
T 
BRNO UNIVERSITY OF TECHNOLOGY 
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ 

FACULTY OF INFORMATION TECHNOLOGY 
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ 

DEPARTMENT OF INFORMATION SYSTEMS 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

AGGREGATION AND ANALYSIS OF SOCIAL NETWORK 
CONTENTS 
AGREGACE A ANALÝZA OBSAHU ZE SOCIÁLNÍCH SÍTÍ 

BACHELOR'S THESIS 
BAKALÁŘSKÁ PRÁCE 

AUTHOR MATĚJ HORÁK 
AUTOR PRÁCE 

SUPERVISOR Ing. RADEK BÜRGET, Ph.D. 
VEDOUCÍ PRÁCE 

BRNO 2019 



Brno University of Technology 
Faculty of Information Technology 

Department of Information Systems (DIFS) Academic year 2018/2019 

Bachelor's Thesis Specification 
21491 

Student: 
Programme: 
Title: 

Horák Matěj 
Information Technology 
Aggregation and Analysis of Social Network Contents 

Category: Web 
Assignment: 

1. Study the principles of the most popular social networks and their application interfaces. 
2. Study current methods of the content classification based on topic or other criteria. 
3. Design the architecture of a system for the aggregation of the contents of selected sources on social 

networks and its filtering by relevance to a given topic. 
4. Upon agreement with the tutor, choose the appropriate technology and implement the designed system. 
5. Perform the testing of the implemented system on real-world data. 
6. Summarize the results. 

Recommended literature: 
• Fiala, M.: Propojení sociální sítě Twitter s televizním vysíláním. Brno, 2018. Diplomová práce. Vysoké učení 

technické v Brně, Fakulta informačních technologií. 
• Russell, M. A.: Mining the Social Web, 2nd Edition, O'Reilly Media, Inc., 2013 

Requirements for the first semester: 
• Items 1 to 3 

Detailed formal requirements can be found at http://www.fit.vutbr.cz/info/szz/ 
Supervisor: Bürget Radek, Ing., Ph.D. 
Head of Department: Kolář Dušan, doc. Dr. Ing. 
Beginning of work: November 1, 2018 
Submission deadline: May 15, 2019 
Approval date: October 30, 2018 

Bachelor's Thesis Specification/21491/2018/xhorak68 Strana 1 z 1 

http://www.fit.vutbr.cz/info/szz/


Abstract 
This thesis is focused on getting selected parts of social media content and their analy­
sis. The thesis is a iming for a platform which is connecting ind iv idua l social networks, 
aggregating their content by defined topics and which is opened for next improvements and 
extensions. A solution is a multi-container appl icat ion that uses mult i - label classification 
and support vector machines. The implemented system solves not shown content, filtering, 
and smal l statistics. K e y parts are covered by tests and the system is opened for other 
analysis and advanced statistics. 

Abstrakt 
Tato p r á c e se zabývá ziskem zvolené čás t i obsahu sociálních sí t í a jeho n á s l e d n o u ana lýzou . 
Cí lem p r á c e je platforma propoju j íc í j edno t l ivé sociální s í tě , k t e r á dokáže agregovat obsah 
t ě c h t o s í t í podle def inovaných t é m a t a zá roveň je o t e v ř e n á da l š ím rozš í řen ím. Tento cíl by l 
vyřešen p o m o c í konte jnerové aplikace, š t í tkové klasifikace a metody p o d p ů r n ý c h vek to rů . 
I m p l e m e n t o v a n ý s y s t é m řeší a lgori tmem nezobrazovaný obsah, fi l trování a menš í statistiky. 
Klíčové čás t i s y s t é m u jsou p o k r y t é testy a s y s t é m je o t e v ř e n ý da l š ím a n a l ý z á m a p o k r o č i l ý m 
s t a t i s t i k á m . 

Keywords 
Social Networks, Text Topic Analys is , Support Vector Machines, R E S T , Docker 

Klíčová slova 
Sociální síťe, a n a l ý z a t é m a t u textu, metoda p o d p ů r n ý c h vek to rů , R E S T , Docker 

Reference 
H O R Á K , M a t ě j . Aggregation and Analysis of Social Network Contents. Brno , 2019. Bach­
elor's thesis. B rno Univers i ty of Technology, Facul ty of Information Technology. Supervisor 
Ing. Radek B ü r g e t , P h . D . 



Rozšířený abstrakt 
Sociální s í tě jsou p o p u l á r n í webové s t r ánky , k t e r é používaj í l idé, firmy a dalš í u s k u p e n í na 
celém světě . M e z i ne jznámnějš í sociá lní s í tě p a t ř í Facebook, Twit ter atd. P o u ž i t í sociá lních 
sítí jako zdroje informací ale n e m u s í bý t op t imá ln í , p ro tože v mnoha p ř í p a d e c h sociální 
sí tě vydělávaj í na pe rsona l izovaných r e k l a m á c h a uživate l i nebývá zobrazen veškerý obsah, 
neh ledě na nutnost sledovat k a ž d o u síť oddě leně . 

Tato p r á c e se zabývá ziskem zvolené čás t i obsahu sociálních sí t í a ná s l ednou jeho ana lý ­
zou. K o n k r é t n ě si dává za cíl vy tvo ř i t platformu, k t e r á dokáže propojit j edno t l ivé s í tě , 
agregovat obsah podle definovaných t é m a t a poskytnout stat is t iky obsahu. Tato platforma 
by m ě l a bý t o t e v ř e n á da l š ím rozš í řen ím. 

Sociální síť je t v o ř e n a uživate l i , k t e ř í si n a v z á j e m mezi sebou sdílejí p ř í spěvky. Obvykle 
t a k é posky tu j í R E S T ap l ikačn í r o z h r a n í pro aplikace t ř e t í ch stran, k t e r é ale m ů ž e m í t 
nějaké omezen í v p ř í s t u p u k p ř í s p ě v k ů m , in fo rmac ím o uživatel i a td. Vě t š inou je n u t n é 
zaregistrovat apl ikaci , aby bylo m o ž n é toto ap l ikačn í r o z h r a n í použ íva t . J e d n o t l i v é způsoby 
použ i t í ap l ikačn ího r o z h r a n í se liší podle platformy, n i c m é n ě s y s t é m p o p s a n ý výše vě t š inou 
využíva l tyto dva způsoby : 

• Získání p ř í s p ě v k ů od u r č i t ého ú č t u nebo z u r č i t é skupiny 

• Získání p ř í s p ě v k ů obsahuj íc í u rč i t é slovo nebo hashtag 

Pro a n a l ý z u t é m a t u p ř í s p ě v k u byla zvolena klasifikační metoda p o d p ů r n ý c h vek to rů . 
Tato metoda byla zvolena na zák l adě p o r o v n á n í s p r a v ě d o p o b n o s t n í m Bayesovským klasi-
f iká torem. Vzhledem k tomu, že jeden př í spěvek m ů ž e mí t více t é m a t , pro k a ž d é t é m a 
p ř í spěvku je v y t v o ř e n v l a s tn í klasif ikátor . P ř i u rčován í t é m a t u textu je pak text analy­
zován všemi klasif ikátory. Me toda p o d p ů r n ý c h v e k t o r ů je za ložena na h l edán í rozdělující 
hranice ve v e k t o r o v é m prostoru. A b y bylo m o ž n é tuto hranici na léz t , je n u t n é převés t texty 
do o b d o b n é reprezentace. Tato reprezentace je d o s a ž e n a p o m o c í tokenizace, o d s t r a n ě n í stop 
slov, lemmatizace a v ý p o č t u relevance p o m o c í T F - I D F . 

J e d n í m z h lavn ích p o ž a d a v k ů pro n a v r ž e n ý a i m p l e m e n t o v a n ý s y s t é m byla jeho rozšiř i tel­
nost, n a p ř . aby bylo m o ž n é j e d n o d u c h ý m z p ů s o b e m zaintegrovať s lužbu pro a n a l ý z u 
ob rázků . Z tohoto d ů v o d u by l s y s t é m i m p l e m e n t o v á n jako konte jnerová aplikace, kde 
k a ž d á čás t s y s t é m u je jeden Docker kentejner. P r o p ř í s p ě v k y byla zvolena N o S Q L d a t a b á z e 
(Mongo), aby by l m o ž n ý rychlý p ř í s t u p k d a t ů m v r á m c i s t ro jového učení . Naopak u uži­
va te l ských dat ( t é m a t a , zdroje atd.) by la zvolena S Q L d a t a b á z e (PostgreSQL). Velký 
d ů r a z by l t a k é kladen na ap l ikačn í r o z h r a n í s y s t é m u , k o n k r é t n ě b y l uži t A P I - F i r s t Design. 
S a m o t n é ap l ikačn í r o z h r a n í je i m p l e m e n t o v á n o jako Spring aplikace p o m o c í p r o g r a m o v a c í h o 
jazyka K o t l i n . Toto r o z h r a n í pak volá in te rn í s lužby pro zisk dat ze sociálních sí t í a a n a l ý z u 
t é m a t u . T y t o s lužby jsou i m p l e m e n t o v á n y v p r o g r a m o v a c í m jazyce P y t h o n a využívaj í ř a d u 
knihoven. Graf ickým už iva t e l ským r o z h r a n í m s y s t é m u je j e d n o s t r á n k o v á aplikace, k t e r á je 
vykres lována na s t r a n ě klienta. Tato aplikace byla v y t v o ř e n a p o m o c í technologie React 
a sady komponent z kolekce M a t e r i á l U I . S y s t é m j e š t ě obsahuje kontejner pro p rav ide lné 
ú lohy (zisk dat, n á v r h t é m a t ) a pro delegování p o ž a d a v k ů na server p o m o c í technologie 
N G I N X . 

Implementace modelu pro a n a l ý z u t é m a t u p ř í s p ě v k u m á d o s t a t e č n é výsledky. S y s t é m 
by l t a k é i m p l e m e n t o v á n s myš lenkou o tev řen í zdro jů . Součás t í vývoje bylo tedy i t e s tován í , 
ap l ikačn í r o z h r a n í je z v ý r a z n é čás t i pokryto testy. Funkce pro transformaci dat u grafick­
ého r o z h r a n í a in te rn ích s lužeb jsou t a k é p o k r y t é j e d n o t k o v ý m i testy. V r á m c i r epoz i t á ř e 



byla nakonf igurována i platforma pro n e p ř e t r ž i t é dodávky , po k a ž d é z m ě n ě ve z d á l e n é m 
repoz i t á ř i dojde ke s p u š t ě n í t e s t ů a pokud je zdro jový kód val idní , dojde k nasazen í sy s t ému . 



Aggregation and Analysis of Social Network Con­
tents 

Declaration 
I declare that I have prepared this Bachelor 's thesis independently, under the supervision 
of Ing. Radek Burget, P h . D . I listed a l l of the l i terary sources and publications that I have 
used. 

M a t ě j H o r á k 
M a y 14, 2019 

Acknowledgements 
I would like express my sincere thanks to my supervisor, Ing. Radek Burget, P h . D . , for 
responsible guidance and providing valuable feedback. 



Contents 

1 Introduction 3 

2 Social M e d i a and Networks 4 
2.1 Principles 4 

2.1.1 Twit ter 4 
2.1.2 Facebook 5 
2.1.3 Reddi t 5 
2.1.4 News M e d i a 5 

2.2 App l i ca t ion Interfaces 5 
2.2.1 Twit ter 6 
2.2.2 Facebook 7 
2.2.3 Reddi t 8 
2.2.4 News M e d i a 9 

2.3 Pr ivacy Policies and D a t a Protect ion Regulations 10 

3 Text Analysis and Aggregation 11 
3.1 M u l t i n o m i a l Naive Bayes 11 

3.1.1 M e t h o d Defini t ion 11 
3.1.2 Example 12 

3.2 Support Vector Machines 13 
3.2.1 M e t h o d Definit ion 14 
3.2.2 Opt imiza t ion A l g o r i t h m Example 14 
3.2.3 Non-Linear Classification 15 
3.2.4 Implementations 16 

3.3 Classification W i t h More T h a n Two Classess 16 
3.4 Text Representation 17 

3.4.1 Tokenizing 17 
3.4.2 Stop Words 18 
3.4.3 Lemmat iza t ion and Stemming 18 
3.4.4 Text to Vector Conversion 18 

4 System for the contents aggregation of selected sources 20 
4.1 App l i ca t ion Design 20 

4.1.1 Funct ional Requirements 20 
4.1.2 Architecture Requirements 21 

4.2 System Architecture 22 
4.2.1 Database M o d e l 22 
4.2.2 Representational State Transfer App l i ca t i on Interface 24 

1 



4.2.3 Contents Analys is Service 26 

5 Implementation 27 
5.1 Mul t i -Conta iner App l i ca t ion 27 
5.2 Topic Analysis Service 28 

5.2.1 D a t a Pre-Processing 28 
5.2.2 Classification M o d e l 28 

5.3 Th i rd -Pa r ty A P I C a l l Service 30 
5.4 Backend 30 

5.4.1 Configurat ion 30 
5.4.2 D a t a Classes 31 
5.4.3 Services 32 
5.4.4 Controllers 32 
5.4.5 Authent ica t ion 33 

5.5 Frontend 33 
5.6 Request P r o x y 35 
5.7 Job Scheduler 35 
5.8 Continuous Integration and Delivery 35 

6 Testing 37 
6.1 Analys is M o d e l Val ida t ion 37 
6.2 Un i t and E 2 E Testing 37 

6.3 M a n u a l Testing 37 

7 Conclusion 39 

Bibl iography 40 

A Screenshots 42 

2 



Chapter 1 

Introduction 

Social networks are popular websites that are used by people, companies and other entities 
for content sharing a l l over the world. However, a social network may not be designed for 
using the social network as an information channel because i n most social network 
profits from personalized advertisements and a user does not see a l l content from subscribed 
and followed sources, regardless of the need to use each social network separately. 

The idea of creating an applicat ion for social networks content aggregation and analysis 
was based on the existence of public posts i n the ci ty context. News media share articles 
about the ci ty and citizens share posts w i t h information, question or w i t h an attachment 
like a photo. Some aggregation and analysis tools might be useful for people who are 
interested in the city context. 

The main goal of this bachelor's thesis is to design and implement a web applicat ion 
for content aggregation and analysis from several popular social networks. The applicat ion 
should be able to get content automatical ly from social media and networks, provide post 
topic analysis and display basic statistics. Assuming implementat ion w i l l be open sourced, 
the appl icat ion should be ready for easy configuration and extension integration. 

Firs t , the thesis focuses on principles of selected social networks and their applicat ion 
interface. Then , the thesis describes two classification algorithms for text topic analysis 
and text pre-processing for getting better results. The next chapters discuss applicat ion 
architecture and functional requirements, describe implementat ion and summarize results 
from implementat ion testing. 

3 



Chapter 2 

Social Media and Networks 

Social media and networks are internet websites used for communicat ion and for creating 
and maintaining relationships between people, companies and other subjects. In January 
2018, 69% of U . S . adults use at least one social media site, 68% use Facebook, and 53% of 
respondents use Facebook daily. Other platforms are Twit ter , Instagram, Reddi t , L i n k e d l n , 
etc. [7] 

2 .1 Principles 

Users follow other users and subjects, share posts to other people and send messages in a 
chat. 

A post can be a text, an image, a video, a l ink to an external source or some combination. 
Users can comment, share the post or give a reaction, e.g. "like". A post can include 
a special tag called hashtag e.g. "#universitylife", which defines a topic associated wi th 
the post. Users can display posts containing a specified hashtag. 

Social media and networks display content as a list called "feed". A content rarely con­
tains a l l posts from followed sources, and post order is not always by time. Feed generating 
depends on a user's behavior, trends, paid advertisement, etc. 

The next subsections describe platform specifics. 

2.1.1 T w i t t e r 

Twit ter does not have differences between business and user accounts. Twit ter posts can 
have a max ima l length of 280 characters, and by default each post is public . It is possible 
to enable the protected mode and i f a user enables this mode, only those that user approve 
w i l l see a user's posts. Post can contain: 

• Text 

• Images 

• P o l l 

• Loca t ion 

User's feed is personalized. It is a great platform for real-time posts. For example, users 
are posting tweets w i t h assigned hashtags from some live events like concerts, elections, 
public disasters, etc. 

4 



2.1.2 F a c e b o o k 

This platform has two account types: user account and public page. User accounts can send 
and accept friend requests from each other. O n l y user accounts can follow public pages but 
public pages (respectively their administrators and editors) are able to comment, share or 
give a reaction to a public post. Users can also enable the possibil i ty of following without 
accepted friendship. 

Each post from page is public . User has three options: share post w i t h their friends, 
publ ic ly or as private post which is visible only for that user. In addit ion, it is possible to 
create private and public groups where posts are shared only wi th group members. 

Facebook supports hashtags but they are not so much used i n comparison wi th Twit ter . 
User's feed is personalized and Facebook post can be composed from many types of content: 

• Text 

• Images 

• Feels or A c t i v i t y 

• Event 

• Survey 

• Loca t ion 

• Offer 

• L ive Stream 

2.1.3 R e d d i t 

Reddi t is a platform that has s imilar functions as a forum. Users can share posts on 
their profile or i n dedicated forums for a part icular topic called "subreddit". User feed is 
composed from posts from "subreddits" where the user is a member. B y default, post order 
in a feed is personalized but user can sort posts by time, score, etc. 

Post can be a text, image, video or some U R L . Users can add "upvote" or "downvote" 
to some post and each post has a score. This score is used across "subreddits" and Reddi t 
has a special feed for v i r a l posts. Users can also comment on posts and comments are 
structured as threads under the post or comment. 

2.1.4 N e w s M e d i a 

News media publ ish and display articles on their website. Ar t i c l e has a title, summary and 
text body that can have subtitles. Some news media have article tagging and some news 
media have sections for articles. News media can focus on a part icular topic or can cover 
al l social topics. 

2.2 Applicat ion Interfaces 

Social media and networks usually have an applicat ion interface that can be used for creating 
plugins, chatbot, subscription services, etc. The next subsections describe an applicat ion 
interface for each platform, its requirements and methods for obtaining data from selected 
sources because these methods are used i n an implementat ion described i n 5. 

5 



2.2.1 T w i t t e r 

This section draws from [10] and [3]. Twit ter provides a free l imi ted R E S T A P I . There are 
l imitat ions like a l imi ted number of requests 1 and a l imi ted number of days for a search in 
a history. It is possible to get full access by switching to one of two paid plans. 

A P I is running at this U R L : h t tps : / /ap i . twi t ter . eom/ l . l / 

Requirements 

It is necessary to enable a developer account and register an app for getting access to the 
A P I . This process requires providing information about the intents of A P I use. Us ing A P I 
also has to follow Twit ter Developer P o l i c y 2 . E a c h applicat ion has its own keys and tokens. 
These keys and tokens are used for authentication and authorization. 

Tweet Object 

Endpoints described below returns a response containing tweets w i th structure described 
in [3] and this section highlights some fields and its format. Twit ter A P I provides a l l tweet 
information. It is unnecessary to request addi t ional information like tweet author data 
because the tweet object contains structure "user" w i th fields "screen_name", "follow-
ers_count", etc. 

The tweet object contains " i d " and "id_str" . Twit ter recommends using " id_s t r " be­
cause some programming languages do not support numbers w i t h a size bigger than 53 
bits. Tweet t ime-stamp "created_at" is in format " E E E M M M d HH:mm:ss Z y y y y " 
and databases may not support this format for sorting and query operations in databases. 
The tweet object also contains the field for the tweet language "lang" and the field for tweet 
entities (hashtags, account mentions, urls, etc.) "entities". The tweet language is a machine 
detected. 

Search Tweets Containing Particular W o r d or Hashtag 

This endpoint searches tweets from the past seven days. The premium search endpoint 
described below is for a longer history. 

• Resource U R L : https: / /api . twitter.eom/l . l /search/tweets . json 

• A u t h : O A u t h 2.0 (1.0 also works but not for queries containing hashtag) 

• Parameters: 

• — q: word A N D -filter:retweets / #hashtag A N D -filter:retweets 

— tweet mode: extended 

— result type: recent 

Get Tweets from Particular Account 

This endpoint returns a l l tweets from a part icular account. 

• Resource U R L : https: / /api . twitter.eom/l . l /search/tweets . json 

xhttps://developer.twitter.com/en/docs/basics/rate-limits  
https://developer, twitter, com/en/developer-terms/policy 

G 

https://api.twitter.eom/l.l/
https://api.twitter.eom/l.l/search/tweets.json
https://api.twitter.eom/l.l/search/tweets.json
https://developer.twitter.com/en/docs/basics/rate-limits
https://developer


• A u t h : O A u t h 1.0/2.0 

• Parameters: 

• — screen name: username 

— tweet mode: extended 

— include rts: false 

P r e m i u m Search 

It is necessary to create a developer environment in the Twit ter developer dashboard. The 
base U R L is extended by environment type and name. 

• Resource Base U R L : https: / /api . twit ter .eom/l . l / tweets /search/ 

• Resource Example U R L : https:/ /api . twitter.eom/l . l / tweets/search/30day/ 
dev. j son 

• A u t h : O A u t h 2.0 

• Parameters: 

• — query: word #hashtag 

2.2.2 F a c e b o o k 

This section draws from [1] and from own exploration. Facebook provides G r a p h A P I but 
it has l imitat ions in accessing the Facebook data. The G r a p h A P I is running on this U R L : 
https: //graph.facebook.com/v3.2/ 

Requirements 

Firs t , it is necessary to create an applicat ion. A l l requests require an access token but 
only reviewed applications have their own access token. There are not many resources wi th 
review experience and the chances for getting a public page access token that covers needed 
requests for this thesis. However, there is an option to generate user access token but user 
access token scope covers only that user data and data from pages and groups where the 
user has admin permissions. 

Universal Endpoint for G r o u p and Page Posts 

This is not the only way to get posts from a page and group. The G r a p h A P I response 
object is defined by a special parameter "fields". There is a difference between accessible 
fields for a post from a page and from a group and it is possible to have two separate request 
types for pages and groups. 

• Resource U R L : https://graph.facebook.eom/v3.2/page_or_group_id/feed 

• A u t h : None 

• Parameters: 

• — access token: Y o u r access token 

7 

https://api.twitter.eom/l.l/tweets/search/
https://api.twitter.eom/l.l/tweets/search/30day/
http://facebook.com/v3
https://graph.facebook.eom/v3.2/page_or_group_id/feed


— fields: 
created_time, shares, id , story, 
message, comments. l imi t (0). summary (true), 
reactions, l imi t (0). summary (total_count) 

2.2.3 R e d d i t 

This section draws from [2]. Reddi t provides free l imi ted A P I . There is a l imi ta t ion 60 
requests per minute per c l ient 3 . In addi t ion to J S O N , it is also possible to get a response 
as X M L . The response object for endpoints described below is a l i s t i n g 1 containing 100 last 
posts and it is possible to send addi t ional requests for getting next posts. 

Requirements 

For using Reddi t A P I , it is necessary to register an applicat ion. Registering an applicat ion 
generates client I D and client secret key. These values are used for authentication. It is 
possible to use Reddi t A P I without authentication, but there is a risk of stopping access to 
A P I by Reddi t . 

Authentication 

Requests described below do not need permission from logged clients because response 
data are publ ic ly visible. The Reddi t A P I contains an endpoint w i th part icular parameters 
for getting access token without client's permission - App l i ca t i on O n l y Authent ica t ion. It 
computes A P I rate l imits for each device. Th is is a request for getting a Bearer token which 
is added as an authorizat ion header: 

• Resource U R L : https://www.reddit.com/api/vl/access_token 

• A u t h : Basic A u t h 

• Body: 

• — grant type: client_credentials 

The Basic A u t h uses these applicat ion keys: User name is the client ID and password is 
the client secret key. 

Reddit Post Object 

Post time-stamp "created" is in unix time-stamp format. Post contains fields " i d " and 
"subreddi t_ id" but it is better to use the field "permalink" for accessing the post. The 
field "text" is an empty string when the post is media or l ink only. 

Get New Subreddit Posts 

This endpoint is for getting new subreddit posts where the subreddit is specified inside 
resource U R L . 

3 h t t p s : //github.com/reddit-archive/reddit/wiki/API 
4 h t t p s : //www.reddit.com/dev/api/oauth#listings 

8 

https://www.reddit.com/api/vl/access_token
http://www.reddit.com/dev/api/oauth%23listings


• Authenticated Resource U R L : 
https: //oauth.reddit.com/r/subreddit_id/new.json 

• Unauthenticated Resource U R L : 

https: //www.reddit.com/r/ subreddit_id/new. j son 

• A u t h : Bearer Token or None 

• Parameters: 

• - limit: 100 

Search Posts Containing Particular W o r d 

This endpoint is for getting new posts containing a part icular word where the word is 
specified parameter. 

• Authenticated Resource U R L : 
https: //oauth.reddit.com/search, j son 

• Unauthenticated Resource U R L : 

https: //www.reddit.com/search, json 

• A u t h : Bearer Token or None 

• Parameters: 

• — q: word 
— sort: new 

- limit: 100 

2.2.4 N e w s M e d i a 

News media often provide R S S feed for displaying articles i n th i rd party R S S applications 
like Feedly. R S S (Rich Site Summary) is a an X M L format for unifying contents (arti­
cles, podcasts, events, etc.) from websites. A n R S S content is in chronological order. If 
the publisher does not provide R S S feed, it is possible to use technologies (for example 
python l ibrary Newspaper3k) for getting content from articles because articles have uni­
fied H T M L structure ( " h i " element for ti t le, "p" element for paragraph, etc.). 

There are examples of R S S feeds: 

• The New York Times: http: //rss.nytimes.com/services/xml/rss/nyt/HomePage.xml 

• C N E T News: https://www.cnet.com/rss/news/ 

• T E D Radio Hour : https://www.npr.org/rss/podcast.php?id=510298 

9 

http://www.reddit.com/r/
http://reddit.com/
http://www.reddit.com/search
https://www.cnet.com/rss/news/
https://www.npr.org/rss/podcast.php?id=510298


2.3 Privacy Policies and Data Protection Regulations 

This section does not belong to the thesis topic but it is appropriate to mention that there 
are some restrictions and consequences i n working wi th personal data. 

Each platform has its own privacy policy (sometimes also developer policy) that needs 
to be followed. In addit ion, if some applicat ion (for example, an applicat ion from 4 and 5) 
is distr ibuted to someone i n some country, it is necessary to comply wi th the laws of that 
country or governmental entity like the European U n i o n and its General D a t a Protect ion 
Regulat ion. Understanding and deriving overall requirements for the applicat ion may not 
be an easy task and legal advice can be useful. 

There are examples of possible restrictions or consequences: 

• App l i ca t ion cannot share processed personal data from a th i rd party applicat ion. 

• App l i ca t ion should have a method for deleting a l l data of some user. Th is data should 
be also deleted i n third-party applications. 

• User should have an option to export a l l its data which an applicat ion has. 

• App l i ca t ion cannot display third-party content under monetization. For example, an 
article on a page wi th ads. 

10 



Chapter 3 

Text Analysis and Aggregation 

A text can be analyzed i n several ways and according to several cri teria. For example, it 
is possible to analyze and aggregate text by topic or other cri teria and t ry to get the most 
similar texts or texts that relate to the selected text. The main goal is to represent texts 
in a vector space and bui ld machine learning models for classifications or eventually for 
predictions. Afterwards, there is an option to perform statistical analysis. 

The text in a vector space representation goes wi th text feature extraction. In 3.4, there 
are described methods of extracting features from text and representing text in a vector 
space. 

There are two main categories of machine learning tasks: supervised and unsupervised 
learning. W h i l e the supervised a lgor i thm uses an input dataset w i th prepared examples of 
output, the unsupervised algori thm uses data as it is and tries to identify s imilar patterns 
in the data. Supervised algorithms are used for classification and regression. Unsupervised 
algorithms are used for clustering, dimension reduction and anomaly detection. [18] In 3.2 
and 3.1, there are described two supervised algorithms for classification. 3.3 describes how 
to use a classifier for more than two classes. A n example of an unsupervised a lgor i thm in 
terms of text topic analysis is Latent Dir ichlet A l loca t ion but this a lgori thm is not described 
i n this thesis because the a lgori thm d id not comply and was not part of experiments. 

3 .1 Mul t inomial Naive Bayes 

M u l t i n o m i a l Naive Bayes is a probabil ist ic learning method. The method uses Bayes rule 
to compute the posterior (conditional) probabi l i ty of the class for a text. The posterior 
probabil i ty is based on the dis t r ibut ion of the words i n a text. There is an assumption 
that each word i n a text is independent and the word posit ion is not relevant to the text 
class. [4] 

3.1.1 M e t h o d Def in i t i on 

M u l t i n o m i a l Naive Bayes classification is defined as 3.1 but it is better to use 3.2 because of 
a possible floating point underflow. A transformation between 3.1 and 3.2 is using equation 
log(xy) = log(x) + log(y) and can be done because the most probable class also has the 
highest log probabili ty. [15] 

cmap = a rgmax P(c) \ \ P(tk\c) (3.1) 

11 



cmap = a rgmax [logP(c) + ^ logP(tk\c)} (3.2) 

Classifier is finding a class c from a set of classes C w i th best probabili ty. P{c) is 
a probabil i ty that text is a class c and P(tfc|c) is a posterior probabil i ty that text w i th 
class c contains a word tk. Accordingly, probabil i ty of a class is calculated as a product 
of probabil i ty of a class -P(c) and probabili t ies of words i n a class P(tk\c) for each word in 
a text. [15] P(tfc|c) is a defined as 3.3 but it is better to apply add-one smoothing ([15]) 
and use 3.4 because probabil i ty from 3.3 for non-dictionary word w i l l be zero and then a 
probabil i ty of a class w i l l be zero. [9] 

P(tk\c) = T c t (3.3) 

P(tk\c) = T c t

T

+ \ l v l (3-4) 

l^t'€V1ct' + \ V \ 

Td is a count of occurrences of a given word t i n texts w i th class c used for t raining. 
Ylt'&v Tctt is a sum of a l l lengths of texts w i th class c and \ V\ is a vocabulary length. [9] 

3.1.2 E x a m p l e 

In this example, there are two classes (a and b) and a set of texts. For simplicity, each text 
can contain only two words: "Happy" and "Sad". The goal is to classify this text: "Sad 
Sad Sad Happy Happy" 

The first dataset has three sentences and each sentence contains 5 words. 

• a: Happy Happy Happy Happy Sad 

• b: Happy Sad Sad Sad Sad 

• a: Happy Happy Happy Sad Sad 

Firs t , it is necessary to calculate the probabil i ty for each class and then the posterior 
probabil i ty for each word and class: 

P{a) = \ P(b) = \ 

P(Happy\a) = 1±±- = - P(Sad\a) = = -
\ > i o + 2 3 v 1 ' 10 + 2 3 

P(Happy\b) = | ± 1 = | P(Sad\b) = | ± 1 = | 

Then, a classifier calculates probabilit ies of classes: 

P(a\t) = 2-*(1-f* i^f = 0.01097 

P(b\t) = I * ( ^ ) 3 * = 0.00992 

The classifier would pick class a because it has a bigger probabili ty. However, the tested 
text is more "Happy" than "Sad" and the result is inaccurate. This is an example that the 
short text classification depends more on class dis t r ibut ion than on used words. Now, the 
classifier w i l l use a data set w i th an added word in each sentence: 

12 



• a: Happy Happy Happy Happy Happy Sad 

• b: Happy Sad Sad Sad Sad Sad 

• a: Happy Happy Happy Sad Sad Happy 

The probabil i ty for each class w i l l be the same. It is necessary calculate only posterior 
probabil i ty for each word and class and then probabil i ty of class for the tested document: 

P(HaPPy\a) = ± ± ± = f P(Sad\a) = i ± L = f 

P(Happy\b) = = - P(Sad\b) = = -\ ľvy > 6 + 2 4 v 6 + 2 4 

= * * ( ^ ) 2 = 0.0039666 

P(b\t) = l * ( l ) 3 * ( \ ) 2 = 0.008789 

The classifier would pick class b for the tested document and the second dataset. 

3.2 Support Vector Machines 

Support Vector Machine is a machine learning method for classifying objects into two 
classes. The method is non-probabilist ic therefore a result of a classified object is a boolean 
value (not a probabil i ty of a class). The classification is based on finding a decision boundary 
in a vector space (line i n two-dimensional, surface i n three-dimensional) w i th the biggest 
margin. In Figure 3.1, there are two decision boundaries and the "boundary A " has a bigger 
margin than the "boundary B " . F i n d i n g the best decision boundary is an opt imizat ion 
problem. [15] 

Figure 3.1: Two Decision Boundaries M a r g i n Difference The "boundary A " has a 
bigger margin than the "boundary B". Taken from [20]. 

13 



3.2.1 M e t h o d Def in i t i on 

This subsection draws from [15] If data are separable into two classes, there is at least one 
decision boundary. The decision boundary called hyperplane is a line which is defined as 
3.5. For example, i n a two-dimensional space hyperplane is defined as 3.6 

wTXi + 6 = 0 (3.5) 

w\x + W2y + b = 0 (3-6) 

u>i and u>2 are features of a line normal (w) and 6 is a bias - line offset from center on 
y-axis. Linear classifier is defined as 3.7. 

f(x) = sign(wTXi + b) (3-7) 

Assuming that the Support Vector Machine requires a margin size greater or equal to 
one and the best decision boundary has at least one point belonging to a margin border, it 
is possible to derive a relation for overall margin width : 

2 
width = —r (3.8) 

\w\ 

The opt imizat ion task is finding w and b that: 

• \w\ is min imal . 

• For a l l (afj, yi) i n a t ra ining set, yi(wTXi + b) > 1 holds. 

Lagrange's method can solve this quadratic opt imizat ion problem. In the next section, 
there is an example of an algori thm for opt imizat ion. 

3.2.2 O p t i m i z a t i o n A l g o r i t h m E x a m p l e 

This is an opt imizat ion algori thm example and this section draws from [12]. The algori thm 
starts w i th large vector w (almost zero margin) and t ry ing to find a vector transformation 
and b which suits w i th provided dataset, then for best w t ry ing to decrease vector size 
(increase margin) and repeat. The algori thm has room for improvements. 

1. max, min - F i n d the max ima l and min ima l feature value 

2. Define algori thm variables 

• transformations - Vector transformations - For example [[1,1],[-1,1],[-1,-1],[1,-
1]] (Room for improvement) 

• w step sizes - Step sizes for w - [max * 0.1, max * 0.01, max * 0.001] 

• b step - Step size for b 

• b range - B mult ipl ier 

• latest opt imum - Latest O p t i m u m - A t start as [max * 10, max * 10] 

• latest opt imum b - Latest O p t i m u m for b 

3. For each w step size from w step sizes: 

(a) Define: 

14 



Table 3.1: D a t a for Transformations Compars ion 
Class x y 

-1 1 7 
- 1 2 8 
- 1 3 8 
1 5 10 
1 6 -1 
1 7 3 

• opt imum diet - O p t i m u m dict ionary 

• w - Ass ign latest opt imum 
• optimized - Ass ign false 

(b) W h i l e optimized is not true: 

i . For b i n range between - max * b range and max * b range 
A . Transform w to a l l transformations 

B . If some w w i th b suits w i th dataset, add this w and b to opt imum diet 
wi th key nominal length of w 

i i . If w[0] is below zero, set optimized to true, else decrease w step size 
from w (Room for improvement) 

(c) Take the element from opt imum diet w i th lowest key 

(d) Ass ign to latest opt imum value [element.w + w step size * 2, element.w 
+ w step size * 2] (Room for improvement) 

4. The decision boundary is defined by element.w and element.b 

In [12] and in the a lgori thm example, the transformation array is [[1,1],[-1,1],[-1,-1],[1,-
1]]. Th is means that the a lgori thm transforms the latest op t imum vector only into four 
diagonal directions and also the decision boundary w i l l be a diagonal at the end. It is 
better to generate points in a l l directions. For example, the a lgori thm using that four 
transformations d id not found a decision boundary for the data from table 3.1 but a lgori thm 
using transformations obtained from a function below d id . However, loop ending condit ion 
becomes imperfect after this change. This problem was not solved because the a lgori thm 
is only a demonstration. 

def get_transformations(): 
c irc le_points = [] 
for x i n range ( -10 , 10 ) : 

for y i n range ( -10, 10 ) : 
circle_points.append([x / 10, y / 10]) 

return c irc le_points 

The accuracy also depends on the i terating i n the "b range" (range size and step size) 
although there is the same si tuation as w i th transformations. It is a wise choice between 
accuracy and computing time. 

3.2.3 N o n - L i n e a r Class i f icat ion 

Sometimes data are not l inearly separable as it is shown in the second graph i n Figure 
3.2. It is possible to make "the kernel t r ick" - map data to some higher-dimensional vector 

15 



space. [15] For example, in the th i rd graph i n Figure 3.2 there is an example of mapping 
data one-dimensional data to two-dimensional vector space using the quadratic function. 

x 

0 x 

0 

Figure 3.2: Non-Linear Classification Problem and "Kernel Trick Solution" Taken 
from [15]. 

3.2.4 Implementa t ions 

Implementing own models may not be an easy task. Support Vector Machine has many com­
pleted implementations and most times using one of this implementat ion may be sufficient. 
There are three examples of Support Vector Machine implementations by a programming 
language: 

• C / C + + - S V M u s h t - h t tp : / / svmlight . joachims.org/ 

• P y t h o n - Sciki t Learn - h t t p : / / s c i k i t - l e a r n . o r g / 

• Java - L I B S V M - https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 

This section draws from [15]. There are two methods for classification wi th more than two 
classes: any-of (also known as multi label) and one-of (also known as multiclass). Whi l e 
the any-of classifier can classify an object to several classes or a single class or to none of 
the classes, the one-of classifier classify to a single class only. 

This is the any-of classification algori thm: 

1. B u i l d a classifier for each class (dataset is transformed into datasets for each class -
positive and negative values). 

2. Classify an object by each classifier separately and assign a l l positive classes. 

Th is is the one-of classification algori thm: 

3.3 Classification W i t h More Than Two Classess 

16 

http://svmlight.joachims.org/
http://scikit-learn.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/


1. B u i l d a classifier for each class (dataset is transformed into datasets for each class -
positive and negative values). 

2. Classify an object by each classifier separately. 

3. Ass ign a class w i th max ima l probabil i ty or a score or a confidence value. 

3.4 Text Representation 

The support vector machines a lgori thm described i n 3.2 works wi th numeric data such 
as vectors, lines and points i n a vector space. It is necessary to convert text data into 
similar representation. One way is convert text to tokens, lemmas, remove stop words 
and calculate term frequency-inverse document frequency. A p p l y i n g the term frequency-
inverse document frequency also for the mul t inomia l Naive Bayes a lgor i thm described in 
3.1 increases a classifier accuracy. [16] 

3.4.1 T o k e n i z i n g 

"Tokenizing is the process of breaking a large set of texts into smaller meaningful chunks 
such as sentences, words, and phrases." [18] 

Process output structure can be a tree or a list of tokens where a token represents 
a part icular text part. Process implementat ion may vary wi th intentions. The following 
sections describe procedures which can be used inside the process. 

Lower Case 

It is recommended to convert a l l words to a smal l form to unify the letters and then 
represent the same words (with a different letter sizes) to the same token type. However, 
occasionally loss of meaning may occur. For example, " ^ W a s h i n g t o n " and "^Washington" 
w i l l be same token and the meaning w i l l be s t i l l same but i n [15] there are listed examples 
wi th company names ("General Motors "vs. "general motors"), names ("Bush" vs "bush", 
"Black" vs "black") or acronyms ("computer-aided translat ion" as " C A T " vs "cat") where 
the conversion has meaning loss. 

Special Terms 

Texts often contain special terms like links to websites, phone numbers, etc. These terms 
can be converted to tokens representing term context but w i th some level of information loss. 
For example, the sentence " V i s i t h t tps : / /example .com/posts /hel lo" can be after tokenizing: 

• "visit L I N K " 

• "visit L I N K T O example.com" 

• "visit L I N K T O example.com/posts /hel lo" 

Text Noise 

W h i t e characters, punctuation, and other special characters in text are usually not so 
significant i n comparison w i t h words. In that case, tokenizing should also remove these 
characters. For example, the sentence "Hello, welcome i n Seattle. How was your flight?" 
can be after tokenizing "hello welcome i n Seattle how was your flight". 

17 

https://example.com/posts/hello
http://example.com
http://example.com/posts/hello


Table 3.2: Lemmatizat ion and Stemming Example 
W o r d Stem Lemma 
was wa be 
eating eat eat 
she she she 
worse wors bad 

3.4.2 S top W o r d s 

Text can contain words that are not so significant for the field of text and analysis type. 
These words are called stop words. Removing stop words can increase the accuracy of anal­
ysis methods. This procedure also speeds up analysis processing t ime because the dataset 
size should be lower. [17] 

The field of text and analysis type is important for stop words selection. Mos t times, the 
selection is the taking the most frequent words across texts i n the dataset w i th hand-filtering 
by field of text and analysis type. [15] 

In [17] is listed an example wi th term "very high frequency radio". This term by the 
International Telecommunication U n i o n signifies a frequency between 30 and 300 M H z . 
The word "very" can be evaluated as stop word but term "high frequency radio" signifies 
a frequency between 3 and 30 M H z . 

3.4.3 L e m m a t i z a t i o n a n d S t e m m i n g 

"The goal of both stemming and lemmatizat ion is to reduce inflectional forms and sometimes 
derivationally related forms of a word to a common base form." [15]. W h i l e stemming only 
crops words to the root of the word, lemmatizat ion replaces words w i t h their base form by 
a part icular dictionary, "stemmer" applies specific transformation rules and "lemmatizer" 
works as a thesaurus. Decision between lemmatizat ion and stemming can depend on text 
language and also on performance because "stemmers" based on algori thmic transformation 
are less performance-intensive than "lemmatizers". In Table 3.2 there is an example of 
differences between stemming and lemmatizat ion. 

3.4.4 T e x t to V e c t o r C o n v e r s i o n 

Furthermore, the text unit (in the thesis case, for example "tweet" text) is referred to as 
a document. E a c h document has properties like a topic, sentiment, a key message and so 
on. It is necessary to represent documents in a vector space for any analysis. Then, it is 
possible to compare distances between documents and their properties and do analysis and 
aggregation. 

Assuming that document properties are defined by a part icular word occurrence, it 
is possible to use word occurrence statistics for the document to vector conversion. For 
example, the simplest method is based on counting word occurrence i n a l l documents. 
The second opt ion is the te rm frequency-inverse document frequency referred to as T F -
I D F . However, these methods (called " B a g of Words") neglect the order of words and 
document grammar. [18] 

Each word in a document has a part icular relevance to the whole document, sentence and 
words around the word. "In the area of information retrieval, T F - I D F is a good statistical 

18 



Table 3.3: T F - I D F Values Example 

am 
computer 
human 
is 
this 

0 
0.000000 
0.680919 
0.000000 
0.517856 
0.517856 

1 
0.000000 
0.00000 
0.57735 
0.57735 
0.57735 

0.795961 
0.000000 
0.605349 
0.000000 
0.000000 

measure to reflect the relevance of the term to the document i n a collection of documents 
or corpus." [18]. 

T F - I D F is defined as 3.9 where tf is defined as 3.10 and idf is defined as 3.11: 

tf 

idf = log 

tfidf = tf * idf 

Number of times term appears i n a document 

Tota l number of terms i n the document 

To ta l number of documents 

(3.9) 

(3.10) 

(3.11) 
Number of documents w i th a given term i n it _ 

For example, Table 3.3 shows T F - I D F results for these three documents: 

• 0: This is a computer. 

• 1: This is a human. 

• 2: I a m a human. 

Differences between these documents are i n a simple machine-readable format because 
documents are represented as vectors. For example, the first document has this represen­
tat ion: [0.000000, 0.680919, 0.000000, 0.517856, 0.517856]. 

A n alternative to statist ical methods is doc2vec 1 . It is possible to t ra in own doc2vec 
model on a part icular dataset and use this model for the document to vector conversion. 
In [8] is a good comparison between doc2vec and T F - I D F . 

1Doc2vec is based on word2vec but it adds a paragraph vector. [13] 

19 



Chapter 4 

System for the contents 
aggregation of selected sources 

This chapter is about the design of the system for getting content from selected sources 
and for content aggregation and statistics. Section 4.1 describes basic design principles for 
the system and Section 4.2 describes system architecture itself. 

4 .1 Applicat ion Design 

It is possible to split system requirements for an applicat ion design into two sections by two 
points of view: F r o m the user's perspective and its functional requirements, and from the 
developer's point of view. In other words: define requirements for developer's convenient 
development. 

4.1.1 F u n c t i o n a l R e q u i r e m e n t s 

A n ideal applicat ion use scenario has three ma in parts. A user w i l l subscribe to some 
sources (posts from a part icular account, posts containing a word or a hashtag) and the ap­
plicat ion automatical ly gets contents from subscribed sources. The applicat ion w i l l provide 
analysis and some statistics, and the user w i l l display selected contents, analysis results and 
statistics. The sections below describe the main functional requirements. 

Contents from Selected Sources in One Place 

A user wants to subscribe to selected posts from mult iple platforms and have that posts 
in one place. For example, the user can select several sources depending on a platform like 
posts from a part icular account, publisher or posts containing a part icular word or hashtag. 
Posts have to be synchronized min imal ly each hour and the applicat ion should contain a 
way to get data on demand. The user also wants to sort posts. 

Contents Analysis 

A user wants to define topics that can be assigned to a post. A topic has to represent a 
post classification to some criteria. For example, the user can define topics for post topic, 
sentiment, etc. App l i ca t ion should be able to suggest topics for each post and user should 
be able to confirm part icular suggestion. For example, the applicat ion suggests two topics: 

20 



"Technology" and "Negative". The user selects only "Technology" and the second topic w i l l 
be discarded. The user also wants to filter contents by topics. 

Contents Statistics 

The applicat ion should provide at least basic content statistics like number of posts in 
time, by topic and platform. Also , other statistics may be useful to the user. For example, 
posts w i t h the most reactions, the most posting authors, a count of posts without topic, 
overall topic dis t r ibut ion or the most frequent words. 

4.1.2 A r c h i t e c t u r e R e q u i r e m e n t s 

This section describes three main architecture requirements. The thesis author set these 
requirements considering that the implementat ion w i l l be open sourced. It is not a single 
approach. For example, it is possible to design the applicat ion as a closed system running 
on one configuration only, w i th a fixed graphical interface, without the possibil i ty of adding 
new extensions and third-party usability. 

A P I - F i r s t Architecture 

A P I - F i r s t Archi tecture (or A P I - F i r s t Design) is an applicat ion development approach that 
prefers designing the applicat ion interface based on the domain analysis as opposed to 
the user-interface driven design, which is quite commonly used. [19] The next reason for 
A P I - F i r s t Archi tecture is a parallel backend a frontend development possibil i ty and simple 
openness to third-parties. For example, an applicat ion has a graphical user interface only 
as a website and someone w i l l create a mobile application. 

App l i ca t ion development starts w i t h an App l i ca t i on Programming Interface (in most 
times a R E S T A P I ) design. The mindset "Your A P I is the first user interface of your 
appl icat ion" can be helpful for the design process. A P I definition should cover a l l product 
functionality before the backend and frontend implementation. A P I should not change fre­
quently. A d d i n g new features to a well-designed A P I should not affect the overall structure. 
O n the other hand, it is possible to change, refactor or optimize an implementat ion without 
affecting the second side. For example, refactoring backend to a new version w i t h same 
A P I does not affect frontend side, mobile applications or third-party A P I consumers. [19] 

A big emphasis was also placed on making the interface R E S T f u l , for example keep 
collection pattern which is decrebed i n [5]. 

Operat ion System Independency 

The open sourced implementation should be easy to configure and set up. A Software 
Developer who wants to t ry the implementat ion should be able to run this system on 
a local machine regardless of operation system (Linux, O S X , Windows) . The repository 
should contain a R E A D M E file that describes system configuration and setup. A n ideal 
configuration is as a one file (in J S O N format) for inserting A P I keys and other third-party 
values and the setup is as one line command i n the terminal . 

Extensibil ity 

The system should be ready for new features, improvements and extensions. The key 
consequence i n development is having a set of tests (Chapter 6 describes testing) that 

21 



covers the A P I . The set of tests ensures safe adding new features without affecting existing 
features. For example, the system should be well designed and implemented for easy and 
safe addi t ion or integration of: 

• New social media platform 

• Another database 

• Further analysis and statistics 

• User groups and an authorizat ion layer 

• New automation 

• Another internal or third-party A P I 

4.2 System Architecture 

The basic idea of the system architecture is one public R E S T A P I that has some func­
t ional i ty and also works as a proxy for internal A P I s . This is because of the possibil i ty 
of using different technologies for different operations. For example, P y t h o n has many l i ­
braries for machine learning but it does not have good support for functional constructions 
like collection map, filter, etc. i n comparison wi th K o t l i n which was chosen for fundamental 
operations like getting and edit ing the data, eventually for calculations for statistics. H T T P 
Request forwarding can be defined in a request proxy configuration or it is a possible cre­
ate forwarding endpoints i n the main backend application. 

The graphical user interface for the applicat ion is a single page applicat ion. System 
A P I serves on a root endpoint " / " a set of H T M L and JS files. Serving these files handles 
the internal Node.js server, and i n a client's web browser executes JS files for starting the 
single page applicat ion which handles sending requests to an A P I (with a prefix " / a p i / " ) , 
dynamic H T M L changes and U R L routing. 

The system contains two databases: S Q L and N o S Q L . The reason for using two databases 
is sui tabi l i ty for part icular cases. Content from social media and networks are big data and 
fast access is necessary. The thesis author chose a N o S Q L database for this use case af­
ter consultation wi th the supervisor. However, N o S Q L database does not guarantee data 
consistency. Taking into account that the appl icat ion i n future could contain more sophis­
ticated data entities and its relations like user groups wi th permissions, S Q L database were 
chosen for other data such as sources and topics. 

In Figure 4.1, there is a system scheme for clarity. The sections below describe each 
part of the system i n more detail . 

4.2.1 D a t a b a s e M o d e l 

The S Q L Database contains four tables. Table for topics, sources, users and analysis model 
trainings. The N o S Q L contains a set of collections of posts. E a c h collection contains posts 
for one platform. 

S Q L Database 

A l l data types are from Pos tgreSQL because this database type was used for the imple­
mentation. Table 4.1 shows columns for topics and Table 4.2 shows columns for sources. 

22 



Frontend Server Main Backend 

0 S V 
Content Database User Database Third-Party APIs 

Figure 4.1: System Architecture Scheme 

Table 4.1: Topics Table Columns 
Name T y p e 
id S E R I A L N O T N U L L P R I M A R Y K E Y 
t e x t _ i d T E X T N O T N U L L 
name T E X T N O T N U L L U N I Q U E 

There are columns platform and value_type. E a c h platform can contain different source 
types. For example, Twit ter has sources for a hashtag, an account or a word but Facebook 
has only pages and groups. These source types are important not only for social platform 
A P I calls but also for validations in a graphical user interface. Source-type definitions are 
hard-coded because the applicat ion uses only 4 platforms. However, the A P I prevents from 
wrong combination inserts and in the future, there is a possibil i ty to create another table 
containing source-type definitions for more dynamic configuration. 

A l l analysis model trainings are i n one table, the table has these six columns and these 
columns are shown in Table 4.3. 

The last table for users contains five columns and its names and types are shown in 
Table 4.4. 

N o S Q L Database 

There was a decision between one N o S Q L collection for a l l posts from a l l platforms and 
several collections for each platform. The first case would support queries for last 20 posts 

23 



Table 4.2: Sources Table Columns 
Name 
id 
platform 
value_type 
value 

T y p e 
S E R I A L N O T N U L L P R I M A R Y K E Y 
T E X T N O T N U L L 
T E X T N O T N U L L 
T E X T N O T N U L L U N I Q U E 

accuracy 

Name 
id 
m o d e l _ i d 
is_done 
start 
end 

Table 4.3: Trainings Table Columns 
T y p e 
S E R I A L N O T N U L L P R I M A R Y K E Y 
T E X T N O T N U L L 
B O O L E A N N O T N U L L 
T I M E S T A M P N O T N U L L 
T I M E S T A M P 
D E C I M A L 

by t ime from a l l platforms, but then each post would have to contain a field for a platform. 
The second case avoids "platform switch" in a code. The post structure can differ for each 
platform but fields i n Table 4.5 are uniform across platforms. 

4.2.2 R e p r e s e n t a t i o n a l State Trans fer A p p l i c a t i o n Interface 

A s described in 4.1.2, a big emphasis was placed on the A P I structure. The thesis au­
thor chose a Representational State Transfer (further referred to R E S T ) style for the A P I . 
R E S T is a software architectural style w i th a set of constraints like Client-server architec­
ture, Statelessness, Uni form interface, etc. [5] 

The A P I design is based on the database model . Because the database contains several 
collections for each platform, each platform has its own endpoint. The same goes for an 
analysis. It is very l ikely that the analysis model w i l l not be the only one in the future. 
Therefore, A P I design contains endpoint "analysis" and nested endpoint "topic". The A P I 
design also contains endpoint "auth/signup". This endpoint is available only for the first 
use and it is for creating first user after first system deploy. For statistics, this endpoint 
returns a smal l set of statistics and in that t ime it d id not make sense to use a different 
structure. The A P I has the following structure: 

• / a u t h 

- /accessToken - P O S T 

— /f irstUser - P O S T (Available only for the first user) 

Table 4.4: Users Table Columns 
Name T y p e 
id S E R I A L N O T N U L L P R I M A R Y K E Y 
username T E X T N O T N U L L U N I Q U E 
name T E X T N O T N U L L 
email T E X T N O T N U L L U N I Q U E 
password T E X T N O T N U L L U N I Q U E 

24 



Table 4.5: Post Document Required Fields 

suggestedTopics Lis t of strings 

/users - G E T , P O S T 

- / m e - G E T 

- / : i d - G E T , D E L E T E 

/ topics - G E T , P O S T 

- / : i d - G E T , P U T , D E L E T E 

/sources - G E T , P O S T 

- / : i d - G E T , P U T , D E L E T E 

/ contents 

- / twitter - G E T 

* / : i d - G E T , D E L E T E 

• / topics - P U T , D E L E T E 

- /news - G E T 

* / : i d - G E T , D E L E T E 

• / topics - P U T , D E L E T E 

- / reddi t - G E T 

* / : i d - G E T , D E L E T E 

• / topics - P U T , D E L E T E 

- /facebook - G E T 

* / : i d - G E T , D E L E T E 

• / topics - P U T , D E L E T E 

/ analysis 

- / topic 

* / trainings - P O S T 
• /last - G E T 
• / r u n n i n g - G E T 
• / : i d - G E T 

* /suggestions - P O S T 

* /accuracy - G E T 

/statistics - G E T 

/jobs 

- /contentDownloads - P O S T 

Name 
_ i d 
t imestamp 
text 
topics 

Str ing (ISO format) 
Str ing 
Lis t of strings 

T y p e 
Str ing 

25 



4.2.3 C o n t e n t s A n a l y s i s Service 

The ma in requirement for analysis service is an asynchronity. The applicat ion should be 
able to retrain analysis models i n order to get better results. For example, a user w i l l 
confirm suggested topics for several posts and these posts can have a big effect on new 
topics. However, t ime of model t ra ining can take a few seconds, hours or even days and it 
is necessary to send a response to request immediately after processing the request. 

W h e n a request for a t ra ining is sent, the content analysis service creates a row in 
the table for trainings wi th status is_done equal to false and then the service starts the 
learning itself. Once the learning is completed, the service changes status is_done to true. 
The trained model is a saved as file i n case of the service restart. 

The communicat ion interface between the main backend and analysis service is a R E S T 
A P I after consultation wi th the supervisor and it should be uniform across a l l analysis 
services. 

26 



Chapter 5 

Implementation 

A source code repository contains README.md, .gitignore, .editorconfig and directories for 
the system parts. The following sections describe the multi-container applicat ion approach, 
continuous integration configuration and implementations of part icular parts of the system. 

5 .1 Multi-Container Applicat ion 

Container is a lightweight execution environment which can be used for an applicat ion 
isolation and which is sharing the operating system kernel. In comparison w i t h v i r tua l 
machines, containers are not completely isolated and container can share a computing 
power and a memory w i t h another container. Thanks to this, operations wi th containers 
such as start-up and shutdown are very fast. [21] Docker 1 is one of container platforms 
for a container management and this technology was used i n this implementat ion because 
Docker has a majori ty i n the industry and there was a presumption of good documentation. 
[6] Docker container is created from a Docker image. It is possible to get predefined images 
such as Node.js, O p e n J D K or Fedora. 

A t the beginning of the implementation, containers were used for databases but then 
also for a deployment. Docker Compose was chosen as a container management tool 
and in the directory called docker there are two files: docker-compose.yml and docker-
compose.prod.yml. The first file contains a definition of containers for databases. Con­
tainers for backend, request proxy and other services are defined in the second file. This 
division is because of the possibil i ty to set up only database containers for the development. 
Database containers must have a definition of a volume for the database data because i f 
a new database container is created wi th an existing volume, the container w i l l use that 
volume and data from the volume persists. 

It is possible to connect to the container on a localhost on a part icular port (for example, 
Mongo on 27017) but i f an applicat ion inside a container wants to access another container, 
it is necessary to change the host value from localhost to container name. For example, 
Mongo container is defined as content_database and the backend applicat ion has to connect 
to content_database:27017. 

Some project directories contain a file called Dockerfile. Th is file is used for bui ld ing a 
new Docker image and a deployment process builds Docker image and creates a container 
from this image for each part of the implemented system. 

x h t t p s : //www.docker.com/ 

27 

http://www.docker.com/


5.2 Topic Analysis Service 

Topic Analys is service is implemented in P y t h o n . It has its R E S T A P I which can be called 
by ma in backend or by N G I N X proxy. A P I server is implemented using a F l a s k 2 framework 
which is not so huge l ibrary for R E S T A P I implementation. Un i t tests can be executed by 
P y U n i t . [14] was used as an inspirat ion for the classification algori thm. A l l dependencies 
are listed i n a file called requirements.txt 

5.2.1 D a t a P r e - P r o c e s s i n g 

A l l helper functions for text pre-processing have a unit test coverage. Once the dataset is 
retrieved from a database, it is converted into a Pandas data frame 3 which is better than 
a simple list of posts in case of data exploration and model t raining. The data frame has 
columns for topics and for post text and i d . Each row in a data frame represents a post. 

Then, it is necessary to clean up a text i n each post. In the thesis appendix, there is 
a list of characters which is used for not necessary character removal. Before the removal, 
post text is converted to tokens using N L T K Tweet Tokenizer 1 w i th a combination of regu­
lar expression for replacing date tokens to " D A T E " . U R L tokens are left as they are. This 
tokenizer is better for a social media content i n comparison wi th WordTokenizer because 
word tokenizer converts "#hashtag" to two tokens - and "hashtag". Text tokens are 
replaced by their lemmas i f it is known. A s a lemmatizat ion l ibrary was chosen M a j k a 0 

because this l ibrary besides main languages like Engl ish , German, Spanish also supports 
Czech language. Text language is detected by langid l i b r a r y 6 . A l l words from a text are 
converted to lowercase form and then stop words are filtered out from the text. The im­
plementation uses a stop words from a P y t h o n l ibrary called stop-words 7 . Tf ldfVector izer 8 

converts cleaned text to the T F - I D F vector. 
It was necessary to consider whether add text properties like platform, author or pub­

lisher direct ly to the text or create new dimensions i n a vector for these properties. Consid­
ering that an author in not trained data can be unknown but a platform is always defined, 
the author and the platform are attached to a text before the vectorization. However, the 
platform index could be added as a new feature to the vector. 

5.2.2 Class i f i cat ion M o d e l 

Topic classification is using the Support Vector Machines method described i n 3.2 but it is 
possible to use M u l t i n o m i a l Naive Bayes method by changing one parameter i n a pipeline 
shown below. The reason for using this method was better overall accuracy in comparison 
wi th M u l t i n o m i a l Naive Bayes model. 

O n attached C D is enclosed a reference dataset for comparison. The data are from the 
context of the city of Brno . It is a combination of tweets and news articles. A n y data 
that might be sensitive were replaced by the appropriate substitute. These topics were 
chosen for analysis: traffic, work, sport, culture and poli t ics. Posts were naively labeled by 

2 h t t p : / / f lask.pocoo.org/ 
3 h t t p s : //pandas, pydata. org/pandas-docs/ver s ion/0.23.4/gener at ed/pandas. DataFrame.html 
4 h t t p s : / / www.nltk.org/api/nltk.tokenize.html#module-nltk.tokenize. casual 
5 h t t p s : //nip.fi.muni.cz/czech-morphology-analyser/ 
6 h t t p s : //github.com/saf f sd/langid.py 
7 h t t p s : //github.com/saf f sd/langid.py 
8 h t t p s : //s cikit-learn.org/stable/modules/generated/sklearn.feature_extr act ion. text 

28 

http://lask.pocoo.org/
http://www.nltk.org/
http://fi.muni.cz/
http://cikit-learn.org/stable/modules/generated/sklearn.feature_extr


Table 5.1: Accuracy Difference for labeled 168 posts 
Topic Support Vector Machines Mul t inomia l Naive Bayes 
traffic 0.98 0.93 
sport 0.89 0.79 
work 0.89 0.86 

culture 0.88 0.88 
events 0.82 0.80 

politics 0.89 0.89 

thesis author. Accuracy difference between these models is shown i n Table 5.1 and topic 
dis tr ibut ion for the dataset is shown in Table 5.2. In Figure 5.1, there is a visual izat ion of 
the most common words. The dataset was divided into two sets (for t raining and testing) 
using train_test_split funct ion 9 w i t h these parameters: 

• random state: 42 

• test size: 0.33 

• shuggle: True 

z b r o j o v k a m i s t r o v s t v í _ A X ŕ i i *• • * ±. 

dnes*'' fe=£^zacithrat|cast 
stát 
všechen 

lužánkami 

praha 
sezona 
ročník 

vybírat 
prohrál 
čtvrtek! 
cesta 
dostat 
milion 

ohňostroj 

legenda' 
s v ě t 

p o h á r , 

m ě s í c 
extraiigový autobus víkend 

d a l š í 
yyhrát 

vítězství měštčBvujd^ 
"vautôbusvíkend S I D V ľ l a t J i nehoda 

Figure 5.1: Most Frequent Words 

9 h t t p : //s c i k i t - l e a r n . o r g / stable/modules/generated/ sklearn.model_selection.tr ain _ t e s t _ s p l . i t 

29 

http://ikit-learn.org/
http://sklearn.model_selection.tr
http://ain_test_spl.it


Table 5.2: Topic Distr ibut ion for 168 posts 
Topic Count 
traffic 38 
sport 59 
work 18 

culture 19 
events 33 

politics 23 

The classification algori thm uses pre-implemented Support Vector Machines model . The 
algori thm uses scikit-learn S V M 1 0 . 

Pipeline([ 
C t f i d f , T f i d f V e c t o r i z e r O ) , 
# Not used - ( ' e l f , OneVsRestClassif ier(MultinomialNB(. . .), . . . ) ) , 
( ' e l f , OneVsRestClassifier(LinearSVC(), n_jobs=l)) 

] ) 

The pipeline reference can be used for a fit function ca l l but it is necessary to cal l 
this function for each topic because the classification is a mult i - label classification problem. 
Once the model learning is finished, models are saved as files w i th name topic_id_model.pkl 
using P y t h o n object se r ia l i za t ion 1 1 . These files are loaded on a R E S T A P I server start. 

O n the suggestion endpoint, the server checks that models are loaded and then cal l the 
predict function for each topic. In the case of missing models, the server return error code. 

5.3 Third-Party A P I Cal l Service 

The second P y t h o n R E S T A P I server is for third-party A P I calls. The A P I server has 
endpoints for getting the social media a networks data. These endpoints are called by job 
scheduler or by user request forwarded from a backend. The server implementat ion is in 
similar technolog ies cts ci topic analysis service and does not have a bigger complexity. 

5.4 Backend 

Backend is developed i n K o t l i n using Spring f ramework 1 2 . Tests are wr i t ten i n Kot l inTes t 
f ramework 1 3 which supports descriptive test names and adds a set of advanced matchers. 
J U n i t platform can be used for the test execution. 

5.4.1 C o n f i g u r a t i o n 

A l l dependencies are defined in a file called build.gradle and this file also contains a con­
figuration for a J O O Q generator. J O O Q is a Java l ibrary for object-relational mapping. 
In addi t ion to simplifying query wri t ing , it is possible to generate classes for the database 

1 0 h t t p s : //s cikit-learn.org/stable/modules/generated/sklearn.svm.Linear SVC 
n h t t p s : //docs.python.org/2/library/pickle.html 
1 2 h t t p s : //spring.io/ 
1 3 h t t p s : //github.com/kotlintest/kotlintest 
1 4 h t t p s : //www. jooq.org/ 

30 

http://cikit-learn.org/stable/modules/generated/sklearn.svm.Linear
http://jooq.org/


structure. J O O Q generator is configured only for the user database. J O O Q does not sup­
port N o S Q L databases. The code is generated into the package db.generated.user_database. 
This package contains classes for data access objects and p la in old Java objects for each 
table in the database. 

The file build.gradle also configures a F lyway l i b r a r y 1 ' . This l ibrary is a solution for 
database migrations. Besides a database connection definition, build.gradle configures that 
the K o t l i n code compilat ion depends on J O O Q code generation task and this task de­
pends on database migrations. In other words, database structure is i n accordance wi th 
the code and each compilat ion checks the structure and generated code and eventually mi ­
grations and code generation is executed. The database structure definition is i n a package 
db .migration i n a directory called resources. In this directory can be S Q L files w i th name 
Vx name.sql where the x is a number which defines a S Q L script order. 

In the directory resources, there is also a file appl icat ion.yaml. Th is file defines database 
connections (PostgreSQL and M o n g o D B ) for the Spring Appl i ca t ion . Databases need to be 
configured also i n the Spring App l i ca t i on configuration. In the package configuration are 
classes wi th Spring annotat ion ©Configuration for the Spring App l i ca t i on configuration. 
Specifically, there are classes for both databases, authentication and C O R S filter settings. 

A s mentioned in 5.1, it is necessary to configure hosts by its container name. However, 
J U n i t tests are not executed inside a container and hosts need to be configured as localhost. 
This problem is solved wi th a second configuration. Th i s configuration is in a directory 
wi th tests. There is also a directory called resources and its content is the same except host 
values. Regarding configuration classes, there is a difference and these classes must have 
an annotation @TestC on figuration. 

5.4.2 D a t a Classes 

M o n g o D B database for social media contents does not have code generation support and 
it was necessary to define appropriate classes for p la in o ld Java objects. Package pojos is 
determined for these classes. The same si tuat ion is for objects returned as an A P I response. 
K o t l i n provides a data class concept for this use case. B y default each class should be a data 
class but classes for platform post (for example Tweet, RedditPost, etc.) are basic classes 
extending from the abstract class called Post because of common fields __id, t imestamp, 
text, etc. It is important to add annotat ion @Document(collection = "collection_name") 
to a class representing a platform post. Th i s annotat ion defines a M o n g o D B collection 
containing objects defined by that class. 

A l though there are data access object classes i n the generated code, some queries are 
more complex and it is advisable to wrap them into a special class. This type of class 
is called a repository. These repositories are i n a package domain.impl. For example, 
there is a SourceRepository extending a SourceDao and overriding insert methods wi th an 
implementation containing a source type validation. It is possible to define an interface 
extending a generic interface called MongoRepository. The generic type is a class w i th 
©Document annotation for the collection document. The MongoRepository interface is 
from a M o n g o D B l ibrary for the Spring framework and automatical ly implements basic 
queries like "find a l l documents", "find by i d " , etc. A l l methods can have a parameter 
called pageable of class Pageable. Th is parameter transforms returned result into a page 
and it is possible to load the content ctS ct p£l ge by page i n order to decrease response size 
and A P I consumer performance demands. A class extending the MongoRepository interface 

1 5 h t t p s : I It lywaydb.org/ 

31 

http://lywaydb.org/


can define its own methods that have an annotation ©Query(value = "") for the M o n g o D B 
database. 

In the package domain, there is an interface called GenericPostRepository. The Gener-
icPostRepository interface is an abstraction for platform post repositories and also needs 
to be used w i t h a generic type - in this case a class for a platform post. Extended interface 
GenericPostRepository defines four methods: 

• F i n d posts without topics: "{$or: [{'topics': {Sexists : false}}, {'topics': {$eq: [] 

}}]}" 

• F i n d posts w i th suggested topics: "{$and: [{'suggestedTopics': {Sexists : true}}, 
{'suggestedTopics': {$ne: [] }}]}" 

• F i n d posts containing topics: "{ ' topics' : {$in : ?0 }}" 

• F i n d posts i n t imestamp range: "{ ' t imestamp': {'$gte': ?0, '$lte': ?1}}" 

A n example below shows the s implic i ty of repository definition - i n this case for Twit ter 
posts: 

©Repository 
interface TweetRepository : GenericRepository<Tweet> 

5.4.3 Services 

Calculat ions for statistics d id not have a simple implementat ion on a few lines and a l l more 
complex code for calculations and data transformations should be wrapped into services. 
In package services, there is a class called StatsService implementing necessary calculations 
for statistics. 

The implementat ion manifested a disadvantage of spl i t t ing post to several collections 
for each platform because it is necessary to query the data several times and map them to 
a list of post objects. Methods for calculations use K o t l i n collection functions like the map, 
filter, etc. 

One of the more difficult things in this implementat ion was a right choice for the times­
tamp representation i n K o t l i n respectively in a Java language. The Java language, unlike 
for example JavaScript, has many classes for date and t ime data and the choice is confusing 
sometimes. F ina l ly , the OffsetDateTime class was chosen. 

5.4.4 C o n t r o l l e r s 

A l l A P I endpoints are handled by controller classes. These classes have annotation ©Rest-
Controller and are located i n package called api. It is necessary to implement public 
method wi th one of these annotations: @RequestMapping, @GetMapping, @PostMapping, 
@DeleteMapping, etc. M e t h o d parameters w i t h annotation @RequestParam define request 
parameters. M e t h o d return type defines a request response type. P l a i n old Java objects 
are returned as J S O N . Sending a H T T P status code is invoked by throwing a ResponseS-
tatusException w i th a constructor parameter of class HttpStatus. 

A s wi th repositories, the controller has the appropriate abstraction. In the package 
api. content, there is an abstract class called GenericPostControiler w i th a generic type 
representing a platform post. For the platform controller definition, it is necessary to 
extend this class w i th a @RequestMapping annotation for an endpoint prefix and wi th a 
part icular type and repository as is i n the example below - also i n this case for Twitter: 

32 



©RestController 
@RequestMapping(''/contents/twitter'') 
class TwitterController( 
tweetRepository: TweetRepository 

) : GenericController<Tweet>(tweetRepository) 

5.4.5 A u t h e n t i c a t i o n 

Requests start ing wi th prefix " / au th" are without required authentication. A l l other re­
quests require authentication w i t h a bearer token. This authentication is configured as 
a request filter in a class AuthConfiguration in a package wi th Spr ing configuration. The 
bearer token has a J S O N Web token standard that uses a signature a lgori thm called HS512. 
A signing key and expirat ion t ime is configured i n a file application, yami i n a directory wi th 
Spring resources. 

5.5 Front end 

The frontend part is a client side rendered single page applicat ion. The applicat ion is 
implemented i n JavaScript using a R e a c t 1 6 l ibrary and Mate r i a l U I components . Jest 
was chosen as a unit testing framework. The only difference between development and 
product ion configuration is an environment variable called REACT_APP_API_URL. If 
this variable is set, the frontend applicat ion w i l l use it for A P I calls. One statement in 
Dockerfile for frontend is the environment variable definition. Almos t a l l implemented 
components are stateless. Non-stateless implemented components are listed in this section. 
App l i ca t ion screenshots are i n thesis appendices. 

The applicat ion has implemented routing i n order to keep applicat ion browsing history. 
In addit ion, it is possible to direct ly display part icular view by entering an U R L thanks to 
the rout ing implementat ion. React R o u t e r 1 8 l ibrary was used for the implementation. 

The ma in component Application in a file Application.js contains a definition of plat­
forms and loads topics, sources from a backend. The Application component displays a 
dashboard by default. It is possible to change the dashboard view to another from a side 
menu. For example, the side menu has items for dashboard, posts, topics, sources. A l l these 
views are defined i n separate components. The Application component is not stateless. 

The dashboard is composed from mater ial cards showing statistics. The dashboard 
components loads statistics and model information from the backend and is not stateless. 
React Google C h a r t s 1 9 l ibrary is used for displaying graphs. A user also can retrain topic 
classifier directly from the dashboard. The posts view is for viewing posts and it is possible 
to enable "interactive mode" for browsing posts one by one. Topics and Sources views are 
for editing only. 

Posts view displays posts i n tables. E a c h table represents one platform and posts are 
paged. E a c h table is configurable i n terms of page size, post sorting by some property 
and filtering. A component PlatformPostTable was implemented for these tables. Th is 
component is not stateless. In l is t ing below, there is an example of platform definition in 
the Application component and PlatformPostTable component usage. 

1 6 h t t p s : //react j s.org/ 
1 7 h t t p s : //material-ui.com/ 
1 8 h t t p s : //reacttraining.com/react-router/ 
1 9 h t t p s : //github.com/RakanNimer/react-google-charts 

33 



const platforms = [ 
{ 

id : " t w i t t e r " , 
name: ''Twitter", 
columns: [ 
{ 

id: ,timestamp ), 
valuePath: ['timestamp'], 
label: 'Timestamp', 
valueFormatter: getDate 

}. 

]. 
getPostsAsPage: getTwitterPostsAsPage, 
deletePost: deleteTwitterPost, 
savePostTopics: saveTwitterPostTopics, 

}. 
] 

<div> 
{ 

platforms.map((platform, index) => 
<PlatformPostTable 
key={index} 
platformName={platform.name} 
platform={platform.id} 
columns={platform.columns} 
topics={topics} 
deletePost={platform.deletePost} 
getPostsAsPage={platform.getPostsAsPage} 

/> 
) 

} 

</div> 

} 

/> 
In the platform definition i n the l ist ing, there is a property columns which defines table 

structure and value formatting. Compared to this approach, a component for post detail has 
defined sub-components for each platform. Sub-component selection is made by a Switch 
component from the React Router library. 

If a user signs i n to the applicat ion, the frontend applicat ion saves the user's access to­
ken to a local web browser storage. The user can log out from the frontend applicat ion and 
remove the token. If the access token is not stored in the local web browser storage, a lo­
gin view is shown. This approach was achieved through a component called PrivateRoute. 
[11] The frontend does not contain a sign up view. It is necessary to use A P I endpoints for 
adding new users and their management. 

34 



A l l data requests are in folder data. Requests are divided into files by a data subject. 
For example Topic.js, Posts.js, etc. Request are sent by A x i o s 2 0 l ibrary. D a t a from A P I 
sometimes need a transformation for components like graphs. These transformations are in 
a directory lib and a l l functions from this directory have a part icular unit test coverage. 

5.6 Request Proxy 

Another important part of the implemented system is a request proxy. A user can send two 
request types: A P I requests and frontend applicat ion requests. Container w i th configured 
N G I N X 2 1 was used as a request proxy. Appropr ia te Dockerfile and N G I N X configuration 
file called nginx.conf are i n a directory nginx. The request proxy applies these two rules: 

• " / a p i " request is passed for ht tp: / /backend:8080/ 

• " / " request is passed for ht tp: / /frontend:3000/ 

5.7 Job Scheduler 

Internal A P I servers have endpoints for jobs for getting data, suggesting topics for a l l posts, 
etc. These endpoints can be called by user or automatically. A Docker image called O f e l i a 2 2 

was used as a job scheduler. Th i s image is based on C R O N but this image simplifies job 
definitions. A configuration contains these three jobs: 

• Get social network data each 10 minutes 

• Suggest topics each 30 minutes 

5.8 Continuous Integration and Delivery 

Each last commit in a master branch i n a repository should have a source code that has 
passing tests. It is advisable to automatical ly run a l l tests on each commit push to a 
repository. The repository is hosted on G i t h u b 2 3 and i n the repository, there is a hidden 
directory called . circled. Th is directory configures a C i r c l e d p l a t f o r m 2 4 for automatic test 
runs and automatic deployment. In Figure 5.2, there is a scheme of continuous integration 
of the implemented system. If some parts fail , followed parts w i l l not be executed and 
continuous integration platform sends a ma i l notification. 

https: //github.com/axios/axios 
https://docs.nginx. com/nginx/admin-guide/web-server/reverse-proxy/ 

2 2 h t t p s : //github.com/mcuadros/of e l i a 
2 3 h t t p s : //github.com/Horm/socialclusters 
2 4 h t t p s : //circleci.com/ 

35 

http://backend:8080/
http://frontend:3000/
https://docs.nginx


Figure 5.2: Continuous Integration and Delivery Scheme 

36 



Chapter 6 

Testing 

Testing was par t ia l ly mentioned in chapter 5 because tests were wri t ten during the devel­
opment process. However, this chapter presents results from the testing which can be useful 
for future extensions. System moni tor ing was not implemented. 

6 .1 Analysis Mode l Validation 

The analysis model is the main part of the implemented applicat ion. K e y aspect of this 
model is its overall accuracy. However, it is not possible to measure the accuracy because 
users can retrain the model w i th new data. In 5.2.2, there is a analysis method comparison 
on a reference dataset. These comparison results can be also used for the model validation. 
Support Vector Machines method has better overall accuracy for this use case. A n imple­
mentation of the analysis model based on support vector machines has sufficient results for 
the system implementat ion and the analysis service can be used as an advisory service. 

6.2 Uni t and E 2 E Testing 

It can be said that a l l A P I endpoints of ma in backend are covered by E 2 E tests and a l l data 
transformation functions are covered by unit tests. The main backend classes has 86% test 
coverage and a test directory contains a package wi th 82 test cases divided into 16 classes. 

Classes testing requests for internal A P I s use an implemented mock that par t ia l ly sim­
ulates the internal server operations wi th the database. Internal A P I for analysis is tested 
only for the t ra ining entry creation in the database and there is room for improvement to 
implement asynchronous tests. 

A class AuthControllerTest contains static methods for getting an authentication request 
mocks. This class also tests the functionality of these static methods. These methods are 
used in a l l other test classes that require authentication because controller tests should use 
requests w i th the same headers and parameters as i n normal use. 

6.3 Manual Testing 

M a n u a l testing approach was used for internal A P I s and for the frontend. Individual 
frontend components were tested i n a web browser during development to test their basic 

37 



functionality. Internal A P I s and its functions were tested using a Pos tman 1 appl icat ion and 
a local P y t h o n console. 

The main result from manual testing is a finding that many frontend views can be more 
responsive. Further, it could be worked on better latency and state maintenance of the 
graphical user interface after the webpage reload. 

1 h t t p s : //www.getpostman.com/ 

38 

http://www.getpostman.com/


Chapter 7 

Conclusion 

The main goal of this bachelor's thesis was to design and implement a web applicat ion for 
content aggregation and analysis from several popular social networks. Th is goal has been 
achieved. 

The thesis describes the principles and applicat ion interface of Facebook, Twit ter , Red-
dit and News Med ia . The thesis also contains a description of the text to a vector space 
conversion, Support Vector Machines method and M u l t i n o m i a l Naive Bayes. A n extensi­
ble system was designed and it was implemented using Support Vector Machines method, 
Docker, K o t l i n , P y t h o n and JavaScript. 

The system automatical ly obtains data from social networks defined by a user and the 
system displays content statistics. The user also can gradually t ra in a topic analysis service 
and aggregate posts by topic. The system can be used i n many contenxts and the system is 
ready for new extensions and features because a l l main system functions have test coverage. 

The other success of this thesis is a possibil i ty of an easy system setup regardless of the 
machine type. The author of the work gained experience in machine learning, mul t i -
container applications and React framework. In the future, thesis author would like to 
improve the system wi th advanced analysis and statistics, user groups and clear up a legal 
aspect. 

39 



Bibliography 

[1] Facebook G r a p h A P I Developer Documentat ion. 
h t t p s : / / d e v e l o p e r s . f a c e b o o k . c o m / d o c s / g r a p h - a p i . accessed: 2019-04-30. 

[2] Reddi t A P I Documentat ion, h t t p s : / / w w w . r e d d i t . c o m / d e v / a p i . accessed: 
2019-04-30. 

[3] Twit ter Developer Documentat ion, h t t p s : / / d e v e l o p e r . t w i t t e r . c o m / e n / d o c s . h t m l . 
accessed: 2019-04-30. 

[4] Aggarwal , C , C h a r u C ; Zha i : Mining Text Data. vol . 9781461432234. New York: 
Springer. 2012. I S B N 9781461432227. 

[5] Amundsen, M . ; Ruby, S.; Richardson, L . : RESTful Web APIs. O ' R e i l l y Media , Inc. 
first edit ion. 2013. I S B N 9781449358068. 

[6] Carter , E . : 2018 Docker Usage Report . M a y 29 2018. 
Retrieved from: h t t p s : / / s y s d i g . c o m / b l o g / 2 0 1 8 - d o c k e r - u s a g e - r e p o r t / 

[7] Center, P . R . : Social M e d i a Fact Sheet. 2018. 
Retrieved from: h t t p s : / / w w w . p e w i n t e r n e t . o r g / f a c t - s h e e t / s o c i a l - m e d i a / 

[8] Curr ie , D . : Predic t ing Similar i ty : TfidfVectorizer & Doc2Vec. 2017. 
Retrieved from: h t t p s : 
/ / w w w . k a g g l e . c o m / c u r r i e 3 2 / p r e d i c t i n g - s i m i l a r i t y - t f i d f v e c t o r i z e r - d o c 2 v e c 

[9] Dočeka l , M . : Pokroč i lé metody s t ro jového učen í pro klasifikaci textu. 2016. 

[10] F i a l a , M . : P r o p o j e n í sociální s í tě Twit ter s t e lev izn ím vys í l án ím. 2018. 

[11] Jason Watmore: React - Basic H T T P Authent ica t ion Tutor ia l & Example . 2018. 
accessed: 2019-04-30. 
Retrieved from: h t t p s : / / j a s o n w a t m o r e . c o m / p o s t / 2 0 1 8 / 0 9 / l l / r e a c t - b a s i c -
h t t p - a u t h e n t i c a t i o n - t u t o r i a l - e x a m p l e # p r i v a t e - r o u t e - j s x 

[12] Kinsley, H . : Support Vector Machine Opt imiza t ion in P y t h o n part 2. 
Retrieved from: h t t p s : / / p y t h o n p r o g r a m m i n g . n e t / s v m - o p t i m i z a t i o n - p y t h o n - 2 -
m a c h i n e - l e a r n i n g - t u t o r i a l / ? c o m p l e t e d = 
/ s v m - o p t i m i z a t i o n - p y t h o n - m a c h i n e - l e a r n i n g - t u t o r i a l / 

[13] Le , Q . V . ; Miko lov , T . : Dis t r ibu ted Representations of Sentences and Documents. 
2014. 

40 

http://facebook.com/docs/graph-api
https://www.reddit.com/dev/api
https://developer.twitter.com/en/docs.html
http://sysdig.com/blog/2018-docker-usage-report/
http://www.pewinternet.org/fact-sheet/social-media/
http://www.kaggle.com/currie32/predicting-similarity-tfidfvectorizer-doc2vec
http://jasonwatmore.com/post/2018/09/ll/react-basic-


[14] L i , S.: M u l t i L a b e l Text Classification wi th Sciki t -Learn . 
https: //towardsdat ascience. com/mult i - l a b e l - t e x t - c l a s s i f i c a t i o n - with-
scikit-learn-30714b7819c5. 2018. accessed: 2019-04-30. 

[15] Mann ing , C . D . ; Raghavan, P.; Schütze , FL: Introduction to Information Retrieval. 
New York , N Y , U S A : Cambridge Univers i ty Press. 2008. I S B N 0521865719, 
9780521865715. 

[16] Rennie, J . D . M . ; Shih, L . ; Teevan, J . ; et a l . : Tackl ing the Poor Assumptions of 
Naive Bayes Text Classifiers. In Proceedings of the Twentieth International 
Conference on International Conference on Machine Learning. I C M L ' 0 3 . A A A I 
Press. 2003. I S B N 1-57735-189-4. pp. 616-623. 
Retrieved from: http: //dl.acm.org/citation.cfm?id=3041838.3041916 

[17] Savoy, J . : Work ing wi th Text. Tools, Techniques and Approaches for Text M i n i n g . 
E m m e L . Tonk in & Gregory J . L . Tourte. Chandos Publisher, Cambridge ( M A ) . 2016. 
330pp. ( I S B N 978-1-84334-749-1). JASIST. vol . 69. 2018. 

[18] Swamynathan, M . : Mastering Machine Learning with Python in Six Steps: A 
Practical Implementation Guide to Predictive Data Analytics Using Python. Apress. 
first edit ion. 2017. I S B N 9781484228661. 

[19] Trieloff, L . : Three Principles of A P I F i rs t Design, https://medium.com/adobetech/ 
three-principles-of-api-first-design-fa6666d9f694. 2017. accessed: 
2019-04-30. 

[20] W i k i p e d i a , the free encyclopedia: Support Vector Machines. 2010. accessed: 
2019-04-30. 
Retrieved from: https: //de.wikipedia.org/wiki/Support_Vector_Machine 

[21] Yegulalp, S.: W h a t is Docker? Docker containers explained. InfoWorld.com. Sep 06 
2018. copyright - Copyright Infoworld M e d i a Group Sep 6, 2018; Last updated -
2018-09-07. 
Retrieved from: 
https: //search.proquest.com/docview/2100097722?accountid=17115 

41 

http://acm.org/citation.cf
https://medium.com/adobetech/
http://wikipedia.org/wiki/Support_Vector_Machine
http://InfoWorld.com


Appendix A 

Screenshots 

© 
Socialc lusters 

Username or Email Address 

Password 

S I G N I N 

Figure A . l : Login 

42 



Socialclusters LOGOUT 

Dashboard 

B j Posts 

T Topics 

n Sources 

General Info 
218 peats haven'i topic 
11 posis have suggested topic 
Current Topic Analysis model was trained in an hour. 

DOWNLOAD CONTENT SUGGESTTOPICS TRAIN TOPIC ANALYSIS MODEL 

Posts by Platform 

. * L _ L 

1 Twitter 

I News 

I Reddit 

I Facebook 

5/3/2019 5/5/2015 5/10/2015 

Posts by Topic 

I Traffic 

1 Culture 

1 Sport 

1 Work 

I Politics 

I Life 

Word s 

čekat zvíře barážletos d o | n , t e ď doprava 
skončit nedele čekárna v y h r a t taká 
termín republic mil ion náměstí 

díky žena se d1 hodně brna policie 
video brněnský 250rok ezech , , 

říkat úsek místo wicn další o n k t e ^ 
p 0 d | e druhý ulice brnět téma jako 

kraj D V n D , po l ic is ta clanek m u z h r a 
zbrojovka b m o n o v ý k ú t y 

P r̂k f 0 f g a l e r i e m i t ^ t
a č e s k ý k o n ^ c 

stát^iojmo hbrod řidič břeclavfíct 
najít hodina národní ( svoboda 

Twitter Authors 

brnornycity 
21 

Diana_Veatri>i 
o 

BVVBrno 
5 

LenadorFilms 

Reddit Authors 

shaneogallachoir 

News Authors 

Brno a Jižní Morava - Zprávy - iDNES.cz 
30 

Brněnský deník - Zprávy 
26 

Brněnský deník - Sport 

a o 

cd 
Q 

2 

CO 

http://iDNES.cz


SocialC I usters LOGOUT 

Twitter -
• [imeslarrp v Author Likes Ftetweets tel Topics 

• 13. 5. 20190:32:16 cdomezenijrr C C 3nes Je hlášena výluka na trati 260 v úseku Brno-Ž... •fsťt •; / ' 

• 13. 5. 20190:24:35 s -ikk C C brntfs top 5 artista this week: Alina Baraz (6). B... / • 

• 12. 5. 201923:43:21 Stisk_munimedia 0 0 Co jeto Klub mladých diváků Brno? Proč vlastně vz... / ' 

• 12. 5. 201923:24:15 spekhor£tova 1 C @petr fischer 3 @Evrop-aSpolecne Mě čeká zítra Emo,... / 

• 12. 5. 201923:21:27 Engineers Day C a [Job| Senior Construction / Project Manager | Comp... „ o * • Without Topic 

Rows peľ page: 5 » • Traffic 

• Culture 

News 
H 

• 
Sport 

Work 

• Timestamp 4- Publisher Ti Lie Topics • Politics 

• 12. 5. 2019 20:20 00 brněnský deník .,i Cycle Američana Bridise nestačil. Nu lears podlehli brněnským Drakům • Life 

• 12. 5. 201916:03:00 brněnský denlk Sport Pardubice chtějí doma přibrzdit rozjetého brnenského lídra sport • Events 

Rows per page: 5 • Places 

• News • News 

Reddit D 

Toursirn 

o 
(In 

< 
o u 



OH H jf » 

| I I | 

51 | S1 

| |- ! ! 1 I I I 1 

to
u

rism
 

to
u

rism
 

i I 1 i I 1 i I 
DELETE 

SAVE > < < < < < < < < < 

Figure A . 4 : Topics 

45 



au H J 

11 ? 

! ! ! If I í i 

73 C/5 

i 

i* ! I í 

| i j : 
i 

ľ ! I 

m 

l 

< < < % 
m 

> < < 

Figure A . 5 : Sources 

46 


