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Abstract 
W i t h the increase in drone availabi l i ty i n recent years, the risk of using drones as a too l for 
attacks has also increased. Based on these risks, this paper proposes a method for their real
t ime detection, followed by classification. The proposed approach utilizes the background 
subtract ion method for object detection while using deep learning to classify the detected 
object. The M O G 2 utilizes the Gaussian mixture model method to provide background 
subtraction, while the Y O L O v 5 object detection model uses convolutional neural networks 
for classification. The approach implementat ion produces a way for drone detection and 
classification while ut i l i z ing the processor, reaching results sufficient for real-time drone 
detection and classification. The method evaluating 1080p recording using the Intel i5-
7600K averaged 16 frames per second while detecting a single object w i th in the frame. 

Abstrakt 
S nárastom dostupnosti dronov, narástlo aj r iziko ich využívania na nelegálne aktivity. N a 
základe týchto rizík bola navrhnutá metóda na ich detekciu a následnú klasifikáciu apliko
vateľnú v reálnom čase. Navrhovaný prístup využíva metódu odčítania pozadia, slúžiacu 
na detekciu objektov, zatiaľ čo klasifikácia je dosiahnutá pomocou hlbokého učenia. M O G 2 
využíva metódu zmiešaného Gaussovho modelu, ktorý slúži na odčítanie pozadia, za účelom 
detekcie objektov. Y O L O v 5 model pracujúci s neurónovými sieťami je využitý na následnú 
klasifikáciu detegovaných objektov. Implementácia vytvára spôsob detekcie a klasifiká
cie dronov s využitím procesora dosahujúca výsledky postačujúce na aplikovanie detekcie 
a klasifikácie dronov v reálnom čase. Metóda vyhodnocujúca záznam v rozlíšení 1080p, 
využívajúca procesor Intel Í5-7600K dosahovala v priemere 16 snímiek za sekundu, počas 
detekcie jedného objektu v snímke. 
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Rozšírený abstrakt 
S nárastom dostupnosti dronov, narastá aj r iziko ich využívania na nelegálne aktivity. Medz i 
najčastejšie prípady zneužitia dronov patrí sledovanie objektov či osôb, no drony môžu byť 
taktiež využité na teroristické či iné útoky. Táto práca poskytuje riešenie na detekciu a 
klasifikáciu dronov za účelom zabránenia prípadných útokov. 

N a detekciu dronov z video záznamu bola použitá metóda odčítania pozadia založená 
na Gaussovom zmiešanom model i , konkrétne M O G 2 . M O G 2 pracuje s t romi farebnými 
kanálmi, ktoré sú reprezentované pomocou trojrozmerného Gaussovho zmiešaného modelu. 
K r i v k y obsiahnuté v tom model i reprezentujú b u d pozadie alebo prípadne zistené popredie. 
Pričom väčšie hodnoty kriv iek reprezentujú pozadie, zatiaľ čo menšie hodnoty definujú 
popredie. Táto metóda je aplikovaná pr i detekcii používajúcej statickú kameru. 

Klasifikácia bola dosiahnutá pomocou hlbokého učenia. Klasifikácia využíva konvolučné 
neurónové siete na spracovanie vstupných obrázkov. V tomto prístupe bo l využitý model 
Y O L O v 5 s , ktorého architektúra zabezpečuje nadriadenú rýchlosť klasifikácie v porovnaní 
s ostatnými metódami. Mode l Y O L O v 5 bo l trénovaný za pomoci datasetu zobrazujúceho 
drona t ypu D JI Mav i c A i r v čiernej farbe. Tento dataset pozostával z 4 videí pričom 3 z nich 
bol i použité na vytvorenie datasetu na trénovanie a zvyšné video bolo použité na vyhod
notenie implementovaného algori tmu. Predtým ako bol i tieto videá použité na trénovanie, 
musel byť vytvorený dataset anotovaných obrázkov. Tieto obrázky bol i zachytené pomo
cou M O G 2 algoritmu a následne anotované a ohraničené. Pomocou nástroja roboflow bol 
vytvorený dataset kompatibilný s modelom Y O L O v 5 , určený na jeho trénovanie. Výsledný 
dataset tvori lo 7271 obrázkov dronov, vtákov a rôznych typov pozadí. Trénovanie modelu 
využívalo Y O L O v 5 skript určený na jeho trénovanie. Architektúra modelu a jeho konfig
urácia bola popísaná v yaml súbore. N a trénovanie bolo použitých 130 epochov pričom 
obrázky bol i zoskupené po skupinkách obsahujúcich 24 obrázkov. Celkové trénovanie bolo 
uskutočnené pomocou Google collab prostredia, ktoré sprístupnilo využitie grafickej karty 
Tesla K80 , čo razantne zmenšilo čas trénovania na hodinu, 47 minút a 56 sekúnd. 

Implementácia navrhovaného algoritmu bola dosiahnutá pomocou jazyka python o verzi i 
3.8.10, obsiahnutá v jednom skripte main.py, ktorý sa skladá z dvoch modulov. Prvý ma na 
starosti detekciu objektov pomocou M O G 2 algor i tmu dostupného v knižnici O p e n C V , zatiaľ 
čo druhý modu l využíva natrénovaný Y O L O v 5 model na následnú klasifikáciu výsledkov 
prvého modulu . Natrénovaný model bo l načítaný do skr iptu s využitím PyTorch knižnice, 
ktorá umožňuje jednoduché nasadenie vlastných modelov. M o d u l slúžiaci na detekciu ob
jektov aplikuje morfologické operácie na výsledky M O G 2 algoritmu, za účelom získania 
ucelených objektov. T ieto objekty sú následne orezané a ich rozlíšenie je upravené tak aby 
ho mohol Y O L O v 5 model následne vyhodnotiť. Po vyhodnotení modelom, je klasifikovaný 
objekt ohraničený štvorcom, nad ktorým je vypísaná klasifikovaná tr ieda spolu s hodnotou 
reprezentujúcou istotu, s akou bo l objekt klasifikovaný. 

Natrénovaný Y O L O v 5 model pr i klasifikácii objektov, ktorých překryv ohraničujúcich 
boxov tvor i l 50% z celkovej oblasti tvorenej týmito boxami, dosahoval vysokú priemernú 
presnosť klasifikácie, ktorá sa blížila k bezchybnej presnosti. Priemerná presnosť pr i prekryve 
o 95% bola podstatne nižšia a nekonzistentná. Hodnoty sa počas trénovania pohyboval i 
v rozmedzí [25-35]%, bez toho aby sa hodnoty zlepšovali vzhľadom na čas strávený tréno
vaním. 

N a zvýšenie efektívnosti detekcie dronov, bo l i aplikované morfologické operácia ako 
erózia a dilatácia. Erózia bola aplikovaná za účelom odstránenia šumu aby sa predišlo 
veľkému množstvu nesprávnych detekcií. Podľa záznamu a množstva šumu v snímke je 



možné meniť hodnoty erózie v reálnom čase pomocou lišty nachádzajúcej sa pod grafickým 
výstupom. Dilatácia slúži na pospájanie neucelených výstupov z M O G 2 algoritmu. 

Následné vyhodnotenie klasifikácie bola vykonané na dvoch nahrávkach. Prvá zobra
zovala v snímkach natrénovaného drona, zatiaľ čo druhá obsahovala model D J I Matr ice 
600 Pro , ktorého snímky neboli obsiahnuté v datasete určenom na trénovanie modelu. Im
plementovaný algoritmus bo l schopný klasifikovať natrénovaného drona s väčšou istotou 
v porovnaní s novým typom drona. Istota klasifikácie závisí od vzdialenosti medzi dronom 
a kamerou, pričom istota klasifikácie drona pohybujúceho sa pred kamerou dosahovala 
85%, no s narastajúcou vzdialenosťou táto istota klesala (Obrázok la ) až dokým model 
nezačal klasifikovať drona ako vtáka či pozadie. Nenatrénovaný typ drona dosiahol istotu 
klasifikácie 70%, no priemerné hodnoty sa pohyboval i okolo 60% (Obrázok lb ) . 

(a) Klasifikácia Natrénovaného Typu Drona (b) Klasifikácia Nenatrénovaného Typu Drona 

Obrázok. 1: Rozdie l Istoty Klasifikácie Vzhľadom na Typ Drona 

Celkový výkon navrhnutého algor i tmu aplikovaného na nahrávku untrained.mp4 je 
zhrnutý v (Tabuľka 1). Vzhľadom na tieto zistenia vieme určiť, že nasadenie grafickej karty 
produkuje horšie výsledky ako využitie procesora. Vyhodnotená nahrávka pozostávala z 61 
sekundového záznamu so snímkovou frekvenciou 30, zatiaľ čo navrhnutý algoritmus bol 
schopný detegovať a klasifikovať 1 objekt v snímke o priemernej frekvencii 16 snímok za 
sekundu, čím narástol aj celkový beh skr iptu, ktorý sa trojnásobne zvýšil v porovnaní 
s pôvodnou nahrávkou. 

Resolution G P U / C P U Kerne l Size Average F P S Average Detections W a l l T ime 

1080x1920 C P U (3,3) 16.47 0.56 2:56 

864x1536 C P U (3,3) 16.13 0.40 2:59 

1080x1920 C P U (1,1) 16.02 1.00 3:01 

864x1536 C P U (1,1) 15.81 0.89 3:00 

1080x1920 G P U (3,3) 14.21 0.56 3:21 

864x1536 G P U (3,3) 14.21 0.40 3:20 

1080x1920 G P U (1,1) 11.49 1.00 3:59 

864x1536 G P U (1,1) 12.18 0.89 3:46 

Tabuľka. 1: Vyhodnotenie Aplikovaného A lgo r i tmu na Nahrávku untrained.mp4 
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Chapter 1 

Introduct ion 

In recent years, the usage of drones has become more available and affordable for the general 
public. Drones are also being used for commercial purposes such as surveillance, delivery of 
medical goods, search and rescue, and many more. W i t h the commercial use of drones many 
risks occur. A s mentioned before, commercial drones are being used for surveillance, this 
provides attackers w i th an affordable way to observe restricted areas. O n Ju l y 27th, during 
protests at the federal courthouse man was charged for operating a drone in a restricted 
zone.[17] There have also been plenty of incidents where drones coll ided w i th aircraft. One 
of the incidents happened when a drone coll ided w i th a commercial airplane. The drone 
struck one of the plane's wings w i th eight people aboard though the aircraft managed to 
land safely. [1] These accidents present a huge problem that needs to be solved. Th is paper 
focuses on solving this problem by detecting drones in real t ime. 

Among the detection and classification technologies, falls the usage of radar, radio-
frequency (RF ) , acoustic sensors, and camera sensors.[24] Th is paper is based on camera-
based drone detection. Camera-based drone detection on its own is ineffective. That ' s why 
these methods are combined w i th the software used for the detection and classification of 
drones. 

Detection of drones is achieved by feature-based methods such as background subtrac
t ion. Simple versions of these methods such as frame differencing are not efficient enough, 
so to increase their efficiency, background subtract ion methods based on the gaussian mix
ture model are used for this approach. The Convolut ional neural network (CNN ) handles 
the classification process. 

The following paper introduces drone detection technologies i n the (Chapter 2), fol
lowed by furthermore explanation of the Camera-based detection algorithms unfolds in the 
(Chapter 3). After an explanation of the ut i l ized theory w i th in the paper, the proposal 
of the approach is described w i th in the (Chapter 4). The implementat ion of the proposed 
approach contained w i th in the (Chapter 5), gives throughout insight into the proposed 
approach. Th is implementat ion is then applied to evaluation dataset, producing results 
clarified in the (Chapter 6). 
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Chapter 2 

Technologies used for drone 
detection 

This chapter provides a basic introduct ion to drone detection technologies. Each technology 
has its pros and cons, which w i l l be unfolded in the following sections. 

Radar-based Drone Detect ion 

Radar detection is mostly used for large aircraft. Detect ion fails when the flying object is 
as smal l as a drone. If radars could pick up smaller objects, there would be an increase in 
false alarms due to the detection of birds and other smal l f lying objects. [7] 

RF-based Drone Detect ion 

RF-based detection is one of the most efficient ways to long-range detect drones. The 
effective range of drone detection is roughly 500m. This approach captures communicat ion 
between the drone and ground controller. A l l non-drone signals are classified as noise. 
Drone controllers have a unique R F fingerprint. These fingerprints combined w i th machine 
learning are used for drone classification. [5] The issue occurs when the drone is operated 
without ground control and has already pre-programmed flying course. [26] 

Acoust ic Sensor-based Drone Detect ion 

The ma in benefit of using acoustic sensors as detection is efficiency in low-visibil ity. The 
sensitivity of the sensors to ambient noise affects detection. Sensors are pract ical ly pointless 
in a loud environment. W i n d y conditions can also affect the qual i ty of detection.[25] 

Camera-based Drone Detec t ion 

The ma in focus of camera-based drone detection is to detect drones without R F trans
mission. The Prob lem of camera detection appears in bad weather conditions or i n dark. 
These issues can be part ia l ly solved by thermal sensors. [19] In this paper, we look into 
solving of the camera problems provided by various backgrounds w i th distractions such as 
leaf movements. 
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Chapter 3 

Mov ing Object Detect ion and 
Classif ication A lgor i thms 

Based on the research done in recent years, camera-based drone detection can be divided 
into two groups. The first approach utilizes feature-based methods, while the second ap
proach focuses on deep learning-based methods. The deep learning-based methods are in 
most cases used for detection followed by classification. 

3.1 Feature-based Me thods 

Feature-based methods consist of opt ical flow, background subtract ion, frame differenc
ing, and edge detection. The focus of these methods includes low-level image processing 
operations. 

Background subtract ion is used for the detection of static scenes. This method tries 
to subtract the current image pixel-by-pixel from a referenced background image. Pixels, 
where the difference surpasses the threshold, are classified as foreground. After the creation 
of foreground operations such as di lat ion, filtering and erosion are needed to reduce noise 
and enhance detected objects. This method can be modified by different classification 
methods of foreground and its post-processing. [20] 

Frame differencing uses pixel difference between two or three consecutive frames. This 
method is adaptive to dynamic scene changes. It is simple to implement and has low 
computat ional complexity. This s impl ic i ty brings the issue of not being able to extract 
al l relevant pixels of moving objects. [29] Th is method fails to segment non-background 
objects i f they stop moving. [4] 

The opt ical flow method detects objects based on the relative velocity of objects i n a 
scene. Th is method is adaptive to dynamic scene changes, however, has high computat ion 
complexity and because of that it is not applicable for real-time detection. [23] 

The moving edge method works w i th a difference of an image as a t ime gradient, while 
the edge image is a space gradient. Mov ing edge is defined by logic operation AND of these 
two images. Unl ike the frame differencing method, the moving edge method has no issues 
w i th noise caused by i l luminat ion, since this method does not rely on brightness. However, 
this does not mean that this method is not prone to noise from other sources.[31] 
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3.1.1 B a c k g r o u n d s u b t r a c t i o n a p p r o a c h 

This method is widely used for detecting moving objects i n videos from static cameras. 
The goal of this method is to detect the difference between current frame and a background 
image. Background subtract ion uses function V(x, y, t) as a video sequence where x and y 
are pixel spat ial locat ion variables and t represents t ime dimension. 

3.1.1.1 Background Subtraction using Frame Differencing 

Frame difference (absolute) of this method is defined as 

D(t + l) = \V(x,y,t + l)-V(x,y,t)\ 

The image background is a frame at time t. The issue w i th this assumption is that the 
method works only if a l l foreground pixels are moving and background pixels are static. 
Outputs of these functions can be filtered by thresholding. The threshold is compared w i th 
a difference and depending on the value of the threshold is the difference filtered out or 
accepted. The speed of object movements determines the values of the threshold. Faster 
movement requires higher threshold values.[20] 

3.1.1.2 Gaussian M i x t u r e M o d e l ( G M M ) 

Mode l is used for the representation of normal ly d istr ibuted subpopulations w i th in an 
overall populat ion. Th is model is used for mult iple object tracking, where the number of 
mixture components and their means predict object locat ion at each frame. [11] 

One-Dimensional M o d e l 

This design is used to model the probabi l i ty d is tr ibut ion of one characteristic at one pixel . 
D is t r ibut ion function (Eq. 3.1) is based on sum of K 1-Dimensional Gaussians. Normal ized 
gaussian (Eq. 3.2) where a is the w id th of Gaussian and // is the mean and 4> represents 
the scale of each gaussian. The normal d is tr ibut ion is achieved when the sum of <fi is equal 
to one. (Eq. 3.3) 

K 
p(x) = 4>jN (x I m, Oj) (3.1) 

i=l 

1 / ( x _ ^ ) 2 \ 
4>iM(x | m, <Ji) = <pi -== exp 2

% (3.2) 

aiV2vr y 2a i J 

K 

£ > i = l (3-3) 
i=l 

M u l t i - D i m e n s i o n a l M o d e l 

Unl ike the one-dimensional model, this model can be used to normal ly distr ibute the prob
abi l i ty of mult iple characteristics at one pixel . D is t r ibut ion function (Eq. 3.4) is same as 
in one-dimensional approach, the only difference is i n mult i -dimensional Gaussian function 
(Eq. 3.5). The vector of means from a l l dimensions is represented by \x and X represents 
the covariance matr ix . The normal d is tr ibut ion is achieved i n the same demeanor as in the 
previous model. (Eq. 3.6) 
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K 
p(x) y] <j>iN (x i pi, Sj) (3.4) 

i=l 

~ 2 ( f -flif^i 1(x-jli) (3.5) 

A' 
i (3.6) 

i=l 

3.1.1.3 M O G 2 method 

M O G 2 is a background subtract ion method based on the Gaussian mixture model. Th is 
method is based on these two papers [32] [33]. Unl ike its predecessor the M O G w i th the 
static number of Gaussian kernel distr ibutions. The newer improved version automatical ly 
selects the number of Gaussian kernels ind iv idual ly for each pixel . Th is change results in a 
more resilient method w i th higher adaptabi l i ty to i l luminat ion changes w i th in the frame. 

3.1.2 M o r p h o l o g i c a l Ope ra t i ons 

The approach of the background subtract ion methods comes w i th drawbacks such as false 
object detection of the noise. Basic morphological operations such as D i l a t i on and Eros ion 
can improve these object detection algorithms. App l i ca t ion of these operations can provide 
removal or noise, f i l l ing out of the holes w i th in the detected objects, and such. 

3.1.2.1 Dilat ion 

Di la t i on is a process where the binary image is expanded from its or ig inal shape. The 
expansion of the image is defined by the structur ing element. In most cases, the structur ing 
element is interpreted as a rectangle or circle w i th the size represented by the kernel. The 
size of the kernel is usually defined by odd numbers w i th the anchor point of the kernel 
being the center. 

The di lat ion process iterates over the input image using the kernel anchor point unt i l 
the kernel pixels overlap w i th the image pixels. If the overlap occurs, the actual anchor 
pixel posit ion gets replaced by the max ima l value. This operation causes the image to grow. 

3.1.2.2 Erosion 

Erosion is the counter-process of di lat ion. Eros ion takes the input image and shrinks it 
depending on the structur ing element. The kernel of the erosion process serves in the same 
manner as in the di lat ion process. 

The iteration of the erosion process is the same as in the di lat ion case, however, the 
erosion replaces anchor pixel posit ion values by m in imum value, unt i l complete overlap 
between the image and structur ing element occurs. The state of complete overlap doesn't 
occur that often, depending on the image, thus the outputted image shrinks. 

3 .1.3 O p t i c a l F l ow 

Opt ica l flow is a pattern of per-pixel mot ion estimation between two consecutive frames. 
Th is phenomenon is represented as a 2D vector field, where each vector shows a displace-
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ment vector based on the movement from one frame to the other. The cause of this mot ion 
is based on object or camera movement. [16] 

For opt ical flow to work properly i l luminat ion of the frame shouldn't change drastically, 
so that pixel intensities stay consistent from frame to frame. It is also required for the 
neighboring pixels to traverse in a similar mot ion as the observed pixel . 

Wh i l e these assumptions are fulfilled, we can take the intensity of the pixel in the frame 
I(x, y, t), at positions x and y, w i th addi t ional t ime value as t is added. Since the intensity 
of the pixel does not change, the pixel posit ion i n the next frame can be represented by the 
formula (Eq. 3.7). 

I(x,y,t) = I(x + dx,y + dy,t + dt) (3.7) 

(dx, dy) represent the change i n the coordinates from one frame to the other, also the 
change of t ime is shown by dt. 

B y Taylor-polynomial approximation of the right side of the equation and removal of 
the common terms and time div is ion dt, the opt ical flow equation (Eq. 3.8) is produced. 

fxU + fyV + ft = 0 (3.8) 

Where: 

f =— u = — 
x dx dt 

<9/ _ dy 
h ~ dx V ~ dt 

{fx-, fy) are the gradients of the image, ft represents gradient along t ime, however, the (u, v) 
values are unknown. This so-called Opt i ca l F l ow equation (Eq. 3.8) cannot be solved w i th 
two unknown values, so i n order to achieve a solution, few opt ical methods are provided. 

These methods can be divided into two groups sparse and dense opt ical flow. The 
sparse opt ical flow focuses only on the pre-processed features such as edges and thus does 
not compute the mot ion vectors for every pixel, therefore the chance of not detecting a 
moving object is higher. The Dense opt ical flow eliminates this drawback, by calculat ing 
the mot ion vector for every pixel i n the frame. 

3.1.3.1 Lucas-Kanade M e t h o d 

Lucas-Kanade is one of the most used sparse opt ical flow methods. Th is approach assumes 
that the displacement of the pixel is w i th in the neighborhood of the specific pixel . Each 
point in the neighborhood contains a similar vector movement, therefore can be calculated 
in the same manner. The number of the pixels w i th in the neighborhood is specified by 
value n, which also sets the number of optic flow equations (Eq. 3.9), where each pixel 
inside the neighborhood is represented by p^. 

fx (pi) u + fy (pi) v- ft (pi) = 0 

fx (jP2) U + fy (p2) V- ft (P2) = 0 
(3.9) 

fx (Pn) U + fy (pn) V - ft (pn) = 0 
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These equations can be wri t ten as matrices using Av = b, where 

fx (Pi) 
fx (P2) 

fy (Pi) 

fy (P2) 

. fx (Pn) fy (Pn) . 

U 

V 

-ft(pl) 

-ft(P2) 

-ft (Pn) The solution of these equations is achieved by using least-squares principle. B y apply ing 
the principle onto Av = b formula, we get ATAv = ATb, where AT is equal to transpose 
of the matr ix A. v value is derived from the formula, resulting in v = (ATA)~1ATb (Eq. 
3.10), which produces desired output. 

u 
V 

E i fx (w ) 2 

E i fy (Pi) fx {Pi 

E i fx (Pi) fy (Pi) 

J2ify(Pif 

E i fx (pi) ft (pi 

E i fy (Pi) ft (Pi 
(3.10) 

The sum used i n these equations runs from 1 to n , where n is the number of pixels from 
wi th in the neighborhood. 

3.1.3.2 Farneback algorithm 

Farneback a lgor i thm is one of the most used dense opt ical flow algorithms. The dense 
optical flow provides better accuracy at cost of an increase in the computat ion. 

The farneback algor i thm util izes the po lynomia l expansion to approximate the neigh
borhood of each pixel while the approach focuses only on the usage of quadratic polynomials 
[6]. The estimation of displacement is estimated over the neighborhood as a whole, rather 
than point-wise, since the point-wise estimation produces a lot of noise. 

This approach introduces a series of refinements, providing more accurate estimations 
such as multi-scale displacement estimation. The multi-scale displacement estimation tack
les the occurring issue of large displacements. W i t h higher displacements, the improvements 
based on the iterations are meaningless. This problem is reduced by displacement analysis, 
done at a coarser scale by apply ing the multi-scale approach. The estimation takes place 
at a coarser scale, providing rough but reasonable displacement estimations, which w i l l be 
then passed through lower scales, obtaining more accurate results. The drawback of this 
approach is the computat ion increases quite a bit , since the po lynomia l expansion must be 
recomputed for each scale. 

3.2 Deep Learning-based Me thods 

Deep learning methods consist of algorithms based on the structure and functionality of 
arti f icial neural networks. These methods uti l ize many hidden layers, creating robust net
works. 

3.2.1 A r t i f i c i a l N e u r a l Networks ( A N N ) 

A N N s are computat ional models inspired by the human bra in. These networks consist of 
many connected nodes. Each node performs a simple mathemat ica l operation, while the 
outputs of nodes differ from one node to the other and are determined by their mathemat
ical operation. In order to learn and calculate very complex functions, connected nodes 
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wi th in the network must have their parameters carefully set up. Ar t i f i c ia l neural networks 
have enabled many advances in arti f icial intelligence, inc luding image recognition or voice 
recognition. 

3.2.1.1 Artif ic ial and Biological N e u r o n connections 

The human nervous system consists of roughly 90 bi l l ion neurons (Figure 3.1b) which are 
connected w i th roughly 1 0 1 4 synapses. Each neuron inputs signals through its dendrites 
and produces output signals on its axon. A x o n uses synapses while creating connections 
w i th another neuron's dendrites. There are many types of biological neurons w i th custom 
properties. Dendrites of biological neurons execute complex nonlinear computations and 
synapses form complex non-linear dynamica l systems. However, the art i f ic ial neuron is a 
very coarse model of a biological neuron. Mathemat i ca l model of art i f ic ial neuron (Figure 
3.1a) can be interpreted as function where inputs xn represent the dendrites. These inputs 
are mult ip l ied w i th the dendrites of another neuron. These weights wnj are used in order to 
control the strength of the influence of the neuron on the adjacent neuron. Mu l t i p l i ed values 
are then summed up in the body of an arti f icial neuron. If the sum exceeds the threshold 
level, the neuron „fires" a spike along its axon. The rate of this process is modeled w i th an 
activation function. 

(a) Mathematical Neuron. Retrieved from [3] (b) Biological Neuron. Retrieved from [15] 

Figure 3.1: Compar ison of Neuron Models 

The activation function takes a single number and performs certain mathematical op
erations on i t . In the past, sigmoid function a(x) = n r p ~ (-x)) (Figure 3.2a). A m o n g the 
activation functions, this was the most common activation function. Sigmoid non-linearity 
takes a real-valued number and distributes it into a range from 0 to 1. Large negative 
numbers become 0 while large positive numbers become 1. These values interpret the fir
ing rate of the neuron. Not firing neuron is represented by (0) and fully-saturated firing 
at the max imum frequency by (1). The ma in drawback of this activation function comes 
from either ta i l of the range, where arise issues w i th saturat ion. [10] The gradient at these 
regions is close to none and almost no signal flows through the neuron to its weights and 
recursively to its data. To prevent saturat ion and failure of learning, in i t ia l weights must 
be opt imal ly determined. 

Hyperbol ic tangent non-l inearity is very similar to the sigmoid function. This function 
can be interpreted as scaled sigmoid tanh(x) = 2a(2x) — 1 (Figure 3.2b). The hyperbolic 
tangent's d istr ibut ion ranges from -1 to 1, this makes the function outputs zero-centered 
in contrast to the non-centered sigmoid outputs. W h i c h is clearly shown in figure (Figure 
3.2). However, the problem w i th the saturat ion of neurons remains. 
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(a) Sigmoid function. Retrieved from [27] (b) Hyperbolic tangent. Retrieved from [28] 

Figure 3.2: Non-l inearity activation functions 

In recent years the Rectif ied L inear Un i t (ReLU) became very popular. R e L U computes 
ReLU(x) = max(0,x) (Figure 3.3a), which means that act ivat ion is thresholded at zero. 
Unl ike R e L U ' s predecessors, R e L U doesn't rely on expensive mathemat ica l operations and 
its implementat ion is feasible by simple thresholding of the matr ix of activations at zero. 
R e L U is prone to dy ing out dur ing the t ra in ing stage. Th i s issue occurs when a large 
gradient flowing through a neuron updates neuron in such a manner, that it causes the 
neuron to never activate on the arr ival of any data. This makes the flowing gradient 
through the neuron forever equal to zero. 

Leaky R e L U was created in order to solve the dy ing out of neurons i n the previous 
version. Th is approach doesn't threshold activation at zero for negative inputs. However, 
uses a smal l positive slope a. Leaky ReLU(x) = max(ax, x) shown at (Figure 3.3b), where 
a is smal l constant that prevents, neurons from dying. The performance of this approach 
is not consistent, although if used correctly, it can prevent parts of the network from dying 
out. 

- 3 - 2 - 1 0 1 2 3 - 3 - 2 - 1 0 1 2 
(a) ReLU (b) Leaky ReLU 

Figure 3.3: Compar ison of R e L U activation functions 

3.2.1.2 Neura l Networks 

Neural networks are made up of collections consisting of neurons, which are joined i n acyclic 
graphs. N N s are often modeled into layers of neurons. The most common type of layering 
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neurons is the usage of a fully-connected layer. W i t h this approach, neighboring layers are 
fully connected, however neurons w i th in a single layer share no connections at a l l . 

Fu l ly connected N N s use three types of layers. N-layer feed-forward neural networks 
consist of one input layer, N-2 hidden layers, and a single output layer. Single-layer N N s 
do not contain hidden layers, thus inputs are directly mapped onto outputs (Figure 3.4b). 
In figure (Figure 3.4a) is shown simple 2-layer feed-forward neural network. Th is network 
takes three inputs (xl, x2, x3), producing a single output. The Inputs and outputs are 
chosen based on the given problem. However, the number of neurons w i th in hidden layers 
is provided by the design of the network [10]. 

(a) Two-layer feed-forward neural network (b) Single-layer feed-forward neural network 

Figure 3.4: Examples of Feed-for ward Neura l Networks 

3.2.2 C o n v o l u t i o n a l A rch i t ec tu re s 

Convolut ional neural networks (ConvNet, C N N ) are commonly used in image recognition for 
their abi l i ty on complex images. C N N s consist of mult iple neuron layers, where each neuron 
computes weights by non-linear operations depending on the previous layer's outputs. These 
layers consist of mostly convolutional layers, pool ing layers, and fully-connected layers. [21] 

3.2.2.1 Convolution layer 

2D Convolut ion is a simple operation, which takes a set of weights and multipl ies it w i th 
input. A set of weights is represented by a kernel filter, which slides over the input image 
matr ix , performing mult ip l icat ion w i th current overlapping input, summing it a l l up into a 
single output pixel [22]. 

The convolution layer uses kernel filters, computing the convolutional operations. Kerne l 
filters contain the same dimensions mostly 3x3. However, these dimensions can be larger 
as long as they don't exceed input image dimensions. Depending on the size of the filter, 
features w i l l get extracted from the input image. Larger filter sizes are likely to miss out 
on the important features of the image and are more prone to producing noise inside the 
output matr ix . Parameters of these filters are learned throughout the tra ining process. 
Kerne l filter traverse through the input image depending on its stride. 

In figure (Figure 3.5), input image dimensions are 4x4, while the kernel filter dimensions 
are 3x3, this creates 2x2 output matr ix . Stride is equal to one, this means that after 
calculat ing the first value (red), the kernel filter posit ion is right-shifted by one, getting the 
next value (orange). 
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3.2.2.2 Pooling layer 

Pool ing layers are used in-between successive convolutional layers. These layers reduce the 
spatial size of the image to cut down on computat ion w i th in the network. The most common 
form of pool ing layer is the usage of a 2x2 filter w i th the stride of 2 (Figure 3.6). W i t h this 
approach, the M A X operation is used to get downsized values. In the past operations such 
as average pool ing were used, but have recently fallen out. 

1 4 

5 2 

7 10 

12 4 

7 8 

5 19 

10 25 

6 8 

2x2 
Max-pooling 

5 12 

19 25 

Figure 3.6: M a x pool ing example 

3.2.2.3 Fully-connected layer 

Fully-connected layer takes outputs of preceding layers as input. The main task of this 
layer is to collect previous features and perform logical operations on them. The results 
of these operations provide the final decision. A lgor i thms based on deep learning are split 
into two and one-stage detectors. 

3.2.3 Two-Stage Detectors 

This approach divides detection into region proposal and classification stages. In the first 
stage, several object candidates are located, using reference boxes. These objects are also 
known as regions of interest (Rol ) . In the second stage, these regions are classified and their 
local izat ion is furthermore refined. [2] 
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3.2.3.1 R - C N N 

Region Convolut ional Neura l Network (R -CNN ) paved the way for the two-stage convolu-
t ional neural network (CNN ) object detection.[30] R - C N N consists of three modules. The 
first module generates category-independent region proposals from the input image. These 
proposals define a set of available candidate detections for a detector. F r om each region 
is extracted a fixed-length feature vector using C N N which forms the second module. The 
last module is a set of class-specific l inear support vector machines also known as SVMs.[8] 

R-CNN: Region-based Convolutional Network 

no. 

1. Input 2. Extract region 3. Compute 4. Classify 
image proposals (~2k) C N N features regions 

Figure 3.7: R - C N N . Retrieved from [8] 

3.2.3.2 Fast R - C N N 

Fast R - C N N was created by the same author as the previous paper R - C N N . Th is method 
focuses on the drawbacks of R - C N N in order to create a more sophisticated object detection 
algorithm. The difference between these methods is the approach of feeding input images to 
C N N . Unl ike in R - C N N whole input image is fed to C N N in order to generate a convolutional 
feature map. R o l are pul led from obtained feature map which is then reshaped into fixed 
size, using R o l pool ing layer so that they be fed into fully connected layers. The softmax 
layer predicts the class of the proposed region-based of R o l feature vector. R o l feature 
vector is also used to get offset values of the bounding box. Fast R - C N N is much faster 
than R - C N N because convolution operation is done once per image. [9] 

Figure 3.8: Fast R - C N N . Retrieved from [9] 

3.2.3.3 Faster R - C N N 

Faster R - C N N does not rely on selective search to find out regional proposals. Unl ike pre
decessors, this method uses a separate network to predict region proposals on convolutional 
feature maps. [18] A s a result of this improvement, this method is applicable to real-time 
object detection. 
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3.2.4 One -Stage Detectors 

Unl ike the two-stage detector approach one-stage, the detector contains a fully convolutional 
network that direct ly provides bounding boxes and object classification. The approach 
eliminates regional proposal generation. 

3.2.4.1 S S D 

SSD (Single Shot Mu l t i box Detector) (Figure 3.10) uses ideas from the regional proposal 
network from Faster R - C N N and multiscale convolutional features from the Y O L O algo
r i thm. SSD operates s imi lar ly to Y O L O by predict ing a fixed amount of bounding boxes. 

S S D 

Input 
Image 

SDttntioij F o r Each Spatial 
Location 

•
MultiClass 
Classification 

;rj & I M >ii-:- I >••>*• 
Repressor \ 
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Location 

MultiClass 
Classification 

n Bounding Box 
y Releasor 

Extract Features Feature 
Maps 

C O N V Feature 
Layers Maps 

C O N V 
Layers 

Feature 
Maps 

Detecting al Mi I.: v i . k Feature Maps 

Figure 3.10: SSD algor i thm. Retrieved from [12] 

3.2.4.2 Y O L O 

Y O L O (You Look On ly Once) (Figure 3.11) is an anchor-based algor i thm that divides the 
input image into SxS gr id. For each grid are predicted bounding boxes and probabil it ies. 
Predict ions are encoded as tensor SxSx(5B + C ) . Y O L O algor i thm may experience issues 
while detecting a smal l object, because of the coarseness of gr id division. 
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Figure 3.11 Y O L O algor i thm. Retrieved from [12] 

3.2.4.3 Y O L O v 5 

Y O L O v 5 is the most recent version of the Y O L O algor i thm. However, this version of the 
algor i thm was proposed by different authors compared to the previous versions of the algo
r i thm. This a lgor i thm was presented just a month after the release of the Y O L O v 4 version 
in A p r i l 2020. A s of today, the paper on Y O L O v 5 by the creators is yet to be published. 
The architecture of this method can be displayed using the tensorboard. Based on the 
availabil ity of the architecture, papers by many researchers were proposed. The details 
of the architecture were described w i th in the [14] paper, which compares the efficiency of 
Y O L O models, specifically the Y O L O v 3 , Y O L O v 4 , and Y O L O v 5 model. 

The Y O L O v 5 util izes PyTo rch instead of the previously used DarkNet . The architecture 
of Y O L O v 5 is formed by the backbone, neck, and head of the model. 

The backbone of the model utilizes the extraction of important features from the given 
input image. The backbone of Y O L O v 5 was represented by CSPDarkne t53 . The ut i l i zat ion 
of this backbone solves repetitive gradient information in large backbones by integrating the 
gradient changes into a feature map, thus reducing the speed of inference while increasing 
accuracy and reducing the size of the model. [14] 

The model's neck is mainly used for the generation of feature pyramids. The usage of 
feature pyramids helps the model to efficiently generalize object scaling, thus giving the 
model abi l i ty to correctly identify the same object of different sizes. The Y O L O v 5 uses the 
path aggregation network (PANet ) , i n order to increase information flow. The information 
flow is obtained by PANe t ' s feature pyramid network ( F P N ) , inc luding bottom-up and top-
down layers, which improves the propagation of low-level features w i th in the model. This 
provides an increase in the accuracy of the object local ization. 

The head of the model is the same as proposed w i th the Y O L O v 4 and Y O L O v 3 methods. 
The model's head mainly covers the final detection part by apply ing the anchor boxes onto 
the feature, while generating the final output vectors w i th class probabil it ies, objectness 
scores, and bounding boxes. The Y O L O v 5 ' s head generates three different outputs of 
feature maps, achieving multi-scale predict ion. Th is allows the model to efficiently predict 
smal l to large objects. 

The Y O L O v 5 takes the input image and feeds it into the CSPDarkne t53 , i n order to 
achieve feature extraction, which w i l l be then fed into PANe t , achieving the feature fusion. 
The fused features are then passed into the Y O L O layer, generating the predicted results. 

The Y O L O v 5 util izes Leaky R e L U and sigmoid as act ivat ion functions. The Leaky 
Re lu is used in combination w i th hidden layers, while the sigmoid is implemented w i th in 
the f inal detection layer. 
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Chapter 4 

Proposed Approach 

The proposed approach of this paper is to detect moving objects w i th in the frame, followed 
by the decision of whether the classified object falls into the drone category or not. The 
goal of this approach is to merge existing algorithms in a way, which produces a method 
specific for the detection and classification of drones depicted in different settings. 

Detection and classification are split into two different modules. The first module han
dles the detection of drones using feature-based detection methods, while the other module 
uses C N N architectures in order to classify these previously detected objects. 

These modules w i l l be implemented w i th in the script, which w i l l take the inputs in form 
of a real-time camera stream or recordings. Proposed detection and classification w i l l be 
then applied to these input frames, resulting in the p lot t ing of the detected and classified 
objects bounded by boxes. 

The evaluation of the approach w i l l be based on the observations made while experi
menting w i th the appl icat ion of the implemented script onto the evaluation dataset. 

4.1 Dataset 

Dataset used in this paper w i l l consist of mult iple real-life drone videos situated in the sky 
or against different types of backgrounds. Dataset w i l l also depict drones and birds. The 
dataset should include drone, b i rd , and background class. However, this could be expanded 
by aircraft or vehicles, depending on the setting of the recorded video. 

The usage of this dataset w i l l be split into two parts. F i r s t l y the dataset w i l l be used 
in order to t ra in the proposed model. After the tra in ing stage, the model w i l l be deployed 
onto the other part of the dataset, and which results w i l l be then evaluated. 

The first video dataset contains 4 videos each depict ing a different setting. Drones w i th in 
these recordings are up against different backgrounds w i th different kinds of distractions 
w i th in the frame, such as strol l ing people or moving leaves. These videos were filmed on 
the 15th of A p r i l 2022 in B rno - Med lanky in the early afternoon. A t the t ime of the 
recording, the weather conditions weren't the most favorable, which w i l l help the model in 
the end, because these difficulties enable the model to correctly evaluate passed images in 
unfavorable conditions. The recorded drone type D J I Mav i c A i r black was filmed by camera 
Canon 700D using the Canon E F - S 18-55mm lens. The video format of these recordings 
consists of mp4 files i n 1080p recorded at 24 fps using the H.264 codec. 

The second dataset used for evaluation consists of 4 videos too. However, these videos 
were not recorded for this specific thesis, thus only parts of these videos are usable for 
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evaluation. The black drone D j i Matr ice 600 is depicted i n these videos. The videos were 
shot i n 4 K resolution w i th the codec and camera lens being unknown. The recording of 
the dataset took place in June of 2019 in a Czech village called Jince. The main problem 
of these recordings comes w i th the camera movement, which is not applicable for detection 
using the background subtract ion method. 

In order to increase the size of the dataset, videos of b i rds 1 were added to the first 
dataset mentioned above. Th is addi t ional data w i l l help w i th the creation of a more robust 
model, resilient to distract ion wi th in the frame, caused by birds. 

4 .1.1 C N N M o d e l Dataset 

In order for the C N N model to be trained, the model must be provided w i th annotated 
images. These images w i l l consist of the detected objects extracted out of previously men
tioned dataset recordings. The detected objects must be then efficiently annotated. These 
annotated images w i l l be then ut i l ized i n the creation of the tra in ing dataset compatible 
w i th the Y O L O v 5 model. 

4.2 C N N M o d e l 

This approach focuses on the usage of the Y O L O v 5 model (Section 3.2.4.3) as the fully 
convolutional network used for object classification. The Y O L O v 5 is the leader i n real-time 
object classification, based on its speed combined w i th high accuracy. For our approach, 
Y O L O v 5 s is proposed as the go-to model for its speed of classification. Th is is the smallest 
version of the Y O L O v 5 model w i th a size of just 14 M B . Another reason for the ut i l i zat ion 
of this model is the straightforward abi l i ty of tra in ing and deployment. 

The tra in ing of the model can be achieved using the tra in ing scripts provided by the 
G i t H u b repository 2 of the Y O L O v 5 model. The previously mentioned tra in ing dataset w i l l 
be passed onto the script for the model to be trained. 

4.3 M o v i n g Object Detec t ion module 

Background subtract ion and opt ical flow are two candidates for this module. B o t h methods 
come w i th drawbacks. Background subtract ion becomes inaccurate when the detected 
object is close to the moving background which causes false detection. These conditions 
could be caused by clouds and moving leaves of trees. The major drawback of opt ical flow 
is the complexity of its computat ion. Th is complexity must be reduced in order for the 
method to be applied in real-time object detection. 

4.3.1 B a c k g r o u n d sub t rac t ion approach 

Based on [13] the M O G 2 and M O G were best performing out of a bunch. The precision 
of foreground detection was pretty s imi lar among these two algorithms, but there was a 
visible difference in processing time. Based on the paper the processing t ime of M O G 2 was 
supposedly reaching 3 times the processing speed of the M O G algorithm. 

This approach is based on the usage of the M O G 2 subtract ion method mentioned above 
(Section 3.1.1.3). The M O G 2 algor i thm w i l l provide detected objects, which can be then 
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bounded by boxes. For better object extraction, morphological operations such as di lat ion 
and erosion can be used. The detected objects w i l l be then wisely fit for model deployment. 

4.3.2 O p t i c a l flow approach 

The approach w i l l work very s imi lar ly to the background subtract ion method, w i th the 
only difference being the algorithms used for object detection. The Farneback dense optical 
flow (Section 3.1.3.2) w i l l be used for the product ion of the mot ion vectors. These vectors 
w i l l be then encoded into H S V for v isual izat ion purposes. These H S V outputs w i l l be then 
converted into B G R and bounded by boxes, which w i l l represent the detected object. 

4.4 Object Classi f icat ion module 

The classification module w i l l take the outputs from the detection module i n a form of 
cropped-out images. These images w i l l be then pre-processed and passed to the trained 
Y O L O v 5 model. The classification module w i l l be also responsible for the final p lot t ing of 
the classified objects. After the deployment of the Y O L O v 5 model onto the cropped out 
and pre-processed images, the coordinates of the results must be furthermore normalized 
for an accurate bounding of the classified object. The normalized coordinates w i l l then 
provide bounding box coordinates, which w i l l be plotted to the in i t i a l frame, providing 
visible results of the proposed algorithms. 
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Chapter 5 

Implementation 

This part of the thesis concludes the implementation of the previously mentioned approach. 
The python script main.py, using the python version 3.8.10, contains the implementat ion 
of this approach. The step-by-step creation of the dataset used for Y O L O v 5 model tra ining 
is also clarified w i th in the implementat ion chapter. 

5.1 Dataset Crea t i on 

Dataset is created by a python script annotate.py that takes as input video, while out-
putt ing the annotated images of detected objects. The dataset consisted of 1080p record
ings. However, while creating the tra in ing dataset, the scale of these frames was halved 
due to the low performance of the available graphics card, making this process very time-
consuming. This script applies object detection module proposed in previous section (Sec
t ion 5.2). Detected objects are annotated based on argument —name, which determines 
the class of detected objects. The main drawback of this approach is the amount of false 
positive detections of the foreground. Thresholding of the m in imum and max imum area of 
detection by the trackbar can reduce the amount of false positive detections of the fore
ground. Th is approach doesn't erase the issue entirely but decreases it quite a bit . The 
False positive detections are annotated as background class, in order to improve the quality 
of the model. 

5.1.1 Robof iow 

Roboflow t o o l 1 is then used to process annotated images. Images are manual ly checked for 
misplaced bounding boxes, which can be easily fixed using the roboflow label ing interface. 
The Dataset consists of images used for training, val idation, and lastly testing. D is t r ibut ion 
among these folders is 70/20/10 w i th the tra in ing directory containing 70% of a l l the images 
w i th in the dataset. Images used for val idation make up 20% and the remaining 10% is 
represented by tra in ing images. 

5.1.1.1 Pre-processing 

Roboflow offers pre-processing features such as image resizing. For ConvNet 's abi l i ty to 
perform classification, images must be multiples of 32. Wh i l e testing various models and 
image sizes the 64x64 dimensions has shown superior results in comparison w i th other 

x
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resolutions. W i t h i n pre-processing stage, images can be static cropped or turned into 
grayscale, to reduce the computat ion. However these pre-processing tasks are not needed, 
since the median dimensions of the dataset are 23x15 pixels, hence the computat ion is 
rather low. 

5.1.1.2 Augmentat ion 

Image augmentation increases learning diversity for the model. Augmentat ion can be per
formed while t ra in ing or direct ly v ia roboflow. Us ing bui l t - in augmentation decreases the 
actual t ra in ing t ime of the model. Roboflow supports image augmentations such as image 
rotations, blur, and random noise. The option used for our dataset is the gray-scale option. 
Gray-scale augmentation is applied to 25% of the dataset. Th is augmentation provides a 
more robust model, giving the model chance to classify drones depicted in various settings. 

5.1.2 Dataset M e t r i c s 

The dataset created w i th the usage of the roboflow too l consists of 7271 images out of 
which 2692 represent drones, 2404 birds, leaving the last 2175 examples of background. 
The median image size is 23x15 pixels, meaning that the images are rather tiny. 

The generated version of the dataset using the pre-processing and augmentation men
tioned before produces 11690 images, creating the actual number of images used for training. 
These values are split up a three-way, i n the same manner as mentioned above, but w i th 
different percentage d istr ibut ion than before. The different d istr ibut ion is caused by the 
augmentation process which does not apply augmentation equally onto each image, pro
ducing nearly 82% of images for training, 12% for val idation, leaving just 6% for the testing 
stage. 

For the dataset to be compatible w i th the Y O L O v 5 model, the dataset must contain 
annotations i n text format. These annotations in text format obtain space split values 
specifying the c l a s s _ i d center_x center_y width height of the annotated image. The 
dataset must contain configuration as yaml file, which specifies number of classes by nc 
and w i th list of the classes names by names. Th is configuration also set the path of the 
folder containing images meant for training, setting the t r a i n value. The same applies to 
val idation, which is set up using val. Each of these folders must contain two addit ional 
folders images and labels. The images folder as the name states includes images, while 
the annotations i n text format are w i th in labels folder. 

5.2 Object detect ion module 

As proposed in the approach, opt ical flow and background subtract ion were both candidates 
for implementat ion. Wh i l e implementing both methods, the opt ical flow processing time 
was significantly higher than the processing t ime of the background subtract ion method. 
The ma in drawback of the dense opt ical flow was the trouble w i th the recognition of smaller 
objects. The solution to this problem could have been done by up-scaling of the frame, 
resulting i n even higher computations, and causing an increase i n the processing time. 

Depending on these findings, the object detection module utilizes the M O G 2 background 
subtract ion algor i thm based on the Gaussian mixture model. The implementat ion of this 
method is available w i th in the O p e n C V l ib rary 2 . 

2

https: / / opencv.org/releases/ 
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The detection module uses the implementat ion of the M O G 2 background subtract ion 
algor i thm in order to detect moving objects. W i thout any pre-processing of the frame, 
the detected objects would contain a lot of noise, therefore before the detection of the 
objects takes place, a background subtractor is created and stored i n mog2Subtractor 
variable using the O p e n C V l ibrary method createBackgroundSubtractorM0G2 (200, 150, 

False), where the first parameter represents the length of the history of the background. 
The threshold of a decision on whether the pixel is well described by the background model 
is set using the second parameter, while the last parameter decides whether the shadows of 
the detected object w i l l be marked. The pre-processing of the frame and actual detection 
of the moving objects is implemented w i th in the objectDetection function, which takes 
the actual frame as input along w i th the scale value, which alters the scale of the frame. 
The mog2Subtractor is then applied to the resized frame. 

In order to decrease the amount of noise, morphological operations such as erosion and 
di lat ion are applied to the subtracted frame. The erosion is applied using the O p e n C V 
morphologyEx method, using the ellipse w i th the kernel size based on the value of Kernel 
Size trackbar, which is accessible at the bot tom of the plotted output. The in i t ia l value of 
kernel size is set to (1,1), but this value can be changed using the —ksize argument, which 
takes the values ranging from 1 to 15. After the erosion, two-step di lat ion continues, where 
the first d i lat ion achieved by O p e n C V d i l a t e method, uses square-shaped kernels w i th the 
size of (7, 7) i n 3 iterations, followed by the second d i lat ion carried out by the previously 
mentioned O p e n C V method morphologyEx, using the circle-shaped kernels w i th the size of 
(25, 25). The other noise reduction method is based on the thresholding of the m in imum 
area of the detected object. Th is thresholding is applied i n real-time ut i l i z ing the trackbar 
at the bot tom of the frame w i th the default value of three. However, the in i t i a l value can 
be set using the — a argument. 

The detected objects must be then bounded ut i l i z ing the found out contours by the 
O p e n C V findContours method. The contours are then processed in order to produce 
bounding box coordinates using the O p e n C V boundingRect method. Wh i l e i terating over 
these coordinates, detected objects are cropped based on these values and stored w i th in 
the c r o p _ l i s t l ist. The r e c t _ l i s t list contains the bounding box coordinates of detected 
objects. The number of detected objects w i th in the frame is stored i n the cnt variable. 

The c r o p _ l i s t , r e c t _ l i s t and cnt variables along w i th the scaled frame are then 
returned out of the objectDetection function back into ma in program. 

5.3 Tra in ing of the M o d e l 

The tra in ing of the model was achieved using the roboflow's and google collab's template 3 . 
Th is template contains a basic run-through of the Y O L O v 5 tra in ing process. The tra ining 
process using the template focuses on the usage of Y O L O v 5 scripts while adding the abi l 
ity to easily import datasets using the roboflow tools. Us ing v i r tua l G P U available from 
google collab, allows you to actively use your device, without straining your G P U . Th is also 
comes i n handy, while working on a device missing G P U , hence the tra in ing t ime increases 
immensely. 

F i rs t of a l l , the script clones the Y O L O v 5 G i thub repository 1 and installs dependencies 
stored w i th in requirements.txt file, using pip command. After instal lat ion of a l l depen-

3

https://colab. research. google.com/drive/lgDZ2xcT0gR39tGGs-EZ6i3RTsl6wmzZQ  
4

https: //github.com/ultralytics/yolov5 
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dencies, the dataset needs to be imported using the roboflow library, which serves as a tool 
for dataset import ing . Roboflow takes the A P I key in order to access the dataset and im
ports it into collab's directory. Before tra in ing takes place, the model size must be chosen. 
The larger the model, the more G P U memory it requires. The detection is also slower, 
although the precision i n recognition also increases. Wh i l e t ra in ing this model, Y O L O v 5 s 
was used. Th is is the smallest version, thus the fastest version. The usage of this model 
provides low classification t ime recognition, needed for real-time object classification. The 
model type w i th its values is defined as yaml file, which w i l l be passed to the tra in ing script. 

The train.py is a python script, which handles the tra in ing of the model. Th is script 
is available in the Y O L O v 5 G i thub repository and works w i th several arguments. In order 
for the script to work —img argument was used to define the size of the input images. A s 
mentioned in the previous section, the dataset consists of 64x64 images, so the argument was 
set to 64. Then the —batch argument was used to specify the size of the batch of images 
evaluated at the same t ime. Th i s was set to 24, so the tra ining t ime was lowered. The 
number of tra in ing epochs is set using the —epochs arguments, for this case 130 was used 
because addi t ional epochs would improve the coarseness of the model just sl ightly while 
increasing the tra in ing t ime by a lot. The —data argument takes the previously mentioned 
dataset configuration file. The defined model w i th in yaml file is passed to script, using the 
— c f g argument. The last argument used while t ra in ing was —name, which specified the 
name of the output folder of the tra ining. The output of this script is the trained Y O L O v 5 s 
model, which takes up roughly 14 M B . 

5.4 Object Classi f icat ion M o d u l e 

As mentioned before, the object classification module is implemented w i th in the main.py 
script. Before the classification takes part, the trained model needs to be deployed using the 
P y T o r c h 0 method for inference of the pre-trained models. The torch.hub. load() method 
takes the Y O L O v 5 G i thub repository as the first parameter, while the model parameter is 
equal to the str ing 'custom', which i n our case specifies the usage of custom pre-trained 
Y O L O v 5 model for deployment. The source parameter provides the path to the locally 
stored pre-trained model. 

Before the classification of the detected objects, the object must be resized to 64x64 
for model to correctly perform classification. The resized frames are then passed to the 
scoreFrame function, using the im parameter, which evaluate the frame, while saving the 
results as the DataFrame object df available from pandas. DataFrame values are then 
thresholded using the confidence values set up by the —conf argument of the main.py 
script. The output of this function consist of labels, coords, confidence, representing 
the labels, coordinates and confidence values of the classified objects. 

The number of classified labels determines the number of iterations for the actual plot
t ing of the classified objects onto the Or ig ina l video frame. For an algor i thm to be able 
to plot the bounding boxes based on the coordinates results provided by classification, the 
coordinates must be scaled using the original coordinates of the detected object. 

The scaling of the coordinates is achieved by cordCalculations functions, which take 
the in i t i a l coordinates of the detected object, a ratio of the frame scaling used to reach 64x64 
frame size, and coordinates produced by classification. These values are then normalized 
to fit the original frame and returned back to the main program. 

5
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The plott ing of the bounding boxes is carried out by plotBoxes, which takes the clas
sification label, confidence values, and normalized coordinates. Based on these normalized 
coordinates rectangle is plotted using the O p e n C V rectangle method w i th addit ional text 
plotted by O p e n C V putText method consisting of the class name and confidence value in 
the top left corner of the rectangle. 
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Chapter 6 

Evaluat ion 

The abi l i ty to evaluate the performance of the presented method is essential. Th is chapter 
firstly describes the evaluation of t ra in ing of the Y O L O v 5 model, but also the deployment 
of this model and its abi l i ty to perform in object detection and its further classification. 

6.1 M o d e l Eva lua t i on Me t r i c s 

In order to evaluate the model, we need to define evaluation metrics. These metrics often 
called classification metrics, represent the possible outcomes that can occur. These four 
outcomes are True positives, True negatives, False positives, and last but not least False 
negatives, representing: 

• True positives (tp) - occurs when model correctly predicts the positive class 

• True negatives (tn) - occurs when model correctly predicts the negative class 

• False positives (fp) - occurs when model incorrectly predicts the positive class 

• False negatives (fn) - occurs when model incorrectly predicts the negative class 

These metrics are then furthermore used to evaluate more coarse evaluation metrics. 

6.1.1 Con fus i on M a t r i x 

The evaluation of the model based on the confusion matr ix takes the count of correctly 
and incorrectly predicted classes in order to evaluate the model. These values are based 
upon the previously mentioned metrics. These computed values give more insight into the 
quality of predict ion for each class. The confusion matr ix is then furthermore used for the 
measuring of other metrics, clarified w i th in the upcoming section. 

6.2 Numer i ca l Me t r i c s 

Numer ica l metrics perform an evaluation of the model based on a single number. These 
numbers range from 0 to 1, where 0 represents the worst rat ing and 1 flawless score. Among 
these metrics are Accuracy, Precision, Recal l , and F-score. 
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6.2.1 A c c u r a c y 

Accuracy (Eq. 6.1) represents the ratio of corrected predictions to the to ta l number of 
predictions. This method is rather simple, therefore w i th many classes of inconsistent 
extent, this metric loses validity. Th is approach can give a false sense of achieving high 
accuracy. Th is issue occurs w i th false classifications of smaller populated classes. A solution 
to this drawback can be reached using the approach of a balanced accuracy metric. 

Accuracy = — (6-1) 
tp + tn + jp + jn 

6.2.2 P rec i s i on 

Precision (Eq. 6.2) computes the proport ion of correctly predicted predictions of positive 
class to a l l positively classified predictions. Th is metric focuses on the abi l i ty of a model 
to not make mistakes while classifying an object as positive. 

Precision = (6.2) 
tp + fp 

6.2.3 Reca l l 

Recal l (Eq. 6.3) represents the ratio between the predictions which were predicted to belong 
to a class while respecting the predictions that t ru ly belong in the class. This metric depicts 
the abi l i ty of a model to recognize objects which should be classified as positive. 

Recall = —̂— (6.3) 
tp + fn v ' 

6.2.4 F l - s c o r e 

The usage of previously mentioned metrics Reca l l and Precis ion is not really common. 
However, these two metrics combined provide a metric called F\ — Score (Eq. 6.4), which 
gives valuable insight into the performance of the model. Th is metric determines the opt imal 
ratio between Reca l l and Precis ion since the increase in Reca l l lowers the Precis ion values 
and vice versa. 

precision • recall 

Fi = 2- y—— 77 6.4 
precision + recall 6.2.5 P r ec i s i on -Reca l l C u r v e 

The relationship between precision and recall mentioned before can be plotted w i th the 
usage of the precision-recall curve. The behavior of this curve is dependent on the value of 
the threshold for object detection. W i t h higher threshold values, the precision increases, 
while the recall lowers. However, w i th lower threshold values, the precision goes down, which 
can lead to false detection. Wh i l e using well-trained models, the lowering of the threshold 
can have l i tt le to no impact on the amount of false detection, keeping the precision high. 

6.3 Object detect ion Me t r i c s 

For the detection of the objects w i th in a frame, a different set of metrics must be provided. 
The essential metric is Intersection over Un ion or shortly ( IOU). 
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6.3.1 G r o u n d t r u t h 

Ground t ru th represents the ideal output of the proposed a lgor i thm however it can be 
defined as the standard used for the evaluation of the algor i thm. In object detection and 
classification, ground t ru th can be displayed by bounding boxes or masked-out objects. The 
closer outputs are to the ground t ru th , the better performing algor i thm. Ground t ru th can 
be used in order to evaluate different metrics, which can provide a better assessment of the 
algorithm. 

6.3.2 I o U 

The essential metric using the ground t ru th is IoU. Whi l e detecting objects, previously 
mentioned metrics cannot provide information about the detection and classification w i th in 
the frame however this metric focuses on the comparison of the ground t ru th w i th the 
predicted outputs. The main goal of this metric is to determine whether the predicted 
outcome is true positive or false positive. The IoU (Figure 6.1) shows the amount of the 
overlap between the predicted bounding box and ground t ru th , where the numerator is the 
overlapping area of the predicted bounding box and ground t ru th , while the denominator 
represents the united area of both the predicted bounding box and the ground t ru th . 

Area of 
Overlap 

IoU= 

Area of 
Union 

Figure 6.1: Intersection over Un ion for object detection 

6.3.3 Average P rec i s i on ( A P ) 

The plot t ing of the Precis ion-Recal l curve is t ime-consuming, meaning that the usage of 
this metric to evaluate the model is not opt imal . Average precision is used instead of the 
curve, by finding the area under the precision-recall curve. W i t h higher curves, the area is 
also greater, making the A P also higher, creating a better-performing model. 

6.3.4 M e a n Average P rec i s i on ( m A P ) 

Mean average precision is achieved by averaging the precision among classes. The m A P is 
often computed w i th specific IoU thresholds. The m A P s calculated among specific threshold 
values are labeled in such a manner m^4P@0.95, where 0.95 equals the IoU threshold value. 

6.4 Eva lua t i on of the Tra ined M o d e l 

This section takes look at the evaluation of the trained model, apply ing the previously 
mentioned evaluation metrics. The Y O L O v 5 tra in ing python script train.py plots graphs 
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depicting the evaluation metrics. The whole process of t ra in ing consisting of 130 epochs 
took 1 hour, 47 minutes, and 56 seconds. 

6.4.1 Con fus i on M a t r i x 

The confusion matr ix produced by the Y O L O v 5 (Figure 6.2) is a normalized confusion 
matr ix , which displays the percentage of correctly predicted classes. The confusion matr ix 
also depicts the false positive (FP ) background predict ion, not to be confused w i th the 
background class. Th is value represents the predict ion of the „background", which i n this 
case is a positive predict ion of an object, which does not belong to the presented classes of 
the model. The background class caused the most false positive (FP ) „background" predic
tions w i th 48%, which is to be expected when the actual background class is very similar 
to the Y O L O v 5 „background" prediction. The 29% of the F P „background" predictions 
were caused by the b i rd class, while the b i rd images i n the sky can be easily mixed up w i th 
the sky as background, leading to F P predict ion. The remaining 25% were caused by the 
drone images. Regarding the abi l i ty to correct class predictions, the accuracy of the trained 
model is close to being perfect. These values are depicted as the diagonal of the matr ix . 
The accuracy of the b i rd and drone predict ion was really high w i th an accuracy of 99%. 
The background class predict ion was shy of the 99%, however w i th s t i l l a respectable 98%. 
The confusion regarding the presented classes occurred w i th the background and drone 
class in 1% of the situations. 

- 0 . 2 

-1-u c 
O 0.02 

background bird drone background FP 
True 

Figure 6.2: Confusion M a t r i x of Trained Mode l 
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6.4.2 P rec i s i on and Reca l l Co r r e l a t i on 

As explained in numerical metrics (Section 6.2), w i th the increasing values of precision the 
recall values are lower. In the (Figure 6.3a), the precision values grow, w i th the increase 
of the confidence threshold. The peak precision among a l l classes is reached w i th the 
confidence threshold value of 0.972, meaning that 100% of the predictions were correct w i th 
the confidence value of 97.2%. According to this graph, the precision of b i rd predict ion was 
rather high, compared to drone prediction, which was around 60% for the confidence values 
in the range [0.25, 0.92]. 

As for the recall of the model (Figure 6.3b). W i t h the confidence value of 0, the recall 
peaks, resulting i n many false negative predictions, since the value of precision is low, close 
to being zero. 

The correlation of precision and recall among presented classes can be observed at 
(Figure 6.3c), where the x-axis represents the precision of the trained model, while the y 
axis represents the recall. These precision and recall values represent the model predict ion 
w i th the overlap value of 50%. 

— background 
bird 

— drone 
— all classes 1.00 at 0.000 

0.0 0.2 0.4 0.6 0.8 l.C 
Conf idence 

0.0 0.2 0.4 0.6 0.8 1.0 
Conf idence 

(a) Precision Curve (b) Recall Curve 

background 0.973 
bird 0.995 
d rone 0.987 
all c lasses 0.985 mAP@0.5 

0.0 0.2 0.4 0.6 0.S 1.0 

Recall 

(c) Precision-Recall Curve 

Figure 6.3: Depict ion of the Evaluated Metr ics 
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6.4.3 F l - S c o r e analysis 

Based on the (Figure 6.4) the confidence value responsible for the opt imizat ion of precision 
and recall among a l l classes is equal to 0.938, w i th the peak F l -Score value of 0.92. In most 
cases, the high F l -Scores w i th high confidence values are desired in order to evaluate the 
model as well-performing. Based on these observations, the quality of the model is quite 
high, since the performance of the model starts to suffer at fairly high confidence values. 

Confidence 

Figure 6.4: F l -Score Curve 

6.4.4 E v a l u a t i o n Based o n the N u m b e r of E p o c h s 

The development of the evaluation metrics throughout the tra in ing (Figure 6.5) depicts 
three metrics, precision, recall, and last but not least m A P for IoU of 50 and 95%. The 
precision values were first maximized at around 20 epochs of t ra in ing however for recall 
to peak, it took close to 60 epochs. The m A P w i th 50% overlap stayed nearly the same, 
changing ever so sl ightly after peaking at 55 epochs. Th is wasn't the case w i th 95% overlap, 
where the results were not consistent throughout the whole tra ining phase while peaking 
at around 0.35 m A P . 
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Figure 6.5: Tra in ing Results of the Mode l based on the Number of Epochs 

6.5 Eva lua t i on of Object Detec t ion M o d u l e 

This section concludes the evaluation of the object detection module ut i l i z ing the M O G 2 
background subtract ion method onto the dataset. Since the second evaluation dataset 
wasn't created specifically for this approach of object detection, it is easier to depict the 
drawbacks of this approach. 

6.5.1 Impact of M o r p h o l o g i c a l Ope ra t i ons 

Based on the performance observations of the module, the morphological operations, par
t icular ly the d i lat ion w i th the kernel size of (25, 25) influence the computat ion t ime quite 
heavily. The appl icat ion of the morphological operations onto subtracted foregrounds shown 
in the (Figure 6.6), depicts the importance of these morphological operations. The di la
t ion provides filled images as a whole, without segmentation shown at (Figure 6.6a). The 
segmentation w i th in the image leads to the inaccurate bounding of the detected object. 
The (Figure 6.6b) showcases the usage of erosion followed by d i la t ion i n order to produce a 
robust image for an accurate finding of contours, essential for the correct bounding of the 
object. 
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(a) M 0 G 2 results without Processing (b) M O G 2 results with Processing 

Figure 6.6: App l i ca t i on of Morphological operations 

6.5.2 F r a m e Scale Influence o n De tec t i on 

The influence on the detection of the objects, based on the resolution scale is quite smal l 
however observable. The higher the resolution, the more noise arises. The noise can be 
then bounded as a detected object, producing more objects for classification, thus addit ion
ally weighing down the computat ion of the model. W i t h higher resolutions comes higher 
computat ion, since the number of pixels increases. This means that w i th a higher amount 
of pixels, more Gaussians are needed for the background subtract ion. The combinat ion of 
these hindrances slows down the computat ion quite a bit, making the down-scaled frames 
more appropriate for the appl icat ion of the approach. The drawback of the down-scaled 
frames is the abi l i ty to recall objects further away from the camera. 

6.5.3 De t ec t i on M o d u l e Drawbacks 

As mentioned w i th in the theory, the background subtract ion method is used exclusively 
for static cameras, making the deployment of the model onto a moving camera impossible. 
Th is drawback was expected from the beginning however the issue based on the same 
principle occurred w i th the change of the lens focus, shown i n (Figure 6.7). The displayed 
frame (Figure 6.7a) depicts the b lurry frame, which occurred w i th the loss of the lens focus. 
The issue of the sudden change in the frame is interpreted by M O G 2 as a movement of 
an object, thus false detecting the background as foreground (Figure 6.7b). In order to 
minimize the amount of noise, the kernel size used for erosion is increased, thus erasing 
the noise. However, w i th bigger erosion kernels, the l ikel ihood of correctly detected object 
removal is quite high. 

(a) Change of Lens Focus (b) M O G 2 Results of the Frame 

Figure 6.7: Focus Change Influence on the Detect ion Module 
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6.6 Eva lua t i on of Object Classi f icat ion M o d u l e 

The evaluation of the classification module concludes the results of the deployment of 
the trained Y O L O v 5 model onto the outputs attained from the object detection module. 
The performance of the classification is closely related to the performance of the detection 
module since the number of outputs influences the tota l computat ion t ime of the model 
classification. 

6.6.1 D j i M a t r i c e 600 P r o classification 

Whi l e evaluating the dataset depict ing the D J I Matr ice 600 Pro , which wasn't included in 
the tra in ing dataset of the model was used in order to test the coarseness of the model. The 
1080p video available at eval_dataset/untrained.mp4 was passed into the implemented 
script, apply ing the erosion kernel size of (3, 3), without any downscaling of the frame, 
w i th the plot t ing of classifications of m in ima l confidence of 50%. Based on the (Figure 
6.8a) depict ing the 172nd frame, the confidence of the classification for the unknown drone 
was rather low. The observed frame also contains a false-positive classification, one of which 
was caused by the moving clouds and the other was due to some sort of flying insect close 
to the camera lens. The false classification of clouds is caused by the insufficient amount 
of background images depict ing the clouds. Since the images of birds were i n clouds or up 
against a sky, the model classifies the moving clouds as birds. The flying insect is technically 
a false classification however the resemblance to a b i rd is w i th in this frame debatable. The 
classification confidence of the drone w i th in the first half of the video was around 55% 
wi th occasional alternation between background and drone classification. The confidence 
peaked around 70% however after a while the drone moved away from the camera quite a 
bit, making the model unable to classify the drone. The drone was therefore classified as a 
b i rd (Figure 6.8b), depict ing the 289th frame. 

(a) Classification of a Drone (b) Drone classified as a Bird 

Figure 6.8: Classif ication of untrained.mp4 

6.6.2 D j i M a v i c A i r classification 

Three out of the four produced recordings depict ing the D J I Mav i c A i r drone were used 
in the creation of the dataset used for the model tra ining. Leaving the last recording for 
evaluation. The recording is available at eval_dataset/drone_l .mp4. The recording was 
fed to the script in the same manner as in the previously mentioned evaluation. Since the 
drone captured w i th in the frame was the same drone used for the model training, higher 
confidence classification values were expected. The classification values were much higher 
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wi th the D JI Mav ic A i r however the best results occurred w i th the drone being closer to the 
camera (Figure 6.9a). The further away the drone got, the worse confidence values along 
w i th false classifications. The model performed well w i th the drone not being distanced too 
far from the camera, producing consistent classifications w i th fairly decent classification 
values (Figure 6.9b). However, the long-distance detection was inconsistent and highly 
affected by the angle of the drone. The drone w i th in the (Figure 6.9c) was classified as a 
drone w i th the 80% accuracy, although the same drone traversing the frame at a different 
angle w i th a similar distance from the camera got classified as a b i rd (Figure 6.9d) w i th 
the confidence value of 76%, which is rather high. The addi t ion of more tra in ing images 
depicting drones at various angles would increase the accuracy and coarseness of the model. 

(a) Close up Drone Classification 

(c) Long Distance Drone Classification 

(b) Medium Distance Drone Classification 

(d) Long Distance False Drone Classification 

Figure 6.9: Classif ication of drone_l.mp4 

6.6.3 C lass i f icat ion M o d u l e Drawbacks 

The issues occurring w i th the classification were caused by the insufficient size of the tra ining 
images. This caused false classifications, mentioned i n previously mentioned evaluation 
scenarios. The issues based on these observations took place when the classification was 
challenged by the unlearned background type. In our case, this was caused by the strol l ing 
people w i th in the frame (Figure 6.10a), which were incorrectly classified as a drone however 
the closer they got to the frame, the more accurate classification was (Figure 6.10b). In this 
case, the quality of the detection influences the further classification of the detected objects. 
Thus w i th insufficient detection of an object, comes inaccurate classifications. Th is is the 
case of the previously mentioned example, the smaller object is, the harder is to detect 
the object as a whole, passing the par t ia l images for classification, producing inaccurate 
classifications. 

(a) False Classification of Background (b) Correct Classification of Background 

Figure 6.10: Classif ication Inaccuracy Based on Camera Distance 
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6.7 Performance of the Approach 

The performance of the approach was in i t ia l ly tested on W S L 2 using Ubun tu however the 
subsystem w i th the usage of C U D A gave skewed results. Based on this, the performance 
was evaluated using the V i s u a l studio 22 PyTorch environment. Wh i l e evaluating the 
performance of the approach, the used G P U was G T X 1060 3 G B , while the C P U was 
the i5-7600K. Eva luat ion of performance was based on the previously mentioned video 
available at eval_dataset/untrained.mp4, since the length of the video is rather smal l , 
which cuts down the amount of t ime spent running the experiments. The evaluated video 
in 1080p depicts 30 frames per second w i th a length of 1 minute and 1 second. The 
performance evaluation using the untrained.mp4 recording, summarized at (Table 6.1), 
shows the influence of the input arguments on the performance. Based on these results 
the usage of C P U performed better than G P U . Th is was caused by the complexity of the 
computat ion. Since this approach works w i th the smallest Y O L O v 5 model consisting of 
232 layers, the C P U computes the classifications more efficiently than G P U . The resized 
frame made up 64% of the original frame, achieved by setting the (—s) argument to 0.8. 
The average amount of detections per frame decreased based on the erosion kernel size. 
W i t h a higher kernel size being applied onto lower scaled frames, the number of detected 
objects is lower. Th is could cause a decrease i n the false detections however this could 
also result i n the removal of the observed object from wi th in the frame. The experiments 
also showcase that the kernel size influences the runt ime of the script. Since the amount of 
detected objects is lower, fewer classifications are performed, thus the runt ime of the script 
also lowers. 

Resolution G P U / C P U Kerne l Size Average F P S Average Detections W a l l T ime 

1080x1920 C P U (3,3) 16.47 0.56 2:56 

864x1536 C P U (3,3) 16.13 0.40 2:59 

1080x1920 C P U (1,1) 16.02 1.00 3:01 

864x1536 C P U (1,1) 15.81 0.89 3:00 

1080x1920 G P U (3,3) 14.21 0.56 3:21 

864x1536 G P U (3,3) 14.21 0.40 3:20 

1080x1920 G P U (1,1) 11.49 1.00 3:59 

864x1536 G P U (1,1) 12.18 0.89 3:46 

Table 6.1: Performance Eva luat ion of the untrained.mp4 recording 
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Chapter 7 

Conclusion 

This paper proposes the approach of drone detection and classification method, which can 
be applied to real-time camera streams or recordings. The approach utilizes the background 
subtract ion method w i th the usage of Gaussian mixture models, while the classification is 
achieved using the C N N neural networks ut i l i z ing the Y O L O v 5 model architecture. 

The implemented background subtract ion method is the M O G 2 algor i thm available w i th 
O p e n C V . W i t h this approach, the O p e n C V focused on C P U ut i l i zat ion in order to detect 
the foreground. The usage of O p e n C V w i th C U D A could possibly provide better frames per 
second however the current implementat ion performs better using C P U , meaning that the 
user can achieve results w i th the system operating without a graphics card. The instal lat ion 
process of O p e n C V w i th C U D A support is rather complicated. The performance of the 
detection module wasn't quite what was anticipated, but s t i l l sufficient and usable. The 
problems of the M O G 2 occurred w i th the change of camera focus, producing many false 
detections, and slowing down the module heavily. 

The performance of the used model was very high however the evaluation of the model 
doesn't take into consideration the distance between the camera and the detected object. 
The abi l i ty of classification took a hit w i th the drones of different colors, unable to detect 
them. Th is was caused by insufficient t ra in ing since the tra ining was done solely on the 
D J I Mav i c A i r in black color. The issues of classification occurred w i th unlearned drone 
angles, mistaking drones for birds. 

7.1 Proposed Improvements 

In order to improve on found drawbacks, the tra in ing dataset must be increased w i th 
various types of drones in different colors. W i t h the larger amount of drone images, the 
background and b i rd images must be increased in a similar manner. Th is enlargement of the 
tra in ing dataset would provide better classification results. A s for the actual improvement 
of implementation, the passing of the object detection module to the object classification 
module could be done in a more efficient manner. The proposed background subtract ion 
could have been swapped w i th the opt ical flow approach however the usage of O p e n C V 
w i th C U D A would be necessary i n order to provide results applicable for real-time drone 
detection and classification. 
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