly t ime of more than several hours rather than 10 minutes which lasted 
the analysis made by Di f fKemp. 

Also in Table 6.2, we have shown impact of implementing extension which slices w.r.t. 
certain value of global variable which represents the module parameter. A s we can see 
most of the cases has resulted into Not Equal. After implementing the solution some cases 
has turned into the Equal result. Th is could be caused by removing the code that wasn't 
dependent of the value of variable and also the code that was marked as dependent didn' t 
contain non-equal code. After analyz ing the results, which produced Equal result and was 
previously marked as Not Equal, we could confirm that these results are correct. A s we 
can see the results marked as Equal without using the extension, retained the result given 
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M o d u l e P a r a m e t e r F u n c t i o n V a l u e 
R e s u l t s o f a n a l y s i s 

M o d u l e P a r a m e t e r F u n c t i o n V a l u e 
w / o v a l u e w i t h v a l u e 

n f _ n a t _ 
snmp_bas i c 

debug 
snmp_parse_mang l e default Not E q u a l Not E q u a l n f _ n a t _ 

snmp_bas i c 
debug 

mangle_address default E q u a l E q u a l 
d rbd faul t_devs _ d r b d _ i n s e r t _ f a u l t default E q u a l E q u a l 

t cp_probe bufsize 

t cpprobe_ in i t 0 Not E q u a l E q u a l 

t cp_probe bufsize 
t cpprobe_ava i l 0 E q u a l E q u a l 

t cp_probe bufsize 
t cpprobe_read 0 E q u a l E q u a l 

t cp_probe bufsize 

t c p _ p r o b e _ u s e d 0 E q u a l E q u a l 
nbd m a x _ p a r t n b d _ i n i t -1 Not E q u a l E q u a l 
ipmi 
_wa tchdog 

i f n u m _ t o _ u s e 
s e t _ p a r a m _ w d o g _ i f n u m default Not E q u a l E q u a l ipmi 

_wa tchdog 
i f n u m _ t o _ u s e 

ipmi_reg is te r_watchdog default Not E q u a l Not E q u a l 

lp reset lp_reg ister default Not E q u a l E q u a l 

appl icom mem 
appl icom init default Not E q u a l Not E q u a l 

appl icom mem 
a c _ i o c t l default E q u a l E q u a l 

Table 6.2: Compar ison of kernel modules parameters from upstream versions 3.10 and 4.11 
w i th results of analysis w i th extension, which adds value of parameter to sl icing criterion 

without extension and was marked it as Equal too, because when set of instructions was 
marked as Equal at first, then the subset of this set must also be marked as Equal. 

To conclude this, implemented solution really helped the analysis made by Di f fKemp 
and also it dramatical ly made it easier to analyse the kernel module parameters. 
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C h a p t e r 7 

Conclusion 

The goal of this thesis was to propose solution for automatic forward sl icing of L inux kernel 
modules. Subsequently we implemented this proposed solutions and we made the com­
parison between two kernel versions for experimentally prove that implemented solutions 
improved analysis made by Di f fKemp. 

A t the beginning we have described a static analysis too l D i f fKemp w i th L L V M frame­
work which was used to implement an automatic forward sheer for Di f fKemp. Automat ic 
forward sheer aims for simpli fying analysis of semantic differences between two version of 
L inux kernel. The purpose of this approach is to remove a l l statements that aren't de­
pendant on certain function or parameter and thus make it easier for semantic analyzer 
to compare certain semantic of analyzed source. D i f fKemp has already contained auto­
matic forward sl icing solution and after extensive analysis and testing we decided to extend 
its current functionality by few most solutions that should be most efficient based on our 
assumptions. We have implemented sl icing against the fields of structured types which re­
moves considerable chunk of independent code. A lso we extended current sl icing criterion 
w i th the opt ional value parameter for the global value which represent run-t ime or mod­
ule parameters. A n d as we mentioned we added also the support for sl icing w i th respect 
to module parameters which also makes it easier to analyze, because number of functions 
containing the module parameters that are analyzed is quite extensive. After running the 
experiments we noticed that first implemented solution d idn ' t improved the analysis made 
by Di f fKemp, which could be potential ly caused by Di f fKemp returning E q u a l result for 
set of instruct ion and therefore subset created by implementing solution from this thesis 
should return same results. Otherwise experiments w i th solution providing support for 
kernel module parameters has made easier analysis and much more faster than it would by 
done by a hand. A lso last extension which adds value of global variable into sl icing criterion 
has also improved analysis done by Di f fKemp in a quite big scope. 

We implemented three extensions for Di f fKemp to improve analysis it performs but there 
are s t i l l some extension which can be done to improve automatic forward sl icing solution 
which Di f fKemp uses. Th is extension could be for example taking into account pointer 
aliasing when sl icing off the statements which might alias w i th dependent instructions. 
A lso it 's good idea to provide support for sl icing w.r.t certain value w i th str ing type and 
accesses to structured types. We planned to extend the current solution later in the future 
because this would be quite extensive amount of work but it wouldn't cover much cases 
because there are less string-typed run-t ime parameters than there are other types. 
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