
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

EDUCATIONAL SYSTEM FORRECOMMENDINGSTUDYACTIVITIES
VZDĚLÁVACÍ SYSTÉM PRO DOPORUČOVÁNÍ STUDIJNÍCH AKTIVIT

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR JAKUB ZAPLETAL
AUTOR PRÁCE
SUPERVISOR Ing. RADEK BURGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2018

Abstract
The purpose of this work is to design and implement a module for an already existing
recommender system at the Open University, Milton Keynes. The existing system uses
information about user activity in the Virtual Learning Environment (VLE) gathered from
previous years and uses it to recommend relevant study activities for students. This module
uses semantical similarity of study materials to recommend those which help user to com-
plete an assignment or to find materials similar to ones provided. Similarities between
documents are computed using Term Frequency - Inverse Document Frequency and word
embedding methods. RESTful API was devised to communicate with the OU Analyse
interface.

Abstrakt
Cílem této práce je navrhnout a implementovat modul do existujícího doporučovacího sys-
tému Open University v Milton Keynes. Nyní nasazený doporučovací systém využívá infor-
mací o aktivitě uživatelů ve Virtual Learning Environment (VLE) nasbíraných z předchozích
let a podle ní doporučuje studentům relevantní studijní aktivity. Tento modul využívá sé-
mantické podobnosti mezi studijními materiály k doporučení těch, které pomohou uživateli
vyřešit úkol nebo které jsou podobné k těm, o něž projevil zájem. K počítání podobnosti
dokumentů je využíváno metod Term Frequency - Inverse Document Frequency a vnoření
slov. Pro používání modulu a jeho komunikaci modulu s rozhraním OU Analyse je imple-
mentováno RESTful API.

Keywords
Recommender systems, Technology enhanced learning, Information systems, Educational
systems, Document similarity

Klíčová slova
Doporučovací systémy, Vzdělávací systémy, Informační systémy, Technologií posilované
učení, Podobnost dokumentů

Reference
ZAPLETAL, Jakub. Educational System for Recommending Study Activities. Brno, 2018.
Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology. Su-
pervisor Ing. Radek Burget, Ph.D.

Rozšířený abstrakt
Cílem této práce je vytvořit modul do již existujícího doporučovacího systému na Open
University Milton Keynes, nazvaného Open University Analyse Recommender (OUAR)
[17] nebo vytvořit úplně nový doporučovací systém. OUAR využívá sledování aktivity
studentů monitorováním toho, na co, kolikrát a kdy klikají v tamním univerzitním infor-
mačním systému Virtual Learning Environment (VLE). Autorem navrhovaný modul by
mohl tento systém rozšířit tak, že uvede nové metriky aktivity studentů nebo přinese jiný
způsob doporučování relevantních aktivit studentům. Součástí této práce je seznámení
s oblastí doporučovacích systému a průzkum nejnovějších přístupů k doporučovacím sys-
témům v oblasti vzdělávání. Dále jsou zkoumány různé metriky aktivity studentů ve VLE
a případné způsoby jak jich využít k vylepšení doporučování.

Open University (OU) nabízí množství kurzů z různých oblastí, které jsou vyučovány
čistě dálkově. Jednotlivé běhy kurzu jsou zde nazývány prezentace. Studijní cyklus na OU
vypadá tak, že každý kurz je rozdělen na studijní bloky, které jsou dále děleny na části.
Tyto části jsou probírány jednotlivých studijních týdnech. V rámci jednoho týdne může být
probíráno více částí bloku nebo i blok celý. Toto se liší kurz od kurzu. Ve VLE má každá
část bloku přidělené studijní materiály, které by si měl student v daném týdnu nastudovat.
Tyto materiály jsou nejčastěji studijní texty, jejichž součástí mohou být i videa a jsou přímo
dostupné z VLE. Studenti jsou v rámci kurzu rozděleni do několika skupin, které má na
starost tutor - vyučující, který je dané skupině k dispozici a hodnotí veškeré práce. Student
je v kurzu hodnocen na základě výsledků Tutor Marked Assignments (TMA). Tyto TMA
jsou tutorem hodnocené domácí úlohy, obvykle rozdělené na několik podúkolů. Ty jsou
obvykle ve VLE reprezentovány jako studijní materiály v tydnu, který je TMA přiřazen.

Systém OUAR funguje tak, že každému studijnímu materiálu kurzu přiřazuje hodnotu
relevance. Tato hodnota je vypočítána z počtu kliknutí úspěšných studentů na daný ma-
teriál. Tato hodnota se počítá pro každý týden zvlášť. Další hodnotou, se kterou pracuje
OUAR, je effort. Tato hodnota vyjadřuje, jak moc daný student s konkrétním materiálem
pracoval. Doporučování pak probíhá tak, že se vypočítá rozdíl mezi relevancí materiálu
v daném týdnu a effort studenta k tomuto materiálů. Výsledkem je důležitost dokumentu
pro studenta v daném týdnu. Tento výpočet se provede pro všechny materiály a studentovi
jsou doporučeny materiály, které mají v daném týdnu nejvyšší důležitost.

Pro účely rozšíření OUAR byly brány v potaz tyto další metriky: čas, který student
stráví prohlížením materiálu a délka materiálu. Problémem při používání kliků k výpočtu
relevance materiálu je fakt, že delší dokumenty mají množství kliků obvykle vyšší než
dokumenty kratší. Toto je způsobeno tím, že student nepřečte dlouhý úsek textu najednou
a vrací se k němu aby jej dočetl. Toto přináší do hodnoty relevance chybu, jelikož tento
delší dokument nemusí být nutně důležitější než dokument, který je kratší. Pokud by do
již existujícího výpočtu relevance a effort byla zanesena informace o času a o délce tohoto
materiálu, tato chyba by mohla být minimalizována.

Používání aktivity studentů s sebou nese nepříjemný problém toho, že nelze vytvářet do-
poručení pro nové kurzy, jelikož nejsou k dispozici žádná historická data o aktivitě. Nakonec
bylo rozhodnuto vytvořit místo modul nový doporučovací systém, který bude doporučovat
na základě materiálů samotných. Jedná se o systém využívající sémantické podobnosti
dokumentů k doporučování. Tento přístup byl zvolen, jelikož je relativně neprobádán a řeší
problém nového kurzu.

Modul byl ve výsleku navržen a implementován tak, že k doporučování využívá podob-
nosti studijních materiálů ve vektorovém prostoru. Tento systém je tedy omezen pouze
na doporučování studijních textových materiálů. Účelem je studentům doporučit studijní

materiály, které se týkají zadání specifických TMA. Tyto TMA se obvykle skládají z jed-
notlivých otázek, které jsou ve VLE dostupné jako studijní materiály a mohou tedy být
reprezentovány ve stejném prostoru jako ostatní studijní materiály. Myšlenkou je, že ma-
teriály, které jsou těmto otázkám nejblíže ve vektorovém prostoru jsou ty, které je pomohou
vypracovat.

Dokument je převeden do vektorové podoby metodou Term Frequency - Inverse Docu-
ment Frequency (TF-IDF) nebo metodou vnoření slov. Před vektorizací je dokument nutné
zredukovat na seznam slov v základním tvaru (tokenů) a odstranit z něj tzv. stop slova
jako například předložky, spojky a podobně.

Metoda TF-IDF vypočítává frekvenci výskytu každého tokenu dokumentu a jeho převrá-
cenou hodnotu frekvence výskytu ve všech dokumentech korpusu. Dokument je poté
reprezentován jako vektor těchto TF-IDF hodnot, přičemž počet dimenzí vektoru je roven
počtu unikátních tokenů v rámci celého korpusu.

Metoda vnoření slov je založena na princpu reprezentace jednotlivých tokenů jako mno-
horozměrných vektorů reálných čísel, které vyjadřují význam tokenu vzhledem k jeho vztahu
k jiným tokenům. Tyto vektory obvykle mají význam pouze v kontextu s vektory jiných
tokenů a lze pomocí nich zjistit podobnost libovolných dvou tokenů ze stejného vektorového
prostoru. Způsobů převedení tokenů na vektory je mnoho a jsou obvykle realizovány po-
mocí strojového učení. Pro potřeby doporučovacího systému bylo využito předtrénovaných
vektorových modelů, přesněji model Stanford GloVe Wikipedia a Stanford GloVe Common
Crawl [14] a model ConceptNet Numberbatch 5 [16]. Vektor dokumentu byl získán tak, že
byla vypočítána střední hodnota vektorů všech tokenů z dokumentu.

Podobnost dvou dokumentů byla počítána jako kosínová vzdálenost jejich vektorů. Tato
podobnost je vypočítáná mezi všemi materiály kurzu. Z podobností je sestavena matice,
v níž sloupce a řádky reprezentují jednotlivé studijní materiály a hodnoty v buňkách ob-
sahují reálné číslo reprezentující podobnost dvou materiálů. Tyto matice jsou pro kurzy
předpočítány před samotným doporučováním. Pro získání doporučení je třeba specifiko-
vat materiály pro něž se mají najít nejpodobnější materiály kurzu. Dotazem může být
například otázka z TMA, k níž by uživatel chtěl najít podobné materiály z kurzu.

Tento nový systém je nasazen do již existujícího prostředí OU Analyse, které funguje
jako rozhraní k oběma doporuovacím systémům pro uživatele. Komunikace je řešena pomocí
RESTful API, které umožňuje vyžádat doporučení pro libovolnou otázku TMA kurzu, pro
nějž byla provedena veškerá příprava a vypočítány podobnostní matice. Pro vyžádání
přípravy kurzů a předpočítání matic je k dispozci rozhraní na bázi fronty zpráv, které
přijímá požadavky na zpracování kurzu a provede je při nejbližší volné příležitosti.

Evaluace byla provedena pouze offline s použitím metrik precision, recall a vlastní
metriky rank. Bylo při ní využito kurzu, jehož TMA obsahují tutory doporučené materiály k
vypracování otázek, které byly pro potřeby těchto metrik označeny za dokumenty relevantní
k otázce. Evaluace ukázala, že používání podobnosti dokumentů k doporučování studijních
materiálů je nadějné a pokud budou implementované metody dostatečně zdokonaleny, může
být tento systém úspěšně používán. Metody zjišťování podobnosti dokumentů, které v eval-
uaci uspěly nejvíce jsou TF-IDF a vnoření slov. Vnoření slov ukázalo nadějné výsledky, je-
likož systém s touto metodou doporučoval i pokročilé nepovinné materiály, které se týkaly
tématiky otázek. Toto může být problematické v případě doporučování pro TMA, ale
užitečné pro doporučování studijních materiálů podobných těm, o které student projevil
zájem. Evaluace ukázala, že zvolené přístupy vedou k uspokojivým výsledkům, a proto byl
systém nasazen do systému OU Analyse pro další testování.

Educational System for Recommending Study Ac-
tivities

Declaration
Hereby I declare that this bachelor’s thesis was prepared as an original author’s work under
the supervision of Ing. Radek Burget Ph.D. The supplementary information was provided
by prof. Zdeněk Zdráhal, Ing. Martin Hlosta, Phd., Ing. Michal Huptych, Phd. and Ing.
Jakub Kočvara of Open University Analyse. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Jakub Zapletal

August 14, 2018

Acknowledgements
I would like to thank my supervisor Ing. Radek Burget, Phd. for supervising my thesis.
Also I would like to thank people of Open University Analyse for helping me with integrating
my work into the existing system and providing insight into the work already done.

Contents

1 Introduction 3

2 Recommender Systems 5
2.1 Recommendation techniques . 6

2.1.1 Content-Based Filtering . 6
2.1.2 Collaborative Filtering . 7
2.1.3 Matrix/Tensor Factorization Techniques 8
2.1.4 Association Rules Mining . 9

2.2 Using ontologies to provide contextual information 10

3 Open University Analyse Project 11
3.1 Open University study plan . 11
3.2 Virtual Learning Environment . 12
3.3 Open University Recommender system . 12

3.3.1 Relevance . 12
3.3.2 Effort . 13
3.3.3 Recommendation . 13
3.3.4 Critical Recommendation . 13

3.4 Possible Modifications to Relevance and Effort Computation 13
3.4.1 Using Time for Calculating Relevance and Effort 13
3.4.2 Using Student Forum Activity for Effort Computation 14
3.4.3 Linking Study Texts Together . 14

4 Document Vectorization Methods 15
4.1 Term Frequency - Inverse Document Frequency 15
4.2 Latent Semantic Analysis . 16
4.3 Latent Dirichlet Allocation . 16
4.4 Okapi BM25 . 16
4.5 Word Embedding . 16

5 Fulltext Recommender 18
5.1 Study Material Preprocessing . 19
5.2 Similarity Matrices . 19
5.3 System Interface and Recommendation . 20

5.3.1 Long Running Tasks . 20
5.3.2 Recommendation . 21

6 Evaluation 23

1

6.1 Evaluation Metrics . 23
6.2 Evaluation Process . 24
6.3 Evaluation Results . 24

6.3.1 TF-IDF . 24
6.3.2 BM25 . 25
6.3.3 Word Embedding . 25
6.3.4 LSA . 26
6.3.5 LDA . 26

6.4 Evaluation Conclusion . 27

7 Conclusion 28
7.1 Possible Future Work . 29

Bibliography 30

A Evaluation Result Tables 32
A.1 Results . 32

B Recommender REST API 36
B.1 Query for TMA Recommendation . 37
B.2 Query for TMA Question Recommendation 38
B.3 Query for Similarity With Internal Document 39
B.4 Query for Similarity With External Document 40

2

Chapter 1

Introduction

In the modern day, the amount of available information on the internet can be overwhelm-
ing. With the rise of online services, focused on providing resource access to users, be it
media, news, information or merchandise, the problem of information overload has surfaced.
The need for personalization in the online world has resulted in the increasing demand for
recommendation systems which aim to alleviate this problem. These systems should allow
service providers to cater to each individual user or group of users and their needs, resulting
in benefit to both the provider and the user. This is done by filtering content according
to the user’s needs, tastes, relevance or affordability. The systems try to predict the users
preferences as accurately as possible in a variety of ways. The possible methods include
analyzing the user’s previous behavior or profiling the users, grouping them by their prefer-
ences or common attributes and then basing the recommendations on each others behavior.
More often than not more ways of predicting preferences are used at once.

Recommender systems are used in variety of applications, examples being Youtube’s
video recommendations [5], Facebook’s friend recommendations or e-shop product recom-
mendations. Recommender systems are seeing more and more use, as their usefulness can
be immense. This thesis will focus on recommender systems in education. Purpose of this
type of recommender system is to help students find the best possible approaches to their
studies and most relevant study materials to focus on to achieve their study goals. Strug-
gling students can often find themselves in a situation, where they have been unable to
direct their full attention to studies, be it because of health problems or other unexpected
reasons. This puts them at serious disadvantage, mainly in distance-learning courses. If
they were unable to study for a longer period of time, they can find themselves overwhelmed
by the amount of available study materials and may not be able to, or have time to, find
out the ones most relevant to passing the course. The educational recommender systems
are supposed to help with this problem. They should be able to find the most relevant
study materials or activities to help the struggling student in catching up with the course.

This work focuses on developing a module for an existing recommender system OU
Analyse Recommender (OUAR) at Open University, Milton Keynes [17]. OUAR uses col-
laborative filtering in the form of collecting clicks of students in the university Virtual
Learning Environment (VLE) to compute relevancy of study materials and effort of stu-
dents themselves to recommend relevant study materials. The module adds content based
recommending functionality to allow recommendation for courses which are new and don’t
have any previous student activity logged. This is done using document similarity com-
putation methods, specifically Term Frequency - Inverse Document Frequency and word
embedding vector space model. This allows students to find materials closest to for exam-

3

ple assignment question or a material that interests them. In the end, the resulting module
is a standalone addition to the OUAR designed to work alongside it as an alternative
recommender for user-requested recommendation.

The work will first explore recommender systems as a whole with the different methods
that these systems employ and the state of the art in recommender systems, especially
in education environment. Then the OUAR will be briefly touched, along with the Open
University study plan, to put the module into context and discuss possible metrics for eval-
uating student activity. As the module uses document similarity to recommend materials,
different methods to represent documents in vector space will be detailed. Design decisions
and implementation of the module itself will be discussed. The resulting module was eval-
uated offline by using precision and recall metrics along with custom rank metric, which
will be discussed in the evaluation section.

4

Chapter 2

Recommender Systems

In [15], recommender systems are defined as software tools and techniques that recommend
Items to Users. Their goal is to provide as accurate as possible suggestions of items to users
and present them. These items represent the object of recommendation, be it a book in
an online library system, movie on a movie rental site, country on a vacation seller site
or an academic text in a school information system. Recommendation systems are usually
tailored to provide suggestions for specific items so that they can make accurate suggestions
and present them in a suitable way.

The users targeted by the recommender systems are ones who lack the insight into
the items at question or are in need of items of some type. The recommender systems
provide the individual user with suggestions based on attributes relevant to the item and
user in question. For example, an online book recommendation site may recommend works
of author Terry Pratchett to user, who is known to enjoy works of author Neil Gaiman.

In order for the system to provide a suggestion, there is often a need for information
about the individual users. This information can be collected explicitly, for example through
analysis of user’s past ratings of items or by asking the user to provide examples of items
he prefers, which is employed by the site MovieLens [13] for example. Other than explicitly
stated information, actions by the users can be interpreted as implicit signs of preference,
example being browsing a particular product category page.

In e-learning, recommender systems must face additional challenges. When recommend-
ing commercial items like movies or books, user preferences are usually sufficient to start
making recommendations. In e-learning, the system must take user’s proficiency, learning
goals or context [8] into account, as it would not be ideal to recommend complex study
materials to a beginner learner. This creates the need to track the user’s proficiency level
or needs and recommend accordingly. The recommender system should be able to create
a path of learning for the user and to guide him along the path, modifying it as is neces-
sary. This is easier in the environment of an university information system as it provides
continual information about the user’s success in learning through graded assignments or
quizzes.

Alternatively, the recommender system can disregard the user and make recommenda-
tions only on the basis of recommended item attributes and similarity, this can be used
for example to recommend study materials or academic texts.

5

Formally, the recommendation problem can be formulated as follows [1]: Let C be
the set of all users of the system and let S be the set of all possible items that can be
recommended, be it books, study activities or vacation places. Let u be a utility function
measuring the usefulness of item s to user c, i.e., 𝑢 : 𝐶 × 𝑆 → 𝑅, where R is a totally
ordered set. Then, for each user 𝑐 ∈ 𝐶, we want to choose such item 𝑠′ ∈ 𝑆 that maximizes
the user’s utility. More formally:

∀𝑐 ∈ 𝐶, 𝑠 ∈ 𝑆 𝑠′𝑐 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑢(𝑐, 𝑠) (2.1)

2.1 Recommendation techniques
As there are many applications for recommender systems and different ones require different
approaches, recommender systems vary. Generally, they can be classified into groups based
on their approach to recommendation. According to [8], the categories are content-based
filtering (CB), collaborative filtering (CF), matrix/tensor factorization (MTF) or associa-
tion rules mining (ARM). A few example recommender systems that use said techniques
can be seen in table 2.1.

Recommender system Application domain Approach User type
Smart trade exhibition finder E-government CF, Hybrid Business
Group Lens E-resource CF Individual
ACR News E-resource CB, clustering Individual
If Web E-resource CB Individual
GRec_OC E-group CF, CB Group
CinemaScreen E-resource CF, CB Individual
AHA! E-learning ARM Individual
E-learning recommender agent E-learning ARM Individual

Table 2.1: Examples of recommender systems, their used approaches and user type [11]

2.1.1 Content-Based Filtering

Content-Based recommender systems work by analyzing the items previously rated by the
user to create a model or profile of said user based on the features of the rated items [10].
This profile then represents the user’s tastes and preferences and is then used to recommend
new items to the user. The profile is matched against the items and according to information
in the profile, item’s relevance to the user is determined. The higher the calculated relevance
the better the recommendation. From the calculated relevances, the top 𝑁 are selected and
then presented to the user as recommendations.

An example would be a user, who gave high ratings to movies from a specific director and
low ratings to romantic comedies. Each item’s attributes would be compared to the user’s
preferences and relevance would be computed. For this user, the items with the highest
relevance would be the films from the specific director that are not romantic comedies.

This approach is beneficial in that it is transparent as in it is clear how the recommen-
dation was made according to the user profile’s and item’s attributes. Also, it is applicable
in systems with few users as it relies solely on the specific user’s preferences. There is also
no problem with recommending items with few ratings, such as new items or relatively

6

unknown items because the recommendation is made based on the item’s attributes, which
are entered into the system along with the item.

The problems with this method are three-fold. The amount of attributes of items is
limited and all of them have to be specified either manually or automatically. This means
that not every item will have all the attributes to discern whether or not the user will like
or dislike it. For a film, the list of all actors, director and writers, along with the film genre
is needed to make a perfect recommendation. Sometimes all that information may not be
present in the system. The next problem is that the nature of items recommended to the
user is based solely on his rating history, so the user will always be recommended items
with the same or very similar attributes. But there may be items slightly different from
the preferred items that the user might enjoy. Recommender system using only content-
based approach will not be able to recommend those. The biggest problem of the approach
is the new user problem. When the user first joins the system, his profile is without any
information on his preferences so the recommendations cannot be made. The user must first
rate some items for the recommender to function. The workaround some systems use is that
after user joins the system, it asks him to rate few random items with different attributes.
Then the system has some reference data and can base the early recommendations on those
and then build the user’s profile as he rates more and more items.

The architecture of such recommender system can be seen in figure 2.1.

Figure 2.1: High level architecture of a Content-based Recommender [10]

2.1.2 Collaborative Filtering

Collaborative filtering, unlike content-based filtering, tries to predict the utility of an item
to a user based on the items previously rated by other users [1], example of rating matrix

7

from a movie recommendation site can be seen in table 2.2. This approach finds the users
similar to the user who is being recommended to. This is done by evaluating each user’s
rating history and finding users with similar tastes and marking them as peers. These
systems can also use stereotypes to deem users peers, such as location, age, gender, etc.
For each user’s peer a similarity function determines how similar the two users are. This is
used as weight in the calculations to enable more similar users to be used as more relevant
factor than users with lower similarity score who could also be peers.

K-PAX Life of Brian Memento Notorious
Alice 4 3 2 4
Bob NA 4 5 5

Cindy 2 2 4 NA
David 3 NA 5 2

Table 2.2: A fragment of a rating matrix [1], numbers determine score by a corresponding
person for a movie

This allows the system to recommend a wider spectrum of items to a user and solves the
narrowness problem in content-based recommender systems. The system can recommend
items that the user might not think that they will enjoy, because it may be a film outside
their usually preferred genre for instance, but can enjoy because people of similar taste
liked it.

Collaborative filtering carries it’s own problems though. There is a problem with the
fact that different users may use the scale differently. For instance with a scale from one
to five (five being best), one user might consider movies rated as three not enjoyable, while
other users might think of a three rating as average but not bad. Recommender systems try
to solve this problem by using the deviations from the average rating of the corresponding
user instead of raw ratings. Example being a user who almost never uses rating of five
and considers three a slightly above average score. His three star rating could then be
interpreted as another user’s four star rating.

Another problem is the new item problem. With collaborative recommender systems,
newly added items are hard to recommend, as they rely solely on ratings, which are null
for the new item. This is usually solved by introducing content-based approaches into the
collaborative ones. This approach solves both the narrowness problem of content-based
approach and new item problem of collaborative filtering. These systems are considered
hybrid systems. A problem that stays even in hybrid systems is the new user problem. For
a new user, peers cannot be determined and he does not have a profile yet, so recommending
is difficult. This is again partially solved by asking new users to provide examples of their
taste and basing the peers and profile on that.

2.1.3 Matrix/Tensor Factorization Techniques

Matrix or tensor factorization techniques are used primarily for predicting student perfor-
mance. In student performance prediction, there are two crucial aspects, as stated by [8],
which are:

1. Probability of student, who does not possess the knowledge to solve a problem,
to guess the correct solution (guess factor) and the probability of a student, who
knows how to solve the problem, to make a mistake (slip factor).

8

2. Improvement of subject knowledge over time, e.g. the more the student repeats the
task, the better he performs on average.

Tensor and matrix factorization techniques are appropriate here, because they implicitly
take the guess and slip factors into consideration and are suitable for solving the time aspect
problem.

Matrix factorization is a task of approximating a matrix X by the product of two smaller
matrices W and H, i.e. 𝑋 ≈ 𝑊𝐻𝑇 . In the recommender system context, the X matrix
is the partially observed ratings matrix - here, ratings represent if the problem has been
solved, e.g. 0 - not solved, 1 - solved. The 𝑊 ∈ 𝑅𝑈×𝐾 is a matrix where each row u
is a vector containing K latent factors describing the user u and 𝐻 ∈ 𝑅𝐼×𝐾 is a matrix
where each row 𝑖 is a vector containing 𝐾 factors describing the item 𝑖. Let 𝑤𝑢𝑘 and ℎ𝑖𝑘
be the elements of 𝑊 and 𝐻, respectively, then the rating given by a user 𝑢 to an item 𝑖
is predicted by:

𝑟𝑢𝑖 =
𝐾∑︁
𝑘=1

𝑤𝑢𝑘ℎ𝑖𝑘 = (𝑊𝐻𝑇)𝑢,𝑖 (2.2)

𝑊 and 𝐻 are the model parameters that can be learned by optimizing the objective
function given a criterion such as root mean squared error [8].

The 𝑠𝑙𝑖𝑝 and 𝑔𝑢𝑒𝑠𝑠 factors can be encoded within the matrix factorization by using
the biased matrix factorization model. This uses user and item bias, respectively, the
student and solving-step biases. Student bias models how likely is the student to success
in a task and solving-step bias models how likely is the step to be performed successfully -
it’s difficulty. This modified prediction function is as follows:

𝑟𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 +
𝐾∑︁
𝑘=1

𝑤𝑢𝑘ℎ𝑖𝑘, (2.3)

𝜇, 𝑏𝑢 and 𝑏𝑖 meaning global average, user bias and item bias, respectively.
To further expand the factorization, temporal effect can be taken into account. With

taking time into account as another dimension of the tensor, we get these equations:

𝑟𝑢𝑖 = 𝜇 + 𝑏𝑢 + 𝑏𝑖 +

𝐾∑︁
𝑘=1

𝑤𝑢𝑘ℎ𝑖𝑘Φ𝑇𝑘, (2.4)

Φ𝑇𝑘 =

∑︀
(𝑇 − 𝑇𝑚𝑎𝑥 + 1) * 𝑞𝑡𝑘

𝑇𝑚𝑎𝑥
, (2.5)

where 𝑞𝑘 is a latent factor vector representing the time, and 𝑇𝑚𝑎𝑥 is the number of solving
steps int the history that we want to go back. There are further modifications of this model,
factoring in for example the fact that students forget information in time.

The problems with the tensor/matrix factorization approach, as stated in [18] are mostly
performance based. Computing recommendations using this technique can be time and
memory consuming when done over a large data sets.

2.1.4 Association Rules Mining

Recommender systems use association rules mining techniques to, as the name implies, find
association rules among the recommended items. These rules represent correlation between

9

the items in a database [8]. The rules consist of an antecedent (left side) and consequent
(right side) and the intersection between the two must be empty. An association rule
is defined as such:

𝑋 =⇒ 𝑌, (2.6)

where 𝑋,𝑌 ⊆ 𝐼 and 𝐼 is a set of database items and 𝑋,𝑌 are sets of items, sometimes
called 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠.

Practical example of an association rule could be a rule from the electronics e-shop
domain:

{𝑝ℎ𝑜𝑛𝑒, 𝑈𝑆𝐵 𝑐𝑎𝑏𝑙𝑒} =⇒ {𝑝𝑜𝑤𝑒𝑟𝑏𝑎𝑛𝑘} (2.7)

This rule would mean, that when phones and USB cables are bought together, they tend
to also buy a powerbank.

Usually, the association mining algorithms require the user to set at least two thresholds,
one for minimum support, the other for minimum confidence [8]. 𝑆𝑢𝑝𝑝𝑜𝑟𝑡 in the context
of association rules mining is defined as an indication of how often does an itemset appear
in the dataset. The 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 is then defined as a probability of how often is the rule
satisfied, using the example rule above, confidence would be a measure of how often people
who bought phone and USB cable also bought a powerbank.

The rules can be valuable in finding interesting or unexpected patterns in user behavior
that could be of use in the recommendation process. In the context of e-learning recom-
mender systems, these rules could provide valuable information about the ways students
find information. The disadvantage of using this approach is that there is usually an over-
whelming amount of rules found, and they are not guaranteed to be relevant.

2.2 Using ontologies to provide contextual information
In the area of e-learning recommendation systems, context is a very valuable and necessary
information. It is important to know what the student is currently studying or interested
in and recommend appropriate materials from that specific field. This also allows the use of
content-based filtering in the context of e-learning since the topic of a material can be used
as item attribute and then materials of similar attributes can be recommended. Ontologies
help with this problem. Domain ontology can be considered as a set of logical axioms
designed to account for the intended meaning of a vocabulary [7]. Informally it can be
described as a ”vocabulary“ providing definitions of terms of a selected domain. These
domains can be for example physics, chemistry or machine learning.

In the area of e-learning recommender systems, ontologies provide a way to incorporate
content-based and collaborative techniques into the systems, as they are a sufficient way
of categorizing study materials. We can set attributes or tags of a specific document with
the use of ontology classification and then work with it using standard content-based or
collaborative techniques.

10

Chapter 3

Open University Analyse Project

3.1 Open University study plan
Education in Open University takes form of offered courses taught via distant learning.
The individual course runs are called presentations and most courses have two presentations
per year. Presentations are divided into blocks taught over the course of several weeks.
Blocks are further divided into parts which can be taught one part per week or multiple
parts per week depending on the course. Variant of a course study plan is visualized in
figure 3.1.

Study plan

Week 2 Week 3

Section 4Section 1 Section 2 Section 3

Part 1 Part 2 Part 3 Part 4 Part 1 Part 2 Part 3 Part 4 Question 1 Question 2 Question 3

Section 1.1 Section 1.2

Week N

...

Block 2

Week 1

Block 1 TMA 01 Block N

Figure 3.1: Visualisation of the study plan arrangement

The students are assigned tutors, members of the faculty, who are supposed to help
them and guide them during their studies as well as evaluate them. Student evaluation is
done mainly via Tutor Marked Assignments (TMA) which can be thought of as marked
homework. Study materials are usually available through the Virtual Learning Environment
and consist of text materials, media, quizzes or experiments. Students are classified into
three groups, based on their average scores of all TMAs as such:

1. Excellent, with TMA scores over 75%, with the exception of students with TMA
scores over 95% - those are considered either of genius level intellect or cheaters.

2. Pass, with TMA scores between 40% and 75%.

11

3. Fail, with TMA scores under 40%.

3.2 Virtual Learning Environment
The Virtual Learning Environment(VLE) is an university information system, which con-
tains interface for courses. All of the course’s materials can be accessed through the VLE,
along with experiments, quizzes, assignments or optional study material. It also contains
course forums, which are moderated by course tutors and is meant to be a place, where
students can ask questions about specific materials or assignments.

It allows for tracking of user activity, which is used for the purpose of the Open Uni-
versity Analyse Recommender. The recommender system this work is about uses textual
study materials from the VLE for recommendation.

3.3 Open University Recommender system
The Open University Analyse Recommender can be categorized, using categories as defined
in [8], as one using Collaborative filtering and Association rules to recommend study ma-
terials, relevant to passing the selected course. It uses legacy data gathered from the VLE
in the previous presentations for recommendation.

Currently, only clicks on study materials are tracked in the VLE. Each click has semantic
label, called activity type, which identifies the interaction in VLE it was generated from,
be it forum, ou-content (text material), resource, quiz or other. Ou-content represents key
study materials, usually in the form of highly structured HTML content, therefore it is
easy to track user effort in more detail. As for the other types of clicks, their relevance
is not easy to estimate, mostly because resource type represents whole study texts in pdf
and quiz and forum relevance can be questionable. Effort, required for understanding of
block topic, is measured in terms of average number of clicks of passing students from the
previous year.

For the recommendation itself, there are two defined measures, Relevance of study
material and effort of the current student [17].

3.3.1 Relevance

Relevance is defined as a normalized difference of the average cumulative students activity
a, measured by the cumulative number of clicks on a specific study activity, between two
consecutive weeks i-1 and i:

𝑅(𝑤, 𝑎) =

∑︀𝑤
𝑖=1 𝑐𝑝(𝑖, 𝑎) −

∑︀𝑤−1
𝑖=1 𝑐𝑝(𝑖, 𝑎)∑︀𝑁

𝑖=1 𝑐𝑝(𝑖, 𝑎)
, (3.1)

where 𝑐𝑝(𝑖, 𝑎) is the number of clicks for the activity a in week i,
∑︀𝑤

𝑖=1 𝑐𝑝(𝑖, 𝑎),
∑︀𝑤−1

𝑖=1 𝑐𝑝(𝑖, 𝑎)

are cumulative clicks from week 1 to week w and w-1, respectively.
∑︀𝑁

𝑖=1 𝑐𝑝(𝑖, 𝑎) is the
cumulative sum of clicks through the whole course last year.

∙ Relevance is always non-negative.

∙ Sum of the Relevance of an activity over all weeks is 1.

∙ Relevance of an activity for a given week is the same for every student.

12

3.3.2 Effort

Effort measures the activity of a student in VLE and serves as an approximation of the stu-
dent’s progress for given activity and is defined as such:

𝐸(𝑤, 𝑎) =

∑︀𝑤
𝑖=1 𝑐𝑐(𝑖, 𝑎) −

∑︀𝑤−1
𝑖=1 𝑐𝑐(𝑖, 𝑎)∑︀𝑁

𝑖=1 𝑐𝑝(𝑖, 𝑎)
, (3.2)

where 𝑐𝑐(𝑖, 𝑎) is the number of clicks for the activity a in week i from the current stu-
dent, 𝑐𝑝(𝑖, 𝑎) is the number of clicks for the activity a in week i from the previous year,∑︀𝑤

𝑖=1 𝑐𝑐(𝑖, 𝑎),
∑︀𝑤−1

𝑖=1 𝑐𝑐(𝑖, 𝑎) are cumulative clicks from week 1 to week w and w-1, respec-
tively, from the current student.

∑︀𝑁
𝑖=1 𝑐𝑝(𝑖, 𝑎) is the cumulative sum of clicks through the

whole course last year.

∙ Effort is calculated for each student.

∙ Average Effort is measured as an average of Effort of all students.

3.3.3 Recommendation

As a result, Importance of activity a in week w is defined as:

𝐼(𝑤, 𝑎) = 𝑅(𝑤 − 1, 𝑎) − 𝐸(𝑤 − 1, 𝑎), (3.3)

where 𝑅(𝑤 − 1, 𝑎) is the Relevance of given activity in a previous week and 𝐸(𝑤 − 1, 𝑎) is
the Effort for the given activity in the previous week.

The Effort and Relevance for an activity should be similar. If the Relevance of an activity
is higher than the Effort of the student for the activity the system recommends the student
to focus on the activity.

3.3.4 Critical Recommendation

Critical Recommendations identify the most important study materials for passing the
next Tutor-Marked Assignment (TMA). They recommend to the student the bare minimum
necessary study materials for him to pass the TMA. Critical Recommendations are evaluated
using the difference between activities of students in the passed group and the students in
the fail group from the last year’s course.

3.4 Possible Modifications to Relevance and Effort Compu-
tation

The main problem of the current implementation of OURecommender is the fact that it
does not take activities of type 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 into consideration when calculating relevance. The
reason for this is that they usually represent long texts in pdf format, so their relevance
cannot be measured in terms of clicks. There needs to be another way of calculating
relevance and effort for use with these pdf files.

3.4.1 Using Time for Calculating Relevance and Effort

Since clicks are not an usable metric for determining relevance of long texts a different one
must be used. One possibility is to use time that the student spent on the text to determine

13

the relevance. Let’s consider 𝑡𝑝(𝑖, 𝑎) as the collective time spent on activity 𝑎 in week 𝑖
and 𝑡𝑐(𝑖, 𝑎) as time spent on activity 𝑎 in week 𝑖 by the current user. This would allow for
modifying the relevance equation 3.1 as such:

𝑅(𝑤, 𝑎) =

∑︀𝑤
𝑖=1 𝑡𝑝(𝑖, 𝑎) −

∑︀𝑤−1
𝑖=1 𝑡𝑝(𝑖, 𝑎)∑︀𝑁

𝑖=1 𝑡𝑝(𝑖, 𝑎)
, (3.4)

and the effort equation 3.2 as such:

𝐸(𝑤, 𝑎) =

∑︀𝑤
𝑖=1 𝑡𝑐(𝑖, 𝑎) −

∑︀𝑤−1
𝑖=1 𝑡𝑐(𝑖, 𝑎)∑︀𝑁

𝑖=1 𝑡𝑝(𝑖, 𝑎)
, (3.5)

These modified equations still retain all properties of their non-modified versions and
allow for calculating the relevance and effort in the context of 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 type activities.

Calculating the time spent will not be as easy as summing the time though. The system
must take into consideration characteristics of the specific student. This is because the time
spent to reach the same results can differ between students significantly. Some students can
be fast learners, while others may need to read the text several time to fully understand
it. Research would be needed to properly consider the relevance of the difference between
students in the context of VLE study materials for relevance and effort calculation.

3.4.2 Using Student Forum Activity for Effort Computation

The student effort calculation could be enhanced by tracking what each student talks about
on the course forums. These forums are a place for students to discuss and ask questions
about course and are moderated by the tutors themselves. An attempt to find what mate-
rials are talked about by the students using document similarity computation as discussed
below was made. However since the forums are often too heavily moderated and threads can
often only be started by tutors, the amount of student discussion is minimal and the only
interactions are between a student and tutor in the form of simple questions and answers.
This does not provide enough information to aid in computing either student effort or rel-
evance of discussed material. Still, the forums could prove useful for the recommendation
process in the future if fitting method of information mining can be implemented.

3.4.3 Linking Study Texts Together

This modification would aim to improve the user experience by linking study materials
together. The goal is to allow students to easily find information about terms used in specific
study text and provide link to other study materials explaining the text. For example, if
a student reads a text about machine learning and the text uses certain term, say, naive
bayes classifier and does not explicitly explain it’s meaning, the system can provide link to
another study text that explains it.

This could be done by building domain ontologies for taught disciplines which could then
be represented as a tree, that would allow for searching the proper documents explaining
a specific term. [19] proposes such a tree. Let 𝑅 be the root of the domain tree and node
𝐶𝑖 the representation of a concept under 𝑅, then:

𝑅 = ∪𝑛
𝑖=1, (3.6)

where 𝑛 is the number of concepts in the domain. Each of the concepts 𝐶𝑖 consists either
of sub-concepts, which can be children or leaves representing the actual study material.

14

Chapter 4

Document Vectorization Methods

The developed recommender system relies on document similarity measures to recommend
study materials. This process requires the documents to be represented in vector space,
for which many methods already exist, most notably, Term Frequency - Inverse Document
Frequency(TF-IDF). Five different methods of document representation were compared in
the process of developing this recommender - TF-IDF, Latent Semantic Analysis(LSA),
Latent Dirichlet Allocation(LDA), Okapi BM25 and pre-trained Word Embedding vectors.
Similarity between two documents was them computed using cosine similarity.

LSA and LDA were only used for reference as they are both widely used for semantical
categorization of large texts and will only be touched upon briefly.

For the purpose of this work, Gensim1 implementation of LSA, LDA and BM25 models
and similarity computation was used.

4.1 Term Frequency - Inverse Document Frequency
TF-IDF is a term weighting scheme that assigns weight to the term based on frequency of
a term in specific document and its inverse frequency in the whole corpus of documents.
The motivation behind this process is that the more the term occurs in text, the more
integral it is to the text’s meaning. The IDF then assures that the terms with high frequency
actually convey meaning and are not just common language constructs such as and, it, then,
etc. Generally if there is a high frequency of a word that is uncommon for the language in
the text, then that word is integral to the meaning of the text as a whole.

Formally, let 𝑡𝑓(𝑖, 𝑗) be the frequency of a word 𝑤𝑖 in document 𝑑𝑗 and 𝑑𝑓(𝑖) be the docu-
ment frequency of word 𝑤𝑖. 𝑁 , being the total number of documents, the inverse document
frequency is defined as:

𝑖𝑑𝑓(𝑖) = 𝑙𝑜𝑔2(𝑁/𝑑𝑓(𝑖)), (4.1)

finally, Tf-idf is defined as:
𝑡𝑓𝑖𝑑𝑓(𝑖, 𝑗) = 𝑡𝑓(𝑖, 𝑗) · 𝑖𝑑𝑓(𝑖) (4.2)

There are some variations of Tf-idf where the tf and idf components are normalized to
reduce the influence of document size [2].

To represent a document as a vector using TF-IDF, the TF-IDF weight is computed for
every token in the document and the document’s vector is then a vector of all the TF-IDF
weights. To compute similarity of two documents using these vectors and cosine similarity,

1Gensim python library: https://radimrehurek.com/gensim

15

https://radimrehurek.com/gensim

the vectors have to have the same number of dimensions. For this purpose a dictionary of
all terms in corpus is built and the document vectors contain TF-IDF values of all terms
in the corpus dictionary whether or not the term itself is present in a given document.

4.2 Latent Semantic Analysis
Latent Semantic Analysis (LSA) operates on the premise, that the contexts in which a given
term appears or doesn’t appear provides a set of constraints that determine the semantical
similarity of words to each other. After processing a text corpus, LSA represents its terms
or sets of terms as points in a very high dimensional semantic space [6]. This resulting
matrix can be reduced using singular value decomposition.

4.3 Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) is a generative probabilistic model of a corpus. The basic
idea is that documents are represented as random mixtures over latent topics, where each
topic is characterized by a distribution over words [3]. The resulting matrix is consistent
of topics instead of terms unlike with other methods.

4.4 Okapi BM25
BM25 is a term weighting scheme expanding on the TF-IDF scheme. It uses a parametrized
𝑡𝑓 component 𝑡𝑓* depending on parameters 𝑘 and 𝑏 with default values of 𝑘 = 1.75 and
𝑏 = 0.75 which were settled on after a long process of academic iteration [2]. Formally, 𝑡𝑓*

is defined as such:

𝑡𝑓* =
𝑡𝑓(𝑘 + 1)

𝑘(1 − 𝑏 + 𝑏·𝐷𝐿
𝐴𝑉𝐷𝐿) + 𝑡𝑓

, (4.3)

where 𝐷𝐿 is the document length and 𝐴𝑉𝐷𝐿 is the average document length in the
corpus. Finally, 𝐵𝑀25 is defined as such:

𝐵𝑀25 = 𝑡𝑓* · 𝑖𝑑𝑓, (4.4)

where 𝑖𝑑𝑓 is inverse document frequency as defined in 4.1
This modification to the standard TF-IDF formula helps alleviate the problem of eval-

uating corpora with large variance of length of texts between documents.

4.5 Word Embedding
Word Embedding is a name for a multitude of methods of representing terms as vectors
of real numbers. Generally, these vectors are computed using deep learning approaches by
analyzing contexts in which the terms are used. The vector values represent relationship
to other vector-represented terms in the same vector space and as such convey no meaning
on their own.

Word Embedding vectors are available in the form of pre-trained models, which are
often trained on colossal amount of text data, often on wikipedia dumps or Google News
data. Usage of these pre-trained vectors alleviates the need for training a model for each

16

application. These pre-trained models often yield better results that models trained on
in-house data simply because of the sheer amount of text they are trained on which allows
them to represent term meaning more precisely.

A very well known example of a word embedding model is Word2Vec. It is a method of
computing vector representations of words introduced by a team of researchers at Google.
Currently, Word2Vec is widely used and is regarded as the state-of-the-art in word embed-
ding. However, there are newer methods for word embedding computation, which claim
better results, which is why the author decided to not use the Word2Vec model and explore
the alternatives.

For the purpose of this work, following pre-trained Word Embedding models were used:

1. Stanford GloVe Wikipedia 2014 + Gigaword 52

2. Stanford GloVe Common Crawl 840B

3. ConceptNet Numberbatch3

2Stanford GloVe: https://nlp.stanford.edu/projects/glove
3ConceptNet Numberbatch: https://github.com/commonsense/conceptnet-numberbatch

17

https://nlp.stanford.edu/projects/glove
https://github.com/commonsense/conceptnet-numberbatch

Chapter 5

Fulltext Recommender

The Open University Analyse Fulltext Recommender is a system for recommending text
study materials to students of Open University, Milton Keynes. This system’s primary use
is to find the most suitable study materials that will help students to complete course’s
Tutor Marked Assignments (TMA). The system operates on the idea, that the documents
which are semantically similar to a TMA question will be dealing with the same problem
as the question itself and hence can yield the solution to it. These closest documents are
recommended to the querying user.

The developed recommender is user-agnostic, it only uses the relationships between the
recommended items for the recommendation process. The reason for this design decision
is that there is already a recommender system online at the Open University that uses
student activity and demographic data. As the original system aims at underperforming
students to help them pass the course, this one is designed to be a general study aid
for all the students or a tool for tutors to reflect on their TMA and see, for example, if
the information they demand from students is actually readily available in their course
materials or not. The recommender interface will be available to students and staff via the
Open University Analyse Dashboard, where they can query for recommendation for any
prepared course TMA.

It only works with text data that is available to student via the Virtual Learning En-
vironment (VLE) - an information system containing study texts, forums, assignments,
quizzes, etc. The material type this work is concerned with is called oucontent and is avail-
able in the database in the form of highly structured XHTML pages. The TMAs are also
available in the VLE as oucontent, which allows the recommender to treat them the same
as the actual study texts when it comes to document similarity computation.

The recommender also allows users to find similar documents to ones they provide,
be they a document from an OU course they found interesting or an external document
provided in text form for which they want to find any other materials available in the course
that handles this given problematic.

The recommendation process consists of preparation of course materials, building a ma-
trix of cosine similarities between all of the course materials, which allows the user to request
recommendation for a particular course TMA. All of these steps will be detailed below.

18

5.1 Study Material Preprocessing
The study materials in question are available to students in the VLE as XHTML pages.
As these pages are not available in the database in plaintext form, they first need to be
stripped of all XHTML tags, which was done mainly using Python’s BeatifulSoup library1.
The few nonstandart tags and embedded pieces of code in these pages were stripped using
regular expressions.

After converting all of the course pages to plaintext, they had to be split into singular
terms (tokens) through tokenization. There are multiple approaches to tokenizing texts for
similarity computation and there is some debate on which approach has the best results.
Tokenization can be simple, when the text is simply split on spaces or more complex forms
of tokenization which take into account hyphenation, multi-word terms, etc. For this work,
the NLTK word_tokenizer2 was used, which splits text on any non-period punctuation.
This resulting list of tokens was then stripped of inflections using the NLTK wordNetLem-
matizer3, which uses the online lexical database for english WordNet to find the base form
of all terms.

The lemmatized terms are sufficient for document similarity computation using TF-
IDF. For the purpose of similarity computation with word embedding, the word vectors
of all the prepared terms are saved. The pre-trained word embedding models consist of
a vocabulary, mapping terms to their vector representation. Using this vocabulary, the
document’s terms are mapped to vectors, from which a vector representing the document
as a whole is computed using their mean. Using an aggregation function on document’s
word vectors to create a vector representation of a document is a technique commonly used
for representation of small texts, such as short abstracts or tweets, ex. [4], but it can work
even for larger texts, albeit not as effectively as some more complicated methods, such as
Word Movers Distance [9] The reason for choosing the vector aggregation approach was that
it is a much simpler to implement and, while not as sophisticated as some other methods,
the results are still sufficient for the purpose of recommending study materials in the scope
of a single course. Arithmetical mean was used as a vector aggregation method.

The course material data is saved in a DataFrame4, which is then saved to database in
a binary format.

5.2 Similarity Matrices
The system uses precomputed document similarities for recommendation purposes. These
similarities are stored in the form of binary files containing document similarity matrices.
These matrices contain document similarity scores between each and every text material
in the form of cosine similarity of the two documents. The cosine similarity is a measure
calculating the cosine of the angle between two vectors. In the context of word vectors
this represents overlap between the features of the two word vectors and as such, cosine
similarity is widely used for this purpose. Since the documents here are represented in the
same format as the words, we can treat them as such and use the cosine similarity without
the need to modify the method.

1BeatifulSoup: https://www.crummy.com/software/BeautifulSoup/
2NLTK tokenizer: http://www.nltk.org/api/nltk.tokenize.html
3NLTK lemmatizer: http://www.nltk.org/_modules/nltk/stem/wordnet.html
4A tabular data structure from the Pandas library: https://pandas.pydata.org/pandas-docs/stable/

generated/pandas.DataFrame.html

19

https://www.crummy.com/software/BeautifulSoup/
http://www.nltk.org/api/nltk.tokenize.html
http://www.nltk.org/_modules/nltk/stem/wordnet.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

Cosine similarity is derived from the Euclidian dot product formula and represented as
such:

𝑐𝑜𝑠(𝜃) =

∑︀𝑛
𝑖=1𝐴𝑖𝐵𝑖∑︀𝑛

𝑖=1𝐴
2
𝑖

∑︀𝑛
𝑖=1𝐵

2
𝑖

, (5.1)

This measure represents the similarity score between material 1, represented by vector 𝐴,
and material 2, represented by vector 𝐵. Higher the score, more similar the materials.
A slice of a similarity score matrix can be seen in figure 5.1

Figure 5.1: A slice of course similarity matrix

5.3 System Interface and Recommendation
The recommender system was designed to handle two types of tasks. Firstly, it should
be able to preprocess textual materials for any given course and compute similarity score
matrix for this course. This type of task was named long running tasks. The other type of
task is the recommendation itself, which is done on the basis of a user’s query. For both
of these types of tasks, a separate interface was implemented to fit to the use case. The
specifications and documentation of the two interfaces can be found at ??

5.3.1 Long Running Tasks

The long running tasks interface design had to take into account the fact, that it requires a
large amount of time to complete the task, reason being the large corpora of texts that had
to be processed and prepared for recommendation. An interface using message queues was
used, precisely, a RabbitMQ5 was implemented to handle the requests for course preparation.
This message queue interface works by having a task worker running on the server that acts
as a queue listener and processes all the requests that has been sent by the user from the
OUA Dashboard. This allows any user with sufficient privileges to request preprocessing
and matrix building for any number of courses. The worker prepares each requested course
and logs the result to the OU database. A simple diagram of this process can be seen in
figure 5.2.

This preparatory step must be done before any recommendation can proceed, as the
recommendation works only with saved course files in binary format and does not commu-
nicate with the database itself.

5Rabbit Message Queue: https://www.rabbitmq.com

20

https://www.rabbitmq.com

Figure 5.2: A long running task processing diagram

5.3.2 Recommendation

This system provides two basic types of recommendations. The first and the primary type
is recommending study materials which are supposed to yield answers to or help with
completing a given TMA. This process requires user to specify which of the course’s TMAs
should the recommendation be made for. Either a recommendation for all questions of
a TMA can be made, or a single question can be specified, should the user request it
and the TMA questions be present as separate pages in the VLE. The user can further
specify the number of text materials to be recommended to him for every single TMA
question. After the request is made, the system extracts a slice of the course’s similarity
matrix containing the specified TMA and presents the requested number of closest VLE
text materials to the user.

21

The other type of recommendation, provided to the user by the system, is finding
closest course materials to a material provided by student. This material can either be a
VLE material from the course or an external material in text format. This allows the user
to easily find any similar materials to ones he may be interested in. If the user uses a VLE
material as a query, only materials from the same course can be recommended and the
system uses matrix slicing as with the TMA recommendation. But when the user requests
recommendation for an external document, he can choose a course from which the closest
materials can be extracted. When a course is chosen a small temporary similarity matrix
is built with similarity scores between all the course materials and the query document.
Requested number of materials is then chosen from this matrix and presented as with
TMA recommendation.

For the purpose of this recommender a simple RESTful APi was devised, which is
accessible through the OUA Dashboard. A simple diagram of this process can be seen in
figure 5.3.

Figure 5.3: A recommendation query processing diagram

22

Chapter 6

Evaluation

This recommender system was evaluated offline by measuring it’s performance on one se-
lected course using metrics which will be specified further.

The system was evaluated using OU course S111-2017J, which is a beginner science
course. This specific course has separate VLE pages for each TMA question, which allows
the system to make recommendations for each question separately. Each of this course’s
TMA questions also contains a list of text materials that will help solve the question, which
was used as the materials this system should recommend for the questions. This detailed
tutor-prepared material recommendation list is only found in this course, which is why it
was chosen for evaluation.

This evaluation determines if the document similarity approach to recommendation
produces expected and usable results. This evaluation compares TF-IDF, BM25, Word
Embedding, LSA and LDA methods for measuring document similarity and scores their
performance in the recommendation for this course.

6.1 Evaluation Metrics
For the purpose of determining if the recommendation made is actually useful, precision,
recall and F Measure metrics were used [12]. Relevant documents in the following defini-
tions are the materials recommended by the tutors and retrieved documents are documents
recommended by the system.

Precision is the fraction of documents that are relevant. Formally:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#(𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)
(6.1)

Recall is the fraction of relevant documents that are retrieved. Formally:

𝑅𝑒𝑐𝑎𝑙𝑙 =
#(𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

#(𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠)
(6.2)

F Measure is the weighted harmonic mean of precision and recall. Formally:

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 = 2 * 𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 *𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(6.3)

As additional measures for evaluating the methods used for document similarity com-
putation, Mean Rank and Median Rank were used.

23

Mean Rank is defined as a mean of Relevant document positions in TMA question
similarity matrices and Median Rank is the median of these positions. Formally:

𝑀𝑒𝑎𝑛 𝑅𝑎𝑛𝑘 =

∑︀𝑛
𝑖=0𝐷𝑝𝑜𝑠𝑖

𝑛
, (6.4)

where 𝐷𝑝𝑜𝑠𝑖 is the row number of Relevant document in an ordered question similarity
matrix and 𝑛 is the number of Relevant documents across all TMA questions of a course.

6.2 Evaluation Process
The evaluation consisted of recommending the same number of text materials as were
recommended by the tutor. This specific course has 6 TMAs with 5 questions each, fifth of
which always requires student to reflect on his studies and his progress in the course. For
that reason, only the first four questions of each TMA were taken into account if they had
the tutor-recommendations.

Each recommendation was scored using precision, recall, F Measure, Mean Rank, Median
Rank. A mean of the scores over the course was used to evaluate each method of similarity
computation in regard of its viability for recommendation.

6.3 Evaluation Results
This section contains evaluation results for all methods listed. Only means of scores are
listed here, for the full evaluation result tables for each method, see appendix A.

A visualization of the results of rank evaluation can be seen in figure 6.1.

Figure 6.1: A boxplot of tutor-recommended material positions in the respective similarity
matrix for each method

6.3.1 TF-IDF

The TF-IDF method, even though it is the simplest method of the ones used, ended up with
the second best results. This could be attributed to the features of the TMA questions. As
they are very information dense short texts with little to no off-topic terms they are ideal
for TF-IDF. There is an important thing to consider when looking at the results though.
One of the reasons TF-IDF scored so well on this evaluation may be because this course’s
TMAs use the same terms when asking the questions as are used in the materials answering
them. However this is seldom the case, as few tutors let the author know when asked about
this. In some cases, the tutors explicitly try to use different terminology for TMAs than

24

Mean Score
Precision 0.31

Recall 0.62
F Measure 0.38
Mean Rank 9.36

Median Rank 3.0

Table 6.1: TF-IDF evaluation using mean scores

for other course materials. This could mean that this kind of result for TF-IDF could be
an outlier so more experiments are required.

Nonetheless, TF-IDF shows promise for this kind of task.

6.3.2 BM25

Mean Score
Precision 0.23

Recall 0.54
F Measure 0.31
Mean Rank 44.16

Median Rank 15

Table 6.2: BM25 evaluation using mean scores

Even though the method should be an improvement over the TF-IDF, since it aims to
alleviate problems of varying text length in corpus which this application suffers from, it’s
results are significantly worse. BM25 shows high variance in the rank metric, so the results
when using this method for recommending are unpredictable. Even manual examination of
recommended materials showed that they are not very usable.

6.3.3 Word Embedding

Mean Score
Precision 0.25

Recall 0.66
F Measure 0.32
Mean Rank 37.05

Median Rank 18

Table 6.3: Word Embedding evaluation using mean scores

Word embedding evaluation resulted in average scores across all used metrics. However,
upon manual inspection of the recommendations made, it was observed, that the method
manages to identify subtler connections between texts. Among the recommendations made,
some advanced optional texts concerning the question’s subject were found, which was not
the case with the other methods. It also had better results for the TMA questions that
concerned experiments, which other methods had problems with because of the different

25

form of text used. This implies that the method could be able to work around the problem
of varying terminology throughout the course.

All three of the evaluated word embedding models yielded the exact same scores. This
shows that the used model does not change the result of recommendation in a significant
way. As all of the models used were trained on very large amounts of data, this is to be
expected.

The Word Embedding method shows great promise in the context of recommending
study materials and with some modifications could prove to be very useful.

6.3.4 LSA

Mean Score
Precision 0.31

Recall 0.74
F Measure 0.39
Mean Rank 27.54

Median Rank 11

Table 6.4: LSA evaluation using mean scores

LSA results were the overall best among the methods explored. This is not surprising,
since it is a very refined method for calculating document similarities. There were no obvious
problems with the method even when manually checking the results of recommendation.
This method could to an extent identify subtler connections between texts using modified
terminology, such as the experiment assignments, but those recommendations were not as
precise as with word embedding.

One problem of ths method is significant calculation length when using more precise
settings for the method. This is however not a significant drawback since the matrix
computations are made in advance anyway.

6.3.5 LDA

Mean Score
Precision 0.23

Recall 0.48
F Measure 0.27
Mean Rank 122.18

Median Rank 22

Table 6.5: LDA evaluation using mean scores

The LDA scored lowest among the methods evaluated. These were the results obtained
when generating 200 topics with 20 iterations, which should be enough to provide accurate
results. The bad results could be explained by the nature of the questions, which, being
only short texts could have yielded not precise enough topics, resulting in ambiguity.

26

6.4 Evaluation Conclusion
The recommendations made by TF-IDF, LSA and Word Embedding were ranked best
among the methods with the recommended materials being very accurate in the most cases.
Word embedding ranked lower than TF-IDF and LSA, but manual evaluation of the recom-
mendations made by this method showed promise. Even though the tutor-recommended
materials ranked slightly lower than with the previous two methods, the materials that
ranked high often concerned the required problematic and yielded the solution to ques-
tions provided. Another interesing result of word embedding is that it often recommended
optional study materials that other methods did not. While this behavior of the word
embedding method could prove detrimental to recommending materials to help with TMA
questions, as that requires the recommended materials to ideally not be of too advanced
level, it could prove useful when making recommendations for closest materials to user-
supplied materials.

For this reason, TF-IDF and Word Embedding were both deemed a viable methods of
document similarity computation. Further experiments will be done to better evaluate the
two methods chosen. As the precision and recall metrics are very limited and evaluating
a recommender system without users is not very precise, a further testing of the system on
tutors is necessary, as the tutors are best suited to evaluate the quality of recommendations
made for assignment they themselves devised.

The results of offline evaluation however were promising and deemed satisfactory, which
brings motivation to continue with this approach and hints that with further refining of
the methods applied, using document similarities could prove viable for recommendation
purposes.

27

Chapter 7

Conclusion

The purpose of this work was to design and implement a system or a module for an exist-
ing system for recommending study materials to students at the Open University, Milton
Keynes as part of the project Open University Analyse (OUA). The author explored the
most common types of recommender systems and their variations for use in the field of
education. The existing recommender system developed by OUA, using student activity
metrics for the purpose of recommendation, was analysed, alternative metrics of student
activity and modifications to existing metrics were explored.

Author decided to design and implement a new recommender system instead of ex-
panding on the existing one. This recommender system uses semantical similarity between
textual study materials to identify the most suitable study materials for completing the
Tutor Marked Assignments (TMA) of any course.

This was done by representing the textual materials, including TMA questions, in vec-
tor space and recommending the closest documents to user’s query document - the TMA
question. Techniques considered for the purpose of document vecotrization were Term Fre-
quency - Inverse Document Frequency, Okapi BM25, Word Embedding, Latent Semantic
Analysis and Latent Dirichlet Allocation. These methods were evaluated using precision,
recall and rank metrics, using one course which has tutor-recommended materials available
for every question, which were used as relevant documents for the purpose of these metrics.

The LSA, being a widely used method for computing document similarities, was used
as a baseline. It had the best results in the evaluation metrics of the methods. The method
however lacked the more nuanced recommendations of the word embedding method.

LDA was used to compare other methods to a topic modelling one. It scored lowest
in the evaluation. This could be caused by the nature of the TMA questions, them being
rather short and often composed of a number of subquestions. This may have lead to LDA
not being able to characterize the question with precise enough topics.

BM25 ended with sub-par results during the evaluation. It showed very high variance
between quality of recommendations made as was deemed not suitable for the purpose of
this recommender system.

TF-IDF method showed very good results in the evaluation. This, however is attributed
to the nature of TMA questions used in the evaluation process. The questions used the
same terminology as the text materials of the course, which does not happen very often, as
some tutors informed the author. Some tutors explicitly try to use different terminology
in their TMAs. TF-IDF will be subject to more experiments to determine the impact of
different terminology in TMA and in text materials.

28

The word embedding method yielded average results in the evaluation metrics. This
was offset however by manual investigation of recommended materials. These showed that
word embedding is able to find subtler similarities in documents, because it was able to find
optional materials that concerned the subject of the question using different terminology. It
also boasted better results than other methods when the TMA question was an experiment
assignment. All this reveals word embedding as a promising method that could yield very
precise results with further modifications, such as using weighted document vectors.

The resulting recommender system shows promise with its use of document similarity
as a metric for recommendation as the evaluation results were satisfying and show that
with modifications, this approach to recommending study materials could be used to great
merit.

Author’s work also served as a basis for a research paper submitted to EC-TEL1 which
was rejected, but will be corrected and submitted for the next conference.

7.1 Possible Future Work
As the results of the evaluation were promising and the OUA has demonstrated interest
in continuing the development of this system, further evaluation is proposed. As it is very
difficult to evaluate a recommender system offline, an evaluation using the course tutors is
planned to determine the actual usefulness of the system’s recommendations.

Further modifications to the recommender system could marginally improve the quality
of provided recommendations. Most notably, the methods for measuring document simi-
larity could be more refined and other could be tested, for example World Movers Distance
shows promise in this area. Other modifications, like weighted document vectors or topic
models could prove useful.

Other attributes of the study materials could be considered. For example, the length of
a document could be used to modify relevancy or use could be made of more material meta-
data, like if the material contains a video. Other types of VLE content may prove useful,
quizzes, forums and experiments are currently not used by either of the OU recommenders.

Another modification to the system could be cooperation with the already live OUA
recommender, which uses student activity for recommendation purposes. Using these two
recommender systems together could yield interesting results, but there are problems re-
garding different granularity of study materials and few other problems that would have to
be resolved first.

1European Conference on Technology Enhanced Learning: http://www.ec-tel.eu/

29

http://www.ec-tel.eu/

Bibliography

[1] Adomavicius, G.; Tuzhilin, A.: Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions . 2005.

[2] Alvarez, J. E.: A review of word embedding and document similarity algorithms
applied to academic text. 2017.

[3] Blei, D. M.; Ng, A. Y.; Jordan, M. I.; et al.: Latent dirichlet allocation. Journal of
Machine Learning Research. vol. 3. 2003: page 2003.

[4] Boom, C. D.; Canneyt, S. V.; Demeester, T.; et al.: Representation learning for very
short texts using weighted word embedding aggregation. Pattern Recognition Letters.
vol. 80. 2016: pp. 150 – 156. ISSN 0167-8655.
doi:https://doi.org/10.1016/j.patrec.2016.06.012.
Retrieved from:
http://www.sciencedirect.com/science/article/pii/S0167865516301362

[5] Davidson, J.; Liebald, B.; Liu, J.; et al.: The YouTube Video Recommendation
System. In Proceedings of the Fourth ACM Conference on Recommender Systems.
RecSys ’10. New York, NY, USA: ACM. 2010. ISBN 978-1-60558-906-0. pp. 293–296.
doi:10.1145/1864708.1864770.

[6] Folz, P.; Laham, D.; Landauer, T.: An Introdution to Latent Semantic Analysis.
1998.
Retrieved from: http://lsa.colorado.edu/papers/dp1.LSAintro.pdf

[7] Guarino, N.; et al.: Formal ontology and information systems. In Proceedings of
FOIS, vol. 98. 1998. pp. 81–97.

[8] Klašnja-Milićević, A.; Ivanović, M.; Nanopoulos, A.: Recommender systems in
e-learning environments: a survey of the state-of-the-art and possible extensions .
2015.

[9] Kusner, M.; Sun, Y.; Kolkin, N.; et al.: From Word Embeddings To Document
Distances. In Proceedings of the 32nd International Conference on Machine Learning,
Proceedings of Machine Learning Research, vol. 37, edited by F. Bach; D. Blei. Lille,
France: PMLR. 07–09 Jul 2015. pp. 957–966.
Retrieved from: http://proceedings.mlr.press/v37/kusnerb15.html

[10] Lops, P.; de Gemmis, M.; Semeraro, G.: Content-based Recommender Systems: State
of the Art and Trends. Boston, MA: Springer US. 2011. ISBN 978-0-387-85820-3. pp.
73–105. doi:10.1007/978-0-387-85820-3_3.

30

http://www.sciencedirect.com/science/article/pii/S0167865516301362
http://lsa.colorado.edu/papers/dp1.LSAintro.pdf
http://proceedings.mlr.press/v37/kusnerb15.html

[11] Lu, J.; Wu, D.; Mao, M.; et al.: Recommender system application developments: A
survey . 2015.

[12] Manning, C.; Raghavan, P.; Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press. 2008. ISBN 0521865719.

[13] Miller, B. N.; Albert, I.; Lam, S. K.; et al.: MovieLens Unplugged: Experiences with
an Occasionally Connected Recommender System. In Proceedings of the 8th
International Conference on Intelligent User Interfaces. IUI ’03. New York, NY,
USA: ACM. 2003. ISBN 1-58113-586-6. pp. 263–266. doi:10.1145/604045.604094.

[14] Pennington, J.; Socher, R.; Manning, C. D.: GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Language Processing (EMNLP).
2014. pp. 1532–1543.
Retrieved from: http://www.aclweb.org/anthology/D14-1162

[15] Ricci, F.; Rokach, L.; Shapira, B.: Introduction to Recommender Systems Handbook.
Boston, MA: Springer US. 2011. ISBN 978-0-387-85820-3. pp. 1–35.
doi:10.1007/978-0-387-85820-3_1.

[16] Speer, R.; Chin, J.; Havasi, C.: ConceptNet 5.5: An Open Multilingual Graph of
General Knowledge. 2017.
Retrieved from: http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

[17] Zdráhal, Z.; Huptych, M.; Bohuslávek, M.; et al.: Measures for recommendations
based on past students’ activity . 2017.

[18] Žemaitis, M. L. V.: Analysis of the recommendation systems based on the tensor
factorization techniques, experiments and the proposals. 2011.

[19] Zhuhadar, L.; Nasraoui, O.; Wyatt, R.; et al.: Multi-model Ontology-Based Hybrid
Recommender System in E-learning Domain. In 2009 IEEE/WIC/ACM
International Joint Conference on Web Intelligence and Intelligent Agent Technology,
vol. 3. Sept 2009. pp. 91–95. doi:10.1109/WI-IAT.2009.238.

31

http://www.aclweb.org/anthology/D14-1162
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972

Appendix A

Evaluation Result Tables

This appendix contains full result tables for recommender system offline evaluation. The
tables contain precision, recall and F Measure scores for each TMA question evaluated.
Column #Recommendations contains the number of recommendations made by the system.
The amount of recommended materials corresponds to the number of recommendations
made by tutors for the same question.

A.1 Results

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.4 0.4 0.4
Question 3 2 0.4 1.0 0.57
Question 4 1 0.0 0.0 0.0

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.2 0.33 0.25
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.4 0.75 0.52
Question 2 5 0.2 0.2 0.2
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.2 1.0 0.33
Question 3 3 0.4 0.67 0.5
Question 4 1 0.0 0.0 0.0

TMA 5 Question 1 2 0.2 0.5 0.29
Question 2 8 0.4 0.25 0.31
Question 3 6 0.4 0.33 0.36
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 1.0 0.33
Question 2 2 0.0 0.0 0.0
Question 3 3 0.4 0.67 0.5

Table A.1: TF-IDF evaluation results

32

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.2 0.5 0.29

Question 2 5 0.2 0.2 0.2
Question 3 2 0.4 1.0 0.57
Question 4 1 0.0 0.0 0.0

TMA 2 Question 1 1 0.2 0.0 0.0
Question 2 3 0.2 0.33 0.25
Question 3 2 0.2 0.5 0.29

TMA 3 Question 1 4 0.2 0.25 0.22
Question 2 5 0.2 0.2 0.2
Question 3 2 0.2 0.0 0.0

TMA 4 Question 1 1 0.4 1.0 0.33
Question 3 3 0.2 0.67 0.5
Question 4 1 0.0 1.0 0.33

TMA 5 Question 1 2 0.2 0.0 0.0
Question 2 8 0.4 0.0 0.0
Question 3 6 0.4 0.0 0.0
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 0.0 0.0
Question 2 2 0.2 0.5 0.29
Question 3 3 0.2 0.33 0.25

Table A.2: BM25 evaluation results

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.0 0.0 0.0
Question 3 2 0.2 0.5 0.29
Question 4 1 0.2 1.0 0.33

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.2 0.25 0.22
Question 2 5 0.2 0.2 0.2
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.2 1.0 0.33
Question 3 3 0.4 0.67 0.5
Question 4 1 0.2 1.0 0.33

TMA 5 Question 1 2 0.0 0.0 0.0
Question 2 8 0.2 0.125 0.15
Question 3 6 0.6 0.5 0.55
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 1.0 0.33
Question 2 2 0.0 0.0 0.0
Question 3 3 0.0 0.0 0.0

Table A.3: Numberbatch results

33

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.0 0.0 0.0
Question 3 2 0.2 0.5 0.29
Question 4 1 0.2 1.0 0.33

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.2 0.25 0.22
Question 2 5 0.2 0.2 0.2
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.2 1.0 0.33
Question 3 3 0.4 0.67 0.5
Question 4 1 0.2 1.0 0.33

TMA 5 Question 1 2 0.0 0.0 0.0
Question 2 8 0.2 0.125 0.15
Question 3 6 0.6 0.5 0.55
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 1.0 0.33
Question 2 2 0.0 0.0 0.0
Question 3 3 0.0 0.0 0.0

Table A.4: GloVe Wikipedia + Gigaword evaluation results

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.0 0.0 0.0
Question 3 2 0.2 0.5 0.29
Question 4 1 0.2 1.0 0.33

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.2 0.25 0.22
Question 2 5 0.2 0.2 0.2
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.2 1.0 0.33
Question 3 3 0.4 0.67 0.5
Question 4 1 0.2 1.0 0.33

TMA 5 Question 1 2 0.0 0.0 0.0
Question 2 8 0.2 0.125 0.15
Question 3 6 0.6 0.5 0.55
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 1.0 0.33
Question 2 2 0.0 0.0 0.0
Question 3 3 0.0 0.0 0.0

Table A.5: GloVe Common Crawl evaluation results

34

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.0 0.0 0.0
Question 3 2 0.4 1.0 0.57
Question 4 1 0.0 0.0 0.0

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.4 0.5 0.44
Question 2 5 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.2 1.0 0.33
Question 3 3 0.6 0.67 0.63
Question 4 1 0.2 1.0 0.33

TMA 5 Question 1 2 0.0 0.0 0.0
Question 2 8 0.2 0.125 0.15
Question 3 6 0.4 0.33 0.36
Question 4 3 0.0 0.0 0.0

TMA 6 Question 1 1 0.2 1.0 0.33
Question 2 2 0.0 0.0 0.0
Question 3 3 0.0 0.0 0.0

Table A.6: LSA evaluation results

#Recommendations Precision Recall F Measure
TMA 1 Question 1 2 0.0 0.0 0.0

Question 2 5 0.0 0.0 0.0
Question 3 2 0.2 0.5 0.29
Question 4 1 0.0 0.0 0.0

TMA 2 Question 1 1 0.2 1.0 0.33
Question 2 3 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 3 Question 1 4 0.2 0.25 0.22
Question 2 5 0.0 0.0 0.0
Question 3 2 0.0 0.0 0.0

TMA 4 Question 1 1 0.0 0.0 0.0
Question 3 3 0.2 0.33 0.25
Question 4 1 0.2 1.0 0.33

TMA 5 Question 1 2 0.0 0.0 0.0
Question 2 8 0.2 0.125 0.15
Question 3 6 0.4 0.33 0.36
Question 4 3 0.2 0.33 0.25

TMA 6 Question 1 1 0.0 0.0 0.0
Question 2 2 0.0 0.0 0.0
Question 3 3 0.0 0.0 0.0

Table A.7: evaluation results

35

Appendix B

Recommender REST API

For the purpose of the communication with the system, a RESTful API is implemented.
This appendix lists the available API calls.

36

B.1 Query for TMA Recommendation
∙ Description:

– Fetches a list of recommended materials for all pages of specified TMA

∙ Request Method:

– GET

∙ URI:

– /tmarec/module/<module_code>/presentation/<presentation_code>/tma/
<tma_number>

∙ Parameters:

– n: Number of recommendations to list, default is 10
– sites: If true, returns list of VLE sites instead of singular text materials as

recommendation
– preceding_only: If true, only considers materials from week preceding TMA for

recommendation
– method: One of tfidf/embedding, specifying similarity computation method

∙ Response:

{
"Question 1": [

{
"module": "SXX",
"presentation": "20XXX",
"week": "1",
"sas_id_site": "11111",
"id_page": "22222",
"section": "1.2",
"name": "Introduction to SXX",
"title": "1.2 Assessment in SXX",
"similarity_score": "0.7101828932762146",
"rank": 1

},
...

}

37

B.2 Query for TMA Question Recommendation
∙ Description:

– Fetches a list of recommended materials for a specific TMA question

∙ Request Method:

– GET

∙ URI:

– /tmarec/module/<module_code>/presentation/<presentation_code>/tma/
<tma_number>/question/<question_number>

∙ Parameters:

– n: Number of recommendations to list, default is 10
– sites: If true, returns list of VLE sites instead of singular text materials as

recommendation
– preceding_only: If true, only considers materials from week preceding TMA for

recommendation
– method: One of tfidf/embedding, specifying similarity computation method

∙ Response:

[
{

"module": "SXX",
"presentation": "20XXX",
"week": "1",
"sas_id_site": "11111",
"id_page": "1924222229546",
"section": "3.4",
"name": "Forms of Water",
"title": "3.4 Water",
"similarity_score": "0.69839015007019043",
"rank": 1

},
...

]

38

B.3 Query for Similarity With Internal Document
∙ Description:

– Fetches a list of recommended materials for a specific VLE material

∙ Request Method:

– GET

∙ URI:

– /docxcourse/module/<module_code>/presentation/<presentation_code>/page/<page_id>
– /docxcourse/module/<module_code>/presentation/<presentation_code>/cmid/<sas_id_site>

∙ Parameters:

– n: Number of recommendations to list, default is 10
– sites: If true, returns list of VLE sites instead of singular text materials as

recommendation
– method: One of tfidf/embedding, specifying similarity computation method

∙ Response:

[
{

"module": "SXX",
"presentation": "20XXX",
"week": "1",
"sas_id_site": "1169995",
"id_page": "19249546",
"section": "3.4",
"name": "Introduction to SXX",
"title": "3.4 Forms",
"similarity_score": "0.29839015007019043",
"rank": 1

},
...

]

39

B.4 Query for Similarity With External Document
∙ Description:

– Fetches a list of recommended materials for a specific user-provided text

∙ Request Method:

– POST

∙ URI:

– /docxcourse

∙ Parameters:

– n: Number of recommendations to list, default is 10
– sites: If true, returns list of VLE sites instead of singular text materials as

recommendation
– method: One of tfidf/embedding, specifying similarity computation method

∙ Request Body:

– module
– presentation
– doc: provided text

∙ Response:

[
{

"module": "SXX",
"presentation": "20XXX",
"week": "1",
"sas_id_site": "1169995",
"id_page": "19249546",
"section": "3.4",
"name": "Introduction to SXX",
"title": "3.4 Forms",
"similarity_score": "0.29839015007019043",
"rank": 1

},
...

]

40

	Introduction
	Recommender Systems
	Recommendation techniques
	Content-Based Filtering
	Collaborative Filtering
	Matrix/Tensor Factorization Techniques
	Association Rules Mining

	Using ontologies to provide contextual information

	Open University Analyse Project
	Open University study plan
	Virtual Learning Environment
	Open University Recommender system
	Relevance
	Effort
	Recommendation
	Critical Recommendation

	Possible Modifications to Relevance and Effort Computation
	Using Time for Calculating Relevance and Effort
	Using Student Forum Activity for Effort Computation
	Linking Study Texts Together

	Document Vectorization Methods
	Term Frequency - Inverse Document Frequency
	Latent Semantic Analysis
	Latent Dirichlet Allocation
	Okapi BM25
	Word Embedding

	Fulltext Recommender
	Study Material Preprocessing
	Similarity Matrices
	System Interface and Recommendation
	Long Running Tasks
	Recommendation

	Evaluation
	Evaluation Metrics
	Evaluation Process
	Evaluation Results
	TF-IDF
	BM25
	Word Embedding
	LSA
	LDA

	Evaluation Conclusion

	Conclusion
	Possible Future Work

	Bibliography
	Evaluation Result Tables
	Results

	Recommender REST API
	Query for TMA Recommendation
	Query for TMA Question Recommendation
	Query for Similarity With Internal Document
	Query for Similarity With External Document

