
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ
FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ
DEPARTMENT OF INFORMATION SYSTEMS
ÚSTAV INFORMAČNÍCH SYSTÉMŮ

AGGREGATIONANDANALYSIS OF SOCIALNETWORKCONTENTS
AGREGACE A ANALÝZA OBSAHU ZE SOCIÁLNÍCH SÍTÍ

BACHELOR’S THESIS
BAKALÁŘSKÁ PRÁCE
AUTHOR MATĚJ HORÁK
AUTOR PRÁCE
SUPERVISOR Ing. RADEK BURGET, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019



Brno University of Technology
Faculty of Information Technology

 Department of Information Systems (DIFS) Academic year 2018/2019
Bachelor's Thesis Specification

Student: Horák Matěj
Programme: Information Technology
Title: Aggregation and Analysis of Social Network Contents
Category: Web
Assignment:

1. Study the principles of the most popular social networks and their application interfaces.
2. Study current methods of the content classification based on topic or other criteria.
3. Design the architecture of a system for the aggregation of the contents of selected sources on social

networks and its filtering by relevance to a given topic.
4. Upon agreement with the tutor, choose the appropriate technology and implement the designed system.
5. Perform the testing of the implemented system on real-world data.
6. Summarize the results.

Recommended literature:
Fiala, M.: Propojení sociální sítě Twitter s televizním vysíláním. Brno, 2018. Diplomová práce. Vysoké učení
technické v Brně, Fakulta informačních technologií.
Russell, M. A.: Mining the Social Web, 2nd Edition, O'Reilly Media, Inc., 2013

Requirements for the first semester:
Items 1 to 3

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/
Supervisor: Burget Radek, Ing., Ph.D.
Head of Department: Kolář Dušan, doc. Dr. Ing.
Beginning of work: November 1, 2018
Submission deadline: May 15, 2019
Approval date: October 30, 2018

Powered by TCPDF (www.tcpdf.org)

Bachelor's Thesis Specification/21491/2018/xhorak68 Strana 1 z 1



Abstract
This thesis is focused on getting selected parts of social media content and their analy-
sis. The thesis is aiming for a platform which is connecting individual social networks,
aggregating their content by defined topics and which is opened for next improvements and
extensions. A solution is a multi-container application that uses multi-label classification
and support vector machines. The implemented system solves not shown content, filtering,
and small statistics. Key parts are covered by tests and the system is opened for other
analysis and advanced statistics.

Abstrakt
Tato práce se zabývá ziskem zvolené části obsahu sociálních sítí a jeho následnou analýzou.
Cílem práce je platforma propojující jednotlivé sociální sítě, která dokáže agregovat obsah
těchto sítí podle definovaných témat a zároveň je otevřená dalším rozšířením. Tento cíl byl
vyřešen pomocí kontejnerové aplikace, štítkové klasifikace a metody podpůrných vektorů.
Implementovaný systém řeší algoritmem nezobrazovaný obsah, filtrování a menší statistiky.
Klíčové části systému jsou pokryté testy a systém je otevřený dalším analýzám a pokročilým
statistikám.

Keywords
Social Networks, Text Topic Analysis, Support Vector Machines, REST, Docker

Klíčová slova
Sociální síťe, analýza tématu textu, metoda podpůrných vektorů, REST, Docker

Reference
HORÁK, Matěj. Aggregation and Analysis of Social Network Contents. Brno, 2019. Bach-
elor’s thesis. Brno University of Technology, Faculty of Information Technology. Supervisor
Ing. Radek Burget, Ph.D.



Rozšířený abstrakt
Sociální sítě jsou populární webové stránky, které používají lidé, firmy a další uskupení na
celém světě. Mezi nejznámnější sociální sítě patří Facebook, Twitter atd. Použití sociálních
sítí jako zdroje informací ale nemusí být optimální, protože v mnoha případech sociální
sítě vydělávájí na personalizovaných reklamách a uživateli nebývá zobrazen veškerý obsah,
nehledě na nutnost sledovat každou síť odděleně.

Tato práce se zabývá ziskem zvolené části obsahu sociálních sítí a následnou jeho analý-
zou. Konkrétně si dává za cíl vytvořit platformu, která dokáže propojit jednotlivé sítě,
agregovat obsah podle definovaných témat a poskytnout statistiky obsahu. Tato platforma
by měla být otevřená dalším rozšířením.

Sociální síť je tvořena uživateli, kteří si navzájem mezi sebou sdílejí příspěvky. Obvykle
také poskytují REST aplikační rozhraní pro aplikace třetích stran, které ale může mít
nějaké omezení v přístupu k příspěvkům, informacím o uživateli atd. Většinou je nutné
zaregistrovat aplikaci, aby bylo možné toto aplikační rozhraní používat. Jednotlivé způsoby
použití aplikačního rozhraní se liší podle platformy, nicméně systém popsaný výše většinou
využíval tyto dva způsoby:

∙ Získání příspěvků od určitého účtu nebo z určité skupiny

∙ Získání příspěvků obsahující určité slovo nebo hashtag

Pro analýzu tématu příspěvku byla zvolena klasifikační metoda podpůrných vektorů.
Tato metoda byla zvolena na základě porovnání s pravědopobnostním Bayesovským klasi-
fikátorem. Vzhledem k tomu, že jeden příspěvěk může mít více témat, pro každé téma
příspěvku je vytvořen vlastní klasifikátor. Při určování tématu textu je pak text analy-
zován všemi klasifikátory. Metoda podpůrných vektorů je založena na hledání rozdělující
hranice ve vektorovém prostoru. Aby bylo možné tuto hranici nalézt, je nutné převést texty
do obdobné reprezentace. Tato reprezentace je dosažena pomocí tokenizace, odstranění stop
slov, lemmatizace a výpočtu relevance pomocí TF-IDF.

Jedním z hlavních požadavků pro navržený a implementovaný systém byla jeho rozšiřitel-
nost, např. aby bylo možné jednoduchým způsobem zaintegrovat službu pro analýzu
obrázků. Z tohoto důvodu byl systém implementován jako kontejnerová aplikace, kde
každá část systému je jeden Docker kentejner. Pro příspěvky byla zvolena NoSQL databáze
(Mongo), aby byl možný rychlý přístup k datům v rámci strojového učení. Naopak u uži-
vatelských dat (témata, zdroje atd.) byla zvolena SQL databáze (PostgreSQL). Velký
důraz byl také kladen na aplikační rozhraní systému, konkrétně byl užit API-First Design.
Samotné aplikační rozhraní je implementováno jako Spring aplikace pomocí programovacího
jazyka Kotlin. Toto rozhraní pak volá interní služby pro zisk dat ze sociálních sítí a analýzu
tématu. Tyto služby jsou implementovány v programovacím jazyce Python a využívají řadu
knihoven. Grafickým uživatelským rozhraním systému je jednostránková aplikace, která je
vykreslována na straně klienta. Tato aplikace byla vytvořena pomocí technologie React
a sady komponent z kolekce Material UI. Systém ještě obsahuje kontejner pro pravidelné
úlohy (zisk dat, návrh témat) a pro delegování požadavků na server pomocí technologie
NGINX.

Implementace modelu pro analýzu tématu příspěvku má dostatečné výsledky. Systém
byl také implementován s myšlenkou otevření zdrojů. Součástí vývoje bylo tedy i testování,
aplikační rozhraní je z výrazné části pokryto testy. Funkce pro transformaci dat u grafick-
ého rozhraní a interních služeb jsou také pokryté jednotkovými testy. V rámci repozitáře



byla nakonfigurována i platforma pro nepřetržité dodávky. po každé změně ve zdáleném
repozitáři dojde ke spuštění testů a pokud je zdrojový kód validní, dojde k nasazení systému.



Aggregation and Analysis of Social Network Con-
tents

Declaration
I declare that I have prepared this Bachelor’s thesis independently, under the supervision
of Ing. Radek Burget, Ph.D. I listed all of the literary sources and publications that I have
used.

. . . . . . . . . . . . . . . . . . . . . . .
Matěj Horák

May 14, 2019

Acknowledgements
I would like express my sincere thanks to my supervisor, Ing. Radek Burget, Ph.D., for
responsible guidance and providing valuable feedback.



Contents

1 Introduction 3

2 Social Media and Networks 4
2.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Reddit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 News Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Application Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Twitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Reddit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 News Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Privacy Policies and Data Protection Regulations . . . . . . . . . . . . . . . 10

3 Text Analysis and Aggregation 11
3.1 Multinomial Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Method Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Method Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Optimization Algorithm Example . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Non-Linear Classification . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Classification With More Than Two Classess . . . . . . . . . . . . . . . . . 16
3.4 Text Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4.1 Tokenizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.2 Stop Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4.3 Lemmatization and Stemming . . . . . . . . . . . . . . . . . . . . . 18
3.4.4 Text to Vector Conversion . . . . . . . . . . . . . . . . . . . . . . . . 18

4 System for the contents aggregation of selected sources 20
4.1 Application Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 Architecture Requirements . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Database Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Representational State Transfer Application Interface . . . . . . . . 24

1



4.2.3 Contents Analysis Service . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Implementation 27
5.1 Multi-Container Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Topic Analysis Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Data Pre-Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2 Classification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3 Third-Party API Call Service . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4.2 Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.3 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.4 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.5 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.5 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.6 Request Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Job Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.8 Continuous Integration and Delivery . . . . . . . . . . . . . . . . . . . . . . 35

6 Testing 37
6.1 Analysis Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Unit and E2E Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.3 Manual Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 39

Bibliography 40

A Screenshots 42

2



Chapter 1

Introduction

Social networks are popular websites that are used by people, companies and other entities
for content sharing all over the world. However, a social network may not be designed for
using the social network as an information channel because in most cases, a social network
profits from personalized advertisements and a user does not see all content from subscribed
and followed sources, regardless of the need to use each social network separately.

The idea of creating an application for social networks content aggregation and analysis
was based on the existence of public posts in the city context. News media share articles
about the city and citizens share posts with information, question or with an attachment
like a photo. Some aggregation and analysis tools might be useful for people who are
interested in the city context.

The main goal of this bachelor’s thesis is to design and implement a web application
for content aggregation and analysis from several popular social networks. The application
should be able to get content automatically from social media and networks, provide post
topic analysis and display basic statistics. Assuming implementation will be open sourced,
the application should be ready for easy configuration and extension integration.

First, the thesis focuses on principles of selected social networks and their application
interface. Then, the thesis describes two classification algorithms for text topic analysis
and text pre-processing for getting better results. The next chapters discuss application
architecture and functional requirements, describe implementation and summarize results
from implementation testing.

3



Chapter 2

Social Media and Networks

Social media and networks are internet websites used for communication and for creating
and maintaining relationships between people, companies and other subjects. In January
2018, 69% of U.S. adults use at least one social media site, 68% use Facebook, and 53% of
respondents use Facebook daily. Other platforms are Twitter, Instagram, Reddit, LinkedIn,
etc. [7]

2.1 Principles
Users follow other users and subjects, share posts to other people and send messages in a
chat.

A post can be a text, an image, a video, a link to an external source or some combination.
Users can comment, share the post or give a reaction, e.g. “like”. A post can include
a special tag called hashtag e.g. ”#universitylife”, which defines a topic associated with
the post. Users can display posts containing a specified hashtag.

Social media and networks display content as a list called “feed”. A content rarely con-
tains all posts from followed sources, and post order is not always by time. Feed generating
depends on a user’s behavior, trends, paid advertisement, etc.

The next subsections describe platform specifics.

2.1.1 Twitter

Twitter does not have differences between business and user accounts. Twitter posts can
have a maximal length of 280 characters, and by default each post is public. It is possible
to enable the protected mode and if a user enables this mode, only those that user approve
will see a user’s posts. Post can contain:

∙ Text

∙ Images

∙ Poll

∙ Location

User’s feed is personalized. It is a great platform for real-time posts. For example, users
are posting tweets with assigned hashtags from some live events like concerts, elections,
public disasters, etc.

4



2.1.2 Facebook

This platform has two account types: user account and public page. User accounts can send
and accept friend requests from each other. Only user accounts can follow public pages but
public pages (respectively their administrators and editors) are able to comment, share or
give a reaction to a public post. Users can also enable the possibility of following without
accepted friendship.

Each post from page is public. User has three options: share post with their friends,
publicly or as private post which is visible only for that user. In addition, it is possible to
create private and public groups where posts are shared only with group members.

Facebook supports hashtags but they are not so much used in comparison with Twitter.
User’s feed is personalized and Facebook post can be composed from many types of content:

∙ Text

∙ Images

∙ Feels or Activity

∙ Event

∙ Survey

∙ Location

∙ Offer

∙ Live Stream

2.1.3 Reddit

Reddit is a platform that has similar functions as a forum. Users can share posts on
their profile or in dedicated forums for a particular topic called “subreddit”. User feed is
composed from posts from “subreddits” where the user is a member. By default, post order
in a feed is personalized but user can sort posts by time, score, etc.

Post can be a text, image, video or some URL. Users can add “upvote” or “downvote”
to some post and each post has a score. This score is used across “subreddits” and Reddit
has a special feed for viral posts. Users can also comment on posts and comments are
structured as threads under the post or comment.

2.1.4 News Media

News media publish and display articles on their website. Article has a title, summary and
text body that can have subtitles. Some news media have article tagging and some news
media have sections for articles. News media can focus on a particular topic or can cover
all social topics.

2.2 Application Interfaces
Social media and networks usually have an application interface that can be used for creating
plugins, chatbot, subscription services, etc. The next subsections describe an application
interface for each platform, its requirements and methods for obtaining data from selected
sources because these methods are used in an implementation described in 5.

5



2.2.1 Twitter

This section draws from [10] and [3]. Twitter provides a free limited REST API. There are
limitations like a limited number of requests1 and a limited number of days for a search in
a history. It is possible to get full access by switching to one of two paid plans.

API is running at this URL: https://api.twitter.com/1.1/

Requirements

It is necessary to enable a developer account and register an app for getting access to the
API. This process requires providing information about the intents of API use. Using API
also has to follow Twitter Developer Policy2. Each application has its own keys and tokens.
These keys and tokens are used for authentication and authorization.

Tweet Object

Endpoints described below returns a response containing tweets with structure described
in [3] and this section highlights some fields and its format. Twitter API provides all tweet
information. It is unnecessary to request additional information like tweet author data
because the tweet object contains structure ”user” with fields “screen_name”, “follow-
ers_count”, etc.

The tweet object contains “id” and “id_str”. Twitter recommends using “id_str” be-
cause some programming languages do not support numbers with a size bigger than 53
bits. Tweet time-stamp “created_at” is in format “EEE MMM d HH:mm:ss Z yyyy”
and databases may not support this format for sorting and query operations in databases.
The tweet object also contains the field for the tweet language “lang” and the field for tweet
entities (hashtags, account mentions, urls, etc.) “entities”. The tweet language is a machine
detected.

Search Tweets Containing Particular Word or Hashtag

This endpoint searches tweets from the past seven days. The premium search endpoint
described below is for a longer history.

∙ Resource URL: https://api.twitter.com/1.1/search/tweets.json

∙ Auth: OAuth 2.0 (1.0 also works but not for queries containing hashtag)

∙ Parameters:

∙ – q: word AND -filter:retweets / #hashtag AND -filter:retweets
– tweet_mode: extended
– result_type: recent

Get Tweets from Particular Account

This endpoint returns all tweets from a particular account.

∙ Resource URL: https://api.twitter.com/1.1/search/tweets.json
1https://developer.twitter.com/en/docs/basics/rate-limits
2https://developer.twitter.com/en/developer-terms/policy

6

https://api.twitter.com/1.1/
https://api.twitter.com/1.1/search/tweets.json
https://api.twitter.com/1.1/search/tweets.json
https://developer.twitter.com/en/docs/basics/rate-limits
https://developer.twitter.com/en/developer-terms/policy


∙ Auth: OAuth 1.0 / 2.0

∙ Parameters:

∙ – screen_name: username
– tweet_mode: extended
– include_rts: false

Premium Search

It is necessary to create a developer environment in the Twitter developer dashboard. The
base URL is extended by environment type and name.

∙ Resource Base URL: https://api.twitter.com/1.1/tweets/search/

∙ Resource Example URL: https://api.twitter.com/1.1/tweets/search/30day/
dev.json

∙ Auth: OAuth 2.0

∙ Parameters:

∙ – query: word #hashtag

2.2.2 Facebook

This section draws from [1] and from own exploration. Facebook provides Graph API but
it has limitations in accessing the Facebook data. The Graph API is running on this URL:
https://graph.facebook.com/v3.2/

Requirements

First, it is necessary to create an application. All requests require an access token but
only reviewed applications have their own access token. There are not many resources with
review experience and the chances for getting a public page access token that covers needed
requests for this thesis. However, there is an option to generate user access token but user
access token scope covers only that user data and data from pages and groups where the
user has admin permissions.

Universal Endpoint for Group and Page Posts

This is not the only way to get posts from a page and group. The Graph API response
object is defined by a special parameter “fields”. There is a difference between accessible
fields for a post from a page and from a group and it is possible to have two separate request
types for pages and groups.

∙ Resource URL: https://graph.facebook.com/v3.2/page_or_group_id/feed

∙ Auth: None

∙ Parameters:

∙ – access_token: Your access token

7

https://api.twitter.com/1.1/tweets/search/
https://api.twitter.com/1.1/tweets/search/30day/dev.json
https://api.twitter.com/1.1/tweets/search/30day/dev.json
https://graph.facebook.com/v3.2/
https://graph.facebook.com/v3.2/page_or_group_id/feed


– fields:
created_time,shares,id,story,
message,comments.limit(0).summary(true),
reactions.limit(0).summary(total_count)

2.2.3 Reddit

This section draws from [2]. Reddit provides free limited API. There is a limitation 60
requests per minute per client3. In addition to JSON, it is also possible to get a response
as XML. The response object for endpoints described below is a listing4 containing 100 last
posts and it is possible to send additional requests for getting next posts.

Requirements

For using Reddit API, it is necessary to register an application. Registering an application
generates client ID and client secret key. These values are used for authentication. It is
possible to use Reddit API without authentication, but there is a risk of stopping access to
API by Reddit.

Authentication

Requests described below do not need permission from logged clients because response
data are publicly visible. The Reddit API contains an endpoint with particular parameters
for getting access token without client’s permission - Application Only Authentication. It
computes API rate limits for each device. This is a request for getting a Bearer token which
is added as an authorization header:

∙ Resource URL: https://www.reddit.com/api/v1/access_token

∙ Auth: Basic Auth

∙ Body:

∙ – grant_type: client_credentials

The Basic Auth uses these application keys: User name is the client ID and password is
the client secret key.

Reddit Post Object

Post time-stamp “created” is in unix time-stamp format. Post contains fields “id” and
“subreddit_id” but it is better to use the field “permalink” for accessing the post. The
field “text” is an empty string when the post is media or link only.

Get New Subreddit Posts

This endpoint is for getting new subreddit posts where the subreddit is specified inside
resource URL.

3https://github.com/reddit-archive/reddit/wiki/API
4https://www.reddit.com/dev/api/oauth#listings

8

https://www.reddit.com/api/v1/access_token
https://github.com/reddit-archive/reddit/wiki/API
https://www.reddit.com/dev/api/oauth#listings


∙ Authenticated Resource URL:
https://oauth.reddit.com/r/subreddit_id/new.json

∙ Unauthenticated Resource URL:
https://www.reddit.com/r/subreddit_id/new.json

∙ Auth: Bearer Token or None

∙ Parameters:

∙ – limit: 100

Search Posts Containing Particular Word

This endpoint is for getting new posts containing a particular word where the word is
specified as a parameter.

∙ Authenticated Resource URL:
https://oauth.reddit.com/search.json

∙ Unauthenticated Resource URL:
https://www.reddit.com/search.json

∙ Auth: Bearer Token or None

∙ Parameters:

∙ – q: word
– sort: new
– limit: 100

2.2.4 News Media

News media often provide RSS feed for displaying articles in third party RSS applications
like Feedly. RSS (Rich Site Summary) is a an XML format for unifying contents (arti-
cles, podcasts, events, etc.) from websites. An RSS content is in chronological order. If
the publisher does not provide RSS feed, it is possible to use technologies (for example
python library Newspaper3k) for getting content from articles because articles have uni-
fied HTML structure (”h1” element for title, “p” element for paragraph, etc.).

There are examples of RSS feeds:

∙ The New York Times: http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml

∙ CNET News: https://www.cnet.com/rss/news/

∙ TED Radio Hour: https://www.npr.org/rss/podcast.php?id=510298

9

https://oauth.reddit.com/r/subreddit_id/new.json
https://www.reddit.com/r/subreddit_id/new.json
https://oauth.reddit.com/search.json
https://www.reddit.com/search.json
http://rss.nytimes.com/services/xml/rss/nyt/HomePage.xml
https://www.cnet.com/rss/news/
https://www.npr.org/rss/podcast.php?id=510298


2.3 Privacy Policies and Data Protection Regulations
This section does not belong to the thesis topic but it is appropriate to mention that there
are some restrictions and consequences in working with personal data.

Each platform has its own privacy policy (sometimes also developer policy) that needs
to be followed. In addition, if some application (for example, an application from 4 and 5)
is distributed to someone in some country, it is necessary to comply with the laws of that
country or governmental entity like the European Union and its General Data Protection
Regulation. Understanding and deriving overall requirements for the application may not
be an easy task and legal advice can be useful.

There are examples of possible restrictions or consequences:

∙ Application cannot share processed personal data from a third party application.

∙ Application should have a method for deleting all data of some user. This data should
be also deleted in third-party applications.

∙ User should have an option to export all its data which an application has.

∙ Application cannot display third-party content under monetization. For example, an
article on a page with ads.

10



Chapter 3

Text Analysis and Aggregation

A text can be analyzed in several ways and according to several criteria. For example, it
is possible to analyze and aggregate text by topic or other criteria and try to get the most
similar texts or texts that relate to the selected text. The main goal is to represent texts
in a vector space and build machine learning models for classifications or eventually for
predictions. Afterwards, there is an option to perform statistical analysis.

The text in a vector space representation goes with text feature extraction. In 3.4, there
are described methods of extracting features from text and representing text in a vector
space.

There are two main categories of machine learning tasks: supervised and unsupervised
learning. While the supervised algorithm uses an input dataset with prepared examples of
output, the unsupervised algorithm uses data as it is and tries to identify similar patterns
in the data. Supervised algorithms are used for classification and regression. Unsupervised
algorithms are used for clustering, dimension reduction and anomaly detection. [18] In 3.2
and 3.1, there are described two supervised algorithms for classification. 3.3 describes how
to use a classifier for more than two classes. An example of an unsupervised algorithm in
terms of text topic analysis is Latent Dirichlet Allocation but this algorithm is not described
in this thesis because the algorithm did not comply and was not part of experiments.

3.1 Multinomial Naive Bayes
Multinomial Naive Bayes is a probabilistic learning method. The method uses Bayes rule
to compute the posterior (conditional) probability of the class for a text. The posterior
probability is based on the distribution of the words in a text. There is an assumption
that each word in a text is independent and the word position is not relevant to the text
class. [4]

3.1.1 Method Definition

Multinomial Naive Bayes classification is defined as 3.1 but it is better to use 3.2 because of
a possible floating point underflow. A transformation between 3.1 and 3.2 is using equation
log(𝑥𝑦) = log(𝑥) + log(𝑦) and can be done because the most probable class also has the
highest log probability. [15]

𝑐𝑚𝑎𝑝 = argmax
𝑐∈𝐶

𝑃 (𝑐)
∏︁

1≤𝑘≤𝑛𝑑

𝑃 (𝑡𝑘|𝑐) (3.1)

11



𝑐𝑚𝑎𝑝 = argmax
𝑐∈𝐶

[log𝑃 (𝑐) +
∑︁

1≤𝑘≤𝑛𝑑

log𝑃 (𝑡𝑘|𝑐)] (3.2)

Classifier is finding a class 𝑐 from a set of classes 𝐶 with best probability. 𝑃 (𝑐) is
a probability that text is a class 𝑐 and 𝑃 (𝑡𝑘|𝑐) is a posterior probability that text with
class 𝑐 contains a word 𝑡𝑘. Accordingly, probability of a class is calculated as a product
of probability of a class 𝑃 (𝑐) and probabilities of words in a class 𝑃 (𝑡𝑘|𝑐) for each word in
a text. [15] 𝑃 (𝑡𝑘|𝑐) is a defined as 3.3 but it is better to apply add-one smoothing ([15])
and use 3.4 because probability from 3.3 for non-dictionary word will be zero and then a
probability of a class will be zero. [9]

𝑃 (𝑡𝑘|𝑐) =
𝑇𝑐𝑡∑︀

𝑡′∈𝑉 𝑇𝑐𝑡′
(3.3)

𝑃 (𝑡𝑘|𝑐) =
𝑇𝑐𝑡 + 1∑︀

𝑡′∈𝑉 𝑇𝑐𝑡′ + |𝑉 |
(3.4)

𝑇𝑐𝑡 is a count of occurrences of a given word 𝑡 in texts with class 𝑐 used for training.∑︀
𝑡′∈𝑉 𝑇𝑐𝑡′ is a sum of all lengths of texts with class 𝑐 and |𝑉 | is a vocabulary length. [9]

3.1.2 Example

In this example, there are two classes (a and b) and a set of texts. For simplicity, each text
can contain only two words: “Happy” and “Sad”. The goal is to classify this text: “Sad
Sad Sad Happy Happy”

The first dataset has three sentences and each sentence contains 5 words.
∙ a: Happy Happy Happy Happy Sad

∙ b: Happy Sad Sad Sad Sad

∙ a: Happy Happy Happy Sad Sad
First, it is necessary to calculate the probability for each class and then the posterior

probability for each word and class:

𝑃 (𝑎) =
2

3
𝑃 (𝑏) =

1

3

𝑃 (𝐻𝑎𝑝𝑝𝑦|𝑎) = 7 + 1

10 + 2
=

2

3
𝑃 (𝑆𝑎𝑑|𝑎) = 3 + 1

10 + 2
=

1

3

𝑃 (𝐻𝑎𝑝𝑝𝑦|𝑏) = 1 + 1

5 + 2
=

2

7
𝑃 (𝑆𝑎𝑑|𝑏) = 4 + 1

5 + 2
=

5

7
Then, a classifier calculates probabilities of classes:

𝑃 (𝑎|𝑡) = 2

3
* (1

3
)3 * (2

3
)2 = 0.01097

𝑃 (𝑏|𝑡) = 1

3
* (5

7
)3 * (2

7
)2 = 0.00992

The classifier would pick class a because it has a bigger probability. However, the tested
text is more “Happy” than “Sad” and the result is inaccurate. This is an example that the
short text classification depends more on class distribution than on used words. Now, the
classifier will use a data set with an added word in each sentence:

12



∙ a: Happy Happy Happy Happy Happy Sad

∙ b: Happy Sad Sad Sad Sad Sad

∙ a: Happy Happy Happy Sad Sad Happy

The probability for each class will be the same. It is necessary calculate only posterior
probability for each word and class and then probability of class for the tested document:

𝑃 (𝐻𝑎𝑝𝑝𝑦|𝑎) = 9 + 1

12 + 2
=

5

7
𝑃 (𝑆𝑎𝑑|𝑎) = 3 + 1

12 + 2
=

2

7

𝑃 (𝐻𝑎𝑝𝑝𝑦|𝑏) = 1 + 1

6 + 2
=

1

4
𝑃 (𝑆𝑎𝑑|𝑏) = 5 + 1

6 + 2
=

3

4

𝑃 (𝑎|𝑡) = 2

3
* (2

7
)3 * (5

7
)2 = 0.0039666

𝑃 (𝑏|𝑡) = 1

3
* (3

4
)3 * (1

4
)2 = 0.008789

The classifier would pick class b for the tested document and the second dataset.

3.2 Support Vector Machines
Support Vector Machine is a machine learning method for classifying objects into two
classes. The method is non-probabilistic therefore a result of a classified object is a boolean
value (not a probability of a class). The classification is based on finding a decision boundary
in a vector space (line in two-dimensional, surface in three-dimensional) with the biggest
margin. In Figure 3.1, there are two decision boundaries and the “boundary A” has a bigger
margin than the “boundary B”. Finding the best decision boundary is an optimization
problem. [15]

Figure 3.1: Two Decision Boundaries Margin Difference The “boundary A” has a
bigger margin than the “boundary B”. Taken from [20].

13



3.2.1 Method Definition

This subsection draws from [15] If data are separable into two classes, there is at least one
decision boundary. The decision boundary called hyperplane is a line which is defined as
3.5. For example, in a two-dimensional space hyperplane is defined as 3.6

𝑤⃗𝑇𝑥𝑖 + 𝑏 = 0 (3.5)

𝑤1𝑥+ 𝑤2𝑦 + 𝑏 = 0 (3.6)

𝑤1 and 𝑤2 are features of a line normal (𝑤) and 𝑏 is a bias - line offset from center on
y-axis. Linear classifier is defined as 3.7.

𝑓(𝑥⃗) = 𝑠𝑖𝑔𝑛(𝑤⃗𝑇𝑥𝑖 + 𝑏) (3.7)

Assuming that the Support Vector Machine requires a margin size greater or equal to
one and the best decision boundary has at least one point belonging to a margin border, it
is possible to derive a relation for overall margin width:

𝑤𝑖𝑑𝑡ℎ =
2

|𝑤|
(3.8)

The optimization task is finding 𝑤 and 𝑏 that:

∙ |𝑤| is minimal.

∙ For all (𝑥𝑖, 𝑦𝑖) in a training set, 𝑦𝑖(𝑤⃗𝑇𝑥𝑖 + 𝑏) ≥ 1 holds.

Lagrange’s method can solve this quadratic optimization problem. In the next section,
there is an example of an algorithm for optimization.

3.2.2 Optimization Algorithm Example

This is an optimization algorithm example and this section draws from [12]. The algorithm
starts with large vector 𝑤 (almost zero margin) and trying to find a vector transformation
and 𝑏 which suits with provided dataset, then for best 𝑤 trying to decrease vector size
(increase margin) and repeat. The algorithm has room for improvements.

1. max, min - Find the maximal and minimal feature value

2. Define algorithm variables

∙ transformations - Vector transformations - For example [[1,1],[-1,1],[-1,-1],[1,-
1]] (Room for improvement)

∙ w_step_sizes - Step sizes for w - [max * 0.1, max * 0.01, max * 0.001]
∙ b_step - Step size for b
∙ b_range - B multiplier
∙ latest_optimum - Latest Optimum - At start as [max * 10, max * 10]
∙ latest_optimum_b - Latest Optimum for b

3. For each w_step_size from w_step_sizes:

(a) Define:

14



Table 3.1: Data for Transformations Comparsion
Class x y

-1 1 7
-1 2 8
-1 3 8
1 5 10
1 6 -1
1 7 3

∙ optimum_dict - Optimum dictionary
∙ w - Assign latest_optimum
∙ optimized - Assign false

(b) While optimized is not true:
i. For b in range between - max * b_range and max * b_range

A. Transform w to all transformations
B. If some w with b suits with dataset, add this w and b to optimum_dict

with key nominal length of w
ii. If w[0] is below zero, set optimized to true, else decrease w_step_size

from w (Room for improvement)
(c) Take the element from optimum_dict with lowest key
(d) Assign to latest_optimum value [element.w + w_step_size * 2, element.w

+ w_step_size * 2] (Room for improvement)

4. The decision boundary is defined by element.w and element.b
In [12] and in the algorithm example, the transformation array is [[1,1],[-1,1],[-1,-1],[1,-
1]]. This means that the algorithm transforms the latest optimum vector only into four
diagonal directions and also the decision boundary will be a diagonal at the end. It is
better to generate points in all directions. For example, the algorithm using that four
transformations did not found a decision boundary for the data from table 3.1 but algorithm
using transformations obtained from a function below did. However, loop ending condition
becomes imperfect after this change. This problem was not solved because the algorithm
is only a demonstration.
def get_transformations():

circle_points = []
for x in range (-10, 10):

for y in range(-10, 10):
circle_points.append([x / 10, y / 10])

return circle_points

The accuracy also depends on the iterating in the “b range” (range size and step size)
although there is the same situation as with transformations. It is a wise choice between
accuracy and computing time.

3.2.3 Non-Linear Classification

Sometimes data are not linearly separable as it is shown in the second graph in Figure
3.2. It is possible to make “the kernel trick” - map data to some higher-dimensional vector

15



space. [15] For example, in the third graph in Figure 3.2 there is an example of mapping
data one-dimensional data to two-dimensional vector space using the quadratic function.

Figure 3.2: Non-Linear Classification Problem and “Kernel Trick Solution” Taken
from [15].

3.2.4 Implementations

Implementing own models may not be an easy task. Support Vector Machine has many com-
pleted implementations and most times using one of this implementation may be sufficient.
There are three examples of Support Vector Machine implementations by a programming
language:

∙ C/C++ - SVMlight - http://svmlight.joachims.org/

∙ Python - Scikit Learn - http://scikit-learn.org/

∙ Java - LIBSVM - https://www.csie.ntu.edu.tw/~cjlin/libsvm/

3.3 Classification With More Than Two Classess
This section draws from [15]. There are two methods for classification with more than two
classes: any-of (also known as multilabel) and one-of (also known as multiclass). While
the any-of classifier can classify an object to several classes or a single class or to none of
the classes, the one-of classifier classify to a single class only.

This is the any-of classification algorithm:

1. Build a classifier for each class (dataset is transformed into datasets for each class -
positive and negative values).

2. Classify an object by each classifier separately and assign all positive classes.

This is the one-of classification algorithm:

16

http://svmlight.joachims.org/
http://scikit-learn.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


1. Build a classifier for each class (dataset is transformed into datasets for each class -
positive and negative values).

2. Classify an object by each classifier separately.

3. Assign a class with maximal probability or a score or a confidence value.

3.4 Text Representation
The support vector machines algorithm described in 3.2 works with numeric data such
as vectors, lines and points in a vector space. It is necessary to convert text data into
similar representation. One way is convert text to tokens, lemmas, remove stop words
and calculate term frequency-inverse document frequency. Applying the term frequency-
inverse document frequency also for the multinomial Naive Bayes algorithm described in
3.1 increases a classifier accuracy. [16]

3.4.1 Tokenizing

”Tokenizing is the process of breaking a large set of texts into smaller meaningful chunks
such as sentences, words, and phrases.” [18]

Process output structure can be a tree or a list of tokens where a token represents
a particular text part. Process implementation may vary with intentions. The following
sections describe procedures which can be used inside the process.

Lower Case

It is recommended to convert all words to a small form to unify the letters and then
represent the same words (with a different letter sizes) to the same token type. However,
occasionally loss of meaning may occur. For example, “#Washington” and “#washington”
will be same token and the meaning will be still same but in [15] there are listed examples
with company names (”General Motors “vs. “general motors”), names (”Bush” vs “bush”,
“Black” vs “black”) or acronyms (”computer-aided translation” as “CAT” vs “cat”) where
the conversion has meaning loss.

Special Terms

Texts often contain special terms like links to websites, phone numbers, etc. These terms
can be converted to tokens representing term context but with some level of information loss.
For example, the sentence “Visit https://example.com/posts/hello” can be after tokenizing:

∙ “visit LINK”

∙ “visit LINKTO example.com”

∙ “visit LINKTO example.com/posts/hello”

Text Noise

White characters, punctuation, and other special characters in text are usually not so
significant in comparison with words. In that case, tokenizing should also remove these
characters. For example, the sentence “Hello, welcome in Seattle. How was your flight?”
can be after tokenizing “hello welcome in seattle how was your flight”.

17



Table 3.2: Lemmatization and Stemming Example
Word Stem Lemma
was wa be
eating eat eat
she she she
worse wors bad

3.4.2 Stop Words

Text can contain words that are not so significant for the field of text and analysis type.
These words are called stop words. Removing stop words can increase the accuracy of anal-
ysis methods. This procedure also speeds up analysis processing time because the dataset
size should be lower. [17]

The field of text and analysis type is important for stop words selection. Most times, the
selection is the taking the most frequent words across texts in the dataset with hand-filtering
by field of text and analysis type. [15]

In [17] is listed an example with term ”very high frequency radio”. This term by the
International Telecommunication Union signifies a frequency between 30 and 300 MHz.
The word “very” can be evaluated as stop word but term “high frequency radio” signifies
a frequency between 3 and 30 MHz.

3.4.3 Lemmatization and Stemming

”The goal of both stemming and lemmatization is to reduce inflectional forms and sometimes
derivationally related forms of a word to a common base form.” [15]. While stemming only
crops words to the root of the word, lemmatization replaces words with their base form by
a particular dictionary. “stemmer” applies specific transformation rules and “lemmatizer”
works as a thesaurus. Decision between lemmatization and stemming can depend on text
language and also on performance because “stemmers” based on algorithmic transformation
are less performance-intensive than “lemmatizers”. In Table 3.2 there is an example of
differences between stemming and lemmatization.

3.4.4 Text to Vector Conversion

Furthermore, the text unit (in the thesis case, for example “tweet” text) is referred to as
a document. Each document has properties like a topic, sentiment, a key message and so
on. It is necessary to represent documents in a vector space for any analysis. Then, it is
possible to compare distances between documents and their properties and do analysis and
aggregation.

Assuming that document properties are defined by a particular word occurrence, it
is possible to use word occurrence statistics for the document to vector conversion. For
example, the simplest method is based on counting word occurrence in all documents.
The second option is the term frequency-inverse document frequency referred to as TF-
IDF. However, these methods (called “Bag of Words”) neglect the order of words and
document grammar. [18]

Each word in a document has a particular relevance to the whole document, sentence and
words around the word. “In the area of information retrieval, TF-IDF is a good statistical

18



Table 3.3: TF-IDF Values Example
0 1 2

am 0.000000 0.000000 0.795961
computer 0.680919 0.00000 0.000000
human 0.000000 0.57735 0.605349
is 0.517856 0.57735 0.000000
this 0.517856 0.57735 0.000000

measure to reflect the relevance of the term to the document in a collection of documents
or corpus.” [18].

TF-IDF is defined as 3.9 where 𝑡𝑓 is defined as 3.10 and 𝑖𝑑𝑓 is defined as 3.11:

𝑡𝑓𝑖𝑑𝑓 = 𝑡𝑓 * 𝑖𝑑𝑓 (3.9)

𝑡𝑓 =
Number of times term appears in a document

Total number of terms in the document (3.10)

𝑖𝑑𝑓 = log

(︂
Total number of documents

Number of documents with a given term in it

)︂
(3.11)

For example, Table 3.3 shows TF-IDF results for these three documents:

∙ 0: This is a computer.

∙ 1: This is a human.

∙ 2: I am a human.

Differences between these documents are in a simple machine-readable format because
documents are represented as vectors. For example, the first document has this represen-
tation: [0.000000, 0.680919, 0.000000, 0.517856, 0.517856].

An alternative to statistical methods is doc2vec1. It is possible to train own doc2vec
model on a particular dataset and use this model for the document to vector conversion.
In [8] is a good comparison between doc2vec and TF-IDF.

1Doc2vec is based on word2vec but it adds a paragraph vector. [13]

19



Chapter 4

System for the contents
aggregation of selected sources

This chapter is about the design of the system for getting content from selected sources
and for content aggregation and statistics. Section 4.1 describes basic design principles for
the system and Section 4.2 describes system architecture itself.

4.1 Application Design
It is possible to split system requirements for an application design into two sections by two
points of view: From the user’s perspective and its functional requirements, and from the
developer’s point of view. In other words: define requirements for developer’s convenient
development.

4.1.1 Functional Requirements

An ideal application use scenario has three main parts. A user will subscribe to some
sources (posts from a particular account, posts containing a word or a hashtag) and the ap-
plication automatically gets contents from subscribed sources. The application will provide
analysis and some statistics, and the user will display selected contents, analysis results and
statistics. The sections below describe the main functional requirements.

Contents from Selected Sources in One Place

A user wants to subscribe to selected posts from multiple platforms and have that posts
in one place. For example, the user can select several sources depending on a platform like
posts from a particular account, publisher or posts containing a particular word or hashtag.
Posts have to be synchronized minimally each hour and the application should contain a
way to get data on demand. The user also wants to sort posts.

Contents Analysis

A user wants to define topics that can be assigned to a post. A topic has to represent a
post classification to some criteria. For example, the user can define topics for post topic,
sentiment, etc. Application should be able to suggest topics for each post and user should
be able to confirm particular suggestion. For example, the application suggests two topics:

20



“Technology” and ”Negative”. The user selects only “Technology” and the second topic will
be discarded. The user also wants to filter contents by topics.

Contents Statistics

The application should provide at least basic content statistics like number of posts in
time, by topic and platform. Also, other statistics may be useful to the user. For example,
posts with the most reactions, the most posting authors, a count of posts without topic,
overall topic distribution or the most frequent words.

4.1.2 Architecture Requirements

This section describes three main architecture requirements. The thesis author set these
requirements considering that the implementation will be open sourced. It is not a single
approach. For example, it is possible to design the application as a closed system running
on one configuration only, with a fixed graphical interface, without the possibility of adding
new extensions and third-party usability.

API-First Architecture

API-First Architecture (or API-First Design) is an application development approach that
prefers designing the application interface based on the domain analysis as opposed to
the user-interface driven design, which is quite commonly used. [19] The next reason for
API-First Architecture is a parallel backend a frontend development possibility and simple
openness to third-parties. For example, an application has a graphical user interface only
as a website and someone will create a mobile application.

Application development starts with an Application Programming Interface (in most
times a REST API) design. The mindset “Your API is the first user interface of your
application” can be helpful for the design process. API definition should cover all product
functionality before the backend and frontend implementation. API should not change fre-
quently. Adding new features to a well-designed API should not affect the overall structure.
On the other hand, it is possible to change, refactor or optimize an implementation without
affecting the second side. For example, refactoring backend to a new version with same
API does not affect frontend side, mobile applications or third-party API consumers. [19]

A big emphasis was also placed on making the interface RESTful, for example keep
collection pattern which is decrebed in [5].

Operation System Independency

The open sourced implementation should be easy to configure and set up. A Software
Developer who wants to try the implementation should be able to run this system on
a local machine regardless of operation system (Linux, OSX, Windows). The repository
should contain a README file that describes system configuration and setup. An ideal
configuration is as a one file (in JSON format) for inserting API keys and other third-party
values and the setup is as one line command in the terminal.

Extensibility

The system should be ready for new features, improvements and extensions. The key
consequence in development is having a set of tests (Chapter 6 describes testing) that

21



covers the API. The set of tests ensures safe adding new features without affecting existing
features. For example, the system should be well designed and implemented for easy and
safe addition or integration of:

∙ New social media platform

∙ Another database

∙ Further analysis and statistics

∙ User groups and an authorization layer

∙ New automation

∙ Another internal or third-party API

4.2 System Architecture
The basic idea of the system architecture is one public REST API that has some func-
tionality and also works as a proxy for internal APIs. This is because of the possibility
of using different technologies for different operations. For example, Python has many li-
braries for machine learning but it does not have good support for functional constructions
like collection map, filter, etc. in comparison with Kotlin which was chosen for fundamental
operations like getting and editing the data, eventually for calculations for statistics. HTTP
Request forwarding can be defined in a request proxy configuration or it is a possible cre-
ate forwarding endpoints in the main backend application.

The graphical user interface for the application is a single page application. System
API serves on a root endpoint “/” a set of HTML and JS files. Serving these files handles
the internal Node.js server. and in a client’s web browser executes JS files for starting the
single page application which handles sending requests to an API (with a prefix “/api/”),
dynamic HTML changes and URL routing.

The system contains two databases: SQL and NoSQL. The reason for using two databases
is suitability for particular cases. Content from social media and networks are big data and
fast access is necessary. The thesis author chose a NoSQL database for this use case af-
ter consultation with the supervisor. However, NoSQL database does not guarantee data
consistency. Taking into account that the application in future could contain more sophis-
ticated data entities and its relations like user groups with permissions, SQL database were
chosen for other data such as sources and topics.

In Figure 4.1, there is a system scheme for clarity. The sections below describe each
part of the system in more detail.

4.2.1 Database Model

The SQL Database contains four tables. Table for topics, sources, users and analysis model
trainings. The NoSQL contains a set of collections of posts. Each collection contains posts
for one platform.

SQL Database

All data types are from PostgreSQL because this database type was used for the imple-
mentation. Table 4.1 shows columns for topics and Table 4.2 shows columns for sources.

22



Main Backend

Third-Party APIs

Third-Party API 
Call Service

Request Proxy

Frontend Server

"/" 

Content Database

Topic Analysis 
Service

"/api"

User Database

Web Client

Figure 4.1: System Architecture Scheme

Table 4.1: Topics Table Columns
Name Type
id SERIAL NOT NULL PRIMARY KEY
text_id TEXT NOT NULL
name TEXT NOT NULL UNIQUE

There are columns platform and value_type. Each platform can contain different source
types. For example, Twitter has sources for a hashtag, an account or a word but Facebook
has only pages and groups. These source types are important not only for social platform
API calls but also for validations in a graphical user interface. Source-type definitions are
hard-coded because the application uses only 4 platforms. However, the API prevents from
wrong combination inserts and in the future, there is a possibility to create another table
containing source-type definitions for more dynamic configuration.

All analysis model trainings are in one table, the table has these six columns and these
columns are shown in Table 4.3.

The last table for users contains five columns and its names and types are shown in
Table 4.4.

NoSQL Database

There was a decision between one NoSQL collection for all posts from all platforms and
several collections for each platform. The first case would support queries for last 20 posts

23



Table 4.2: Sources Table Columns
Name Type
id SERIAL NOT NULL PRIMARY KEY
platform TEXT NOT NULL
value_type TEXT NOT NULL
value TEXT NOT NULL UNIQUE

Table 4.3: Trainings Table Columns
Name Type
id SERIAL NOT NULL PRIMARY KEY
model_id TEXT NOT NULL
is_done BOOLEAN NOT NULL
start TIMESTAMP NOT NULL
end TIMESTAMP
accuracy DECIMAL

by time from all platforms, but then each post would have to contain a field for a platform.
The second case avoids “platform switch” in a code. The post structure can differ for each
platform but fields in Table 4.5 are uniform across platforms.

4.2.2 Representational State Transfer Application Interface

As described in 4.1.2, a big emphasis was placed on the API structure. The thesis au-
thor chose a Representational State Transfer (further referred to REST) style for the API.
REST is a software architectural style with a set of constraints like Client–server architec-
ture, Statelessness, Uniform interface, etc.[5]

The API design is based on the database model. Because the database contains several
collections for each platform, each platform has its own endpoint. The same goes for an
analysis. It is very likely that the analysis model will not be the only one in the future.
Therefore, API design contains endpoint “analysis” and nested endpoint “topic”. The API
design also contains endpoint “auth/signup”. This endpoint is available only for the first
use and it is for creating first user after first system deploy. For statistics, this endpoint
returns a small set of statistics and in that time it did not make sense to use a different
structure. The API has the following structure:

∙ /auth

– /accessToken - POST
– /firstUser - POST (Available only for the first user)

Table 4.4: Users Table Columns
Name Type
id SERIAL NOT NULL PRIMARY KEY
username TEXT NOT NULL UNIQUE
name TEXT NOT NULL
email TEXT NOT NULL UNIQUE
password TEXT NOT NULL UNIQUE

24



Table 4.5: Post Document Required Fields
Name Type
_id String
timestamp String (ISO format)
text String
topics List of strings
suggestedTopics List of strings

∙ /users - GET, POST

– /me - GET
– /:id - GET, DELETE

∙ /topics - GET, POST

– /:id - GET, PUT, DELETE

∙ /sources - GET, POST

– /:id - GET, PUT, DELETE

∙ /contents

– /twitter - GET
* /:id - GET, DELETE

· /topics - PUT, DELETE
– /news - GET

* /:id - GET, DELETE
· /topics - PUT, DELETE

– /reddit - GET
* /:id - GET, DELETE

· /topics - PUT, DELETE
– /facebook - GET

* /:id - GET, DELETE
· /topics - PUT, DELETE

∙ /analysis

– /topic
* /trainings - POST

· /last - GET
· /running - GET
· /:id - GET

* /suggestions - POST
* /accuracy - GET

∙ /statistics - GET

∙ /jobs

– /contentDownloads - POST

25



4.2.3 Contents Analysis Service

The main requirement for analysis service is an asynchronity. The application should be
able to retrain analysis models in order to get better results. For example, a user will
confirm suggested topics for several posts and these posts can have a big effect on new
topics. However, time of model training can take a few seconds, hours or even days and it
is necessary to send a response to request immediately after processing the request.

When a request for a training is sent, the content analysis service creates a row in
the table for trainings with status is_done equal to false and then the service starts the
learning itself. Once the learning is completed, the service changes status is_done to true.
The trained model is a saved as file in case of the service restart.

The communication interface between the main backend and analysis service is a REST
API after consultation with the supervisor and it should be uniform across all analysis
services.

26



Chapter 5

Implementation

A source code repository contains README.md, .gitignore, .editorconfig and directories for
the system parts. The following sections describe the multi-container application approach,
continuous integration configuration and implementations of particular parts of the system.

5.1 Multi-Container Application
Container is a lightweight execution environment which can be used for an application
isolation and which is sharing the operating system kernel. In comparison with virtual
machines, containers are not completely isolated and container can share a computing
power and a memory with another container. Thanks to this, operations with containers
such as start-up and shutdown are very fast. [21] Docker1 is one of container platforms
for a container management and this technology was used in this implementation because
Docker has a majority in the industry and there was a presumption of good documentation.
[6] Docker container is created from a Docker image. It is possible to get predefined images
such as Node.js, OpenJDK or Fedora.

At the beginning of the implementation, containers were used for databases but then
also for a deployment. Docker Compose was chosen as a container management tool
and in the directory called docker there are two files: docker-compose.yml and docker-
compose.prod.yml. The first file contains a definition of containers for databases. Con-
tainers for backend, request proxy and other services are defined in the second file. This
division is because of the possibility to set up only database containers for the development.
Database containers must have a definition of a volume for the database data because if
a new database container is created with an existing volume, the container will use that
volume and data from the volume persists.

It is possible to connect to the container on a localhost on a particular port (for example,
Mongo on 27017) but if an application inside a container wants to access another container,
it is necessary to change the host value from localhost to container name. For example,
Mongo container is defined as content_database and the backend application has to connect
to content_database:27017.

Some project directories contain a file called Dockerfile. This file is used for building a
new Docker image and a deployment process builds Docker image and creates a container
from this image for each part of the implemented system.

1https://www.docker.com/

27

https://www.docker.com/


5.2 Topic Analysis Service
Topic Analysis service is implemented in Python. It has its REST API which can be called
by main backend or by NGINX proxy. API server is implemented using a Flask2 framework
which is not so huge library for REST API implementation. Unit tests can be executed by
PyUnit. [14] was used as an inspiration for the classification algorithm. All dependencies
are listed in a file called requirements.txt

5.2.1 Data Pre-Processing

All helper functions for text pre-processing have a unit test coverage. Once the dataset is
retrieved from a database, it is converted into a Pandas data frame3 which is better than
a simple list of posts in case of data exploration and model training. The data frame has
columns for topics and for post text and id. Each row in a data frame represents a post.

Then, it is necessary to clean up a text in each post. In the thesis appendix, there is
a list of characters which is used for not necessary character removal. Before the removal,
post text is converted to tokens using NLTK TweetTokenizer4 with a combination of regu-
lar expression for replacing date tokens to “DATE”. URL tokens are left as they are. This
tokenizer is better for a social media content in comparison with WordTokenizer because
word tokenizer converts “#hashtag” to two tokens - “#” and “hashtag”. Text tokens are
replaced by their lemmas if it is known. As a lemmatization library was chosen Majka5

because this library besides main languages like English, German, Spanish also supports
Czech language. Text language is detected by langid library6. All words from a text are
converted to lowercase form and then stop words are filtered out from the text. The im-
plementation uses a stop words from a Python library called stop-words7. TfIdfVectorizer8

converts cleaned text to the TF-IDF vector.
It was necessary to consider whether add text properties like platform, author or pub-

lisher directly to the text or create new dimensions in a vector for these properties. Consid-
ering that an author in not trained data can be unknown but a platform is always defined,
the author and the platform are attached to a text before the vectorization. However, the
platform index could be added as a new feature to the vector.

5.2.2 Classification Model

Topic classification is using the Support Vector Machines method described in 3.2 but it is
possible to use Multinomial Naive Bayes method by changing one parameter in a pipeline
shown below. The reason for using this method was better overall accuracy in comparison
with Multinomial Naive Bayes model.

On attached CD is enclosed a reference dataset for comparison. The data are from the
context of the city of Brno. It is a combination of tweets and news articles. Any data
that might be sensitive were replaced by the appropriate substitute. These topics were
chosen for analysis: traffic, work, sport, culture and politics. Posts were naively labeled by

2http://flask.pocoo.org/
3https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html
4https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.casual
5https://nlp.fi.muni.cz/czech-morphology-analyser/
6https://github.com/saffsd/langid.py
7https://github.com/saffsd/langid.py
8https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text

28

http://flask.pocoo.org/
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.html
https://www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize.casual
https://nlp.fi.muni.cz/czech-morphology-analyser/
https://github.com/saffsd/langid.py
https://github.com/saffsd/langid.py
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text


Table 5.1: Accuracy Difference for labeled 168 posts
Topic Support Vector Machines Multinomial Naive Bayes
traffic 0.98 0.93
sport 0.89 0.79
work 0.89 0.86

culture 0.88 0.88
events 0.82 0.80
politics 0.89 0.89

thesis author. Accuracy difference between these models is shown in Table 5.1 and topic
distribution for the dataset is shown in Table 5.2. In Figure 5.1, there is a visualization of
the most common words. The dataset was divided into two sets (for training and testing)
using train_test_split function9 with these parameters:

∙ random_state: 42

∙ test_size: 0.33

∙ shuggle: True

Figure 5.1: Most Frequent Words
9http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split

29

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split


Table 5.2: Topic Distribution for 168 posts
Topic Count
traffic 38
sport 59
work 18

culture 19
events 33
politics 23

The classification algorithm uses pre-implemented Support Vector Machines model. The
algorithm uses scikit-learn SVM10.

Pipeline([
(’tfidf’, TfidfVectorizer()),
# Not used - (’clf’, OneVsRestClassifier(MultinomialNB(...), ...)),
(’clf’, OneVsRestClassifier(LinearSVC(), n_jobs=1))

])

The pipeline reference can be used for a fit function call but it is necessary to call
this function for each topic because the classification is a multi-label classification problem.
Once the model learning is finished, models are saved as files with name topic_id_model.pkl
using Python object serialization11. These files are loaded on a REST API server start.

On the suggestion endpoint, the server checks that models are loaded and then call the
predict function for each topic. In the case of missing models, the server return error code.

5.3 Third-Party API Call Service
The second Python REST API server is for third-party API calls. The API server has
endpoints for getting the social media a networks data. These endpoints are called by job
scheduler or by user request forwarded from a backend. The server implementation is in
similar technologies as a topic analysis service and does not have a bigger complexity.

5.4 Backend
Backend is developed in Kotlin using Spring framework12. Tests are written in KotlinTest
framework13 which supports descriptive test names and adds a set of advanced matchers.
JUnit platform can be used for the test execution.

5.4.1 Configuration

All dependencies are defined in a file called build.gradle and this file also contains a con-
figuration for a JOOQ generator. JOOQ14 is a Java library for object-relational mapping.
In addition to simplifying query writing, it is possible to generate classes for the database

10https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC
11https://docs.python.org/2/library/pickle.html
12https://spring.io/
13https://github.com/kotlintest/kotlintest
14https://www.jooq.org/

30

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC
https://docs.python.org/2/library/pickle.html
https://spring.io/
https://github.com/kotlintest/kotlintest
https://www.jooq.org/


structure. JOOQ generator is configured only for the user database. JOOQ does not sup-
port NoSQL databases. The code is generated into the package db.generated.user_database.
This package contains classes for data access objects and plain old Java objects for each
table in the database.

The file build.gradle also configures a Flyway library15. This library is a solution for
database migrations. Besides a database connection definition, build.gradle configures that
the Kotlin code compilation depends on JOOQ code generation task and this task de-
pends on database migrations. In other words, database structure is in accordance with
the code and each compilation checks the structure and generated code and eventually mi-
grations and code generation is executed. The database structure definition is in a package
db.migration in a directory called resources. In this directory can be SQL files with name
Vx__name.sql where the x is a number which defines a SQL script order.

In the directory resources, there is also a file application.yaml. This file defines database
connections (PostgreSQL and MongoDB) for the Spring Application. Databases need to be
configured also in the Spring Application configuration. In the package configuration are
classes with Spring annotation @Configuration for the Spring Application configuration.
Specifically, there are classes for both databases, authentication and CORS filter settings.

As mentioned in 5.1, it is necessary to configure hosts by its container name. However,
JUnit tests are not executed inside a container and hosts need to be configured as localhost.
This problem is solved with a second configuration. This configuration is in a directory
with tests. There is also a directory called resources and its content is the same except host
values. Regarding configuration classes, there is a difference and these classes must have
an annotation @TestConfiguration.

5.4.2 Data Classes

MongoDB database for social media contents does not have code generation support and
it was necessary to define appropriate classes for plain old java objects. Package pojos is
determined for these classes. The same situation is for objects returned as an API response.
Kotlin provides a data class concept for this use case. By default each class should be a data
class but classes for platform post (for example Tweet, RedditPost, etc.) are basic classes
extending from the abstract class called Post because of common fields _id, timestamp,
text, etc. It is important to add annotation @Document(collection = “collection_name”)
to a class representing a platform post. This annotation defines a MongoDB collection
containing objects defined by that class.

Although there are data access object classes in the generated code, some queries are
more complex and it is advisable to wrap them into a special class. This type of class
is called a repository. These repositories are in a package domain.impl. For example,
there is a SourceRepository extending a SourceDao and overriding insert methods with an
implementation containing a source type validation. It is possible to define an interface
extending a generic interface called MongoRepository. The generic type is a class with
@Document annotation for the collection document. The MongoRepository interface is
from a MongoDB library for the Spring framework and automatically implements basic
queries like “find all documents”, “find by id”, etc. All methods can have a parameter
called pageable of class Pageable. This parameter transforms returned result into a page
and it is possible to load the content as a page by page in order to decrease response size
and API consumer performance demands. A class extending the MongoRepository interface

15https://flywaydb.org/

31

https://flywaydb.org/


can define its own methods that have an annotation @Query(value = “”) for the MongoDB
database.

In the package domain, there is an interface called GenericPostRepository. The Gener-
icPostRepository interface is an abstraction for platform post repositories and also needs
to be used with a generic type - in this case a class for a platform post. Extended interface
GenericPostRepository defines four methods:

∙ Find posts without topics: “{$or: [{’topics’: {$exists : false}}, {’topics’: {$eq: []
}}]}”

∙ Find posts with suggested topics: “{$and: [{’suggestedTopics’: {$exists : true}},
{’suggestedTopics’: {$ne: [] }}]}”

∙ Find posts containing topics: “{ ’topics’ : {$in : ?0 }}”

∙ Find posts in timestamp range: “{’timestamp’: {’$gte’: ?0, ’$lte’: ?1}}”
An example below shows the simplicity of repository definition - in this case for Twitter
posts:

@Repository
interface TweetRepository : GenericRepository<Tweet>

5.4.3 Services

Calculations for statistics did not have a simple implementation on a few lines and all more
complex code for calculations and data transformations should be wrapped into services.
In package services, there is a class called StatsService implementing necessary calculations
for statistics.

The implementation manifested a disadvantage of splitting post to several collections
for each platform because it is necessary to query the data several times and map them to
a list of post objects. Methods for calculations use Kotlin collection functions like the map,
filter, etc.

One of the more difficult things in this implementation was a right choice for the times-
tamp representation in Kotlin respectively in a Java language. The Java language, unlike
for example JavaScript, has many classes for date and time data and the choice is confusing
sometimes. Finally, the OffsetDateTime class was chosen.

5.4.4 Controllers

All API endpoints are handled by controller classes. These classes have annotation @Rest-
Controller and are located in package called api. It is necessary to implement public
method with one of these annotations: @RequestMapping, @GetMapping, @PostMapping,
@DeleteMapping, etc. Method parameters with annotation @RequestParam define request
parameters. Method return type defines a request response type. Plain old Java objects
are returned as JSON. Sending a HTTP status code is invoked by throwing a ResponseS-
tatusException with a constructor parameter of class HttpStatus.

As with repositories, the controller has the appropriate abstraction. In the package
api.content, there is an abstract class called GenericPostController with a generic type
representing a platform post. For the platform controller definition, it is necessary to
extend this class with a @RequestMapping annotation for an endpoint prefix and with a
particular type and repository as is in the example below - also in this case for Twitter:

32



@RestController
@RequestMapping(’’/contents/twitter’’)
class TwitterController(

tweetRepository: TweetRepository
) : GenericController<Tweet>(tweetRepository)

5.4.5 Authentication

Requests starting with prefix “/auth” are without required authentication. All other re-
quests require authentication with a bearer token. This authentication is configured as
a request filter in a class AuthConfiguration in a package with Spring configuration. The
bearer token has a JSON Web token standard that uses a signature algorithm called HS512.
A signing key and expiration time is configured in a file application.yaml in a directory with
Spring resources.

5.5 Frontend
The frontend part is a client side rendered single page application. The application is
implemented in JavaScript using a React16 library and Material UI components17. Jest
was chosen as a unit testing framework. The only difference between development and
production configuration is an environment variable called REACT_APP_API_URL. If
this variable is set, the frontend application will use it for API calls. One statement in
Dockerfile for frontend is the environment variable definition. Almost all implemented
components are stateless. Non-stateless implemented components are listed in this section.
Application screenshots are in thesis appendices.

The application has implemented routing in order to keep application browsing history.
In addition, it is possible to directly display particular view by entering an URL thanks to
the routing implementation. React Router18 library was used for the implementation.

The main component Application in a file Application.js contains a definition of plat-
forms and loads topics, sources from a backend. The Application component displays a
dashboard by default. It is possible to change the dashboard view to another from a side
menu. For example, the side menu has items for dashboard, posts, topics, sources. All these
views are defined in separate components. The Application component is not stateless.

The dashboard is composed from material cards showing statistics. The dashboard
components loads statistics and model information from the backend and is not stateless.
React Google Charts19 library is used for displaying graphs. A user also can retrain topic
classifier directly from the dashboard. The posts view is for viewing posts and it is possible
to enable “interactive mode” for browsing posts one by one. Topics and Sources views are
for editing only.

Posts view displays posts in tables. Each table represents one platform and posts are
paged. Each table is configurable in terms of page size, post sorting by some property
and filtering. A component PlatformPostTable was implemented for these tables. This
component is not stateless. In listing below, there is an example of platform definition in
the Application component and PlatformPostTable component usage.

16https://reactjs.org/
17https://material-ui.com/
18https://reacttraining.com/react-router/
19https://github.com/RakanNimer/react-google-charts

33

https://reactjs.org/
https://material-ui.com/
https://reacttraining.com/react-router/
https://github.com/RakanNimer/react-google-charts


const platforms = [
{

id: ‘‘twitter’’,
name: ‘‘Twitter’’,
columns: [

{
id: ’timestamp’,
valuePath: [’timestamp’],
label: ’Timestamp’,
valueFormatter: getDate

},
...

],
getPostsAsPage: getTwitterPostsAsPage,
deletePost: deleteTwitterPost,
savePostTopics: saveTwitterPostTopics,

},
]
...
<div>

{
platforms.map((platform, index) =>

<PlatformPostTable
key={index}
platformName={platform.name}
platform={platform.id}
columns={platform.columns}
topics={topics}
deletePost={platform.deletePost}
getPostsAsPage={platform.getPostsAsPage}

/>
)

}
</div>

}
/>

In the platform definition in the listing, there is a property columns which defines table
structure and value formatting. Compared to this approach, a component for post detail has
defined sub-components for each platform. Sub-component selection is made by a Switch
component from the React Router library.

If a user signs in to the application, the frontend application saves the user’s access to-
ken to a local web browser storage. The user can log out from the frontend application and
remove the token. If the access token is not stored in the local web browser storage, a lo-
gin view is shown. This approach was achieved through a component called PrivateRoute.
[11] The frontend does not contain a sign up view. It is necessary to use API endpoints for
adding new users and their management.

34



All data requests are in folder data. Requests are divided into files by a data subject.
For example Topic.js, Posts.js, etc. Request are sent by Axios20 library. Data from API
sometimes need a transformation for components like graphs. These transformations are in
a directory lib and all functions from this directory have a particular unit test coverage.

5.6 Request Proxy
Another important part of the implemented system is a request proxy. A user can send two
request types: API requests and frontend application requests. Container with configured
NGINX21 was used as a request proxy. Appropriate Dockerfile and NGINX configuration
file called nginx.conf are in a directory nginx. The request proxy applies these two rules:

∙ “/api” request is passed for http://backend:8080/

∙ “/” request is passed for http://frontend:3000/

5.7 Job Scheduler
Internal API servers have endpoints for jobs for getting data, suggesting topics for all posts,
etc. These endpoints can be called by user or automatically. A Docker image called Ofelia22

was used as a job scheduler. This image is based on CRON but this image simplifies job
definitions. A configuration contains these three jobs:

∙ Get social network data each 10 minutes

∙ Suggest topics each 30 minutes

5.8 Continuous Integration and Delivery
Each last commit in a master branch in a repository should have a source code that has
passing tests. It is advisable to automatically run all tests on each commit push to a
repository. The repository is hosted on Github23 and in the repository, there is a hidden
directory called .circleci. This directory configures a CircleCI platform24 for automatic test
runs and automatic deployment. In Figure 5.2, there is a scheme of continuous integration
of the implemented system. If some parts fail, followed parts will not be executed and
continuous integration platform sends a mail notification.

20https://github.com/axios/axios
21https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
22https://github.com/mcuadros/ofelia
23https://github.com/Horm/socialclusters
24https://circleci.com/

35

https://github.com/axios/axios
https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/
https://github.com/mcuadros/ofelia
https://github.com/Horm/socialclusters
https://circleci.com/


Checkout

Test Backend

Test Frontend

Test API Call 
Service

Test Analysis 
Service

Deploy

Figure 5.2: Continuous Integration and Delivery Scheme.

36



Chapter 6

Testing

Testing was partially mentioned in chapter 5 because tests were written during the devel-
opment process. However, this chapter presents results from the testing which can be useful
for future extensions. System monitoring was not implemented.

6.1 Analysis Model Validation
The analysis model is the main part of the implemented application. Key aspect of this
model is its overall accuracy. However, it is not possible to measure the accuracy because
users can retrain the model with new data. In 5.2.2, there is a analysis method comparison
on a reference dataset. These comparison results can be also used for the model validation.
Support Vector Machines method has better overall accuracy for this use case. An imple-
mentation of the analysis model based on support vector machines has sufficient results for
the system implementation and the analysis service can be used as an advisory service.

6.2 Unit and E2E Testing
It can be said that all API endpoints of main backend are covered by E2E tests and all data
transformation functions are covered by unit tests. The main backend classes has 86% test
coverage and a test directory contains a package with 82 test cases divided into 16 classes.

Classes testing requests for internal APIs use an implemented mock that partially sim-
ulates the internal server operations with the database. Internal API for analysis is tested
only for the training entry creation in the database and there is room for improvement to
implement asynchronous tests.

A class AuthControllerTest contains static methods for getting an authentication request
mocks. This class also tests the functionality of these static methods. These methods are
used in all other test classes that require authentication because controller tests should use
requests with the same headers and parameters as in normal use.

6.3 Manual Testing
Manual testing approach was used for internal APIs and for the frontend. Individual
frontend components were tested in a web browser during development to test their basic

37



functionality. Internal APIs and its functions were tested using a Postman1 application and
a local Python console.

The main result from manual testing is a finding that many frontend views can be more
responsive. Further, it could be worked on better latency and state maintenance of the
graphical user interface after the webpage reload.

1https://www.getpostman.com/

38

https://www.getpostman.com/


Chapter 7

Conclusion

The main goal of this bachelor’s thesis was to design and implement a web application for
content aggregation and analysis from several popular social networks. This goal has been
achieved.

The thesis describes the principles and application interface of Facebook, Twitter, Red-
dit and News Media. The thesis also contains a description of the text to a vector space
conversion, Support Vector Machines method and Multinomial Naive Bayes. An extensi-
ble system was designed and it was implemented using Support Vector Machines method,
Docker, Kotlin, Python and JavaScript.

The system automatically obtains data from social networks defined by a user and the
system displays content statistics. The user also can gradually train a topic analysis service
and aggregate posts by topic. The system can be used in many contenxts and the system is
ready for new extensions and features because all main system functions have test coverage.

The other success of this thesis is a possibility of an easy system setup regardless of the
machine type. The author of the work gained experience in machine learning, multi-
container applications and React framework. In the future, thesis author would like to
improve the system with advanced analysis and statistics, user groups and clear up a legal
aspect.

39



Bibliography

[1] Facebook Graph API Developer Documentation.
https://developers.facebook.com/docs/graph-api. accessed: 2019-04-30.

[2] Reddit API Documentation. https://www.reddit.com/dev/api. accessed:
2019-04-30.

[3] Twitter Developer Documentation. https://developer.twitter.com/en/docs.html.
accessed: 2019-04-30.

[4] Aggarwal, C., Charu C.; Zhai: Mining Text Data. vol. 9781461432234. New York:
Springer. 2012. ISBN 9781461432227.

[5] Amundsen, M.; Ruby, S.; Richardson, L.: RESTful Web APIs. O’Reilly Media, Inc.
first edition. 2013. ISBN 9781449358068.

[6] Carter, E.: 2018 Docker Usage Report. May 29 2018.
Retrieved from: https://sysdig.com/blog/2018-docker-usage-report/

[7] Center, P. R.: Social Media Fact Sheet. 2018.
Retrieved from: https://www.pewinternet.org/fact-sheet/social-media/

[8] Currie, D.: Predicting Similarity: TfidfVectorizer & Doc2Vec. 2017.
Retrieved from: https:
//www.kaggle.com/currie32/predicting-similarity-tfidfvectorizer-doc2vec

[9] Dočekal, M.: Pokročilé metody strojového učení pro klasifikaci textu. 2016.

[10] Fiala, M.: Propojení sociální sítě Twitter s televizním vysíláním. 2018.

[11] Jason Watmore: React - Basic HTTP Authentication Tutorial & Example. 2018.
accessed: 2019-04-30.
Retrieved from: https://jasonwatmore.com/post/2018/09/11/react-basic-
http-authentication-tutorial-example#private-route-jsx

[12] Kinsley, H.: Support Vector Machine Optimization in Python part 2.
Retrieved from: https://pythonprogramming.net/svm-optimization-python-2-
machine-learning-tutorial/?completed=
/svm-optimization-python-machine-learning-tutorial/

[13] Le, Q. V.; Mikolov, T.: Distributed Representations of Sentences and Documents.
2014.

40

https://developers.facebook.com/docs/graph-api
https://www.reddit.com/dev/api
https://developer.twitter.com/en/docs.html
https://sysdig.com/blog/2018-docker-usage-report/
https://www.pewinternet.org/fact-sheet/social-media/
https://www.kaggle.com/currie32/predicting-similarity-tfidfvectorizer-doc2vec
https://www.kaggle.com/currie32/predicting-similarity-tfidfvectorizer-doc2vec
https://jasonwatmore.com/post/2018/09/11/react-basic-http-authentication-tutorial-example#private-route-jsx
https://jasonwatmore.com/post/2018/09/11/react-basic-http-authentication-tutorial-example#private-route-jsx
https://pythonprogramming.net/svm-optimization-python-2-machine-learning-tutorial/?completed=/svm-optimization-python-machine-learning-tutorial/
https://pythonprogramming.net/svm-optimization-python-2-machine-learning-tutorial/?completed=/svm-optimization-python-machine-learning-tutorial/
https://pythonprogramming.net/svm-optimization-python-2-machine-learning-tutorial/?completed=/svm-optimization-python-machine-learning-tutorial/


[14] Li, S.: Multi Label Text Classification with Scikit-Learn.
https://towardsdatascience.com/multi-label-text-classification-with-
scikit-learn-30714b7819c5. 2018. accessed: 2019-04-30.

[15] Manning, C. D.; Raghavan, P.; Schütze, H.: Introduction to Information Retrieval.
New York, NY, USA: Cambridge University Press. 2008. ISBN 0521865719,
9780521865715.

[16] Rennie, J. D. M.; Shih, L.; Teevan, J.; et al.: Tackling the Poor Assumptions of
Naive Bayes Text Classifiers. In Proceedings of the Twentieth International
Conference on International Conference on Machine Learning. ICML’03. AAAI
Press. 2003. ISBN 1-57735-189-4. pp. 616–623.
Retrieved from: http://dl.acm.org/citation.cfm?id=3041838.3041916

[17] Savoy, J.: Working with Text. Tools, Techniques and Approaches for Text Mining.
Emme L. Tonkin & Gregory J.L. Tourte. Chandos Publisher, Cambridge (MA). 2016.
330pp. (ISBN 978-1-84334-749-1). JASIST. vol. 69. 2018.

[18] Swamynathan, M.: Mastering Machine Learning with Python in Six Steps: A
Practical Implementation Guide to Predictive Data Analytics Using Python. Apress.
first edition. 2017. ISBN 9781484228661.

[19] Trieloff, L.: Three Principles of API First Design. https://medium.com/adobetech/
three-principles-of-api-first-design-fa6666d9f694. 2017. accessed:
2019-04-30.

[20] Wikipedia, the free encyclopedia: Support Vector Machines. 2010. accessed:
2019-04-30.
Retrieved from: https://de.wikipedia.org/wiki/Support_Vector_Machine

[21] Yegulalp, S.: What is Docker? Docker containers explained. InfoWorld.com. Sep 06
2018. copyright - Copyright Infoworld Media Group Sep 6, 2018; Last updated -
2018-09-07.
Retrieved from:
https://search.proquest.com/docview/2100097722?accountid=17115

41

https://towardsdatascience.com/multi-label-text-classification-with-scikit-learn-30714b7819c5
https://towardsdatascience.com/multi-label-text-classification-with-scikit-learn-30714b7819c5
http://dl.acm.org/citation.cfm?id=3041838.3041916
https://medium.com/adobetech/three-principles-of-api-first-design-fa6666d9f694
https://medium.com/adobetech/three-principles-of-api-first-design-fa6666d9f694
https://de.wikipedia.org/wiki/Support_Vector_Machine
https://search.proquest.com/docview/2100097722?accountid=17115


Appendix A

Screenshots

Figure A.1: Login

42



Figure A.2: Dashboard

43



Figure A.3: Posts

44



Figure A.4: Topics

45



Figure A.5: Sources

46


	Introduction
	Social Media and Networks
	Principles
	Twitter
	Facebook
	Reddit
	News Media

	Application Interfaces
	Twitter
	Facebook
	Reddit
	News Media

	Privacy Policies and Data Protection Regulations

	Text Analysis and Aggregation
	Multinomial Naive Bayes
	Method Definition
	Example

	Support Vector Machines
	Method Definition
	Optimization Algorithm Example
	Non-Linear Classification
	Implementations

	Classification With More Than Two Classess
	Text Representation
	Tokenizing
	Stop Words
	Lemmatization and Stemming
	Text to Vector Conversion


	System for the contents aggregation of selected sources
	Application Design
	Functional Requirements
	Architecture Requirements

	System Architecture
	Database Model
	Representational State Transfer Application Interface
	Contents Analysis Service


	Implementation
	Multi-Container Application
	Topic Analysis Service
	Data Pre-Processing
	Classification Model

	Third-Party API Call Service
	Backend
	Configuration
	Data Classes
	Services
	Controllers
	Authentication

	Frontend
	Request Proxy
	Job Scheduler
	Continuous Integration and Delivery

	Testing
	Analysis Model Validation
	Unit and E2E Testing
	Manual Testing

	Conclusion
	Bibliography
	Screenshots

