
VYSOKÉ UČENI TECHNICKE V BRNE 
BRNO UNIVERSITY OF T E C H N O L O G Y 

FAKULTA INFORMAČNÍCH TECHNOLOGII 
ÚSTAV INFORMAČNÍCH SYSTÉMŮ 

FACULTY OF INFORMATION T E C H N O L O G Y 

DEPARTMENT OF INFORMATION S Y S T E M S 

CLOUDOVÝ APLIKAČNÍ RÁMEC TYPU INFRASTRUKTURA JAKO 
SLUŽBA 
CLOUD F R A M E W O R K ON INFRASTRUCTURE A S A SERVICE 

DIPLOMOVÁ PRÁCE 
M A S T E R ' S THESIS 

AUTOR PRÁCE Be. DAVID PECH 
AUTHOR 

VEDOUCÍ PRÁCE Ing. RADEK BÜRGET, Ph.D. 
S U P E R V I S O R 

BRNO 2013 



S e m 

vložte 
zadání 



Abstrakt 
Práce se zabývá podrobnou analýzou požadavků na moderní aplikační rámec pro prostředí 
cloud. Za pomoci standardních návrhových vzorů a technik připravuje teoretický základ 
a pravidla, která musí uvnitř rámce platit. V práci je realizována referenční implementace 
a připravena demonstrační aplikace středního rozsahu, aby představila výhody plynoucí 
z užití frameworku. 

Abstract 
The thesis covers an in-depth analysis of the requirements for a modern application frame­
work that runs in the cloud environment. It uses standard design patterns and approaches 
to prepare guidelines for the framework. A reference implementation is created to prove 
framework concept. The medium-sized demo application is also developed to prove the 
framework benefits. 

Klíčová slova 
cloud, aplikační rámec, design aplikačních rámců, distribuovaný systém, vrstevnatá ar­

chitektura, infrastrutura jako služba 

Keywords 
cloud, framework, framework design, distributed system, layered architecture, infrastruc­
ture as a service 

Citace 
David Pech: C L O U D F R A M E W O R K ON I N F R A S T R U C T U R E AS A SERVICE, diplo­

mová práce, Brno, FIT V U T v Brně, 2013 



CLOUD F R A M E W O R K ON INFRASTRUCTURE AS 
A SERVICE 

Prohlášení 
Prohlašuji, že jsem tuto diplomovou práci vypracoval samostatně pod vedením Ing. Radka 
Burgeta, Ph.D. 

David Pech 
10. května 2013 

Poděkování 
Chtěl bych poděkovat vedoucímu práce Ing. Radku Burgetovi, Ph.D. za jeho odbornou 
pomoc při zpracování tohoto tématu. 

© David Pech, 2013. 
Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakulte in­
formačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení 
oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů. 



Contents 

1 Introduction 3 

2 Motivation 5 
2.1 Available Cloud Frameworks 6 
2.2 Yet Another Framework 7 
2.3 Complex Design Problem 7 
2.4 Reinventing the Wheel 7 

3 Public Cloud Environment 8 
3.1 Domain Boundaries 8 
3.2 Manager's and Business Perspective 10 
3.3 Developer's Perspective 11 
3.4 IT Maintainer's Perspective 12 

4 Cloud Infrastructure Composition 13 
4.1 Cloud Classification 13 
4.2 Storage vs. Computational Separation 16 
4.3 Cloud Friendly Technologies 17 
4.4 Price Comparison 22 

5 Framework Requirements 26 
5.1 Goals 26 
5.2 Modern Framework Guidelines 27 
5.3 Required Services 31 

6 Framework Design 34 
6.1 Basic Concepts 34 
6.2 Modules 36 
6.3 Command / Event Pipeline 37 
6.4 Testing 39 
6.5 Statistics Collection 39 
6.6 Self-healing and Self-testing 40 

1 



6.7 Nodes in the Cluster Structure 40 
6.8 Updating the Application in the Cluster 42 
6.9 Heterogeneous Nodes 42 
6.10 Debugging and Error Diagnostics 42 
6.11 Framework Composition 43 
6.12 Building an Application on the Framework 43 

6.13 Moving away from C R U D to D D D 44 

7 Technology Selection 46 
7.1 Technology Evaluation 46 
7.2 Node Daemons Configuration 48 
7.3 Other Suggested Technology Stacks 50 

8 Framework Reference Implementation 52 
8.1 Implementation Choices 52 
8.2 Implemented Services 54 
8.3 Testing Support 55 
8.4 Self-Healing 56 
8.5 Integration 56 

9 Demo Application - Distributed Web Crawler 58 
9.1 Overview 58 
9.2 Analysis 59 

9.3 Requirements 60 
9.4 Implementation Overview 61 
9.5 Framework Benefits 62 
9.6 Retrospective 63 

10 Conclusion 64 

10.1 Further Development Suggestions 64 

Appendices 

A Contents of the Enclosed D V D 70 

B Running the Application 71 

C Application Screenshots 72 

2 



Chapter 1 

Introduction 

A framework design has always been a complex activity that can dramatically influence 
a product time-to-market aspect. A sophisticated framework with solid theoretical back­
ground can increase an application quality and significantly decrease its development 
time. 

This thesis has a goal to produce a theoretical background to create cloud frameworks 
that support rapid application development. The selected technologies are not the only 
possible implementation options, on the contrary the framework design suggests to use 
others components in integration. 

The result of the practical part is a reference implementation in a selected technologies 
and a simple yet powerful application that demonstrates the benefits available when using 
the framework ideas in the real-world project. 

The framework will strongly suggest to use a domain driven design (DDD) [1] as a 
core part and provide extensive support to minimize the effort related to adopting these 
concepts. The D D D has numerous advantages over traditional entity-level paradigm. 

This thesis won't create a massive over-engineered framework that tries to solve every 
domain problem for a developer. The result will more likely be a minimalistic framework 
that is easy to integrate to any technology stack and that enables a real-world project to 
move from standard server hosting solutions to the cloud with all the offered benefits. 

The first part of thesis focuses on analysis of the cloud environment and requirements 
collection. Chapter two advocates the need for a new framework solution and depicts the 
current situation in the cloud framework market. There is an elaborated analysis on a 
cloud user types in the chapter three. Chapter four discuses in-depth the characteristics 
of the cloud from a technical and technological perspective. In chapter five framework 
goals and requirements are defined based on the previous observations. 

When all the requirements are collected, the framework can be built in the second 
part of this thesis. In chapter six there is a thoroughly described process of designing the 
framework that matches all the requirements. A technology is evaluated and selected for 
a reference framework implementation in chapter seven. Chapter eight contains a detailed 

3 



look at the implementation process. 
Chapter nine describes a development of a demo application based on the framework 

along with all the pros and cons that have been met along the way. 
In the last chapter an evaluation of the framework capabilities is being made and the 

thesis concludes in retrospection. 

4 



Chapter 2 

Motivation 

There are too many different frameworks currentiy at use at the software industry. Cre­
ating another one needs a justification. 

Majority of frameworks are built up from a so-called personal library that experienced 
programmers used to have in the past. [2] Current frameworks are created by companies as 
a side effort apart from their main product. These frameworks start as a simple set of very 
specific classes that are generalized in time. The framework has to solve a simple problem 
domain at first. Later as the framework is getting wider audience and the community is 
growing, the features of the framework also grow. 

On the contrary, some frameworks are designed from scratch with few transparent 
guidelines and ambitions. Only a small amount of them is engineered without connection 
to a large start-up project, however. The second group is often easier to use in other 
projects than the first, because guidelines keep frameworks more coherent and generally 
usable. [3] 

Many frameworks are older than ten years and are still deployed among starting 
projects. The modernization process is the key element of success in current highly 
competitive software industry. 

Even the best frameworks tend to age. Of course they can still fulfill most of daily task 
currently requested, but their design and guidelines are getting rusty. The community is 
expecting certain behavior from the framework and to significantly change this behavior 
is not possible in the most cases. 

I believe that the cloud concept is so distant from traditional single-machine or peer-to-
peer application development that it needs to completely rethink the application structure 
at fundamental level. For this environment a new framework is needed. 

Of course the solution may be to find an existing product. This most certainly doesn't 
apply to all the situations, in fact the vast majority of simple software tasks have been 
already solved, it's just about finding the correct of many different solutions. 

5 



2.1 Available Cloud Frameworks 

The main characteristics of such frameworks are their ability to extend computation seam­
lessly across volatile number of computation units. These implicate complex questions 
that have to be dealt with: 

• No traditional file-system - often programs can't directly work with files and an 
abstraction layer is used 

• Module or other computation unit boundary - program is divided into parts which 

can be executed in parallel 

• Failover, H A - framework supports means to achieve high fault-tolerance 

• Ease of deployment - it must be easy to replicate and install a new clone of the 
framework environment [4] 

2.1.1 Proprietary Cloud Engines 

The most notable representative is the Google App Engine [5]. The engine has a large 
amount of supporting staff both from the company and also from open-source world. The 
framework is aimed to support rich internet applications. 

The largest disadvantage is the proprietary runtime environment. The G A E runs on 
Google web servers, uses Google services and application cannot be fined tuned to use 
extensively unsupported technology. 

Similar situation is with Microsoft that offers an application hosting services on their 
technology stack [6]. 

2.1.2 Extending Traditional Frameworks 

Every single machine framework can be extended to support multi-machine environment 
up to some level. But these frameworks have other goals and the cluster support means 
bending their internals up to some level. 

The support may be developed, but if it is not a core part of a framework, it may be 
hard to use or prone to synchronization issues. 

2.1.3 Cluster Computational Frameworks 

A Hadoop [7] can be chosen as a typical representative of this category. These frameworks 
are suited for massively parallel computation across a large server cluster. Each node 
executes the same program and operates on the similar type of data as all the other. 

The primary goal is data transformation to some other format or data type [8]. 

6 



These solutions can be extended and used in server application, however their installa­
tion and maintenance requires an expert on these technologies. They are not suitable for 
rapid application development where the learning curve and entry time of a new project 
developer must stay low. 

2.2 Yet Another Framework 

Of course there are too many frameworks already for any individual to summarize them 
or to understand them all. I believe that it's a necessity of introducing a new one because 
its aims are dramatically distant from the current standard framework representatives. 

The framework creation will be started in this thesis, but it will be designed with the 
best practices in mind, so the development may continue later on. 

2.3 Complex Design Problem 

The quest for a quality cloud framework is a complex engineering problem. The focus 
can't be drawn only to the technical solution itself. The computation force to handle 
multi-computer environment already exists and this thesis is not here to question the fact 
that even in an assembly language the application can theoretically exists. 

The main goal of the thesis is the concept, theoretical foothold for the framework. It's 
aimed as a manual for building certain types of cloud applications. 

The programming code is not as important as the documentation, examples of its 
usage and other support material that developers will use to learn. 

2.4 Reinventing the Wheel 

Numerous theses on a framework design exist. [9] [10] 
Their main goal is to evaluate the current area of knowledge, pick best technologies 

according to some criteria and design a framework that can hold the technologies coherent 
and in one place. 

I strongly believe that the technology selection is the choice of a developer. As the 
application is offered to customers, changes need to be made constantly in order to keep 
up with changing requirements. The change of essential storage or any other technology 
is inevitable for the most software products that live through few years. 

One of the framework goals has to be an ability to support existing enterprise-level 
frameworks for integration. This framework will do only one thing (cloud support) and 
it won't interfere with developer specific technology choices. 

7 



Chapter 3 

Public Cloud Environment 

The definition of the public cloud environment is rather vague due to the number of 
use cases and purposes the cloud can serve. I find the best way to describe the cloud 
environment to sum up all the important areas[11]: 

• Internet Connection - the cloud is always accessible from the Internet and in the 
most cases it's the main entry point of the application 

• Real-time Scalability - number of required resources may change during each month 
or even during one day as the traffic changes 

• Fault-tolerant Environment - no matter faults in hardware the application should 
be running 

• Monitoring - the complex system requires monitoring because the failures will always 
occur and it's vital to locate them as soon as possible [12] 

• Automated Deployment - under these conditions it's not possible to deploy an ap­
plication by hand. A l l the procedures must be automated to some level to prevent 
errors and misusage [4] 

• Mirrors (Clones) - developers have one or more environments set up exactly the 
same way as a production one for testing purposes 

• Integration with Other Systems is in many cases the essential and primary service 
the application is providing 

• Automated Testing is essential to keep up the quality of the product [13] 

3.1 Domain Boundaries 
To narrow the boundaries of this thesis only the public cloud environment with its specifics 
will be described. 

8 



The environment is opened to public and provides some kind of service. The security 
levels must be designed accordingly. 

It's important to mention that many cloud services are based on simple cloning (profile, 
clones...) of one application. The Software as a Service [14] will be explained in detail. 

3.1.1 Cloud Advantages 

Cloud environment offer large number of benefits, to name some of them [15]: 

• It's modern. Everyone wants to advertise that his IT is moved to the cloud, cus­
tomers react to this fact positively. 

• No need to solve problems with the physical hardware. 

• Lower Running Costs - studies show [16] that overall cost for this type of hosting is 
lower than other hosting solutions. 

• Service Ecosystem - offered services are tuned to work seamlessly together. 

• „Unlimitedu Resources - many of the offered services don't pose any limit on the 
maximum storage capacity etc. In reality there must be a level, but it is so high 
that it is not a real problem. 

• Deployment and Monitoring Support 

• Support Services - each large vendor offers a large number of secondary services 
adding a large business value to the basic virtualization technology. Simple databases, 
block storage, management tools or monitoring tools are good examples of such ser­
vices. 

3.1.2 Cloud Disadvantages 

Cloud vendor most commonly provides a technical solution of a virtual machine. Of 
course this seems appropriate and may work well in a lot of cases, but there are certain 
scenarios that this may seem as a disadvantage. 

• Constant application load is not possible - it's difficult to predict behavior of your 
„neighbors" in the cloud. Other companies who operate on the same physical ma­
chine can do a lot of intensive operations and this has drawbacks for your application. 
The number of the C P U cores (or other „computational" units) is constant and has 
the same performance every time. But the hard disk drives, network, entropy and 
other physical resources are not necessarily dedicated to your application only. This 
is the place where your application performance can drop, because every real-world 
application has to rely on network or HDDs to work. 

9 



• Artificial Limitations - certain providers impose artificial limits that should improve 
certain nontechnical areas. For example Amazon Web Services (AWS) limits the 
number of public IP addresses and even bills every hour of unbound IP address. 
This should suggest reasonable housekeeping, but on the other hand it's completely 
artificial and not a technological limitation. 

• Pay As You Go - for most situations it's a benefit to pay only for the resources that 
you have used, but the largest amount of the server environment is often an initial 
investment to buy and configure the server. If you already own a server, it's already 
running, other solutions may seem a lot cheaper (dedicated server housing etc.). Of 
course a risk analysis must be made (failing hardware) to prove this point. 

3.2 Manager's and Business Perspective 

As for the manager the term cloud is most certainly an interesting aspect of the software 
system. Given the current buzz of the word, everyone wants to have his data in the cloud 
and a lot of customers is asking if the solution is based on the cloud. This can be used as 
an advantage in such a highly competitive field as IT is. 

The manager must watch closely the complexity growth: 

• Are the developers on the project skilled enough to build the application? 

• Wi l l we maintain the quality of our product and keep our deadlines? 

The only correct solution to this is of course hiring a skilled coach or consultant who 
already has a lot of experience with the cloud. The questions are more difficult to answer 
than in the traditional applications. 

There is less space for mistakes. The cloud opens one day, the website becomes public 
and the application is put into the pilot mode. If a hurricane hits the datacenter that 
day, many of the customers are disappointed that the application isn't working and may 
never come back. When you develop a traditional application, package the version 1.0, 
you can test it for days before you release it in public. 

A n unexpected success may happen and suddenly much more customers want to use 
your application. The infrastructure may not be ready yet. The same problem applies 
for the traditional web applications also. The cloud should have much simpler solution 
- renting more C P U time, virtual machines and so on. Also many cloud providers offer 
flexible storage capabilities so migration to a larger disk array may not be a problem. 

A hardware hosting and the vendor security trademark are valuable assets among 
customers. Especially the US citizens are greatly concerned about the security of their 
data, so it helps the brand to use cloud data center of the large well-established company. 

10 



Working with a community is a significant benefit for cloud and web oriented compa­
nies. The community can often provide support for new users, so the first level support 
can be reduced. When the community mass reaches some point it becomes self-sustained 
and the company can significantly reduce investments in this area [17]. 

The user community looks out for changes. When the module is released, everyone 
learns its functions and how to control it. When the change comes later on it may enhance 
the environment, but it's a change and people often resist changes in general. 

3.3 Developer's Perspective 

The great benefit for the developer is a short release cycle. With each stage of a de­
velopment, a version is published and the customers are accustomed to changes in the 
cloud environment. It's natural to release a version every month, sometimes even every 
week. The changes are not drastic as a new major version comes up, but the application 
is incrementally getting better. Because of the risks involved the number of any major 
changes to the cloud is limited [13]. 

Things can always work better and this is completely true the case in the cloud. Given 
its complexity there are always areas to improve as the application is working 24/7. 

The technologies might have some restrictions from their standard installation setup. 
The security is generally higher in a cloud environment and numerous extra security 
policies are applied. Some thresholds may prove to be too low and there might be no way 
to increase them. It is always an advantage to develop in suggested patterns and don't 
bend any of the technologies to your own needs. 

Special attention must be paid to the deployment process. It must be automated to 
the highest possible level. It is the cloud the availability that is always an issue and every 
outage should be minimalized. A number of such incidents should be minimized, too. 
A good approach to reduce these times is to better understand the wiring of the cloud 
components. There may be dozens of interconnected components that seamlessly work 
together and provide final service for the customer. The interconnection is the place that 
can, up to certain point, help to hold fluctuations until the component is restarted or 
updated. A l l the communication is held until it is online again. Only if it is inactive for 
a longer period of time, an error is thrown. 

The developer's point of view is not as straightforward as the previous one. The 
application is built from scratch very rarely and this implicates a very different attitude 
toward the cloud environment. 

11 



3.3.1 Migrating Legacy Application 

The cloud applications may be built the traditional way to run on a single node using 
standard single-node database. In this manner the cloud benefits are greatly reduced. For 
an established web application even a migration to such a schema could be challenging 
enough, but it's a large promise for the future as different parts of the application are 
migrated. 

It's crucial to progress iteratively. When the application is migrated „as-is", one 
phase is completed. A next step may be migrating the application files from file-system 
to specialized, replicated and highly available storage the cloud provides. Each step must 
be done with caution and never in parallel. 

This process is of course much slower than writing a next generation of the application 
that supports the cloud technologies in principle, but is used much more often due to its 
conservative nature. Any migration step may prove wrong, it must be easy to downgrade 
the version, migrate back to previous well-working solution. 

Also the developers tend to learn new technologies bit by bit and must not be over­
whelmed. 

3.3.2 Writing Application from Scratch 

It's a challenging opportunity for any developer to build a scalable application. It's much 
more challenging to build scalable and high-available application. Every area of cloud 
environment can be subject of study itself. The developers must design the application 
with priorities in mind. It's not possible to design every aspect to the best of the developer 
abilities and still not miss the deadline. The knowledge is evolving by the process and 
the product has certain budget to fulfill. 

3.4 IT Maintainer's Perspective 

A monitoring is the main tool for an IT technician who keeps the cloud application 
running. Collecting statistics also help especially in the long run assessment. 

The monitoring should be built along the automated software that is able to keep track 
of thousands of little checks every hour and reports any inconvenience to the maintainer. 
Vast majority of check is of the technical nature testing cloud condition in ways like C P U 
load, bandwidth usage etc [12]. 

Statistics collection is crucial for long-term strategy assessment. Without them no 
proper action can be chosen. Statistics from the usage of the application itself are valued 
among the business people who can cut their offers exactly for certain customer. 

12 



Chapter 4 

Cloud Infrastructure Composition 

From the technical point of view, clouds can be classified in multiple ways. 

4.1 Cloud Classification 

4.1.1 From the Ownership Point of View 

This classification has implication mainly on the target audience who uses the cloud [11]. 

• Private - large companies have so demanding requirements that the cloud solution is 
best fitting for them. These clouds often have less important UI and user experience 
is not one of the priorities as it is used mainly by trained employees. 

• Public - a cloud offering public services. Cloud can provide cloning or copying of 
the single application instance. 

• Hybrid - combination of both previous. A lot of hybrid cloud can be seen as evolved 
company information system that has been enhanced to serve company customers 
as well. 

This classification is obvious and suggestions about the used technologies and priorities 
of the different clouds are its real impact. There is no solid technological or any other 
boundary between the solutions and if a private cloud becomes partly visible to the 
Internet, it suddenly is a hybrid model. 

4.1.2 From the Technical Point of View 

This classification takes into account the aspect of technical solution of the application. 
Being in the cloud can roughly equal to having several virtual machines that your ap­
plication is running on. The classification divides the cloud by the level of access to the 
virtual machine (or computational unit) that the cloud provider offers. 

These types of cloud differ also by the type of customers. 

13 



Packaged Infrastructure Platform Software 
Software (as a Service) (as a Service) (as a Service) 

Applications 1 Applications ^ K j l Applications 1 Applications 

Data Data H ^ l D a t a Data 

Runtime H j | Runtime Runtime I Runtime 

Middleware 1 Middleware 1 1 Middleware I Middleware 

O/S O/S O/S 

Vi'1'.j,il:AiLi[in 1 ^rt3iz3tion|I^B V i r ti i a 1 i /a t i o n b^H Virtual ization 

Servers Servers Servers l ^ H Servers 

Storage Storage Storage Storage 

Networking 1 Networking Ic^fl Networking 1 Networking 

Figure 4.1: IaaS, PaaS, SaaS Comparison [18] 

4.1.3 Infrasture as a Service (IaaS) 

IaaS can be seen as the lowest level of cloud virtualization possible. In a typical scenario 
an administrator root access is granted to the whole virtual machine. So it's possible to 
install any type of application that can be run on the architecture given by the C P U type. 

This approach implies a high level of administration, it's necessary to install entire 
application infrastructure which can span across many virtual machines. The main limi­
tation may be the OS kernels which are prepared by the cloud providers. 

Almost every cloud provider offers custom application extensions to most common 
tasks solved on the cloud. These often include lower pricing than for running the service 
on your own in computation time. The common services may have broad range: 

• Load balancer, IP address switching - this feature can save a lot of money because 
load-balancer is micro component which has to be always running and consumes 
low amount of resources. 

• SQL DB Equivalent - custom SQL DB engine providing most common functionality 
up to certain SQL standard. Simple use-cases may contain relation DB schema 
creation, populating DB with data etc. As the application is getting larger it may 
be limiting because these custom engines have limited level of tuning and it's difficult 
to debug them given the „neighbor" traffic in the cloud. 

• NoSQL DB Equivalent - suitable for no-sql DB using different documents as the 
central objects and map-reduce as the computation method. Standard NoSQL DBs 
have fewer functions but can execute queries faster than traditional SQL DBs. Some 
cloud providers suggest using them over SQL DBs. 

• File Storage - using file-system on the virtual machine is always more expensive 
than using a custom file-storage service. These storages are often paid by the real 
amount of data used and have better support with backups. 

14 



• Backups, Archiving Tools - storage service for write-only data that are very rarely 
read. If the service is provided, it's always cheaper that file storage itself. 

Payment models are based on the services used in the cloud. The general rule is that 
a virtual machine with certain amount of memory and C P U is rented and charged for 
its running time. This is the most expensive item, other services provided should be 
significantly cheaper as the providers want to motivate their customer to use them for 
two main reasons: 

• Cheaper than general-purpose C P U time and self-installed solutions 

• Binds the application to the cloud provider 

Currently the service is provided by: Google Compute [19], Amazon EC2 [20], Win­
dows Azure [6] and many others. 

4.1.4 Platform as a Service (PaaS) 

In this scenario the execution environment (platform) is given. Typically this includes 
stack created by large software house from its various products. It's harder to generalize 
because platforms significantly differ [21]. 

Execution environment is often considered a virtual machine running only certain 
byte-code. It can be an application framework that developers are bound to use. The 
database technology is given by cloud provider preferences and there is often no other 
choice. 

Payment models are more specialized counting various resources used by the cloud 
user. The possibilities are more limited than in IaaS so the pricelist can be more precise. 
Cloud provider offers can be better targeted because it's a lot easier to offer a DB specialist 
to enhance your DB than an IT technician because your virtual machines have a high 
load. 

Currently the service is provided by: Google App Engine [5], Amazon [22], Windows 
Azure and many others. 

4.1.5 Software as a Service (SaaS) 

SaaS is on the opposite side of the spectrum and represents for the user a specific ap­
plication. In many cases there are minimal differences between cloud application and 
public-hosting web-application from the end-user viewpoint. 

Software in this case is a private copy, clone or instance of certain application. The 
instance can be customized to certain limits that are very hard to break. Users who need 
changes in the standard cloud instances are often offered a made-to-measure development 

15 



of custom instance. This scenario implicates developing custom information service (IS) 
serving customer needs that is originated in the cloud instance. 

Payment models are based on the number of users, licenses or resources that end-user 
has. To attract the most end-users as possible, it has become quite standard to offer a 
limited trial version of the instance. It may be limited for amount of time or resources 
used, but the end-user must have an opportunity to see the application in action and 
evaluate it. 

A chain of providing is often applied as a company develops an application that is 
deployed on IaaS virtual machines and is offered also to end customers in the form of 
SaaS. 

4.1.6 Choosing the Correct Cloud 

The decision, which type of the cloud to choose, must be long-term and very cautious. 
The environment most similar to the server hosting is IaaS. This may be preferable if a 
company migrates already existing server installation etc. 

Using PaaS or specific provider services on IaaS in the application always creates some 
level of dependency that has to be considered carefully before doing so. It may be very 
hard to change the service later on as standardization process in this area is not optimal. 

4.2 Storage vs. Computational Separation 

The main technological innovation of the cloud is the concept of clean separation between 
storage and computational facility. It can be regarded as a parallel to programming level 
evolution when a program code was separated from the data it has computed with. 

We could already use two hosts, one with a database and the other running an appli­
cation. At this level a lot of problems arises: 

1. The application / database performance may not be sufficient - this problem can 
be addressed by scaling either horizontally or vertically. Both approaches require a 
significant investment like buying more hardware or hiring more labor to develop 
the application. 

2. Hardware failure - the server has to be restored to certain backup point and the data 
must be restored up to the most recent backup. Of course a more robust solution 
like replication, master / slave concept or failover may exist but this dramatically 
complicates the infrastructure. 

The innovation is in the level of separation the cloud offers. On the storage part 
they provide is high-available, failover-enabled storage facility that is online at any point 

16 



and that has no real possibility of losing data. Strictly speaking these parameters can 
be expressed in availability so high that it is in the margin of few seconds timeout per 
year and probability of disk storage failure so low that could happen once in a millenium. 
Without any extra setup these resources are ready at your disposal. 

The computation part is measured as computation units. These are highly technology 
dependent, best synonym may be a C P U core. Cloud providers often provide some level of 
comparison chart that one unit is roughly equivalent to certain C P U . A virtual machine is 
composed of virtual disk that is small enough to contain the virtualized system and your 
application only. The virtual disk image is also loaded from a storage, so the computation 
part is composed only from certain amount of computation unit and memory that is 
available to the virtual machine. The memory may be even partly shared among several 
virtual machines with modern virtualization technologies so the requirements for the real 
physical server are even lower than simple sum of the virtualized machines. 

As a cloud user you can select a virtual disk image and run it with any number of 
computation units and memory that provider offers. If the memory is not large enough, 
no problem really exists, you can just shut down the machine and start a new virtual 
server with more memory. Customers can easily scale their needs with this model. With 
modern technologies it's not even required that the physical processor, memory and RAID 
storage are anywhere nearby. 

The innovation lies mainly in the simplicity and short response time that cloud 
providers can offer for scaling machines. This approach would be several levels more 
difficult without their technologies. 

4.3 Cloud Friendly Technologies 

There are quite a few requirements for a technology to become usable in the cloud envi­
ronment: 

• Mature technology with community - no experimental projects are allowed in the 
cloud. 

• High-availability support - to a certain point, the service must be online for the 
most amount of computation time and outages longer than several seconds are not 
tolerable. 

• Replication, failover, redundancy, online backups - all these criteria aim towards 
conservation of the data in the event of failure. 

• Fine-grained security management - the environment must be completely separated 
as in hosting services. 

17 



• High performance requirements - any operation must be completed quickly to serve 
customers in the cloud. Techniques to move computation toward DB or storage 
system are very limited. There are no equivalents to stored procedures or server 
functions. 

• Highly concurrent access - resources can't block each other and cause deadlock or 
other parallel disastrous situations. 

A lot of traditional technologies is problematic when they are used in the cloud. The 
context in which they have evolved was quite different and requirements were mainly to 
serve on one machine and provide resources for one or two applications at most. 

Thus new concepts have been created by the long-term evolution. One of the mile­
stones in the evolution understanding is a success of large social networks and other 
modern media. They often provide fairly simple services from the technical point of view: 

• Storing status messages or short „tweets" 

• Uploading photos 

• Maintaining your own profile 

• Connections to other profile in the social network 

• Publishing various types of events, map planning support etc. 

The task to store basic data is simple enough, in RDMS could be realized by several 
interconnected tables. But the main problem with this solution is scalability. Every 
profile is self-sustained with most of the data (except the links to other profiles). Social 
media can be used by hundred millions users and this amount of data is too high to 
handle for traditional single-computer storage systems. Given other requirements like 
high-availability, the whole concept of saving data at this scale must have been rethought 
from scratch. 

4.3.1 SQL Databases 

These databases don't meet cloud application requirements in general. The ACID trans­
action model is the major cause of the problem, but is certainly not the only one hard to 
overcome. 

Cloud Limiting Concepts The ACID approach keeps the SQL system performance 
low. Separation of transaction environment needs a high level of supervision and it is hard 
to parallelize. There are several types of transactions that differ by the way the level of 
separation offered. The simple approach is to use serial processed transactions. This is a 

18 



complete parallelization killer. Other transaction level are trade-offs between parallelism 
and data consistency. In small system this may not be an issue, but in a large database 
environment this often leads to aggregation query inconsistencies. If the application is 
failing at this database layer, it may be disastrous and as any other synchronization 
problem extremely hard to fix reliably [23]. 

The logical conclusion is to move every write intensive operation to the database layer 
to minimize data fluctuations. This breaks application because stored procedures are 
low-level and business logic is high-level. This approach fragments the application and 
may cause premature optimization [24]. 

On the other hand if stored objects don't include inner collections, the SQL read 
performance and query optimization engine can be used with a benefit. Database objects 
having inner collections breaks the whole join-table concept and for most cases a complex 
O R M is required to reconstruct collections properly. 

Consitency problems are another aspect of using SQL databases. The storage of 
interconnected-table object has to be handled in transaction. But sometimes it is in­
evitable to make by-hand custom queries to the database. This could happen as a cor­
rection to failed migration, updating records in the application can't handle etc. Let's 
imagine classical approach with table A that needs a join to table B. The relationship is 
1:1 and given other constraints two separate tables must exist. So you put a foreign key 
to table B that refers to the table A . If you delete a records in table B, the link from A 
is missing and there is no way to enforce this requirement in traditional SQL database. 
The stored database objects are complex in the real-world applications. 

Possible Usages The benefit of SQL approach to database storage is a rich query 
system. The database indices can be heavily used and data retrieval can be extremely 
fast for certain data types. The SQL system is well tested and has been taught for decades, 
so many developers are familiar with it. When your company switches to the cloud, there 
are many new technologies to be learnt only to migrate the application without touching 
the source codes. So using well-known technologies could be a great benefit to the team. 

The cloud SQL databases are in general simpler than their single-instance alternatives. 
A lot of tuning query types is not available and have been removed as a price for a cloud 
hosting unification. This should not pose a problem if the SQL database is not bent 
against its original purpose - storing user-related data only. 

By its computation model SQL databases store virtually any type of data. But they 
are not suitable to store statistics, heavy-write data models or structured objects. There 
are major cases that should motivate developers to look for data storage elsewhere. 

19 



4.3.2 No-SQL Databases 

No-SQL has become an umbrella term for most modern databases which do not use the 
concept of the SQL for data storage. The data storage engines vary enormously as their 
purposes differ significantly. 

Document Oriented Storage Systems A large group of No-SQL databases is well 
suited for saving structured object-oriented objects. The storage unit is called a document, 
internally is composed from fields, arrays, hash-objects and values. This is well-suited for 
most object-oriented applications that need to store some type of data transfer objects 
(DTOs). 

On the other hand one major disadvantage exists - collections in which the documents 
are stored can't be linked with collections on the database level. The document oriented 
storage implicates this principle, but it's hard to overcome for a developer migration data 
from SQL database where everything can be joined in one query. The database link exists, 
but is maintained by the application itself. 

The map-reduce computation model is used for advanced queries. In theory this model 
has same computational strength is the one of the SQL, so no major problem arises. 

The document storage unit is the key to better performance of the DOS. There are 
no transactions and updates are always single-document level only. This leads to the 
eventual-consistency model which is different from the SQL. 

The document storage logic would not be useful as it would represent the records of 
the same size as the records in the SQL approach. The document is much richer and 
contains much more data and the document must be self-contained. That is the main 
reason why DOS approach can work despite its disadvantages. 

Scaling DOS is very easy and can be achieved by splitting single collection according 
to some key. The sharding process is in accordance with map-reduce approach that can 
traverse multiple machines for each query in parallel. 

Key-Value Stores and Other Simple Storages This group has its purpose aimed to 
maximize speed and concurrent access to the data. It can be used for caching or statistics 
gathering. 

Many systems offer multiple value types like arrays or hashes so the DOS approach 
can be simulated to some level. This may help to store basic objects for an application. 

Many systems are able to run in-memory only which further pushes their usage toward 
non-persistent data scenarios. 

Scaling and high-availability is extremely simple to achieve since the sharding key can 
very well serve the storage key. 

20 



Graph Databases Graph storage can be relevant in some use cases. These databases 
have generally very high support for graph-oriented algorithms and that is their major 
strengths. 

Scaling the database across multiple machines can be a challenging task. The graph 
can be separated by cutting certain nodes and separation regions on separate machines. 
The benefits are highly dependent on the graph cohesion. If the cohesion is low, the 
separation is more easily maintained and gives better results. 

Big Table Storages These storages have been developed in the large clouds to serve 
a large number of data that is stored in simple schema, for example three-dimensional 
matrix. 

Scaling is their essential functionality. 

4.3.3 File Storage 
A typical application needs both database of some kind for structured data queries and 
also files that are uploaded or created by application users. Files are stores as-is in byte 
array form, no other structure exists and they are regarded as a block of data that is 
transmitted back to user in the same form. 

File storage system must cope with the same requirements as other cloud technologies. 
The main disproportion is the amount of data that is typically transmitted. Single file 
can be thousand times larger than the structured database record. 

Storage systems often have only several actions for files: 

• Store file 

• Retrieve file 

• Delete file 

• Rename file 

• List files 

File locking can be optionally appended to the list of features and makes storage facility 
architecture even bigger challenge. Directory manipulation may not be supported. 

But no other operations are in standard cloud file storage system permitted. No seek 
operation, stats operation is limited, setting meta-data such as user permissions is often 
handled in the application itself. File structure is not hierarchical, this can be easily 
overcome by using certain file name conventions (UNIX-like) etc. 

The interface for file storage has been greatly simplified from the one that is available 
in a standard OS environment. This has a tremendous impact on an implementation and 

21 



file storage system is now quite similar to the key-value store, where the value can be of 
course significantly larger. 

This simplified interface does not explicitly dictate to use special purpose service. 
Already developed distributed file-systems can be also used to fulfill this task. 

To ensure redundancy the saved files should be stored at two physical locations at 
minimum. This feature can be further enhanced by using RAID devices for physical 
storage to keep multiple copies on the hardware level. There is always a possibility of 
losing data. It can be infinitely reduced, but will never reach zero. Thus having two 
copies of single file on two servers in two distant data-centres and using RAID technology 
on both servers can reduce the possibility of losing the file to minimum. 

4.3.4 Archive and Backup Storage 

It can be defined as file-level incremental write-only storage. The data stored serves only 
the backup purposes and are never read by the application itself. 

The most important feature of backup is the uncorrupted saved data. Even in the 
case of fatal failures the data must be accessible uncorrupted. The access time can be in 
the matter of minutes or hours. Often the backup is further copied to external disk drives 
that are mounted only for the backup process and unmounted for the rest of the day to 
prevent possible damage. 

Only system administrator should access the archive, never the application itself. 

The backup area can be significantly larger, often ten times the sum of file and database 
storage required for the application. The best solution is to backup periodically the whole 
system with data and then produce much smaller incremental backup (differences against 
a full backup). This solution is proven by decades. 

4.4 Price Comparison 

General comparison is difficult and is not objective since every type of cloud has a different 
price model. But to prove one of the main advantages of the cloud (lower price than in a 
server hosted solution), a generalization to some point must be shown. 

Let's image one standard web-application. This standard piece has some infrastruc-
tural specifics: 

• SQL storage for CMS website parts managed by administrators 

• NoSQL storage for user profiles and user-related data 

• File storage for user uploaded files content 

• Backups creation 

22 



Every requirement of the cloud application is applied - most notably high availability 
and distributed infrastructure. 

This comparison should be a general guide on how the approach bill is created, now the 
concrete calculation of current possibilities as this may change in near future significantly. 
To the general price must include a system maintainer whose salary may vary greatly 
according to the desired skills. 

The comparison is introduced from a medium-large company which is running a public 
cloud with front-end website and offering clones of web-application software to its cus­
tomers. The web-application software is open-source and ready to be deployed on the 
cloud. 

4.4.1 Own Server Infrastructure 

This approach is the oldest one available. Buying the physical servers is of course the 
highest initial price compared to other solutions. Common servers can be bought for 
reasonable prices and their warranty is three years. The warranty can be further extended 
so for an initial investment, the server can properly operate for up to about five years. 

Of course this is a physical server that has to run in a server housing company. The 
H W installation requires company IT worker who can assemble the server, provide H W 
support etc. The most used warranty type is the next business day solution, so if you 
have only one server, you can't guarantee high availability at all. 

If you have multiple servers, the price goes up, another network equipment like switches 
etc. has to be bought. Two servers are a minimum for any application requiring any 
availability guarantee. 

For small application set-ups this is quite an investment to make. 
Monitoring has to be setup to track server health and availability. In the case of 

failure, the IT maintainer has to report a failure to the warranty service at least. Or even 
worse an IT maintainer has to physically visit the server housing company and repair the 
server on site. Again, with only one employee this is hard to maintain. 

This setup has limited scalability options. The virtualization can be used to simulate 
multiple virtual computers at least. 

The application has to be installed from scratch. Every service has to be setup sepa­
rately, the IT maintainer has to keep everything up-to-date. 

4.4.2 Dedicated Servers 

A lot of companies offer dedicated servers. Basically they buy a server, put it in a server 
hosting house and completely service it from the H W point of view. H W monitoring may 
be a part of the service. The initial investment is low, but the price of the servers is 
spread over months servicing the customer. 

23 



This scenario is like the previous one except the H W layer is completely outsourced. 
If the server failure occurs, the possibilities are quite similar to having your own server 
cluster. 

4.4.3 Virtual Private Servers 

This approach represents a massive leap forward in the infrastructure development. Own­
ing private servers means owning an anonymous server image that is run in an universal 
virtualized environment. 

H W layer is completely shielded from the virtual server. The major difference to 
the previous scenario is the fact that virtual server can be easily migrated to any other 
physical server supporting the same virtualization technology. If the physical server goes 
down and is beyond any repair, the down-time given by the transition to the new server 
can be minimalized and in real-world application can be next to few minutes. 

Company hosting this solution can very well provide much higher rates of availability 
that it would provide owning its dedicated servers. 

The previous options have very limited scaling possibilities. If the performance is not 
sufficient, you have to buy another server. In this scenario providers often offer migration 
between several performace configuration to suit best your application. 

The IT maintainer tasks are limited to the server installation only. 
The price is dependent on the server configuration that you have ordered. 

4.4.4 Infrastructure as a Service 

This is the first scenario that puts the data in the cloud. IaaS is in a reality very similar to 
the virtual server setup. Except one major advantage - storage and computation resources 
are separated. 

You can install you application precisely the way it worked on the VPS , but given 
the fact that storage facilities are generally significantly cheaper to use than general 
computations, it's reasonable to use the cloud storage. 

IT maintainer has to setup only the application environment, most of the services are 
provided already by the cloud. 

Some kinds of non-public inter-server services may be paid. That is in the contrast 
with your own server installation where there is typically no limit on the traffic between 
the servers. These limitations are reasonable and are often used to calculate the bill for 
extra services used such as file or backup storage. 

24 



4.4.5 Platform as a Service 

In these cases the application environment is predefined, cloud users can select one of the 
preinstalled environments and only additional tuning can be made by IT maintainer. 

The pricing models can't be generalized, because they are highly dependent on the 
infrastructure provider technologies. The separation of storage also applies as in the 
previous scenario. 

4.4.6 Software as a Service 

This scenario is not applicable to our example. The example company provides SaaS as 
a result service itself and wouldn't make any sense to use this type of infrastructure. 

4.4.7 Conclusions to the Framework 

The most important point to deduce from cloud pricing is that the virtual machines are 
cheap compared to other solutions. The framework users will probably use these solutions 
and it suggests several requirements to the framework itself. 

The framework may not be depending on a virtual machine specification as it can 
change by simply restarting a virtual machine with different number of CPUs etc. The 
framework must be prepared to detach or attach nodes at any time during its run. 

25 



Chapter 5 

Framework Requirements 

After a thorough analysis of the infrastructure, the requirements for a modern cloud 
framework can be gathered. The framework is a set of tools that is wrapped up in a 
toolbox for a builder. The builder is the person who decides which tool to use and how 
he would use it. The framework will support all the essential cloud requirements, but it's 
always up to the builder if they are used properly. 

5.1 Goals 

There is not a specific area of interest that framework should be targeting, it won't contain 
any specific business or other application logic. The framework itself will be merely an 
environment to build an application that supports following concepts: 

1. Simplicity - every principle should be easy to remember and to be kept in mind. 

2. Ease of Use - usage of components must be simple. 

3. Distributed - computation part is easily scalable to multiple nodes. 

4. Fault-tolerant - a failure on single node must not compromise the whole system. 

5. Self-healing - after a failure, the system should make steps to recover to certain 
point if possible. 

6. Programming language agnostic 

7. Storage system agnostic 

8. Monitoring support 

9. Run-time Statistics support 

10. Minimal maintenance downtime 

26 



11. Reusable components 

A l l the requirements strongly suggest that the framework must not be a plain set of 
A P I as one knows from other framework projects. It must lead a developer to fulfill a 
certain set o concepts to achieve all the required features. 

A distributed application can span over multiple nodes while each node is self-contained 
and can operate autonomously. Fault-tolerance means that there is a certain type of load-
balancer or failover between at least two same purpose components. Self-healing systems 
can isolate failure in the node net and adjust the data workflow not to enter failed unit. 
A l l these concepts can be achieved on multiple levels. 

The network level is one of the most obvious solutions. This has a lot of disadvantages, 
for instance DNS technology supports this feature, but it can be a great problem because 
of the randomness included. Any change to the DNS record is propagated slowly, so it's 
virtually impossible to load-balance by this feature. The request amount always fluctuates 
in the cloud. It's a problem to have a static infrastructure in the cloud. 

The main conclusion is that framework should offer a self-contained computation unit, 
let's call it a module. This module should have an interface, should process messages and 
return certain messages to the sender. The module serves a certain fixed purpose, can be 
started or restarted at any time or even started multiple times to load-balance a pool of 
messages. 

Agnosticism to a programming language and storage facility is an essential concept. 
The disadvantages of bindings to some kind of proprietary technology have proven devas­
tating to many projects in the past. The need to change a storage facility may very well 
occur several times during the application lifecycle. 

The monitoring and statistics management is a necessity in a complex long-term run­
ning application. Current projects also need to maintain high availability so it's not 
possible to take the whole cloud down for update etc. 

The requirements will make the framework quite complex, but I believe that the 
framework layer is the most flexible part where these problems need to be addressed. The 
innovation of such a framework will mainly lie in its concepts and goals, not in pieces of 
source code. 

5.2 Modern Framework Guidelines 

There is a lesson to be learnt from many frameworks that already exist. Modern ap­
proaches not only support traditional application development, but also decrease devel­
opment time and increase product quality. 

Following concepts have been selected on purpose because I personally believe that 
currently each of this technique can produce a state-of-art application in a certain field. 

27 



These techniques combined should provide solid theoretical background and guidelines 
for upcoming framework. 

The guidelines should be coherent as much as possible and form a synergy together. 
The resulting product should have at least some level of quality at each of the discussed 
domains. The effect should be a large quality improvement over existing applications. 

Test Driven Development (TDD) T D D is considered a standard for any application 
currently developed. Our main goal is to test modules that have certain interface and on 
certain input outputs exactly one result value. This approach is called black-box testing 
because the exact functionality inside the „box" is not known to us [25]. 

Unit testing is another time-proven feature that is considered essential in maintaining 
product quality. 

Tests must be written before the implementation part begins. Then the implementa­
tion has the only role - to pass all the tests. When it does the work is finished and a next 
iteration can start. This sequence is sometimes hard to maintain in the real world, some 
amount of code must be prepared only to run tests correctly, a large amount of behavior 
of application is testable (accurately measurable). 

Domain Driven Design (DDD) This approach dictates among other things to create 
a thin bottom layer of domain objects that interact with each other. By their interaction 
the application is driven and responds to their states [1]. 

The creation of so-called ubiquitous language is the main advantage of this methodol­
ogy. The communication in the development team, between the team and domain expert 
is held in this special kind of well-defined and technologically precise language. 

The domain behavior is then just processes description in ubiquitous language. 
This principle is one of the most essential. The framework could exist without its 

support, but that would most certainly mean that a large amount of developers will 
consider using standard C R U D model instead. The C R U D model is strongly discouraged 
as it is extremely difficult to maintain in enterprise level environments. 

Behavior Driven Design (BDD) B D D can be seen as an evolution of the T D D 
together with the D D D technique. The concept is to test objects and their behavior. 
This approach is excellent for domain objects. 

Mocking Mocking addresses testing issues in large systems. Mocking allows a creation 
of dependency with a fake dependency. 

With such dependencies the parts of a system can be tested in separation. 

28 



Command Query Responsibility Separation (CQRS) Complex application have 
a lot of logic built around a object or document storage. A lot of effort is paid to keep 
saving the object state similar to reading its state. 

But in a reality this is often redundant and pointless. The CQRS patterns suggest to 
separate command layer (writes) and query layer (reads) completely. 

This and nothing more is the suggestion by the pattern itself. Many more approaches 
exist as a consequence to CQRS. Their main ideas evolve the concept further, for instance 
to have completely separated logic for storage (for example complex ORM) and unrelated 
for data retrieval (for example simple SQL query). 

Event Sourcing (ES) Every change to the domain model can be seen as an event. The 
domain objects interact with each other producing events that change their inner state. 
Events can be recorded in event store and further analyzed. With events in the store 
it's possible to reconstruct a system to any moment in time without any database-level 
backups or other technologies. 

ES is a perfect choice for integration with CQRS. The command issues the change to 
the domain objects. They produce events that are immediately applied and stored at the 
same time. 

Dependency Injection (DI) The components inside the framework have dependen­
cies. The framework should provide means to meet these dependencies semi-automatically. 
Each object should have all its dependencies setup during its creation. This is called con­
structor dependency injection. 

The created object is always in a working condition, it may not be created if one of 
its dependencies is not working properly. 

Non-intrusive Framework Integration One framework should be replaceable for 
other with similar capabilities. In practice the framework should provide interfaces or 
other loose binding for its features. 

The framework must not dictate abstract base classes that have to be inherited or 
other approaches that would result in high coupling with the framework classes if there 
is a loosely coupled option present. 

The approach must be coherent throughout the framework and offered options. The 
framework design in this area is simpler these days than before because a lot of language-
level specifications are implemented through pieces of meta-information inserted to regular 
source code. Pieces of meta-information are collected on the first run of the system and 
the processing or service registration is made by these so called collectors. 

29 



Domain Specific Language (DSL) DSL has been given recently a great attention 
with the rise of new programming languages. DSL can represent virtually any custom 
language that is enhanced to describe a target domain better and simpler than traditional 
programming methods. The builder enterprise pattern often stands behind as a custom 
DSL implementation. 

Using DSL is much simpler for target audience and many tasks can be achieved by 
simply „scripting" in DSL. 

Representational State Transfer (REST) This idea is a sort of resurrection of the 
original models that formed H T T P . Request methods have been restricted to only G E T 
or POST, others have been ignored. The REST or the RESTful movement suggests to 
use other methods with slightly altered meaning again. 

REST approach is becoming more and more standard in intersystem APIs. 

General Responsibility Assignment Software Patterns (GRASP) Most notably 
loose coupling and high cohesion are the most important enterprise patterns used when 
designing a framework. They provide basic blocks for scaling framework horizontally and 
concentrating the logic to short dependency circuit of classes. 

These techniques are not inovative and do not push developers to new way of working, 
but tend to improve the quality of the old and rusty projects. 

SOLID principles The so called „first five principles" are essential rules for build­
ing quality application code. They support ideas of incremental refactoring, to increase 
cleanliness of codebase. 

Multi-Tier Architecture Clean separation of logic into several architectonic layers is 
essential in building robust and scalable software. One layer is responsible for maintaining 
the database connection and communication channels, other is composing objects and 
maps them to the storage. 

Usability in Enterprise Applications Enterprise applications are a typical example 
of a large software ecosystem that can be incrementally developed for many years or even 
decades. 

In such a system there is always a large number of components and frameworks in 
cooperation at any given moment. The framework should recognize its sovereignty and 
not push other frameworks out of the system by certain type of artificial limitations and 
so on. 

30 



Don't Repeat Yourself (DRY) Principle The aim of this principle is quite clear. 
One function should be contained in only one location in the source code. No logic should 
be duplicated as long as it has the same function. 

5.3 Required Services 

The goals of the framework are given. There are two separate dimensions that the frame­
work helps to accomplish. 

The framework only provides the means, to choose specific technologies is up to a 
developer. 

5.3.1 Core Framework 

These are essential needs to support further framework extension. Without this core or 
microkernel the framework could not work. General features are declared in this section. 

A lot of these features exists in core package only as an abstraction or interface with 
no fixed implementation. The implementation is provided in Integration package as a 
specific integration with some kind of technology. 

Multi-threading Threads are essential in building scalable application. There are 
many levels of multi-threading support ranging from classical C language approach (Din­
ing Philosophers Problems etc. [26]) to high-level point of view in Erlang language (Actor-
based concurrency [27]). 

This field is well known with its traditional hard-to-find bugs and non-reproducibility 
of tested situation. In my opinion the higher level approach is used, the better the results 
are. Developers are not machines to carefully analyze every possible scenario of thread 
execution plan, to enumerate all possible values for each memory cell to conclude that 
the concurrency is safe and no problems may arise. 

This situation is not going to happen. If the concurrency is tackled at low level, 
deadlocks are inevitable. A large amount of applications acknowledge this fact and build 
complex runtime deadlock checkers that can detect this situation and recover from them. 

Messaging Infrastructure It's inevitable to separate application to several self-contained 
building blocks when developing a large application. Transparent messaging interface is 
the way to go for inter-blocks communication. 

The messaging service must be as stable as possible. It's always a messaging layer 
that provide fault-tolerance up to some level - delaying messages until the recipient comes 
online etc. 

31 



The service has to span across several virtual machines to provide required key func­
tionality elements. 

Remote Procedure Call (RPC) R P C is a well-proven standard tool for inter-process 
communication. For certain types of work on request / response model, the R P C technique 
is the best solution. 

Events-driven Architecture (Publish / Subscribe Pattern) Another type of ser­
vice is event publishing. A n asynchronous basis of events allows multiple responders to 
register for single event key. As the event is fired, every responder must be notified. 

Event Store Events are the heart of event sourcing architecture. A n event stream 
records every change made in the system. Events must be stored in the event store. The 
events can be represented as highly structured immutable objects. Every event is attached 
to an aggregate root which is a central concept in DDD. 

The event store must support methods for: 

1. listing aggregate roots 

2. retrieval of all events for certain aggregate 

3. creation of new aggregate roots 

4. appending events to the aggregate root (atomic operation) 

Projection Support Projections are key concepts in CQRS and DDD techniques. 
Their main objective is to prepare separate read projections for each read-level scenario. 
Projections are created as a reaction to events. 

In fact, every projection can be dropped and reconstructed to the same content from 
an event stream at any time. 

Projections are often created in SQL and NoSQL databases, because these technologies 
allow structured and fast data retrieval. 

Continuous Integration Support One of the essential aspects of the framework must 
be a wide support for automated testing and continuous integration (CI) in general. The 
effort is expressed in supporting tools for automated building assembling the framework 
project. 

32 



5.3.2 Database Support 

Both SQL and NoSQL databases are well-proven and mature enough to be used in this 
framework. 

These databases can be used as an event store. They are also valid for created pro­
jections. 

5.3.3 File Storage Support 

The file storage service is an extension of a simple disk-file storage provided by traditional 
OS. 

The service has a simple interface and except for stability and availability requirements 
there is an only differing issue concerning data throughput that is far greater. 

5.3.4 Monitoring and Statistics Collection Support 

The support should be built-in to the framework itself up to some pragmatic level. The 
monitoring is essential for a long-running application. In simple cases the basic metering 
like allocated vs. used memory, enough memory or disk space should be enough. 

33 



Chapter 6 

Framework Design 

In my opinion the best approach to start the design process is to focus the attention to a 
simple model that is iteratively enhanced. As technologies and principles will be added 
to the concept the framework will become more and more robust. 

6.1 Basic Concepts 

The root of the framework is an actor-based concurrency environment. A n actor is a 
simple concurrency entity. A n actor has a mailbox represented by a message queue. 
When a message arrives, an actor is activated and reacts on a message. A n actor can 
send messages to other actors. 

The idea is quite simple at first - a launcher element will create each application compo­
nent in parallel. Each component is a self-contained service that has certain dependencies 
and offers certain services. 

Here comes the first necessary technology we need to provide - dependency injection. 
This is usually provided by a container that keeps track of all the running components 
and is able to launch a new instance of certain component type with required resources. 

Let's call the component a module. This is a more traditional label for the same 
feature. Module is of course self-contained, can run any number of actors on its own 
without letting the top-level container know. 

Messaging The application is composed of several loosely coupled modules which can 
interact with themselves. The amount of communication can differ significantly in various 
use cases and there is no general rule how large a module should be in the matter of 
memory or computational power. Clearly any module can be a bottleneck and may prove 
to slow down the application. The framework should help and allow a developer to deploy 
the same application in different deployment scenarios where each node runs a different 
subset of modules. 

34 



The trivial use case is when all modules run on the same machine. After performance 
analysis, slow modules can be moved to other computational nodes with minimal changes 
to the application code. Every inter-module call should be handled as a message that 
can be transparently serialized in case when module is running on a different machine or 
simply passed over if the module runs on the same box. 

Message passing is the key concept in the framework and is used to achieve a number 
of design goals. The message handling should be as light-weight as possible to minimize 
any overhead in module communication. 

Dependency Injection Container Dependency injection container has to register the 
components in certain order. The requirement order must be linear and any dependency 
cycles are forbidden. 

The DI container creates an environment composed of components. In traditional 
applications the number of components inside the container is fixed and it is not possible 
to add more component types once the container is started. This simplifies a programming 
logic a lot as there are dozens of use cases that can occur if the components are allowed 
to register more components. 

The features that the DI container has to offer are: 

1. An initial environment configuration together with a bootstrap (components started 
at boot time) 

2. Available components - repository with all the available component types that is 
able to launch new component instances 

3. The launch list - list of components with configuration that are scheduled to start. 
List is initially filled by a configuration, more targets can be added by components 
themselves or primary node command later on. 

Error Recovery Errors always happen. It's a completely inevitable truth. A lot of 
developers try to analyze the code deeply and pinpoint every possible exception being 
thrown. It's impossible to be prepared for every existing failure scenario. 

Much better strategy is using supervised class hierarchies. Since every actor has a 
simple lifecycle, it can be shutdown in a case of failure. When a failure happens and the 
actor can't handle it by itself, it delegates it to its parent. The parent can decide what 
to do. One obvious solution is to take no action. This is improper in many scenarios 
as the failures leaves the actor in faulty state generating more errors as the application 
continues. A better approach is to stop actor and let it start fresh with all its children 
and inner infrastructure. 

Starting the system is commonly much better tested feature that letting the system 
work when some part crashes. 

35 



6.2 Modules 
The module must expose an interface of some kind. This is an issue that has to be 
considered carefully. A module can exist multiple times in an environment. If the module 
is updated, the new version of the module can run in parallel to the previous one in the 
same environment. There can be changes to number of optional parameters or so on and 
the new module must handle the old version message. 

Serialization and Deserialization The solution is well-known of serialization and 
deserialization procedures. A n interface must be declared as an immutable object with 
fields. Some fields are required while others are not. The key to keep object compatible 
with any newer version is to never add a required field to the object. If such a field must 
be added than a default value must be set for it. The result is that each version of the 
„interface" immutable object is easily convertible to any other version of such class. 

Serialization is an important topic when designing cloud systems because its perfor­
mance has serious impact on the cloud itself. A serialization should be simple to use at 
the same time. This may seem like a contradiction to the current technologies. 

The solution is to include content-type header in messages determining the real mes­
sage format. Services can choose the serialization method along with input DTO for each 
provided service. They may even listen to several message formats at once and decide 
how to act according to the content-type header. 

Routers and Load Balancers Modules can contain their own service hierarchies. But 

it is possible for a module to encapsulate another module and control its function. 
If a module starts a sub-module, it has complete responsibility over its actions. This 

behavior can be positive as the module can mimic network components. 
A module can provide a simple fail-over or a round-robin forwarding to other module. 

As each module can be executed on a separate node, this concept is essential for large 
and scalable applications. 

Message Traversal Developers tend to use remoting and interaction with remote com­
puters as a simple „remote procedure call". But if the messaging is used extensively there 
is always a problem of resources that are allocated to wait until the message arrives back 
and normal program flow is resumed. 

This approach is likely to consume a large number of threads and a lot of synchroniza­
tion issues may arise as the return value from remote source return in nondeterministic 
manner. 

A significantly better approach would be for each process to create a pipeline where 
no R P C and synchronous waiting for the reply are used at all. The main difference is 
not using the ask operator on actors but instead using the result message type as the one 

36 



listened to for the sending actor. No threads are wasted as after the request is sent the 
procedure ends and the thread is returned to the thread pool. When the message arrives 
it is matched as any other type of received message by the sending actor. 

This approach converts synchronous communication to asynchronous which is better 
suited for actor systems. 

Module Interface Modules provide services. Each service is defined by: 

1. a relative or absolute address in an environment that is used as a referral to such a 
service. 

2. input interface (DTO) - similar to function arguments. 

3. output interface (DTO) - similar to function return type. 

D T O pattern is used to exchange data. This model guarantees immutable object 
states. This is extremely important, because in a multi-threaded environment, the invari­
ability of the arguments is welcomed as it brings more stability and security to developers. 

The DI container has a configuration of target modules to start. The modules require­
ments are iteratively collected, a linear queue is created and then started up in parallel. 

For a module configuration a DSL should be created to minimalize the potential errors. 

6.3 Command / Event Pipeline 

The framework does not offer only simple request / response principle. It must support 
holding the internal application state. Several framework requirements cover this area. 

CQRS suggests that the write and read logic should be separated. The separation is 
done by separating commands (write requests) and queries (reads). Commands are send 
to Command Handler and domain objects are altered in reaction. Queries are run on the 
projections. A projection is an output mechanism that processes events and alters an 
output table or collection. 

The key feature in simplification the domain logic handled by the framework is to 
use the D D D technique. Of course at this abstract design level, there is no application 
logic yet. But the support for D D D can be prepared by designing the command-event a 
pipeline. 

The most important element is an aggregate root. These aggregate roots are created 
from event stream. The process can be demonstrated by pipeline: 

1. A command issued 

2. Command Handler Bus processes the command 

37 



Figure 6.1: Pipeline Overview 

3. Specific Command Handler (CH) operates on an aggregate (or creates one) 

4. In case of failure the C H returns a failure 

5. A n aggregate root has an event stream attached (generated by domain action in 
CH) 

6. A l l generated events are atomically saved to event store 

7. The C H returns success to the caller 

Aggregate roots are hearts of the domain logic. They have method in ubiquitous 
language that change their inner state and generate events with equal function as those 
changes. 

The event stream is then pushed to projections. Projections are responsible for listen­
ing to certain events and updating the database parts of the system. The process can be 
modeled with few simple criteria: 

1. Events are read from Event Source 

2. Events are pushed to all listening projections 

3. A projection filters only important events 

4. Filtered events are applied to the DB 

It's important to mention that error can occur only when processing the command. 
Therefore its result must be returned. Once the events are commited to the store, the 
projecting them must not fail. Of course in case of an exception during the projection 
process, the whole projection can be discarded and recreated once again from the repaired 
projection process. 

38 



6.4 Testing 
Testing is an essential part of every application that must be integrated at framework 
level. 

Testing Components Unit testing the components is pretty straigh-forward. A special 
test-actor having an ability to trap incoming messages is used. The environment is started 
in some configuration and afterwards tested actors are replaced with this trap actor. 

Testing Domain Using D D D guarantees fairly simple testing. From the B D D point 
of view, the unit test of the domain means simply creating an aggregate object in some 
state and calling its methods. Each method call represents a command being executed. 
Each changing command generates one or more events. 

The target of the test is to test if the generated events explicitly equal to some prede­
fined list. 

The domain is the lowest level of the application, every connector etc. is above this 
layer. Every tested service can be replaced with trap implementation just to ensure that 
the call has arrived to the method. 

6.5 Statistics Collection 

In a long running application, runtime statistics are needed to be watched closely. They 
provide accurate information about the application usage and free capabilities. With 
usage of complex virtual machine and execution environment it is difficult to measure 
resources consumption at process level. The calculated number vary depending on many 
unpredictable variables such as garbage collection interval. 

There is no point in measuring everything in the application. Real or possible bottle­
necks should be analyzed and these metrics need to be measured. 

The main problem with the statistics collection is the extra level of C P U usage it can 
generate. Developers must choose carefully how often to collect pieces of information and 
which of them needs to be stored. 

The statistics architecture is therefore declared as a set of callback interfaces provided 
optionally by each module. The collector interface is passed to each module on creation 
and each module registers statistics counter. These are simple routines that return some 
kind of output. 

Statistics are collected from a central point by external application only. The external 
application can be tuned at any time to collect more or less often. It can be turned off 
completely if the application load rises beyond some critical level. 

39 



6.6 Self-healing and Self-testing 
More specific healing mechanism must exist apart from simple supervision control that 
restart part of the actor system based on exceptions. Health-control system should allow 
each module to validate its state, required resources and it's up to module to choose an 
appropriate action. 

A module should react to a call - self-diagnostics. This special message has its only 
purpose - to allow module to analyze and separate maintenance mode from standard 
requests. 

Diagnostics can result in a suggested action - the module can count its request count 
and if it reaches some level, the diagnostics message can result in a request to add more 
workers to the pool etc. If no action should be taken, the module at least announces the 
interval to another check. 

If the module does not reply in a specified timeout, it is considered faulty and is 
restarted or replaced. 

The self-healing mechanism has main purpose to allow self-healing and adjustments to 
module. For example the module depends on a projection that is generated with errors, 
then the module can detect this fact upon diagnostic message and start the projection 
reconstruction. 

6.7 Nodes in the Cluster Structure 

Cloud structure has to fulfill the requirements for high-availability and fault-tolerance. 
Complex design decisions have to be made to offer these features at any application state. 

The framework is suitable to the cloud environment of virtual machine. Apart from 
its dependencies to other daemons (storage, db etc.) the application should be one pro­
cess that creates and maintain single node-level environment. This is the environment 
controlled by single operation unit that provides following services: 

1. launches configured modules 

2. maintains node DI hierarchy 

3. DI discovery for any module 

4. local health checks 

5. message interface connectivity 

6. exposes special interface for alive check 

7. maintains node state 

40 



The main benefit of the environment is an ability to launch multiple nodes in parallel. 
There is no leader node present. Each node can operate autonomously only on the status 
information given by other nodes. Of course this raises some security issues in the future. 

6.7.1 Primary and Secondary Nodes 

This approach may represent a different model of leadership for application with security 
standards or where there is a need for centralized management of the components. This 
approach could be mixed up with no-leader model to create a hybrid leader system. 

For cluster managements a responsible operator can be chosen in order to make any 
adjustment to the cloud. There are many types of control decision mechamisms, but many 
of them suffer when it comes to even number of nodes. The resolution is not possible in 
these situations. Modern approaches suggest adding „blank" nodes to the cluster that 
has the ability to vote only. These are configured by administrator up to his preference 
and a knowledge of the virtual server installation. 

The rules for selecting primary node are simplified rules from these modern approaches. 
The rule is quite simple actually - every node has a knowledge of following: 

1. Unique priority numbers - the larger number decides the primary node 

2. List of all nodes with their priority number 

3. List of reachable nodes with their priority number 

On any change in the cluster (network breakdown, new node addition) a following 

procedure is held: 

1. The node state is set to secondary 

2. List of reachable nodes is refreshed 

3. If the number of reachable nodes is higher than half of the total nodes continue, 
otherwise the cluster part won't have any primary and must wait for rest of the 
cluster to reconnect or be restarted. This is considered a severe incident and should 
be handled manually. 

4. The node with the highest priority number becomes primary and notifies other 

5. Refresh status of all the dependencies of the running modules on the node, request 
their start on the primary if they are down 

This algorithm is simple and sufficient to our scenario because primary node doesn't 
have many responsibilities and selecting machine with low performance is not an issue. 

The primary node has following privileges: 

41 



1. Move primary token to another node 

2. Fail-arbiter - if the node with certain service required by other running module goes 
down, the fail-arbiter decides where to start a new instance of a service. 

3. Main statistics collector - this node collects every node statistics 

4. Node monitor - alive-checks other nodes 

6.8 Updating the Application in the Cluster 

If the best practices are kept, each node should be self-contained. If node goes down, 
every required service is started by primary node at some other node. It should be no 
trouble to bring down any node if there is still redundant capacity. 

The update of the node is quite vague term. It can mean updating only the application 
and restarting the node or it can mean replacing some H W part of the physical server. 
In either case after the update the node is brought up again and started according to the 
configuration. It is recognized by the current primary node and attached to the cloud. 

6.9 Heterogeneous Nodes 

The minimal defined interface for the node is minimalistic - only the SystemNode with 
required abilities like providing dependencies and starting modules. The module internal 
composition or even the node internal composition is not enforced in any particular way. 

The node should provide modules in order to be of any real use, but even this is not a 
technical requirement. Special node types could be developed for node with high priority 
number that is customized to handle statistics collection well. 

6.10 Debugging and Error Diagnostics 

The debugging is a challenging task in a complex system. With multiple nodes running 
across multiple virtual servers this becomes even bigger problem. One trade-off of avoiding 
R P C messaging scheme is that the exception stays contained on the called module. This 
may not be a desired behavior since the caller does not implicitly know that something 
went wrong and an exception was thrown. 

Every exception in the system that is not handled must be logged and it's up to the 
system administrator to take action. In the complex system a lot of exceptions can raise 
false alarms since the connection errors occur or some timeouts are reached. A l l these 
events should be easily recoverable by restarting a part of the actor tree. This applies 
only if the recovery is possible of course (network connection is restored etc.) 

42 



In the future it may be helpful to send a report of each exception to the administrator 
or to count the number of errors in the statistics to signal some kind of problem. 

6.11 Framework Composition 

The framework itself should be divided into several areas that can be implemented as 
loosely-coupled packages: 

1. core - This package contains all the necessary interfaces. No other implementations 
are given. Implementation of the interfaces is up to the custom extensions. 

(a) messaging - Serialization Mechanism and Other Messaging Features 

(b) module - ProducerModule 

(c) node - System Node 

(d) command - Command Handler Support 

(e) event - Events Support 

(f) projection - Projections Support 

2. extension - Implementations of the core interfaces in specific technology 

(a) amqp - Messaging A M Q P support 

(b) http - Basic H T T P M V C components 

(c) mongo - NoSQL storage 

(d) and other technologies 

The extension package is as the name suggests a subject to further extension when a 
new and more progressive technology appears. 

6.12 Building an Application on the Framework 

The application is built on the framework. The framework is launched with configuration 
options. Once it is launched, it creates its own thread pool and every other required 
resource. It runs in complete separation and can be controlled through a simple interface. 

The application in the D D D style should start as following: 

1. Form a ubiquitous language etc. 

2. Build the domain objects with events emitters 

3. Build command handlers and register them to the command handler bus 

43 



4. Design and implement EventHandlers 

5. Build desired projections and register projection readers 

Apart from this DDD programming style support the application can expose modules 
to the DI containers. The module is registered simply by offered services. 

The framework will cover a lot of boiler-plate present in the application and plumbing 
between components. It will provide advantages like scalability, high availability and 
much more if used correctly. 

But a lot of applications will need a user interface attached, let's consider a web 
user interface. The industry standard for building web application is the Model-View-
Controller pattern. The model part is the D D D domain object layer, the controllers are 
the entry points that receive requests. Such controllers could be designed as modules to 
suit the model well. The view components could also be modules with simple interface 
- taking the DTO with every object required in the view template and generating result 
output from some kind of a template. 

The only component is needed - the H T T P server interface router that opens a port, 
receives and parses incoming traffic and forwarding the parsed request to appropriate 
controller (e.g. module). The requests are synchronous, the caller is very likely to use a 
blocking R P C approach. 

As the application development progresses, it should become more robust adding more 
module types available to the DI container. Also as the applications' need for speed or 
stability increases it is possible to extend any of the implementation of key components 
(DI container, Operator Unit etc.). 

6.13 Moving away from CRUD to DDD 

There is a large gap in the amount of information on the traditional approach for designing 
information systems - the C R U D (create/read/update/delete) style. This style is directly 
linked to the SQL database storage system. The application is simply a „controller" for 
the database tables, each view handles one particular table, allowing user to perform 
basic table operations. This development style is well-known, easy to implement, but 
has a major disadvantage - the application usage is tightly-coupled with the database 
structure. The user has to understand and learn the database structure in order to 
operate the system. 

The modern methodologies like DDD suggest using use-cases as the basic units of 
operation in the application. Every view is essentially one use-case allowing user to make 
only one certain operation. 

The C R U D approach can be beneficial in very simple applications, as the complexity 
grows and every operation is more complicated, the C R U D model fails to comprehend the 

44 



complex scenarios. Every complex consistency check on the database is implemented like 
a hook for update/insert/delete operations. The D D D on the other hand adjusts each 
view according to the use-case with all its loose ends and in most cases allows developing 
with linear complexity. 

The D D D approach is better suited for much more real-world applications in my 
opinion. 

45 



Chapter 7 

Technology Selection 

The used technology is essential to the framework day-to-day function. Mature and 
stable technologies must be used in order to let the framework inherit these properties. 
The technologies evolve and the framework should be prepared to adopt new databases or 
even programming languages. The framework should support integrating new technologies 
at some level even if they are binary incompatible with current codebase, it should be 
possible to use new module through messaging etc. 

7.1 Technology Evaluation 

It is not possible to evaluate all the available technologies that enterprise market has to 
offer. As one of the framework requirements was the programming language agnostics, 
it can't be pinpointed to one selected language and conclude that it is the best possible 
solution. 

There are most certainly thousands possible solutions and many of them could work 
correctly in a real-world situation respecting all requirements and fulfilling all framework 
goals at the same time. It's far beyond the scope of this thesis to evaluate or even select 
across multiple candidates. 

I have selected several enterprise-grade, well-known and time-proven technologies 
mostly because of my own experiences and preferences. 

7.1.1 Java Virtual Machine - Runtime Environment 

J V M has been developed for decades and its known as stable enterprise environment for 
byte-code execution. J V M provides a large amount of features from an advanced garbage 
collection (GC), real threading (no emulation), HotSpot optimization technology. The 
main disadvantages are: 

1. execution speed - this is not true anymore, since the HotSpot technology can op­
timize the code to be almost as fast as the native compiler would produce. There 

46 



is little overhead compared to native languages, but the difference is minimal on 
current hardware. 

2. J V M startup time - the environment has to boot before the application is launched. 
There are mechanisms to reduce the latency, it is no longer a real issue for such a 
large number of applications 

3. Memory limits can't be changed during runtime. This is an issue, because the J V M 
process has to start with declared amounts of maximum heap and perm-gen space. 
These limits are fixed for an application lifetime. The best solution to this issue 
is to monitor the application during runtime and then provide it with reasonable 
large amount of memory. The statistics in the framework can be used for gathering 
memory usage. 

7.1.2 Scala - Native Framework Language 

Scala has been chosen for its ability to run on Java Virtual Machine platform and for 
its language features. Scala means SCAlable LAnaguage and can be easily extended to 
virtually any form of DSL that is required for the job. 

Scala provides real threading capabilities (on top of JVM) which are also essential to 
the application. 

7.1.3 Akka - Actor-Based Concurrency Model 

Akka is built on top of Scala infrastructure and provide concurrency at actor level. Akka 
has a large toolset for building highly scalable applications. 

The remoting support to connect event actors among several computers makes it an 
ideal candidate for framework substructure. 

7.1.4 A M Q P - Messaging Infrastructure 

A M Q P provides communication over multiple entry point that is easy to use. The com­
munication infrastructure is composed of multiple endpoints called exchanges, on which 
clients listen and receive messages. 

R P C communication can be easily implemented using temporary queues. 

7.1.5 MongoDB - NoSQL Database 

MongoDB is reliable document storage facility. It has been selected as a general repre­
sentative of the no-sql database movement. It is quite sophisticated compared to other 
databases in the group, but it is easy to use and the main query and command mechanism 
is the JavaScript language. 

47 



7.1.6 PostgreSQL - Possible SQL Database 

PostgreSQL is currently the most advanced open source database. It is used by several 
cloud providers for its high performance output. 

7.1.7 Neo4J - Graph Database 

Neo4J claims to be the most advanced graph storage engine available in an open-source 
environment. 

7.1.8 GridFS - File Storage 

GridFS is file-system built on top of MongoDB and provides advanced file system func­
tionality. 

The GridFS client implementation is easy to integrate to a new framework. 

7.2 Node Daemons Configuration 

There must be a specific environment set up to work on selected technologies. The cluster 
environment is supported with every selected technology up to some point. Some sugges­
tions must be made because any daemon installed on a single node without replication 
could bring down the entire data storage on hardware failure. 

7.2.1 IaaS Provider 

The environment is built on the IaaS infrastructure which must be guaranteed to be 
reliable. This can be achieved only on the IaaS provider side by using quality hardware, 
having simultaneous connections to multiple providers of electric energy and internet 
connectivity. These metrics are individual and there are no general comparison rules 
which one is better or worse. 

7.2.2 RabbitMQ - A M Q P Messaging Endpoint 

RabbitMQ is popular A M Q P routing and messaging server. The main advantages are 
extremely high stability and support to scale messaging nodes. 

The cluster works by replicating all the settings and internal configuration across all the 
servers. The application driver for A M Q P has to accept multiple servers in configuration. 
The driver should reconnect to other node if the current node fails. 

The nodes are equal and should be identical most of the time. In the worst case 
scenario, an extra transmission over network is generated when applications connect to 
different RabbitMQ nodes. 

48 



In the case of failure the RabbitMQ cluster is able to semi-automatically repair it­
self. After the reconnection of failed nodes the synchronization is launched and node is 
reconfigured in the matter of seconds. 

7.2.3 PostgreSQL Cluster Setup 

The PostgreSQL can be launched in several ways in order to achieve a simulated high-
availability. The database system itself supports only simple replication in master-slave 
pattern. This could be a large problem in case of a failure. There are certain third-
party options that suggest placing a forwarding component in front of the server itself. 
Depending on the vendor, the component can provide load-balancing, fail-over or simple 
connection pool. A l l these options have major disadvantages that are not considered a 
standard in the PostgreSQL community. 

The main problems in the master-slave concept are: 

1. Master / Slave is determined in configuration and must be set before the application 
is launched. The application must be at least restarted in order to switch from Slave 
to Master. 

2. Complete resynchronization is not automatic. In these cases Master node must be 
set to state when it writes to the memory only, the files stay intact. The files are 
manually copied to Slave node, the Primary is set to standard state and after starting 
the Slave the replication may begin to work again. This approach is nontrivial and 
extremely hard to automate since there are many possible scenarios of failure and 
only some of them require this resynchronization. 

3. Asynchronous replication is the only possible solution for larger clusters. There are 
no advanced strategies like a quorum or others that would help to decrease latency 
and data security in larger installations. 

These problems are not fatal and given the probability of a failure should not forbid 
the PostgreSQL usage in the cluster. These are most certainly serious potential problems 
that may degrade the database function in the case of a failure. There are two possible 
scenarios: 

1. Slave failure - should not pose a serious problem as there should be multiple slaves 
and the application can just switch to another one. 

2. Master failure - depending on the severity of the failure, the solution to the problem 
may vary from restarting the daemon process to failing over to „warm standby" [28] 
as referred in server documentation. The failover is not a simple step and there are 
many possible scenarios when the failover should not occur and in consequence this 

49 



could lead to data loss or data corruption. The Master failure inevitably requires 
some level of administrator manual interference and can't be automated. 

These problems are common to SQL storage systems and the possible solutions are lim­
ited, these technologies are simply not well established in the fields of a high-availability. 
They are of course usable, given the fact that reading is less likely to fail, they are a 
perfect match for projections. A projection is generated from an event stream and by 
definition can't contain wrong or inconsistent data at any time. If the failure occurs, the 
data will be outdated depending on the length of outage, but there is nothing more to it. 

7.2.4 MongoDB Cluster Setup 

MongoDB has been known to serve the cluster well. There are many replication strategies 
and supported use-cases even for multiple interconnected clusters. 

The main-stream approach is to use Primary and Secondary nodes, where the Primary 
is the only node with write access. In the case of failure a new Primary node is elected by 
a sophisticated yet simple process. The application is configured to use multiple nodes at 
the same time and on a request can be informed which node is the Primary. 

The node synchronization is completely automatic after the failure or other data-losing 
event. 

7.2.5 J V M Usage 

Depending on the use-case there is a possibility to launch multiple application nodes on 
a single virtual server. This can make sense in a lot of scenarios where a periodic action 
is taken and special node is attached. For most installations there should be only single 
application node on one virtual server. This approach leads to simple memory and thread 
pool management. 

The process itself is unlikely to fail as the framework is able to catch most of the 
application errors. However there are cases in which the application causes segfault or 
exhausts the memory. Therefore there is a recommendation to launch an application 
under some kind of supervising server that is able to restart it automatically in the case 
of a fatal failure. 

7.3 Other Suggested Technology Stacks 

The technologies selected for a demo application are well known and have proven dur­
ing years in many business-critical applications. However, there is always a freedom of 
choice of the technologies as the framework connects loosely-coupled components through 
transparent messaging. 

50 



There is no need to stick to the same technologies during multiple stages of develop­
ment of the product. It is quite natural to adopt new languages or databases as they 
evolve and join them inside the technology stack. 

There is always a possibility of replacing the entire module or even a node if other 
implementation performs tasks better. 

51 



Chapter 8 

Framework Reference 
Implementation 

The framework is implemented together with the demo application. The best source of 
low-level documentation available is in the source code. The high-level implementation 
details are explained as there may be multiple strategies to approach problems. 

8.1 Implementation Choices 

Serialization and Deserialization For clarity and demonstrational purposes, the se­
lected method of serialization is JSON format. This format is human-readable and can 
explain principles far better than other byte-oriented format. The serialization to Scala 
native value types is direct and in most cases requires no further explanation. 

The only possible drawback is missing validation mechanism for the format itself. 
This problem is easily addressed with Scala case classes - these classes are DTOs which 
declare property fields. The field may be assigned a default value. When the value is not 
provided, the serialization process must set a value or an exception is thrown otherwise. 
There are also possibilities to use the Option class. 

In a real-world application, the exchange format could stay JSON or if the speed would 
be an issue, more performance oriented protocol such as BSON or Protocol Buffers can 
be used. 

Only case classes should be serialized or deserialized. This is a general rule and a Scala 
standard. 

Module Interface The most critical part of the implementation is the ProducerModule 
interface (or in Scala: trait or abstract class if a constructor functionality is required). 
The interface should be simplistic as possible fulfilling only the required functionality. It 
is declared as a standard base class: 

52 



abstract class ProducerModule(name: String) \ 

extends ProducerProxy with ModuleRef with SLF4JLogging { 

def handle: PartialFunction[AnyRef, Unit] 

def receive = { 

\ 

} 

} 

The module is a thin container for actors. The crucial element is the handle method 
to which is delegated to the actor call. It is an actor itself. This is necessary for the 
modules to be able to register services on the same level. The services are interchangeable 
and there is no need to know the correct node if addressing other modules by a unique 
name. For addressing, there is a ModuleRef interface: 

object ModuleRef { 

Module Lifecycle The module has a defined lifecycle. Its methods are called back on 
certain events and can take appropriate actions. Standard actor lifecycle events are also 
used. 

1. StartNewModule - when the module is started by the DI container 

2. Forward - used to forward messages through the remote actor 

val ModulePathPrefix = "/user/supervisor/ 

} 

trait ModuleRef extends Actor { 

def moduleRef(name: String): ActorRef = { 

context.actorFor(ModuleRef.ModulePathPrefix + name) 

} 

} 

53 



3. StopSilentlyModule - before the DI container is shutting down the module 

For each service the lifecycle is important. The order in which the services are started 
may not be fixed for each module. A ProducerModule instance can be created with 
statistics collector to ease the statistic types registration. 

Each ModuleService is an actor, so same lifecycle applies for them too. Service can 
declare its own supervision strategy to prevent further exception escalation. 

Service receives the requests in the deserialized form (given by the deserialization 
function). 

Routing and Failover ModuleService One module can contain multiple actors in­
side, but is completely responsible for their attendance. The parent module should create 
a ModuleRef that is able to route or forward message to child services. The parent mod­
ule can register child module services as its own children except a simple name-prefix in 
their registration path. The prefix makes these services effectively private since no other 
module knows the prefix. 

Forwarding is desired in many scenarios and it is quite common that apart from 
standard requests for the target service there are special control requests that are handled 
by the parent service itself. For example: a request to start another child or to kill a 
random child. 

8.2 Implemented Services 

Dependency Injection Container DI container has few major responsibilities: 

1. Start Module, and maintain their lifecycle. 

2. Maintain local list of currently running ProducerModule and checking their status. 

3. Maintain list of available types of modules ready to start if needed (dependency 
crash on other node) 

4. Communicate with other nodes to determine if the requirements for a module start 
are met. 

The Producer Modules are started as actors named after the path that the service is 
providing. This simplifies the address discovery for services. 

System Node The system node is the launcher element of the application node. Apart 
from this it should communicate with other operation units and maintain a overview of 
the current cluster condition. 

54 



The system node itself is directly responsible for creating actor system with all required 
configuration options. 

A configuration must be provided for the system node to start. The start list of 
modules is necessary together with module registration routine. The module registration 
is done on the source code level as it is not a subject of change in the runtime. 

The system node is also responsible for creating the CI container and filling it with 

initial data. 
The stop action is the only routine that the system node provides. These action signals 

to the cluster that the node is going down and all the services are shut down. 

Command Handler Support The Command Handler Bus (CHB) is a prepared Mod­
ule that can be registered as a dependency to a DI container. To C H B a command handler 
can be attached for a specific command type. Commands are DTOs that are created from 
deserialization. 

The command DTO is forwarded to a specific command handler and it is processed 
there. The command handler returns success or failure. In the case of success, all the 
generated events are collected and passed to the event store. 

There is also the support for repository type objects which allow to load an aggregate 
from event stream or to list all available aggregates. 

Event Support Event support is mainly composed of event store which is able to 
serialize event DTO. These DTO come with a unique type to resolve correct DTO in the 
deserialization process. 

Projection Support When the events are saved to the store, they are further send 
to processing in the projections. Each projection is registered in a central projection 
component. 

Every transmitted event is forwarded to projection and it is completely up to the 
projection how it will react. 

The framework offers a support for using SQL or NoSQL write support. 

8.3 Testing Support 

Every part of the framework is testable either as an actor (with trap-actor) or unit testable. 
To keep this promise a more functional style of objection design must be used. Every 
method should return a value. This value is significant at least for testing. 

55 



8.4 Self-Healing 
Each module has a special supervisor actor that can return several case classes resulting 
in restart of the module. 

class ModuleSupervisor extends ModuleRef with SLF4JLogging { 

def receive = { 

case StartNewModule(name, props) => 

log.debugC'Registering module: " + name \ 

+ ", sender: " + sender.toStringO) 

if (context.child(name).isDefined) { 

log.error("Child already defined: " + name) 

} else { 

context.actorOf(props, name) 

} 

case Forward(name, msg) => 

moduleRef(name) ! msg 

case StopSilentlyModule(name) => 

context.stop(moduleRef(name)) 

The module should choose the action with care as the number of resources is always 
limited and can't for example add more processing units to the pool of workers indefinitely. 

8.5 Integration 
A very important parameter must be judged during the implementation. The framework 
must be able to cooperate with another existing framework. There are multiple major 
scenarios that need to be supported. 

Benefits for Existing Application The framework provides a lot of benefits if added 
to the application. There are existing applications which need only a part of their func­
tionality to be highly available or distributed. 

The framework adoption should be as easy as just starting operation unit with some 
configuration from the existing application. A strategy for integration must be adopted, 
if the existing application is not distributed, it would make sense to start different type of 

56 



node with inside the application and completely different nodes on other virtual machines 
etc. 

Integrating Other Frameworks The framework is designed to run a distributed net­
work of modules that communicate with each other. This is the main purpose of the 
framework from a technical point of view and this is the only area at which the frame­
work should be excellent. 

There are many more areas that have to be covered like messaging, storage access etc. 
For each of these technologies the framework should make no presumption about the best 
suitable implementation. It's always up to the application to decide if the file storage 
service would be best served by GridFS or if a custom implementation using completely 
new file storage framework should be used. 

The framework is limited only to the areas that it can do well. For every other area 
there is already an existing framework or solution that can be explored and used. 

In a current technology setup there is currently no web tier solution chosen. Yet given a 
typical cloud application characteristics, it is very likely that some Model-View-Controller 
framework or other solution will be used in conjunction with the developed framework. 

57 



Chapter 9 

Demo Application - Distributed Web 
Crawler 

A framework is only as good as applications that can be built upon it. There is no 
better measurement of the framework overall quality than creating a demo application 
with similar requirements as the framework offers. 

I have chosen to design and implement a distributed web archiving crawler. The 
crawler will „crawl" over an input website, collecting all web pages and basic resources. 
These will be stored in an archive effectively creating a simple history for certain website. 

The main idea is to create an online archive for web resources. The application will 
fulfill two main goals: 

1. Incrementally collect and recollect content 

2. Provide a browser of the web page history 

The demo application is challenging, because there are many fields where the cloud 
environment can significantly improve the application infrastructure. The application 
needs to be massively scalable as it is clear that internet crawler can work in a massive 
parallelism. The application user interface can stay simplistic. 

9.1 Overview 

There are several main areas that need further analysis. 

Crawling over Web Pages The process can be easily imagined as a pipeline of spe­
cialized tasks. 

The main function of the application is to keep a queue of requested U R L . Each U R L is 
downloaded, parsed, processed and more referenced URLs are stored for download to the 

58 



queue. The downloader component can have a large pool or download workers running. 
The result of the downloader is a downloaded file for the queued U R L . 

The resources are stored to the database. Serialization occurs and the original doc­
ument must be compressed if possible. The compression is necessary, because a large 
amount of data is expected, a large amount of documents will be of content type text/html 
or similar. The compression is very efficient for such plain text content types. Along with 
resources a parsed representation, it is stored also. For a web page this could be simply a 
page title and U R L that appear on the page in the form of links. The parsing process is 
done by a special component and is highly dependent on the content-type of the stored 
document. 

The inter-connection of the document is done by a U R L that is supposed to be unique 
in a given time. 

Collecting Changes The indexed URLs are scheduled for a check periodically. Same 
process as in indexing is applied and the domain may be crawled once again. A large 
amount of pages have dynamic content that is generated on the fly as the web page is 
rendered. These changes are not important for an archiving process. Each new copy is 
treated as a new entry in the database. 

Browsing Archive A web server with a simple interface is exposed to end-users. A 
list of indexed pages is shown to the user. After selecting a domain the user is provided 
with a list of indexed pages on the selected domain. 

Another feature of web interface is an overview of the queue of the scheduled URLs 
that are to be checked. A n addition to this list is possible by a simple user input. 

A last section of the web UI is the statistics overview. Some values are highly signifi­
cant for each crawled domain for example: 

1. Domain U R L 

2. Links references from the domain 

3. Images references from the domain 

9.2 Analysis 

The analysis can be divided in two parts. 

Indexing Part The indexing part of the application can be easily simplified to a pipeline 
of multiple processes. Each process can have multiple workers working in parallel. 

This approach is well suited to be represented as modules: 

59 



1. DownloadHandler - manages the Download Queue and spawns downloaders from a 
Queue. The download can be successful in this case a Downloaded D T O is returned. 
In a case of failure (given by a H T T P error code) and error event is passed on. 

2. Parse Module - is given a downloaded resources, a parser may be selected based on 
the content type 

3. Storage Module - a module handling sending commands to the domain with a parsed 
document and compressed content 

The Storage Module is responsible for the most logic. The domain is composed of only 
several entities: 

1. DomainHost - representing a web domain that contains web pages and other re­
sources 

2. ParsedHtml - representing a content of U R L with parsed links and images 

A domain is notified about changes over the content. A new ParsedHtml can exist 
(a new U R L is discovered) or a content may be deleted. The deletion is designated by a 
H T T P return code. 

Browsing Part A browsing part has only one possible command - to append an U R L 
for a download. No other commands can be issued from a web interface. 

The information source for the browsing part is generated by several projections. A 
GraphDB approach is used for managing active domain links. A NoSQL storage has been 
chosen for ParsedHtml projections. This separation is for demonstrational purposes only, 
in a real-world application only one approach would be used. Another possibility for a 
storage facility is big-table engine such as Google BigTable or any other representative of 
this group. 

To demonstrate working with files, a content of the web-page is stored inside a file 
storage facility. 

9.3 Requirements 

The application must be scaled easily across a large amount of nodes. There is only one 
instance of an indexing type node and one instance of a browsing part necessary to run 
an application. But in this configuration the application could be a traditional desktop 
application and would not benefit from the cloud environment. 

There are two essential requirements for each application part. 

60 



Indexing Nodes Adding more nodes to the computational part of the cluster must 
be easy and the system must easily recognise these nodes. The nodes should be plugged 
instantly. Removing a computational node from a cluster should be equally simple. 

The nodes should work in parallel, the computation should be load balanced. Multiple 
processes should work at the same time on each node as it is a logical approach to assume 
that each node running a virtual server would have its own network connection thus can 
utilize separated pool of resources. 

Browsing Nodes Projections should run on database systems that provide high-availability 
and failover. The application should be simple and layered in order to minimalize the pos­
sibility of producing bugs. The application should merely display results of the database 
queries. 

It is reasonable to assume that only two nodes are necessary for failover in case one vir­
tual machine would go down. The web-server should be run as a cluster service forwarding 
every request to the browsing part of the application. 

9.4 Implementation Overview 

The references framework implementation was developed along this demo application. 

Used Components The demo application is using a large amount of components that 
are well fitting the environment. 

1. Bootstrap [29] - CSS framework 

2. Spray [30] - Akka web framework 

3. Jsoup [31] - parsing H T M L 

4. JGrapht [32] - module dependency graphing 

5. Akka [33] - scala actor-based framework 

6. Scalate [34] - templating 

7. MongoDB [35] - NoSQL Storage 

8. Neo4j [36] - Graph db 

9. GridFS [37] - file storage 

10. Lucene [38] - fulltext search engine 

Application Architecture 

61 



PersistentQueue <-

Figure 9.1: Mycelium Demo Application Architecture 

9.5 Framework Benefits 
The application is not trivial by far. Without a framework the task to implement such an 
application would be very challenging and would be difficult to accomplish. The quality 
of the product would be also at stake as the application would run in multiple threads 
and there would most certainly be synchronization problems. 

The framework provides essential separation of logic for the application to several 
modules. Each module is an independent unit that can run multiple times thus providing 
a desired flexibility. Some services run only as dependencies, these are taken care of 
automatically by the dependency injection container. 

The largest inovation and benefit of the framework are its scalability, clean separation 
of code and stability. Exactly these areas are highly valued in enterprise development and 
are crucial for a long-living mature server product. 

The task to design such an application with a framework like this enables the developer 
to focus on the main areas of the application such as download process, parsing documents, 
storing them and maintaining projections. No other boiler plate has to be programmed, 
the communication is already done, the serialization too. 

I believe that without the framework the application would never reach such a high 
quality standards. Simple usage of the framework has enabled a development with many 
essential tools that have already been taken care of. 

62 



9.6 Retrospective 
The application is working according to the specification. Both of the tasks are fulfilled 
to full extend of the analysis. 

The application speed can be scaled according to the number of nodes interconnected 
by the framework. 

The designed framework helped to speed the development process significantly. 
To better illustrate the application, Screenshots have been collected in appendices of 

this thesis. 

63 



Chapter 10 

Conclusion 

This thesis has presented the foundation for building a high quality enterprise grade 
distributed framework. The design approaches are coherent and the main area of work is 
to connect them into several framework layers and principles that will allow developers 
to be more productive in building cloud applications. 

I have analyzed the cloud environment. The requirements that has to be met in order 
to be successful in the cloud have been collected. A framework skeleton has been presented 
that has all the required abilities and in theory should stand to desired portion of various 
cloud application types. 

The thesis has presented a reference implementation of the framework and has tested 
it on a medium sized enterprise-grade web crawler application. The web crawler can be 
seen as a typical example of extensively scalable cloud application. The application is 
functional and has been extensively tested in a multi-node environment. 

The framework brings inovative ideas on how to compose the cloud application, anal­
ysis on the technology stack that can be used in the process. One of the benefits is also a 
reduced cost of cloud hosting as the framework is trying to provide maximal support for 
built-in technologies of cloud providers that are in common cheaper that general processor 
time usage. 

10.1 Further Development Suggestions 

In order to be successful, the framework must be released to a wider community and be 
developed further. 

The original goals of the framework are accomplished, but there is a lot more work to 
be done in documenting the framework, enhancing stability, testing the environment in a 
long-term runs etc. 

The main point of expansion should be an integration with more enterprise industry-
standard technologies. The existing integration adapter is one of the most significant 

64 



factors that affect if the framework can be used or cannot be used in company prod­
ucts. If this ability of the framework is extended, it can be successful even in production 
environments. 

65 



Bibliography 

[1] Eric Evans. Domain-Driven Design: Tacking Complexity In the Heart of Software. 
Addison-Wesley Longman Publishing Co., Inc., Boston, M A , USA, 2003. 
[2013-03-15]. 

[2] Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering, 
Anniversary Edition (2nd Edition). Addison-Wesley Professional, anniversary 
edition, August 1995. [2013-03-15]. 

[3] Craig Walls and Ryan Breidenbach. Spring in action. Manning Publications Co., 
Greenwich, CT, USA, 2007. [2013-01-02]. 

[4] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases 
through Build, Test, and Deployment Automation. Addison-Wesley, 2010. 
[2013-01-02]. 

[5] Inc. Google. Google app engine, s ://developers .google. com/appengine/, 2013. 
[2013-03-15]. 

[6] Microsoft. Windows azure, http://www.windowsazure.com/en-us/, 2013. 
[2013-03-15]. 

[7] Apache Software Foundation. Welcome to apache™ hadoop! 
http://hadoop.apache.org/, 2013. [2013-03-15]. 

[8] Jaroslav Cecho. Optimalizace platformy pro distribuované výpočty hadoop. 
Master's thesis, V U T Brno, 2011. [2013-03-15]. 

[9] Stříž Martin. Platforma pro vývoj ria aplikací. Master's thesis, V U T Brno, 2011. 
[2013-03-15]. 

[10] Bohačiak Ondřej. Programování s přístupem design by contract na platformě .net. 
Master's thesis, V U T Brno, 2009. [2013-03-15]. 

[11] George Reese. Cloud Application Architectures - Building Applications and 
Infrastructure in the Cloud. O'Reilly, 2009. [2013-01-02]. 

66 

http://www.windowsazure.com/en-us/
http://hadoop.apache.org/


[12] Carson Gaspar. Deploying nagios in a large enterprise environment. In LISA. 
USENIX, 2007. [2013-01-02]. 

[13] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 
1999. [2013-01-02]. 

[14] Ben Kepes. Understanding The Cloud Computing Stack - SaaS, PaaS, IaaS. 
CloudU, 2011. [2013-01-02]. 

[15] Priya Viswanathan. Cloud computing - is it really all that beneficial? 2012. 
[2013-01-02]. 

[16] Benedikt Martens, Marc Walterbusch, and Frank Teuteberg. Costing of cloud 
computing services: A total cost of ownership approach. In HICSS, pages 
1563-1572. IEEE Computer Society, 2012. [2013-01-02]. 

[17] Nic Laycock. How to build and lead successful online communities: What makes a 

community a community? eLearn Magazine, 2012(1):2, 2012. [2013-01-02]. 

[18] Sean Ludwig. Cloud 101. 
http: //venturebeat. com/2011/ll/14/cloud-iaas-paas-saas/. [2013-03-15]. 

[19] Inc. Google. Google compute engine. 
s : //cloud.google. com/products/compute-engine, 2013. [2013-03-15]. 

[20] Inc. Amazon Web Services. Amazon elastic compute cloud (amazon ec2). 
http://aws.amazon.com/ec2/, 2013. [2013-03-15]. 

[21] Michael P. MacGrath. Understanding PaaS - Unleash the Power of Cloud 
Computing. O'Reilly, 2012. [2013-01-02]. 

[22] Inc. Amazon Web Services. Amazon web services, http://aws.amazon.com/, 2013. 

[2013-03-15]. 

[23] Shalini Ramanathan, Savita Goel, and Subramanian Alagumalai. Comparison of 

cloud database: Amazon simpleDB and google bigtable. 2011. [2013-03-15]. 

[24] Scott Urman. Oracle PL /SQL programming. Oracle Press (division of Osborne 
McGraw-Hill), pub-ORACLE:adr, 1996. [2013-03-15]. 

[25] Kent Beck. Test Driven Development: By Example. Addison-Wesley, 2003. 

[2013-03-15]. 

[26] T. A . Cargill. A robust distributed solution to the dining philosophers problem. 
Software—Practice and Experience, 12(10):965-969, October 1982. [2013-03-15]. 

67 

http://aws.amazon.com/ec2/
http://aws.amazon.com/


[27] Silvia Crafa. Behavioural types for actor systems. 

h t tp : / /arxiv .org/abs/1206.1687, June 08 2012. [2013-03-15]. 

[28] Postgresql: The world's most advanced open source database. 

ht tp: / /www.postgresql .org/ , 2013. [2013-03-15]. 

[29] Bootstrap, h t t p : / / t w i t t e r . g i t h u b . i o / b o o t s t r a p / . [2013-05-01]. 

[30] Elegant, high-performance http (and more) for your akka actors. 

h t t p : / / s p r a y . i o / . [2013-05-01]. 

[31] jsoup Java html parser, with best of dom, ess, and jquery. h t tp : / / j soup .o rg / . 

[2013-05-01]. 

[32] Welcome to jgrapht - a free Java graph library, h t tp : / / jg rapht . org/ . [2013-05-01]. 

[33] Akka. h t t p : / / a k k a . i o / . [2013-05-01]. 

[34] Scalate. h t tp : / / sca la te . fusesource .o rg / . [2013-05-01]. 

[35] Mongodb. http://www.mongodb.org/. [2013-05-01]. 

[36] Neo4j, the graph database - learn, develop, participate, h t tp : / /www.neo4j .org/ . 

[2013-05-01]. 

[37] Gridfs. http:/ /docs.mongodb.org/manual/core/gridfs/ . [2013-05-01]. 

[38] Apache lucene - apache lucene core, h t tp : / / lucene.apache.org/core/ . 

[2013-05-01]. 

68 

http://arxiv.org/abs/1206.1687
http://www.postgresql.org/
http://twitter.github.io/bootstrap/
http://spray.io/
http://jsoup.org/
http://akka.io/
http://scalate.fusesource.org/
http://www.mongodb.org/
http://www.neo4j
http://docs.mongodb.org/manual/core/gridfs/
http://lucene.apache.org/core/


Appendices 

69 



Appendix A 

Contents of the Enclosed DVD 

The D V D enclosed inside the thesis contains the following files and directories: 

• /thesis - thesis source code 

• /mycelium - project source code 

70 



Appendix B 

Running the Application 

There is a detailed description of the building process inside the project directory in the 
R E A D M E . m d file. 

Running the application requires at least: 

1. RabbitMQ server (default user guest) 

2. MongoDB (without authentication) 

3. Running the application from the application root 

i ./gradlew run 

4. After booting the application can be reached on http: //localhost :8080/. 

71 



Appendix C 

Application Screenshots 

Cloud Web Crawler 
This is a demo of a dimploma thesis on a cloud framework called Mycelium by David Pech 

The underlaying engine has a lot of features 'distributed. ...), this is merely a simple extract 

Input new URL for i indexing 

Current Queue 
• nttp://c5.wikipedia.org/Windex.pnp^ 
• http7/c5.wikipedia.org/w/index.php?title=Sped% 
• http7/cs.wikipedia.orgMindex.php?title=Speci%C3%A1ln%C3%AD^^^ 
• http:ffc5.wikipedia.orgMindex.php?ti^^^ 
• http://cs.wikipedia.org/Windex.php?title=Speci^ 
• http7/c5wikipedia.org/w/index.php?title=Speci%^ 
• http7/cs wíkípedía.org/w/index.php?títle=Specí%C3%A1ln^ 
• http://c5wikipedia.org/Windex.php? 
• http:ffcs.wikipedia.orgMindex.php?ti^^^ 
• http:ffcs.wikipedia.orgMindex.ph 

I http://cs.wikipedia.orgM/index.php?title=Specl%C3%A1ln%C3%AD^ - Entra / 
"egistrati - Wikipedie graph download structure 

2. http://cs.wikipedia.Org/w/index.php?title=Speci%C3%A1ln%K^^^ Ensaluti V 
<rei novan konton - Wikipedie graph download structure 

3 http://c5.wikipedia.0rg/w/index.php?title=Speci%C3%A1^ - Greer un 
compte ou se connecter - Wikipedie graph dü-.-nload structure 

4 http://cs.wikipedia.org/w/index.php?title=Specl%C3%A1 ln%C3!oAD:P%C5lSo99ihl%C3%A1 sit &typ e=log I n&returnto= Outsourcing - Přihlášení / vytvoření účtu - Wikipedie 
graph download structure 

5. http://cs.wikipedia.Org/w/index.php?title=Speci%C3%A1ln%K^^^ -
Aanmelden / registreren - Wikipedie graph download structure 

S. http://c5.wikipedia.0rg/w/index.php?title=Speci%C3%A1ln%C3%AD:P%C5%99i^^ -
Anmelden / Benutzerkonto anlegen - Wikipedie graph download structure 

7 http://cs.wikipedia.örg/w/index.php?title=Speci%C3%A1ln%C370AD:P%C57099ihl%C3%A1sit&returnto=Outsourclng&returntoquetv=1Vpe%3Dsignup - Přihlášení/vytvořeni 
Jčtu - Wikipedie graph download structure 

3. http://cs.wikipedia.Org/w/index.php?title=Speci%C3%A1ln%C3% Log in 1 
create account - Wikipedie graph download structure 

3. http://cs.wikipedia.Org/w/index.php?title=Speci%C3%A1ln%C3%AD^ -
Přihlášení / vytvoření účtu - Wikipedie graph download structure 

10. httpv/cs.wikipedia.org/w/index.php?title=Specl%C3%A1ln%C3%AD:P% - Iniciar 
sesion / crear cuenta - Wikipedie graph download structure 

Recently indexed 

Figure C . l : Index Page with New Url Request 

http://cs.wikipedia.org/Windex.php?title=Speci%5e
http://c5wikipedia.org/Windex.php
http:ffcs.wikipedia.orgMindex.ph
http://cs.wikipedia.orgM/index
http://cs.wikipedia.Org/w/index
http://c5.wikipedia.0rg/w/index
http://cs.wikipedia.org/w/index.php?title=Specl%C3%A1
http://cs.wikipedia.Org/w/index
http://c5.wikipedia.0rg/w/index
http://cs.wikipedia.�rg/w/index.php?title=Speci%C3%A1ln%C370AD:P%C57099ihl%C3%A1sit&returnto=Outsourclng&returntoquetv=1Vpe%3Dsignup
http://cs.wikipedia.Org/w/index
http://cs.wikipedia.Org/w/index


WebWeaver / Mycelium ShOW Case Home Search Graph Raw content Structured content Stats 

Fulltext Search (Lucene) 
Use this for fulltext search 

-I onomil •:• 

Type your search and see tne results below 

Top Results 
1. http://cs.wikipedia.orgAwikiy%C5%9S%C3%ADzen%C3%AD_(elion0mikai - PCŤIII .-H jnornika) - Wikipedie graph download structure 
2 http://cs.wikipedia.orgjwiki/Ekonomika Ma%C4%8Farska - Ekonomika Madarska - Wikipedie graph download structure 
3. http://cs.wikipedia.orgjw/index.php?title=Ekonomika Polska&action=edit&redlink=1 - Vytvářeni Ekonomika Polska - Wiklpedle graph download structure 

4. http://cs.wikipedia.Org/w/index.php?title=Ekonomika_Kypru&action=edit&redIink=1 - Vytváření Ekonomika Kypru -Wikipedie graph download structure 
5. http://cs.wikipedia.org/wiki/Ehonomika_Spojen%C3%A9ho_hr''/»C3%A1l(>vstv%C3'>/(AD - Ekonomika Spojeného království - Wikipedie graph download structure 

Recently indexed 
1. http://cs.wikipedia.orgAwiki/Ekonomika_Spojen%C3%A9ho _kr%C3%A1 lovstv%C3%AD - Ekonomika Spojeného království - Wikipedie graph download structure 

2. http://cs.wikipedia.Org/w/index.php?title=Ekonomika Kypruftaetion=editSredIink=1 - Vytváření Ekonomika Kypru - Wikipedie graph d'jwnľ:'^-:! strutturí 
3. http://cs.wikipedia.Org/w/index.php?title=Porť/X3UA1l:Ekonoimie/Kategorie&action=etlit- Editace stránky Portál: Ekonomie/Kategorie -Wikipedie graph download str Lľ: tu r Ť 
4. http://cs.wikipedia.org/wik i Nacismu s - Nacismus -Wikipedie graph download structure 
5. http://cs.wikipedia.Org/w/index.php?title=Ekonomika Polska&action=edit&redlink=1 - Vytváření Ekonomika Polska - Wikipedie graph download structure 
B. http://cs.wikipedia.orgjwiki/Ekonomika Ma%C4%8Farska - Ekonomika Madarska - Wikipedie graph download structure 
7. http://cs.wikipedia.org/wiki/Singapur- Singapur-Wikipedie graph download striKturŕ 
3. http://cs.wikip e dia.org/wik i/Kate go rie:Dotac e - Kategorie: Dotace - Wikipedie graph download structure 
3. http://cs.wikipedia.Org/w/index.php?title=Speci%C3%A1l^ 

účtu — Wikipedie graph download structure 
10 http:vcs.wikipedia.org.w/index.php?title=Speci%^ -

Přihlášení / vytvoření účtu - Wikipedie graph download structure 

Figure C.2: Fulltext search using Lucene 

73 

http://cs.wikipedia.orgAwikiy%C5%259S%C3%ADzen%C3%AD_(elion0mikai
http://cs.wikipedia.orgjwiki/Ekonomika
http://cs.wikipedia.orgjw/index.php?title=Ekonomika
http://cs.wikipedia.Org/w/i
http://cs.wikipedia.org/wiki/Ehonomika_Spojen%C3%A9ho_hr''/�C3%A1l(%3evstv%C3'%3e/(AD
http://cs.wikipedia.orgAwiki/Ekonomika_Spojen%C3%A9ho
http://cs.wikipedia.Org/w/i
http://cs.wikipedia.Org/w/index
http://cs.wikipedia.org/wik
http://cs.wikipedia.Org/w/i
http://cs.wikipedia.orgjwiki/Ekonomika
http://cs.wikipedia.org/wiki/Singapur-
http://cs.wikip
http://dia.org/wik
http://cs.wikipedia.Org/w/index
http:vcs.wikipedia.org


WebWeaver / Mycelium ShOW Case Home Search Graph Raw content Structured content Stats 

Structured Content (various parsers, MongoDB) 
http://raynet.cz/co-je-crm.html 

• Title RAYNET Cloud CRM | CRM (Customer Relationship Management] 
• Links 

a http://raynet.cz/co-je-datove-centrurn.htm 
a http://raynet.cz/5lovnik-pojmu.html 
o http://raynet.cz/o-5polecno5ti-raynet.htrn 

o http://raynet.cz/kdo-tvori-raynet-tym.ritm 
o http://raynet.cz/vyzkouset-zdarma.html 
» http://raynet.cz/co-je-raynet-crm.htm 
a http://raynet.cz/poradenstvi-konzultace-analyzy.html 
a http://raynet.cz/co-je-analytlcky-crm-system.html 
o http://raynet.cz/co-je-implementace-crm.htrTil 

o http://raynet.cz/co-je-dms.html 
o http://raynet.cz/kontakt.htm 
» http://raynet.cz/co-je-crm-system.htm 
B http://wuuw.raynetmarketing.cz 
a http://raynet.cz/co-je-iaas.html 
o http://raynet.cz/co-je-helpde5k.html 

o http://raynet.cz/co-je-kolaborativnl-crm-system.ntm 
o http://raynet.cz/co-je-faq.htm 
» http://raynet.cz/co-je-api.html 
B http://raynet.cz/co-je-cloud-computing.html 
a http://raynet.cz/ocnrana-udaju-Pezpecnost-crm.htm 
o http://raynet.cz/crm-na-miru.ntm 

o http://raynet.cz/co-je-operativni-crm-5ystem.html 
o http://raynet.cz/co-je-ict.htm 
B http://raynet.cz/co-je-erp.htm 
B http://raynet.cz/evidence-kontal tu htm 
s https://plus.google.comn 08981057279669010195/pcsts 
o http://raynet.cz/reference.ntrn 

o http://www.zelenaf1rma.c: 
o http://raynet.cz/co-je-fulltext.htm 
B http://raynet.cz/co-je-crm.htm 
B http://raynet.cz/cena-zakoupeni.htm 
a http://raynet.cz/co-je-Oemo.htm 
o http://raynet.cz/C'j-|e-::iLii.html 

o http://raynet.cz/co-je-cloud-crm.htm 
o http://raynet.cz/zakaznJcka-podpora.htm 
B http://raynet.cz/co-je-informacni-system.htm 
B http://raynet.cz/ 
a http://raynet.cz/co-je-crm-online.htm 
o http://wwjw.facebook.com/raynet5iiv 

o http://raynet.cz/rayhet-cloud-crm.ntm 
o http://raynet.cz/co-je-drag-and-drop.html 
B http://raynet.cz/certifikaty-kvalita.html 
B http://raynet.cz/prestizni-oceneni.htm 
a http://raynet.cz/co-je-crm-reseni.htm 
o http://raynet.cz/slovnik-pojmu-5hadouubox.htm 

• IIIVIVIT'. 

• y 
• * 

View raw version of the document or graph links of the document 

Recently indexed 
1. hRp://cs.wikipedia.ors/w/index.php?title=Cesta_do_otroctv%C3%AD&actlon=e<lit&re<llink=1 - vytvářeni Cesta do otroctví - Wiklpedle graph download structure 
2. http://cs.wihipedia.org/wiki/%C4ili8Cern%C3%A1_Hora- Černá Hora - Wikipedie graph download structure 
3. http://cs.wikipedia.Org/wiki/Kategorie:Politick%C3%A1_ekonomie - Kategorie: Politická ekonomie - Wikipedie graph download structure 
4. http://cs.wikipedia.org/wiki/Zbo%C5%BE%C3%ADznalstv%C3%AD - Zbožíznalství-Wikipedie graph download structure 
5. http://cs.wikipedia.org/wiki/Kategorie:Makroekonomie_a_monet%C3%A1rn%C3%AD_politika- Kategorie:Makroekonomie a monetární politika -Wikipedie graph downloac 

LtlLKtLlie 

5. http://cs.wikipedia.org/wikl/Frelburg_im_Breisgau - Freiburg im Breisgau - Wikipedie graph download structure 
7. http://cs.wikipedia.org/w/index.php?title=Pott%C3%A1l:Ekonomie/lnformace8.action=edit- Editace stránky PortáLEkonomie/Informace -Wikipedie graph -zl i"il:--n-:l stru (tuří 
3. http://cs.wikipedia.org/wiki/ASEAN - Sdružení národů jihovýchodní Asie - Wikipedie graph download structure 
3. http://cs.wikipedia.Org/wiki/Soubor:Europe_map.png - Soubor:Europe map.png - Wikipedie graph download structure 

ID. http://cs.wikipedia.Org/wiki/Kategorie:Cenn%C3%A9_pap%C3%ADry - Kategorie: Cenné papíry - Wikipedie graph download structure 

Figure C.3: Detail of a parsed page with links and images 

74 

http://raynet.cz/co-je-crm.html
http://raynet.cz/co-je-datove-c
http://raynet.cz/5lovnik-pojmu.html
http://raynet.cz/o-5polecno5ti-raynet.htrn
http://raynet.cz/kdo-tvori-raynet-tym.ritm
http://raynet.cz/vyzkouset-zdarma.html
http://raynet.cz/co-je-raynet-crm.htm
http://raynet.cz/poradenstvi-konzultace-analyzy.html
http://raynet.cz/co-je-analytlcky-crm-system.html
http://raynet.cz/co-je-implementace-crm.htrTil
http://raynet.cz/co-je-dms.html
http://raynet.cz/kontakt.htm
http://raynet.cz/co-je-crm-
http://wuuw.raynetmarketing.cz
http://raynet.cz/co-je-iaas.html
http://raynet.cz/co-je-helpde5k.html
http://raynet.cz/co-je-kolaborativnl-crm-system.ntm
http://raynet.cz/co-je-faq.htm
http://raynet.cz/co-je-api.html
http://raynet.cz/co-je-cloud-computing.html
http://raynet.cz/ocnrana-udaju-Pezpecnost-crm.htm
http://raynet.cz/crm-na-miru.ntm
http://raynet.cz/co-je-operativni-crm-5ystem.html
http://raynet.cz/co-je-ict.htm
http://raynet.cz/co-je-erp.htm
http://raynet.cz/evidence-kontal
https://plus.google.comn
http://raynet.cz/reference.ntrn
http://www.zelenaf1rma.c
http://raynet.cz/co-je-fulltext.htm
http://raynet.cz/co-je-crm.htm
http://raynet.cz/cena-zakoupeni.htm
http://raynet.cz/co-je-Oemo.htm
http://raynet.cz/C'j-%7ce-::iLii.html
http://raynet.cz/co-je-cloud-crm.htm
http://raynet.cz/zakaznJcka-podpora.htm
http://raynet.cz/co-je-informacni-system.htm
http://raynet.cz/
http://raynet.cz/co-je-crm-online.htm
http://wwjw.facebook.com/raynet5iiv
http://raynet.cz/rayhet-cloud-crm.ntm
http://raynet.cz/co-je-drag-and-drop.html
http://raynet.cz/certifikaty-kvalita.html
http://raynet.cz/prestizni-oceneni.htm
http://raynet.cz/co-je-crm-reseni.htm
http://raynet.cz/slovnik-pojmu-5hadouubox.htm
http://cs.wihipedia.org/wiki/%C4ili8Cern%C3%A1_Hora-
http://cs.wikipedia.Org/wiki/Kategorie:Politick%C3%A1_ekonomie
http://cs.wikipedia.org/wiki/Zbo%C5%BE%C3%ADznalstv%C3%AD
http://cs.wikipedia.org/wiki/Kategorie:Makroekonomie_a_monet%C3%A1rn%C3%AD_politika-
http://cs.wikipedia.org/wikl/Frelburg_im_Breisgau
http://cs.wikipedia.org/w/index.php?title=Pott%C3%A1l:Ekonomie/lnformace8.action=edit-
http://cs.wikipedia.org/wiki/ASEAN
http://cs.wikipedia.Org/wiki/Soubor:Europe_map.png
http://cs.wikipedia.Org/wiki/Kategorie:Cenn%C3%A9_pap%C3%ADry


WebWeaver / Mycelium ShOW Case Home Search Graph Raw content Structured content Stats 

Graph Web Structure (Neo4j) 
http://raynet.cz/co-je-ict.html 
Showing a graph of document links to various places. Download page content or view structured page 

Recently indexed 
1. http://cs.wikipedia.Org/wikiyKategorie:Sv5t%C3%A9mov7oC3%A1_dvnamlhii - Kategorie:Systémová dynamika -Wikipedie gi iph download structure 
2. http://c5.wikipedia.orgyw/index.php?title=Porť/X3UA1l:Ekonomie&oldid=10179S71 - Portál:Ekonomie - Wikipedie graph download structure 
3. http://cs.wikipedia.Org/w/index.php?title=Ekonomika San Marina&action= edit&redlink=1 - vytváření Ekonomika San Marina - Wikipedie graph download structure 
4. http://cs.wikipedia.org/wikl/Pot%C5%99eba- PotřePa - Wikipedie graph download structure 
5. http://cs.wikipedia.org/wikl/Ekonomika_Ukrajlnv- Ekonomika Ukrajiny-Wikipedie graph download structure 
5. http://cs.wikipedia.Org/wikl/Kategorie:Rozvoj - Kategorie:Rozvoj -Wikipedie graph download structure 
7. http://c5.wikipedia.org/wiki/Ekonomika_Rakouska- Ekonomika Rakouska - Wikipedie graph download structure 
3. http://c5.wikipedia.0rg/w/i n dex. p hp?title=Eko n omika_%C3%81 zerb%C3%A1jd%C5%BE%C3%A1 nu&action=edit&redlink=1 - Vytváření Ekonomika Ázerbájdžánu - Wikipedie 

graph download structure 
3. http://c5.wikipedia.0rg/w/index.php?title=Ekonomika %C5%98ecka8action=edit&redlink=1 - Vytváření Ekonomika Řecka - Wikipedie graph download structure 

ID. http://cs.wikipedia.org/wiki/Ekonomika_%C5%A0pan%C4%9Blska- Ekonomika Španělska - Wikipedie graph download structure 

Figure C.4: Graph of links from a single page to others (2 levels) 

WebWeaver / Mycelium ShOW Case Home Search Graph Raw content Structured content Stats 

Raw Content (GridFS) 
http://cs.wikipedia.org/wiki/Ekonomika_Ukrajiny 
Download the raw document 

view '.tiLktuiT'J version of the document or graph links of the document 

Recently indexed 
1. http://c5.wikipedla.0rg/wiki/Kategorie:Svst%C3%A9mov%C3%A1 dynamika - Kategorie: Systémová dynamika - Wikipedie graph download structure 
2. http://c5.wikipedia.org/w/index.php?tltle=Port%C3%A1l:Ekonomie&oldid=10179871 - Portál:Ekonomie - Wikipedie graph download structure 
3. http://cs.wikipedia.org/w/index.php?title=Ekonomika_San_Marina&action=editS,redlink=1 - Vytvářeni Ekonomika San Marina - Wikipedie graph download structure 
4. http://c5.wikipedia.org/wiki/Pot%C5%99eba- Potřeba - Wikipedie graph download structure 
5. http://c5.wikipedia.org/wiki/Ekonomika_Ukrajinv- Ekonomika Ukrajiny-Wikipedie graph download structure 
5. http://cs.wikipedia.Org/wiki/Kategorie:Rozvoj - Kategorie:Rozvoj - Wikipedie graph download structure 
7. http://c5.wikipedia.org/wiki/Ekonomika_Rakouska- Ekonomika Rakouska - Wikipedie graph download structure 
3. http://cs.wikipedia.org/w/index.php?title=Ekonomika_%C3%81zerb%C3%A1jd%C5%BE%C37,A1nu8.action=editSredlink=1 - Vytvářeni Ekonomika Ázerbájdžánu - Wikipedie 

graph download structure 
3. http://cs.wikipedia.org/w/index.php?title=Ekonomika_%C5%98eckaSaction=edit&redlink=1 - vytváření Ekonomika Řecka - Wikipedie graph download structure 

10. http://c5.wikipedia.org/wiki/Ekonomlka_%C5%A0pan%C4%9Bl5ka- Ekonomika Španělska - Wikipedie graph download structure 

Figure C.5: Download of a raw (original) file 

75 

http://raynet.cz/co-je-ict.html
http://cs.wikipedia.Org/wikiyKategorie:Sv5t%C3%A9mov7oC3%A1_dvnamlhii
http://c5.wikipedia.orgyw/index.php?title=Por�/X3UA1l:Ekonomie&oldid=10179S71
http://cs.wikipedia.Org/w/i
http://cs.wikipedia.org/wikl/Pot%C5%99eba-
http://cs.wikipedia.org/wikl/Ekonomika_Ukrajlnv-
http://cs.wikipedia.Org/wikl/Kategorie:Rozvoj
http://c5.wikipedia.org/wiki/Ekonomika_Rakouska-
http://c5.wikipedia.0rg/w/i
http://c5.wikipedia.0rg/w/index
http://cs.wikipedia.org/wiki/Ekonomika_%C5%A0pan%C4%9Blska-
http://cs.wikipedia.org/wiki/Ekonomika_Ukrajiny
http://c5.wikipedla.0rg/wiki/Kategorie:Svst%C3%A9mov%C3%A1
http://c5.wikipedia.org/w/index.php?tltle=Port%C3%A1l:Ekonomie&oldid=10179871
http://cs.wikipedia.org/w/index.php?title=Ekonomika_San_Marina&action=editS,redlink=1
http://c5.wikipedia.org/wiki/Pot%C5%99eba-
http://c5.wikipedia.org/wiki/Ekonomika_Ukrajinv-
http://cs.wikipedia.Org/wiki/Kategorie:Rozvoj
http://c5.wikipedia.org/wiki/Ekonomika_Rakouska-
http://cs.wikipedia.org/w/index.php?title=Ekonomika_%C3%81zerb%C3%A1jd%C5%BE%C37,A1nu8.action=editSredlink=1
http://cs.wikipedia.org/w/index.php?title=Ekonomika_%C5%98eckaSaction=edit&redlink=1
http://c5.wikipedia.org/wiki/Ekonomlka_%C5%A0pan%C4%9Bl5ka-


WebWeaver / Mycelium ShOW Case Home Search Graph Raw content Structured content Stats 

Domain Stats (DDD, CQRS) 
TUT :ir.'h shows projection of the domain designed In the DDD manner. At most 5 domains are randomly selected and the graph show number of Interconnections. 

Selected domains are 

www. ray n etm a rltetl n g. c z 

The line thickness symbolises the numDer or links 

Recently indexed 
1. http://cs.wikipedia.ora/wiki/Speci%C3%A1 ln%C3UA^ Související změny pro stránku „Portál:Eko^omie , , -

'.Vikipedie graph download structure 
2. http://c5.wikipedia.0rg/w/index.php?title=Ekonomika_Turecka8action=edit&redllnk=1 - Vytváření Ekonomika Turecka - Wlklpedle graph download structure 
3. http://cs.wikipedia.orgAv/index.php?title=Port%C3%A1l:Ekonomie&prlnt3ble=ve5 - Portál:Ekonomie - Wlklpedle graph download structure 
4. http://cs.wikipedia.orgAM/index.php?title=Ekonomik3_Kazachst%C3%A1nuSactl(>n=«dit&redlink=1 - Vytváření Ekonomika Kazachstánu - Wlklpedle graph download stmí ture 
j. http://cs.wikipedia.Org/w/i n dex. p hp?title=Eko n omika_F ran c i e&action=edit&red I i nk=1 - Vytváření Ekonomika Francie - Wlkipedie graph download structure 
5. http://cs.wikipedia.ora/wiki/Kategorie:Syst%C3%A9mov%C3%A1_dynamika- Kategorie:Systémová dynamika -Vviklpedie graph I !• -• structure 
7. http://cs.wikipedia.ora/w/index.php?title=Porť/X3UA1l:Ekonomie&oldid=10179S71 - Portál:Ekonomie - Wikipedie graph download structure 
3. http://cs.wikipedia.Org/W/i n dex. p hp?title=Ekonomika San Marina&actlon=edit8.redlink=1 - Vytváření Ekonomika San Marina - Wlklpedle graph download structure 
3. http://cs.wikipedia.org/wikl/Pot%C5%99eba- PotřePa - Wlklpedle graph download structure 

ID. http://cs.wikipedia.org/wikl/Ekonomika Ukrajiny- Ekonomika Ukrajiny-Wlklpedle graph download structure 

ure C.6: D D D example - comparative number of indexed pages accross domains 

http://cs.wikipedia.ora/wiki/Speci%C3%A1
http://c5.wikipedia.0rg/w/index
http://cs.wikipedia.orgAv/index.php?title=Port%C3%A1l:Ekonomie&prlnt3ble=ve5
http://cs.wikipedia.orgAM/index.php?title=Ekonomik3_Kazachst%C3%A1nuSactl(%3en=�dit&redlink=1
http://cs.wikipedia.Org/w/i
http://cs.wikipedia.ora/wiki/Kategorie:Syst%C3%A9mov%C3%A1_dynamika-
http://cs.wikipedia.ora/w/index.php?title=Por�/X3UA1l:Ekonomie&oldid=10179S71
http://cs.wikipedia.Org/W/i
http://cs.wikipedia.org/wikl/Pot%C5%99eba-
http://cs.wikipedia.org/wikl/Ekonomika

