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PREFACE 
The thesis presented herein comprises a collection of publications spanning the years 2019 to 

2023. This collection has been organized into distinct sections and interconnected based on the 

objectives and the scientific hypotheses they aimed to explore. The methodological approaches 

and findings detailed in this thesis adhere closely to established scientific protocols. The 

research methodologies employ comprehensive approaches tailored to each study's 

requirements. The focus of this thesis revolves around the essential domain of soil hydrology, 

encompassing diverse aspects such as hydraulic conductivity, field capacity estimation, and the 

effects of surfactants on soil properties. The research draws upon a rich array of datasets from 

various sources, integrating fieldwork, laboratory experiments, and advanced statistical 

evaluations to derive meaningful conclusions. The oversight and guidance provided by the 

Department of Water Resources at the Czech University of Life Sciences Prague, have been 

instrumental in shaping and steering this body of work. As we proceed on this journey, we 

anticipate that this work will contribute to long-term environmental sustainability and more 

effective soil and water management across diverse environmental contexts. 

Below are the publications that constitute the thesis: 

Almaz, C., Kara, R. S., Miháliková, M., & Matula, S. (2023). Implications of surfactant 

application on soil hydrology, macronutrients, and organic carbon fractions: An integrative 

field study. Soil and Water Research 18(4), 269-280. https://doi.org/10.17221/88/2023-SWR 

Almaz, C., Miháliková, M., Bá�ková, K., Vopravil, J., Matula, S., Khel, T., & Kara, R. S. 

(2023). Simple and Cost-Effective Method for Reliable Indirect Determination of Field 

Capacity. Hydrology, 10(10), 202. https://doi.org/10.3390/hydrology10100202  

Batkova, K., Matula, S., Hrúzová, E., Miháliková, M., Kara, R. S., & Almaz, C. (2022). A 

comparison of measured and estimated saturated hydraulic conductivity of various soils in the 

Czech Republic. Plant, Soil and Environment, 68(7), 338-346. 

https://doi.org/10.17221/123/2022-PSE  

Bá�ková, K., Matula, S., Miháliková, M., Hrúzová, E., Abebrese, D. K., Kara, R. S., & Almaz, 

C. (2023). Prediction of saturated hydraulic conductivity Ks of agricultural soil using 

pedotransfer functions. Soil & Water Research, 18(1). https://doi.org/10.17221/130/2022-

SWR 

 



��

�

TABLE OF CONTENTS 

DECLARATION..................................................................................................................................... ii�

ACKNOWLEDGMENT ........................................................................................................................ iii�

PREFACE .............................................................................................................................................. iv�

1.� Literature Review ......................................................................................................................... 1�

1.1.� Introduction to Hydrophysical Properties of Soils and their Degradation��������������������������

1.2.� Hydrophysical Properties of Soils��������������������������������������������������������������������������������������������

1.2.1.� Soil Water Retention Characteristics�����������������������������������������������������������������������������������

1.2.2.� Soil Hydraulic Conductivity����������������������������������������������������������������������������������������������

1.2.3.� Influence of Soil Organic Matter on Soil Hydraulic Properties���������������������������������������	�

1.2.4.� Agricultural Practices and Tillage��������������������������������������������������������������������������������������

1.3.� Pedotransfer Functions for Estimating Soil Properties��������������������������������������������������������

1.3.1.� Definition and Purpose of PTFs�����������������������������������������������������������������������������������������

1.3.2.� Classifying and Using Pedotransfer Functions in Soil Properties Estimation�����������������
�

1.3.3.� Optimizing Soil Property Estimation: Advanced Data Grouping and PTFs����������������������

1.3.4.� Advancements in PTFs for Estimating Soil Hydraulic Properties�������������������������������������

1.3.5.� Methods to Derive Modern PTFs������������������������������������������������������������������������������������

�

1.3.6.� Functional Evaluation of Pedotransfer functions������������������������������������������������������������
	�

1.3.7.� PTFs Look-up Tables, Models and Databases����������������������������������������������������������������
��

1.4.� Assessing PTF Transferability and Integration in Environmental Models���������������������

�

1.5.� Soil Hydraulic Properties Estimates in the Czech Republic���������������������������������������������
��

2.� Hypotheses and Objectives ......................................................................................................... 31�

3.� Publications ................................................................................................................................. 32�

4.� Summary Discussion ................................................................................................................... 76�

5.� Conclusions .................................................................................................................................. 83�

6.� References .................................................................................................................................... 85�

�

 



� �

� � �

1. Literature Review 

1.1. Introduction to Hydrophysical Properties of Soils and their Degradation 

Soil degradation is a pressing global issue in the 21st century due to population growth, land 

use pressure, and climate change. Approximately 33% of the Earth's surface has been affected 

by accelerated soil degradation (Bini, 2009���������	

��	���
�
���������������	���
�
�����), 

leading to reduced soil quality and ecosystem functions (Lal, 2015a����

�2009a). The world's 

land resources are finite and fragile, with only about 22% suitable for cultivation and 3% having 

high agricultural production capacity (Lal, 1997����

�2009b). Official reports highlight the 

imminent threat of soil degradation (European Environment Agency, 2000). Researchers 

underscore the global significance of agricultural land degradation, affirming its enduring 

prominence on the international agenda from the twentieth century into the twenty-first century 

(Utuk and Daniel, 2015). Soil degradation manifests through processes like erosion, loss of 

������������	�
�����������
��������������
����������������������	�	���
�
���������� �!���	���
�
�

���"�� #$���
� ����%
� �����������
&� ���������� ������
����
� ��������'�
��&� �(�$	��
� �)))�� ��

�

�������*$�
��	�	���
�
����)��#$���
�����%� 

Soil erosion, a prominent factor in degradation (Bonthagorla et al., 2022), encompasses both 

wind and water erosion. It involves the exfoliation, dispersion, and destruction of surface 

materials under the influence of external forces such as hydraulic power, wind, and gravity 

(Noori et al., 2018). Specifically, water erosion affects around 115 million hectares, constituting 

12% of the total land area, while wind erosion impacts 42 million hectares, with 2% 

	+�	��	������������������	��������,����	���,�-�����	���.�	��&
�������/	��01 and Šarapatka, 

2018). Approximately 40% of agricultural land is undergoing severe degradation, with water 

erosion emerging as a major threat in Europe (Boardman and Poesen, 2006). Projecting forward 

to 2050, there is a potential increase in mean soil loss rates due to water erosion by 13–22.5% 

in agricultural areas of both the EU and the UK, as compared to the baseline in 2016 (Panagos 

et al., 2021). The Czech Republic faces a substantial challenge, with over 50% of its 

agricultural land under threat from water erosion (Ministry of Agriculture of the CR, 2015). 

The European Union emphasizes erosion due to its substantial impact on food production, 

 ��	�� �	�����	�
� '����-	����&
� 	���&��	��
� ���� ���'��� ����!�� ���

� ������ /�������� ����

Poesen, 2006). 
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Wind erosion affects around 14.31% of agricultural land in the Czech Republic, particularly in 

drier regions with specific soil types (Šarapatka, and Bedná1, 2015). Soil compaction, primarily 

induced by heavy machinery and intensified by intensive tillage practices (Hossain et al., 

2020), affects almost half of the agricultural land in the Czech Republic (Ministry of 

Agriculture of the CR, 2012), impacting water infiltration, reducing porosity, root growth, 

nutrient uptake and increasing surface ru����
� �$	�	'&����	
	�������	����������	�� ���

��))���

�������	�&
����2��Subbulakshmi et al., 2009��Lal, 2020). 

Acidification and loss of organic matter worsens soil stability, increases erosion vulnerability, 

and reduces water retention, affecting plant growth and agricultural productivity (Jie et al., 

������/�������/	���	�
�������3������!�
�����/	��01
�������Lal, 2015a��Bedná1 and Šarapatka, 

2018��*$�
��	�	���
�
����)��Lal, 2020). Groundwater levels and water retention significantly 

affect soil-water relationships and degradation processes �,��������	���
�
����������	���
�
�������

Dai et al., 2020). Rising groundwater levels can lead to waterlogging (Hillel et al., 2008� Awad 

and El Fakharany, 2020) and soil salinization (,�������� 	�� �
�
� ������Singh, 2013�� (���$
�

2015), reducing crop productivity and increasing soil degradation (Taddese, 2001). 

Implementing soil conservation measures, including crop rotation and the incorporation of 

organic amendments and crop residues is essential for mitigating or reversing soil degradation 

(������
��������	�	������	��	���
�
����4��#��5������6
	��	5�	
�
����)����
�����(�	 ���
�����). 

These practices minimize erosion, improve soil structure, increase organic matter content, 

enhance water retention capacity, and promote nutrient cycling (Blanco-Canqui and Lal, 2009a, 

���)'����

������%� Incorporating organic amendments improves soil porosity and decreases 

���
�'�
!��	����&
�	�$�������$&����
�����������-��&��(������	���
�
��)")����-		��	���
�
����7��

Dong et al., 2022). Saturated hydraulic conductivity (Ks) and water retention capacity increases 

with organic amendments due to improved porosity, benefiting plant growth (Aggelides and 

������
������ ���������	���
�
�������Nyamangara et al., 2001��Ferreras et al., 2006).  Proper 

crop rotation can improve long-term soil fertility, aggregate stability, and landscape diversity, 

�$	�	'&���	-	���������
�	��������������
��������	�	������	��	���
�
����4��6	
���	�-Sainio et al., 

2019). There is a need for a reliable assessment of the impact of various crop rotation patterns 

on soil erosion at a regional level to understand climate change mitigation and hydrological 

processes (Alewell et al., 2019). Cover crops and crop residues can enhance soil aggregation, 

increase organic matter content, and improve water infiltration rates, mitigating soil 

degradation (Blanco-*��8���������

����)�
����)'�������
�	���
�
�����%��Vegetation cover, 

including the type and density of plant species, plays an important role in regulating soil 



��

�

moisture and reducing erosion �#��5������6
	��	5�	
�
����)����
�����(�	 ���
�����%� While 

these measures improve water retention and infiltration rates initially, their longer-term effects, 

especially concerning different irrigation practices and non-irrigated lands, need further 

	+�
���������(�$�	��	��	���
�
����)������	���
�
����4%� 

Conservation agriculture, with minimal soil disturbance, diversified crops, and permanent 

cover, reduces erosion rates and enhances soil quality (Lal, 2015a). Precision agriculture, 

encompassing practices like site-specific nutrient management and variable-rate irrigation, 

optimizes resource use efficiency and reduces soil degradation risks (Bhattacharyya et al., 

������Gomiero, 2016). Different land use systems affect soil physical quality, necessitating 

further investigation to better understand soil functions and processes (Moh� 	�$�	���
�
�������

9	���	���
�
����4���	''�	���
�
����2��:���$����	���
�
����)%�� ;���-���-	��������$	�
����$����

geophysical methods (Hu et al., 2011) and non-destructive measurements (Veldkamp and 

<=/��	�
����������	���
�
�����%�are being explored, aiding in sustainable irrigation management 

(Hendeley, 2009). 

There is a growing emphasis on the modernization and sustainable management of irrigation 

�&��	����(�$�	��	��	���
�
����)������	���
�
����4%��In addition to conservation agriculture and 

precision agriculture, researchers are exploring various innovative soil water management 

practices to address challenges, such as surfactant applications. These surfactants, often based 

on Alkyl Block Polymer (ABP) or Polyoxyalkylene polymer (PoAP), enhance soil properties, 

improving re- 	���'�
��&
�����
�����������	�
��������
�$&���������*�����	���
��������9	!!	��	���
��

������<�������	�	���
�����"%��>	�	��������	��$�-	�$��$
��$�	���$���	�����$&����$�'����&�����

o����������'�������	����*$������*$��
����?��(����	���
�����"%
�����������	+�
��	�����	��	����

on hydraulic conductivity, nutrient distribution, and organic carbon fractions (Banks et al., 

������6	���	���
�
����2%�� 

Hydrophysical properties of soils are essential for sustainable agriculture and effective water 

�����	�	��� ������� 	�� �
�
� ���4�� �����
� 	�� �
�
� ����% and understanding soil hydraulic 

properties is essential for effective irrigation planning, hydrologic modelling, and preventing 

further soil degradat�����@	���	

��	���
�
����)��9����	���
�
�����%� A major challenge lies in the 

lack of information on the soil water retention curve (SWRC), making it difficult to assess and 

predict changes in soil water dynamics that impact agricultural practices (Patil et al., 2011). 

Pedotransfer Functions (PTFs) serve a vital role in estimating soil hydraulic properties 

(Minasny, 2000), including the SWRC and Ks �(�
�5���	���
�
����"����$�
�!�-��	���
�
����?��



	�

�

Mihalikova et al., 2014). PTFs utilize various soil properties as input predictors, such as soil 

texture, dry bulk density and organic carbon content, to enhance hydrological modelling 

�������&��AB��	��	���
�
��)))���	�	��	���
�
����?��(�+��������>� 
�
����4��A	&������	���
�
�

���)��9	������&�	���
�
����7%��Furthermore, PTFs have been adapted to consider factors like 

irrigation and tillage practices, enabling more precise estimations and support for sustainable 

soil management (Mapa et al., 1986). 

Global efforts to combat soil degradation through sustainable land management practices are 

crucial for long-term food security, environmental sustainability, and the mitigation of 

degradation risks (Bindraban et al., 2012) particularly in regions marked by intensive 

agriculture, high population densities, and limited resources for sustainable land management 

(Oldeman et al., 1991). Various models, such as the Soil Degradation Model of the Czech 

Republic, assess multiple degradation factors at a local level (Šarapatka et al., 2018). 

Sustainable land management practices benefit soil health, agricultural productivity, climate 

change mitigation, and adaptation. Healthy soils act as carbon sinks, reduce greenhouse gas 

	��������
������-	� ��	���	�	�����
�����	�$���	�	���&��	���	�-��	���:.<
�������Minasny et 

�
�
����2��Lal, 2020). This substantial carbon sink operates in a delicate balance with other 

environmental pools, making it highly susceptible to changes in land use (Schlesinger, 1995). 

Any disturbance to the soil system that accelerates mineralization rates within the carbon pool 

results in reduced carbon content in the soil and the subsequent release of carbon dioxide into 

the atmosphere (Smith, 2012). For example, agricultural activities, especially those involving 

tillage, can swiftly deplete levels of soil organic carbon. Lal (2013) provides a comprehensive 

examination of the significance of the soil organic carbon pool in the context of climate change, 

shedding light on the potential implications of alterations in land use for greenhouse gas 

emissions (Montanarella and Alva, 2015). 

Soil degradation contributes to a notable reduction in crop yields (estimated between 12.7% to 

?�C%�����������������'�������
�	���������������<
�	���
��))"����������	

�
����2%����	������

land productivity and leading to socio-economic consequences (Bajocco et al., 2011). Raising 

� ��	�	����'�������
��	������������������
��&��!	��
� ����	��
����� �$	���'
��� ���	��	����
��

collaborative efforts are needed to develop supportive policies and integrate soil conservation 

practices into agriculture �/�����'���	���
�
�������������	���
�
�����%��6�������5�������
�$	�
�$�

and sustainable land management preserves hydrophysical properties, enhances agricultural 

productivity, and secures the well-being of current and future generations. 
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Continuous research focused on understanding and addressing degradation processes in 

irrigated and irrigable soils enables us to understand the complex interactions between soil, 

water, and agricultural practices. Incorporating advances in modelling, and sustainable 

strategies allows us to mitigate soil degradation and ensure the sustainable use of soil and water 

�	�����	������������
���	���������������	�-������������
���	�������	��������	�$��8�	��	��'
	��

us to combat soil degradation, promote sustainable land management, and optimize resource 

efficiency, soil management and farming systems, play pivotal roles in soil quality deterioration 

worldwide (Doran and Parkin, 1997). This promotes long-term food security, environmental 

sustainability, and agricultural system resilience. 

1.2. Hydrophysical Properties of Soils  

Hydrophysical properties of soils are paramount for comprehending soil water interactions and 

their profound implications for agricultural systems. These properties encompass a multitude 

of factors, each with its unique significance in determining how soils function and how they 

respond to various environmental and management factors. Soil hydraulic properties exhibit 

������
�-����'�
��&
�������	��'&����&��	�	���$	����(����!�	���
�
�������*�����	���	� �
�
�������

����
����7��(����
	&�	���
�
����"%
������$	&���	������������
&�������	��'&������������$�������
�

texture, dry bulk density (BD), soil structure, and soil organic matter content (Bagarello and 

(����
����2��6	�	��	��	���
�
����"%� 

Soil texture, as classified by the USDA (1951), is often represented by the content of sand, silt, 

and clay fractions. These fractions define the soil's physical composition, with sand particles 

measuring between 2.0 and 0.05 mm, silt particles between 0.05 and 0.002 mm, and clay 

particles smaller than 0.002 mm. This composition of sand, silt, and clay plays a major role in 

the relationship between soil water potential and soil water content (Saxton et al., 1986).  

Among the texture factors, clay content stands out as the most influential, this significance of 

clay content in hydraulic characteristics was underscored by Cosby et al. (1984) through 

regression and discriminant analysis. Soil texture significantly governs essential soil hydraulic 

properties including saturated hydraulic conductivity (Ks), unsaturated hydraulic conductivity 

�D�$%%
����
� ��	���	�	���������-	��(A>*%
���������	���&���	����	�-�
�	��AB��	��	���
�
�������

Li et al., 2014). Moreover, it’s worth noting that the average pore size and distribution exhibit 

a strong correlation with the particle size distribution, as outlined by Campbell (1985). 

Understanding the morphology and stability of the soil pore network is paramount and soil 

structure has equally important effect as the texture.  
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Soil structure can be defined in two ways: it refers to the shape, size, and spatial arrangement 

of individual soil particles and clusters of particles (aggregates), or it describes the combination 

of various pore types with solid particles (aggregates) (Blahovec and Kutílek, 2002). Soil 

structure and the formation of aggregates are dynamic aspects shaped by soil parent material, 

climate, and agricultural practices. However, due to the inherent opacity of soil, accurately 

quantifying the relevant soil structures has proven to be a challenging task (Weber et al., 2023). 

Notably, clays with shrink/swell properties can profoundly influence the natural variability of 

soil structure and how soil hydraulic properties respond to various management practices (Horn 

	���
�
��))7����E��ry et al., 2000). There is a growing focus on measuring pore space to better 

understand soil structure. The intricate network of pores between individual particles and 

aggregates is crucial, serving as a vital medium for water and air storage and movement, 

indispensable for plant roots, microorganisms, and soil fauna (Blahovec and Kutílek, 2002). 

Soils that are well-structured, containing higher organic matter and lower bulk density, 

typically possess enhanced water retention capacity. This is attributed to improved soil 

structure and the increased availability of pore space for water storage (Nemes et al., 2003). 

Progress in quantifying soil structure has been notably constrained, especially when 

investigating pedon and field scales. (Eck et al., 2013). Soil structure data usually covers 

aggregate characteristics such as size distributions and stability. However, directly relating 

these properties to soil pores is complex due to a lack of detailed information on aggregate 

arrangement and packing within a representative soil volume (Sullivan et al., 2022). Even when 

available, the data often focuses on shallow depths and small samples (Nimmo and Perkins, 

2002), limiting a comprehensive understanding of the soil horizon's morphological structure. 

Consequently, the interconnectedness of pore networks and the spatial variability of soil 

hydraulic properties at larger scales are often overlooked (Rabot et al., 2018). 

1.2.1. Soil Water Retention Characteristics 

Soil water retention characteristics, as described by the Soil Water Retention Curve (SWRC), 

offer essential insights into soil water availability to plants. The SWRC is the relationship 

between soil water matric potential (or the energy of attraction between soil water and the solid 

phase of soil) and volumetric soil water content (F) (cm3 cm-3) at equilibrium above the 

reference (zero) level represented by the free water table at atmospheric pressure (Novák and 

HlaváGiková, 2019). The mathematical expression of the soil water retention curve function, 

denoted as (hw=f (F)), serves as a critical input for mathematical models used in studying soil 




�

�

water movement. The SWRC is influenced by various soil properties, including particle size 

distribution, BD, organic matter content, human activities, and natural processes such as 

wetting and drying cycles and earthworm activity, which collectively impact soil functionality 

�/�


����?��6
��	���
�
����2%� 

To aid in visualizing the region near saturation, the retention curve is commonly depicted on a 

semi-logarithmic scale as a pF curve (pF = log |h|) (Kutílek, 1978). The curve is often referred 

to as a pF curve, wherein equivalent pore radii are plotted on the vertical axis, assuming a 

parallel capillary tube model (Kutílek and Nielsen, 1994). Figure 1 shows the soil water 

retention curve using a linear scale for pressure head and a logarithmic scale for h. As pressure 

heads (h) vary over many orders of magnitude and significant changes in F occur at relatively 

small values of h, soil water characteristics can only be effectively plotted on a semi-

logarithmic scale (Dirksen, 1999).  

 

Figure 1. Soil water retention curve using a logarithms scale for h where pF = log |h| (right) 

and a linear scale for pressure head (h) (cm) (left) (Kutílek and Nielsen, 1994). 

 Soil water content and matric potentials, commonly referred as "soil water constants," are 

indicative of water availability to plants (Novák and HlaváGiková, 2019). These soil water 

constants represent specific soil moisture levels, obtained through well-defined methodologies, 

despite not having strict physical definitions. These soil water constants, including Field 

Capacity (FC), Wilting Point (WP), and Available Water Capacity (AWC), are widely 

recognized and utilized globally. The Retention Water Capacity (RWC) and Maximum 

Capillary Water Capacity (MCWC), specific soil water constants for the Czech Republic, offer 

practical and cost-effective alternatives to the complete soil retention curve measurement. 



��

�

FC signifies the maximum soil water content (FFC) soil can hold against the force of gravity 
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1986), but determining FC in the field is approximate due to dynamic field conditions. FC 

usually corresponds to a pF value between 2.00 and 2.70, in calculations and estimates, it is 

important to connect FC with suction pressures. Coarse-textured soils typically achieve FC at 

-5 to -10 kPa, medium-textured soils at around -33 kPa, and fine-textured soils at -50 kPa 

(Cassel and Nielsen, 1986). Factors like intense rainfall, soil properties (including hydraulic 

gradient, hysteresis, soil profile layering, swelling and shrinking, as well as the presence of 

impermeable layers or high groundwater levels), and topography influence the duration of 

water saturation, making FC variable. 

WP represents the soil water content (FWP) at which plants experience permanent wilting 

(Kutílek and Nielsen, 2015), often observed at a matric potential hw=104.18 cm (pF = 4.18 which 

corresponds to a suction pressure of -1500 kPa or a pressure head of -15000 cm, -15 bar or a 

relative vapor pressure of 0.98 on the desorption branch of the adsorption isotherm) as proposed 

by Briggs and Shantz in 1912. Defining WP precisely is a challenge due to the complex 

interplay of these multifaceted elements, such as, root depth, plant coverage, and microclimate 

(Cassel and Nielsen, 1986). Various methods can be employed for approximate calculations of 

the WP. One approach involves estimating it as one and a half to two and a half times the 

hygroscopicity value. Another method utilizes equations proposed by Solna1 or Váša, which 

are linear regression relationship between soil water content representing WP and fine particle 

size fraction, which are soil particles < 0.01 mm (%) (Kutílek, 1978).  

AWC is a term used to describe the range of soil water contents (F AWC) that are accessible to 

plants within the root layer. This capacity is typically assessed between the field capacity (FFC) 

and the wilting point (FWP), it represents the amount of water in the soil that remains usable by 

plants over an extended period, and it is calculated as (Eq. 1): 

AWC = FC – WP         (1) 

H$	��	�������������:*�����A6���&�-��&������������	�	����������	���$� 	-	�
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a valuable parameter for regional studies concerning soil moisture deficit, irrigation intervals, 

agro-ecological zoning, assessment of agricultural production potential, and simulation of 

global landscape changes influenced by economic factors and climate change. In various 

regions, common intervals utilized to define available water capacity include, for instance, pF 
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1.70-7��"�����$	�ID���:�����-7��"�����$	��	�$	�
�����������:�����-4.18 in the USA (Batjes, 

1996). 

RWC, as defined by Kopecký, and MCWC, as defined by Novák, are soil water constants 

determined in the laboratory using well-defined methodologies. This approach eliminates the 

need to rely on the challenging process of obtaining FC, which has a long history of use in the 
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����?'%��H$	�>A*������il, results from the attractive forces between the 

solid and liquid phases, enabling the soil to retain water despite the effects of gravity, 

evaporation, and plant root uptake.  

The soil water retention curve often exhibits strong hysteresis, leading to significant differences 
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Hysteresis results from various factors, including air entrapment in blind pores, variations in 

pore diameters, and differences in wetting angles during water advancement on dry soil 

particles compared to water recession from a moist surface (Kutílek, 1978).   

The underlying mechanisms responsible for these hysteretic responses have been extensively 

identified, including potential differences in advancing and receding solid-liquid contact 

angles, changes in pore structure due to wetting and drying, air entrapment, capillary 

condensation, and thixotropic or aging effects, which are influenced by the wetting/drying 
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��)"�����!�����d Lu, 2004).  These mechanisms are affected by the wetting and 

drying history, leading to complex relationships between parameters such as F, Fw (wetting 

moisture content), Fwr (residual moisture content), Fs (saturation moisture content), and FAr 

(representing the air-entrapped volumetric domain between Fs and Fw). These relationships are 

vital for understanding how soil moisture content changes during wetting and drying processes. 

Hysteresis is associated with primary drainage and primary wetting curves (PDC and PWC, 

respectively) and main drainage and wetting curves (MDC and MWC, respectively). Scanning 

wetting and scanning drainage curves (SWC and SDC, respectively) further illustrate these 

complex behaviours. When a previously dry sample is rewetted, it may not reach the original 

Fs but instead reaches a lower level (Fw), indicating the persistent influence of hysteresis. These 

intricacies in soil moisture behaviour are essential to consider when studying the dynamics of 

soil water content during wetting and drying processes (Kutílek and Nielsen, 1994). Figure 2 
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and Nielsen, 1994), where different curves and parameters help elucidate the relationships 

between soil moisture contents during wetting and drying. 

 

Figure 2. Hysteresis of the SWRC for a coarse-textured soil (Luckner et al., 1989). PDC is the 

primary drainage curve, PWC the primary wetting curve, MDC the main drainage curve, MWC 

the main wetting curve, SWC a scanning wetting curve and SDC a scanning drainage curve 

(Kutílek and Nielsen, 1994). 

1.2.1.1. Determination of Soil Water Retention Curve 

Laboratory techniques play a crucial role in establishing the soil water retention curve. The 

measurements differentiate between drainage, wetting, or transitional branches. The method's 

measurement range is of utmost importance. When determining the retention curve for the 

entire range of soil moisture usable by plants (i.e., pressure heads from 0 to -15000 cm, 

sometimes more), a typical approach involves combining two methods, such as the sand/kaolin 

box, temp cell (Klute, 1986) and pressure plate apparatus (Richards, 1941). 

A modern and efficient approach, the evaporation method (Schindler and Müller, 2006), is 

utilized in commercial devices like HYPROP (Hydraulic Property Analyzer) by METER 

Group Inc. (Pullman, WA, USA). This method rapidly determines field capacity but involves 

higher costs and requires careful setup. Recent studies, like Haghverdi et al. (2018), highlight 

the increasing importance of HYPROP's automated benchtop system for high-resolution water 

retention data in soil hydraulic property analysis. 
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1.2.1.2. Functional Relationships for Describing the Soil Water Retention Curve  

In simulation modelling, an analytical expression of the SWRC is necessary. Among several 

mathematical functions available, the most used one is the van Genuchten relationship (1980), 

which can be combined with the Mualem model (1976) for the indirect derivation of 

unsaturated hydraulic conductivity. According to Cornelis et al. (2005), this relationship (Eq. 

2) generally, provides the best fit to experimentally obtained data. 

� � �� �
�����	
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       (2) 

where: |h| – �'��
��	� -�
�	� ��� �$	� �����
� ������� $	��� ���%�� F – actual soil water content 

(cm3 cm-3%��Fr – model parameter expressing the residual soil water content (cm3 cm-3%��Fs – 

model parameter expressing the saturated soil water content (cm3 cm-3%�� L� – shape factor 

��M��%����– shape factor (–).  

The typical graph of function exhibits an S-shaped curve. The four independent parameters Fr, 

Fs, L, and n are determined by fitting experimentally obtained points of moisture dependence 

on pressure head F(h). Among these four parameters, the saturated moisture content Fs is 

usually readily available as it can be easily measured and belongs to standard values determined 

in hydropedological laboratories. 

The parameter Fr, representing the residual moisture content, is defined as the moisture content 

at which the gradient (dF/dh) becomes zero (except in the saturation region where the gradient 

is also zero). From a practical perspective, the residual moisture content can be identified as 

the moisture content at high negative pressure head values, such as the wilting point 

(h = -15000 cm). In some cases, the residual moisture content is not directly measured. Instead, 

it can be estimated by fitting the measured retention points using the method of least squares 

with the help of computer programs like RETC (van Genuchten et al., 1991). Table 1 presents 

van Genuchten parameters for American soil texture classes as defined by USDA (1951). On 

the left side, it includes parameters used by the RETC parameterization program (van 

Genuchten et al., 1991) as initial parameter estimates before undergoing optimization. These 

data originate from the parameterization of 5350 soil horizons in the USA as conducted by 

Rawls et al. (1982). The right side of the table displays parameters employed by the Rosetta 

neural network (Schaap et al., 2001), which are derived from the American NRCS database. 
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Schaap et al., 2001). 

Texture 
RETC Rosetta 

�s �r � n �s �r � n 

Sand 0.43 0.045 0.145 2.680 0.375 0.053 0.035 3.180 

Loamy sand 0.410 0.057 0.124 2.280 0.39 0.049 0.035 1.747 

Sandy loam 0.41 0.065 0.075 1.890 0.387 0.039 0.027 1.448 

Loam 0.43 0.078 0.036 1.560 0.399 0.061 0.011 1.474 

Silt 0.46 0.034 0.016 1.370 0.489 0.05 0.007 1.677 

Silt loam 0.45 0.067 0.02 1.410 0.439 0.065 0.005 1.663 

Sandy clay loam 0.39 0.1 0.059 1.480 0.384 0.063 0.021 1.330 

Clay loam 0.41 0.095 0.019 1.310 0.442 0.079 0.016 1.415 

Silty clay loam 0.43 0.089 0.01 1.230 0.482 0.09 0.008 1.520 

Sandy clay 0.38 0.1 0.027 1.230 0.385 0.117 0.033 1.207 

Silty clay 0.36 0.07 0.005 1.090 0.481 0.111 0.016 1.321 

Clay 0.38 0.068 0.008 1.090 0.459 0.098 0.015 1.253 

The parameter L describes soil's largest connected pores. Higher L values mean less capillary 

rise above the water table. The fourth parameter n portrays pore size distribution. Higher n 

values indicate a narrow range found in coarse-grained soils, while lower n values imply a 

broader distribution, typical in fine-grained soils (API, 2006). Figure 3 visually illustrates how 

these parameters affect the equation (Eq. 2). 
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Figure 3. Influence of the parameters L and n on the shape of equation (Eq. 2) and their first 

derivatives representing pore size distribution (Scheinost et al., 1997). 

1.2.2. Soil Hydraulic Conductivity 

Hydraulic conductivity, denoted as K and measured in international system of units (SI units) 

of meters per second, is a property of porous materials, soils, and rocks. It defines the material's 

ability to allow the passage of fluids, typically water, through the pore space (Saravanan et al., 

2019). Soil hydraulic conductivity is a significant soil property that regulates the transport of 

water and solutes within soils (Poulsen et al., 1999). 

In soil physics, unsaturated soils, which have only partially filled pore volume with water, 

exhibit lower hydraulic conductivity than saturated soils. This is because only water-filled 

pores contribute to water flow (Koorevaar et al., 1983). The presence of both air-filled pores 

and capillary forces in unsaturated soil significantly influences water retention and hydraulic 

conductivity, making it more challenging to characterize water movement compared to 

saturated soil. Understanding unsaturated hydraulic conductivity (K(h)) is vital, as most plants 

thrive in unsaturated soil, relying on air for respiration and growth (Novák and HlaváGiková, 

2019). 

Ks characterizes the ease with which water moves through the pores of saturated soil or rock 

(United States Department of Agriculture, 2022). Particularly crucial during precipitation, 
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snowmelt, flooding, and irrigation events, Ks significantly influences water flow behavior, 

infiltration rate, runoff generation, and deep drainage, making it a pivotal soil property (Gamie 
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including soil texture, structure, and organic matter content (Jury and Horton, 2004). Various 

techniques estimate Ks, including infiltration tests, laboratory measurements (Klute 1986), and 

��	�����-	� ���	
��� $� 	-	�
� ��� ��� ���������� ��� ���	� �$	� ���-existence of any standardized 

reference method for Ks determination (Batkova et al., 2022). Nevertheless, these methods 

provide insights into Ks and aid in decision-making for water management. Incorporating 

temporal dynamics of soil hydraulic properties improves soil moisture predictions, enhancing 

water management strategies and supporting sustainable agriculture (Schwen 	�� �
�
� ������

.
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Ks stands as a fundamental and extensively utilized soil parameter, finding widespread 

applications across various geotechnical, environmental, and water investigations and models 

(Schaap et al., ������.��&������E$	55	$	�
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�
����)%���� 	-	�
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inherent high spatial and temporal variability, hydraulic conductivity tends to be an inadequate 

indicator of soil hydraulic response to management practices. This is because the natural 

variability often masks the effects of specific treatments, making it challenging to discern 

treatment-induced changes (Strudley et al., 2008). 

1.2.3.  Influence of Soil Organic Matter on Soil Hydraulic Properties 

Soil organic matter (SOM) significantly impacts soil hydraulic properties, improving water-

holding capacity and hydraulic conductivity (Hillel, 2003). SOM, along with clay minerals, 

modifies pore space changes with changing soil moisture (Fuentes et al., 2009), by augmenting 

water and nutrient retention, a cornerstone for robust plant growth (Power and Prasad, 1997). 

It enhances nutrient retention by increasing cation exchange capacity (CEC), vital for 

sustaining plant health (Hillel, 2003). 

Examining potassium permanganate oxidizable organic carbon (POXC) variations serves as an 

indicator of the labile carbon pool, encompassing a mixture of water-repellent and water-

attracting compounds formed during the initial decomposition of SOM. (Bongiorno et al., 

2019). Water-soluble organic carbon (Cws) is a part of Total Organic Carbon (TOC) that 

dissolves in water at room temperature. It includes substances like sugars, amino acids, and 

other organic compounds, which microbes can easily access, aiding soil fertility and nutrient 

cycling. Conversely, hot water-soluble organic carbon (Chws) contains a greater variety of 
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complex organic compounds (Uchida et al., 2012). These complex organic compounds include 

microbial biomass carbon, root exudates, amino acids, and carbon linked to soil enzymes (since 

many enzymes are denatured at high temperatures), which allows Chws analysis to cover 

significantly more carbon than Cws analysis can. 

Elevated POXC levels may reduce saturated hydraulic conductivity (Ks) due to bioclogging, 

as previous studies have indicated (Hallett et al., 1999). Soil bacteria form biofilms that cover 

pore walls with exopolymer glycocalyx, reducing water flow space (Peng et al., 2017). This 

biofilm formation may also change soil swelling properties and the dispersion of colloidal 

particles, possibly impacting Ks. The observed decline in Ks values from the study by Almaz 

et al., (2023a) aligns with results from the unsaturated hydraulic conductivity (K(h)) tests 

conducted in laboratory settings using non-hydrophobic loamy sand soils, both treated soils 

(with the non-ionic surfactant H2Flo, ICL-SF Inc.) and untreated soils. Similar outcomes have 

been highlighted in various studies over the past two decades, particularly in non-hydrophobic 
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� (2020) linked reduced hydraulic 

conductivity to slower vertical water and surfactant movement and increased lateral dispersion. 

While direct comparative scenarios between Ks and organic carbon fractions (OCFs) are scarce 

in the literature, Almaz et al. (2023a) suggested moderate to strong, yet divergent correlative 

links between OCFs and Ks. 

1.2.4. Agricultural Practices and Tillage 

Tillage stands as the most extensively studied management practice influencing soil hydraulic 

properties (Strudley et al., 2008). Gupta et al. (1991) provided an insightful review of models 

for predicting the impact of tillage on various soil properties, including dry BD, hydraulic and 

thermal conductivity, and water retention characteristics. Despite the passage of over decades, 

a significant portion of the methods outlined by Gupta et al. (1991) still necessitates rigorous 

laboratory and field-testing, underscoring their ongoing importance in the advancement of the 

field. 

Practical operations like repeated tillage (Blahovec and Kutílek, 2002), re-compaction, and 

harvest can have negative effects on soil physical properties. These actions, including shifts in 

aggregate stability, decreased SOM, changes in soil fauna activity, and effects on root growth 

and decay, often lead to unfavourable soil porosity conditions for crop growth (Pagliai et al., 
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in land utilization and tillage procedures, as they can significantly impact soil hydraulic 
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these intermittent processes, occurring throughout the year or across different seasons, can 
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1.3. Pedotransfer Functions for Estimating Soil Properties 

1.3.1. Definition and Purpose of PTFs  

Estimating soil properties from more easily measurable soil properties has been a historical 

challenge in soil science. Early in the twentieth century, Briggs and Lane (1907) and Veihmeyer 

and Hendrickson (1927), pioneered relating soil moisture characteristics to soil texture using 

regression. These equations became fundamental in soil classification and mapping efforts. 

Initially proposed by Bouma (1989), pedotransfer functions (PTFs) are empirical or statistical 

models that bridge the gap between the scarcity of direct soil property measurements by 

translating available soil data into the necessary information for assessing soil properties 

(Minasny et al., 1999). With the advancement of computing technology, PTFs have evolved, 

making it more feasible to use soil hydraulic properties to simulate the soil environment 

(Minasny, 2000). These functions have become indispensable tools in soil science research, 

with a particular focus on applications such as hydrological modeling, land management, and 

	�-�����	���
����
����������6����������	���
�
����2��@	�		�!	��	���
�
�������@������&�	���
�
�

2017). 

To ensure accurate estimations, the applicability of PTFs should ideally be assessed in contexts 
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these functions are most effective when applied to regions or soil types like the ones in which 

they were originally developed. This approach helps avoid potential biases and ensures the 
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����?%. Calibration and validation 

using field data from the target region are essential steps in evaluating the accuracy and 
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Adding to this perspective, Gerke et al. (2022) highlighted a critical factor - the potential 

limitations of machine learning (ML) models when trained on data from a specific geographical 

region.  
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1.3.2. Classifying and Using Pedotransfer Functions in Soil Properties Estimation 

Comprehending and effectively utilizing PTFs involves classifying them based on various 

criteria, offering insights into their nature and applicability. Two fundamental classifications 

are commonly employed: (i) based on the nature of predictors and (ii) based on the nature of 

the estimated data. 

Bouma (1989) categorized PTFs based on the nature of predictors into two main types: (a) 

class-PTFs, establish relationships between modelling parameters and classes of soil properties 

���
��	��������
����-	&���/����
��)")%�������'%������������6H:�
� $��$����
�5	�-����'
	�����$�

as clay, sand, or organic matter content as continuous inputs in multivariate regression or 

machine learning models to estimate water retention curve model parameters or soil water at 

specific matric potentials (Rubio et al., 2008). Class-PTFs are particularly suitable for 

predicting soil hydraulic characteristics at national and continental scales due to the typically 

les�� �	���
	�� ����� �-��
�'
	� ��� �$	�	� ���
	�� �AB��	�� 	�� �
�
� �))���.
� ��N��� 	�� �
�
� ���"%��

Continuous PTFs have evolved to cover a broader range of soil properties and functions 
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Within the classification based on the nature of the estimated data, continuous PTFs can be 

further categorized into (a) point-'��	�� ���� �'%� �����	����� 6H:�� �H����	

�� 	�� �
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Vereecken et al., 2010). Point-based PTFs are empirical equations that estimate soil moisture 

at predefined potentials, while parametric PTFs estimate parameters of a certain functional 

model, often the van Genuchten equation (Eq. 2), offering valuable insights into soil property 

estimation, facilitating large-scale assessments and decision-making processes. Parametric 

PTFs are advantageous for analyzing transport processes, offering continuous hydraulic 

property functions. They allow the integration of moisture measurements at different potentials 

during derivation, eliminating the need for specific potential measurements (Minasny et al., 
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By utilizing pedotransfer functions, soil properties can be estimated quickly and cost-

effectively, making them valuable tools for large-scale assessments and decision-making 

processes. However, it is essential to consider the limitations and applicability of each 

classification of PTFs to ensure their appropriate use in soil property estimation. 
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1.3.3. Optimizing Soil Property Estimation: Advanced Data Grouping and PTFs 

Prior to deriving PTFs, the database of measured soil hydraulic properties can be grouped into 

soils that are more similar. This approach offers the advantage of providing more stable and 

consistent correlations of hydraulic properties with other soil properties within soil groups that 

have similar flow processes. As a result, more accurate PTFs can be derived for individual 

groups rather than for the entire database (Bruand, 2004a). 

Studies by Franzmeier (1991) and Wösten et al. (1990) have shown that grouping soils based 

on genetic soil horizons and parent rock is more appropriate than grouping by texture classes. 

Additionally, Wösten et al. (1990) experimented with grouping soils based on the functional 

behaviour of different horizons, where similar simulated flow behaviour led to the grouping of 

different soil horizons.  

There are three main approaches considered for data grouping (Wösten et al., 2001): 

1. Grouping data and calculating the average hydraulic properties for each defined group: 

In this approach, no further pedotransfer functions are derived within the groups. The 

name or number of the group is used as a nominal illustrative variable, and the texture 

class based PTFs belong to this category. 

2. Grouping data and deriving PTFs separately for each defined group using different soil 

properties according to the groups. 

3. Deriving pedotransfer equations for the entire data set without dividing it into groups. 

For instance, Schillaci et al. (2021) emphasized the significance of data grouping in their study 

on predicting BD in Mediterranean agro-ecosystems. Notably, their Artificial Neural Network 

(ANN) PTF showcased superior performance compared to other approaches, highlighting the 

effectiveness of data grouping strategies for accurate property estimation. In a similar vein, 

Zhang et al. (2020) advocated for data grouping through their Hierarchical Ensemble Model, 

utilizing 13 PTFs to estimate global soil water retention. By leveraging ensemble modelling 

and grouping, they achieved more precise estimates of soil water retention, reducing 

uncertainty in predictive models. Furthermore, Ghanbarian and Yokeley (2021) proposed a 

novel approach for soil classification based on hydraulic conductivity data, underlining the 

practical applications and benefits of effective data grouping. Their classification methodology, 

relying on critical path analysis and hydraulic conductivity curves, showcased how similar 
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critical pore sizes at the same effective water saturation could lead to a cohesive soil 

classification. 

1.3.4. Advancements in PTFs for Estimating Soil Hydraulic Properties 

Researchers have primarily focused on developing PTFs for estimating soil hydraulic 

properties in various geographical areas and soil types, aiming to identify the most relevant and 

influential soil properties as input predictors (Nemes et al., 2002). Subsequent advancements 

led to more sophisticated approaches, such as describing the soil water retention curve (Brooks 
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modelling and environmental assessment. 

Addressing the unavailability of predictor data, researchers have modified PTFs to incorporate 
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Schaap et al. (1998) developed a system of hierarchical PTF rules (PTR) to predict available 

water for main soil series worldwide. This hierarchical approach enables PTFs to adapt to 

varying input data availability by starting with minimal required information, this method is 

highly significant, following the principle that “if measuring the predictor is simpler than 

measuring what's being predicted, there's no need for a prediction” ���/����	&�	���
�
�������

Minasny and Hartemink, 2011).  

A wide range of soil properties have been utilized as input predictors in PTFs. These include 

soil texture-'��	�� �������$	�� ���� �$	� �	��	����	�� ��� ����
� ��
�
� ���� �
�&� �/
�	�	�
� �)"���

*��'&�	���
�
��)"7��>� 
������/��!	���	!
��)"���(�+����	���
�
��)"4��*���'	

�����($��5� �
�

�))����	�	��	���
�
����?��6�

������	���
�
�����%��.��������

&
���&�/9
������������'��
�����

organic matter content have been commonly incorporated as predictor variables (Rawls et al., 
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have considered morphological properties, clay mineralogy, soil structure, moisture retention 

points and saturated hydraulic conductivity (Ks) are utilized as additional predictors, capturing 
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calcium carbonate (CaCO3) content and CEC have also been employed as predictor variables 

in PTFs (Rajkai and Varall&�&
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identified as a relevant predictor in certain PTFs, as it can significantly impact water retention 
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For a long time, soil structure has been identified as a critical yet overlooked factor affecting 
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PTFs often inadequately represent soil structure, as highlighted by Vereecken et al. (2019). The 

inadequate performance of PTFs in predicting saturated and near-saturated hydraulic 

conductivity can be attributed to the absence of predictors that effectively quantify pertinent 
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deficiency, leveraging data on soil aggregates obtained from field surveys emerged as an 

appealing solution (Pachepsky and Rawls, 2003).  

Particle size distribution (PSD) is one of the fundamental soil properties used as a predictor in 

PTFs. The physically empirical model introduced by Arya and Paris (1981) leverages the 

similarity between particle size and SWRC by converting PSD to pore size distribution. This 

approach proves to be particularly effective in estimating hydraulic properties in sandy and 
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underscored the importance of PSD in predicting soil properties highlighting the critical role 

of PSD (Abdelbaki, 2018��Amanabadi et al. 2019)  

Another important soil property used as a predictor is dry BD, which provides insights into soil 

compaction and pore space, influencing soil water retention and movement, given the 

increasing focus on evaluating ecosystem services, soil bulk density holds significant 

importance as a fundamental attribute for soil functions (Rabot et al., 2018). Notably, 

environmental processes and agricultural practices introduce significant spatial and temporal 

variations in soil bulk density, presenting a unique challenge in precisely characterizing this 

variability (Makovníková et al., 2017). Although dry BD is a crucial parameter, researchers 

frequently avoid its measurement, especially in large-scale projects where a substantial number 

of samples are needed (Kaur et a
�
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2018). Recent studies further affirm the significance of dry BD as a predictor (Makovníková et 

�
�
����2��������	���
�
�����%�� 

Enhancing PTFs to improve hydrophysical estimations involves considering various factors, 

including irrigation and tillage practices. These additional considerations lead to more precise 

estimations and support sustainable soil management practices. Irrigation practices 

significantly modify soil hydraulic properties (Mapa et al., 1986), impacting water movement 
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and availability (Kumar et al., 2022). Kumar et al. (2022) underscored the crucial role of site-

specific soil hydraulic properties in determining irrigation thresholds and optimizing practices. 

They optimized soil hydraulic properties based on topography, soil texture, and historical crop 

yield, emphasizing the need for zone-specific soil hydraulic properties to tailor efficient 

irrigation strategies, showcasing improved irrigation practices based on different soil depths 

and scenarios. Mapa et al. (1986) demonstrated how soil deformation due to wetting and drying 

cycles alters key hydraulic properties like conductivity and sorptivity, especially post-tillage. 

Conducted on soils, including Typic Torrox and Vertic Haplustoll, the study highlighted that 

hydraulic conductivity near saturation is highly sensitive to these temporal changes, decreasing 

significantly. Including relevant data on irrigation regimes and strategies in PTFs can 

significantly enhance estimations, particularly for irrigated agricultural lands, enabling a more 

accurate estimation of soil water retention and hydraulic conductivity in areas where irrigation 

is a prominent practice (Zhao et al., 2016). 

Over the last 30 years, numerous PTFs have been proposed and their estimation quality has 
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however, the estimation of unsaturated hydraulic conductivity has received less attention in 

PTFs due to a shortage of relevant data and difficulties in comparing results obtained with 
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Saturated hydraulic conductivity stands as a crucial soil property governing water infiltration, 

surface runoff, pesticide leaching from agricultural areas, and the movement of pollutants from 

contaminated sites to groundwater (Bagarello and Sgroi, 2007). A review by Zhang and Shaap 

(2019) provided an insight into the history of Ks predictions and discussed the required 

predictors and statistical techniques for the PTF development. For instance, Gupta et al. 

(2021a) demonstrated that relying solely on clay fraction as a predictor for soil hydraulic 

properties can result in an underestimation of Ks, potentially impacting water distribution 

across the land surface (Lehmann et al., 2021). Gupta et al. (2022) further emphasized the need 

for considering mineralogy alongside clay fraction, particularly in tropical regions, to enhance 

the accuracy of Ks predictions. Their methodology incorporated soil samples from diverse 

climates, spanning temperate to tropical regions, enhancing predictive accuracy across various 

biomes. However, a notable challenge remains the spatial distribution and coverage of available 

soil samples for model training are constrained, emphasizing the need for ongoing efforts in 

comprehensive data collection, particularly from underrepresented regions.  
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1.3.5. Methods to Derive Modern PTFs 

Developing accurate pedotransfer functions (PTFs) has seen a significant transformation over 

the years. Initially, PTFs were established through traditional regression techniques, where 

relationships between soil properties and predictors were expressed by equations (Bouma, 
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In the current focus, modern PTFs have evolved to incorporate advanced machine learning 

algorithms (Figure 4), offering improved accuracy and flexibility. These algorithms enable us 

to capture complex relationships between soil properties and predictors without the need for 

predefined models. Notably, the term "PTFs" is now used more broadly to encompass these 

newer approaches, even though they may not rely on traditional equations. This distinction 

underscores the shift from old classifications to a more diverse and adaptable set of methods. 

 

Figure 4. Example of the machine learning algorithms mind map (inspired by Kiadi and Tan, 

2018) 

Among the various machine learning algorithms, the following are commonly utilized in the 

development of modern PTFs: 

1.3.5.1. Regression Techniques 

Regression techniques are widely employed for establishing relationships between predictors 

and estimands due to their simplicity. Depending on the expected relationship among variables, 

linear regressions or nonlinear regressions can be utilized. In recent years, several studies have 

explored the use of regression methods to develop PTFs for specific soil properties (Kotlar et 

al., 2020). Multiple linear regression is commonly applied for point-based PTFs, while 
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1.3.5.2. Artificial Neural Networks 

Artificial Neural Networks are versatile computational models known for their ability to 

effectively capture intricate input-������� �	
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operate without predetermined model concepts and iteratively adjust parameters during 
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particularly adept at handling complex relationships and have consistently demonstrated 

superior performance in estimating soil properties compared to traditional regression-based 
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1.3.5.3. k-Nearest Neighbor 

The k-Nearest Neighbor method is a nonparametric approach, well-suited for estimating soil 
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et al., 2008). By identifying similar objects in memory and deriving estimates based on their 

likeness, k-NN does not rely on a priori model assumptions, making it valuable when little 

prior information is available. Researchers have utilized k-NN in various applications, 
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Nguyen et al., 2015b). It has been used successfully in predicting FC and WP with efficiency 

comparable to advanced neural computing technique����	�	��	���
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and the possibility of appending development datasets, making it an attractive alternative for 

PTF development (Patil e���
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1.3.5.4. Decision/Regression Trees 

Decision and Regression Trees offer the ability to partition datasets into homogeneous subsets, 

allowing for the development of independent PTFs tailored to each subset.  

Decision/regression trees allow the partitioning of datasets into homogeneous subsets, enabling 

the development of independent PTFs for each subset, which is especially useful when distinct 

dependencies exist within the data (Schaap, 2004). Recursive data partitioning algorithms, such 

as decision trees, are employed for this purpose, dividing the data into subsets to maximize 

homogeneity at each partitioning level (Breiman et al., 1984). Each partitioning can be viewed 
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as a branching of a tree (Wösten et al., 2001). These trees can be applied in the context of point-

based and parametric PTFs. Strobl et al. (2009) provide a comprehensive review of the key 

features of recursive partitioning methods. While decision trees are commonly used for 

continuous response variables, classification trees are more suitable for categorical-dependent 
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et al., 2009). Furthermore, recent progress includes using an ensemble of many regression trees 

in a procedure called boosting, which was used to identify qualitative/categorical soil properties 

that help improve the estimation of Ks (Lilly et al., 2008) and derive a PTF of BD for Ks (Jorda 

et al., 2015).  

1.3.5.5. Random Forest 

Random Forest, an ensemble of trees, extends the capabilities of a single regression tree 

(Breiman, 2001) by using multiple trees that consider random combinations of input variables. 

The resulting model is more ��'���� however, the method should be used with caution, 

especially when dealing with noisy data (Segal, 2004) or complex relationships among soil 

properties and predictors. As a result, Random Forest has gained popularity in recent years and 

has been successfully applied in various studies (Koestel and Jorda, 2017��HP�$�	���
�
����7��
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These machine learning algorithms represent a shift towards more flexible and adaptable PTFs, 

offering a new perspective on relating soil properties and predictors. They have gained 

popularity for their ability to improve the precision and dependability of soil property 

estimations. By incorporating these advanced techniques into the development of modern 

PTFs, researchers are better equipped to address the complexities of soil behaviour and enhance 

our understanding of this critical field. 

1.3.6. Functional Evaluation of Pedotransfer functions 

PTFs are essential in soil science for estimating soil properties, yet they come with inherent 

limitations and uncertainties. These uncertainties arise from various sources, such as 

measurement errors in input data, biases in model structure and coefficients (Minasny and 

McBratney, 2002), the appropriate selection of datasets and the comprehensiveness of input 
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users to account for uncertainties in their analyses. A good model (PTF) should be accurate and 

reliable: the term accuracy is related to the comparison between predicted and measured values 
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of the soil property of interest, and reliability is related to the evaluation of PTFs on measured 

values that are different from those that were used to develop the PTFs (Wösten et al., ������

Patil et al., 2010). 

The choice of development method significantly influences PTF accuracy. For instance, when 

estimating the van Genuchten parameters, Minasny et al. (1999) showed that multiple-linear 

regression resulted in lower accuracy. Furthermore, the PTF output (e.g., van Genuchten 

parameters), rather than the input, may be averaged. However, some soil hydraulic properties 

do not behave linearly over different scales, especially the (unsaturated) hydraulic conductivity 

or the van Genuchten shape parameters L and n, resulting in considerable uncertainties in water 
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factors, along with comprehensive evaluation and validation, is crucial for developing robust 

PTFs that yield reliable soil property predictions. 

Exercising caution is necessary when applying PTFs to new data, especially when extrapolating 

PTFs calibrated with data from different regions or databases. Reliable predictions require 

limiting extrapolation to similar predictor variable ranges or pedological domains with 

comparable variations in soil hydraulic properties (Nemes et al., 2003). Regarding this matter, 

Donatelli et al. (2004) and Schaap (2004) conducted comprehensive reviews of diverse 

methodologies used to evaluate and quantify the performance of PTFs in predicting soil water 

retention parameters and hydraulic conductivities. 

Contreras and Bonilla (2018) comprehensively evaluated 13 PTFs for predicting soil water 

content at -33 and -150�Q!6���:*�����A6%��	��-	��������������
����
������I�(�����
�����
	���

They used independent Chilean soil data for the evaluation and assessed PTF performance 

improvement after calibration. Results demonstrated the significant influence of soil types on 

PTF performance, with notable improvements after calibration. Specifically, Rawls et al. 

(2004) predicted water content before calibration, with an RMSE of 0.08 for -33 and -����Q!6�
�

Gupta and Larson (1979) showed the best performance after calibration (RMSE of 0.06 and 

0.05, and r2 values of 0.69 and 0.66 at -33 and -����Q!6�
��	��	���-	
&%�� 

Various statistical indices, such as root-mean-square errors (RMSEs), mean errors (MEs), index 

of agreement (d), mean absolute error (MAE), correlation coefficient (r), and coefficient of 

determination (r2), are used to evaluate, ����-�
����	�6H:���9����	

��	���
�
����7��(�$���
����7��

Almaz et al., 2023b).  
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RMSE provides insights into the model's predictive ability, and acceptable values may vary 

based on the number of data points used in model development and testing (Tomasella et al., 
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favoured indicator in evaluating PTFs, as it provides insights into the model's ability to predict 

away from the mean, emphasizing high values due to the squared differences between observed 

and predicted values.  

The ME compares the mean difference between predicted and observed data, revealing 

tendencies for overestimation (positive values) or underestimation (negative values) (Benites 
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2018). It is essential to emphasize that the ME represents an average estimation across (N) data 

points. Consequently, for best performing models, the value of ME should be close to zero 
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denoted by the  r and r2 coefficients, is greater when the coefficients signify a stronger 
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for a comprehensive evaluation and contextual understanding of PTFs to ensure accurate 

estimations. 

Overall, PTFs accuracy varies depending on the development method used, necessitating 

appropriate model selection to enhance precision and reliability. Thorough evaluation and 

validation, along with advancements in modelling techniques and data incorporation, 

contribute to robust PTFs for reliable soil property predictions. 

1.3.7. PTFs Look-up Tables, Models and Databases 

PTFs can take various forms, such as mathematical formulas, look-up tables, databases, or 

software integrations. Users often adapt PTFs to meet specific needs, estimating soil properties 

beyond the initial calibration. 

Look-up tables, like those by Baker (1978) and Bouma (1989), are simple and widely used, 

offering textural class-average hydraulic parameters (Cosby et al., 1984), the Rosetta model 

H1 (Schaap et al., 2001) is incorporated into variably saturated media simulation models like 

HYDRUS 1-D, 2-D, and 3-D. Cosby et al.'s (1984) look-up table has applications in land 

surface modelling, such as the Biosphere-Atmosphere Transfer Scheme by Dickinson et al. 
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soil hydraulic parameters. 
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Environmental and ecosystem management simulation models like DRAINMOD, HYDRUS, 

EPIC, SPAW, and WEPP ���
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HYPRESCZ (Mihalikova et al., 2013), significantly enhance property estimation precision, 

improving the reliability of environmental and ecosystem management models. NearriCZ 

(Duffková et al., 2020��Miháliková et al., 2020) aids in irrigation and crop yield management 

by providing estimations of critical agronomic hydrological thresholds, encompassing FC and 

WP. 

PTFs look-up tables, databases, and incorporated models, offer valuable insights into soil 

behaviour for decision-making in soil science and environmental studies. However, their 

limitations and variability must be considered for reliable application in different contexts. 

1.4. Assessing PTF Transferability and Integration in Environmental 

Models  

PTFs have been a cornerstone in soil science, serving not just as an end but as indispensable 

tools for predicting important soil properties such as available water capacity and 

hydrophysical properties (Walczak et al., 2004). While accuracy is undoubtedly important in 

PTFs, their functionality and relevance in practical applications are of equal significance. 

These models, while emphasizing accuracy, also find utility in diverse practical applications, 

particularly within global environmental and ecosystem management models. Discrepancies 

between PTF-calculated and measured properties often minimally impact model outcomes, 

underlining the importance of a functional evaluation approach (Vereecken et al., 1992). 

The integration of PTFs into environmental and ecosystem management models has enhanced 

our understanding of water availability, land management practices, and ecosystem services 

(Vereecken 	���
�
������������������$���&
�����%��;��$����$	��
��$��������
-related factors and 

their roles in ecosystem functioning. For instance, PTFs have been used to estimate soil 

properties, such as water retention and hydraulic conductivity, allowing researchers to discern 

the impact of soil conditions on nutrient cycling, plant growth, and ecosystem health 

(Štekauerová and Šútor, 2004). These insights contribute significantly to decision-making 

processes concerning sustainable land management, water resource management, and 

ecosystem conservation. Recognizing the critical role of accuracy and reliability in PTFs, an 

evaluation framework proposed by Wösten et al. (2001) employs PTFs as input for Earth 

system models, ensuring a holistic assessment of the entire system's performance. This 
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1997). 

The adaptability of PTFs across regions and soils has also received attention. Tomasella and 

Hodnett (2004) addressed unique characteristics of tropical soils using extensive datasets (771 

horizons from 249 soil profiles across 22 countries). They developed a novel approach for 

predicting individual water retention points, demonstrating that tropical soils with low bulk 

density should be considered separately in PTFs. There is evidence to suggest the potential use 

of PTFs outside their original geographical development locations, provided soil type and 

climate comparability (Wösten et al., 2013). Wösten et al. (2013) explicitly investigated the 

application of PTFs developed for South American soil types to predict measured data in the 

Limpopo catchment of South Africa. Similarly, Fuentes-Guevara et al. (2022) explored the 

suitability of translocated PTFs, analyzing input-input and input-output correlations in 

databases from the development of four PTFs and comparing them with data from their 

application catchment. They concluded that data correlation similarities, rather than factors like 

climate, source area, database size, or spatial extent, best explained PTF performance. Further 

research is needed to validate this transfer learning approach used in soil mapping (Malone et 

al., 2016) or rely on meta-models (Grunwald et al., 2016). This might allow us to understand 

under which system conditions PTFs are expected to be similar beyond the limit of local 

specificity. 

PTFs are central to advancing soil science and environmental management, especially when 

direct measurements are challenging at larger scales.  Ensuring their precision, dependability, 

and suitability necessitates a thorough functional evaluation. Moreover, the development and 

adaptation of PTFs should account for regional variations to support robust predictions and 

informed decision-making in diverse contexts. Calibration and validation using field data from 

the target region remain essential steps to ensure the accuracy and applicability of PTFs. 

1.5. Soil Hydraulic Properties Estimates in the Czech Republic 

Over the years, substantial progress has been made in the development and application of PTFs 
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al., 2023).  
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Matula and Špongrová (2007) found that the continuous PTFs derived from Wösten's model 

showed promising results for certain localities, such as Cerhovice and UerniGí, with an 

acceptably good fit. However, the estimations for other sites, like Brozany, Ovesná Lhota, 

Tupadly, Džbánov, Podlesí, and Žichlínek, were less successful due to insufficient input data. 

Additionally, the authors developed their own pedotransfer functions for sites with adequate 

data, leading to improved SWRC estimates. In a separate study, Matula et al. (2007) applied 

Wösten's continuous PTFs to data from Tišice in the Czech Republic. Two types of fitting (4-

parameters and 3-parameters) were tested to optimize the parameters of the van Genuchten’s 

equation. Their study showed that continuous PTFs may not be fully suitable for estimating 

SWRCs in the locality Tišice. However, when the parameters were calculated specifically for 

each site, the estimates showed better agreement with the measured retention curves. 

The creation of the HYPRESCZ database of soil hydrophysical properties in the Czech 

Republic facilitated the derivation of PTFs for estimating SWRCs (Mihalikova et al., 2013). 

By employing Wösten's model, the newly derived regression coefficients for the PTFs showed 

higher reliability compared to the original PTFs, especially for Czech soils. Furthermore, 

Mihalikova et al. (2014) used the HYPRESCZ database to estimate FC and WP of agricultural 

land resources on a countrywide scale. They developed class PTFs to estimate FC and WP and 

combined the results with the Soil Texture Map of the Czech Republic to create new maps of 

FC and WP for topsoil and subsoil separately. 

In another study, VlGek and Hybler (2015) evaluated and compared various pedotransfer 

functions, both domestic and foreign, for the basic use in agriculture in the Czech Republic. 

Among the tested PTFs, the ones according to Tomasella and Hodnett (1998) and Batjes (1996) 

showed the best correlation for field water capacity and wilting point estimation. 

Batkova et al. (2022) demonstrated the applicability of recently published PTFs based on a 

machine learning approach for indirectly determining Ks in the Czech Republic. They 

compared the performance of these novel PTFs with well-known hierarchical PTFs for 126 soil 

datasets. The results showed high variability in Ks between and within study areas, especially 

where preferential flow occurred. In most cases, the tested PTFs overestimated Ks values, 

particularly for medium to fine-textured soils. Notably, Neural Network analysis PTFs in 

Rosetta produced the best estimates, showcasing their potential for accurate Ks predictions. In 

their follow-up study, Bá�ková et al. (2023) explored the functional evaluation of three publicly 

available types of PTFs for predicting the Ks. They applied ten PTF models to 56 datasets, 
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including measured Ks values and various predictors. The results revealed substantial 

variability in Ks within the study field. While the tested PTF models were based on robust soil 

databases, they showed limited accuracy unless local soil data were incorporated into the PTF 

development. 

The utilization of pedotransfer functions has proven to be a valuable approach for estimating 

soil hydraulic properties in the Czech Republic, especially when direct measurement data is 

limited. The continuous development and refinement of these functions hold significant 

potential for improving the accuracy and efficiency of estimating soil hydrophysical properties, 

benefiting various agricultural, environmental, and engineering applications. 
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2. Hypotheses and Objectives  

Hypotheses of the thesis are: 

Surfactant applications are anticipated to induce significant alterations in various soil 

properties, encompassing hydraulic conductivity and nutrient distribution. Additionally, it is 

expected that those applications will influence the soil's nitrification processes, consequently 

resulting in observable changes in levels of NH4
+-N and NO3

--N, impacting the degradation of 

soil organic matter, potentially instigating discernible shifts within organic carbon fractions. 

The utilization of appropriate PTFs to estimate soil hydraulic properties (e.g., field capacity 

and saturated hydraulic conductivity) can significantly reduce errors and enhance accuracy of 

the estimated values.  

PTFs are adaptable across regions, and their effectiveness in improving decision-making 

processes in land and water resource management is not limited to specific geographical areas. 

The consideration of regional variations in soil characteristics when developing and applying 

PTFs results in more accurate estimations.  

The objectives of the thesis are: 

1. Analyse the impact of repeated H2Flo applications on soil properties, including water 

content, hydraulic conductivity, nutrient distribution, organic carbon fractions, and soil 

nitrification rates, with a focus on NH4
+-N and NO3

--N ratios and levels.  

2. Investigate shifts in byproducts of organic matter degradation under varying moisture, 

temperature, and matric potential conditions by investigating different organic carbon 

fractions (e.g., water-soluble organic carbon, hot water-soluble organic carbon, 

potassium permanganate oxidizable organic carbon, total organic carbon), 

3. Introduce a novel approach to estimate field capacity (FC) by utilizing moisture 

constants (Retention Water Capacity and Maximum Capillary Water Capacity) and 

appropriate statistical models, 

4. Indirectly determine saturated hydraulic conductivity (Ks) and test the applicability of 

recently published PTFs based on a machine learning approach, comparing their 

performance with well-known hierarchical PTFs. 
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Commercial wetting agents, typically based on alkyl 

block polymer (ABP) or polyoxyalkylene polymer 

(PoAP) surfactants, enhance re-wettability and in-

filtration rates in water-repellent sandy soils (Cisar 

et al. 2000; Dekker et al. 2005; Oostindie et al. 2008) 

and augment soil hydration in urban lawns (Dekker 

et al. 2019). Surfactants, comprised of polar and 

nonpolar parts, are attracted to the hydrophobic 

surfaces of soil particles, leading to alterations in both 

the rate of water infiltration and water distribu-

tion within the soil profile (Mobbs et al. 2012). The 

performance and sustainability of these products 

can vary significantly, particularly concerning the 

balance between soil water holding and infiltration 

abilities (Song et al. 2014), necessitating individual 

product examinations.

Recently, there has been a noticeable shift in the 

scientific focus of surfactant research. This change 
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is driven by new findings on surfactant-sourced 

hydrophobicity (Song et al. 2019) and a rise in both 

dissolved organic carbon (DOC) and particulate or-

ganic carbon (POC) in soil leachates after treatment 

(Song et al. 2018, 2021). Specifically, PoAP-based 

surfactants have been observed to create hydro-

phobic layers on sand after multiple applications, 

transforming even naturally adsorbent sands to resist 

water. The observed rise in POC in the leachates 

from these treated soils is believed to indicate sur-

factants displacing the native organic layers on sand 

particles. Interestingly, ABP-based products did not 

induce such a change in either inherently hydro-

phobic or adsorbent soils in the referenced studies. 

Yet, a separate study highlighted that ABP-based 

surfactants diminished microbial activity by ef-

fectively stripping organic coatings from the sand 

grains (Song et al. 2019). In alignment with this, 

a comprehensive study by Kintl et al. (2022) delved 

into the impact of various wetting agents on water 

stable aggregates (WSA). They found a significant 

decrease in WSA, linked to a reduction in soil or-

ganic carbon (SOC).

In addition to the limited understanding of how 

wetting agents impact soil organic carbon storage, 

there is also a noticeable lack of studies address-

ing the dynamics of nutrient availability. A study 

by Chang et al. (2020) evaluated the effects of sur-

factant applications on lawns planted with St. Augus-

tine grass (Stenotaphrum secundatum). Predictably, 

there was an enhancement in soil moisture and 

the quality of the turfgrass. However, the levels 

of ammonium nitrogen (NH4
+-N), nitrate nitrogen 

(NO3
–-N), extractable phosphorus (P), DOC, and 

total organic carbon (TOC) in the soil leachates 

remained unchanged. On the plant side, Chaichi 

et al. (2017) observed enhanced nutrient absorption 

in tomato plants when treated with a surfactant. 

In a study by Banks et al. (2015), three commercial 

surfactants (Activator 90, Agri-Dex, Thrust) were 

examined. The research showed that the plant 

potassium (K) uptake was reduced in clay loam 

soils when treated with Thrust. Conversely, in soils 

treated with Activator 90 and Agri-Dex, there was 

a significant decrease in the uptake of several macro- 

and micro-nutrients.

Despite the poorly understood dynamics of nutri-

ent fixation and release in surfactant-treated soils, 

the application of surfactants aided in the elimina-

tion of specific organic contaminants like polycyclic 

aromatic hydrocarbons (PAH), enhancing their de-

sorption and fostering their degradation, as noted 

by Yang et al. (2017) and Li et al. (2019).

H2Flo (ICL-SF Inc., Israel) is a commercial non-

ionic PoAP-based soil surfactant. The manufacturer 

notes that the product contains a minor organic ele-

ment presented as ‘root activator’ molecules. This 

study aims to (i) uncover the changes in saturated (Ks) 

and unsaturated (K(h)) hydraulic conductivity of non-

hydrophobic loamy sand soils under subsurface drip 

irrigation while (ii) exploring the induced alterations 

in nutrient distribution and chemically distinguished 

organic carbon fractions (OCFs) following applica-

tions of the wetting agent H2Flo; (iii) magnesium 

(Mg), calcium (Ca), and extractable phosphorus (P) 

were examined due to their agronomic significance 

and their possible modified distribution under sur-

factant applications; (iv) to understand potential shifts 

in soil nitrification rates due to expectedly altered 

soil and water interactions, the ratios and levels 

of NH4
+-N and NO3

–-N were assessed; (v) to further 

comprehend the shifts in byproducts of organic matter 

degradation under different conditions of moisture, 

temperature, and matric potential, we examined the 

content and distribution of hot water-soluble organic 

carbon (Chws), water-soluble organic carbon (Cws), 

potassium permanganate oxidizable organic carbon 

(POXC), and TOC.

In our study at a specific loamy sand soil local-

ity, we investigate the application of the wetting 

agent H2Flo, even to naturally non-hydrophobic 

soils. Loamy sand soil, despite being naturally non-

repellent, can benefit from enhanced water residence 

time in the root zone, especially in regions where 

this soil type prevails. This approach aligns with our 

study’s objectives, which aim to assess whether OCFs 

would be influenced in terms of their mobility with 

modified Ks and K(h) of the soils, as has been previ-

ously reported for physically distinguished carbon 

fractions such as particulate organic carbon or dis-

solved organic carbon by other studies. Through these 

monitoring efforts, informed decisions can be made 

about wetting agent applications and other manage-

ment practices. This could lead to more efficient 

nutrient use, increased crop productivity, reduced 

environmental impacts, and improved soil health and 

resilience. The present research is anticipated to of-

fer substantial insights into the interplay of water/

nutrient adsorption by soil mineral particles when 

exposed to wetting agent treatments. Additionally, 

it explores their connections with OCFs, standing 

out as one of the comprehensive field studies.
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MATERIAL AND METHODS

Description of the study area and soil sampling. 

The research field is situated in the Benátky nad 

Jizerou district, Central Bohemian Region, Czech 

Republic, and features loamy sand soils consisting 

on average from 81.2% of sand, 13.3% of silt and 

5.5% of clay. Positioned at an altitude of 220 m with 

WGS84 coordinates 50.2782878N, 14.8392344E, the 

region has a temperate climate marked by gentle, dry 

winters. The area registers a long-term average tem-

perature of 8.4 °C and an annual rainfall of 560 mm. 

This site is nestled in the alluvial plains of the Jizera 

River, notable for its varied soil compositions, pre-

dominantly sandy in nature. 

Potatoes were sowed on 1 April 2019, with drip 

irrigation starting on 1 May 2019. Organic fertilizer 

was applied in spring at a rate of 10 t/ha. Before the 

planting on 1 April and subsequently on 28 April, 

just before the canopy took shape, NPK fertilizer was 

used, amounting to 180 kg N/ha in total. The wetting 

agent, H2Flo, was dispensed three times through 

subsurface driplines: on 3 May, 5 June, and early July, 

with each application consisting of 5 L mixed into 

1 000 L of water. From 11 June onward, fungicides 

and insecticides were used, with subsequent appli-

cations every 7–10 days. Before H2Flo applications 

and after the second application of H2Flo, disturbed 

soil samples were collected from two depth ranges, 

0–15 and 15–30 cm. A detailed depiction of the 

study area location and sampling scheme is provided 

in Figure 1A, while a schematic representation of the 

sensor placement is provided in Figure 1B.

Soil analyses. Ks was determined using undis-

turbed core rings (250 cm3) employing a KSAT device 

(Meter Group Inc., USA), falling head technique. 

These samples were collected after the initial two 

applications of H2Flo. The soil had no consider-

able structure. Four core rings were tested three 

times each for the control and H2Flo treated soils. 

For statistical assessment, the obtained Ks values 

(measured in cm/day at 20 °C) underwent a loga-

rithmic transformation. The naturally wet disturbed 

samples were carefully mixed and sieved (8 mm) 

to remove any larger objects, such as stones, roots, 

and earthworms. The cleaned soil samples were 

then repacked into containers with a 5 L volume, 

maintaining a dry bulk density value of 1.44–1.49 g 

per cm3 and an initial soil water content of 0.055 g/g. 

Subsequently, the Mini Disk Infiltrometer (Meter 

Group Inc., USA) was employed to determine K(h) 

in these artificially packed soil columns. Repacked 

soil columns on structureless soil were preferred due 

to the difficulty of using the infiltrometer in a potato 

field. Two pressure heads, namely –2 and –5 cm, 

were consecutively applied during each measure-

ment. The disturbed soil samples were taken after 

the second application of H2Flo.

Figure 1. Study area location and sampling scheme (A) and schematic representation of the sensor installation (B)

(A) (B)

Plot A: Control Plot B: H2Flo

Sensors' placement Sampling point
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The TOC content was determined using the method 

developed by Nelson and Sommers (1996) based 

on rapid dichromate oxidation. The electrical con-

ductivity (EC) and pH of the soils were determined 

in a 1 : 2.5 dH2O solution (Rayment & Higgenson 

1992). Extractable concentrations of Ca, K, Mg, and 

P were ascertained using the Mehlich III solution 

method (Mehlich 1984). Concentrations of NH4
+-N 

and NO3
–-N were gauged post 0.01 mol/L CaCl2 

extraction, as prescribed by ISO 14255:1998. The 

Cws and Chws levels were identified using a modified 

Körschens method (Körschens 1980). The POXC 

measurement followed the method detailed by Weil 

et al. (2003), which relies on the discernible colouri-

metric variation at a 540 nm wavelength in 0.2 M 

KMnO4 soil extracts. Changes in POXC were inves-

tigated since it is viewed as a gauge for the readily 

decomposable carbon reservoir, comprising a mix 

of both water-repellent and water-attracting com-

pounds, which arise from the preliminary breakdown 

of soil organic matter (SOM) (Bongiorno et al. 2019). 

This indicator of labile carbon pool may highlight 

the altered degradation dynamics after surfactant 

applications. Cws refers to the fraction of TOC that 

can dissolve in water at room temperature. These 

could include simple sugars, amino acids, and certain 

other organic compounds, which are often readily 

available for microbial activity and can contribute 

significantly to soil fertility and nutrient cycling. 

Conversely, Chws contains a greater variety of com-

plex organic compounds (Uchida et al. 2012). These 

include microbial biomass carbon, root exudates, 

amino acids, and carbon linked to soil enzymes (since 

many enzymes are denatured at high temperatures), 

which allows Chws analysis to cover significantly 

more carbon than Cws analysis can. The relevant 

soil analyses were carried out with three replicates 

revealing the properties of four sampling points 

per treatment.

The non-hydrophobic nature of the experimental 

soil was determined using the standard soil survey 

test method for water-repellency (Roberts & Carbon 

1971; King 1981). Deionized water was dropped onto 

the surface of both control and treated soils and was 

observed to be absorbed in under 1 second.

Monitoring the soil water content. The sensors 

5TE by METER Group Inc. (USA/Germany) which 

uses capacitance and thermistor technology to moni-

tor soil’s volumetric water content (VWC), bulk EC, 

and temperature, were used to monitor the relevant 

parameters. It provides high precision with ±3% 

VWC accuracy in typical soils and a temperature 

accuracy of ±1 °C. 

The MPS-6 matric potential sensors, from the 

same manufacturer, were used to monitor the soil 

water potential. It operates well in drier systems 

where tensiometer cavitation would be a problem. 

The MPS-6 covers a range from –10 to –10 000 kPa.

The EM50 data loggers, also by METER Group 

Inc., were used to collect data from sensors. This 

five-channel device reads sensors with analogue 

or digital outputs and is designed for long-term, 

low-power usage. The monitoring period for data col-

lection using these loggers extended from April 16th 

to August 15th, 2019. Sensor positions throughout 

the soil profile are shown in Figure 1B.

Statistical analyses. Statistical evaluations and 

visualizations were conducted using STATISTICA 

software (Ver. 13, Statsoft, USA). The normality of the 

data were checked before variance analysis, per each 

parameter for the same soil depth and treatment 

by Shapiro-Wilk test (P < 0.05). Differences between 

treatments and soil depths were assessed using t-test 

based on groups of control and H2Flo treated soils 

or soils of 0–15 and 15–30 cm. Pearson’s correlation 

coefficient were used to explain linear relationships 

between parameters. 

Given the nature of saturated hydraulic conduc-

tivity data for soils, it is common to observe a wide 

range of values with an erratic distribution, which 

commonly directs researchers to log-transform of the 

data as in the current study. In that context, Ks results 

were evaluated with both t-test and the F-test and 

non-parametric Kruskal-Wallis test.

RESULTS AND DISCUSSION

Distribution of soil water content in the root 

zone. Repeated applications of the H2Flo provided 

more uniform distribution of soil VWC in the root 

zone compared to the control soils as observed by 5TE 

sensor measurements during the monitoring period 

(Figure 2A, B). Irrigation events are noticeable till 

the first half of July, when the rainy period occurred 

and at the end of July the irrigation was terminated. 

The water content values were in accordance with 

the observed matric potential differences by MPS-6 

sensors (Figure 2C). The influence on soil VWC was 

more pronounced at 30 and 50 cm depths, along 

with the 15 cm depth after the second application 

of H2Flo in June. These findings are consistent with 

the well-defined improvements that can be provided 
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by wetting agent applications in non-hydrophobic 

soils. Wetting agents, known for their strong affinity 

for soil surfaces, are adsorbed onto even non-hydro-

phobic soil particles. Concurrently, this process can 

enhance water penetration into the soil, regulating 

the redistribution of water within the soil profile. The 

application of these agents is well documented for 

the management of water repellency in thatch and 

surface layers in sandy soils and for the enhancement 

of soil hydration (Oostindie et al. 2008; Dekker et al. 

2019). Recently, wetting agents have been widely 

used to homogenize water distribution at the root 

zone, too (Ou & Latin 2018). In accordance, signifi-

cant increases in soil water contents after treatment 

with surfactants have been documented by many 

researchers (Oostindie et al. 2005; Moore et al. 2010). 

Figure 2. Visualization of the impact of  non-ionic soil surfactant H2Flo treatment on soil volumetric water content 

(VWC) and matric potential: comparison of VWC between untreated control soils and H2Flo treated soils (A); variation 

in soil water content at different depths for both the control and H2Flo treated soils (B); difference in matric potential 

values between control and H2Flo treated soils (C)
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Figure S1 in Electronic Supplementary Material 

(ESM) presents the lower temperature through the 

profile of treated soils, as a result of increased VWC 

values, particularly after the second application of the 

product, as demonstrated in Figure 2A. 

Physicochemical characteristics of the soil. 

The differences in pH, electrical conductivity, and 

TOC in soil profile were evaluated by ANOVA 

before the application of H2Flo to eliminate any 

potential misunderstanding about possible spatial 

natural variability. The only significant difference 

was observed in the electrical conductivity of the 

soils, which did not affect the salinity interpreta-

tion class (Table 1). 

Soil reaction was significantly influenced by the 

surfactant treatment at both soil depths, resulting 

in  slightly elevated pH values. Boomgaard et al. 

(1987) provided an explanation on the adsorption 

of non-ionic surfactants. Surfactants are amphiphi-

lic molecules, meaning they have both hydrophilic 

(water-attracting) and lipophilic (fat-attracting) parts. 

The primary mechanism for adsorption when the 

surfactant concentration is low involves hydrogen 

bonding. This occurs between the non-ionic surfactant 

chain and the hydroxyl groups located on the mineral 

surface. As a result of this hydrogen bonding, non-

ionic surfactants adsorb in the form of individual units 

or monomers, leading to a reduced concentration 

of hydrogen ions and an increase in soil pH. 

The difference in electrical conductivity between 

the soil depths was lower in the treated soils com-

pared to the control soils. This may be connected 

with a more even distribution of the soluble salts 

throughout the soil profile as a result of observed 

changes in VWC throughout the soil profile. The un-

treated soils exhibited significantly higher EC values 

at 0–15 cm depth. Contrary to the untreated soils, 

TOC values were in a similar range for both soil 

depths in the treated soils, resulting in significantly 

higher TOC content in the subsoil.

Given the coarse texture of the experimental soils 

and the region’s typical highly acidic pH values, nutri-

ent availability dynamics are of utmost importance 

in our study.

Extractable macronutrients. In the H2Flo treated 

topsoils, concentrations of extractable Ca, K, and 

Mg were markedly elevated (as shown in Figure 3). 

While Ca and Mg concentrations also increased in the 

treated soils between 15–30 cm depth, K concentra-

tions did not exhibit significant differences at this 

depth. Notably, the only discernible variation in nu-

trient concentrations across depths in control soils 

Table 1. Statistical evaluation of soil physicochemical properties based on treatments

Before application of H2Flo After 2nd application of H2Flo

Depth (cm) 0–15 15–30 0–15 15–30

Treatment H2Flo control H2Flo control H2Flo control H2Flo control

pH 5.0875 5.2225 5.3325 5.4975 5.215** 4.6675 5.3875* 5.045

EC (µS/cm) 266.25* 149.4 224** 80.525 384.75 492.75* 266.5 301.5

TOC (g/kg) 5.9 7.7 5.9 7.1 10 10 9.6 8.1

SOMa (%) 1.02 1.33 1.02 1.23 1.73 1.73 1.66 1.4

H2Flo – non-ionic soil surfactant treated soil; EC – electrical conductivity; TOC – total organic carbon; SOM – soil organic 

matter; aVan Bemmelen transformation of TOC with the factor of 1.724; t-test applied for the soils of the same depth and the 

same treatment; *,**P < 0.05, 0.01

Figure 3. Alterations in extractable Ca, K and Mg levels 

relative to treatment and soil depth

L – left y-axis; R – right y-axis; H2Flo – non-ionic soil sur-

factant treated soil; statistically significant differences between 

treatments at the same sampling depth are denoted by capital 

letters, while differences between sampling depths are indi-

cated (P < 0.05) 

      Control                   H2Flo                      Control                  H2Flo

                   0–15   (cm)                                              15–30   (cm)

Ca (mg/kg) (L)
K (mg/kg) (R)
Mg (mg/kg) (R)
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pertained to K content, which manifested substan-

tially higher concentrations at 15–30 cm (P < 0.05) 

relative to the topsoil.

In a recent specialized investigation (Ogunmokun & 

Wallach 2021), varying doses of a non-ionic surfactant 

blend (Aquatrols) were administered to grapefruit 

crops in sandy loam soils supplemented with treated 

wastewater. As anticipated, both soil moisture levels 

and the degree of saturation increased. Interestingly, 

the study reported that the surfactant treatments led 

to significantly diminished levels of extractable K 

and exchangeable Ca + Mg at soil depths of 0–20 and 

20–40 cm. These reductions were corroborated by the 

observed decrease in soil electrical conductivity. It is 

noteworthy that higher crop yields were observed 

in the treated soils compared to the untreated soils, 

possibly indicating enhanced nutrient uptake by the 

plants. This contrasting outcome aligns with the 

observations of Banks et al. (2015), emphasizing 

the product-specific ramifications of wetting agents 

on the availability of soil nutrients.

The rise in the concentrations of extractable nutri-

ents in the current study might be linked to the shift 

in pH towards a more neutral soil reaction. Notably, 

the treated soils exhibited a significant rise in pH 

at both depth intervals, potentially enhancing nutrient 

availability. Given that EC values were found to decline 

post-treatment, the elevated pH could be a contributing 

factor to the noted increase in nutrient concentrations.

Nitrogen sources and extractable phosphorus. 

Following H2Flo applications, a significant reduction 

in NH4
+-N was observed at both soil depths, while 

NO3
–-N showed a proportionate ascent, as depicted 

in Figure 4. This points towards an environment 

favourable for nitrification. Consequently, the most 

pronounced distinction between treatments mani-

fested in the comparative ratios of these forms of N, 

with a P-value of 0.057 in the t-test . Chang et al.’s 

(2020) findings concerning N sources aligned with 

the subtle significance of our observations. Contrast-

ingly, Ogunmokun and Wallach (2021) documented 

a decline in total N across both depths.

Figure 4. Variations in nitrogen sources, nitrogen source ratios, and extractable P in relation to treatment and sampling depth

H2Flo – non-ionic soil surfactant treated soil; statistically significant differences between sampling depths are indicated using 

lowercase letters within the corresponding columns (P < 0.05)
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In one of the exceptional studies regarding the in-

fluence of non-ionic surfactants on the NH4
+-N and 

NO3
–-N content of potato-grown sandy loam soils, 

Arriaga et al. (2009) reported decreased content 

for both of these nutrients. A significant reduction 

(30.1%) was observed in soil NO3
–-N concentration 

20 days after the final N fertilization when a sur-

factant was applied, regardless of the N application 

rates. There was also a trend towards a decrease 

in soil NH4
+-N following the surfactant application, 

though this reduction was less pronounced (19.7%, 

with a P-value of 0.12).

No significant differences were observed between 

treatments or depths regarding extractable P con-

centrations, although they were marginally reduced 

in the treated soils, as illustrated in Figure 4. These ob-

servations align with those reported by Ogunmokun 

and Wallach (2021) and Chang et al. (2020). It should 

be emphasized that study of Chang et al. (2020) was 

confined solely to topsoil examination. Figure S2

in ESM provides insight into the enhanced vegeta-

tive growth via crop coverage, enhanced vegetation 

index (EVI) and normalized difference vegetation 

index (NDVI) of treated and control soils.

Organic carbon fractions. Repeated applications 

of H2Flo led to a significant increase in POXC content 

of topsoils, while the Chws and Cws contents of both 

top and subsoils remained unchanged (Figure 5). 

The POXC and Chws, being initial products of SOM 

degradation, have been identified to have strong 

associations with the WSA, water holding capacity, 

and bulk density of soils, as described by Bongiorno 

et al. (2019). Additionally, these components cor-

relate with extractable forms of N, P, and sulfur (S) 

as highlighted by Verma et al. (2010). Blair et al. 

(2006) further noted that K(h) and the average weight 

diameter of aggregates were linked to POXC changes 

through inverse and direct relationships, respectively. 

The concurrent rise of POXC at both soil depths 

suggests that the change could primarily stem from 

distinctly altered degradation conditions—heightened 

moisture, reduced temperature, and matric potential. 

The H2Flo treatment’s organic input, derived from 

the product’s organic root activator molecules, might 

play a minor role. Regrettably, specifics regarding the 

quantity or character of these organic compounds 

remain elusive. When factoring in the treatment 

dosage of 5 L of H2Flo per hectare, it is clear that 

the H2Flo’s cumulative contribution cannot solely 

account for the observed elevation. Additionally, 

a marked rise in TOC content in the treated subsoils 

(Table 1) possibly underscores that the POXC frac-

tion might have had a dominant influence on the 

witnessed growth. This could be attributed to the 

induced degradation conditions and a more uniform 

distribution of nutrients and water.

In the control soils, there was a pronounced negative 

association between POXC and NH4
+-N (r = –0.983, 

P = 0.017). Conversely, in the treated soils at depths 

between 15–30 cm, POXC displayed a marked positive 

relationship with the NO3
–-N/NH4

+-N ratio (r = 0.993, 

P = 0.007). The induced decomposition of SOM after 

repeated application of wetting agents is a phenom-

enon that has been particularly noted in previous 

remediation studies on polycyclic aromatic hydro-

carbons such as phenanthrene (Yu et al. 2007) and 

Figure 5. Variations in organic carbon fractions 

in relation to treatment and sampling depth

H2Flo – non-ionic soil surfactant treated soil; 

C – water-soluble organic carbon; Chws – hot 

water-soluble organic carbon; POXC – potas-

sium permanganate oxidizable organic carbon; 

statistically significant differences between treat-

ments at the same sampling depth are denoted 

by capital letters (P < 0.05)
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tributyltin (Mathurasa et al. 2012). Later, Banks et al. 

(2014) revealed increased microbial activity after 

non-ionic surfactant applications, with minimal 

differentiation in microbial community members.

In the H2Flo treated soils, there was a distinct positive 

association between Chws concentrations and Mg levels 

(r = 0.773, P = 0.025). Such relationships between OCF 

and extractable cations were absent in the control soils. 

Chws contains various functional groups (like carboxyl 

and phenolic groups) (Uchida et al. 2012), that can 

form chelates with metal cations including Mg2+. These 

chelates can increase the solubility of Mg in soil, mak-

ing it more readily available for plant uptake.

Soil hydraulic conductivity. H2Flo applications 

led to a reduction in Ks rates, with the decline be-

ing more pronounced after the second application 

(Figure 6A; P = 0.01 in t-test and F-test, P = 0.03 

in Kruskal-Wallis test). While both treated and con-

trol soils exhibited a reduction in rates over time, 

the variance between the average Ks rates during the 

sampling intervals was not significant.

In most cases, the decrease is due to: (1) the 

disintegration of soil aggregates, resulting from 

the surfactant adhering to minerals and/or the 

effect of a high sodium adsorption ratio (SAR), 

which results in pore blockage due to displaced 

particles (Mingorance et al. 2007; Liu et al. 2022); 

and (2) the blockage of pores caused by the pre-

cipitation of surfactant when divalent cations like 

Ca2+ and Mg2+ are present in the soil (Çelik et al. 

1978; Stellner & Scamehorn 1986). Additionally, 

the clay content of the soil is influential in terms 

of the expansion of minerals and fine particle 

mobilization (Peng et al. 2017). These changes 

typically occur after multiple applications rather 

than when the non-ionic surfactants are initially 

applied. This is because the initial applications 

usually result in increased Ks values, particularly 

in hydrophobic soils.

Considering the increased POXC and nitrification 

activity, bioclogging could also be a possible factor 

behind decreased Ks rates. Research has shown that 

Figure 6. Alterations of saturated hydraulic conductivity (Ks) (log base 10 of cm/day outcomes) of topsoils in response 

to treatments (A); Pearson correlation coefficients of Ks and OCF in the scatterplots (B)

H2Flo – non-ionic soil surfactant treated soil; C – water-soluble organic carbon; Chws – hot water-soluble organic carbon; 

POXC – potassium permanganate oxidizable organic carbon; *P < 0.05

                                Control                                                               H2Flo 

Term: 1 log Ks: F(1,5) = 4.5157, P = 0.0870

Term: 2 log Ks: F(1,5) = 15.937, P = 0.0104
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bioclogging can result in a decrease in Ks (Hallett 

& Young 1999). When bacteria colonize soils, they 

cover the pore walls with biofilms, comprising cells 

tightly entwined in a network of exopolymer glyco-

calyx. This causes a reduction in pore space available 

for water flow and the exopolymer might also lead 

to alterations in soil swelling properties and disper-

sion of colloidal particles (Peng et al. 2017). 

Some implications are drawn from relatively old 

studies since the current scientific approach typi-

cally deals with K(h) in their experimental designs. 

The observed decline in Ks values from our study 

aligns with results from the K(h) tests conducted 

in laboratory settings using soils from the same 

region, both treated and untreated (Figure 7). 

Similar outcomes have been highlighted in vari-

ous studies over the past two decades, particularly 

in non-hydrophobic soils (Mobbs et al. 2012; Bashir 

et al. 2020). Notably, Bashir et al. (2020) associ-

ated reduced hydraulic conductivity with a slowed 

vertical movement and increased lateral disper-

sion of water and surfactant. When examining 

potential interplays between Ks and OCFs, existing 

literature does not offer a direct comparative sce-

nario. This might be due to many studies focus-

ing on K(h) in tandem with DOC or POC, rather 

than specifically on Ks. Nevertheless, our data 

points to moderate to robust, yet divergent cor-

relative links between OCFs and Ks, as illustrated 

in Figure 6B. Specifically, water-soluble fractions 

revealed a positive association with Ks, whereas 

POXC displayed an inverse relationship with Ks. 

Even though the Ks were in positive relationship 

with Cws and Chws, and negative relationship with 

POXC, it should be noted that the treated soils 

were not found to present hydrophobic properties 

in water droplet test, after applications of H2Flo.

CONCLUSION

Upon repeated application, the non-ionic surfactant 

H2Flo facilitates uniform distribution of irrigation 

water throughout loamy sand soil and leads to a reduc-

tion in both saturated and unsaturated hydraulic con-

ductivity. This is consistent with the well-documented 

impacts of non-ionic surfactants on sandy soils.

In the treated soils, pH levels and the distribution 

of organic carbon content were observed to increase, 

notably within subsoils. The levels of POXC also rose 

in the treated soils, a marker for augmented active 

carbon content, suggesting an accelerated rate of de-

composition influenced by changes in water content 

and distribution. A significant positive correlation 

was found between POXC and NO3
–-N content, and 

a negative correlation with NH4
+-N content, indicative 

of increased nitrification. NO3
–-N of the treated soils, 

in this context, was considerably higher compared 

to the control soils.

Though the carbon fractions Cws and Chws remained 

quantitatively unchanged post-H2Flo application, 

they showed positive linear relationships with the 

soil’s hydraulic conductivity and extractable Mg 

content found in treated soils. Treated soils addition-

ally demonstrated increased levels of extractable Ca 

and K, likely a consequence of the elevated pH and 

the increase in organic exchange complexes stemming 

from higher POXC values. Interestingly, potassium 

leaching was less pronounced in H2Flo treated soils.

This study elucidates the effects of H2Flo appli-

cations, highlighting alterations in SOM degrada-

tion products and nitrification dynamics, as well 

as modifications in the soil’s extractable macronu-

trients. Particularly, the observed changes in OCFs 

and in the rate of NH4
+-N to NO3

–-N underscore 

the importance of meticulous monitoring of these 

Figure 7. Comparison of average unsaturated 

hydraulic conductivity K(h)

H2Flo – non-ionic soil surfactant treated soil; 

significant differences between infiltration rates 

were represented with low case and capital let-

ters for –2 and –5  cm pressure heads adjusted, 

respectively; P < 0.01                          Control                                                         H2Flo 
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fractions after surfactant applications, ensuring the 

sustained advantages derived from organic amend-

ments and nitrogen fertilizers.
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Abstract: This study introduces a simple and cost-effective method for the indirect determination

of field capacity (FC) in soil, a critical parameter for soil hydrology and environmental modeling.

The relationships between FC and soil moisture constants, specifically maximum capillary water

capacity (MCWC) and retention water capacity (RWC), were established using undisturbed soil core

samples analyzed via the pressure plate method and the “filter paper draining method”. The aim

was to reduce the time and costs associated with traditional FC measurement methods, as well as

allowing for the use of legacy databases containing MCWC and RWC values. The results revealed

the substantial potential of the “filter paper draining method” as a promising approach for indirect

FC determination. FC determined as soil water content at −33 kPa can be effectively approximated

by the equation FC33 = 1.0802 RWC − 0.0688 (with RMSE = 0.045 cm3/cm3 and R = 0.953). FC

determined as soil water content at −5 or −10 kPa can be effectively approximated by both equations

FC5 = 1.0146 MCWC − 0.0163 (with RMSE = 0.027 cm3/cm3 and R = 0.961) and FC10 = 1.0152

MCWC − 0.0275 (with RMSE = 0.033 cm3/cm3 and R = 0.958), respectively. Historical pedotransfer

functions by Brežný and Váša relating FC to fine particle size fraction were also evaluated for practical

application, and according to the results, they cannot be recommended for use.

Keywords: field capacity; maximum capillary water capacity; retention water capacity; pedotransfer

functions; filter paper draining method

1. Introduction

Field capacity (FC) or field water capacity is defined as the maximum amount of water
soil can hold against the force of gravity after excess water has drained away [1,2]. Despite
this vague definition, FC is a crucial value for effective soil water management, crop growth,
soil health and environmental conservation in agriculture and land management practices.
It is a vital input parameter for environmental modeling, particularly in soil hydrology.
It serves as a fundamental starting point for simulating water movement, infiltration
and runoff in terrestrial ecosystems. Incorporating accurate FC values into models helps
researchers and policy makers to predict and manage various environmental processes,
such as watershed hydrology, groundwater recharge, flood risk assessment, irrigation and
ecosystem health assessment. By providing a basic understanding of how much water
the soil can retain, FC data enhance the precision and reliability of environmental models,
facilitating informed decision making for sustainable land and water resource management.

Traditional in-situ determination of FC assumes soil, which is deep and permeable,
without influence of the groundwater table, with no evaporation from the soil surface.
The well-drained soil receives a sufficient amount of water, and after redistribution, the
drainage rate decreases rapidly and becomes negligible within about 24 to 72 h. Water is

Hydrology 2023, 10, 202. https://doi.org/10.3390/hydrology10100202 https://www.mdpi.com/journal/hydrology
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drained from the large non-capillary pores and is now retained in the capillary pores. The
fundamental problem is to define this negligibility, as it is a dynamic process [2]. The same
authors state that there is no good alternative to the in situ method for the determination of
FC. However, it is possible to determine FC from long-term field observations of soil water
content and suction pressure [3].

For practical applications and comparability, the complicated in situ process of FC
determination has been replaced by laboratory measurements performed on soil core
samples. FC is determined as the water content of the soil equilibrated at a specific suction
pressure value. The FC value varies with the dynamic properties of the soil profile, such as
the hydraulic gradient, hysteresis, stratification of the soil profile, swelling and shrinkage,
or the presence of an impermeable layer or a high groundwater table. Therefore, the suction
pressure value for this water content cannot be generally defined, especially when a sample
is taken and the hydraulic context of the soil is interrupted. However, for calculations and
estimates, it is important to associate the FC with some suction pressure value. Coarse-
textured soils reach conditions defined as an FC of around −5 or −10 kPa, medium-textured
soils at −33 kPa and fine-textured soils at −50 kPa [2]. Therefore, the selected suction
pressure level should always be recognized according to the studied soil. In spite of this,
the basic concept is often ignored and water content at a suction pressure of −33 kPa is
adopted as the most widely used value associated with FC.

The methods of a sand/kaolin box, temp cell [4] and pressure plate apparatus [5]
are the most widely used, although they are rather time- and energy-consuming, and
therefore costly. Measurements can take several weeks to months, depending on the soil
type and the number of points on the soil water retention curve (SWRC) that need to be
determined sequentially. It is likely that at least the permanent wilting point (WP) will be
determined in addition to FC [6–8] if the full range of SWRC is not required. A modern
and relatively fast method is the evaporation method [9], which is utilized, e.g., in the
commercial instrument HYPROP (METER Group Inc., Pullman, WA 99163, USA). It can
determine the FC within several days, but it is rather costly and requires regular attention,
especially in its preparation for use.

Besides the methods mentioned above for the accurate determination of soil matric
potential, there are cost-effective alternatives involving filter paper. In the in-contact
filter paper technique, initially dry filter paper absorbs liquid water from the soil until
equilibrium is reached. Good contact between the filter paper and the soil is essential.
After equilibrium, the water content of the filter paper is measured, and the soil suction is
estimated using a calibration curve [10,11].

A different method employing filter paper was developed in Central Europe to assess
soil water retention properties. Instead of assessing the water content of the moist filter
paper, this method involves determining the gravimetric soil water content of core samples.
These samples are allowed to drain naturally on the filter paper for a specified period
of time [12]. This “filter paper draining method” is used in this study and is further
described, specifically regarding the maximum capillary water capacity (MCWC) and
retention water capacity (RWC), which have a long history of use in the Czech Republic as
an approximation of FC [12–14].

As an alternative to direct measurement, there is an estimation approach utilizing
pedotransfer functions (PTFs). PTFs estimate a required soil property that is difficult
to obtain (estimand), in this case, FC, from other easily obtainable soil properties (called
predictors), typically soil texture, dry bulk density and organic matter content. PTFs employ
a wide range of methods from linear regression equations to artificial neural networks,
non-parametric algorithms and machine learning approaches [7,8,15–18]. The reliability of
PTFs greatly varies and their general applicability may be limited. In any case, for accurate
prediction, a database with measured predictors and estimands is needed. However, often,
accurate information is not required and a value with higher uncertainty may be sufficient
if it can be obtained quickly and at minimal cost.
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Efforts to develop statistical relationships between predictors and soil moisture con-
stants were undertaken long before the term PTFs was introduced [2]. It should be noted
that the word “constant” can be misleading as it implies invariant behavior of the soil pore
system. In Central Europe, regression equations for estimating FC and WP from a fine
particle size fraction (FPSF; soil particles < 0.01 mm) have been established [13] and are still
in use [19,20]. Although there are different varieties of PTFs for estimating the soil water
retention curve or just its important points, such as FC and WP [15–18], they are rarely
used by researchers and decision makers for practical applications. FC and WP often need
to be determined or estimated for irrigation management purposes or for the quantification
of available water capacity [21]. It appears that ease of use is the primary criterion for the
practical application of PTFs.

The aim of this study was to investigate the relationship between FC, determined as
the gravimetric water content at a given set suction pressure level, and the soil moisture
constants “retention water capacity” (RWC) and “maximum capillary water capacity”
(MCWC), which can be obtained using the rapid and inexpensive filter paper draining
method. These relationships have been developed with the goal of becoming commonly
used formulae for the rapid and relatively reliable estimation of FC and, to the present
knowledge of the authors, such relationships have not been published yet.

Additionally, simple regression equations according to Brežný and Váša [13] relating
FC to the fine particle size fraction (soil particles < 0.01 mm) were tested in this study.

2. Materials and Methods

2.1. Filter Paper Draining Method

The full procedure for processing an undisturbed soil core sample is described in detail
including illustrative schemes in Spasić et al. [12]. Only relevant parts of the methodology
are presented here.

When the undisturbed soil samples (100 cm3) were brought to the laboratory, their
capillary saturation was the first step. After achieving capillary saturation and recording
the initial weight for calculating the saturated water content, water drainage was initiated
using folded dry filter paper. Saturated samples were placed under a hood on four layers
of dry filter paper for exactly 30 min—precise timing was crucial. The weight was then
recorded (not relevant to this study). The initial drainage for 30 min primarily addressed
non-capillary pores. The samples were then transferred to four new and dry layers of
filter paper under the hood for a further 90 min (2 h in total). The weight recorded at this
stage was used to calculate the soil moisture constant MCWC. The wet filter paper was
again replaced, and the samples were allowed to drain under the hood for a further 22 h (a
total of 24 h) before being weighed to determine the soil moisture constant RWC. Standard
qualitative filter paper 2R/80 in sheets cut to 30x35 cm was used, with up to 12 samples
placed on this size of filter paper. Each ring was covered with a watch glass during the
draining process.

After draining them on filter paper, the samples were transferred to pressure plate
apparatus [5] for FC and WP determination (suction pressures of −33 and −1500 kPa,
respectively). This step is not part of the filter paper draining method; however, it was
included for the purpose of this study in order to compare the soil moisture constants
obtained via the filter paper draining method with the FC determined as water content at
−33 kPa. The final step was drying in an oven at 105 ◦C to a constant weight (usually 24 h).
After cooling the samples in a desiccator, the weights of the dry samples were determined
and the volumetric water contents of all relevant soil moisture constants were calculated
via a gravimetric method. A graphical overview of the methodological steps is depicted in
Figure 1. In addition, dry bulk density (BD; g/cm3) was calculated from the dry soil weight
and the volume of the ring.
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Figure 1. Schematic diagram of the workflow, including filter paper draining method followed by the
pressure plate method. MCWC—maximum capillary water capacity, RWC—retention water capacity,
FC33m—field capacity measured as water content at −33 kPa.

2.2. Data Origin and Processing

In total, 1212 database entries and/or soil samples from the Czech Republic containing
the required information on FC indirect determination were utilized in this study. The total
number consisted of three independent sets of data; datasets one and two were used for
developing the statistical relationships between FC and MCWC/RWC, while dataset three
was used for testing the existing regression equations according to Brežný and Váša [13]
for FC estimation. The datasets originated from two sources: (i) the Database of Soil
Hydrophysical Properties in the Czech Republic called HYPRESCZ, from which datasets
one and three were derived, and (ii) dataset two, containing data on soil samples measured
by the authors of this study. The availability and use of data from each dataset are further
summarized in Table 1.

Table 1. Summary of data availability within the three datasets.

Dataset One Dataset Two Dataset Three

Origin of data HYPRESCZ Measured HYPRESCZ
N. of data 534 207 471

Purpose of use
To correlate MCWC

with FC5f, FC10f,
FC33f and FC50f

To correlate MCWC
and RWC with

FC33m

To test historical
PTFs

Availability within the dataset

MCWC Yes Yes Not relevant
RWC No Yes Not relevant

FC fitted for −5, −10,
−33 and −50 kPa

Yes No Yes

FC measured for −33 kPa No Yes No
FPSF Not relevant Not relevant Yes

MCWC—maximum capillary water capacity, RWC—retention water capacity, FC—field capacity, 5, 10, 33, 50—suction
pressure (kPa, in abs. value), f—fitted, m—measured, FPSF—fine particle size fraction, PTFs—pedotransfer functions.
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2.2.1. Dataset One

In the HYPRESCZ database [22], 534 entries containing both measured SWRC and
the moisture constant MCWC determined using the filter paper draining method were
found. Unfortunately, RWC data were not collected within the database. Suitable data
for dataset one originated from 23 different localities, including surface and deeper soil
horizons. The database contains data from different sources, and SWRCs were obtained via
various methods. For unification, SWRCs were carefully fitted using the van Genuchten
Equation (1) [23], as the water retention equilibrium points were obtained at different
suction pressures. Each fitted curve was subjected to a careful assessment of the quality of
the optimisation to ensure that it represented the measured data well. Further details on the
data, including using the RETC code [24] for fitting the SWRC, are provided in Miháliková

et al. [22].
(θ − θr)/(θs − θr) = 1/(1 + (α|h|)n)(1−1/n) (1)

where θ is actual water content, θr and θs are model parameters expressing the residual
and saturated soil water contents, respectively (cm3/cm3), α and n are shape factors, and
|h| is the absolute value of the actual pressure head (cm).

Using the van Genuchten parameters, FC was calculated as the volumetric water
content at four different suction pressures associated with FC as listed by Cassel and
Nielsen [2]: −5, −10, −33 and −50 kPa. The resulting values of the fitted field capacity
were denoted as FC5f, FC10f, FC33f and FC50f, respectively. Their statistical relationships
with the measured MCWC values were investigated.

2.2.2. Dataset Two

The second dataset contains 207 undisturbed soil samples (100 cm3) and it was part of
the dataset used for mapping the RWC of soils in the Czech Republic, which is provided
as a public service by the Research Institute for Soil and Water Conservation, Prague, CZ,
on the website https://mapy.vumop.cz/ (accessed on 1 September 2023). Samples were
collected from the surface layer at about 100 different localities covering representative
arable lands of the Czech Republic. More detailed information on the data can be found in
the study by Vopravil et al. [14]. Soil moisture constants MCWC and RWC were determined
using the filter paper draining method as described above prior to the determination of
FC using the pressure plate method [5], and defined as the volumetric water content
at a suction pressure of −33 kPa (further denoted as FC33m). The suction pressure of
−33 kPa was selected based on textural analysis of the sampled soils. In total, 75% of
the soils were medium-textured, specifically the loam, sandy loam and silt loam texture
classes (USDA).

The statistical relationships of both MCWC and RWC with FC33m were investigated.
This relatively large data set is unique in that the data were collected by the same team
of researchers and processed in the same laboratory using identical methodologies and
equipment. This substantially reduced the error rate associated with the varying treatment
of samples, a common challenge in large data collections.

2.2.3. Dataset Three

The last dataset was again retrieved from the HYPRESCZ database, and it contains
471 relevant entries with available FPSF values and fitted van Genuchten parameters of the
SWRC. Some entries may overlap with the first dataset; however, the database contains
in total more than 2000 entries on arable land, which are fragmented and of varying
completeness levels. Thus, all suitable data were used. On the third dataset, the regression
functions, which can be considered historically as the first PTFs in the Czech Republic, were
tested. These functions have been widely used, as will be further discussed. The functions
are denoted as FC by Brežný (Equation (2)) [25] and FC by Váša (Equation (3)) [13].
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FC by Brežný = 6.66 + 1.03 FPSF − 0.008 FPSF2 (2)

FC by Váša = (FPSF + 18) × 20)0.5 (3)

where FC is field capacity in % by volume, and FPSF is content of fine particle size fraction,
which are soil particles < 0.01 mm (%).

2.3. Statistical Evaluation and Uncertainty Analysis

Data were processed in MS Excel, including statistical evaluation. Uncertainty analysis
was carried out by employing the correlation coefficient (R), coefficient of determination
(R2), mean absolute error (MAE) and root mean squared error (RMSE) to assess the quality
of the findings and to foster their transparency and reliability. Equations (4) and (5)
represent the latter two statistical indicators:

MAE = Σ|xi − x| N−1 (4)

RMSE = [Σ(xi − x)2 N−1]0.5 (5)

where x and xi represent the observed and predicted values for each data pair i, and N is
the total number of observed data pairs.

Higher R and R2 values were indicative of a stronger linear relationship and better
agreement between the observed variables. Conversely, lower MAE and RMSE values
signified smaller discrepancies between the observed variables, reflecting a higher level
of accuracy in the predictions. It is crucial to utilize several statistical indicators when
assessing the quality of statistical relationships. For example, relying solely on a high R can
be misleading, as it may suggest a strong linear relationship between two sets of data, while
other errors and discrepancies may remain unaccounted for. The R2 complements the R by
providing insight into the proportion of variation in the observations that is explained by
the predictions. Meanwhile, MAE and RMSE provide valuable information about the size
and distribution of errors in the predictions. These two metrics help to identify situations
where predictions, despite a seemingly strong R, may exhibit substantial deviations from
the observed values. By combining these four indicators, a more comprehensive assessment
of the reliability of the predictions can be obtained. This leads to improving the usefulness
of the findings in practical applications and a good reflection of reality [26].

3. Results

3.1. Descriptive Statistics of Soil Properties in the Datasets

The results obtained from the statistical analysis of three distinct datasets, facilitat-
ing a comprehensive understanding of the investigated soil moisture characteristics, are
presented in this section.

Table 2 offers an insight into the data derived from the HYPRESCZ database (dataset
one). This dataset, which was used for investigating MCWC, includes a number of crucial
soil properties, including the percentage of clay, silt and sand; dry bulk density (BD);
organic matter content (OM); porosity, MCWC; and FC values fitted at four different suction
pressures. An illustrative representation of filling the pores with water is summarized
through box plots in Figure 2a. Higher values of the coefficient of variation for soil texture
or organic matter indicate that there are different soils in the database, covering the high
variability of the soils in the Czech Republic.
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Table 2. Descriptive statistics of data from HYPRESCZ database for MCWC investigation (dataset one).

Variable Mean Minimum Maximum
Lower

Quartile
Upper

Quartile
SD CV

Clay (%) 25.4 3.4 66.9 14.9 34.1 12.5 49.0
Silt (%) 39.3 4.2 73.0 29.3 51.2 14.6 37.1

Sand (%) 35.3 1.0 89.8 23.6 47.6 18.1 51.3
BD (g/cm3) 1.499 0.800 1.920 1.380 1.660 0.215 14.4

OM (%) 1.226 0.000 14.210 0.330 1.700 1.441 117.5
Porosity 0.4356 0.2558 0.6656 0.3822 0.4818 0.0773 17.8

MCWC (cm3/cm3) 0.3807 0.1370 0.6364 0.3290 0.4315 0.0836 22.0
FC5f (cm3/cm3) 0.3700 0.0818 0.6368 0.3166 0.4198 0.0883 23.9
FC10f (cm3/cm3) 0.3590 0.0733 0.6296 0.3029 0.4099 0.0886 24.7
FC33f (cm3/cm3) 0.3371 0.0548 0.6049 0.2852 0.3907 0.0877 26.0
FC50f (cm3/cm3) 0.3288 0.0489 0.6047 0.2738 0.3814 0.0873 26.6

BD—dry bulk density; OM—organic matter; MCWC—maximum capillary water capacity; FC—field capacity;
5, 10, 33, 50—suction pressure (kPa, in abs. value); f—fitted; SD—standard deviation; CV—coefficient of
variation (%).

 

(a) (b) 

Figure 2. Soil moisture constants: (a) dataset one: data for MCWC investigation, (b) dataset two:
data for RWC investigation. SWC—saturated water content; MCWC—maximum capillary water
capacity; RWC—retention water capacity; FC—field capacity; 5, 10, 33, 50—suction pressure (kPa, in
abs. value); f—fitted; m—measured; WP1500m—permanent wilting point measured as water content
at −1500 kPa. The box—lower and upper quartiles; median—the line splitting the box into two parts;
the cross—the mean value; whiskers—minimum and maximum (limited to a maximum of 1.5 times
the interquartile range).

The descriptive statistics of dataset two, shown in Table 3, provide insight into the
data relating to the investigation of RWC. This dataset consists of soil properties such as
saturated water content, MCWC, RWC, FC measured at −33 kPa (FC33m), WP measured
at −1500 kPa (WP1500m), and BD. To complement these statistics, Figure 2b provides box
plots to visually represent the distribution and variability of soil moisture constants.
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Table 3. Descriptive statistics of data measured for RWC investigation (dataset two).

Variable Mean Minimum Maximum
Lower

Quartile
Upper

Quartile
SD CV

Clay (%) 18.1 3.9 50.5 11.1 23.5 8.7 48.1
Silt (%) 39.6 4.7 70.1 27.3 51.5 15.1 38.3

Sand (%) 42.3 4.6 91.4 26.1 59.1 20.5 48.6
BD (g/cm3) 1.480 1.085 1.806 1.369 1.599 0.159 10.7

OM (%) 1.851 0.207 5.293 1.155 2.431 0.941 50.9
SWC (cm3/cm3) 0.4189 0.2330 0.6140 0.3814 0.4590 0.0560 13.4

MCWC (cm3/cm3) 0.3715 0.2063 0.5278 0.3339 0.4022 0.0526 14.2
RWC (cm3/cm3) 0.3525 0.1792 0.5113 0.3145 0.3850 0.0545 15.5

FC33m (cm3/cm3) 0.3119 0.1251 0.4805 0.2733 0.3547 0.0617 19.8
WP1500m (cm3/cm3) 0.1749 0.0499 0.4104 0.1265 0.2191 0.0667 38.1

BD—dry bulk density, OM—organic matter, SWC—saturated water content, MCWC—maximum capillary wa-
ter capacity, RWC—retention water capacity, FC33m—field capacity measured as water content at −33 kPa,
WP1500m—permanent wilting point measured as water content at −1500 kPa, BD—dry bulk density,
SD—standard deviation, CV—coefficient of variation (%).

Furthermore, the descriptive statistics for dataset three are provided in Table 4. Besides
the standard texture fractions of clay (<0.002 mm), silt (0.002–0.05 mm) and sand (0.05–2.0 mm),
the FPSF (<0.01 mm) is provided, because it is a predictor of Equations (2) and (3). These
statistics offer a comprehensive view of the variability exhibited by these soil properties.

Table 4. Descriptive statistics of data from HYPRESCZ database for testing of historical PTFs (dataset three).

Variable Mean Minimum Maximum
Lower

Quartile
Upper

Quartile
SD CV

Clay (%) 15.8 0.0 42.8 8.5 19.8 10.4 65.5
Silt (%) 29.4 1.5 70.6 16.8 40.2 15.7 53.4

Sand (%) 54.7 3.6 98.0 37.3 71.2 23.0 42.0
FPSF (%) 27.2 0.4 66.0 16.8 36.2 14.1 51.9

BD (g/cm3) 1.504 0.991 1.870 1.400 1.620 0.161 10.7
OM (%) 1.427 0.069 12.723 0.414 2.300 1.372 96.1

SWC (cm3/cm3) 0.4019 0.2530 0.5914 0.3631 0.4340 0.0578 14.4
FC33f (cm3/cm3) 0.2661 0.0567 0.4537 0.2164 0.3242 7.94 29.8

WP1500f (cm3/cm3) 0.1513 0.0157 0.3472 0.0996 0.1956 6.82 45.1

FPSF—fine particle size fraction, BD—bulk density, OM—organic matter, SWC—saturated water content,
FC33f—field capacity fitted as water content at −33 kPa, WP1500f—permanent wilting point fitted as water
content at −1500 kPa, SD—standard deviation, CV—coefficient of variation (%).

3.2. Predictive Relationships between Soil Moisture Constants and Field Capacity

• Maximum Capillary Water Capacity (Dataset One):

MCWC exhibits a strong correlation with FC5f, FC10f, FC33f and FC50f in dataset
one (see Figure 3 and Table 5). These correlations have high R and R2 values, indicating a
robust linear relationship between MCWC and the fitted field capacity values at different
suction pressures. The RMSE and MAE values for MCWC in relation to FC5f, FC10f, FC33f
and FC50f are relatively low, indicating accurate predictions. This suggests that MCWC is
a reliable predictor for estimating field capacity in this dataset.

Confidence intervals (0.95) providing a view into the uncertainty when estimating the
mean are included in the graphs, along with prediction intervals accounting for variation
in the dependent variable around the mean.

It appears that the correlation between MCWC and FC5f stands out as the most
favorable (Figure 3a). This correlation exhibits the lowest RMSE and MAE values, signifying
smaller discrepancies between the observed and predicted values. It demonstrates the
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highest R and R2 values, indicating a strong linear relationship and better agreement
between MCWC and FC5f.

• Retention Water Capacity (Dataset Two):

FC33m exhibits a strong correlation with both RWC and MCWC in dataset two
(Figure 4). These correlations have high R and R2 values, implying a robust linear relation-
ship. The RMSE and MAE values for FC33m in relation to RWC and MCWC are relatively
low, indicating accurate predictions. This suggests that both retention water capacity and
maximum capillary water capacity are reliable indicators for predicting FC at −33 kPa.
Based on the uncertainty analysis values (Table 5), it appears that FC33m vs. RWC has
better performance, indicating that it may be a more accurate predictor of FC compared
to MCWC.

(a) (b) 

(c) (d) 

Figure 3. Measured soil moisture constant MCWC and fitted FC selected for several suction pressures,
including −5 kPa (a), −10 kPa (b), −33 kPa (c) and −50 kPa (d). Confidence (red) and prediction
(grey) intervals are provided (0.95).
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Table 5. Uncertainty analysis of observed and predicted data.

Correlated Soil Moisture
Constants

N RMSE MAE R R2

MCWC

FC5f 534 0.027 0.020 0.961 0.923
FC10f 534 0.033 0.026 0.958 0.917
FC33f 534 0.053 0.045 0.937 0.878
FC50f 534 0.062 0.052 0.922 0.850

FC33m
RWC 207 0.045 0.041 0.953 0.908

MCWC 207 0.065 0.060 0.905 0.818

FC33f
FC by Brežný 471 0.065 0.048 0.669 0.447
FC by Váša 471 0.067 0.050 0.673 0.453

MCWC—maximum capillary water capacity; RWC—retention water capacity; FC—field capacity; 5, 10, 33,
50—suction pressure (kPa, in abs. value); f—fitted; m—measured; N—number of pairs compared; RMSE—root
mean squared error; MAE—mean absolute error; R—correlation coefficient; R2—coefficient of determination.

(a) (b) 

Figure 4. Scatter plots of FC as volumetric water content determined at suction pressure of −33 kPa
and soil moisture constants RVC (a) and MCWC (b). Confidence (red) and prediction (grey) intervals
are provided (0.95).

3.3. Results of Testing the Historical Pedotransfer Functions for Field Capacity Estimation

In dataset three, FC33f was estimated from FPSF by employing the equations FC by
Brežný (Equation (2)) and FC by Váša (Equation (3)). The uncertainty analysis revealed
rather modest correlations, with low R and R2 values, which is indicative of a moderate
linear relationship. Moreover, the RMSE and MAE values are notably higher than those
observed in the earlier datasets. This implies a significant level of discrepancy between
the observed and predicted values. Ultimately, the performance of these PTFs is shown in
Figure 5. The FC by Brežný (Figure 5a) exhibits slightly better performance than the FC
by Váša. However, none of them can be recommended for general use. Similarly to FC33f,
the estimation of other fitted field capacities, FC5f, FC10f and FC50f, using Equations (2)
and (3) was tested as well. However, the results were rather worse; thus, only the FC33f
estimation is presented.
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(a) (b) 

Figure 5. Testing of relationships of Brežný (a) and Váša (b) for estimation of field capacity (deter-
mined as fitted value calculated using van Genuchten’s equation at suction pressure of −33 kPa).
Confidence (red) and prediction (grey) intervals are provided (0.95).

4. Discussion

While the present study revealed an increase in both RMSE and MAE between the
MCWC and soil water content at gradually increasing suction pressures (in absolute value),
it is worth noting that the error magnitudes remained comparatively low. Additionally,
a similar trend was observed for the minor decrease in R and R2 values obtained (see
Table 5, Figure 3). As the suction intensifies, water is drained from progressively smaller
and potentially more varied pores. The increased suction pressures when considered with
soil hysteresis might also reduce the soil’s hydraulic connectivity, potentially leading to
water entrapment [27]. Despite the slight increase in error and decrease in linearity with
rising suction pressures, the relationship between MCWC and water content across the
specified suction pressure values can still be considered linear to a significant degree.

MCWC is described [12] as the ability of the soil to retain water for plant needs. The
presence and distribution of water within the soil pores continues to be influenced by
gravity. The classification of water holding properties according to MCWC, from very poor
water retention (MCWC < 5%) to very strong water retention (MCWC > 50%), is presented
in Spasić et al. [12]. Good water retention occurs when the MCWC is between 10 and 30%.
Compared to MCWC, RWC represents a rather steady state of soil moisture content close
to negligible internal drainage. The influence of gravity no longer applies; the water in
the pores is under the exclusive influence of capillary forces, specifically in capillary pores.
Therefore, this value can represent the quantity of capillary pores in the soil.

The correlation between RWC and FC33m is very strong. This precision and accuracy
are evident when evaluated in terms of the relatively short duration of MCWC determina-
tion (Table 5, Figure 4). Although MCWC presents a significant correspondence to FC33m
given its more rapid assessment period, the disparities between the two measurements
may underscore the importance of drainage duration. The FC at −33 kPa inherently rep-
resents an equilibrium state between the drained larger pores and the water-retaining
smaller-capillary pores, which is better reflected by RWC than by MCWC.

Despite this fact, MCWC remains a more widely used soil moisture constant. MCWCs
were extensively obtained during the General Soil Survey of Agricultural Soils (GSSAS),
which took place in former Czechoslovakia in the years 1961–1970. Averaged MCWC
values for different genetic soil types are presented in the study of Vopravil et al. [14]. The
Stagnosols, together with Gleysols, exhibited the highest average MCWC (approx. 41%),
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while the Luvisols and Leptosols showed the lowest values (approx. 34%), and Cambisols,
Fluvisols, Chernozems and Phaeozems were in between with approx. 36–37%. Pospíšilová

et al. [28] pointed out that MCWC determines the value of maximum saturation of soil
capillary pores. For loamy soils, it should not exceed 36%; otherwise, it shows problems
with water infiltration. It is therefore the maximum water content to which the soil should
be irrigated without the risk of water losses or waterlogging. Marfo et al. [29] selected
MCWC as one the soil properties when assessing the soil’s fertility and productivity in
their study on ecotone dynamics in the forest–agriculture land transition. They observed a
decline in its value in the ecotone area.

Simple linear relationships for the approximation of soil properties are a rather popular
form of PTF application. As an example, the linear relationship determined by Němeček
et al. [30], which was widely used for the recalculation of clay fractions from a clay fraction
of <0.001 mm (%) to a clay fraction of <0.002 mm (%), can be presented. This relationship
was applied during conversion between the Taxonomic Classification System of Soils of the
Czech Republic and the World Reference Base for Soil Resources [31]. The determination
coefficient R2 of the presented linear regression was 0.9748.

As further examples, historical linear regression equations relating an FPSF to the WP,
such as the equations by Váša, Solnář or Brežný [13], can be presented. These equations
complement Equations (2) and (3) tested in this study and are still in use, although their
reliability is questionable, as demonstrated by the results of this study.

Litschmann et al. [32] introduced a novel approach for the evaluation of moisture and
temperature conditions in potato cultivation. In their study, soil moisture was expressed as
the % of available water capacity (AWC), which is calculated as the difference between the
FC and WP, and should not fall below 60% of AWC when growing potatoes. The equations
by Brežný were included for obtaining FC and WP indirectly. Litschmann et al. [33]
conducted a comprehensive study on determining FC through the permanent measuring
of soil moisture after abundant rainfalls. They employed the equation by Brežný for FC
inversely to obtain the value of FPSF, and consequently, used an equation by Brežný for
WP calculation, which was 5.4% by volume. The researchers report fairly good agreement
inversely with the values previously published for this site. On the national level, the
equations by Brežný were used by Novák [34] in the area assessment of dried-up soils in
the Czech Republic.

Haberle et al. [20] conducted research onto the associations between the 13C discrimi-
nation observed in specific plant species and the spatial heterogeneity of soil properties
within agricultural fields. These soil properties were pertinent to the influence of water
scarcity on crop productivity. 13C discrimination serves as an indicator of water stress in
plants. Their investigation revealed the impact of drought through statistically significant
correlations between 13C discrimination during arid periods and soil properties such as
AWC. To support their analysis, they derived FC and WP values using the methodology
established by Brežný.

Similarly, Haberle et al. [35] used the equations by Váša in their study on the compari-
son of the calculated and experimentally determined available water supply in the root
zone of selected crops.

Vlček and Hybler [19] conducted a rather extensive study to test different simple
regression-type PTFs for estimating FC and WP, including the equations by Váša. Among
the tested models of PTFs, the equations by Váša showed the poorest performance for both
soil moisture constants (R 0.89 and 0.81, respectively). However, the researchers highlighted
the fact that minimum input data (only FPSF) were utilized.

5. Conclusions

This study investigated the potential of the so called “filter paper draining method”
to be used in the rapid and cost-effective indirect determination of FC. The filter paper
draining method is based on draining capillary-saturated soil core samples (typically
100 cm3 in volume) using filter paper at accurate time intervals. While keeping the ex-
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perimental settings described in detail in the Section 2, it can be summarized that 2 h of
draining results in an MCWC soil moisture constant value, while 24 h of draining results in
an RWC soil moisture constant value. Adding the time necessary for capillary saturation
(1–3 days) and time for oven drying (1 day), MCWC and RWC as predictors for FC can be
obtained within 3 to 5 days. It should be noted that expensive devices’ capacity, as seen
with the pressure plate apparatus or HYPROP, is limited. The capacity of the filter paper
draining method can be increased instantly even with a very low budget. In addition, the
method is environmentally friendly with minimum energy requirements compared to, e.g.,
the pressure plate method.

The results of the present study revealed a very strong correlation between MCWC/
RWC and FC determined as soil water content at a selected suction pressure, which allows
for the reasonable use of the following equations for indirect FC determination:

• FC determined as soil water content of −33 kPa can be effectively approximated using
the equation:

FC33 = 1.0802 RWC − 0.0688 (with RMSE = 0.045 cm3/cm3 and R = 0.953).

• FC determined as soil water content of −5 or −10 kPa can be effectively approximated,
respectively, using the equation:

FC5 = 1.0146 MCWC − 0.0163 (with RMSE = 0.027 cm3/cm3 and R = 0.961) or

FC10 = 1.0152 MCWC − 0.0275 (with RMSE = 0.033 cm3/cm3 and R = 0.958).

The results of the present study were verified on more than 700 samples covering the
range of arable lands of the Czech Republic and thus can be potentially used in three ways:

1. The use of legacy databases containing MCWC and RWC values together with the
equations developed in this study.

2. The fast and effective indirect determination of FC in new studies. The potential use
of the equations developed in this study out of the Czech Republic should be verified
via traditional FC determination.

3. The development of similar, site-specific equations.

The last contribution of this study is the outcome from the testing of the historical
PTFs by Brežný and Váša [13,25], which estimate FC from the fine particle size fraction,
on a rather big dataset of 471 entries. Despite modern PTF development, these traditional
equations are still in use by many researchers. However, according to the results of the
present study, they cannot be recommended for the estimation of FC defined as water
content at a certain suction pressure.
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List of Abbreviations

FC Field capacity (cm3/cm3 or %)
FC5f Field capacity determined at suction pressure of −5 kPa; letter f indicates fitted value

(similarly for suction pressures of −10, −33 and −50 kPa) (cm3/cm3 or %)
FC33m Field capacity determined at suction pressure of −33 kPa;

letter m indicates measured value (cm3/cm3 or %)
FPSF Fine particle size fraction (soil particles < 0.01 mm) (%)
MCWC Maximum capillary water capacity (cm3/cm3 or %)
PTFs Pedotransfer functions
RWC Retention water capacity (cm3/cm3 or %)
SWRC Soil water retention curve
WP Permanent wilting point (cm3/cm3 or %)
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Mendelova univerzita v Brně: Brno-sever, Czech Republic, 2016; Volume 9.

29. Marfo, D.T.; Datta, R.; Vranová, V.; Ekielski, A. Ecotone Dynamics and Stability from Soil Perspective: Forest-Agriculture Land
Transition. Agriculture 2019, 9, 228. [CrossRef]
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The saturated hydraulic conductivity of soil (Ks) 
is one of the most important and most widely-used 
soil parameters and is commonly applied in a num-
ber of different geotechnical, environmental, and 
water investigations and models (Schaap et al. 2001, 
Mbonimpa et al. 2002, Araya and Ghezzehei 2019, 
Tuffour et al. 2019). Ks refers to the ease with which 
the pores of saturated soil/rock transmit water (United 
States Department of Agriculture 2022). Ks is re-
ported as one of the most important soil properties 
during the precipitation, snowmelt, flooding and 
irrigation events, as it determines the water flow 
behaviour, infiltration rate, runoff generation and 
deep drainage (Gamie and De Smedt 2018, Araya 
and Ghezzehei 2019). Various methods have been 
developed to determine Ks in the field and the labo-

ratory (Klute 1986). However, for larger areas or 
heterogeneous areas, an unreasonably high number 
of replicates need to be carried out in order to ac-
count for the spatial variability of Ks. Estimates of 
Ks by means of pedotransfer functions (PTFs) have 
been researched widely over the last 30 years. Large 
databases of basic soil properties (i.e. the European 
Soil Database (ESDB), the Soil Survey Geographic 
Database (SSURGO)), together with a range of ap-
proaches, including high-performance computing, 
have been used to obtain reasonable Ks estimates. 
Bouma (1989) introduced the term pedotransfer 
function, and Minasny et al. (1999) described PTFs 
as "translating data we have into what we need". The 
concept of PTFs was based on easily measured and 
easily-available soil properties, such as soil texture 
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and dry bulk density (BD), which were used as pre-
dictors to estimate desirable hydraulic properties 
(e.g. Ks). More recently, numerous PTFs have been 
proposed for a variety of purposes. Reviews discussing 
already published PTFs can be found in the works 
of Wösten et al. (2001), Pachepsky and Rawls (2004) 
and Vereecken et al. (2010). These works were mainly 
aimed at predicting soil water retention parameters. 
In the review of Zhang and Shaap (2019), a detailed 
description of the statistical techniques leading to the 
PTFs development for Ks predictions is presented.

Generally, the first types of PTFs were in the form 
of tabular values based on the soil texture class (e.g. 
Wösten et al. 1995) and linear/nonlinear regres-
sion equations (e.g. Wösten et al. 1995, Minasny et 
al. 1999). A more recent approach utilises Neural 
Network analysis (NN), which relates the basic soil 
properties (predictors) to the required output data 
(Ks) by an iterative calibration procedure. This ap-
proach has been implemented into the user-friendly 
Rosetta computer program, in which the models 
published by Shaap and Leij are utilised (Schaap et 
al. 1998, Schaap and Leij 2000). The current tech-
nical progress of high-performance computing and 
in hydraulic data collection of large databases has 
enabled the development of data-driven methods 
such as machine learning (ML). Araya and Ghezzehei 
(2019) presented ML-based PTFs for Ks prediction 

using various types of ML algorithms (K-Nearest 
Neighbours, Support Vector Regression, Random 
Forest and Boosted Regression Trees). The availability 
of large background soil databases implemented into 
the Rosetta program (Schaap et al. 2001) and ML-
based PTFs (Araya and Ghezzehei 2019) made them 
widely applicable. In this study, the hypothesis that 
PTFs are robust enough to predict Ks of soils of the 
Czech Republic with acceptable accuracy is tested.

MATERIAL AND METHODS

Background Ks data. A total of 126 Ks measure-
ments, together with information about soil texture, 
BD and organic carbon (Corg) content, were utilised 
for this study. The Ks data summarised within the 
HYPRESCZ database (Miháliková et al. 2013) were 
enriched by 46 recent own measurements. The data 
originates from agricultural soils in 13 localities in 
the Czech Republic (Figure 1). The basic information, 
together with the relevant soil characteristics, is pre-
sented in Table 1. The soil classification is presented 
in Figure 2. The USDA textural triangle consists of 
12 texture classes; however, the FAO textural triangle 
defines 5 texture classes only. In the Czech Republic, 
the 12 USDA classes are grouped into 5 "grouped 
texture classes," according to Němeček et al. (2001), 
which are similar to the FAO texture classes.

Figure 1. Location of the sites under investigation within the Czech Republic (background map: Czech Office 

for Surveying, Mapping and Cadastre)

N

0      25     50           100 km
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The Ks data were measured by different laboratory 
and field methods; the constant head apparatus, the 
falling head apparatus, pressure ring infiltrometer 
(Matula and Kozáková 1997) and Hood infiltrom-
eter (Umwelt Geräte Technik, GmbH, Müncheberg, 

Germany) were employed. The possible effect of 
the measurement method was not evaluated due 
to the non-existence of any reference method for 
Ks determination. The predictors were measured 
by standard procedures; particle size distribution 

Table 1. A description of the soils used for pedotransfer function (PTF) application; data for a total of 126 soils are 

grouped and described in terms of dry bulk density (BD), organic carbon (Corg) and saturated hydraulic conductivity (Ks)

USDA texture 
class

Grouped 
texture 

class

Records 
No. 

Averaged 
BD

BD 
range

Corg 
range

Averaged 
Corg

Averaged 
measured 

Ks (cm/day)(g/cm3) (%)

Sand 1 5 1.41 1.25–1.53 0.46–1.02 0.62 503.29

Loamy sand 1 6 1.34 1.07–1.70 0.27–1.32 0.81 178.18

Sandy loam 2 13 1.47 1.07–1.89 0.17–2.65 1.42   44.09

Loam 3 14 1.57 1.39–1.79 0.06–1.62 0.64   33.13

Silt loam 3 26 1.38 1.01–1.62 0.00–2.90 1.22 245.33

Silt 3 0 na na na na na

Sandy clay loam 4 15 1.45 1.22–1.73 0.06–3.31 2.34   87.02

Clay loam 4 16 1.55 1.26–1.75 0.06–1.69 0.61     7.42

Silty clay loam 4 23 1.39 1.13–1.74 0.08–1.83 1.02 214.04

Sandy clay 5 0 na na na na na

Silty clay 5 5 1.27 1.13–1.35 1.72–2.61 1.95 128.43

Clay 5 3 1.29 1.18–1.50 0.41–1.95 1.10   11.71

na – not applicable, as no data for this texture class was available

Figure 2. Particle size distri-

bution data of soils used in 

this study within the USDA 

soil texture triangle, with col-

oured indications of the five 

grouped texture classes (from 

1 to 5) according to Němeček 

et al. (2001)
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analysis by the Hydrometer Method, particle density 
by the Pycnometer Bottle Method, organic carbon 
Corg by the Walkley and Black oxidometric method, 
and bulk density on the basis of undisturbed soil core 
samples (100 cm3 and/or 250 cm3). 

Applied PTFs. The performance of eight models of 
PTFs with different predictors was evaluated within 
this study (Table 2). Aray and Ghezzehei (2019) de-
veloped ML-based PTFs on over 18 000 soils based 
on four types of ML-algorithms, two of which were 
selected for testing within this study: Random Forest 
(RF) and Boosted Regression Trees (BRT). The RF 
method combines (averages) the decisions of the 
large number of individual decision trees that are 
"grown" individually by searching for a predictor 
that ensures the best split that results in the small-
est model error. The RF method is reported to be 
relatively robust to errors and outliers (Gunarathna 
et al. 2019). BRT provides a form of a decision tree 
model ensemble with an enhancing procedure by 
a gradient boosting algorithm that creates additive 
regression models by sequentially fitting the decision 
trees (or any different type of "simply based learner") 
to the current pseudo-residuals at each iteration 
(Friedman 2002). Thanks to their operating princi-
ple, BRT methods are attractive in works where the 
training data originates from different measurement 
methods, as in the case of Ks measurements in the 
field/laboratory when different methods have been 
applied (Araya and Ghezzehei 2019). 

Rosetta (Schaap et al. 2001) is a public domain 
Windows-based modelling tool for water and solute 
transport within a variably saturated medium. In to-

tal, 1 306 soil samples with a measured Ks value are 
incorporated within the Rosetta database. It offers 
five hierarchical PTF models for Ks prediction; two 
of them were tested in this study (Table 2). Neural 
Network can be described as a highly interconnected 
network consisting of many simple processing units 
that are referred to as neurons (by analogy with the 
biological neurons in the human brain). Neurons that 
have similar characteristics are arranged in the NN 
in groups that are referred to as layers. The neurons 
in one layer are not mutually connected, but they are 
connected to the neurons in the adjacent layer. The 
connection strength of the neurons in the adjacent 
layers is represented by a parameter referred to as the 
connection strength or the weight. The NN normally 
consists of three layers: the input layer, the hidden 
layer and the output layer (Parasuraman et al. 2006, 
Arshad et al. 2013).

Statistical evaluation. Ks values expressed in 
cm/day are presented and evaluated, as it enables 
comparisons with other published studies. Prior to 
any statistical evaluation, all Ks values were log-
transformed in order to obtain their normal dis-
tribution. The performance of the tested PTFs was 
measured in terms of the root mean squared error 
(RMSE), the mean error (ME) and the coefficient of 
determination (R2), as follows:

(1)

(2)

(3)

Table 2. List of applied pedotransfer functions (PTFs) and their predictors

PTF model Predictor Reference

BRT 3-0 % sand, % silt, % clay

Araya and Ghezzehei (2019)

BRT 3-1 % sand, % silt, % clay, BD (g/cm3)

BRT 3-2 % sand, % silt, % clay, BD (g/cm3, Corg (%)

RF 3-0 % sand, % silt, % clay

RF 3-1 % sand, % silt, % clay, BD (g/cm3)

RF 3-2 % sand, % silt, % clay, BD (g/cm3), Corg (%)

Rosetta-SSC % sand, % silt, % clay
Schaap et al. (2001)

Rosetta-SSC, BD % sand, % silt, % clay, BD (g/cm3)

BRT – Boosted Regression Trees; RF – Random Forest; BD – dry bulk density; Corg – organic carbon

=  
1

 (  ) 

=  
1

 (  )  

=  
     

[  ( ) ] [   ( ) ]
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where: x
i
 – measured Ks data; y

i
 – predicted Ks data; n – 

number of x
i
 y

i
 data pairs.

The RMSE indicates the average deviation of the 
predicted Ks values from the measured Ks. The 
smaller the RMSE value is, the better the perfor-
mance of the PTF prediction. The performance of 
each PTF model was evaluated according to its rank 
on a scale from 1 to 8; the best ranking value (1) 
was attributed to the applied PTF with the smallest 
RMSE value. The ME is negative if the prediction 
underestimates the Ks value and is positive if the PTF 
overestimates the measured Ks. The correspondence 
between the measured and predicted data is indi-
cated by the R2 value: the higher the R2, the better 
the correspondence.

RESULTS AND DISCUSSION

A total of 126 Ks values were predicted by eight 
models of PTFs. The soils investigated are rather het-
erogeneous and involve soils from two to six USDA soil 
texture classes. Evaluation and ranking of each applied 
PTF model were carried out in terms of the individual 
localities and also in terms of the five grouped texture 

classes (Němeček et al. 2001). The data distributions 
through their quartiles are graphically displayed in Box 
and Whisker plots (Figure 3). Generally, a quite high 
natural variability within and between the localities 
was observed, especially in the case of agricultural 
fields, where the tillage operations can temporarily 
affect the topsoil hydraulic properties. Relatively 
low variability in measured Ks and relatively good 
agreement between predicted and observed Ks were 
found for soils with a coarser texture (Figure 3, texture 
groups 1 and 2). Relatively high variability in measured 
Ks was found for soils with medium-to-fine textures 
(Figure 3, texture groups 3, 4 and 5), where Ks ranged 
approx. from 0.1 to 1 000 cm/day. For these groups, 
Rosetta SSC was not able to predict the wide range 
of measured Ks data (light green).

The quality of the predictions can be observed on 
the correlation graphs, where predicted and mea-
sured Ks data are plotted. The performance of the 
individual applied models of PTFs for each grouped 
textural class is displayed in Figure 4, while the com-
parison for the individual localities is displayed in 
Figure 5. Stronger correlations can be observed for 
models using NN analysis and the RF algorithm for 
coarse-textured soils (texture groups 1 and 2). The 

Figure 3. Comparison of the measured (in red colour) and predicted saturated hydraulic conductivity (Ks) 

values by means of Box and Whisker plots. BRT – Boosted Regression Trees; RF – Random Forest; BD – dry 

bulk density
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Figure 4. Correlations between the measured and predicted log-transformed Ks data for the soils in the Czech 

Republic with respect to their attribution to the grouped texture classes (1–5)
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R2 coefficients ranged from 0.002 (BRT models for 
texture class 5) to 0.260 (Rosetta models for texture 
class 1). Very good predictions were observed for 
the Žichlínek locality (R2 = 0.740). However, a high 
R2 coefficient does not always point to high-quality 
predictions. This is well illustrated in Figure 5, in the 
case of the Ledenice locality, where the R2 coefficient 
reached a relatively high value of 0.388, but Ks was 
significantly overestimated in practically all cases. 
For this reason, the final evaluation and ranking of 
the applied PTFs were made on the basis of RMSE 

(Table 3). The best ranking (1) is attributed to the 
PTF, with the smallest RMSE value summarised for 
all five grouped texture classes. The effect of over-
estimation or underestimation of the Ks values is 
shown in Figure 6, where the ME for each applied 
PTF and grouped texture class is plotted. Sparse 
underestimated Ks values originated randomly from 
all five grouped texture classes; no trends or texture 
dependency can be observed for the ME values. 

In conclusion, the best performance was by the 
Neural Network models in Rosetta, followed by the 

Figure 5. Correlations between the measured and predicted log-transformed saturated hydraulic conductivity 

(Ks) data for each of the localities in the Czech Republic. BRT – Boosted Regression Trees; RF – Random For-

est; BD – dry bulk density

M
ea

su
re

d
 l

o
g 

K
s 

(c
m

/d
ay

)

4

3

2

1

0

–1

–2

R2 = 0.107

4

3

2

1

0

–1

–2

4

3

2

1

0

–1

–2

4

3

2

1

0

–1

–2
–2   –1     0     1     2      3     4

R2 = 0.017 R2 = 0.311 R2 = 0.056

R2 = 0.275 R2 = 0.150 R2 = 0.195 R2 = 0.388

R2 = 0.157R2 = 0.213R2 = 0.569R2 = 0.740

R2 = 0.311

344

Original Paper Plant, Soil and Environment, 68, 2022 (7): 338–346

https://doi.org/10.17221/123/2022-PSE



Random Forest models, while the ranking of the Boosted 
Regression Trees models was the poorest. The predic-
tion quality increased with an increasing number of 
predictors, which corresponds with the findings of 
Schaap et al. (2001). The Rosetta SSC-BD model, based 
on the known % content of clay, silt and sand particles, 
together with information on BD, outperformed all 

other models (Table 3). However, machine learning 
techniques have great potential and show promising 
results (Tóth et al. 2015, Araya and Ghezzehei 2019). 
The RMSE values for the models using RT reported 
by Lilly et al. (2008) were on an average 0.97; Tóth et 
al. (2015) reported an RMSE range from 0.90 to 1.36, 
while RMSE reported by Araya and Ghezzehei (2019) 

Table 3. Performance and the final ranking of the tested pedotransfer functions (PTFs) based on root mean 

squared error (RMSE)

Grouped texture 
class*

BRT 3-0 BRT 3-1 BRT 3-2   RF 3-0 RF 3-1 RF 3-2
Rosetta 
(SSC)

Rosetta 
(SSC + BD)

RMSE values (log Ks in cm/day)

1 (11) 0.825 0.605 0.783 0.597 0.430 0.493 0.256 0.318

2 (13) 0.841 0.881 0.857 0.745 0.734 0.754 0.621 0.700

3 (40) 1.499 1.367 1.307 1.513 1.418 1.306 1.265 1.122

4 (54) 1.520 1.399 1.306 1.326 1.341 1.240 1.153 1.072

5 (8) 1.791 1.322 1.365 1.493 1.157 1.134 1.168 1.146

Ranking according to RMSE for each Grouped texture class 

1 (11) 8 6 7 5 3 4 1 2

2 (13) 6 8 7 4 3 5 1 2

3 (40) 7 5 4 8 6 3 2 1

4 (54) 8 7 4 5 6 3 2 1

5 (8) 8 5 6 7 3 1 4 2

Sum of rankings** 37 31 28 29 21 16 10 8

Ranking 1–5 (126) 8 7 5 6 4 3 2 1

*The values in brackets denote the number of soils within each grouped texture class. **The best ranking (1) is attributed 

to the PTF with the smallest value of the sum of the individual rankings within the grouped texture classes. BRT – 

Boosted Regression Trees; RF – Random Forest; BD – dry bulk density

Figure 6. Performance evaluation of the tested pedotransfer functions (PTFs) by means of mean error (ME) for 

the grouped textural classes (1–5); negative values of ME refer to an underestimation in comparison with the 

measured values (log Ks in cm/day). BRT – Boosted Regression Trees; RF – Random Forest; BD – dry bulk density
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reached 0.34–0.44 for the BRT models and 0.37–0.44 
for RF. In our study, comparable results with RMSE < 1 
were obtained by all eight applied models of PTFs only 
for the grouped soil texture classes 1 and 2 (sand, loamy 
sand and sandy loam). A possible reason for not scor-
ing higher might be the properties of the soils within 
the background soil database of PTFs published by 
Araya and Ghezzehei (2019), which contains mostly 
soils with a coarse texture; sand, loamy sand, sandy 
loam, sandy clay loam. In our upcoming work, we 
therefore plan to involve soil data from this study into 
the background database and repeat the performance 
testing of the PTFs. 
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Abstract: 'e determination of the saturated hydraulic conductivity Ks on a field scale presents a challenge in which 
several variables have to be considered. As there is no benchmark or reference method for the Ks determination, the 
suitability of each available method has to be evaluated. 'is study is aimed at the functional evaluation of three publicly 
available types of pedotransfer functions (PTFs) with different levels of utilised predictors. In total, ten PTF models were 
applied to the 56 data sets including the measured Ks value and the required predictors (% sand, silt and clay particles, 
dry bulk density, and organic matter/organic carbon content). A single agricultural field with a relatively homogenous 
particle size distribution was selected for the study to evaluate the ability of  the PTF to reflect the variability of Ks. 
'e correlation coefficient, coefficient of  determination, mean error, and root mean square error were determined 
to evaluate the Ks prediction quality. 'e results showed a high variability in Ks within the field; the measured Ks va-
lues ranged between 10 and 1261 cm/day. Although the tested PTF models are based on a robust background of soil 
databases, they could not provide estimates with satisfactory accuracy unless local soil data were incorporated into the 
PTF development. 
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Agricultural soils are subjected to the cultivation 
and fertilisation of the soil surface layer which re-
sults in changes to the soil hydrophysical properties. 
Plant growth and root development together with 
the activity of soil fauna result in a relatively high 
variation in the hydraulic properties of agricultural 
soils. In addition to that, the drying of the soil and 
the creation of cracks contribute to the formation 
of preferential pathways, allowing faster water infil-
tration and reaching deeper soil layers (Štekauerová 
& Mikulec 2009). Undesirable significant herbicide 

or pesticide contents can be leached from the surface 
to the deeper layers and/or to the groundwater (Fait 
et al. 2010; Willkommen et al. 2021). One of the most 
important hydraulic properties of each soil is the 
saturated hydraulic conductivity Ks. It is a widely 
used characteristic in soil water and solute trans-
port models incorporated in a number of different 
environmental, hydrological and water management 
applications (Schaap et al. 2001; Araya & Ghezzehei 
2019; Tuffour et al. 2019). Under most field conditions, 
soils are not only heterogeneous, but also anisotropic. 
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The heterogeneity of the soil can be defined by the 
spatial variability of its properties, e.g., Ks. Anisot-
ropy, on the other hand, leads to different property 
exhibitions in different directions; measured Ks values 
in the vertical direction may be higher or lower than 
those measured in the horizontal direction. There are 
several methods for the Ks measurement; in the field 
and in the laboratory by using different types of infil-
trometers. Ks in-situ can be determined by, e.g., the 
Double-ring infiltrometer (Parr & Bertrand 1960), 
Hood infiltrometer (Schwärzel & Punzel 2007), Guelph 
infiltrometer (Soilmoisture Equipment Corp., USA), 
and SATURO (METER Group Inc., USA). Ks in the 
laboratory can be determined by a constant or falling 
head apparatus such as a KSAT device (METER Group 
Inc.). Unfortunately, there is no standard procedure for 
the Ks determination, to which the others can be related 
to or compared with. Direct measurement can involve 
an unreasonably high number of replications to account 
for the spatial variability of Ks, especially when large 
and/or heterogeneous areas are being characterised. 
That is why indirect Ks estimation methods of have been 
developed. Bouma and van Lanen (1987) introduced 
the term “transfer functions” and later Bouma (1989) 
introduced the term “pedotransfer functions (PTFs)” 
for these estimation methods. Minasny et al. (1999) 
described PTF as a translation of data “we have” into 
data “we need”. Ks estimations are based on routinely 
measured and easily available soil properties called 
predictors, such as the particle size distribution data, 
dry bulk density, and organic matter/organic carbon 
content. Over the last 30 years, numerous PTFs have 
been proposed and their estimation quality has been 
evaluated and compared mainly for the prediction 
of soil water retention parameters; however, a review 
by Zhang and Shaap (2019) provided an insight into 
the history of Ks predictions, and discussed the re-
quired predictors and statistical techniques for the 
PTF development. 

There are many types and forms of PTF; PTF can 
be grouped according to some basic criteria. Wösten 
et al. (1998) divided the PTF into two groups: Class 
PTF attributing the values of Ks according to their 
relevance to a particular soil texture class and, Con-
tinuous PTF where linear, reciprocal and exponen-
tial relationships of the predictors were used in the 
regression analysis. Tomasella et al. (2003) divided 
the empirical PTF into two other groups: Point PTF 
and Parametric PTF. Minasny et al. (1999) presented 
parametric and point estimates based on multiple 
linear regression, extended non-linear regression 

and artificial neural networks (NNs). NN analysis 
is implemented in a user-friendly program Rosetta, 
where Schaap et al. (2001) used a hierarchical ap-
proach to estimate Ks for different levels of the avail-
able predictors. Kröse and van der Smagt (1996) 
described NN as a highly interconnected network 
created by simple processing units (neurons) which 
communicate by sending signals to each other over 
the weighted connections. Each unit receives input 
from external sources, computes an output signal 
from it and propagates it to the other units. Three 
types of units (layers) are usually distinguished: input 
units which receive data from outside the neural 
network, output units which send the data out of the 
neural network and hidden units which are between 
the input and output units (their input and output 
signals remain within the neural network).

The recent technical progress in high-performance 
computing together with a collection of soil hydraulic 
data into large databases has enabled the development 
of data-driven methods such as machine learning 
technique (ML). PTF for Ks prediction using four 
types of ML-algorithms were published by Araya 
and Ghezzehei (2019); models using the K-Nearest 
Neighbours, Support Vector Regression, Random 
Forest (RF) and Boosted Regression Trees (BRTs) for 
different levels of predictors are available within their 
PTF App. The RF method averages the decisions of the 
large number of individually grown decision trees 
by searching for a predictor that provides the best 
split, resulting in the smallest model error. Gunarathna 
et al. (2019) reported this method as relatively robust 
to errors and outliers. BRT combines two algorithms: 
Regression Trees relating the response to their pre-
dictors by recursive binary splits and an adaptive 
method for combining many simple models for the 
improvement of the predictive performance called 
boosting (Elith et al. 2008). Thanks to their operat-
ing principle, BRT-based PTF are attractive in works 
with different origins of the training data, such as Ks 
measurement in-situ/laboratory by different methods 
(Araya & Ghezzehei 2019). The BRT and RF methods 
incorporated within the PTF App are based on more 
than 18 000 datasets of United States (US) soils and 
offer predictions based on up to 20 predictors. Such 
a large background database might imply the possibility 
of use for the Ks estimation of soils outside the US.

This study aims to find out whether the Ks of an ag-
ricultural field with relatively high spatial and temporal 
variability in Ks can be estimated with acceptable ac-
curacy by means of PTF based on different approaches; 
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NN analysis in Rosetta by Schaap et al. (2001), ML-
algorithms in the PTF App by Araya and Ghezzehei 
(2019) and the continuous PTF by Wösten et al. (1998).

MATERIAL AND METHODS

Source data. This study utilised information about 
the particle size distribution (% clay, silt and sand), dry 
bulk density (BD) and organic matter (OM)/organic 
carbon (Cox) paired with 56 Ks measurements. The 
Ks measurements were carried out in situ by a Pres-
sure ring infiltrometer (Matula & Kozáková 1997) 
in 2008–2009 and also by a KSAT device (METER 
Group, Inc.) in the laboratory on 250 cm3 soil core 
samples in 2021. All the data originate from one 
agricultural field managed by different tillage opera-
tions since 1995 within the experimental research 
at the Crop Research Institute in Prague (altitude 
345 m a.s.l., 50°5'17.264''N, 14°17'50.024''E, with 
a mean annual precipitation of 473 mm and a mean 
annual temperature of 7.9 °C). The following tillage 
treatments were repeatedly applied within the experi-
mental field: conventional tillage with mouldboard 
ploughing up to 22 cm, reduced tillage with a non-

inversion treatment of the top 10 cm by a chisel 
plough and no-tillage (direct drill). The following crop 
rotation is being used: pea (Pisum sativum) – winter 
wheat (Triticum aestivum) – oil seed rape (Brassica 

napus subsp. napus) – winter wheat (Triticum aes-

tivum). The Ks data originate from measurements 
in all three types of crops in different phases of the 
vegetation season. The soil texture (Soil Survey Staff 
2014) of the experimental field is silty clay loam (38 
samples) and silt loam (18 samples) and the soil was 
classified as Haplic Luvisol (IUSS Working Group 
2015), formerly referred to as Orthic Luvisol (FAO-
UNESCO 1974). The basic soil properties (Table 1) 
were determined by standard methods; particle size 
distribution analysis by the Hydrometer Method, 
particle density by the Pycnometer Bottle Method, 
the dry bulk density (gravimetric method on 100 and/
or 250 cm3 undisturbed soil samples), the organic 
carbon content Cox by the Walkley–Black oxidomet-
ric method (organic matter content was obtained 
by multiplication by a factor of 1.724).

Tested PTFs. Ten PTF models with different levels 
of predictors were evaluated in this study (Table 2). 
Two ML-algorithms with three levels of predictors 

Table 1. Basic soil characteristics of the experimental site in Praha-Ruzyně

OM Cox Dry bulk  
density (g/cm3)

Clay Silt Sand Particle  
density (g/cm3)

Ks 
(cm/day)(%) (%)

Min 1.241 0.720 1.13 22.0 54.2 8.0 2.60 10.2

Max 3.362 1.950 1.62 33.5 65.5 19.0 2.64 1 261.2

Average 2.339 1.357 1.35 30.2 57.2 12.6 2.62 336.8

SD 0.476 0.276 0.12 3.3 3.3 2.7 0.02 271.4

OM – organic matter content; Cox – organic carbon content; SD – standard deviation; Ks – saturated hydraulic conductivity

Table 2. List of the applied pedotransfer functions (PTF) and corresponding predictors

PTF model Method Predictors Reference

BRT 3-0 boosted regression trees % sand, % silt, % clay Araya and Ghezzehei (2019)

BRT 3-1 boosted regression trees % sand, % silt, % clay, BD (g/cm3) Araya and Ghezzehei (2019)

BRT 3-2 boosted regression trees % sand, % silt, % clay, BD (g/cm3), Cox (%) Araya and Ghezzehei (2019)

RF 3-0 random forest % sand, % silt, % clay Araya and Ghezzehei (2019)

RF 3-1 random forest % sand, % silt, % clay, BD (g/cm3) Araya and Ghezzehei (2019)

RF 3-2 random forest % sand, % silt, % clay, BD (g/cm3), Cox (%) Araya and Ghezzehei (2019)

Rosetta-SSC neural network % sand, % silt, % clay Schaap et al. (2001)

Rosetta-SSC+BD neural network % sand, % silt, % clay, BD (g/cm3) Schaap et al. (2001)

Wösten-original p. non-linear regression analysis % silt, % clay, OM (%), BD (g/cm3), topsoil Wösten et al. (1998)

Wösten-own p. non-linear regression analysis % silt, % clay, OM (%), BD (g/cm3), topsoil Wösten et al. (1998)

BD – dry bulk density; Cox – organic carbon content; OM – organic matter content; topsoil is a qualitative variable with a value 

of 1 for topsoil and 0 for subsoil
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from the ML-based PTF of Araya and Ghezzehei 
(2019) were selected for testing in this study: Random 
Forest (RF) and Boosted Regression Trees (BRTs). 
The NN analysis incorporated into the public domain 
Windows-based modelling program Rosetta (Schaap 
et al. 2001) offers a total of five hierarchical models 
of PTF, two of which were tested in this study. The 
continuous PTF of Wösten et al. (1998) was applied 
in its original form of Equation (1) and also with newly 
derived regression parameters (Equation (2)) specific 
for the silty clay loam texture class based on the soil 
water retention data contained in the database of soil 
hydrophysical properties in the Czech Republic (HY-
PRESCZ database) (Miháliková et al. 2013).

Ks*= 7.755 + 0.0352 × S + 0.93 × topsoil – 0.967 × 
      × D2 – 0.000484 × C2 – 0.000322 × S2 + 0.001 × 
      × S–1 – 0.0748 × OM–1 – 0.643 × ln(S) – 0.01398 × 
      × D × C – 0.1673 × D × OM + 0.02986 × topsoil × 
      × C – 0.03305 × topsoil × S   (1)

Ks*= 3149.75 + 26.33 × S +1.447 × D2 + 0.0023 × 
      × C2 –0.1056 × S2 –12119.6 × S–1 – 0.0033 × 
      × OM–1 – 1011.6 × ln(S) – 0.112 × D × C + 
      + 0.0911 × D × OM   (2)

where:
Ks* – transformed parameter Ks, Ks* = ln(Ks);
ln – a natural logarithm;
C – content of the clay particles (%);
D – dry bulk density (g/cm3);
S – content of the silt particles (%);
OM – organic matter content (%).

Topsoil is a qualitative variable with a value of 1 for 
topsoil and 0 for subsoil.

Statistical evaluation. The quality of the Ks es-
timates was evaluated by the mean error (ME), the 
root mean square error (RMSE), the correlation 
coefficient (r), and the coefficient of determination 
(R2), as follows:  

   (3)

   (4)

  (5)

where:
xi – measured Ks data;
yi – predicted Ks data;
n – the number of xi yi data pairs.

For the possibility of comparison to other published 
studies, the Ks values were determined in cm/day. 
Since the Ks is not normally distributed, the statistical 
evaluation was performed on the log-transformed 
Ks data.

RESULTS AND DISCUSSION

In total, 56 Ks values were predicted by ten PTF 
models for a single agricultural field where different 
tillage practices have been applied repeatedly since 
1995. The particle size distribution data, the essential 
predictors of each PTF, did not significantly differ 
in space and time. The maximum differences in % 
content of the clay, silt and sand particles reached 
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11%, but the measured Ks value ranged from 10.2 cm/
day to 1261.2 cm/day (Table 1). Such variability 
in Ks is common for agricultural fields, where till-
age operations temporarily affect the soil structure 
(Šteakauerová & Mikulec 2009; Schwen et al. 2011). 
Smaller Ks values were measured on the undisturbed 
soil samples by the KSAT device in the laboratory 
compared to the Ks values measured in the field 
(Figure 1). This might be due to the disturbance 
of the continuity of the porous system during the 
sampling and/or transportation process. Since there 
is no reference method for Ks determination, the 
possible effect of the determination method has not 
been evaluated and all the measured data were used 
for a quality evaluation of the Ks estimates. The re-
sulting statistics ME, r, R2 and RMSE are presented 
in Table 3, where the individual PTF models are 
ranked (1–10) according to their performance. The 

best ranking (1) was attributed to the PTF with the 
smallest RMSE value. The distribution of the mea-
sured and estimated Ks values in terms of quartiles 
is depicted in Figure 2; a very wide range of estimated 
Ks values was obtained from BRT 3-0. The individual 
estimates were checked and it was found that only 
a 2% difference in the clay or silt content resulted 
in estimates being two orders of magnitude different. 
An increase in the clay content from 30.6% to 32.6% 
with an unchanging silt content of 55.5% and a cor-
responding 2% decrease in the sand content from 
13.9% to 11.9% caused a decrease in the estimated 
Ks value from 1573.8 to 10.5 cm/day. Similar to that, 
an increase in the silt content by 2% (from 55.5% 
to 57.5%, with an unchanged clay content of 30.6% 
and a corresponding 2% decrease in the sand content 
from 13.9% to 11.9%) also caused a significant drop 
in the estimated Ks value (from 1573.8 to 13.9 cm 

Table 3. Statistical evaluation and final ranking of the tested pedotransfer functions (PTF) on the basis of the root mean 
square error (RMSE)

PTF model r R2 (%) ME RMSE Ranking*

Wösten-own p. –0.038 0.147 –0.101 0.521 1

Rosetta SSC+BD –0.076 0.584 –1.014 1.235 2

RF 3-0 0.008 0.006 –1.054 1.238 3

Wösten-original p. 0.253 6.393 –1.205 1.273 4

BRT 3-2 –0.094 0.881 –1.183 1.314 5

Rosetta SSC 0.232 5.390 –1.282 1.348 6

BRT 3-0 –0.138 1.912 –0.700 1.385 7

RF 3-2 0.101 1.020 –1.390 1.456 8

BRT 3-1 –0.071 0.508 –1.395 1.537 9

RF 3-1 0.095 0.907 –1.616 1.682 10

r – correlation coefficient; R2 – coefficient of determination; ME – mean error; *the best ranking (1) is attributed to the PTF 

with the smallest RMSE value

Figure 2. Box-plots of  the measured and 
estimated saturated hydraulic conductivity 
(Ks) values
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per day). These unreasonably high Ks estimates 
which appeared in 12 cases affected the BRT 3-0 
performance, as documented by  the correlation 
graphs displayed in Figure 3. Other BRT models 
with a higher number of predictors using not only 
the particle size distribution data, but also the BD 
(BRT 3-1) or BD and Cox (BRT 3-2) did not show 
such an effect. Despite the above discussed cases 
of overestimations, from a general point of view, all 
the tested PTF models underestimated the measured 
data. The extent of the underestimation can be ob-
served in Figure 4, where the resulting negative ME 
values are graphically displayed. Temporary enhanced 
infiltration caused by tillage operations (e.g., Moret 
& Arrúe 2007; Kreiselmeier et al. 2020) and/or higher 
pore connectivity and the macroporous preferential 
flow reported for no-tillage (reported by, e.g., Galdos 
et al. 2019) were not sufficiently reflected by the PTF. 

The correlation between the measured and pre-
dicted Ks data is indicated by the r and R2 coefficients; 

the higher the coefficients, the better the correlation. 
As can be seen from Table 3 and Figure 3, the cor-
relation between the measured and estimated data 
is low. However, for some estimates, the low values 
of the r or R2 coefficients do not necessarily mean 
a low estimation quality. Instead, the average devia-
tion of the predicted Ks value from the measured 
Ks expressed as RMSE is considered as the most 
suitable characteristic for the evaluation of the Ks 
estimation quality. The lowest RMSE value of 0.521 
was determined for the continuous PTF in a form 
by Wösten et al. (1998), for which the own regres-
sion parameters were derived based on the Czech 
database of soil hydraulic properties HYPRES CZ 
(Miháliková et al. 2013). This is the only PTF model 
which provided estimates of Ks for a given agricultural 
soil with acceptable accuracy comparable to other 
published studies (RMSE < 1). This is agreement 
with findings of Nemes et al. (2003) highlighting 
the need for national scale datasets to be utilised 

Figure 3.  Correlations between the measured and 
predicted saturated hydraulic conductivity (Ks) data 
for the individual models of the applied pedotransfer 
functions (PTFs)
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within the estimation procedures by PTF. Lilly et al. 
(2008) reported averaged RMSE values of 0.97 for 
PTF using Regression Trees and Tóth et al. (2015) 
reported RMSE for estimates on a European scale 
in a range from 0.9 to 1.36. Araya and Ghezzehei 
(2019) presented RMSE values between 0.34 and 0.44 
for the BRT models and from 0.37 to 0.44 for models 
employing RF. Although a very robust soil database 
of more than 18 000 datasets is behind their PTF 
App, the individual texture classes are not uniformly 
represented; soils with coarse texture predominate 
within the database. The possible improvement in the 
estimation quality by means of incorporation of the 
local soil data into the ML-based PTF by Araya and 
Ghezzehei (2019) is planned for future studies. Es-
timations with other parameters reflecting changes 
in the soil properties caused by agrotechnical op-
erations, such as aggregate stability is also planned 
to be explored. 

CONCLUSION

Despite the large databases behind the PTF in Ro-
setta (Schaap et al. 2001) and the PTF App (Araya & 
Ghezzehei 2019), these PTF did not provide satisfac-
tory estimates for the agricultural soil being inves-
tigated (Haplic Luvisol, in the Czech Republic). The 
soil reflects changes in the structure due to tillage 
operations and, thus, has a great temporal variabil-
ity, which is difficult to describe by predictors. The 
importance of local, national-based databases of soil 
hydraulic properties has been confirmed as they can 
provide background data which can lead to higher 
quality estimates of Ks. Although the use of estimated 
saturated hydraulic conductivity values is becoming 
more common, the importance of direct determina-
tion methods should not be downplayed. 
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4.  Summary Discussion 

This study series investigates soil hydrophysical properties, organic carbon fractions, surfactant 

applications, and the estimation of crucial factors such as soil water retention points and Ks. 

Across the four publications, a cohesive examination unfolds, thoroughly investigating soil 

properties. The findings yield valuable insights into moisture constants, nutrient dynamics, and 

hydraulic conductivity, contributing to the ongoing evolution of soil science and water 

management.  

To address the first two objectives, the study of Almaz et al. (2023a) investigated the impact of 

repeated H2Flo applications on soil properties, revealing a substantial influence on the uniform 

distribution of soil volumetric water content, particularly at 30 and 50 cm depths. This aligns 

with established benefits of wetting agents in improving water penetration and redistribution 

in soils (Oostindie et al., �����������	��
 al., 2019). Physicochemical changes included a slight 

increase in pH� �Boomgaard et al., 1987) due to surfactant adsorption, with positive effects 

observed on electrical conductivity, total organic carbon, and extractable nutrient 

concentrations (Ogunmokun and Wallach 2021). The shift towards neutral pH enhanced 

nutrient availability. Changes in nitrogen forms indicated a favourable environment for 

nitrification. While extractable phosphorus concentrations showed no significant differences, 

repeated H2Flo applications increased POXC content, highlighting altered degradation 

conditions, while Cws and Chws contents remained unchanged. 

The study identified intricate relationships between organic carbon fractions and nutrient 

levels, shedding light on the complex interactions induced by H2Flo. Notably, H2Flo 

applications resulted in a decrease in soil hydraulic conductivity, affecting both Ks and K(h). 

This decrease in Ks aligns with documented impacts of non-ionic surfactants on sandy soils. 

Such effects are attributed to factors like soil aggregate disintegration (Mingorance et al., ������

Liu et al., 2022), pore blockage (Celik et al., 1979���
�

��	�and Scamehorn 1986), and clay 

content (Peng et al., 2017). Additionally, the clay content of the soil plays a crucial role in 

mineral expansion and fine particle mobilization (Peng et al., 2017). These changes tend to 

occur after multiple applications rather than during the initial application of non-ionic 

surfactants, which typically results in increased Ks values, especially in hydrophobic soils. 

Considering the increased POXC and nitrification activity, a potential factor contributing to 

decreased Ks rates is bioclogging. Research has indicated that bioclogging can lead to a 

reduction in Ks (Hallett and Young, 1999). When bacteria colonize soils, they form biofilms 
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on pore walls, composed of cells tightly entwined in a network of exopolymer glycocalyx. This 

coverage reduces the available pore space for water flow, and the exopolymer may also alter 

soil swelling properties and disperse colloidal particles (Peng et al., 2017). It is noteworthy that 

some insights are drawn from relatively old studies, as current scientific approaches typically 

focus on K(h) in experimental designs. The observed decline in Ks values from our study aligns 

with results from K(h) tests conducted in laboratory settings using soils, both treated and 

untreated. Similar outcomes have been highlighted in various studies over the past two decades, 

particularly in non-hydrophobic soils (Mobbs et al., �����������	��
��
�, 2020). Bashir et al. 

(2020) specifically associated reduced hydraulic conductivity with slowed vertical movement 

and increased lateral dispersion of water and surfactant. 

Correlations between OCFs and Ks unveil intricate relationships shaped by wetting agents, soil 

dynamics, and soil organic matter. Existing literature often combines K(h) with dissolved 

organic carbon (DOC) or particulate organic carbon (POC), leaving a gap in direct comparisons 

with Ks. Despite this, our data highlights moderate to robust, yet divergent correlations between 

OCFs and Ks. Water-soluble fractions exhibit a positive association, while POXC shows an 

inverse relationship with Ks. Notably, although Ks positively correlates with Cws and Chws, 

it is important to note that treated soils did not exhibit hydrophobic properties in water droplet 

tests following H2Flo applications.  

Almaz et al. (2023a) indicated a progressive decline in Ks rates over time, even in soils without 

treatment. This trend is primarily attributed to the soil consolidation usually observed throught 

out the vegetative period (Zhao et al., 2014�������
��
�������). It is known that changes in Ks 

�	���
���
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������
���

�	�
�����������
��
	��
�	�����	��������	
������� ��!��"��
��
������#$�

throughout the vegetative cycle, coupled with the effects of emerging decomposition products 

of organic matter following organic amendments (Dong et al., 2022). These elements 

collectively impact the soil's capacity to retain water and determine its available water content. 

The total and readily available water content in soils is typically calculated using the water 

content at FC and at the WP. Determining the FC and WP is equally crucial as the accurate 

estimation of Ks rates, a process presenting considerable challenges. This complexity is evident 

whether the estimation is approached through empirical equations, machine learning models, 

or linear methodologies, as demonstrated in Batkova et al. (2022) and Bá%ková et al. (2023). 

Such accurate estimations are essential for effective water resource management, agricultural 

planning, and a comprehensive understanding of environmental processes.  
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The knowledge of both hydraulic conductivity and the water-holding capacities of soils is 

intrinsically linked to soil fertility, irrigation practices, drainage design, and pollution control 

strategies, underscoring its importance and complexity in the realm of soil and environmental 

sciences. In this sense, following a comprehensive analysis of soil hydrology, the 

decomposition products of organic matter, and the nutritional characteristics of sandy loam soil 

under commercial farming practices in the study by Almaz et al. (2023a), the subsequent study 

by Almaz et al. (2023b) aimed to develop a practical and straightforward method for estimating 

the FC and WP of diverse arable soils across the Czech Republic while providing insights on 

their hydraulic properties. 

To achieve the third objective of the study, the time-consuming aspect of traditional FC and 

WP determination was addressed by Almaz et al. (2023b). Subsequently, relatively simple 

RWC and MCWC determinations for various soils were performed, examining their 

correspondence and linearity with water content at FC under varying suction pressures. Despite 

observing increased error measures, specifically RMSE and MAE, with rising suction 

pressures, it is crucial to emphasize that error magnitudes remained remarkably low (e.g., 

correlation coefficient r varying from 0.905 to 0.961). This consistent low error magnitude 

indicates a generally linear relationship, particularly at lower suction pressures. The persistence 

of this linear relationship is noteworthy, especially considering the diminishing influence of 

gravity on water distribution within soil pores, as elucidated by MCWC, and the increasing 

impact of capillary forces, represented by RWC. As suction intensifies, water drains from 

progressively smaller and potentially more varied pores. This intensified suction, coupled with 

soil hysteresis, may reduce the soil's hydraulic connectivity, potentially leading to water 

entrapment. 

Despite a slight increase in error and a decrease in linearity with rising suction pressures, the 

relationship between MCWC and water content across specified suction pressure values can 

still be considered linear to a significant degree. It is essential to recognize MCWC as the soil's 

capacity to retain water for plant needs, with water distribution within soil pores continuing to 

be influenced by gravity. The classification of water-holding properties based on MCWC, 

ranging from very poor water retention (MCWC < 5%) to very strong water retention (MCWC 

> 50%), provides valuable insights into the soil's capacity (Spasi& et al., 2023). Specifically, 

good water retention occurs when MCWC is between 10 and 30%, a critical range for optimal 

plant growth. 
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Comparing MCWC with FC determined at -33 kPa (FC33m), a strong correlation is evident. 

This precision and accuracy, particularly during a relatively short duration of MCWC 

determination, underscore the importance of MCWC in representing the soil's moisture-

holding capabilities. Despite the significant correspondence between MCWC and FC33m, the 

study acknowledges disparities between the two measurements, emphasizing the crucial role 

of drainage duration in soil moisture constants. MCWC, derived from the General Soil Survey 

of Agricultural Soils (GSSAS) in the former Czechoslovakia between 1961–1970, continues to 

be widely employed. Averaged MCWC values for different genetic soil types, as presented in 

the study of Vopravil et al. (2020), highlight variations among soil types. This information is 

invaluable for understanding the water retention characteristics of different soils, with 

Stagnosols and Gleysols exhibiting the highest average MCWC, while Luvisols and Leptosols 

show the lowest values. 

The historical use of simple linear regression equations, such as those by Brežný (Brežný, 

1970) and Váša (Drbal, 1971), has been extensive. However, the study by Almaz et al. (2023b) 

raises questions about the reliability of these equations, suggesting the need for further scrutiny 

in their application. In the broader context of soil property modelling, simple linear 

relationships, such as the one presented by N'me(ek et al. (2001) for recalculation of clay 

fractions, are popular. Historical linear regression equations, including those relating FPSF to 

FC and WP, as presented by Váša, Solná), or Brežný (Drbal, 1971), have been widely used but 

demonstrate questionable reliability. Studies by Litschmann et al. (2016) and Haberle et al. 

(2014, 2020) further explore innovative approaches for evaluating moisture conditions and the 

associations between soil properties and crop productivity under varying water conditions. 

These studies demonstrate the continued relevance of methodologies such as those established 

by Brežný for deriving FC and WP values. 

Due to hydrostatic nature of FC characteristics of soils, which depend on the removal of 

gravitational water and are influenced by the matric potential of the soil's mineral-organic 

particles, we were able to establish strong linear relationships. However, the determination of 

the Ks rate is conducted under hydrodynamic conditions, differing fundamentally from FC 

characteristics. This distinction presents a significant challenge in estimating Ks rates 

accurately, as hydrodynamic conditions involve complex interactions of water movement 

within the soil matrix, influenced by a multitude of factors such as soil texture, structure, and 

organic matter content. Moreover, this contrast in assessment conditions between FC and Ks 

further complicates the interpretation and application of soil water data in practical scenarios. 
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While the hydrostatic principles governing FC are relatively straightforward, the dynamics of 

water flow under hydrodynamic conditions for Ks estimation involve transient states and non-

linear behaviors (Elhakeem et al., 2018). These complexities are exacerbated by environmental 

variables such as temperature (Ye et al., ���*��+��"��
��
�������$�����
���,-��
�����	�"�	���"�

its influence on bulk density) (Pagliai et �
������ ��.�-�/��0��
 al., 2021), and root activity 

�1�-���� ������
����� ���#��2��	�	� �
 al., 2020a), which can significantly change the soil's 

hydraulic properties over time (Blanchy et al., 2023). Consequently, developing robust models 

for Ks estimation requires not only a deep understanding of these intricate soil-water 

interactions but also innovative methodologies that can adapt to the variable and dynamic 

nature of soils in different agricultural and ecological contexts. In this context, Batkova et al. 

(2022) employed different PTF models along with machine learning algorithms to estimate Ks 

using auxiliary soil data and evaluated their performance. 

Batkova et al. (2022) focused on predicting Ks through the application of eight PTFs in soils 

with diverse textures, covering two to six USDA (1951) soil texture classes. The study revealed 

inherent variability in Ks values, with coarser-textured soils exhibiting lower variability 

compared to medium-to-fine textured soils, particularly in tilled agricultural fields. Evaluation 

of the PTF models demonstrated varying performance, with Neural Network (NN) models in 

Rosetta and Random Forest (RF) models outperforming Boosted Regression Trees (BRT) 

models. 

The study emphasized stronger associations observed for coarse-textured soils, highlighting 

challenges in predicting Ks for medium-to-fine textured soils. The importance of the number 

of predictors for enhancing prediction quality was underscored, with the Rosetta SSC-BD 

model, incorporating information on clay, silt, sand, and bulk density, demonstrating superior 

performance. While machine learning techniques, especially NN and RF algorithms, show 

promise in improving predictions, the study acknowledged the need for further refinement. The 

inclusion of diverse soil data in background databases was identified as a crucial step for 

enhancing the robustness and applicability of predictive models. 

The study illustrated the challenges posed by the natural variability of soils, particularly in 

agricultural fields subject to tillage operations. Notably, the performance of PTFs varied across 

different texture classes, with stronger correlations observed for NN models and the RF 

algorithm in coarse-textured soils. Furthermore, the study delved into the nuanced evaluation 

of prediction quality, emphasizing the significance of the RMSE over the r2 coefficient. The 
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Rosetta SSC-BD model emerged as the top performer, surpassing other models in terms of 

RMSE across all grouped texture classes. The results also addressed the potential of machine 

learning techniques, acknowledging their promising results (Tóth et al. 2015, Araya and 

Ghezzehei, 2019) but cautioning the need for continued investigation and optimization. 

Comparative analysis with previous studies highlighted the importance of background soil 

databases��Araya and Ghezzehei, 2019), indicating the intention to incorporate study-specific 

soil data for future evaluations. 

Despite the study by Batkova et al. (2022) relying on the utilization of soil particle size 

distribution, bulk density, and organic matter content in different models to estimate Ks rates, 

these routinely measured characteristics are usually in a strong relationship with applied tillage 

-	��
����� �3	����
,���	� �
� �
��� ������ Schlüter et al., 2020). These practices influence soil 

aeration, porosity, mineral particle movement throughout the soil profile, and organic matter 

degradation, which consecutively alters the Ks rates even in genetically identical soils. To 

evaluate the performance of different PTF models along with machine learning algorithms 

under different tillage practices, the study of Bá%ková et al. (2023) centered on predicting Ks 

values in an agricultural field with diverse tillage practices since 1995. Despite minimal 

variations in particle size distribution data over space and time, the study revealed significant 

variability in Ks values (Šteakauerová and 2���
������*�����/����
��
������$. Measured Ks 

values in the field were notably higher than those obtained in the laboratory, potentially due to 

disturbances during sampling and transportation. The study evaluated the performance of PTFs 

based on statistical metrics, ranking them according to RMSE. Notably, the PTFs’ model by 

Wösten et al. (1998) demonstrated the best accuracy, with the lowest RMSE value of 0.521 

(log cm day-1). This model, refined based on the Czech soil data, aligns with the importance of 

utilizing national-scale datasets in refining predictive models. This underscores the crucial role 

of national-scale datasets, in the development and refinement of PTFs. Bá%ková et al. (2023) 

provided a detailed analysis of the predicted Ks values for a single agricultural field with a 

history of diverse tillage practices. The particle size distribution data, essential predictors for 

each PTF, were found to be relatively consistent over space and time, highlighting the temporal 

stability of these soil properties. However, the measured Ks values exhibited a wide range 

(ranged from 10.2 cm day-1 to 1261.2 cm day-1), emphasizing the impact of tillage operations 

on soil hydraulic properties �2�
���
��
�������� Bonder et al., 2013). One notable observation 

was the discrepancy between Ks values measured in the laboratory and those obtained in the 

field. This disparity was attributed to potential disturbances during the sampling and 
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transportation processes, indicating the challenges in accurately capturing in-situ conditions. 

The study engaged in a thorough evaluation of PTF models, ranking them based on RMSE and 

scrutinizing their performance using correlation graphs. 

An interesting aspect emerged concerning the overestimation of Ks values by certain PTF 

models, notably the BRT 3-0 model. The study attributed these overestimations to slight 

differences in particle size distribution, underscoring the sensitivity of these models to small 

variations in input parameters. However, despite such cases of overestimation, the general trend 

across all tested PTF models was an underestimation of measured Ks values. The correlation 

coefficients (r and r2) between measured and predicted Ks values were observed to be low, but 

the study wisely emphasized that the RMSE should be considered the most suitable 

characteristic for evaluating Ks estimation quality.  

Comparative analysis with other studies, such as those by Lilly et al. (2008), Tóth et al. (2015), 

and Araya and Ghezzehei (2019), provided valuable context for understanding the performance 

of the tested PTF models. The discussion also outlined future research directions, emphasizing 

the planned incorporation of local soil data into machine learning-based PTFs, which is 

expected to enhance estimation quality. Additionally, the exploration of other parameters 

reflecting changes in soil properties caused by agrotechnical operations, such as aggregate 

stability, is highlighted as a prospective avenue for further investigation. 
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5. Conclusions 

The serie of publications provides insights into soil hydrophysical properties, organic matter 

degradation products, and predictive modelling. The serie begins with a detailed focus on 

subsurface drip irrigated loamy sandy soil under commercial farming practices, receiving 

continuous mineral and organic fertilizer inputs. A part of the related field was treated with 

repeated applications of H2Flo surfactant, which enhanced water distribution but reduced 

hydraulic conductivity, impacting various soil properties including nutrient availability. 

Moreover, the increased NO3
–-N/NH4

+-N ratios and positive correlations between POXC and 

NO3
–-N, along with negative correlations with NH4

+-N, suggest accelerated decomposition and 

increased nitrification under surfactant applications. This observed acceleration in 

decomposition and increased nitrification aligns with the initial hypothesis of the study, 

confirming the anticipated influence of surfactant applications on soil properties and nutrient 

dynamics. The temporal decline in Ks rates of both control and treated soils may result from 

both the expected soil consolidation throughout the vegetative period and the increased active 

carbon pool following the organic input. These results reflect the successful achievement of the 

first and second objectives of this study: to analyze the impact of repeated H2Flo applications 

on soil properties, including hydraulic conductivity and organic carbon fractions. 

In arable soils, the information on Ks rates should be evaluated with the water holding abilities 

of soils, usually focusing on the total available water content derived from FC and WP of the 

soils. FC is an attribute of hydrostatic conditions, contrary to Ks rates, and is deeply connected 

with soils’ porosity and matric potential, dependent on the water holding abilities of mineral 

and organic fractions in soils. In this context, Almaz et al. (2023b) focuses on developing a 

practical method for estimating FC in diverse Czech soils. It simplifies traditional 

determinations by examining RWC and MCWC for various soils under different suction 

pressures and introduces a cost-effective method for estimating FC through strong correlations 

between moisture constants and FC, with practical applications in legacy databases. However, 

traditional PTFs for FC estimation from fine particle size fractions are considered unreliable. 

This fulfillis the third objective of the study: to introduce a novel approach to estimate FC by 

utilizing moisture constants (Retention Water Capacity and Maximum Capillary Water 

Capacity) and appropriate statistical models.   

Albeit having highly correspondent predictions of FC, it should be noted that Ks is a complex 

attribute of soils in a hydrodynamic state, usually necessitating in-situ measurements for 
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accurate results. Producing reliable estimations of Ks with auxiliary data based on particle size 

distribution, dry bulk density, and organic matter content poses several challenges due to its 

inherent relationship, particularly with pore continuity. Ongoing efforts are merging the 

mentioned auxiliary data with different PTF models and machine learning algorithms. 

Therefore, Batkova et al. (2022) and Bá%ková et al. (2023) focused on machine learning-based 

PTFs for predicting Ks in Czech Republic soils. However, the machine learning algorithms are 

not always superior over the traditional regression PTFs. This approach aligns with the second 

and third hypotheses of the study, indicating that the utilization of appropriate PTFs to estimate 

soil hydraulic properties, including FC and Ks, can significantly reduce errors and enhance 

accuracy of estimates. Additionally, considering regional variations in soil characteristics when 

developing and applying PTFs, resulted in more accurate estimations. The studies by Batkova 

et al. (2022) and Bá%ková et al. (2023) align with the last objective of the study, demonstrating 

that, despite challenges, the integration of additional data with machine learning-based PTF 

models holds the potential for enhanced accuracy in predicting Ks. Emphasizing the limitations 

of PTFs in capturing temporal variability, especially induced by tillage operations, underscores 

the importance of local databases for refining predictions, contributing to the fulfillment of the 

objectives of this study. 

In conclusion, these findings collectively advance our understanding of soil dynamics, urging 

a nuanced approach that combines both estimated and directly determined values for 

comprehensive insight into soil properties and their responses to environmental changes. It is 

crucial to update the national soil property databases over time to monitor changes in soil 

properties effectively and obtain necessary comparable data to combat land degradation. 
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