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ABSTRACT 
Th is bachelor thesis investigates the issue of sample preparation in the field of microbi
ology and medical diagnostics with an emphasis on the automated robotic system M B T 
Pathf inder, developed by Bruker Dal tonics G m b H & C o . K G . Using digital imaging tech
niques and convolut ional neural networks, the thesis focuses on improving the algorithm 
for identifying the posit ion of microbial colonies in the M B T Pathf inder system. The 
practical part of the thesis presents innovative approaches to opt imize crit ical sample 
preparation steps to el iminate errors and increase process efficiency. The results of this 
work can enhance the reliability of microbiological analyses in medical diagnostics and 
microbiological research. 

KEYWORDS 
petri dish, agar plate, microbial colonies, maldi target, colony picking, image processing, 
convolut ional neural network, laboratory automat ion 

ABSTRAKT 
Tato b a k a l á ř s k á p r á c e z k o u m á problematiku v z o r k o v é p ř í p r a v y v oblasti mikrobiologie a 
l é k a ř s k é diagnostiky s d ů r a z e m na a u t o m a t i z o v a n ý r o b o t i c k ý s y s t é m M B T Pathf inder, 
v y v i n u t ý f i rmou Bruker Dal tonics G m b H & C o . K G . S v y u ž i t í m d i g i t á l n í c h o b r a z o v ý c h 
technik a k o n v o l u č n í c h n e u r o n o v ý c h s í t í se p r á c e z a m ě ř u j e na z d o k o n a l e n í algoritmu 
pro identif ikaci pozice m i k r o b i á l n í c h k o l o n i í v s y s t é m u M B T Pathf inder. P r a k t i c k á č á s t 
p r á c e prezentuje i n o v a t i v n í p ř í s t u p y k opt imal izaci k r i t i c k ý c h k r o k ů v z o r k o v é p ř í p r a v y s 
c í l e m el iminovat chyby a z v ý š i t efektivitu procesu. V ý s l e d k y t é t o p r á c e mohou p o s í l i t 
spolehlivost m i k r o b i o l o g i c k ý c h a n a l ý z v oblasti l é k a ř s k é diagnostiky a m i k r o b i o l o g i c k é h o 
v ý z k u m u . 
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petriho miska, a g a r o v á d e s t i č k a , m i k r o b i á l n í kolonie, maldi t e r č í k , v ý b ě r k o l o n i í , zpraco
v á n í obrazu, k o n v o l u č n í n e u r o n o v á s í ť , l a b o r a t o r n í automat izace 
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ROZŠÍŘENÝ ABSTRAKT 
Tato baka lá ř ská práce se zabývá problematikou automatizace procesu n á b ě r u mikro

biálních kolonií. V oblasti mikrobiologie a lékařské diagnostiky je přesnost a spolehli

vost p ř ípravy vzorků klíčová. Historicky byl tento proces závislý na manuá ln ích pos

tupech vyžadujících vysoce kvalifikovaný personál . Výběr kolonií mikroorganismů a 

jejich př íprava pro další ana lýzu byly časově náročné a vzhledem k opakovatelnosti 

procesu často náchylné k lidské chybě. V reakci na tuto p o t ř e b u byly vyvinuty 

au tomat izované robotické přís troje , k teré minimalizují p o t ř e b u kvalifikovaného per

sonálu. 

Veškeré experimenty v t é t o práci jsou prováděny na zařízení M B T Pathfinder 

společnosti Bruker Daltonics G m b H & Co. K G . Tento přís troj předs tavuje roboti-

zovaný systém, k te rý zajišťuje au toma t i cký přenos mikrobiálních kolonií na M A L D I 

dest ičku a p ř íp ravu vzorku pro nás lednou analýzu pomocí h m o t n o s t n í spektrome

trie. 

Pracovní postup tohoto zařízení začíná vložením Petriho misky do přís troje . To 

může být provedeno manuá lně , ale častěji je využíváno zařízení Feeder pro auto

matické vk ládání misek. Miska je nás ledně vyfocena a v rácena zpě t do přís troje 

Feeder. Následně si uživatel na pořízených snímcích misek vybere kolonie, k teré 

chce nabrat. Kolonie lze vybrat bud manuá lně , nebo je možný p ředvýběr pomocí 

algoritmu využívajícího zpracování obrazu a segmentace. Misky jsou po t é vráceny 

do zařízení a d a n á kolonie je n a b r á n a pomocí přenosové smyčky a nanesena na 

M A L D I destičku. 

Je zde několik kri t ických bodů , kde může dojít k selhání př ís troje . P r v n í m z 

nich je algoritmus pro detekci misky. Pokud miska chybí, ale algoritmus vyhod

not í její p ř í tomnos t , může dojít ke zničení přenosové smyčky. V opačném př ípadě , 

pokud by do zařízení byla vložena miska, ale zařízení by vyhodnotilo, že tam miska 

není, ana lýza misky by nebyla možná . Dalš ím p rob lémem je skutečnost , že při opě

tovném vložení misky do přís troje může dojít k rotaci misky - miska nebude do 

zařízení vložena pod s te jným úh lem jako poprvé. To může vést k n a b r á n í a přenosu 

nesprávné kolonie. Pos ledním kr i t ickým bodem pracovního postupu přís troje je 

výpočet správné pozice vybrané kolonie. V prakt ické části t é to práce jsou jednot l ivé 

algoritmy upravovány a vylepšovány. 

Nejprve jsem si vytvoři la v las tn í testovací datasety, jeden pro hodnocení přes

nosti detekce misek a d ruhý pro hodnocení rotace misek a výkonu vyhledávání polohy 

kolonií. Testovací soubor dat pro detekci misek se sk ládá ze sn ímků pořízených po

mocí přís troje M B T Pathfinder. Obsahuje 30 sn ímků bez misek a 26 sn ímků s 

miskami. Tyto výběry byly pečlivě vyb rány z celkem 2759 vzorků, čímž bylo za

j iš těno zas toupen í různých t y p ů agarů, variací mikroorganismů, misek bez mikroor

ganismů a misek zachycených za různých podmínek osvětlení.Testovací dataset pro 



hodnocení rotace misek a výkonu vyhledávání polohy kolonií byl vytvořen výběrem 

40 vzorků z 3654 dos tupných . Tyto vzorky předs tavuj í jak s t a n d a r d n í vzorky zpra

covávané př ís t ro jem, tak několik vzorků, k te ré dříve představovaly problém. Tento 

soubor zkušebních dat byl navržen tak, aby zahrnoval širokou škálu chování, k te ré se 

může vyskytnout při zpracování vzorků př í s t ro jem M B T Pathfinder. Každý vzorek 

obsahoval 3 obrázky - "Before" o b r á z e k = obrázek pořízený po p rvn ím vložení 

misky do zařízení, "After" o b r á z e k = obrázek pořízený po opě tovném vsunut í 

misky do zařízení a "Centered" o b r á z e k = after o b r á z e k s potenciá lně správ

nou kolonií upros t řed - z důvodu distorze kamery ryb ím okem může být posun misky 

nepřesný, tedy v y b r a n á kolonie nemusí být zcela ve s t ředu. 

Detekce misky byla původně řešena pomocí složité konvoluční neuronové sítě. 

Zjednodušení architektury a úprava p a r a m e t r ů C N N , zmenšení a ořezání vs tupních 

obrázků a rozšíření datasetu o misky s různými barvami agarů a s r ů z n ý m osvitem 

vedly ke zlepšení přesnost i z 0.982 na 1.0 a ke zkrácení času detekce z 94.82 ms 

na 54.69 ms. 

Algoritmus pro výpočet úhlu rotace misky byl řešen pomocí before a after 

o b r á z k ů . Tyto snímky byly převedeny na šedotónové a následně na b inárn í s 

využi t ím Canny detektoru. Po té byl pomocí metody template matching nalezen 

úhel rotace before o b r á z k u , pro k te rý měly after o b r á z e k a orotovaný before 

o b r á z e k největší korelaci. Tento úhel byl považován za úhel rotace. K mí rnému 

zlepšení přesnost i došlo doplněním algoritmu o p o d m í n k y pro úpravu p a r a m e t r ů 

funkce Canny na základě jasu obrazu. P ř i opě tovném vložení misky do zařízení 

to t iž nedochází pouze k ro t ačn ím změnám, ale i k m í r n ý m t rans lac ím. Také se zde 

projevuje efekt rybího oka kamery. Z tohoto důvodu jsem se rozhodla použí t metodu 

registrace obrazu. S využi t ím techniky R A N S A C a detektoru O R B jsem dosáhla 

značného zlepšení přesnost i z 0.75 na 0.975. 

Nalezení správné pozice vybrané kolonie využívá v ý p o č t u nových vycentrovaných 

souřadnic technikou template matching. Pro zlepšení tohoto algoritmu jsem př idala 

další krok pro zpřesnění orotovaných souřadnic . P ř e d s a m o t n ý m v ý p o č t e m po

sunu mezi after a centered o b r á z k e m jsou vypoč í t ány nové orotované souřadnice. 

Využívá se opět metody template matching. K dalš ímu vylepšení došlo po změně 

velikosti masek. Zvětšení masek vedlo ke zvýšení množs tv í informace v obrazu, ale 

zároveň ke zvýšení výpoče tn í náročnos t i . Op t imá ln í velikost masek jsem zvolila jako 

kompromis mezi t ěmi to dvěma faktory. To vedlo ke zlepšení přesnost i z 0.725 na 

0.95. Je však důležité zmíni t , že testovací dataset obsahoval 2 vzorky, k teré byly ne

správně analyzovány, p r avděpodobně v důsledku selhání původn ího algoritmu. Po 

ods t raněn í těchto vzorků byla konečná přesnost algoritmu na tes tovacím souboru 

dat 1.0. 

Následně jsem provedla experiment, k t e rý ověřuje, zda může algoritmus pro 



nalezení správne pozice vybrané kolonie kompenzovat chybu předchozího algoritmu 

pro výpočet rotace. Umělé zavedení chyby -1° tuto hypo tézu potvrdilo. 

Celkově tato práce předs tavuje pokrok směrem ke zlepšení spolehlivosti a účin

nosti př ís troje M B T Pathfinder při mikrobiologické analýze. Optimalizace a zdokon

alování a lgor i tmů významně ovlivňují celkovou výkonnost systému, a věřím, že před

ložená řešení mohou př inést výhody a pokrok v prakt ických aplikacích. 
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Introduction 
In the field of microbiology and medical diagnostics, the accuracy and reliability 

of sample preparation is crucial. Historically, this process has been dependent on 

manual procedures requiring highly skilled personnel. The selection of colonies of 

microorganisms and their preparation for further analysis has been time-consuming 

and often prone to human error due to the repetitiveness of the process. In response 

to this need, automated robotic instruments have been developed to eliminate or at 

least minimize the need for skilled personnel. 

The M B T Pathfinder is an automated robot developed and manufactured by 

Bruker Daltonics G m b H & Co. K G . It is specialized in preparing microbial colonies 

for subsequent analysis by mass spectrometry. A key feature of this device is its 

ability to precisely identify the positions of microbial colonies on the Petr i dishes 

(agar plate) for optimal selection and transfer to M A L D I target plates. 

This thesis aims to improve the robustness and reliability of the algorithm re

sponsible for determining the correct microbial colony positions in the agar plate 

images acquired by M B T Pathfinder. It focuses on eliminating errors during the act 

of colony selection and presents innovative approaches to address each critical step 

in sample preparation. 

The introductory part of the thesis focuses on the issue of image digitization, 

including basic image types and image processing methods. The discussion further 

develops the topic of the basics of convolutional neural networks, which represent a 

key component in the solution of one of the instrument's tasks. The theoretical part 

also covers an analysis of microbial colonies, including the processes of cultivation, 

propagation, and growth. Automation of the colony selection method is another 

important topic discussed here. For a better understanding of the practical part of 

the work, critical areas of the M B T Pathfinder instrument are thoroughly described. 

The practical part of the thesis discusses different approaches to improve robust

ness during the critical steps in sample preparation, highlighting innovative solutions 

and optimizations. Finally, individual improvements, results, and their comparison 

wi th the original solution are presented. 
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1 Relevant algorithms and techniques 
This chapter delves into relevant algorithms and techniques crucial for addressing the 

objectives of my thesis. It explores fundamental concepts in digital image processing 

as well as advanced methodologies such as convolutional neural networks (CNNs) . 

1.1 Digital image processing 

Digi ta l image processing is a technology involving the use of a digital computer 

and algorithms to manipulate digital images. It is carried out to extract additional 

information present in the image data. 

Image pre-processing is a fundamental stage in digital image processing, aimed at 

optimizing and enhancing the information extracted from the image before further 

analysis. This process involves various operations such as noise removal, highlighting 

key features, or contrast adjustments [18, 19, 23]. 

1.1.1 Digital image 

Digi ta l images are 2D or 3D matrices, where each value in the matrix represents an 

amplitude that determines the light or color properties of the corresponding pixels. 

Such images are defined as a finite, discrete representation of the original continuous 

image [21]. 

There are many types of digital images. The ones relevant to this thesis are: 

• Binary images 

• Gray-scale images 

• Color images 

Binary images 

A binary image consists of only two pixel values, 0 (black) and 1 (white). Such 

images are termed 1-bit images because one pixel is represented by only one binary 

digit. 

The binary image is mainly used to determine the shape, outline, and edges of 

an image, commonly used in image e.g. image segmentation or registration. A n 

example of a binary image is illustrated below 1.1 [22, 21]. 

14 



Fig . 1.1: A n example of a regular color image in Subfigure a) and its corresponding 

binary image in Subfigure b). 

Gray-scale images 

A gray-scale image is an image consisting only of shades of gray, containing no color 

information. Typically, such images consist of 8-bit pixel values, thereby provid

ing 256 distinct levels of gray per pixel. Higher values correspond to brighter pixels. 

Various applications may however require 12 or 16 bits, permitting more gray shades 

and increased accuracy in capturing detail. A n example of the gray-scale image can 

be seen in Figure 1.2. 

15 



(a) (b) 

F ig . 1.2: A n example of a regular color image in Subfigure a) and its corresponding 

grayscale image in Subfigure b). 

Color images 

Digi ta l images can be represented in various color models. This section discusses 

several well known types of color spaces. 

RGB images 

Unlike the previous single-channel images mentioned above, the R G B image consists 

of three channels - R (red), G (green), and B (blue). The addition of these channel 

values results in the creation of various colors. 

B y using 8 bits per pixel for individual color channels, we obtain a 24-bit color 

model, known as "True Color" which allows a wide range of colors to be represented 

in digital images. This model can be seen in F ig . 1.3 [20, 22]. 
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Fig . 1.3: R G B color model. 

Other color models 

In addition to the R G B model, several other color models are used in various areas 

of digital imaging: 

• C M Y K color model (Fig. 1.4) - Used primarily in the printing and graphic 

arts industries, combines four colors to reproduce a wide range of colors - cyan, 

magenta, yellow, and key (black). 

• H S V color model (Hue, Saturation, Value) Hue determines the base 

color, saturation determines the purity of that color, and value affects bright

ness and intensity. 

• H S L color model (Hue, Saturation, Lightness) Works with hue and 

saturation, but instead of value, it uses lightness to determine the brightness 

and tone of a color. 

• Y I Q color model - Used in television broadcasting, it works with luminance 

(Y) and two chrominance components (I and Q) to represent colors. 
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Fig . 1.4: C M Y K color model. 

1.1.2 Image processing techniques 

Digi ta l image processing is a vast and complex field that provides a variety of al

gorithms and techniques to achieve different results, such as image classification, 

image restoration, object detection, image registration, image segmentation, image 

compression, and more. This section focuses on specific digital image processing 

techniques and their applications that are fundamental to the context of the thesis. 

These include image classification, object detection, image registration, and image 

segmentation. 

Image classification 

Image classification is a basic computer vision task that assigns a label or class to 

the entire image. Each image is assumed to have only one class. Image classification 

models take an image as input and return a prediction of which class the image 

belongs to. This process usually involves three main stages: image preprocessing, 

image feature extraction, and classification [38]. 

Various types of image classification models exist, which can be broadly cat

egorized into unsupervised and supervised methods. Unsupervised classification 

methods are automated processes that operate without uti l izing labeled training 

data; instead, they aim to identify underlying patterns or clusters within the image 

data. Examples of unsupervised methods include cluster analysis techniques. In 

contrast, supervised classification methods rely on labeled training datasets to train 

models to make predictions. This category encompasses models such as those based 

on convolutional neural networks (CNNs) [39]. 
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One of the experiments conducted in the practical part of this thesis involves im

age classification uti l izing convolutional neural networks, wi th a detailed exposition 

provided in Section 1.2. 

Object detection 

Object detection is an image processing technique that locates objects in images. 

There are various algorithms available for object detection, but the state-of-the-art 

approaches utilize Machine Learning ( M L ) - specifically Deep Learning (DL) . Bo th 

of these terms fall under the umbrella of Art i f ic ial Intelligence (AI). For clarity, the 

illustration in Figure 1.5 shows the hierarchical relationship of these concepts. 

F ig . 1.5: Relationship between A I , M L and D L . 

Deep learning techniques necessitate a substantial number of labeled training 

images and frequently demand the hardware optimization of graphics processing 

units (GPUs) due to the long training time. It is possible to train your own object 

detector or use a pre-trained object detector uti l izing transfer learning, which can 

then be tuned for the application. Such techniques leverage convolution neural 

networks, which are more precisely described in Section 1.2. 

For other machine learning techniques for object detection, it is also possible to 

either start with a pre-trained model or create your object detector to suit your ap

plication. Typica l machine learning methods encompass aggregate channel features 

( A C F ) , S V M classification using histograms of oriented gradient (HOG) features, 

or the Viola-Jones algorithm for human face or upper body detection. Compared 

to a deep learning-based workflow where the feature selection is automatic, using 

machine learning requires features to be manually selected for object identification 

[24]. 
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Image registration 

Image registration is one of the main steps of image analysis. It is a process of 

discovering matching points between two or more images and aligning them into 

one integrated image. 

The principle of the method is overlaying and aligning images of the same 

scene taken at different times, from different viewpoints, by different modalities 

( P E T / M R I , P E T / C T , S P E C T / C T ) , or matching the scene to a model. This can 

be used for example for monitoring the tumor evolution, shape recovery, or compar

ison of target template and real-time image. More precisely, it is finding an optimal 

transformation of one image to resemble the structure of interest of another image. 

The result is a fusion of the reference image and the sensed images [8, 9]. 

The image registration techniques find widespread application in medical and 

satellite imaging, among other fields. 

In the context of image registration, the R A N S A C (The Random Sample Con

sensus) method is often used to find transformation parameters between two images. 

This transformation can include translation, rotation, scaling or fish eye distortion, 

and is used to align one image wi th another, which is important in many computer 

vision and image processing applications such as image fusion, motion capture, and 

object tracking. It is a robust algorithm commonly used in computer vision to reject 

outliers in parameter estimation. It works by iteratively selecting random subsets 

of data points to fit a model and then evaluating the quality of that model based 

on the entire data set [40, 41]. 

The main problem wi th the R A N S A C method is its sensitivity to parameter 

choices, such as the number of key points in images, the matching rate, and the 

execution time required for each algorithm. This can lead to problems in accu

rately identifying outliers, especially in scenarios wi th high noise or complex data 

distributions. 

In the area of feature detection, the important methods used for feature extrac

tion from images are the Oriented Rap id and Rotated ( O R B ) method, the Scale-

Invariant Feature Transform (SIFT) method, and the Speeded Up Robust Features 

( S U R F ) method. 

O R B combines the F A S T keypoint detector wi th the B R I E F descriptor and 

offers a computationally efficient alternative to S I F T and S U R F . S I F T is known 

for its robustness to changes in scale and orientation, but can be computationally 

intensive. S U R F , on the other hand, provides speed advantages over S I F T because 

it uses integral images to extract features. Each of these detectors has its own 

strengths and weaknesses, making them suitable for different applications based on 

factors such as computational resources and the nature of the image data [40]. 
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Image segmentation 

Image segmentation is the process of dividing an image into multiple segments, 

where each segment represents a different object in the image. This process is often 

used as a pre-processing step for object detection [18, 35]. 

Numerous algorithms are available for performing image segmentation. One of 

the simplest approaches can be considered thresholding. The thresholding process 

is defined by the formula: 

1 iif(x,y)>T 
J K , y J , 1.1 

0 iif(x,y)<T 

where g(x,y) is the output binary image, f(x,y) represents the pixel intensity 

of the input image at coordinates (x, y) and T is the threshold value. 

Another frequently used method is multi-level thresholding, which uses multiple 

thresholds and divides the image into several distinct regions according to their 

brightness levels. The multi-level thresholding process is defined by the formula: 

a iif(x,y)>T2 

g(x,y) = lb i f T 1 < / ( x , | / ) < T 2 , (1.2) 

c iif(x,y)<Tk 

where T 1 , T 2 , ...,Tk are specific threshold values. 

Contemporary methods employ automated image segmentation algorithms based 

on deep learning for addressing both binary and multi-label segmentation challenges. 

Another important technique for image segmentation is edge detection. One 

widely used method is the Canny edge detection filter, which identifies edges in an 

image by detecting sudden changes in intensity. 

The Canny function has three general parameters: 

• image 

• threshold 1 

• threshold 2 

The input parameter image is the input image to be processed, threshold 1 and 

threshold 2 are the thresholds that work so that if the gradient value of an edge is 

greater than threshold 2, it wi l l be considered an edge. If it is less than threshold 

1, it wi l l be considered a non-edge and if the value is between these two thresholds, 

it wi l l be considered an edge only if it is connected to another edge. The Canny 

function returns a binary image where the white pixels represent detected edges and 

the black pixels are non-edge regions [42]. 
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1.2 Convolutional neural network 

This section explains the concept of convolutional neural networks ( C N N ) and in

troduces the principle of how they work. 

Convolutional neural networks are a form of a deep neural network. They are 

commonly used to process visual data, including images and video. Convolution 

is leveraged to extract features and hierarchical learning is employed for pattern 

recognition, rendering them highly suitable for tasks such as image classification, 

object detection, and segmentation [36, 37]. 

A convolutional neural network ( C N N ) is part of deep learning (DL) , which is 

a subset of machine learning ( M L ) . A l l of this then falls under Art i f ic ial Intelli

gence (AI). The hierarchical relationship, including the incorporation of C N N , is 

demonstrated in Figure 1.6. 

F ig . 1.6: Relationship between A I , M L , D L and C N N . 

A I is the simulation of human-like intelligence and decision-making processes in 

computer systems. M L refers to algorithms that learn without being explicitly pro

grammed, and D L represents a set of algorithms based on artificial neural networks 

that mimic the processes of the human brain [26]. 

1.2.1 CNN architecture 

The C N N architecture is composed of multiple layers, such as convolutional, pooling, 

and fully connected layers. B y repeating and combining these layers in various ways, 

the network can extract different levels of features and information from input data. 

The architecture's complexity allows for sophisticated analysis and processing [25]. 

The C N N architecture model is illustrated in Figure 1.7. 
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Fig . 1.7: C N N architecture featuring convolutional layer for feature extraction, pool

ing layer for down-sampling, and fully connected layer for classification. 

Convolution layer 

The convolution layer extracts symptoms through a blend of linear and non-linear 

procedures. Said procedures consist of a convolution operation and an activation 

function, which wi l l be better explained in Section Activation functions. 

Convolution is a linear operation that involves the displacement of a small mask, 

called a kernel, across the input image. A t each location of the tensor, the product 

of the kernel's elements and the corresponding elements of the input tensor are 

calculated and then summed, yielding the output value at the corresponding location 

of the output tensor. The result is a reduced image, specifically a feature map. 

This procedure is demonstrated in Figure 1.8. To prevent the reduction of image 

dimensions, zero padding is utilized to add zeroes to both rows and columns of the 

input tensor. This process plays a critical role in convolutional neural networks as 

it ensures that the output dimensions of one layer correspond to the desired input 

dimensions of the next layer, which is imperative for the proper operation of the 

C N N [25]. 
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Fig . 1.8: The principle of convolution: the Kernel sliding across an input image, 

mult iplying its elements wi th corresponding input tensor elements at each location, 

and summing the results to produce a feature map. 

The process of training a C N N model for the convolution layer involves identify

ing the most efficient kernels for a given task, based on a training dataset. Kernels 

are the sole parameters learned automatically during the convolutional layer train

ing process. Meanwhile, kernel size, number of kernels, padding, and stride 1 are 

hyperparameters that require configuration before the commencement of training. 

Pooling layer 

The pooling layer facilitates image subsampling and extraction of important infor

mation. Generally, a kernel of a certain size is used and its output for a certain 

area is either the average (local/ global average pooling) or the highest value (max 

pooling) of the local and non-overlapping parts of the image. These processes are 

illustrated in Figure 1.9. A s a result, the spatial dimensionality of the data and the 

computational complexity in the subsequent layers is reduced [27, 25]. 

The stride parameter defines the amount of filter shift across the input image. 
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Max Pooling 

13 

Global Average Pooling 

F ig . 1.9: Types of pooling operations: M a x Pooling, Average, and Global Average 

Pooling. 

Fully connected layer 

The fully connected layer is typically the last layer of any C N N architecture for 

classification tasks. Its name derives from the fact that each neuron in this layer is 

linked to al l neurons in the previous layer by a learnable weight. The input to this 

layer is commonly flattened, which results in a one-dimensional numerical array, a 

transformation carried out by the predecessor pooling or convolution layer. 

The fully connected layer usually has the same number of output nodes as the 

number of classes. The outputs of a fully connected layer depend on the network 

task. In classification and segmentation neural networks, the final output represents 

the probabilities for each class, while in regression problems they can represent 

continuous values such as e.g. temperature or price predictions [27, 25]. 

Activation functions 

The activation function operates as a transfer function in neural networks, influenc

ing output and mapping the resulting values across the range of real numbers. They 

can be based on either non-linear or linear operations. 
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Linear activation functions are simple functions that produce a linear output 

based on an input value. They are rarely used in neural networks because they do 

not introduce nonlinearity into the model. However, linear activation functions can 

be advantageous in specific situations, such as in the output layer of a regression 

model where a linear output is required [32, 25]. 

Among the nonlinear activation functions, the Rectified Linear Uni t (ReLU) 

stands out as one of the most widely used. Whi le R e L U is prevalent in current neu

ral network architectures, the Sigmoid and Tanh functions were more extensively 

utilized in earlier years. This preference was attributed to their mathematical prop

erties, which closely resemble the behavior of biological neurons. These functions 

are depicted in Figure 1.10). 

R e L U Sigmoid Tanh 

- 5 0 5 - 5 0 5 - 5 0 5 

Fig . 1.10: Act ivat ion functions - R e L U , Sigmoid, Tanh. 

1.2.2 CNN training 

Network training is a fundamental process aimed at discovering meaningful repre

sentations in the convolutional layers and optimal weights in the fully connected 

layers. This is achieved by minimizing the differences between predicted outputs 

and ground truth values on the training dataset through the iterative adjustment 

of various network parameters. This process involves two essential components: the 

loss function and the gradient descent optimization algorithm [25]. 

A central element in C N N training is backpropagation, a mechanism that involves 

computing the gradients of the loss function concerning the network's parameters 

and using these gradients to update the parameters in the opposite direction of the 

gradient. This iterative optimization process plays a central role in fine-tuning the 

network's weights, enabling it to learn and adapt to the underlying patterns in the 

data. 
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Loss function 

The loss function quantifies how well the model's output predictions match the true 

labels during forward propagation. Regression tasks typically use mean squared 

error (1.3), while cross-entropy is the most common loss function for multiclass 

classification (Binary cross-entropy loss function 1.4, Categorical cross-entropy loss 

function 1.5). The selection of the loss function hinges on the particular issue under 

examination and constitutes a hyperparameter [25, 33, 34]. 

1 N 
MSE(y,y) = -J2(m-yi)2, (1.3) 

i=l 

where TV is the number of objects, yi is the true label of the i-th object and jji is the 

predicted value for the i-th object. 

H(y, y) = - ( y log(y) + (1 - y) • log( l - y)), (1.4) 

where y is the true label (either 0 or 1) and yi is the predicted probability that the 

instance belongs to class 1. 

c 
H(y,y) = • log(^) , (1.5) 

i=l 

where C is the number of classes, yi is the true probability distribution for class i 

and %ji is the predicted probability distribution for class i . 

Gradient descent 

Gradient descent serves as the primary optimization algorithm during training. It 

iteratively updates the trainable parameters, such as kernels and weights, to mini

mize loss. The gradient of the loss function indicates the direction of the steepest 

increase, and each parameter is adjusted in the opposite direction of the gradient, 

wi th the step size determined by a hyperparameter called the learning rate [25, 34]. 

Mathematically, the update of a parameter (w) is computed as follows: 

5L . . 
w := w — a • —, (1.6) 

ow 

where a is the learning rate and | ^ denotes the gradient of the loss function (L) 

wi th respect to the parameter w. 
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2 Colony picking and M B T Pathfinder image 
analysis 

This chapter deals wi th the issue of microbial colonies, their growth and mult ipl i 

cation processes, and explains the concept of colony picking and the advantages of 

automating this process. The chapter also introduces the M B T Pathfinder device 

on which all experiments were performed. 

2.1 Colony picking 

Colony picking is a fundamental technique for isolating and studying individual 

microbial species used in various fields of biology, such as microbiology, molecular 

biology, and genetics. It involves the selection, retrieval, and transfer of microbial 

colonies, typically bacteria and yeasts, grown on a solid medium. 

2.1.1 Microbial colonies and their cultivation 

Microbial colonies are visible aggregates of microorganisms, such as bacteria, yeasts, 

or fungi, that have grown and multiplied from a single mother cell on a solid nutrient 

medium. They can vary in size, shape, color, and texture, depending on the type of 

microorganism, growth medium, and cultivation conditions [12]. 

Cult ivat ion of microbial colonies involves the transfer of an inoculum, a small 

number of microbes, to a nutrient medium that contains essential nutrients to pro

mote their growth [13]. 

Nutrient media can be classified into 3 forms: 

1. Liquid media - They are commonly used for growing microorganisms in 

suspension, such as for fermentation studies or maintaining cultures [29]. 

2. Semisolid media - They contain a lower concentration of agar than solid 

media (0.5 % or less) and produce a gel-like consistency that allows for the 

detection of bacterial motility. 

3. Solid media - They provide a solid surface for microorganisms to grow on. 

This enables the formation of visible aggregates of microbes, i.e. colonies. 

The most commonly used solid media are agar plates prepared by pouring agar 

into Petr i dishes. Agar is a mixture of polysaccharides composed of galactose 

monomers, consisting of two primary components: agarose, a linear polysaccharide 

that forms a gel, and agaropectin, a branched non-gelling component. Agar comes in 

various types wi th different additives to suit specific microbial growth requirements. 

Discussion of these types can be found in Section Types of agar [1, 2]. 
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Types of agar 

Due to the differing growth requirements of various microorganisms, it is impossible 

to culture all microbial organisms using a single culture medium. Therefore, there 

are many different types of agars [1]. Some of the commonly used ones are listed 

below and displayed in Figure 2.1: 

• MacConkey Agar - It isolates and differentiates lactose (pink colonies) and 

non-lactose (pale or translucent colonies) fermenting gram-negative enteric 

bacilli . 

• Blood Agar - It is used for cultivating fastidious microorganisms and isolat

ing and differentiating bacteria based on the types of hemolysis present. 

• Chocolate Agar - It is enriched wi th heat-treated blood for cultivating fas

tidious microorganisms, especially Neisseria and Haemophilus species. 

• C B L Agar (China-blue lactose agar) - It differentiates lactose-positive 

and lactose-negative microorganisms. Thus, lactose-positive microorganisms 

are blue, and lactose-negative are translucent. 

• P E M B A Agar (Bacillus cereus Selective Agar) It is used for the 

isolation and enumeration of Bacillus cereus in food samples. Bacillus cereus 

wi l l appear blue wi th egg yolk precipitate of the same color around it. 

• m C P Agar (Membrane-Clostridium-Perfringens-Agar) This agar is 

applied for the detection and enumeration of Clostr idium perfringens in water. 

It causes the formation of characteristic non-translucent golden colonies. The 

other colonies appear to be purple or blue-green. 
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MacConkey Agar Blood Agar Chocolate Agar 

CBLAgar PEMBAAgar mCPAgar 

F ig . 2.1: Several types of culture media. 

Multiplication and growth of microorganisms 

The growth of microorganisms is a situation in which all the chemical components 

of a cell increase in an orderly manner. 

There are various mechanisms of cell multiplication [12, 13]: 

• Binary fission - After reaching a certain size and weight, the parent cell 

divides into two identical daughter cells as demonstrated in Figure 2.2. This 

mechanism is most common in bacteria. 

• Budding - A new organism arises from an outgrowth or bud at one particular 

location of the mother cell. It remains attached to the parent cell during its 

growth, detaching after maturation and leaving This mechanism is 

most common in yeasts. 

• Fragmentation - A n organism is split into fragments, which then individually 

mature. Ful ly developed organisms are clones of the original organism. This 

mechanism is most common in cyanobacteria. 

30 



Fig . 2.2: Cel l multiplication. 

These processes lead to an increase in the number of cells and the formation of 

a population or culture [7]. 

It depends on: 

The typical progression of microorganisms' multiplication and growth on the 

medium in a closed system is expressed by the growth curve (Figure 2.3). 

The growth curve is divided into 4 characteristic phases [13, 5, 6]: 

1. Lag Phase - The bacteria don't multiply, they only adjust their metabolism 

to the new environment. 

2. Log Phase - The cells begin to divide in a regular exponential manner and 

some of them die, in the process, metabolites are formed. 

3. Stationary Phase - The maximum number of bacteria is reached, as a result 

of nutrient depletion and high metabolite concentration, the number of cells 

equals the number of dead cells, so the growth rate is zero. 

4. Death Phase - The number of dead cells exceeds the number of l iving cells 

as the bacteria lose the ability to divide. It may return to the lag phase and 

repeat the cycle. 

• Oxygen 

• Carbon dioxide 

• Temperature 

. p H 

• Light 

• Osmotic Pressure 
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2.1.2 Manual colony picking method 

Colony picking is a crucial procedure in microbiology and biotechnology research. 

The manual colony picking method relies on trained personnel employing aseptic 

techniques and specialized instruments to manually select individual colonies. A l 

though this method allows accurate control over colony selection, it is tedious, time-

consuming, and often inaccurate. This also makes it less practical for handling large 

numbers of samples [30, 31]. 

In the past, manual colony picking was the only available method. However, wi th 

the invention of automated colony picking instruments, the process has become much 

more streamlined and accurate. 

2.1.3 Automation of manual colony picking method 

Automating the colony picking methods has reduced the risk of sample contami

nation and improved their overall consistency. These instruments not only collect 

colonies from Petr i dishes but can also inoculate them and in cases where the collec

tion needles are multi-use, the instrument can additionally clean, sterilize, and dry 

the picking needle. A s a result, automatic colony picking instruments are becom

ing more and more frequent in microbiological laboratories due to their increased 

efficiency and accuracy [3, 4]. 
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2.2 M B T Pathfinder image analysis 

This section wi l l focus on the prototype of an automated picking robot called the 

M B T Pathfinder, developed by Bruker Daltonics G m b H & Co. K G . 

2.2.1 Introducing MBT Pathfinder 

The M B T Pathfinder is a robot designed to automate the process of transferring 

microbial colonies from agar plates to a M A L D I target and preparing this target for 

subsequent classification of microbial species by mass spectrometry. 

The main components of the device include a sample tray for positioning the 

targets and a Petr i dish, reagents, and two transfer loops. 

In sample preparation, the ini t ial step involves the sequential insertion of indi

vidual agar plates. This can be done manually, but more often the M B T Pathfinder 

is combined with the Feeder, an automated robot that is used to feed the dishes into 

the M B T Pathfinder . Bo th configurations of the instrument, wi th and without the 

Feeder attachment, are depicted in Figure 2.4. 

Following the insertion of the dish, images of the dish are captured from a top 

view under six different light configurations, after which the dish is returned to the 

Feeder. Subsequently, another dish is inserted and the process is repeated unti l 

all prepared dishes are processed. The algorithm then uses image processing and 

segmentation to automatically pre-select microbial colonies on each Petri dish. The 

user can then confirm the pre-selection or manually select additional colonies for 

transfer to the M A L D I target. 

The next step is applying the formic acid to the given positions of the M A L D I 

target. It aims to disrupt the cell wall, allowing better extraction of the cell contents. 

The Petri dishes are reinserted into the M B T Pathfinder , and the selected 

colonies are picked using a transfer loop and smeared onto the positions of the 

M A L D I target containing a droplet of formic acid. The transfer loop is sterilized by 

heating it to a high temperature in a special annealing chamber to prevent cross-

contamination. It is essential to locate the previously selected colony accurately 

at this stage. If the dish is not inserted into the instrument at the same angle 

as when the image was captured, it can significantly affect the preparation of the 

sample. The resulting problem wi l l be comprehensively discussed and addressed in 

the following section. 2.2.2. 

After transferring the colony to the target, the drying process is initiated to 

speed up sample preparation. The H C C A M A L D I matrix is then applied to the 

given positions and the drying process is repeated. After this process, the target is 

ready to use for subsequent analysis. 
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(a) (b) 

Fig . 2.4: M B T Pathfinder without Feeder in Subfigure a) and M B T Pathfinder 

combined wi th the Feeder in Subfigure b). 

2.2.2 Crucial workflow steps 

After a thorough investigation, I have determined three critical steps in the instru

ment's workflow. Failure of any of them could have a fatal impact on the prepared 

sample quality, potentially leading to incorrect diagnoses or inaccurate scientific 

results. It is crucial to thoroughly examine these essential steps to ensure their 

reliability and accuracy and make systematic improvements where necessary. 

The crucial steps, namely dish detection, dish rotation, and colony position 

retrieval, are indicated by red arrows in the diagram 2.5. A l l those steps wi l l be 

described in more detail in the following subsections. 
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MBT Pathfinder - sample preparation 
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[Start] 

User inserts dishes into Feeder 

User starts the dishes 
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User selects colonies for picking 
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User starts the picking process 

User saves and exports results 

Insert dish to Pathfinder 

I Detect dish | 
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Show dish IA result 
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Show the selected 
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Picking wire disinfection 
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No T Yes. 

Drying^ rocess 
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iDrying process I 
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ready for analysis 

F ig . 2.5: M B T Pathfinder - sample preparation workflow. 
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Dish detection 

The first crucial workflow step is dish detection. It aims to ensure whether an agar 

plate has been correctly placed onto the tray in the M B T Pathfinder or not. 

If the dish is missing, but the algorithm evaluates it, the transfer loop may be 

destroyed trying to pick up a colony on a dish that is not there. 

O n the other hand, if a dish is inserted into the instrument, but the instrument 

does not evaluate it, it may not be possible to pick up the required colony. 

Currently, this workflow step utilizes a convolutional neural network and a ran

dom forest model. To enhance clarity, refer to the diagram 2.6. The description and 

parameters of the C N N model are described in the diagram 2.7. 

This architecture is quite computationally intensive and complicated. In addi

tion, there are frequent classification errors, especially when processing a dish wi th 

a less common type of agar. The imperfections of the current neural network pri

marily resulted from a lack of variable data. Therefore, several experiments were 

performed for the purpose of improvement. These are described and presented in 

subsection 4.1. 
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Loading of training, test and validation data 
+ 

SIZE = 600 
I  

Image resizing (SIZE x SIZE)  
i 

Conversion from R G B to B G R 
T  

Adding layers for deep learning prediction 

Getting C N N model 

Model training 
r  

Evaluating the model on test data 
Using features from convolutional 

network for R F 
I 

Creating a random forest model 
(nestimators = 50, randomstate = 42) 

R F model training 
i  

Check results on a few select images 
j 

Random Forest model 
conversion to O N N X format 

F ig . 2.6: Original architecture for dish detection. 
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Convolution 2D, 32 filters, 3x3, Sigmoid 

Batch Normalization 
I 

Convolution 2D, 32 filters, 3x3, Sigmoid 

Batch Normalization 
~ " i z 

MaxPool ing, 2x2 
I 

Convolution 2D, 64 filters, 3x3, Sigmoid 
+ ; 

Batch Normalization 
i 

Convolution 2D, 64 filters, 3x3, Sigmoid 

~ 

Batch Normalization 
J. 

MaxPool ing, 2x2 
I 

Flatten 

Dense 128, Sigmoid 
1 

Dense 1, Sigmoid 

F ig . 2.7: The original model comprises four convolutional layers (32, 32, 64, 64) 

wi th sigmoid activation functions for each layer. Batch Normalization is applied 

wi thin each convolutional layer to normalize the outputs. The model incorporates 

M a x Pooling wi th a 2x2 window. Additionally, the model includes two fully con

nected layers. The first layer consists of 128 neurons, and the second layer consists 

of a single neuron, both activated by a sigmoid activation function. 

Dish rotation 

Another problematic step in the workflow is retrieving a dish rotation angle. This 

step is necessary for the subsequent retrieval of the previously selected colony's 

position. For a better overview, the workflow diagram 2.10 is shown below. 

Reinsertion of the agar plate may result in the plate having a slightly different 

rotation when compared to the image used to select the colonies to transfer. Each 

time the dish is inserted into the device, an image is obtained. For further description 

and explanation, I wi l l give the following working names for these images: Before 

image and After image. These images are illustrated in Figure 2.8. 
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(a) Before image (b) After image 

F ig . 2.8: A n example of a Before image in Subfigure a) and an After image in 

Subfigure b). 

In this step, the algorithm detects the difference in angles between the Before 

and After images. Subsequently, it rotates the Before image by this calculated angle. 

The algorithm for finding the rotation angle first pre-processes the images - trans

forms images to grayscale, and then uses a Canny detection method that highlights 

the edges of the image. The result of using Canny detection is illustrated in Figure 

2.9. Template matching is then utilized, which is a method relying on sliding a 

template, a small image wi th characteristic features, over the input image, a large 

image, where these characteristic features need to be found. To compare the tem

plate with the input image and locate the characteristic features, a matching process 

based on the calculation of normalized correlation coefficients is used. Normaliza

tion is performed to make the output independent of the intensity and contrast of 

the image, making it easier to compare. The equation for calculating the normalized 

correlation coefficient is illustrated below (2.1) [15]. 

where T'(x',y') denotes the value of the template image at coordinates (x',y') rep

resenting pixel intensity in the template and I'{x + x',y + y') is the value of the 

image at coordinates (x + x',y + y'), representing pixel intensity at that location in 

the image. 
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I applied the algorithm to the test dataset, and based on the results detailed in 

Table A . l in the Appendix, the algorithm's robustness comes into question. Due 

to the incorrect calculation of several rotation angles, a number of experiments 

were conducted to improve the algorithm's performance. These are described in 

subsection 4.2. 
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Before image loading | [After image loading 

Error Images resizing 

Circle mask creation 
X 

Conversion of images to grayscale 
X 

Edge detection 
X 

Image thresholduing 

X 

Setting background of the dish to black 

I 
Rectangle images cropped to circle shape of the mask 

X 
The list of angle results creation 

X 
or each angle in the de f ined^ 

range with a given step j 

5 
Rotation the cropped image on the mask by a given angle 

X 
Image conversion to binary 

X 
Correlation between binary rotated image 

and after image cropped to the mask 
X 

Add angle and score to the list 

X 
L^fext angles 

i  
Finding the angle with the best 

score of the correlation from the list 
X 

Clear the list 
X 

Precise finding - repetition of the previous for cycle, but in the range 
of best angle - given step and best angle + given step, with step 0.1 

X 
Finding the angle with the best 

score of the correlation from the list 
X 

Rotate the coordinates by 
the calculated angle 

Rotated coordinates 

F ig . 2.10: Dish rotation workflow diagram. 
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Retrieving colony position 

The most crucial step is retrieving the colony position because the accuracy of the 

entire sample preparation process is heavily influenced by the accuracy of this step. 

In this step, the algorithm uses image processing to find the selected colony by the 

user on the reinserted dish. For a clearer view, see the diagram 2.12. 

This step is based on the rotation of the Before image and the before coordinates 

by the calculated angle, the output is then a Rotated image and Rotated coordinates. 

Then the pattern and the input images are created. The pattern is an After image 

cropped by a small mask with the center in Rotated coordinates. The input image 

is a Centered image cropped by a large mask wi th the center in the center of the 

image. These processes are depicted in Figure 2.11. 
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After image cropped by a small mask Pattern 

(a) The process of creating a pattern. 

Centered image cropped by a large mask Input image 

(b) The process of creating an input image. 

F ig . 2.11: The process of creating a pattern and an input image. 

The subsequent step includes uti l izing the template matching method to calcu

late the shift between the input image and the pattern. Thereafter, the new centered 

x and y coordinates are calculated. 

The tray of the M B T Pathfinder then moves the dish to these new centered 

coordinates and in the center of the dish picks the colony, which is transferred to a 

M A L D I target. 
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The pattern might get disrupted due to a potential error in determining the 

rotation angle. This can be observed in Subfigure 2.11a, where the selected colony 

should ideally be positioned right in the middle. However, it is shifted due to the 

inaccurate calculation of the angle of rotation. If the angle calculation were entirely 

incorrect, the cropping would occur elsewhere, resulting in the selected colony not 

being present in the pattern. This could lead to incorrectly identifying the position 

of the chosen colony, which, in turn, could result in selecting the wrong one. The 

outcomes of applying this algorithm to the test dataset are displayed in the Appendix 

( A . l ) . 

The inaccurate determination of colony positions poses a critical challenge, neces

sitating improvements to the algorithm. The details of the experiments conducted 

to enhance the original algorithm are discussed in subsection 4.3. 

Rotated coordinates Centered image loading After image loading 

Centred image cropped by large crop size with 
the center in the center of the image = image 

After image cropped by small crop size with the 
center in rotated coordinates = pattern 

Calculation the dimension of the resulting match map for template 
matching between image and pattern  

A. 
Calculation of the matching result between image and pattern 

I 
Normalization of the matching result 

T 
Finding maximum and minimum value and 

location in the correlation matrix 

Match location is equal to minimum location Match location is equal to maximum location 
T X 

Calculation of shiftx and shift_y using the match 
location and shape of the image and pattern 

Calculation of new x, y coordinate values 

F ig . 2.12: Retrieving colony position workflow diagram. 
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2.2.3 Benchmarking current state 

This section wi l l discuss the results of the original unimproved algorithms used on 

the test dataset. 

I created two distinct test datasets; one for evaluating dish detection accuracy 

and another for assessing dish rotation and colony position retrieval performance. 

The test dataset for dish detection consists of images captured using the M B T Pathfinder 

. It includes 30 images without dishes and 26 images featuring dishes. These selec

tions were meticulously chosen from a total of 2759 samples, ensuring the representa

tion of diverse agar types, microorganism variations, dishes without microorganisms, 

and dishes captured under various i l lumination conditions. Examples of these sam

ples are depicted in Figure 2.13. The examples of instances, where the dishes are 

not present are in Figure 2.14. 

45 



Fig . 2.13: Examples of diverse dishes from the test dataset used to evaluate dish 

detection performance, highlighting the variety of samples analyzed in the exper

iments. In the lower-left corner is an example of a dish wi th C C D A agar, which 

could be problematic for detection due to its resemblance to an empty dish. 
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Fig . 2.14: Examples of various instances of dish absence in the dish detection test 

dataset. 

The test dataset for evaluating dish rotation and colony position retrieval per

formance was established by selecting 40 samples out of the 3654 available. These 

samples represent both standard ones processed wi th the instrument and a few that 

had previously presented challenges. This test dataset was designed to include a wide 

variety of behaviors that can occur during sample processing by the M B T Pathfinder 

instrument. Examples of dishes from the test dataset are illustrated in Figure 2.15. 
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Fig . 2.15: Examples of a variety of dishes in the test dataset, illustrating the diversity 

of samples analyzed in the experiments. 
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Each sample contains 3 images: 

• Before image - This image is captured after ini t ial ly inserting the dish into 

the device. It serves as a preview for the user, showing the colonies present 

on the dish. The user can select the colonies from this image and confirm 

the selection. It's crucial to note that this step is the only hands-on user 

interaction wi th the device. After this, the process continues autonomously. 

• After image = This image is taken after reinserting the dish into the device. 

A t this stage, dishes are placed back into the device for colony picking. The 

image is rotated due to the design of the positioning system. 

• Centered image = This image is the After image wi th the potentially correct 

colony in the center - due to camera distortion and imperfect hardware po

sitioning system, the dish displacement may be inaccurate, i.e. the selected 

colony may not be completely centered. The potentially correct colony is 

centered for easier positioning of the picking wire. 

These images are depicted in Figure 2.16. 

(a) Before image (b) After image (c) Centered imag< 

F ig . 2.16: Examples of a variety of dishes in the test dataset, illustrating the diversity 

of samples analyzed in the experiments. 

One of the main contributions of this thesis is identifying and measuring unde

fined instrument behavior that can cause errors. For this purpose, I have developed 

and performed several experiments. The Section 4 provides detailed descriptions of 

each experiment. 

Dish detection 

The original model underwent training using images of microbial colonies exclusively 

on red, white, and transparent agars. Furthermore, these images went through 

resizing to a dimension of 600x600, due to speeding up the model training and 

subsequent reduction of the prediction time. The accuracy of this model applied to 
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the test dataset is 0.982, and the prediction time of the model takes 94.8 ms. The 

results of applying this model to the test dataset are presented in Table 2.1. 

There is a space for enhancement, not only in accuracy but also in prediction 

time. In the future, the processing of some key algorithms wi l l be moved from 

the driver desktop to the firmware S B C (single board computer) embedded in the 

instrument. Thus, shrinking this model would greatly ease the migration and make 

the device more futureproof. Possible improvements and refinements of this problem 

are covered in Chapter 3. 

Tab. 2.1: Table of results containing basic information about the orij jinal model. 

Model Description 
Prediction 
time (ms) 

Accuracy 

1 
Model trained on red, white, and transparent 

agars, and on empty dishes, resized to 600x600 
94.8 0.982 

Dish rotation 

The results of the original algorithm for calculating dish rotation can be presented 

in Table A . l . There are 40 measurements, of which 10 dishes exhibit an angle 

deviation greater than 0.4 degrees. The angle 0.4 is a maximum deviation allowed 

by the company Bruker Daltonics G m b H & Co. K G , that stems from thorough 

validation experiments and risk analysis. The accuracy of the original algorithm 

is therefore 0.75. Table 2.2 summarizes the statistical metrics for analyzing the 

differences between the measured and actual values of dish rotation. 

The actual values of the dish rotation were obtained using an algorithm to create 

a fusion of the After image and the Before image rotated by a specified angle. 

Initially, I selected the calculated angle for the rotation. If the merged image was 

blurry or misaligned in any way, I adjusted the angle value unti l a sharper image 

was produced. The resulting angle was then considered as the actual value. A n 

illustrative example of image fusion is provided in Figure 2.17. 
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Fig . 2.17: Fusion of images: O n the left is the fusion of images wi th the wrong angle, 

on the right with the true angle. 

A s we can see, the merging of images wi th the true angle is not as sharp as 

expected due to the dish being inserted into the machine not only at the wrong angle 

but also partially displaced. The fisheye effect from the camera also contributes to 

the distortion. This results in both rotational errors and translation errors. For this 

reason, there is room for improvement. Various possible approaches to this problem 

are discussed in Chapter 3. 

In Table 2.2, the minimum value of the difference between the actual angle and 

the calculated rotation angle is - 0 . 6 ° , and the maximum value is 4 0 . 8 ° . To better 

understand the variability of these differences, I calculated the standard deviation, 

which is 6 .36° . Standard deviation measures the distribution of differences around 

the mean value of the differences. The Mean Squared Error (MSE) is 1 .16° , and the 

final metric mentioned herein is the mean absolute error ( M A E ) , which has a value 
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of 1 .22° . The M A E corresponds to the average of the absolutes of these differences. 

It is important to note that the above statistical metrics are significantly affected 

by the entirely incorrect determination of the rotation angle of the dish "30-04-

2021_2_UB_1011026280_D5". This dish showed significantly higher differences 

between measured and actual rotation values, compared to the others, by tens of 

degrees. 

Possible improvements of this algorithm are discussed in Chapter 3. 

Tab. 2.2: The table containing various metrics describing the difference between 

measured and true values of dish rotation. 

Metrics [°] 

M i n A -0.6 
Max A 41.40 

Standard deviation 4 6.36 

M S E I 1.16 
M A E I 1.22 

Retrieving colony position 

The results of the original algorithm for retrieving the colony position are shown 

in Table A . l . The accuracy of this algorithm is 0.725. Concretely, for 8 dishes 

the algorithm fails both in the angle of rotation detection and in colony position 

retrieving, and for 3 dishes only the determination of the position was inaccurate. 

Examples showcasing both accurate and erroneous determination of colony positions 

are depicted in Figure 2.18 and Figure 2.19. 
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(a) Before image (b) After image 

(c) Centered image 

F ig . 2.18: Example of an accurate colony position determination. In Subfigure c) it 

can be seen that the same colony was selected as the user selected in Subfigure a). 
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(a) Before image (b) After image 

(c) Centered image 

F ig . 2.19: Example of an inaccurate colony position determination. In Subfigure c) 

it is evident that a different colony was picked than the one selected by the user in 

Subfigure a) 

Retrieving the position of a colony is the most critical step in preparing samples. 

Therefore, it is crucial to improve the algorithm. Various approaches for enhance

ment are described in Chapter 3. 
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3 Refinement proposals and their rationale 
This chapter delves into diverse strategies aimed at enhancing the efficacy of the 

original algorithms through a meticulous analysis of their respective advantages and 

drawbacks, accompanied by proposed solutions to potential shortcomings. Subse

quent solutions to the individual approaches are described in Chapter 4. 

3.1 Dish detection 

A s a first step, I plan to remove the application of random forest and change the 

architecture of the original model to be simpler. This could potentially improve the 

computational time. 

Another approach could involve changing the input image size from the original 

600x600 to 512x512. Reducing the input image could lead to increased computa

tional efficiency In addition, 512 is a power of 2, mainly to avoid rounding errors 

in the pooling operation that could lead to edge effects. 

However, I am concerned about the possible loss of information wi th this resizing. 

Thus, an alternative strategy might be to refrain from simply shrinking the image, 

but rather consider cropping it or combining cropping wi th the resizing technique. 

I plan to crop the image at the point where the transition of the tray to the dish is 

most clearly visible. This could lead to preserving essential details while increasing 

the computational time. 

Since the original model was only trained on red, white, and transparent agar 

and on empty dishes, the subsequent step I intend to pursue involves expanding the 

training, testing, and validation dataset to include dishes with different colors of 

agar. Figure 3.1 shows the low diversity of the original training dataset. I believe 

that this could contribute to increasing the model's capacity for generalization and 

thus its robustness. 

55 



Fig . 3.1: Example of original train dataset for dish detection wi th minimal diversity. 

3.2 Dish rotation 

Since the algorithm for calculating the rotation of the dish uses a Canny detector 

to create masks, which are then compared using template matching, I decided to 

look at the outputs of this function, i.e. the created masks. I found that since 

the individual images are differently bright, the output mask sometimes contains 

an excessive number of detected edges or too few in certain cases. Thus, I think it 

might help to add conditions to change the parameters of the Canny function based 

on the number of white pixels found. This could solve the problem of inconsistent 

edge detection in output masks and thus improve the overall result of the following 

template matching. 

If this approach does not lead to a significant improvement of the algorithm, it 
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is possible to use some of the image registration methods. Since there is not only 

rotation of the dish, but also fish eye distortion caused by the camera, I believe 

that the optimal approach would be using the O R B detector to find key points 

in the image and then using the R A N S A C method, which is often used for fish 

eye distortions, to estimate the transform based on the found key points and their 

corresponding matchings. This could lead to a more accurate determination of the 

rotation of the dishes. 

3.3 Retrieving colony position 

In order to increase the accuracy in calculating Rotated coordinates, I have decided 

to modify the algorithm. Instead of directly calculating the shift between the After 

image, cropped by a small mask with the center at the Rotated coordinates, and 

the Centered image, cropped by a large mask with its center at the image's center 

to obtain new Centered coordinates, I intend to introduce an additional step to 

enhance the accuracy of the calculated Rotated coordinates. This could be achieved 

by calculating the shift between the Rotated image, cropped by a small mask wi th 

its center at the Rotated coordinates, and the After image cropped by a large mask, 

also wi th its center at the Rotated coordinates. This process is visually represented 

for clearer understanding in Section 4.3.1. 

Another approach that could help to improve the accuracy of retrieving the 

correct colony position is to apply a sharpening mask to the image and pattern 

before performing template matching. This could enhance the contrast and edges 

within the images, potentially leading to more precise template-matching results. 

A further improvement in the accuracy of colony positioning could be achieved 

by increasing the size of the cropping masks. Thus, much more information about 

the surroundings of the selected colony could be obtained, and template matching 

could be much more accurate. However, increasing the cropping sizes also prolongs 

the computation time, so it is not ideal to greatly increase these values. A good 

tradeoff must be found between computational expansiveness and accuracy. 

If the colony search algorithm proves to be successful, I intend to perform an 

additional experiment. This experiment wi l l entail deliberately introducing a 1° 

error. 1° covers the vast majority of possible error conditions, virtually eliminating 

them. Manual ly subtracting this value from the calculated angle could confirm my 

theory of compensating for errors in dish rotation calculation through the colony 

position retrieval step. This would serve as a valuable backup plan in case the 

algorithm for calculating dish rotation fails. 
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4 Algorithm improvements 
The following sections describe the implementations and improvements of the in

dividual algorithms. A l l experimental results are discussed and summarized in the 

individual subsections. 

4.1 Dish detection 

This section addresses potential enhancements to the dish detection algorithm. De

tailed descriptions of the individual experiments that contributed to the algorithm's 

enhancement are provided in the following subsections. Interim results are presented 

in the Table 4.1. 

4.1.1 Experiment 1 - changing the architecture of CNN model 

The first step that led to the improvement of the original algorithm for dish detection 

was to change the architecture of the model 1 . The new architecture is demonstrated 

in Figure 4.1. This resulted in an improvement in accuracy from 0.982 to 1 but a 

degradation in prediction time from 94.82 ms to 96.61 ms. This model holds the 

position designated as number 1 in Table 4.1. 

The model was taken from a web article [16]. 
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Convolution 2D, 16 filters, 3x3, ReLu 
i 

MaxPooling, 2x2 
3  

Convolution 2D, 32 filters, 3x3, ReLu 

MaxPooling, 2x2 
1  

Convolution 2D, 64 filters, 3x3, ReLu 

MaxPooling, 2x2 
3  

Convolution 2D, 64 filters, 3x3, ReLu 
* 

MaxPooling, 2x2 
3  

Convolution 2D, 64 filters, 3x3, ReLu 

MaxPooling, 2x2 
-

Flatten 
Dense 512, ReLu 

I 
Dense 1, Sigmoid 

Fig . 4.1: The improved model compared to the original one (Fig. 2.7) contains 

five convolutional layers (16, 32, 64, 64, 64) and uses the R e L U activation function. 

Unlike the original model, no explicit normalization layer is incorporated. Similar to 

the original model, the improved model employs M a x Pooling wi th a 2x2 window. 

Additionally, the improved model includes two fully connected layers. The first 

layer is expanded to encompass 512 neurons, contrasting with the original model's 

128 neurons, and is activated by the Rectified Linear Uni t (ReLU) function. The 

second layer comprises a single neuron activated by a sigmoid function, maintaining 

consistency with the original model's architecture. 

4.1.2 Experiment 2 - resizing the images to 512 x 512 

In order to reduce the prediction time, the image size was changed from 600x600 to 

512x512. The prediction time was thus reduced from 96.61 to 82.36 ms, but at the 

expense of accuracy, which was decreased from 1.0 to 0.911. The likely cause is the 

loss of necessary information about the surroundings of the selected colony. This is 

a problem because accuracy is much more important than reducing the prediction 
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time. This model is assigned number 2 in Table 4.1. 

4.1.3 Experiment 3 - cropping the image to 256 x 256 

Since the resizing of the image lost the information needed for proper detection of 

the dishes, I decided to crop the image to a 256x256 window instead of resizing it. 

I decided to crop the image at the point where the transition of the tray to the 

dish is most clearly visible as shown in Figure 4.2. This resulted in an increase in 

accuracy from 0.911 to 0.964, along wi th a significant improvement in prediction 

time, which decreased from 82.36 to 60.16 ms. The model can be found in Table 

4.1 under number 3. 

F ig . 4.2: Location of the crop window. 

4.1.4 Experiment 4 - an extension of the dataset to include 
more color variations of agars 

For the purpose of accuracy improvement, I created new train, test, and validation 

datasets. These datasets contain more color variations of dishes as can be seen 

in Figure 4.3. There was an improvement in prediction time from 60.16 ms to 

57.36 ms, but no improvement in accuracy wi th such a trained model. This can be 

partially attributed to the previous practice of cropping images to 256 x 256 pixels. 

This problem is addressed in the following experiment. 

Despite this, I believe that the expansion of the dataset to include new agar 

color variants has contributed to the generalizability of the model and its ability 
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to perform better in practice, where different agar shades may occur that were not 

originally included in the training dataset. This model is listed in Table 4.1 under 

number 4. 

F ig . 4.3: Examples of different colors of agar. 

4.1.5 Experimet 5 - resizing the image to 512x512 and cropping 
it to 256x256 

The subsequent approach involved training the model on the extended dataset, ini

t ial ly reducing the input image to 512x512 and subsequently cropping it to 256x256. 

This procedure yielded an increase in accuracy from 0.964 to 0.982. However, there 

was a minor degradation in prediction time from 57.36 to 57.92 ms. This model 

is referenced as number 5 in the accompanying Table 4.1. 

4.1.6 Experiment 6 - the extension of the dataset to include 
more dishes with bottom illumination 

The final strategy was to expand the training, testing, and validation dataset by 

more dishes wi th bottom illumination. This decision was driven precisely by algo

r i thm failures on these dishes. This resulted in an improvement in accuracy from 

0.982 to 1.0, and a reduction in prediction time from 57.92 to 54.69. This model 

is denoted by 6 in Table 4.1. 

Overall , experiment 6 led to an improvement in accuracy from 0.982 to 1.0 and 

to a reduction in prediction time from 94.82 ms to 54.69 ms compared to the 

original model. This final improvement is illustrated in the diagram 4.4. 
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Loading of training, test and validation data 
1 

SIZE = 512 
I 

C R O P _ S I Z E = 256 
I  

Image resizing (SIZE x SIZE) 
I 

Conversion from R G B to B G R T  
Cropping image to C R O P SIZEx C R O P SIZE 

Getting C N N model 
i  

Model training (steps_per_epoch = 8, 
epochs = 100, verbose = 1, 

validation steps = 8)  

Evaluating the model on test data 

F ig . 4.4: Improved C N N architecture: In comparison to the original architecture 

are images now resized to 512x512 instead of 600x600, and they are also cropped to 

256x256. These changes are highlighted in the diagram. 
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Tab. 4.1: Table of results showing important parameters of individual models tested 

on the test dataset. 

Model Description Accuracy f 
Prediction 

time (ms) \. 

Model trained on red, white, and 
Base line transparent agars, and on empty dishes, 0.982 94.82 

resized to 600x600 

Model defined with different parameters = 
"New Model", trained on red, white, and 
transparent agars, and on empty dishes, 

resized to 600x600. 

1.000 96.61 

New Model trained on red, white, and 
transparent agars, and on empty dishes, 0.911 82.36 

resized to 512x512. 

New Model trained on red, white, and 
transparent agars, and on empty dishes, 0.964 60.16 

cropped to 256x256. 

New Model trained on more colors of 
agars, and on empty dishes cropped to 0.964 57.36 

256x256. 

New Model trained on more colors of 
agars, resized to 512x512, cropped to 0.982 57.92 

256x256. 

New Model trained on more colors of agars 
and more dishes with bottom illumination, 1.000 54.69 

resized to 512x512, cropped to 256x256. 

4.2 Dish rotation 

This subsection explores the implementation and testing of potential improvements 

to the dish rotation algorithm, previously discussed in Chapter 3. The results are 

summarized in Table A . 2 in the Appendix. 

The current improvement of the algorithm for sample preparation is shown in 

Figure 4.5. 
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The original C N N 
architecture using the RF, 

resizing the images to 
600x600 

t 
The improved C N N 

architecture not using RF, 
resizing images to 512x512 

and cropping images to 
256x256 

Dish detection 

t 
The improved C N N 

architecture not using RF. 
resizing images to 512x512 

and cropping images to 
256x256 

The original 
algorithm using the 

Canny filter and 
Template Matching 

The original algorithm using 
the Template Matching only 

once for retrieving the colony 
position 

Dish rotation Retrieving the colony position 

F ig . 4.5: Replacement of the original dish detection algorithm wi th a new improved 

one. 

4.2.1 Experiment 1 - adding conditions for adjusting Canny 
function parameters based on image brightness 

To detect the angle of rotation of the dish, the algorithm uses the Canny edge 

detection algorithm, which is generally used to detect edges in the image. 

The problem occurs when the image is too dark, so the edges cannot be defined 

on it, or when the image is too bright and too many edges are detected on it. This is 

due to the fact that the dishes have different colors of agars and the M B T Pathfinder 

uses different types of i l lumination. Bo th of these scenarios can be seen in Figure 

4.6. This is mainly due to the fact that the dishes have various agar colors and the 

M B T Pathfinder uses different types of i l lumination. 

Therefore, a condition was added to the algorithm that decreases the lower and 

upper threshold limits if the number of white pixels is less than 43 000 and increases 

the threshold parameters if the number of white pixels is more than 90 000. The 

values of 43 000 and 90 000 have been empirically tested. The detailed workflow 

enhanced by these steps can be seen below 4.7. 

This experiment led to an improvement in accuracy from 0.75 to 0.8. The 
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extended results are shown in Table A . 2 in the Appendix. 

(c) 30 047 white pixels 

F ig . 4.6: Differences in the number of white pixels after edges detection. Image a) 

exhibits excessive brightness, leading to an abundance of detected edges. Conversely, 

image c) is too dark, so the edges cannot be defined exactly. These problems may 

consequently hinder the accurate computation of dish rotation. 
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Before image loading] [After image loading 

Error | 
Yes 

llmages 'resizing 

(Circle mask creation! 

. r . 
[Conversion of images to grayscale!  

Edge detection! 
i  

Images thresholding with threshold 1 
threshold2 = 30*3.5 

30, 

Images thresholding with 
thresholdl = 0.7 * 30, threshold2 

= 2.5 * 30 

^ ^ ^ ^ ^ W m t e pixels m o f g ^ ^ ^ ^ ^ Images thresholding with 
thresholdl = 0.7 * 30, threshold2 

= 2.5 * 30 
^ T ^ ^ t h a n 900Q02--
Yes 1 No 

Images thresholding with 
thresholdl = 1.5 * 30, 
threshold2 = 4.5 * 30 

No 

Setting background of the dish to black 

Rectangle images cropped to circle shape of the mask 

The list of angle results creation 

or each angle in the define 
range with a given step 

Rotation the cropped image on the mask by a given angle 

Image conversion to binary 
Correlation between binary rotated image 

and after image cropped to the mask 
[Add angle and score to the list] 

liNfext angp 
v  

Finding the angle with the best score of the correlation from the list 

I Clear the list 
Precise finding - repetition of the previous for cycle, but in the range 
of best angle - given step and best angle + given step, with step 0.1 

Finding the angle with the best score of the correlation from the list 

Rotate the coordinates by the calculated angle 

Rotated coordinates 

F ig . 4.7: Dish rotation workflow diagram - improvement 1: This diagram highlights 

the additional steps adjusting the Canny detector threshold. 
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4.2.2 Experiment 2 - image registration 

While there has been a slight improvement in the dish rotation algorithm, further 

enhancements are necessary to achieve the desired level of robustness. Therefore, I 

decided to use the methods of image registration and subsequent calculation of the 

rotation angle. For a better understanding, the workflow diagram of this algorithm 

can be seen in Figure 4.9. 

This approach is based on searching for key points and descriptors using an O R B 

(Oriented F A S T and Rotated B R I E F ) detector. First , the images are converted to 

gray-scale and the O R B detector is initialized. The next step is to detect keypoints 

and compute descriptors using O R B . Comparator objects are created to compare 

the descriptors and find the corresponding matches between keypoints in the images. 

This can be seen in Figure 4.8. Subsequently, homography is used to transform one 

image to match the geometry of the other. The R A N S A C method is applied to 

extract locations wi th reliable matches, filtering out outliers. Finally, using the 

transformation matrix obtained from homography and the arcus tangent function, 

the rotation angle between the images is calculated. 

The extended results of this experiment can be seen in Appendix Table A . 3 . 

There has been a significant improvement in accuracy from 0.8 to 0.975. The last 

2 columns of the Table represent the calculated angles when using the S I F T (Scale 

Invariant Feature Transform) detector instead of the O R B . I also wanted to use the 

S U R F detector, but this was not possible due to licensing restrictions. The choice 

of the O R B was correct since using S I F T did not lead to any improvement. 

F ig . 4.8: Visualizat ion of matched keypoints using O R B Detector. 
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Before image 
loading 

After image 
loading 

Conversion of images to 
gray- scale 

Initiation of the ORB detector 

X 
Finding keypoints and 
descriptors using ORB 

Creation of Matcher object 
I 

Match descriptors 

Sort matches in the order of 
their distance 

Extraction location of good matches 
using R A N S A C 

I 
Finding and using homography 

X 
Extraction of rotation angle 

Fig . 4.9: Workflow diagram for calculating the rotation angle using image registra

tion. 

This experimental approach yielded a notable enhancement. The minimum value 

of the difference between the actual angle and the calculated rotation angle improved 

from - 0 . 6 ° to - 0 . 2 ° , and the maximum value significantly reduced from 4 0 . 8 ° to 

3.1° . The standard deviation improved from 6 .36° to 0 .49° , the Mean Squared 

Error (MSE) decreased from 1 .16° to 0 .08° , and the Mean Absolute Error ( M A E ) 

decreased from 1 .22° to 0 .12° . The differences in these metrics are shown in Table 

4.2. 
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Tab. 4.2: Improvement of various metrics describing the difference between mea

sured and true values of dish rotation. 

Metrics Original [°] Improved [°] Improvement [°] 

M i n A -0.6 -0.2 -0.4 
Max A 40.8 3.1 -37.7 

Standard deviation 4- 6.36 0.49 -5.87 
M S E I 1.16 0.08 -1.08 
M A E 4. 1.22 0.12 -1.1 

4.3 Retrieving colony position 

This section discusses several different approaches to improving the algorithm for 

retrieving colony position. The workflow diagram, supplemented by the steps dis

cussed in the next chapter, can be seen below 4.16. 

The results of the implementation of the original colony retrieving algorithm 

together wi th the improved algorithm for finding the rotation angle using image 

registration are shown in Table A .4 . We can see that the improvement of the algo

r i thm for finding the rotation angle has also led to a noticeable improvement in the 

accuracy of the algorithm for retrieving the correct colony position, from 0.725 to 

0.85. 

The current improvement of the algorithm for sample preparation is shown in 

Figure 4.10. 

69 



The improved C N N 
architecture not using RF, 

resizing images to 512x512 
and cropping images to 

256x256 

Dish detection 

The original 
algorithm using the 

Canny filter and 
Template Matching 

t 
The algorithm using 

the R A N S A C 
method and ORB 

detector 

Dish rotation 

t 
The algorithm usin£ 

the R A N S A C 
method and ORB 

detector 

The original algorithm using 
the Template Matching only 

once for retrieving the colony 
position 

Retrieving the colony position 

F ig . 4.10: Replacement of the original dish rotation solution wi th a new improved 

one. 

4.3.1 Experiment 1 - introducing additional correlation to in
crease the accuracy of Rotated coordinates 

The first modification to the algorithm is adding a preliminary step that refines the 

position of the Rotated coordinates before proceeding to the final calculation of the 

coordinates of the selected colony. 

This additional step involves calculating the offset between the pattern and image 

(search area) using the template matching method. The pattern is a Rotated image 

cropped by a small mask wi th the center in the Rotated coordinates. The image 

is the After image cropped by a large mask, also wi th the center in the Rotated 

coordinates. The resulting offset is then added to the Rotated coordinates to obtain 

the New rotated coordinates. These are then used to calculate the offset to find the 

correct coordinates of the selected colony. 

To calculate the correct coordinates of the selected colony, the After image 

cropped by a small mask wi th the center in the New rotated coordinates is used 

as the pattern and the Centered image cropped by a large mask with the center in 

the New rotated coordinates is used as the image. 
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This process and the resulting improvement in the value of the Rotated coordi

nates is illustrated in Figure 4 .11. 

The original rotated coordinates 

o The new rotated coordinates 

F ig . 4.11: Improvement in the value of the Rotated coordinates by calculating the 

shift between the Rotated image cropped by a small mask wi th the center in the 

center of the image (Pattern) and the After image cropped by a large mask wi th 

the center also in the center of the image (Image). 
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This approach increases the precision of the calculated Rotated coordinates and 

thus the overall success rate of obtaining the correct colony position. Compared to 

the original algorithm without the improved calculation of the dish rotation, the 

improvement in accuracy is from 0.725 to 0.875, and compared to the algorithm 

with the improved calculation of the dish rotation, the improvement is from 0.85 

to 0.875. The results are shown in Table A . 5 . 

4.3.2 Experiment 2 - using a Kernel mask 

The next approach is using the Kernel mask 2 , specifically a sharpening mask (Fig. 

4.12). 

0 -1 0 

-1 5 -1 

0 -1 0 

Fig . 4.12: Sharpening Kernel mask. 

This mask is used on the image and the pattern before the shift is calculated. 

The result was a decrease in accuracy from 0.85 to 0.825, which is likely due to 

the introduction of noise and making it more difficult to locate the pattern in the 

image accurately. The results of this experiment can be found in Table A .6 . 

4.3.3 Experiment 3 - changing the size of masks for template 
matching 

Another experiment was changing the size of the masks used for template matching. 

Crop size small was changed from 92 pixels to 200 and crop size large was increased 

from 276 to 300 pixels. The difference in results of using the larger cropping mask 

instead of the smaller cropping mask is demonstrated in Figure 4.13. The results of 

this change can be seen in Table A . 7. 

2 The convolution matrix used for sharpening, edge detection, embossing, and more [17]. 
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Smaller cropping masks Larger cropping masks 

I i 

Result Result 

F ig . 4.13: The difference in results of using the larger cropping mask instead of 

the smaller cropping mask. The green mark represents the colony determined by 

the algorithm and the red mark represents the incorrectly selected colony by the 

algorithm using the smaller cropping mask. 
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This experiment resulted in the resolution of the majority of incorrect predic

tions. This is due to the fact that by increasing the cropping sizes the algorithm 

gained more information about the surroundings of the selected colony and could 

calculate the shift more accurately. 

Increasing the cropping sizes prolongs the computation time from 2.30 ms to 

2.38 ms, which is not so critical according to the improvement in accuracy in 

retrieving the colony position algorithm from 0.875 to 0.95. The Table 4.3 shows 

the comparison of the computation times per image for different mask sizes. 

Tab. 4.3: Table describing the comparison of computation times per image for dif

ferent mask sizes. 

Masks 92, 276 200, 300 

Computation time 
2.30 2.38 

per 1 image [ms] 

The two erroneous forecasts that remain in the results are caused by the fact that 

the dataset used for this experiment consisted of images of dishes acquired by the 

device M B T Pathfinder before picking, after picking, and when the picked colony 

is centered. Since the previous algorithm most likely failed and thus incorrectly 

found the user-selected colony, and at a significant distance, the image for following 

template matching was incorrectly cropped and therefore does not contain the user-

selected colony. This means that the subsequent correlation between the pattern and 

this image could not be performed correctly because these images are taken from 

completely different locations in the dish. This error is illustrated in the Figure 4.14. 

Due to this fact, I decided to exclude these 2 samples from the test dataset, so the 

overall improvement in accuracy is from 0.711 to 1.0. 
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Pattern 

1 a ^ t ' 

Ik 

I j 

Fig . 4.14: Colony position retriever errors: The template matching between the 

pattern and the image cannot be performed correctly because these images are 

taken from completely different locations in the dish. This is due to a failure of the 

original algorithm. 

4.3.4 Experiment 4 - artificial introduction of 1° error 

Since the function for determining the rotation of the dish is st i l l not guaranteed to 

work completely correctly, an experiment was performed to show that this inherent 

error can be compensated by an algorithm for obtaining the position of the colony. 

In this experiment, I artificially introduced a 1-degree error. 1° covers the vast 

majority of possible error conditions, virtually eliminating them. First , we sub

tracted 1 degree from the calculated angle manually, and then the colony position 

was retrieved. The results of this experiment are identical to the results of the colony 

position retrieval algorithm without the added angle. After removing the 2 samples 

that were obtained incorrectly due to the failure of the M B T Pathfinder device, the 

accuracy is equal to 1.0. These results are shown in the appendix in Table A . 8 . 

We can therefore claim that the improvement of this algorithm was successful 
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both in terms of refinement of the found colony position and in terms of improve

ment of the compensation of the error that arose during the search for the angle 

of rotation of the dish. A n example of retrieving colony location improvement is 

illustrated in Figure 4.15. 

F ig . 4.15: Retrieving colony position: In the top Subfigure, the red marker indicates 

the colony selected from the label, which represents the colony selected by the user. 

In the bot tom Subfigure, the green marker represents the colony found by the 

improved algorithm and the red marker represents the colony that was incorrectly 

determined by the original algorithm. It is evident that, compared to the original 

algorithm, the new algorithm finds the correct colony even when an artificial error 

of 1° is introduced. 
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Rotated 
coordinates 

T 

After image 
loading 

Rotated image 
loading 

Centered image 
loading 

Rotated image cropped by small crop size with 
the center in rotated coordinates = pattern 

After image cropped by large crop size with 
the center in rotated coordinates = image 

Calculation of the dimension of the resulting match map 
for the template matching between image and pattern 

Calculation of the matching result 
between image and pattern 

Normalization of the matching result 

T 
Finding maximum and minimum value and 

location in the correlation matrix 

T M S Q D I F F or T M SQDIFF N O R M E D 
parameters? 

Yes 

Match location is equal to 
minimum location 

T 

Match location is equal to 
maximum location 

Calculation of shiftx and shift_y using 
the match location and shape of the 

imaRe and pattern  

Addition of shift to the 
rotated coordinates 

T 
Centred image cropped by large 
crop size with the center in the 

center of the image = image 

After image cropped by small mask 
with the center in the new rotated 

coordinates = pattern  

Calculation of shiftx and shift_y using the 
match location and shape of the image 
and pattern in the same way as before 

Calculation of new x, y coordinate values 

F ig . 4.16: Workflow diagram with highlighted additional steps. 
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Conclusion 
This thesis represents a significant step towards more efficient and reliable opera

tion of the M B T Pathfinder in microbiological analysis. The main objective was 

to increase the reliability and benchmarking performance of agar plate handling 

algorithms for laboratory automation robots. 

The first chapter of my bachelor's thesis introduces the key algorithms and tech

niques necessary to tackle the problems of this thesis. It discusses topics such as 

digital image processing, provides a detailed overview of fundamental types of digital 

images, and elucidates basic image processing techniques such as object detection, 

image registration, and image segmentation. This chapter further explores Convo-

lutional neural networks (CNNs) , including a thorough description of their architec

ture, individual layers, and the C N N training process, including key concepts such 

as loss function and gradient descent. This chapter provides a solid foundation for 

understanding the image processing techniques and the complex workings of C N N s . 

Chapter 2 addresses the microbial colonies, encompassing their cultivation, var

ious types of nutrient media, classifications of agar, and the intricate processes 

associated with the propagation and growth of microorganisms. Subsequently, a 

comprehensive examination of the complexities associated wi th colony picking is 

conducted, wi th a detailed rationale highlighting the advantages of automation 

over manual methods. This chapter also provides the introduction and compre

hensive description of the M B T Pathfinder instrument developed by Bruker Da l -

tonics G m b H & Co. K G . A meticulous analysis of the instrument's entire workflow 

is conducted, wi th special attention devoted to elucidating the crucial steps wi thin 

this workflow. Subsequently, the chapter delves into the creation of a test dataset 

and presents the results derived from implementing the original algorithms on this 

dataset. Simultaneously, the text addresses potential challenges and complexities 

that may arise in the application of these algorithms. It emphasizes the paramount 

importance of ensuring the seamless functionality of each step in the workflow, elu

cidating the reasons behind the necessity for flawless execution. 

Chapter 3 discusses various strategies to improve the efficiency of the original 

algorithms. This is done through a detailed analysis of their advantages and dis

advantages, complemented by suggestions to address any shortcomings. It offers a 

detailed description of my approach and explains the reasons behind each step I 

took. 

Chapter 4 focuses on the implementation of the different approaches described 

in the previous chapter. A l l experiments that led to noticeable improvements are 

described in detail. The accuracy of the dish detection algorithm improved from 

0.982 to 1.0 and the prediction time improved from 94.82 ms to 54.69 ms. For the 
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dish rotation algorithm, the accuracy improved significantly from 0.750 to 0.975. 

Finally, for the algorithm to obtain the correct colony position, the accuracy im

proved from 0.725 to 0.950. However, it is important to mention that the dataset 

contained 2 samples that were incorrectly analyzed, probably due to the original 

algorithm failure. After removing these samples, the final accuracy of the algorithm 

on the test dataset was 1.0. Finally, an experiment was performed in this chapter 

to confirm my theory that the angular rotation error can be compensated for by the 

colony position retrieval algorithm. 

Overall , this work represents an advance toward improving the efficiency and 

reliability of the M B T Pathfinder instrument in microbiological analysis. The opti

mization and improvement of algorithms significantly affect the overall system per

formance and I believe that the solutions presented can bring benefits and progress 

in practical applications. 
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G P U s Graphics Processing Units 

A C F Aggregate Channel Feature 

H O G Histograms of Oriented Gradien 
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D L Deep Learning 

M L Machine Learning 

A I Art i f ic ia l Intelligence 

R e L U Rectified Linear Uni t 

M A L D I Matr ix-Assisted Laser Desorption/Ionization 

M A E Mean Absolute Error 

O R B Oriented F A S T and Rotated B R I E F 

R A N S A C R A N d o m SAmple Consensus 

S I F T Scale Invariant Feature Transform 
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A Tables of results 

A . l Original algorithms 

Tab. A . l : Table of results demonstrating the correctness of the rotation determina

tion and the correctness of the colony detection. 

Name Angle 
[°] 

True 
angle 

[°] 

A[°] Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_A1 -0.2 0 0.2 / / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.8 -2.5 0.3 / / 
01-05-2021 09_15_23_KM_1011021661_C1 -38.9 -37.8 1.1 X X 
01-05-2021 09_15_23_KM_1011021661_C6 -14.2 -14 0.2 / / 
01-05-2021 09_15_23_KM_1011021661_E8 -13.1 -12.7 0.4 X X 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / / 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / X 
02-05-2021_UB_1011019967_All 1 1 0 / / 
02-05-2021_UB_1011019967_Bl 34.1 34.5 0.4 X X 
04-05-2021 11_29_44_KM_1011021661_A3 -1.6 -1.5 0.1 / / 
04-05-2021 11_29_44_KM_1011021661_A5 -4.5 -4.4 0.1 / / 
04-05-2021 11_29_44_KM_1011021661_B5 -8.8 -8.5 0.3 / / 
04-05-2021 11_29_44_KM_1011021661_C8 -7.6 -8 -0.4 X / 
04-05-2021 11_29_44_KM_1011021661_D6 -39.5 -40.1 -0.6 X / 
05-03-2021 10_ll_02_polished_cl_1011021701_Al -33.3 -32.8 0.5 X / 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.8 1.7 -0.1 / / 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.2 0.2 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -1 -0.8 0.2 / / 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B6 -1.1 -1 0.1 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B9 -43.2 -42.3 0.9 X X 
09-02-2021 11_55_04 bio_cl_0021329271_D8 0.2 0.2 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 / / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 / / 
10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 / / 
11-02-2021 08 11 15 bio sb 0021331184 B9 3 3.1 0.1 / / 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.8 1.9 0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.2 -0.1 0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3 3 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 / / 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.6 0.6 0 / X 
18-05-2021 07_55_29_KM_1011021661_A8 1.4 1.4 0 / / 
20-05-2021_Biotarget_UB_0021331024_E12 -0.9 -0.9 0 / X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.7 1.6 -0.1 / X 
27-05-2021 07_55_54_KM_0021331037_D12 28.5 29.3 0.8 X X 
30-04-2021_2_UB_1011026280_D5 -50.5 -9.7 40.8 X X 
30-04-2021_2_UB_1011026280_F3 26.6 27.4 0.8 X X 

Accuracy 0.75 0.725 
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A.2 Improved algorithms 

Tab. A . 2 : Table of results of the algorithm determining the rotation of the dish 

using the template matching method. The values in the column True angle [°] were 

obtained using an algorithm to create a fusion of the After image and Before 

image rotated by a specified Angle [°]. The exact procedure is described in 2.2.3. 

Name Angle 
[°] 

True 
angle 

[°] 
Ml Angle 

result 

Angle [°] 
after 

refactoring 
A[°] 

Angle 
result 

01-05-2021 09_15_23_KM_1011021661_A1 -0.2 0 0.2 / -0.2 0.2 / 

01-05-2021 09_15_23_KM_1011021661_A7 -2.8 -2.5 0.3 / -2.8 0.3 / 

01-05-2021 09_15_23_KM_1011021661_C1 -38.9 -37.8 1.1 X -38.9 1.1 X 
01-05-2021 09_15_23_KM_1011021661_C6 -14.2 -14 0.2 / -14.2 0.2 / 

01-05-2021 09_15_23_KM_1011021661_E8 -13.1 -12.7 0.4 X -13 0.3 / 

01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / 2.3 0.0 / 

02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / 0.2 -0.1 / 

02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / -16.7 0.0 / 
02-05-2021_UB_1011019967_A 11 1 1 0 / 1 0.0 / 

02-05-2021_UB_1011019967_Bl 34.1 34.5 0.4 X 34 0.5 X 
04-05-2021 11_29_44_KM_1011021661_A3 -1.6 -1.5 0.1 / -1.6 0.1 / 

04-05-2021 11_29_44_KM_1011021661_A5 -4.5 -4.4 0.1 / -4.5 0.1 / 

04-05-2021 11_29_44_KM_1011021661_B5 -8.8 -8.5 0.3 / -8.8 0.3 / 

04-05-2021 11_29_44_KM_1011021661_C8 -7.6 -8 -0.4 X -7.6 -0.1 X 
04-05-2021 11_29_44_KM_1011021661_D6 -39.5 -40.1 -0.fi X -39.5 -0.fi X 
05-03-2021 10_ll_02_polished_cl_1011021701_Al -33.3 -32.8 0.5 X -33.3 0.5 X 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.8 1.7 -0.1 / 1.8 -0.1 / 

09-02-2021 09 49 16 bio sb 0021329273 B5 0.2 0.2 0 / 0.2 0.0 / 

09-02-2021 09 49 16 bio sb 0021329273 D4 -1 -0.8 0.2 / -1 0.2 / 

09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / -0.2 -0.1 / 

09-02-2021 11J5J4 bio_cl_0021329271_B6 -1.1 -1 0.1 / -1.1 0.1 / 
09-02-2021 11J5J4 bio_cl_0021329271_B9 -43.2 -42.3 0.9 X -43.2 0.9 X 
09-02-2021 11J5J4 bio_cl_0021329271_D8 0.2 0.2 0 / 0.2 0.0 / 

10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / -1.8 0.0 / 

10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 / -1.2 0.0 / 
10-08-2021_KM_1011026323_A 10 -0.2 -0.2 0 / -0.2 0.0 / 

10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 / 3.2 0.0 / 

11-02-2021 08 11 15 bio sb 0021331184 B9 3 3.1 0.1 / 3 0.1 / 

11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / -3.6 0.0 / 

15-07-2021_Biotargetjathfcider_UBJ021328247_C6 1.8 1.9 0.1 / 1.8 0.1 / 

15-07-2021_Biotargetjathfcider_UBJ021328247_Dl -0.2 -0.1 0.1 / -0.2 0.1 / 

15-07-2021_Biotarget_pathfinder_UBJ021328247_D12 3 3 0 / 3 0.0 / 

15-07-2021_Biotarget_patlifinder_UBJ021328247_D7 0.2 0.2 0 / 0.2 0.0 / 

17-02-2021 09_01_43_polished_cl_1011021740_C9 0.6 0.6 0 / 0.6 0.0 / 

18-05-2021 07_55_29_KM_1011021661_A8 1.4 1.4 0 / 1.4 0.0 / 
20-05-2021_Biotarget_UB_0021331024J12 -0.9 -0.9 0 / -0.9 0.0 / 

25-02-2021 08_14_04__polished_cl_1011026119_C8 1.7 1.6 -0.1 / 1.7 -0.1 / 

27-05-2021 27-05-2021 07_55_54_KM_0021331037_D12 28.5 29.3 0.8 X 28.5 0.8 X 
30-04-2021_2_UB_1011026280_D5 -50.5 -9.7 10.8 X -9.6 -0.1 / 

30-04-2021_2_UB_1011026280_F3 26.6 27.4 0.8 X 26.6 0.8 X 

Accuracy 0.8 
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Tab. A . 3 : Table of results of the algorithm determining the rotation of the dish using the image registration. 

oo 

True Angle 
result 

S I F T Angle 
result Name Angle [°] angle 

[°] 
A [»] Angle 

result O R B Angle [°] A [»] Angle result Angle 
[°] 

A [»] Angle 
result 

01-05-2021 09_15_23_KM_1011021661_A1 -0.2 0 0.2 • 0.1 -0.1 • 0 0 • 
01-05-2021 09_15_23_KM_1011021661_A7 -2.8 -2.5 0.3 -2.6 0.1 -2.6 0.1 y 
01-05-2021 09_15_23_KM_1011021661_C1 -38.9 -37.8 1.1 X -38 0.2 / -37.8 0 s 
01-05-2021 09_15_23_KM_1011021661_C6 -14.2 -14 0.2 S -14 0 / -14 0 s 
01-05-2021 09_15_23_KM_1011021661_E8 -13.1 -12.7 0.4 X -12.8 0.1 / -12.8 0.1 s 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 S 2.3 0 / 0 2.3 X 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 y 0.1 0 / 0.1 0 s 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 s -16.7 0 / 0 -16.7 X 
02-05-2021_UB_1011019967_A11 1 1 0 s 1 0 / 1 0 s 
02-05-2021_UB_1011019967_Bl 34.1 34.5 0.4 X 34.7 -0.2 / 0 34.5 X 
04-05-2021 11_29_44_KM_1011021661_A3 -1.6 -1.5 0.1 s -1.5 0 / 0 -1.5 X 
04-05-2021 11_29_44_KM_1011021661_A5 -4.5 -4.4 0.1 s -4.4 0 / -4.4 0 s 
04-05-2021 11_29_44_KM_1011021661_B5 -8.8 -8.5 0.3 s -8.5 0 / -8.5 0 s 
04-05-2021 11_29_44_KM_1011021661_C8 -7.6 -8 -0.4 X -8 0 / -8 0 s 
04-05-2021 11_29_44_KM_1011021661_D6 -39.5 -40.1 -0.6 X -40.1 0 / -40.2 0.1 s 
05-03-2021 10_ll_02_polished_cl_1011021701_Al -33.3 -32.8 0.5 X -32.8 0 / -32.8 0 s 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.8 1.7 -0.1 s 1.7 0 / 1.7 0 s 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.2 0.2 0 s 0.1 0.1 / 0.1 0.1 s 
09-02-2021 09 49 16 bio sb 0021329273 D4 -1 -0.8 0.2 s -0.8 0 / -0.4 -0.4 s 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 s -0.2 -0.1 / 0 -0.3 s 
09-02-2021 11_55_04 bio_cl_0021329271_B6 -1.1 -1 0.1 s -1 0 / -1 0 s 
09-02-2021 11_55_04 bio_cl_0021329271_B9 -43.2 -42.3 0.9 X -42.3 0 / 0 -42.3 X 
09-02-2021 11_55_04 bio_cl_0021329271_D8 0.2 0.2 0 s 0.2 0 / 0 0.2 s 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 s -1.8 0 / -1.8 0 s 
10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 s -1.2 0 / -1.2 0 s 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 s -0.2 0 / -0.1 -0.1 s 
10-08-202l_steeltarget_U B _ 1011019967_ A5 3.2 3.2 0 s 3.2 0 / 3.2 0 s 
11-02-2021 08 11 15 bio sb 0021331184 B9 3 3.1 0.1 s 0 3.1 X 0 3.1 X 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 s -3.6 0 S -3.6 0 s 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.8 1.9 0.1 s 1.9 0 S 2 -0.1 s 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.2 -0.1 0.1 s -0.1 0 S -0.1 0 s 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3 3 0 s 3.1 -0.1 S 3.1 -0.1 s 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 s 0.2 0 S 0.1 0.1 s 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.6 0.6 0 s 0.5 0.1 S 0.2 0.4 s 
18-05-2021 07_55_29_KM_1011021661_A8 1.4 1.4 0 s 1.5 -0.1 s 1.4 0 s 
20-05-2021_Biotarget_UB_0021331024_E12 -0.9 -0.9 0 s -0.8 -0.1 s 0.2 -1.1 X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.7 1.6 -0.1 s 1.5 0.1 s 1.5 0.1 s 
27-05-2021 07_55_54_KM_0021331037_D12 28.5 29.3 0.8 X 29.3 0 s 29.4 -0.1 s 
30-04-2021_2_UB_1011026280_D5 -50.5 -9.7 40.8 X -9.9 0.2 s 0 -9.7 X 
30-04-2021_2_UB_1011026280_F3 0 27.4 27.4 X 27.5 -0.1 s 27.6 -0.2 • 

A c c u r a c y 0.75 A c c u r a c y 0.975 A c c u r a c y 0.8 



Tab. A .4 : Table of results demonstrating the implementation of the original colony 

retrieving algorithm together wi th the algorithm for finding the rotation Angle [°] 

using image registration. 

Name Angle 
[°] 

True 
angle 

[°] 

A[°] Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_A1 0.1 0 -0.1 / / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.6 -2.5 0.1 / / 
01-05-2021 09_15_23_KM_1011021661_C1 -38 -37.8 0.2 / X 
01-05-2021 09_15_23_KM_1011021661_C6 -14 -14 0 / / 
01-05-2021 09_15_23_KM_1011021661_E8 -12.8 -12.7 0.1 / / 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / / 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / / 
02-05-2021_UB_1011019967_All 1 1 0 / / 
02-05-2021_UB_1011019967_Bl 34.7 34.5 -0.2 / / 
04-05-2021 11_29_44_KM_1011021661_A3 -1.5 -1.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_A5 -4.4 -4.4 0 / / 
04-05-2021 11_29_44_KM_1011021661_B5 -8.5 -8.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_C8 -8 -8 0 / / 
04-05-2021 11_29_44_KM_1011021661_D6 -40.1 -40.1 0 / / 
05-03-2021 10_1 l_02_polished_cl_1011021701_A1 -32.8 -32.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.7 1.7 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.1 0.2 0.1 / / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -0.8 -0.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / / 
09-02-2021 11_55_04 bio_d_0021329271_B6 -1 -1 0 / / 
09-02-2021 11_55_04 bio_d_0021329271_B9 -42.3 -42.3 0 / X 
09-02-2021 11_55_04 bio_d_0021329271_D8 0.2 0.2 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / / 
10-02-2021 08_13_25 bio_d_0021331197_H9 -1.2 -1.2 0 / / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 / / 
10-08-2021_stedtarget_UB_1011019967_A5 3.2 3.2 0 / / 
11-02-2021 08 11 15 bio sb 0021331184 B9 0 3.1 3.1 X / 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.9 1.9 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.1 -0.1 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3.1 3 -0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 / / 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.5 0.6 0.1 / X 
18-05-2021 07_55_29_KM_1011021661_A8 1.5 1.4 -0.1 / / 
20-05-2021_Biotarget_UB_0021331024_E12 -0.8 -0.9 -0.1 / X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.5 1.6 0.1 / X 
27-05-2021 07_55_54_KM_0021331037_D12 29.3 29.3 0 / / 
30-04-2021_2_UB_1011026280_D5 -9.9 -9.7 0.2 / X 
30-04-2021_2_UB_1011026280_F3 27.5 27.4 -0.1 / / 

Accuracy 0.975 0.85 

90 



Tab. A . 5 : Table of results after rotated coordinates correction. 

Correction 

Name Angle 
[°] 

True 
angle 

[°] 
A[°] 

Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_A1 0.1 0 -0.1 / / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.6 -2.5 0.1 / / 
01-05-2021 09_15_23_KM_1011021661_C1 -38 -37.8 0.2 / X 
01-05-2021 09_15_23_KM_1011021661_C6 -14 -14 0 / / 
01-05-2021 09_15_23_KM_1011021661_E8 -12.8 -12.7 0.1 / / 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / / 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / / 
02-05-2021_UB_1011019967_All 1 1 0 / / 
02-05-2021_UB_1011019967_Bl 34.7 34.5 -0.2 / / 
04-05-2021 11_29_44_KM_1011021661_A3 -1.5 -1.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_A5 -4.4 -4.4 0 / / 
04-05-2021 11_29_44_KM_1011021661_B5 -8.5 -8.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_C8 -8 -8 0 / / 
04-05-2021 11_29_44_KM_1011021661_D6 -40.1 -40.1 0 / / 
05-03-2021 10_1 l_02_polished_cl_1011021701_A1 -32.8 -32.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.7 1.7 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.1 0.2 0.1 / / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -0.8 -0.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B6 -1 -1 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B9 -42.3 -42.3 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_D8 0.2 0.2 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 / / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 / / 
10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 / / 
11-02-2021 08 11 15 bio sb 0021331184 B9 0 3.1 3.1 X / 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.9 1.9 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.1 -0.1 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3.1 3 -0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 / / 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.5 0.6 0.1 / X 
18-05-2021 07_55_29_KM_1011021661_A8 1.5 1.4 -0.1 / / 
20-05-2021_Biotarget_UB_0021331024_E12 -0.8 -0.9 -0.1 / X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.5 1.6 0.1 / X 
27-05-2021 07_55_54_KM_0021331037_D12 29.3 29.3 0 / / 
30-04-2021_2_UB_1011026280_D5 -9.9 -9.7 0.2 / X 
30-04-2021_2_UB_1011026280_F3 27.5 27.4 -0.1 / / 

Accuracy 0.975 0.875 
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Tab. A .6 : Table of results after Kernel mask application. 

Kernel 

Name Angle 
[°] 

True 
angle 

[°] 
A[°] 

Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_A1 0.1 0 -0.1 / / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.6 -2.5 0.1 / / 
01-05-2021 09_15_23_KM_1011021661_C1 -38 -37.8 0.2 / / 
01-05-2021 09_15_23_KM_1011021661_C6 -14 -14 0 / / 
01-05-2021 09_15_23_KM_1011021661_E8 -12.8 -12.7 0.1 / / 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / / 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / / 
02-05-2021_UB_1011019967_All 1 1 0 / / 
02-05-2021_UB_1011019967_Bl 34.7 34.5 -0.2 / / 
04-05-2021 11_29_44_KM_1011021661_A3 -1.5 -1.5 0 / X 
04-05-2021 11_29_44_KM_1011021661_A5 -4.4 -4.4 0 / / 
04-05-2021 11_29_44_KM_1011021661_B5 -8.5 -8.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_C8 -8 -8 0 / / 
04-05-2021 11_29_44_KM_1011021661_D6 -40.1 -40.1 0 / / 
05-03-2021 10_ll_02_polished_cl_1011021701_Al -32.8 -32.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.7 1.7 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.1 0.2 0.1 / / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -0.8 -0.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B6 -1 -1 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B9 -42.3 -42.3 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_D8 0.2 0.2 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 / / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 / / 
10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 / / 
11-02-2021 08 11 15 bio sb 0021331184 B9 0 3.1 3.1 X / 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / X 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.9 1.9 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.1 -0.1 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3.1 3 -0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 / / 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.5 0.6 0.1 / X 
18-05-2021 07_55_29_KM_1011021661_A8 1.5 1.4 -0.1 / / 
20-05-2021_Biotarget_UB_0021331024_E12 -0.8 -0.9 -0.1 / X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.5 1.6 0.1 / X 
27-05-2021 07_55_54_KM_0021331037_D12 29.3 29.3 0 / / 
30-04-2021_2_UB_1011026280_D5 -9.9 -9.7 0.2 / X 
30-04-2021_2_UB_1011026280_F3 27.5 27.4 -0.1 / X 

Accuracy 0.975 0.825 
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Tab. A.7: Table of results after cropping masks resizing. 

Mask resizing 

Name Angle 
[°] 

True 
angle 

[°] 
A[°] 

Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_A1 0.1 0 -0.1 / / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.6 -2.5 0.1 / / 
01-05-2021 09_15_23_KM_1011021661_C1 -38 -37.8 0.2 / / 
01-05-2021 09_15_23_KM_1011021661_C6 -14 -14 0 / / 
01-05-2021 09_15_23_KM_1011021661_E8 -12.8 -12.7 0.1 / / 
01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 / / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 / / 
02-05-2021 09_06_08_KM_1011021661_D2 -16.7 -16.7 0 / / 
02-05-2021_UB_1011019967_All 1 1 0 / / 
02-05-2021_UB_1011019967_Bl 34.7 34.5 -0.2 / / 
04-05-2021 11_29_44_KM_1011021661_A3 -1.5 -1.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_A5 -4.4 -4.4 0 / / 
04-05-2021 11_29_44_KM_1011021661_B5 -8.5 -8.5 0 / / 
04-05-2021 11_29_44_KM_1011021661_C8 -8 -8 0 / / 
04-05-2021 11_29_44_KM_1011021661_D6 -40.1 -40.1 0 / / 
05-03-2021 10_1 l_02_polished_cl_1011021701_A1 -32.8 -32.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 A3 1.7 1.7 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 B5 0.1 0.2 0.1 / / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -0.8 -0.8 0 / / 
09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B6 -1 -1 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_B9 -42.3 -42.3 0 / / 
09-02-2021 11_55_04 bio_cl_0021329271_D8 0.2 0.2 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 / / 
10-02-2021 08_13_25 bio_cl_0021331197_H9 -1.2 -1.2 0 / / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 / / 
10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 / / 
11-02-2021 08 11 15 bio sb 0021331184 B9 0 3.1 3.1 / 
11-05-2021 08_16_03_KM_1011021661_D9 -3.6 -3.6 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.9 1.9 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.1 -0.1 0 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3.1 3 -0.1 / / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 / / 
17-02-2021 09_01_43_polished_cl_1011021740_C9 0.5 0.6 0.1 / / 
18-05-2021 07_55_29_KM_1011021661_A8 1.5 1.4 -0.1 / / 
20-05-2021_Biotarget_UB_0021331024_E12 -0.8 -0.9 -0.1 / X 
25-02-2021 08_14_04_polished_cl_1011026119_C8 1.5 1.6 0.1 / / 
27-05-2021 07_55_54_KM_0021331037_D12 29.3 29.3 0 / / 
30-04-2021_2_UB_1011026280_D5 -9.9 -9.7 0.2 / 
30-04-2021_2_UB_1011026280_F3 27.5 27.4 -0.1 / / 

Accuracy 0.975 0.95 
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Tab. A .8 : Table of results with artificially introduced error - 1°. 

Mask resizing + artificial introduction of 1° error 

Name Angle 
[°] 

True 
angle 

[°] 

A [°] 
Angle 
result 

Detection 
result 

01-05-2021 09_15_23_KM_1011021661_Al 0.1 0 -0.1 + 1 X / 
01-05-2021 09_15_23_KM_1011021661_A7 -2.6 -2.5 0.1 11 X / 

01-05-2021 09 15 23 K M 1011021661 CI -38 -37.8 0.2 11 X / 

01-05-2021 09 15 23 K M 1011021661 C6 -14 -14 0 + 1 X / 
01-05-2021 09 15 23 K M 1011021661 E8 -12.8 -12.7 0.1 11 X / 

01-05-2021-2-UB_1011019967_B9 2.3 2.3 0 + 1 X / 
02-05-2021 09_06_08_KM_1011021661_A1 0.1 0.1 0 + 1 X / 
02-05-2021 09 06 08 K M 1011021661 D2 -16.7 -16.7 0 + 1 X / 
02-05-2021_UB_1011019967_All 1 1 0 + 1 X / 
02-05-2021_UB_1011019967_Bl 34.7 34,5 -0.2 + 1 X / 

04-05-2021 11_29_44_KM_1011021661_ A3 -1.5 -1.5 0 + 1 X / 
04-05-2021 11_29_44_KM_1011021661_A5 -4.4 -4.4 0 + 1 X / 

04-05-2021 11 29 44 K M 1011021661 B5 -8.5 -8.5 0 + 1 X / 

04-05-2021 11_29_44_KM_1011021661_C8 -8 -8 0 + 1 X / 
04-05-2021 11_29_44_KM_1011021661_D6 -40.1 -40.1 0 + 1 X / 

05-03-2021 10 11 02 polished cl 1011021701 A l -32.8 -32.8 0 + 1 X / 

09-02-2021 09 49 16 bio sb 0021329273 A3 1.7 1.7 0 + 1 X / 

09-02-2021 09 49 16 bio sb 0021329273 B5 0.1 0.2 0.1 11 X / 
09-02-2021 09 49 16 bio sb 0021329273 D4 -0.8 -0.8 0 + 1 X / 

09-02-2021 09 49 16 bio sb 0021329273 D7 -0.2 -0.3 -0.1 + 1 X / 

09-02-2021 11 55 04 bio_cl_0021329271_B6 -1 -1 0 + 1 X / 
09-02-2021 11 55 04 bio_cl_0021329271_B9 -42.3 -42.3 0 + 1 X / 

09-02-2021 11 55 04 bio_cl_0021329271_D8 0.2 0.2 0 + 1 X / 

10-02-2021 08_13_25 bio_cl_0021331197_G7 -1.8 -1.8 0 + 1 X / 
10-02-2021 08_13_25 bio cl 0021331197 H9 -1.2 -1.2 0 + 1 X / 
10-08-2021_KM_1011026323_A10 -0.2 -0.2 0 + 1 X / 

10-08-2021_steeltarget_UB_1011019967_A5 3.2 3.2 0 + 1 X / 

11-02-2021 08 11 15 bio sb 0021331184 B9 0 3.1 3.1 11 X / 
11-05-2021 08 16 03 K M 1011021661 D9 -3.6 -3.6 0 + 1 X / 

15-07-2021_Biotarget_pathfinder_UB_0021328247_C6 1.9 1.9 0 + 1 X / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_Dl -0.1 -0.1 0 + 1 X / 
15-07-2021_Biotarget_pathfinder_UB_0021328247_D12 3.1 3 -0.1 + 1 X / 

15-07-2021_Biotarget_pathfinder_UB_0021328247_D7 0.2 0.2 0 + 1 X / 

17-02-2021 09_01_43_polished_cl_1011021740_C9 0,5 0.6 0.1 11 X / 

18-05-2021 07_55_29_KM_1011021661_A8 1.5 1.4 -0.1 + 1 X / 
25-02-2021 08 14 04 polished cl 1011026119 C8 1.5 1.6 0.1 11 X / 
27-05-2021 07_55_54_KM_0021331037_D12 29.3 29.3 0 + 1 X / 

30-04-2021_2_UB_1011026280_F3 27.5 27.4 -0.1 + 1 X / 

Accuracy 0 1 
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B List of attachments 
Original solution.py - The original solution of the dish detection. 

New model.py - The "New" model for dish detection with new parameters. 

The best solution.py - The model for dish detection wi th the best results. 

Rotator.py - The original solution for calculating dish rotation and obtaining 

colony position. 

Experiments.py - The script wi th al l experiments of dish rotator and colony 

position retriever. 
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