
Czech University of Life Sciences Prague 

 

Faculty of Economics and Management 

 

Department of Information Engineering 

 

 

 
 

 

 

Diploma Thesis 

 

Efficient Application Programming in Python 

 

 

 

Sunny AKA Shivam Dave    

 

 

 

 

 
© 2020  CULS Prague 



Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol  

CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE 

Faculty of Economics and Management 

 

DIPLOMA THESIS ASSIGNMENT 

B.Sc. Sunny Aka Shivam Dave 
 

Systems Engineering and Informatics 

Informatics 

 

Thesis title 

Efficient application programming in Python 
 
 
 
 

 

 

Objectives of thesis 

The goal of this thesis is to present the Python programming language as a new and rapidly growing 
application development platform which seems to be a strong competitor to Java/Javascript/PHP family 
to the near future. 

 

Methodology 

In the first part of this thesis, a deep analysis of various sources about Python will be performed. This 
first part will include; application development in Python, software metrics, debugging and profiling and 
possible comparison to their equivalents from Java/Javascript/PHP family. In the second and practical part 
of this thesis, a small application example in Python will be programmed. This small example should work 
with some information publicly accessible from the web and will use this Python application example. 



Official document * Czech University of Life Sciences Prague * Kamýcká 129, 165 00 Praha 6 - Suchdol  

The proposed extent of the thesis 

80 – 100 pages 
 

Keywords 

Python; application programming; efficient programming; internet of things 
 
 

Recommended information sources 

BEAZLEY, David M. a Brian K. JONES. (2013) Python cookbook. 3rd. Sebastopol: O’Reilly. ISBN 
9781449340377 

DANJOU, Julien. (2019) Serious Python: black-belt advice on deployment, scalability, testing, and more. 
San Francisco, CA: No Starch Press, Inc. ISBN 1593278780;9781593278786. 

EL-SHAROOD, W. (2019) Book review: Charles severance, Python for everybody. London, England. 
SAGE Publications, 277pp. ISBN 0036-8504 

SLATKIN, Brett (2015) Effective Python: 59 specific ways to write better Python. Beaverton: Ringgold Inc. 
ISBN 2372-3424. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Expected date of thesis defense 

2019/20 SS – FEM 
 

The Diploma Thesis Supervisor 

doc. Ing. Vojtěch Merunka, Ph.D. 
 

Supervising department 

Department of Information Engineering 
 
 

 

Electronic approval: 11. 3. 2020 
 

 

Ing. Martin Pelikán, Ph.D. 

Head of department 

Electronic approval: 11. 3. 2020 
 

 

Ing. Martin Pelikán, Ph.D. 

Dean 
 

 

Prague on 03. 04. 2020 



 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Declaration 

 

I declare that I have worked on my diploma thesis titled " Efficient Application 

Programming in Python " by myself and I have used only the sources mentioned at the end 

of the thesis. As the author of the diploma thesis, I declare that the thesis does not break 

copyrights of any their person. 

  

 

In Prague on 04/04/2020                       Sunny AKA Shivam Dave  

  



 
 

 

 

 

 

 

Acknowledgement 

 

I would like to begin by thanking my family for their constant help, support and 

love.  

 

I would like to express my sincere thanks to my thesis supervisor doc. Ing. Vojtěch 

Merunka, Ph.D. at Czech University of Life Sciences Prague Faculty of Economics and 

Management for his great support and understanding in the completion of this thesis. His 

irreplaceable encouragement to lead me in the right ways has driven me to this success. 

 

I would also like to thank my professors, my classmates and the academic staff of 

the Systems Engineering and Informatics department of the Czech University of Life 

Sciences, Prague, for their support during the last two years of my learning process. 

 

I would like to finish by thanking my friends for their willingness to support me in 

every way I needed help. Without their encouragement and their important contributions, I 

could not have finished this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

Efficient Application Programming in Python 

 
 

Abstract 

 

The purpose of this thesis is to present the Python programming language as a modern and 

rapidly growing application development framework that promises to be a strong 

competitor to the Java / Javascript / PHP family. A deep analysis of various sources about 

Python will be conducted in the first part of this thesis. This part will include: Python 

application development, performance metrics, debugging and profiling, and potential 

comparison with its Java / Javascript / PHP family equivalents. A small code example in 

Python will be programmed in the second and practical part of this thesis. This small code 

example will function with some web-accessible information, and use the Python Script. 

 

Keywords: Python, application programming, efficient programming, RE(Regular 

Expression), internet of things, DS(Data Structures) 



 
 

 

 

 4 

Efektivní programování aplikací v Pythonu 

 
 

Abstrakt 

 

Účelem této práce je představit programovací jazyk Python jako moderní a rychle rostoucí 

rámec pro vývoj aplikací, který slibuje, že bude silným konkurentem rodiny Java / 

Javascript / PHP. V první části této práce bude provedena hloubková analýza různých 

zdrojů o Pythonu. Tato část bude zahrnovat: vývoj aplikací Pythonu, metriky výkonu, 

ladění a profilování a potenciální srovnání s ekvivalenty rodiny Java / Javascript / PHP. Ve 

druhé a praktické části této práce bude naprogramován malý příklad kódu v Pythonu. 

Tento příklad malého kódu bude fungovat s některými informacemi přístupnými na webu a 

použije skript Python. 

 

Klíčová slova: Python, programování aplikací, efektivní programování, RE (regulární 

výraz), internet věcí, DS (datové struktury) 

 



 
 

 

 

 5 

Table of content 
 

 

1 Introduction ................................................................................................................ 8 

2 Objectives and Methodology ..................................................................................... 9 

2.1 Objectives ........................................................................................................... 9 

2.2 Methodology ...................................................................................................... 9 

3 Literature Review..................................................................................................... 10 

3.1 Python History ................................................................................................. 10 

3.1.1 Syntax and Semantics ............................................................................... 11 

3.1.2 Keywords and Identifiers .......................................................................... 12 

3.1.3 Data Structures in Python ......................................................................... 13 

3.1.4 Mapping Operators to Functions .............................................................. 16 

3.2 Manipulation of string and built-in methods .................................................... 20 

3.2.1 Working with file & handling in python .................................................. 22 

3.2.2 Python Lists and Tuples ............................................................................ 27 

3.2.3 Set and Dictionaries .................................................................................. 32 

3.3 Internet Socket ................................................................................................. 36 

3.4 Regular Expression(regex) ............................................................................... 41 

3.5 Profiling............................................................................................................ 44 

4 Practical Part ............................................................................................................ 46 

4.1 Open-Source Intelligence(OSINT) .................................................................. 46 

4.2 Tools and Technologies ................................................................................... 48 

4.2.1 Installing Python ....................................................................................... 48 

4.2.2 Installing ATOM(text-editor) for Python ................................................. 49 

4.2.3 Installing PyCharm(IDE) for Python ........................................................ 50 

4.2.4 Installing JAVA and Intellij IDEA(IDE) .................................................. 52 

4.3 Code Implementation ....................................................................................... 53 

4.3.1 Implementation in a Python ...................................................................... 54 

4.3.2 Implementation in JAVA .......................................................................... 56 

4.4 Accomplishment .............................................................................................. 61 

4.4.1 Result from String[a-z,A-Z] ..................................................................... 62 

4.4.2 Result from Numbers[0-9] ........................................................................ 64 

4.4.3 Result in Google’s search engine .............................................................. 65 

4.5 Profiling Comparison ....................................................................................... 69 

5 Results and Discussion ............................................................................................. 74 

5.1 Discussion ........................................................................................................ 75 

5.1.1 TIOBE Index ............................................................................................. 75 



 
 

 

 

 6 

6 Conclusion ................................................................................................................. 76 

7 References ................................................................................................................. 77 

 

List of Figures 

Figure.1 Python standard type hierarchy (standard-type)………………………………12 

Figure.2 Implementation of Walrus Operator…………………………………………..19 

Figure.3 While loop Implementation with Walrus Operator………………………...…19 

Figure.4 Conditional Statement Implementation with walrus operator………………...20 

Figure.5 Indexing in lists and string  (Indexing-lists)…………………………………..27 

Figure.6 HTTP request/response and data retrieval…………………………………….39 

Figure.7 urllib library to retrieve data  …………………………………………………40 

Figure.8 urllib, treat like a file and make a histogram logic with words……………….41 

Figure.9 OSINT Reconnaissance……………………………………………………….47 

Figure.10 Executable files-python installer…………………………………………….48 

Figure.11 Python Interpreter-CMD…………………………………………………….49 

Figure.12 Executable files-Atom installer……………………………………………...49 

Figure.13 Atom Text Editor............................................................................................50 

Figure.14 Executable files- PyCharm-community edition……………………………..51 

Figure.15 PyCharm Community Edition 2019.3.1……………………………………..51 

Figure.16 JAVA 8 installation………………………………………………………….52 

Figure.17 Executable files-Intellij IDEA community edition………………………….53 

Figure.18 Intellij IDEA- Community Edition-2019.3.1………………………………..53 

Figure.19 browser.py…………………………………………………………………...54 

Figure.20 Regular Expression in Google.py……………………………………………55 

Figure.21 def search() method………………………………………………………….56 

Figure.22 Maven Configuration pom.xml file………………………………………….57 

Figure.23 Browser.java…………………………………………………………………58 

Figure.24 Google.java_1………………………………………………………………..59 

Figure.25 Google.java_2………………………………………………………………..60 

Figure.26 Google.java_3………………………………………………………………..61 

Figure.27 Build result of browser.py(string contain[a-z,A-Z])………………………...62 

Figure.28 Build result of Browser.java(string contain[a-z,A-Z])……………………....63 

Figure.29 Build result of browser.py(string contain[0-9])………...…………………...64 

Figure.30 Build result of Browser.java(string contain[0-9])…………………………...64 

Figure.31 Result Collage_1 String[a-z,A-Z]…………………………………………...65 

Figure.32 Result Collage_2 String[a-z,A-Z]…………………………………………...66 

Figure.33 Result Collage_3 String[a-z,A-Z]…………………………………………...67 

Figure.34 Result_4 String[0-9]…………………………………………………………68 

Figure.35 Result_5 String [0-9]………………………………………………………...68 

Figure.36 Profiling in Python…………………………………………………………..69 

Figure.37 Profiling Result in CMD…………………………………………………….70 



 
 

 

 

 7 

Figure.38 pstats.Stats Module(SortKey)……………………………………………….71 

Figure.39 Jprofiler IDE integration…………………………………………………….71 

Figure.40 Jprofiler-Methods Cumulative time…………………………………………72 

Figure.41 Jprofiler-package impact on memory………………………………………..73 

Figure.42 Jprofiler-Cumulated methods outgoing Graph………………………………73 

Figure.43 TIOBE Programming Community Index……………………………………75 

 

List of tables 

Table.1 Reserved Words/Keywords…………………………………………………….13 

Table.2. Data Types……………….…………………………………………………….14 

Table.3. Built-in Datatypes………..…………………………………………………….16 

Table.4. Operator Symbols (PythonDOC)…...………………………………………….18 

Table.5 Built-in file handling libraries (Built-in-lib)...………………………………….26 

Table.6 Common TCP Ports (TCP-portNum)..…………………………………………37 

Table.7 Metacharacters in Regular expression………………………………………….42 

Table.8 Method/Attribute in Regular Expressions……………………..……………….43 

Table.9 IDE-System Requirements……………………………………………………..51 

 
 

 



 
 

 

 

 8 

1 Introduction 

In this modern age of innovation and technological transformations, the role of 

programming languages evolved in the last 5 decades. Computers are designed for one 

reason- to do tasks for People, yet human must speak their language to explain what should 

be done. A sequence of stored instructions is a little piece of human’s intelligence in the 

computer.    

 

Users see computers as a series of instruments-word processor, table, chart, to - do 

list, and so on. Programmers learn the "forms" of the system and the programming 

language. Programmers have some software to create new applications, often programmers 

write software for a users and sometimes programmers write little "software" to automate a 

task for themselves. Programmers are creating a piece of creative art-particularly when 

they do a good job regarding user experience. 

 

Python is evolving more than last two decades aim to create a computer 

programming language for everyone which is easy and readable language, as powerful as 

major open source rivals. Python is as comprehensible as plain English language for daily 

tasks so python community nurtures and community members can contribute to the 

development code. 

 

Python supports multiple programming paradigm such as Procedural programming, 

Imperative Programming, and  object-oriented programming. Python is a General-Purpose 

Programming language which helps to create application for multiple domains like- 

desktop app, console app, web app, mobile app, and also used for modern domain such as 

IoT, Artificial Intelligence, Data Science, Cybersecurity.  

 

In last 5 years, Internet generated such a gigantic amount of data that never been 

generated before in a digital world. Python has a largest repository compare to major other 

open source languages named as Python Package Index (PyPI) which is free and available 

to developer/programmer. Profound analysis on  python(3.8.1)’s  data structure, technique 

and new features discussed in this writing with illustration.   



 
 

 

 

 9 

2 Objectives and Methodology 

2.1 Objectives 

 

The aim of this thesis is to introduce the Python programming language as a modern 

and exponentially growing environment for application development which in the close 

future expects to be a strong competitor to the Java / Javascript / PHP family. 

 

2.2 Methodology 

 

A systematic review of the various references concerning Python will be carried out in 

the first part of this study. This first section would include: Python program creation, 

performance analytics, debugging,  profiling, and potential contrast with its Java / 

Javascript / PHP family equivalents. A brief code sample in Python will be programmed in 

the second and functional portion of this study. This sample code will work with any 

publicly accessible information from the internet via Google’s search engine and use  

Python framework for implementation. 

 



 
 

 

 

 10 

3 Literature Review 

3.1 Python History 

Python was founded as a successor of a language called ABC by Guido van Rossum 

at the Stichting Mathematisch Centrum in the Netherlands in the early 1990's. Guido 

remains the primary developer of Python, though he includes many other contributions. 

Guido began his research on Python in 1995 at the National Research Initiatives 

Corporation in Reston, Virginia where he launched several versions of the language. 

 

Guido Van Rossum submitted a funding request to DARPA(Defence Advanced 

Research Projects Agency) in 1999 called "Computer Programming for Everyone," in 

which he further described his goals for Python: An simple and understandable language as 

strong as major Open Source rivals, so that anyone can contribute to their development 

code, which is as understandable as plain English for everyday tasks, enabling fast 

development times. Guido and the core development team at Python moved to 

BeOpen.com in May 2000 to form the BeOpen PythonLabs team. The PythonLabs team 

moved on to Digital Creations (now Zope Corporation) in October of the same year. 

 

The Python Software Foundation (PSF) was founded in 2001, a non-profit 

organization created specifically for controlling intellectual property relating to Python. 

PSF endorsing member is Zope Corporation. All versions of Python are Open Source. 

Historically most, but not all, versions of Python were also GPL compatible. As of 3 

December 2008, Python 3.0 was released. It was a major language update, which is not 

entirely backward compatible. Many of its major features have been backporting to version 

series Python 2.6.x and 2.7.x. Python 3 updates include the 2to3 utility that automates the 

conversion (at least partially) of Python 2 code into Python 3. 

 

The end-of-life deadline of Python 2.7 was initially set at 2015 and then delayed 

until 2020 out of concern that a large body of existing code could not be easily forward-

loaded to Python 3. Python 3.8 was released on October 14th, 2019. 

 



 
 

 

 

 11 

3.1.1 Syntax and Semantics 

Python is designed to be an easy to read language. The formatting is visually 

uncluttered, and often uses English keywords while punctuation is used by other 

languages. Unlike many other languages, the curly brackets are not used to delimit lines, 

and semicolons are optional after sentences. It has fewer exceptions to syntactics and 

special cases than other languages. Instead of curly brackets or keywords, Python uses 

white space indentation to delimit the segments. The increase in indentation occurs after 

some statements; a decrease in the indentation of the end of the current segment. 

Therefore, the visual structure of the program accurately represents the semantic structure 

of the programme. This aspect is sometimes called off-side law, which is shared by some 

other languages, but indentation has no semantic sense in most languages. 

 

Python employs duck typing; A programming style that does not look at the type of 

an object to decide whether it has the right interface; rather, it simply calls or uses the 

method or attribute ("If it looks like a duck and quacks like a duck it must be a duck."). 

Through emphasizing interfaces instead of specific types, well-designed code improves 

their versatility through allowing polymorphic replacement. Type constraints are not 

checked at the time of compilation; instead, operations on an object may fail, meaning the 

given object is not of an appropriate type. Although being dynamically typed, Python is 

strongly typed, preventing non-defined operations (for example, adding a number to a 

string) rather than implicitly trying to make sense of them. 

 



 
 

 

 

 12 

 

 

Figure.1 Python standard type hierarchy (standard-type) 

 

3.1.2 Keywords and Identifiers 

We cannot use a keyword to describe the syntax and structure of the Python language 

as variable names, function names, or any other identifier. in Python, keywords are case 

sensitive. All the keywords are in lowercase except True False and None and they must be 

written as it is. The list below is given of all the keywords.  (Keywords) 

 



 
 

 

 

 13 

 

True False None and as 

assert async await break class 

continue def del elif else 

except finally for from global 

if import in is lambda 

nonlocal not or pass raise 

return try while with yield 

 

Table.1 Reserved Words/Keywords 

 

An identifier is a name for entities such as class, functions, variables etc. It assists in 

separating one entity from another. Identifiers may be a combination of lower-case letters 

(a to z) or uppercase letters (A to Z) or digits (0 to 9) or underscore _. These names as ( 

myClass, var_1 and print_this_hello) are all legitimate examples. An identifier must not 

begin with a digit. (1var) is invalid but (var1) is fine. Unable to use keywords as 

identifiers. Unique signs such as (!, @, #,,% $, etc.) can't be used in the identifier. Do not 

use single characters such as l, O as 1 and 0 can be confused. 

 

3.1.3 Data Structures in Python 

Python offers some embedded data types as well, especially (dict, frozenset, list, set 

and tuple). Unicode strings are stored in the <str> class and binary data is stored in the 

bytes and bytearray classes. Python provides a wide range of specific data types, such as 

dates and times, fixed arrays, heap queues, double-ended queues and enumerations. 

 

Data for different types can be stored in variables and different types can do different 

things. Python has built-in data types in these categories, by default as mentioned below: 

 

Text Type: str 

Numeric Types: int, float, complex 

Sequence Types: list, tuple, range 

Mapping Type: dict 



 
 

 

 

 14 

Set Types: set, frozenset 

Boolean Type: bool 

Binary Types: bytes, bytearray, memoryview 

 

Table.2. Data Types 

 

For Python every value has a datatype. Since everything for Python programming is 

an object, data types are in fact classes, and variables are instance (object) of these classes. 

There are several types of data in Python. The following are some of the main forms. 

 

Datatype Description Mutability Example 

 

str 

 

A character string: 

sequence of Unicode 

codepoints 

 

immutable 

>>> x = "Hello People" 

>>> print(x) 

Hello People 

>>> print(type(x)) 

<class 'str'> 

 

int 

 

Integer of unlimited 

magnitude 

 

immutable 

>>> x=21 

>>> print(x) 

21 

>>> print(type(x)) 

<class 'int'> 

 

complex 

 

Complex number with 

real and imaginary parts 

 

immutable 

>>> x = 2+8j 

>>> print(x) 

(2+8j) 

>>> print(type(x)) 

<class 'complex'> 

 

list 

 

List, can contain mixed 

types 

 

mutable 

>>> x = ['beer', 'wine', 'whiskey'] 

>>> print(x) 

['beer', 'wine', 'whiskey'] 

>>> print(type(x)) 

<class 'list'> 

 

dict 

Associative array (or 

dictionary) of key and 

 

mutable 

>>> x = {"name" : "Shivam", 

"age" : 25} 



 
 

 

 

 15 

value pairs; can contain 

mixed types (keys and 

values), keys must be a 

hashable type 

>>> print(x) 

{'name': 'Shivam', 'age': 25} 

>>> print(type(x)) 

<class 'dict'> 

 

tuple 

 

Can contain mixed types 

 

immutable 

>>> x = ('beer', 'wine', 'whiskey') 

>>> print(x) 

('beer', 'wine', 'whiskey') 

>>> print(type(x)) 

<class 'tuple'> 

 

range 

 

A Sequence of numbers 

commonly used for 

looping specific number 

of times in for loops 

 

immutable 

>>> x = range(5) 

>>> print(x) 

range(0, 5) 

>>> print(list(x)) 

[0, 1, 2, 3, 4] 

>>> print(type(x)) 

<class 'range'> 

 

 

Bool 

 

 

 

 

Boolean value, True or 

False 

 

 

immutable 

 

>>> x = True 

>>> print(type(x)) 

<class 'bool'> 

 

set 

 

Unordered set, contains 

no duplicates; can 

contain mixed types, if 

hashable 

 

mutable 

>>> x = {'beer', 'wine', 

'whiskey'} 

>>> print(x) 

{'wine', 'whiskey', 'beer'} 

>>> print(type(x)) 

<class 'set'> 

 

frozenset 

 

Unordered set, contains 

no duplicates; can 

contain mixed types, if 

hashable 

 

immutable 

>>> x = frozenset({'beer', 'wine', 

'whiskey'}) 

>>> print(x) 

frozenset({'wine', 'whiskey', 

'beer'}) 



 
 

 

 

 16 

>>> print(type(x)) 

<class 'frozenset'> 

 

float 

Double precision 

floating point number. 

The precision is machine 

dependent but in practice 

is 64 bits. 

 

immutable 

>>> x = 20.6668 

>>> print(x) 

20.6668 

>>> print(type(x)) 

<class 'float'> 

 

bytes 

 

Sequence of bytes 

 

immutable 

>>> x = b'Shivam' 

>>> print(x) 

b'Shivam' 

>>> print(type(x)) 

<class 'bytes'> 

 

bytearray 

 

Sequence of bytes 

 

mutable 

>>> x = bytearray(4) 

>>> print(x) 

bytearray(b'\x00\x00\x00\x00') 

>>> print(type(x)) 

<class 'bytearray'> 

 

memoryview 

 

exposes the C level 

buffer interface as a 

Python object 

 

immutable 

>>> x = memoryview(bytes(3)) 

>>> print(x) 

<memory at 

0x0000021B17128280> 

>>> print(type(x)) 

<class 'memoryview'> 

 

Table.3. Built-in Datatypes 

 

we can get the data type of any object by using the type() function. In python, some 

datatypes like ( None, NotImplemented, ellipsis) are not directly accessible by name. 

 

3.1.4 Mapping Operators to Functions 

In Python, operators are special symbols which perform arithmetic or logical 

computation. The values which are applied to the operator are called operands. Table 



 
 

 

 

 17 

shows how abstract operations correspond to operator symbols in the Python syntax and 

the functions in the operator module. 

 

Operation Syntax Function 

Addition a + b add(a, b) 

Concatenation seq1 + seq2 concat(seq1, seq2) 

Containment Test obj in seq contains(seq, obj) 

Division a / b truediv(a, b) 

Division a // b floordiv(a, b) 

Bitwise And a & b and_(a, b) 

Bitwise Exclusive Or a ^ b xor(a, b) 

Bitwise Inversion ~ a invert(a) 

Bitwise Or a | b or_(a, b) 

Exponentiation a ** b pow(a, b) 

Identity a is b is_(a, b) 

Identity a is not b is_not(a, b) 

Indexed Assignment obj[k] = v setitem(obj, k, v) 

Indexed Deletion del obj[k] delitem(obj, k) 

Indexing obj[k] getitem(obj, k) 

Left Shift a << b lshift(a, b) 

Modulo a % b mod(a, b) 

Multiplication a * b mul(a, b) 

Matrix Multiplication a @ b matmul(a, b) 



 
 

 

 

 18 

Operation Syntax Function 

Negation (Arithmetic) 
 

- a neg(a) 

Negation (Logical) not a not_(a) 

Positive + a pos(a) 

Right Shift 
 

a >> b rshift(a, b) 

Slice Assignment seq[i:j] = values setitem(seq, slice(i, j), values) 

Slice Deletion del seq[i:j] delitem(seq, slice(i, j)) 

Slicing seq[i:j] getitem(seq, slice(i, j)) 

String Formatting s % obj mod(s, obj) 

Subtraction a - b sub(a, b) 

Truth Test obj truth(obj) 

Ordering a < b lt(a, b) 

Ordering a <= b le(a, b) 

Equality a == b eq(a, b) 

Difference a != b ne(a, b) 

Ordering a >= b ge(a, b) 

Ordering a > b gt(a, b) 

 

Table.4. Operator Symbols (PythonDOC) 

 

In Python 3.8, There is a new syntax (:=) that assigns values as part of a larger 

expression to the variables. Due to its resemblance to the eyes and tusks of a walrus it is 

affectionately known as "the walrus operator." The Assignment expressions allow a value 

to be assigned to a variable, even a variable that doesn’t exist yet, in the context of 

expression rather than as a stand-alone statement. 

 

 



 
 

 

 

 19 

 
 

Figure.2 Implementation of Walrus Operator 

 

 

 
 

Figure.3 While loop Implementation with Walrus Operator 

 

 



 
 

 

 

 20 

 
 

Figure.4 Conditional Statement Implementation with walrus operator 

 

 

3.2 Manipulation of string and built-in methods 

Python can also manipulate strings alongside numbers, which can be represented in 

several ways. They can be enclosed with the same outcome in single quotes (' ... ') or 

double quotes ("...") ‘sample’ is the same as “sample”, with the print() function we can 

display string literal. As with many other common programming languages, Python strings 

are byte arrays containing Unicode characters. Python has no sort of data character; 

however, a single character is simply a string with a length of 1. Strings may be indexed 

with index 0 for the first letter. Square brackets [] may be used for accessing string 

elements.  

 

The output string is enclosed in quotes in the interactive interpreter and special 

characters get escaped with backslashes (\). If we don't want to read characters prefaced by 

(\) as special characters, we can use raw strings by inserting a ‘r’ before the first quote: 

>>> print(r'C:\users\shiva\name') will produce output: C:\users\shiva\name. using a raw 

strung ’r’ python interpreter won’t confuse with \n as a new line. Strings literal can span 



 
 

 

 

 21 

several lines. Another approach is to use triple quotes: """...""" or '''...'''. The “in” keyword 

can also be used to check to see if one string is “in” another string. 

 

With the + operator strings can be concatenated and repeated with * operator, python 

can only concatenated strings with a same datatype, other datatypes give us the traceback. 

We can concatenate different datatypes using type conversion. Concatenation only works 

with two literals though, not with variables or expressions. With + operator we can 

concatenate variables or a variable and a literal. Concatenation literally glued strings 

together without whitespaces if we want to add whitespace, we need to add it manually as 

shown in below example.  

 

>>> x = 'Welcome to' 

>>> y = x + 'Prague' 

>>> print(y) 

Welcome toPrague # no whitespace between str1(x) and str2(y) 

>>> y = x + ' ' + 'Prague' 

>>> print(y) 

Welcome to Prague # whitespace added between str1(x) and str2(y) 

 

We can  also look at any continuous section of a string using a colon (:) operator is 

known as string slicing. Slicing helps you to obtain a substring when indexing is used to 

obtain individual characters. While performing slicing on a string start of index element is 

always included and end of index element is always excluded, this ensures that s[:i ] + s[i: ] 

is always the same as s[:]. One way to remember how slices operate is to think of the 

indices as pointing between characters, with the first character's left edge numbered 0. 

Then the right edge of a string of n characters has index n. However, when used for slicing, 

indexes of slices out of range are treated gracefully. Python strings are unalterable, they are 

immutable. Therefore, an error occurs in assigning an indexed location in the string. 

 

>>> x = 'shivam'  >>> x[2:5]  >>>x[:2] + x[2:] 

>>> x[0:2]   'iva'   'shivam' 

'sh'    >>> x[0:200] 



 
 

 

 

 22 

     'shivam' 

 

One of the real advantages of python3 is all strings are Unicode, which means they 

can represent wide range of character sets. Strings implement all the common sequence 

operations, along with the additional 40 built-in methods well described in official python 

documentation and summary mentioned below. (String-Methods)  

 

>>> x  =  'Welcome to' 

>>> y = x + ' ' + 'Prague' # concatenation string with whitespace 

>>> print(y) 

Welcome to Prague 

>>> type(y) 

<class 'str'> 

>>> dir(y) #this line display all built-in methods supported by class ‘str’ 

['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', 

'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', 

'__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mod__', 

'__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmod__', 

'__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capitalize', 

'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format', 

'format_map', 'index', 'isalnum', 'isalpha', 'isascii', 'isdecimal', 'isdigit', 'isidentifier', 

'islower', 'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 

'lstrip', 'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 

'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 

'zfill'] 

 

3.2.1 Working with file & handling in python 

Python is an excellent data-processing tool. Any software we write is likely to 

involve reading, writing, or manipulating the data. For this reason, knowing how to handle 

different file formats which store different data types is especially useful. Python is 

extremely accommodating and can handle a range of different file formats with relative 



 
 

 

 

 23 

ease, including following but not limited to: txt(Text file), CSV(Comma-separated values 

file), HTML(HyperText Markup Language File), JSON(JavaScript Object Notation File). 

 

The key feature for interacting with Python files is the open() function. The open() 

returns a “file handle” - a variable used to perform operations on the file. handle is 

something that's sort of a porthole between program and file that's sitting on the disk. And 

we can open it, we can read from it, we can write to it if we want. And then we can close 

the handle and the handle goes away, but the handle is like our connection.  

 

The function open() requires two arguments; open(filename, mode). The first 

argument is a string with the filename on it. The second argument is another string which 

contains a few characters that describe how the file will be used. Mode can be ' r ' when the 

file is read only, ' w ' when it is written only (an existing file with the same name will be 

deleted), and ' a ' opens the file to be appended; any data written to the file will be 

automatically added to the end. 'x'- mode create the required file and returns an error if the 

file already exists the file ' r+' mode opens to both read and write. The mode argument is 

optional; if it is removed ' r ' read only will be presumed. we can also decide whether the 

file should be dealt with as binary using 'b' or text mode using 't', by default. 

 

>>> f = open('sample.txt') 

>>> print(f) 

<_io.TextIOWrapper name='sample.txt' mode='r' encoding='UTF-8'> 

>>>f = open("sample.txt")         # equivalent to 'r' or 'rt' 

>>>f = open("sample.txt",'w')   # write in text mode 

>>>f = open("img1.png",'r+b')  # read and write in binary mode 

 

Usually files are accessed in text mode, meaning read and write strings from and to 

the file that are encoded in a specific encoding. ' b ' attached to the mode opens the file in 

binary mode: the data is now read and written in byte object format. This mode should be 

used on all files not containing text. Using the ‘with’ keyword is a good practice when 

working with file objects in python. The benefit is that, even if an exception is posed at 



 
 

 

 

 24 

some point, the file is properly closed after its suite finishes. It is also much easier to use 

with than to write equivalent try-finally blocks.  (Read&write-I/O) 

 

 

>>> with open('sample.txt') as f: 

...     read_data = f.read() 

>>> f.closed  #using this verify that file has been automatically closed  

True 

 

If we don't use the 'with' keyword, need to call f.close() to close the file and release 

any system resources that it utilizes by it immediately. If you do not specifically close a 

file, the garbage collector from Python will eventually destroy the object and close the 

open file for you, but the file will remain open for some time. Another danger is that 

different versions of Python can clean up this at different times. After a file object is 

closed, attempts to use the file object will automatically fail either by a statement or by 

calling f.close(). (Read&write-I/O)  

 

Methods of file objects we will suppose a file object named ‘f’ has been created 

before.  Read the contents of a file, call f.read(size), which reads a certain amount of data 

and returns it as an object string (in text mode) or bytes (in binary mode). Size is an 

additional numerical argument. If size is ignored or negative, the entire content of the file 

will be read and returned; if the file is twice the size of our machine's memory, it is our 

concern. Otherwise characters of a maximum size (in text mode) or bytes of size (in binary 

mode) are read and returned. If the file end is reached, f.read() returns an empty string (' '). 

 

>>> f.read() 

'Hello Pythonist, welcome to the programming world\n' 

>>> f.read() 

' '  #returns an empty string 

 

f.readline() reads a single line from the file; a newline character (\n) is left at the end 

of the string and is skipped only on the last line of the file if the file does not end in a 



 
 

 

 

 25 

newline. This makes the return value indisputable; if f.readline() returns an empty string, 

the end of the file is reached, while ' \n ' represents a blank line, a string that includes only 

one newline. 

 

>>> f.readline() 

' Hello Pythonist, welcome to the programming world\n ' 

>>> f.readline() 

'let’s learn this awesome language called python.\n' 

>>> f.readline() 

' ' #returns an empty string 

 

we can loop over the file object to read lines from a file. This is efficient in memory, 

fast and leads to simple code. 

 

>>> for line in f: 

...     print(line, end='') 

... 

Hello Pythonist, welcome to the programming world. 

'let’s learn this awesome language called python. (Read&write-I/O) 

 

f.write(string) writes the string contents to the file and returns the number of 

characters written. 

 

>>> f.write('This is a test\n') 

15 

 

Using the seek() method, we can adjust our current file cursor (location). Likewise, 

the tell() method returns our current position in number of bytes. 

 

>>> f.tell()    # get the current file position 

12 

>>> f.seek(5)   # bring file cursor to initial position 



 
 

 

 

 26 

5 

 

we need to import the OS module to delete a file and run its os.remove() function. 

Use the method os.rmdir('foldername/directoryname') to remove an entire 

folder/directory.Check whether file exists, then delete it shown below. 

 

>>>import os 

>>>if os.path.exists("sample.txt"):  

>>> os.remove("sample.txt") 

>>>else:  

>>> print("No file found") 

 

There are also built-in libraries out there which we can use to help. There's just a lot 

more out there. In addition, more third-party tools are available on PyPI(https://pypi.org/). 

Some of the more popular ones are: pyPDF2(PDF toolkit), xlwings(read and write Excel 

files), pillow(image reading and manipulation). 

 

Built-in Libraries File format type 

wave read and write WAV files (audio) 

aifc read and write AIFF and AIFC files (audio) 

sunau read and write Sun AU files 

tarfile read and write tar archive files 

zipfile work with ZIP archives 

configparser easily create and parse configuration files 

xml.etree.ElementTree create or read XML based files 

msilib read and write Microsoft Installer files 

plistlib generate and parse Mac OS X .plist files 

 

Table.5 Built-in file handling libraries  (Built-in-lib)  

 



 
 

 

 

 27 

3.2.2 Python Lists and Tuples 

Python's most flexible, useful data types are lists and tuples. Virtually any nontrivial 

Python program consist them. Python knows many types of compound data which are used 

to group certain values together. The most flexible is the list which can be written in 

between square brackets as a list of comma-separated values (items). Lists can contain 

items of various types but typically all items have the same type. List is a collection which 

is ordered and mutable. Tuple is a collection which is ordered and immutable. Both allows 

duplicate members. 

 

Like strings and all other built-in sequence types, lists can be indexed and sliced. All 

slice operations return a new list which contains the elements requested. Which means a 

shallow copy of the list returns. Lists facilitate operations such as concatenation(+), 

replication(*) and len(), min(), max() function. it allows assignment operation to  slice[:], 

and this can also alter the size of the list or clear it completely. Lists can be nested to 

arbitrary depth. Virtually everything about indexing in strings works likewise for lists. A 

negative list index for instance counts from the end of the list. 

 

Figure.5 Indexing in lists and string  (Indexing-lists) 

 

>>> x = ['1', '2', '3', 'A', 'B', 'c', 'd', '3.14'] 

>>> x[3:6] = ['4', '5', '6']  # replace items 

>>> print(x) 

['1', '2', '3', '4', '5', '6', 'd', '3.14'] 

>>> x[3:6] = []  # remove item 

>>> print(x) 

['1', '2', '3', 'd', '3.14'] 

>>> x[:] = []  # clear the list by replacing all the elements with an empty list 

>>> print(x) 



 
 

 

 

 28 

[] 

>>> print(x[::-1])  #reverse the list items 

['3.14', 'd', 'c', 'B', 'A', '3', '2', '1'] 

The sort of list data type has a few additional methods. Lists implement all the 

common sequence operations, along with the additional built-in methods well described in 

official python documentation and summary mentioned below.  (list-methods)  

 

>>> print(type(x)) 

<class 'list'> 

>>> dir(x) #this line display all built-in methods supported by class ‘list’ 

['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', 

'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', 

'__hash__', '__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', 

'__len__', '__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', 

'__repr__', '__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', 

'__subclasshook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 

'remove', 'reverse', 'sort'] 

 

The methods of list make it very easy to use a list as stack, where the last added 

element is the first retrieved element "last-in, first-out". Use append() method to add an 

element to the top of that stack. Using pop() method without a specific index to retrieve an 

object from the top of the Stack. A list can also be used as a queue, where the first element 

inserted is the first item that has been retrieved "first-in, first-out"; however, lists are not 

effective for this reason. Although appends and pops from the end of the list are quick, 

making appends or pops from the beginning of a list is slow because all the other elements 

need to be moved by one. Using collections.deque which was built to have fast appends 

and pops from both ends to implement a queue.  (class-collection-deque)  

 

List comprehensions provide a concise way of producing lists. Popular applications 

are to create new lists where each element is the product of certain operations applied to 

each member of a different sequence or iterable, or to create a sequence of those elements 

that satisfy a certain condition. An element in a list can be an object of any type, It requires 



 
 

 

 

 29 

a different list. A list may contain sublists that may, in turn, contain sublists themselves, 

and so on to an arbitrary depth. We can create a list of squares using list comprehension 

like never before.  (nestedlist-comp) 

>>> lst = [x**2 for x in range(10)]  # more concise and redable 

>>> lst 

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 

Or 

>>> lst1 = list(map(lambda x: x**2, range(10))) #using lambda function 

>>> lst1 

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81] 

 

Every arbitrary expression, including another list comprehension, can be the initial 

expression in a list comprehension. Consider the following example of an applied 4x3 

matrix as a set of 4 columns of length 3. 

 

>>> m = [ 

... [99,98,97], 

... [89,88,87], 

... [99,98,97], 

... [69,68,67], 

... ] 

>>> m 

[[99, 98, 97], [89, 88, 87], [99, 98, 97], [69, 68, 67]] 

>>> [[row [i] for row in m] for i in range(3)]   # transpose row and columns 

[[99, 89, 99, 69], [98, 88, 98, 68], [97, 87, 97, 67]] 

 

The nested list comprehension is evaluated in the following sense, so this below 

example is equivalent to the above example. 

 

>>> transposed1 = [] 

>>> for i in range(3): 

...     transposed1.append([row[i] for row in m]) # (nestedlist-comp) 



 
 

 

 

 30 

... 

>>> transposed1 

[[99, 89, 99, 69], [98, 88, 98, 68], [97, 87, 97, 67]]   

str.Split() method divides a string into parts, and produces a string list and we can 

parse strings. We consider these terms as words. Through all the words we can access a 

specific word or loop. If we don't specify a delimiter, multiple spaces are treated as one 

delimiter, we may decide which delimiter(;,@,:,etc.) character to use when splitting.  

 

Lists and strings have many common characteristics, including indexing and slicing 

operations. They are two examples of types of sequence data. Python is an evolving 

language it is possible to add other categories of sequence data type. There is another 

standard type of data type, too: the tuple. A tuple is composed of several values separated 

by commas. Tuples are immutable sequences which are usually used to store 

heterogeneous data collections, Tuples are also used in cases where an immutable 

sequence of homogeneous data such as allowing for storage in a set or dict instance is 

needed. (sequence-types)  

 

In all respects tuples are equivalent to lists, except for the following properties: 1.) 

Instead of square brackets ([ ]), tuples are identified by putting elements in parentheses(). 

2.) Tuples are immutable. 

 

>>> a = ('ab','bc','cd','ef') 

>>> print(a) 

('ab', 'bc', 'cd', 'ef') 

>>> print(type(a)) 

<class 'tuple'> 

>>> dir(a)  #this line display all built-in methods supported by class ‘tuple’ 

['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', 

'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', 

'__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__', 

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__', 

'__sizeof__', '__str__', '__subclasshook__', 'count', 'index'] 



 
 

 

 

 31 

 

In a certain scnario we should use tuple instaed of list, 1.) When processing a tuple, 

program execution is faster than the identical list If the list or tuple is small, this probably 

won't be noticeable. 2.) Sometimes we do not want to alter data. If the stored values are 

intended to remain constant over the lifespan of the program, we use tuple rather than a 

list, it guards against unintended alteration. 

 

>>> t = (1,2,3,4), a  #nested tuples 

>>> t 

((1, 2, 3, 4), ('ab', 'bc', 'cd', 'ef')) 

 

The tuple building of 0 or 1 objects is an unique problem. Empty tuples are 

constructed by an empty parenthetic pair(). Tuple of one entity is formed by include a 

trailing comma(,) just before the closing parenthesis. If comma is not added python 

confused with opearator prededence in expression.  

 

>>> t1 = ('shivam','vivek','aman','roger')  # tuple packing 

>>> t1[0] 

'shivam' 

>>> (p1,p2,p3,p4) = t1  # tuple unpacking 

>>> p2 

'vivek' 

 

When unpacking a tuple, the number of variables on the left must match the number 

of values in the tuple. Packing and unpacking a combined in to one statemenmt to make a 

compund assignment. 

 

>>> (i1,i2,i3,i4) = ('10dce019','3.14','pi','7004')  # compound assignmenmt 

>>> i2 

'3.14' 

 



 
 

 

 

 32 

we often have two variables values that we need to swap while programming. One of 

the values in a temporary variable should be saved in most programming languages during 

the swap. In Python, the swap can be done with a single tuple assignment. 

 

>>> fname = 'Sunny AKA Shivam' 

>>> lname = 'Dave' 

>>> fname, lname 

('Sunny AKA Shivam', 'Dave') 

>>> fname, lname = lname, fname  # magical statement, swap value without 3rd var 

>>> fname, lname 

('Dave', 'Sunny AKA Shivam') 

 

While tuples that appear similar to lists, they are often used for different situations 

and purposes. Tuples are immutable but they can contain mutable objects like tuple consist 

of multiple lists and usually contain a heterogeneous sequence of accessible elements by 

unpacking or indexing. Lists are mutable, and their elements are typically homogeneous 

and accessible through the list iteration. 

3.2.3 Set and Dictionaries 

Python also includes a set as a datatype. A set is an unordered, non-indexed, non-

duplicate collection. python use curly braces{} or the set() function to construct sets. 

Common uses include checking membership, eliminating duplicates from a sequence, and 

computing mathematical operations such as intersection, union, difference and 

symmetrical difference. 

 

By referring to an index, we cannot access objects in a set, because sets are 

unordered, and the items have no index sets and do not support indexing, slicing, or other 

sequence-like behaviour. But by using the 'for' keyword, we can loop through the set items, 

or by using 'in' keyword we ask if a given value is in a set. we can't change the items once 

a set is formed but we can add new items. len() function used to determine the how many 

items set has, we use remove() or discard() method to remove an item from a set. The only 

difference between the two is that it remains unchanged when using discard() if the item 



 
 

 

 

 33 

does not exist in the set. But in such case remove() would cause an error. Method pop() 

also remove a last item from the set, sets are unordered so using pop() method we don’t 

know which item that gets removed. Method clear(), removes all items from set while ‘del’ 

keyword will delete the set totally.  

 

Python has various ways to join two or more sets, union() method returns a new set 

including all items from both sets, update() method inserts all the items from one set into 

another set. The set() constructor may also be used to make a set.  

 

>>> s = {'samsung','google','apple','microsoft'}  # define set 

>>> print(type(s)) 

<class 'set'> #  (set-methods) 

>>> dir(s) #this line display all built-in methods supported by class ‘set’ 

['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', 

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__iand__', '__init__', 

'__init_subclass__', '__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__', 

'__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__repr__', 

'__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', 

'__subclasshook__', '__xor__', 'add', 'clear', 'copy', 'difference', 'difference_update', 

'discard', 'intersection', 'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 

'pop', 'remove', 'symmetric_difference', 'symmetric_difference_update', 'union', 

'update'] 

 

Frozenset is a new class with the characteristics of a set, but once allocated, its 

elements cannot be altered. Although tuples are lists which are immutable, frozensets are 

sets which are immutable. Mutable sets are unhashable, so they cannot be used as 

dictionary keys. Frozensets, on the other hand, may be hashable and used as dictionary 

keys. We use the frozenset() function to construct frozensets. 

 

>>> fs = frozenset(['s20ultra','pixel4xl','iphone11pro','surfacepro'])  

>>> print(type(fs))  # define frozenset 

<class 'frozenset'> #  (frozenset-methods) 



 
 

 

 

 34 

>>> dir(fs) #this line display all built-in methods supported by class ‘frozenset’ 

['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', 

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', 

'__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', 

'__rand__', '__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__', 

'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 'copy', 

'difference', 'intersection', 'isdisjoint', 'issubset', 'issuperset', 'symmetric_difference', 

'union']  

 

Similarly, to list comprehensions, set comprehensions are also supported. frozenset 

Being immutable it does not have method that add or remove items. 

 

Dictionaries are python’s most powerful data collection. Dictionaries allow us to do 

fast database-like operations in python. Python dictionary is an unordered collection of 

items. While other types of compound data only have value as an element, a dictionary has 

one key : value pair and written with curly{} brackets. A colon (:) separates each key from 

its associated value. Dictionaries are sometimes known as "properties or map or HashMap-

JAVA " or "associative arrays-Perl/PHP," or “property bag-C#/.NET” in other languages. 

Dictionaries are indexed by keys, which can be any immutable type, unlike sequence data 

types indexed by a range of numbers; strings and numbers can always be keys. Tuples may 

be used as keys if they only contain strings, numbers or tuples; if a tuple includes any 

mutable entity directly or indirectly, it cannot be used as a key. Lists cannot be used as 

keys, as lists can be modified in order using index assignments, slice assignments, or 

methods such as append() and extend(). 

 

The easiest way to think of a dictionary as a collection of key : value pairs, allowing 

the keys to be unique within one dictionary. A couple of braces generate an empty 

dictionary:{}. Placing a comma-separated list of key : value pairs within braces adds initial 

key : value pairs to the dictionary; this is also how dictionaries are written on output. 

 

>>> d = {'shivam': 25, 'vivek': 23, 'nikoleta': 25, 'aman': 29} 

>>> print(type(d)) 



 
 

 

 

 35 

<class 'dict'> 

>>> dir(d) #this line display all built-in methods supported by class ‘dict’ 

['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', 

'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', 

'__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', 

'__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', 

'__sizeof__', '__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 

'keys', 'pop', 'popitem', 'setdefault', 'update', 'values']    # (dict-mapping-type) 

>>> d1 = dict(shivam=25, vivek=23, nikoleta=25, aman=29) 

>>> d2 = dict(zip(['shivam', 'vivek', 'nikoleta', 'aman'], [25,23,25,29])) 

>>> d3 = dict([('shivam', 25), ('vivek', 23), ('nikoleta', 25), ('aman',29)]) 

>>> d == d1 == d2 == d3  # various ways to define dictionary 

True 

 

Dictionaries and lists share the following properties: both are mutable and dynamic, 

they can grow and shrink as needed, both can be nested; dictionary can contain another list 

or dictionary, and vice versa. The main difference between the dictionaries and the lists is 

how they get to the elements: List elements are accessed by indexing through their position 

in the list. Access to dictionary elements by keys. 

 

Dictionaries have several additional methods specific to their structure. Methods that 

return lists like items, keys, and values, are not guaranteed to do so in any particular order, 

but may be in a consistent order if no modifications are made to the dictionary in between 

the calls. The get() method is often preferable to index notation because it does not raise an 

error when the requested key is not found; instead it returns None by default, or a default 

value that is passed as a second argument. We loop through the key-value pairs in a 

dictionary using *two* iteration variables. Each iteration, the first variable is the key and 

the second variable is the corresponding value for the key. We can use get() and provide a 

default value of zero when the key is not yet in the dictionary - and then just add one as 

mentioned in below example. 

 

>>> counts = dict() 



 
 

 

 

 36 

>>> names = ['shivam', 'vivek', 'aman', 'vivek', 'vivek', 'nikoleta'] 

>>> for name in names : 

...     counts[name] = counts.get(name, 0) + 1   # default value 0 

... 

>>> print(counts) 

{'shivam': 1, 'vivek': 3, 'aman': 1, 'nikoleta': 1} # histogram of names  

 

3.3 Internet Socket 

“In computer networking, an Internet socket or network socket is an endpoint of a 

bidirectional inter-process communication flow across an Internet Protocol-based computer 

network, such as the Internet.”  (Charles Russell Severance, September 9, 2013) TCP 

port numbers/port is an process specific or application specific software communication 

endpoint. It allows the co-existence of many networked applications on the same server.  

 

Internet Assigned Numbers Authority(IANA) is responsible for the global 

coordination of of the IP addressing, Domain Name System(DNS) root and other internet 

protocol resources. This includes the registration for known Internet services with 

frequently used port numbers. Port Numbers categorised in to three ranges: well-known 

ports(0 to 1023), registered ports(1024 to 49151), ephermal/private ports(49152 to 65535). 

IANA maintains the official list of  well-known and registered ports. Web or other uniform 

resource locators (URLs) also display port numbers. Default is port 80 for HTTP and port 

443 for HTTPS. Sometimes we see the port number in URL if the web server is runnig on 

“Non-standard” port. 

 

Port Number Description 

20 File Transfer protocol(FTP) Data Transfer 

21 File Transfer protocol(FTP) Command Control 

22 Secure Shell(SSH), secure login 

23 Telnet remote login service, unencrypted text message 

25 Simple Mail transfer Protocol(SMTP), E-mail routing 

53 Domain Name System(DNS) Service 



 
 

 

 

 37 

67,68 Dynamic Host Configuration Protocol(DHCP) 

80 HyperText Transfer Protocol(HTTP) used in World Wide Web(WWW) 

109,110 Post office Protocol(POP3), Mail Retrieval 

119 Network News Transfer Protocol(NNTP) 

123 Network Time Protocol(NTP) 

143,220,993 Internet Message Access Protocol(IMAP), management of e-mail 

161 Simple Network Management Protocol(SNMP) 

194 Internet Relay Chat(IRC) 

443 Secure HTTPS 

 

Table.6 Common TCP Ports  (TCP-portNum)  

 

Python is fantastic Let's say we want to use millions of lines of code in our 

computer's connection and network and transport layer, as well as the whole internet and 

some server on the other side, and the data and we want to talk to them? Python takes three 

lines. Python has built-in support for TCP sockets. 

 

>>>import socket  (Charles Russell Severance, September 9, 2013) 

>>>mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

>>>mysock.connect( ('data.pr4e.org', 80) )  

 

Socket usage began with ARPANET in 1971 and later became an API in the 

operating system Berkeley Software Distribution (BSD), released in 1983 called Berkeley 

sockets. When the Internet started with the World Wide Web in the 1990's, network 

programming did likewise. Web servers and browsers were not the only applications that 

gained from newly linked networks and were using sockets. Widespread use came with 

client-server systems of all types and sizes. 

 

Even though the underlying protocols used by the socket API have changed over the 

years, and we've seen new ones, the low-level API remains the same today. Client-server 

applications are the most common type of socket applications, where one side serves as the 



 
 

 

 

 38 

server and awaits client connections. The Python socket module provides the Berkeley 

sockets API with an interface. 

 

# Create an INET, STREAMing socket 

>>>mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

#now connect to the web server on port 80 -the normal http port 

>>>mysock.connect( ('data.pr4e.org', 80) )  

 

For the AF_INET for IPv4 address set, a pair (host, port) is used, where host is a 

string representing either a hostname in the Internet domain notation such as ' 

data.pr4e.org' or an IPv4 address such as ' 192.241.136.170 ' and port is an integer from 1-

65535. Two special types are accepted for IPv4 addresses instead of a host address: '' 

represents INADDR_ANY which is used for binding to all interfaces, and the string ' < 

broadcast > ' represents INADDR_BROADCAST. This activity is not IPv6 compliant, so 

if we wish to support IPv6 with our Python programs, we might want to avoid these.  

 

A four-tuple (host, port, flowinfo, scopeid) is used for the AF_INET6 family of IPv6 

addresses. Flowinfo and scopeid can be removed for the socket module methods just for 

backward compatibility. Note, however, scopeid omission may cause problems when 

manipulating scoped IPv6 addresses. A primary socket API Functions, Objects and 

methods are well described in official documentation of docs.python.org and some of them 

discussed below. (Socket-methods)  

 

socket.socket() creates a socket object that supports the context manager type, if it 

uses it in a ‘with’ statement there is no need to invoke s.close() method. The arguments 

passed to socket() define family of addresses and type of socket. AF_INET is the IPv4 

family of web addresses. SOCK_STREAM is the type of TCP socket, the protocol that will 

be used to carry our messages over the network. Bind() is used to connect a socket to a 

specific network interface and port number. 

 

Listen() allows server to accept() connections. It creates a “listening” socket. Listen() 

has the parameter Backlog. This determines the amount of unaccepted connections that 



 
 

 

 

 39 

will be enabled by the program before rejecting new connections. It is optional, beginning 

in Python 3.5. If not stated a default value for the backlog is selected. Accept() blocks an 

incoming connection and waits. When a client connects, a new socket object representing 

the connection is returned, and a tuple containing the client's address. The tuple will 

contain for IPv4 connections (host, port), or for IPv6 (host, port, flowinfo, scopeid). 

 

 

Figure.6 HTTP request/response and data retrieval  (Charles Russell Severance, 

September 9, 2013) 

 

# this line makes the doorway between your system and server, it’s like a Porthole  

>>>mysock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) 

# connect() basically extends out of your computer, it fails if server doesn’t exist 

>>>mysock.connect( ('data.pr4e.org', 80) )  # finds the server and connect to port 80 

# GET request  to get the content of the page 

>>>cmd = 'GET http://data.pr4e.org/romeo.txt HTTP/1.0\r\n\r\n'.encode() 

# call methods on socket object send(), able to send 

>>>mysock.send(cmd) 

 



 
 

 

 

 40 

With the while loop and receive() method print the data from the romeo.txt, we 

specify parameter in receive() method, here it is 512 so it is going to receive up to 512 

characters. Strings inside python are Unicode, encode() converts from Unicode to UTF-8. 

decode() converts UTF-8 to Unicode and print it in the form of python strings so we can 

apply all string methods on the data that we received from the web. In python it takes only 

10 lines of  code to perform HTTP request/response cycle and retrieve data from the web.  

In output cmd window HTTP header and HTTP body separated by blank line. 

 

Since HTTP is so popular, python has a library called urllib that works for us and 

makes web pages look like a file. we use urllib to view a web page just like a file and 

simply indicate which web page we want to access, and urllib manages all the HTTP 

protocol and header. By using urllib we can reduce the lines of code and achieve same 

output with three lines of code. The comparable code and output from the web using urllib 

to read the romeo.txt file is as follows: 

 

 

 

Figure.7 urllib library to retrieve data  (Charles Russell Severance, September 9, 2013) 

 



 
 

 

 

 41 

 

Figure.8 urllib, treat like a file and make a histogram logic with words 

 

 We can also browse, download and parse internet data such as XML, HTML, 

JSON, etc. with Python. We can also use Python to work directly with that data. 

3.4 Regular Expression(regex) 

In programming, a regular expression, also known as "regex" or "regexp," provides a 

succinct and versatile means for matching text strings, such as unique letters, words, or 

character patterns. A regular expression is written in a formal language and can be 

interpreted by a processor for regular expression. Regular Expression is very powerful and 

quite cryptic to understand. It is a language of “marker characters”- programming with 

characters. Regular expression or Regex for short is a way to search pattern in a big text of 

data. regex is also used for data validation like secure password, correct email format but 

it's usage can be extended for penetration testing. 

 

In python, regular expression patterns are compiled into a series of bytecodes which 

are then executed by a matching engine written in C. For advanced usage, close attention 

can need to be paid to how the engine should execute a given RE and write the RE in some 

way to generate bytecode that runs faster. Below mentioned is the complete list of 

metacharacters.  

 

.  ^  $  *  +  ?  { }  [ ]  \  |  ( )  



 
 

 

 

 42 

 

Symbols Description 

. Matches any character except new line 

\d Digit[0-9] 

\D Not a digit[^0-9] 

\w Word character[a-z,A-Z,0-9, _ ] 

\W Not a Word character[^a-z,A-Z,0-9, _ ] 

\s Whitespace(space, tab, newline)[ \t\n\r\f\v] 

\S Not a whitespace(space, tab, newline) [^ \t\n\r\f\v] 

\b Word boundary 

\B Not a word boundary 

^ Beginning of a string 

$ End of a string 

[ ] Matches character in a bracket 

[^] Matches character not in a bracket 

| Either or 

( ) Group- tell where to start and stop what string to extract 

Quantifiers 

Symbols Description 

* 0 or more(greedy searching) 

+ 1 or more 

? 0 or one(non-greedy searching) 

{5} Curly braces for exact number 

{3,5} Range of numbers(Minimum, Maximum) 

 

Table.7 Metacharacters in Regular expression 

  

 Before using regular expression in Python, must import the library/module using 

“import re”. The re module provides an interface to the regular expression engine. Regular 

expressions are compiled into pattern objects which have methods for specific operations, 

such as pattern matches or string substitutions. re.compile() also accepts an optional flag 

argument, which is used to allow various special features and variations in syntax. The RE 



 
 

 

 

 43 

is passed as a string into re.compile(). REs are treated as strings since regular expressions 

are not part of the core language of Python, and no special syntax has been developed to 

express them. Much like the socket or zlib modules, the RE module is simply a C 

extension module included with Python because there are applications that don’t need REs 

at all, Therefore, the language specifications need not be hindered by including them. 

 

   Once an object representing a compiled regular expression, pattern objects have  

several methods and attributes. Only the most significant ones below mentioned. 

 

Method Description 

match() Determine if the RE matches at string initialization. 

search() Search through a string, checking for any position where this RE matches 

findall() Find all substrings and return them as a list where the RE matches. 

finditer() Find and return all substrings where the RE matches as an iterator. 

Attribute work on a match object 

Attribute Description 

group() Return the string matched by the RE 

start() Return the starting position of the match 

end() Return the ending position of the match 

span() Return a tuple containing(start, end) positions of the match 

Modifying strings 

Method Description 

split() Split the string into a list, split it wherever the RE matches 

sub() Find all substrings where the RE matches, and replace them with a different 

string 

subn() Does the same thing as sub(), but returns the new string and the number of 

replacements 

 

Table.8 Method/Attribute in Regular Expressions 

  

 match() and search() return NONE, if no match can be found. Instance is returned 

containing information about the match if match object is found. If a special regular 



 
 

 

 

 44 

expression character to just behave normal character prefix it with ‘/’.  Complete list of re 

module content well described in python documentation. (re-module-content) Jeffrey 

Friedl's Mastering Regular Expressions, written by O'Reilly, is almost definitely the most 

comprehensive book on regular expressions. Unfortunately, it concentrates solely on the 

flavors of regular expressions of Perl and Java, and does not include any Python content at 

all, so it won't be useful as a guide for Python programming.  

 

3.5 Profiling 

CProfile and profile provide the Python programs with a deterministic profiling. A 

profile is a collection of statistics that explains how often different parts of the system were 

performed and for how long. Those statistics can be compiled through the pstats module 

into reports. The basic Python library features two separate implementations of the same 

profiling framework; For most applications, CProfile is recommended; it's a C extension 

with a fair overhead, making it ideal for profiling long running programs. Profile, a pure 

Python module whose interface imitates CProfile , but adds substantial overhead to the 

profiled programs. If attempting to extend the profiler in some way, this module could 

make the task easier. 

 

CProfile allows user rapidly perform profiling on an existing application. The first 

line shows that it has tracked  calls. Of such calls some is primitive, which implies the call 

was not triggered by recursion. The next line: Ordered by; standard name, shows that the 

output was sorted using the text string in the far-right column. The headings in the columns 

shall include: ncalls, for the number of calls. totttime,  for the total time spent in the given 

function (and excluding time made in calls to sub-functions). percall, is the quotient of 

totttime divide by ncalls. cumtime, is the cumulative time in this and all subfunctions(from 

invocation till exist). percall, is the quotient of cumtime divided by primitive calls. 

filename:lineno(function). Provides the respective data of each function.  (profiling) 

 

If the first column contains two numbers (e.g. 3/1), it implies that the function has 

recurred. The second value is the primitive number of calls, and the former is the total 



 
 

 

 

 45 

number of calls. Remember that those two values are the same when the feature does not 

reoccur, and only the single figure is written.   

 

The pstats.Stats class reads the results of profiles from a file and formats them in 

various ways. The Stats class of the pstats module has a range of methods to modify and 

print the data stored in a file of profile results well described in official document 

(profiling). 

 

p.sort_stats(SortKey.CUMULATIVE).print_stats(10) 

 

Above mentioned line Sorts the profile into a function by accumulated time, and then 

prints out the ten most appropriate lines. The aim of deterministic profiling is to represent 

the fact that all function call, function return, and exception events are monitored, and 

accurate timings are made for the intervals between these events (during which time the 

user's code is executing). 

 

In Python, when an interpreter is active during execution, the existence of 

instrumented code is not necessary for deterministic profiling to be carried out. Python 

immediately returns a key for each case (optional call back). Moreover, Python's 

interpreted design tends to add too much overhead to execution, that deterministic profiling 

tends to add only low overhead processing in traditional applications. The result 

of deterministic profiling is not so complex but offers expensive and intense information 

on the execution of a Python programme. 

 

Stats of call counts can be used to find bugs in code and to identify potential inline 

expansion points (high call counts). Internal time statistics should be used to define "tight 

loops," which can be configured with caution. Cumulative time statistics can be used in 

algorithm selection to detect high level errors. Note that the uncommon treatment of 

cumulative time in this profiler allows results to be compared directly to iterative 

implementations for recursive implementations of algorithms. 



 
 

 

 

 46 

4 Practical Part 

4.1 Open-Source Intelligence(OSINT)  

Open source intelligence is generated from the data and resources accessible to the 

public at large. It isn't limited to what can be found using Google, but significant 

component is so-called "surface web".  Open-source intelligence (OSINT) is data collected 

from publicly available sources to be used in an intelligence context. In the intelligence 

community, the term "open" refers to overt, publicly available sources as opposed to covert 

or clandestine sources.(OSINT) It is not related to open-source software or collective 

intelligence.  

 

As useful as data from open source may be, overloading of information is a major 

concern. Most open source intelligence resources and techniques are designed to help 

security practitioners (or threat actors) concentrate their attention on particular areas of 

interest. Open source information has a dark side: Threat actors can still find (and use) 

something that can be identified by security professionals. 

 

Crucially, the knowledge about open source is not limited to searching only the main 

search engines. Web pages and other sites that can be accessed using Google are huge 

sources of open source information but far from being the only outlets. For example, the 

big search engines cannot locate a huge proportion of the internet (over 99 percent, 

according to former Google CEO Eric Schmidt). This so-called "deep web" is a collection 

of websites, databases, files and more that for a number of reasons, including the existence 

of login pages or paywalls can't be indexed by Google, Bing, Yahoo or any other search 

engine to think about. Despite this, much of the deep web material can be called open 

source, as it is freely accessible to the public. 

 

There's also plenty of freely available online information that can be collected using 

web resources other than conventional search engines.  Resources such as Shodan and 

Censys can be used to locate IP addresses, networks, open ports, webcams, printers, and 

almost anything else connected to the Internet. 

 



 
 

 

 

 47 

 

Figure.9 OSINT Reconnaissance  (Reconnaissance) 

 

Here in the practical part, deploying a python script with Regular Expression(RE) 

that can use google as a search engine and trying to grab a possible URL link connection 

with a  alpha-numeric string input provided in a python console. 

 



 
 

 

 

 48 

4.2 Tools and Technologies 

4.2.1 Installing Python 

Install Python on Windows, Linux/Unix, MAC OS X, and other platforms like AIX, 

IBM i-series, iOS, Solaris VMS, HP-UX, etc. all version for the different platform 

available on https://www.python.org/downloads/. For this practical using Windows 10 as a 

host operating system and system configuration below mentioned. 

 

Processor: Intel(R) Core(TM) i5-4210 CPU @1.70GHz 

Disk Drive: Intel SSD-SC2BW120A4 120.00GB 

Installed memory(RAM): 8.00GB 

System Type: 64-bit Operating System, x64-based Processor 

External GPU, Pen and Touch: Not applicable  

 

Installing python on Windows 10 it required executable file(.exe) mentioned below 

to setup python environment on the host system. 

 

  

Figure.10 Executable files-python installer 

 

 Execute the .exe file for Python installer and it will pop up the window with 

installation step guide and it’s a nice thing to add python 3.8 to PATH so we aware about 

the path where it is going to install on a host system. By clicking on a next python installer 

download all necessary component like interpreter, development libraries, executable, 

standard libraries, bootstrap and add to PATH. And its quick installation process through 

executable file. 

 

 After the installation process completed, Host System can launch python 

application from start menu or writing python in cmd prompt will launch the python 

interpreter within cmd. It will display the current version of the python and release date.  

https://www.python.org/downloads/


 
 

 

 

 49 

 

Figure.11 Python Interpreter-CMD 

4.2.2 Installing ATOM(text-editor) for Python 

Atom is a free and open-source text and source code editor. Available for 

macOS, Linux, and Microsoft Windows with support for plug-ins written in Node.js, and 

embedded Git Control, developed by GitHub. Atom is Covering all process of text editing 

and source code editing; it is a desktop application built using web technologies. Atom is a 

tool to customize to do anything but also use productively without ever touching a 

configuration file. 

 

Atom Setup time should not be too long, it is quick and easy. Atom has Responsive 

design; Atom is ubiquitous text editor so user can use it from anywhere and on any 

platform. Installation Atom on windows all version for the different platform available on 

https://atom.io/. Installing Atom on Windows it required executable file(.exe) mentioned 

below to setup Atom on the host system. 

 

 

Figure.12 Executable files-Atom installer 

 

 To avoid indention errors in a python most of the text editors can turn tabs in to 

spaces; for that user must need to make sure to enable this feature from settings and 

preferences. Despite Atom automatically uses spaces for files with “.py“ extension. 

 

 Execuete the .exe file for Atom installation and follow the process once it is 

finished it will launch the below application. 

https://atom.io/


 
 

 

 

 50 

 

 Figure.13 Atom Text Editor  

 

4.2.3 Installing PyCharm(IDE) for Python 

PyCharm is a cross-platform IDE, offering clear Windows, macOS, and Linux 

operating systems experience. JetBrains offers PyCharm in three versions: Professional, 

Community, and Edu. The versions of Community and Edu are open-source projects and 

are free but have less features. PyCharm Edu offers courses and helps learn how to 

program with Python. The Professional Version is private and offers an excellent selection 

of tools and features. 

 

Requirement Minimum Recommended 

RAM 4 GB of free RAM 8 Gb of Total 

Disk Space 2.5GB and another 1GB for caches SSD Drive with at least 5GB 

of free space 

Monitor resolution 1024x768 1920X1080 

Operating system Officially released 64-bit versions of 

the following: 

- Microsoft Windows 7 SP1 or 

later 

Latest 64-bit version of 

Windows, macOS, or Linux 

(for example, Debian, 

Ubuntu, or RHEL) 



 
 

 

 

 51 

- macOS 10.11 or later 

- nay Linux distribution that 

supports Gnome, KDE or 

Unity DE 

 

Table.9 IDE-System Requirements 

 

 To run PyCharm, no need to install Java because JetBrains Runtime is bundled with 

IDE (based on JRE 11). For standalone installation of PyCharm, it requires the installer 

available on https://www.jetbrains.com/pycharm/download/#section=windows we can 

download the .exe for community version which is open source below mentioned. 

 

 

Figure.14 Executable files- PyCharm-community edition 

 

 Once installation is finished, host system can launch the PyCharm IDE and it asked 

for theme preferences, packages, and setup the project interpreter with built-in python 

console and terminal.  

 

Figure.15 PyCharm Community Edition 2019.3.1 

https://www.jetbrains.com/pycharm/download/#section=windows


 
 

 

 

 52 

4.2.4 Installing JAVA and Intellij IDEA(IDE) 

JAVA is available for different operating system such as Windows, Mac, Linux, 

Solaris. Installing JAVA8 requires administrator access to windows on host computer. And 

windows system requirements mentioned below.  

 

RAM: 128 MB 

Disk-Space: 124 MB for JRE; 2 MB for JAVA update 

Processor: Minimum Pentium2 266mhz processor 

Browsers: Internet explorer 9 and above, Firefox 

Operating System: Windows 10(8u51 and above)   

 

Download JAVA software for windows offline available on 

https://java.com/en/download/manual.jsp. The File Download dialog box appears 

prompting to run or save the download file Click Save to download the file to locally on 

host system. Close all applications including the browser. Double-click on the saved file to 

start the installation process. The installation process starts. Click the Install button to 

accept the license terms and to continue with the installation. After the installation is 

finished, we can verify it through Programs and Features in a control panel. 

 

  

Figure.16 JAVA 8 installation 

 

 IntelliJ IDEA is a cross-platform IDE that offers consistent functionality on 

operating systems such as Windows, macOS and Linux. The following versions are 

available in Intellij IDEA; (i) Community Edition is open source and free, licensed under 

Apache 2.0. It provides all the basic features required to build JVM and Android. (ii) 

IntelliJ IDEA Ultimate is commercial and is sold with a trial duration of 30 days. It offers 

additional Web and business technology software and functionality. No need to install Java 

to run IntelliJ Concept, because JetBrains Runtime is bundled with the IDE (JRE 11-

https://java.com/en/download/manual.jsp


 
 

 

 

 53 

based). However, a standalone JDK is required for developing Java applications. System 

requirements for Intellij IDEA are same as mentioned in Table.9 . For standalone 

installation of Intellij IDEA available on 

https://www.jetbrains.com/idea/download/#section=windows. we can save the .exe for 

community version which is open source below mentioned. 

 

  

Figure.17 Executable files-Intellij IDEA community edition 

 

 Upon completion of the installation, the host device will launch the Intellij IDEA 

IDE and request theme preferences, packages, and set up the project SDK with an 

integrated terminal. 

 

 

Figure.18 Intellij IDEA- Community Edition-2019.3.1  

 

4.3 Code Implementation  

A brief code sample in a python implemented in this section using import RE module 

which trying to grab a possible URL link connection with a alpha-numeric string input 

https://www.jetbrains.com/idea/download/#section=windows


 
 

 

 

 54 

provided in a python console. For comparison same logic will also deploy in a JAVA using 

a different packeges for doing google search across the web.   

 

4.3.1 Implementation in a Python 

 

Browser.py has input() function which can be any alphanumeric string. And it will 

search through and try to find a match according to a string entered in a python console. 

 
 
import requests 
from pkg.google import search 
 
 
def google(): 
    print("\n" "$ Please enter below First name & Last name || department, university, city, 
etc.\n") 

 
    name = input("$ Enter Here: ") 
    print("\n""$ Grab your coffee & be ready for Results...\n") 

 
    url = "https://www.google.com/search?num=20&q=\\%s\\" 
 

    try: 
        nom2 = name.split(" ") 
        name = nom2[0] + '+' + nom2[1] 
 

    except: 
        pass 
    request = requests.get(url % name) 
    search(r1=request) 
 
 
google() 
 

 

 

Figure.19 browser.py 

 



 
 

 

 

 55 

 Google.py has import the RE module and define the search function using Regular 

Expression which imported in browser.py to search through requested string entered in a 

python console. 

 
  

import re 
 
 
def search(r1=''): 
    dic = { 
        "%21": "!", "%23": "#", "%24": "$", "%26": "&", "%27": "'", "%28": "(", "%29": ")",  

"%2A": "*", "%2B": "+","%2C": ",", "%2F": "/", "%3A": ":", "%3B": ";", "%3D": "=",  

"%3F": "?", "%40": "@", "%5B": "[", "%5D": "]","%20": " ", "%22": "\"", "%25": "%",  

"%2D": "-", "%2E": ".", "%3C": "<", "%3E": ">", "%5C": "\\", "%5E": "^","%5F": "_",  

"%60": "`", "%7B": "{", "%7C": "|", "%7D": "}", "%7E": "~", } 
 
    info = r1.text 
 

    urls = re.findall('url\\?q=(.*?)&', info)  # Regular expression 
 

    for url in urls: 
        for char in dic: 
            find = re.search(char, url) 
 

            if find: 
                decode = dic.get(char) 
                url = url.replace(char, decode) 
 

        if not "googleusercontent" in url: 
            if not "/settings/ads" in url: 
                if not "/policies/faq" in url: 
 

                    print("[~] Possible Result: " + url) 

 

 
 

Figure.20 Regular Expression in Google.py 



 
 

 

 

 56 

 RE module has search() method that can define using importing RE module in 

Google.py. 

 
 
def search(pattern, string, flags=0): 
    """Scan through string looking for a match to the pattern, returning 
    a Match object, or None if no match was found.""" 
    return _compile(pattern, flags).search(string) 
 
 

Figure.21 def search() method 

 

4.3.2 Implementation in JAVA 

 

In 2014 Google chose to close down its search API. It's difficult to know just why. 

Maybe making a search API didn't make practical sense to them, or maybe it's a tool they 

chose not to offer anymore because it benefited SEO agencies or something in the sense 

that Google didn't want the data it was collected to give away. 

 

 
<?xml version="1.0" encoding="UTF-8"?> 
<project xmlns="http://maven.apache.org/POM/4.0.0" 
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/xsd/maven-4.0.0.xsd"> 
    <modelVersion>4.0.0</modelVersion> 
 
    <groupId>org.example</groupId> 
    <artifactId>osint</artifactId> 
    <version>1.0-SNAPSHOT</version> 
    <packaging>jar</packaging> 
 
 
    <properties> 
        <!-- https://maven.apache.org/general.html#encoding-warning --> 
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> 
        <maven.compiler.source>1.8</maven.compiler.source> 
        <maven.compiler.target>1.8</maven.compiler.target> 
    </properties> 
 
 

 



 
 

 

 

 57 

<dependencies> 
    <dependency> 
        <groupId>org.jsoup</groupId> 
        <artifactId>jsoup</artifactId> 
        <version>1.11.3</version> 
    </dependency> 
    </dependencies> 
 
    <build> 
    <plugins> 
    <!-- 
    This plugin configuration will enable maven to include the project dependencies 
    in the produced jar file. 
    It also enables us to run the jar file using `java -jar command` 
     --> 
    <plugin> 
        <groupId>org.apache.maven.plugins</groupId> 
        <artifactId>maven-shade-plugin</artifactId> 
        <version>3.2.0</version> 
        <executions> 
            <execution> 
                <phase>package</phase> 
                <goals> 
                    <goal>shade</goal> 
                </goals> 
                <configuration> 
                    <transformers> 
                        <transformer 
                            
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTrans
former"> 
                            <mainClass>pkg.Browser</mainClass> 
                        </transformer> 
                    </transformers> 
                </configuration> 
            </execution> 
        </executions> 
    </plugin> 
    </plugins> 
    </build> 
 
</project> 
 
 

 

Figure.22 Maven Configuration pom.xml file 

   



 
 

 

 

 58 

 
package pkg; 
 
import java.util.Scanner; 
 
public class Browser { 
 
    private static final String HIT_URL = 
            "https://www.google.com/search?num=20&q=%s"; 
 
    public static void main(String[] args) { 
        google(); 
    } 
 
    private static void google(){ 
        System.out.print("\n$ Please enter below First name & Last name" + 
                        " || department, university, city, etc.\n"); 
        System.out.print("\n$ Grab your coffee & be ready for Results...\n"); 
        System.out.print("\n$ Enter text: "); 
        Scanner input = new Scanner(System.in); 
        String receivedInput = ""; 
        receivedInput += input.nextLine(); 
        input.close(); 
 
        try { 
            String[] inputArray = receivedInput.split(" "); 
            if (inputArray.length > 1) { 
                receivedInput = inputArray[0] + "+" + inputArray[1]; 
            } 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
        String queryURL = String.format(HIT_URL, receivedInput); 
        new Google().search(queryURL); 
    } 
 
} 
 
 

Figure.23 Browser.java 

 

 JSoup is a simple open-source library which provides very convenient data 

extraction and manipulation functionality by using DOM traversal or CSS selectors to find 

data. It does not support parsing based on X-Path. 



 
 

 

 

 59 

package pkg; 
 
import org.jsoup.Jsoup; 
import org.jsoup.nodes.Document; 
import org.jsoup.nodes.Element; 
 
import java.io.IOException; 
import java.net.MalformedURLException; 
import java.net.URISyntaxException; 
import java.net.URL; 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.List; 
import java.util.Map; 
import java.util.regex.Matcher; 
import java.util.regex.Pattern; 
 
public class Google { 
 
    private static Map<String, String> dic = getMap(); 
 
    public void search(String queryURL) { 
 
        try { 
            Document doc = Jsoup.connect(queryURL).get(); 
            List<String> urls = new ArrayList<>(); 
            for (Element result : doc.select("div.r a")) { 
                final String url = result.attr("href"); 
 
                if (isValidExpression(url)) { 
                    String replaced = replace(url); 
                    if (!replaced.isEmpty()) { 
                        urls.add(url); 
                        System.out.println(url); 
                    } 
                } 
            } 
 
 

 

Figure.24 Google.java_1 

 



 
 

 

 

 60 

 
        if (urls.size() <= 0){ 
            System.out.println("No results found!"); 
        } 
    } catch (IOException e) { 
        e.printStackTrace(); 
        System.out.println("Some Error Occurred!"); 
    } 
} 
 
private static boolean isValidExpression(String url) { 
    try { 
        new URL(url).toURI(); 
        return true; 
    } catch (URISyntaxException | MalformedURLException e) { 
        return false; 
    } 
} 
 
private static String replace(String url) { 
    for (Map.Entry<String, String> entry : dic.entrySet()) { 
        Pattern pattern = Pattern.compile(entry.getKey()); 
        Matcher matcher = pattern.matcher(url); 
        boolean b = matcher.find(0); 
        if (b) { 
            url = url.replace(entry.getKey(), dic.get(entry.getKey())); 
        } 
    } 
 
    if (!url.contains("googleusercontent")) { 
        if (!url.contains("/settings/ads")) { 
            if (!url.contains("/policies/faq")) { 
                if (!url.contains("translate")) { 
                    return url; 
                } 
            } 
        } 
    } 
    return ""; 
} 
 
 

 

Figure.25 Google.java_2 

 

 



 
 

 

 

 61 

 
private static Map<String, String> getMap() { 
        Map<String, String> dic = new HashMap<>(); 
        dic.put("%21", "!");dic.put("%23", "#");dic.put("%24", "$"); 
        dic.put("%26", "&");dic.put("%27", "'");dic.put("%28", "("); 
        dic.put("%29", ")");dic.put("%2A", "*");dic.put("%2B", "+"); 
        dic.put("%2C", ")");dic.put("%2F", "/");dic.put("%3A", ","); 
        dic.put("%3B", ";");dic.put("%3D", "=");dic.put("%3F", "?"); 
        dic.put("%40", "@");dic.put("%5B", "[");dic.put("%5D", "]"); 
        dic.put("%20", " ");dic.put("%22", "\"");dic.put("%25", "%"); 
        dic.put("%2D", "-");dic.put("%2E", ".");dic.put("%3C", "<"); 
        dic.put("%3E", ">");dic.put("%5C", "\\");dic.put("%5E", "^"); 
        dic.put("%5F", "_");dic.put("%60", "`");dic.put("%7B", "{"); 
        dic.put("%7C", "|");dic.put("%7D", "}");dic.put("%7E", "~"); 
        return dic; 
    } 
 
} 
 
 

 

Figure.26 Google.java_3 

 

 Java.net package represents a Network Interface address. JarURLConnection a 

URL Connection to a Java Archive (JAR) file or an entry in a JAR file. Java.util Contains 

the structure of collections, classes of existing sets, pattern of events, date and time 

services, internationalization and various function classes (a string tokenizer, a random 

number generator, and a bit array).  Java.io Provides input and output through data streams, 

serialization, and the file system. 

 

4.4 Accomplishment 

Previously, had to manually open the page on a browser to retrieve data from a 

website, and use copy and paste feature. This strategy works but it’s one downside is that if 

the number of websites is large, or there is massive detail, it can get exhausting. Compared 

to manually copying and pasting the data into the web browser, the time taken to retrieve 

information from a given source is greatly decreased. The derived data is more reliable and 

accurately structured ensuring accuracy.  

 



 
 

 

 

 62 

4.4.1 Result from String[a-z,A-Z] 

 

 

 

 

Figure.27 Build result of browser.py(string contain[a-z,A-Z]) 



 
 

 

 

 63 

 

 

 

 

 
 

 

Figure.28 Build result of Browser.java(string contain[a-z,A-Z]) 



 
 

 

 

 64 

4.4.2 Result from Numbers[0-9] 

 

 

Figure.29 Build result of browser.py(string contain[0-9]) 

 

 

Figure.30 Build result of Browser.java(string contain[0-9]) 

 



 
 

 

 

 65 

4.4.3 Result in Google’s search engine 

By clicking on each link, it can open webpage in a web browser which precisely 

match through Regular expression’s engine.  

 

Figure. 31 Result collage_1 String[a-z,A-Z] 



 
 

 

 

 66 

 

Figure.32 Result Collage_2 String[a-z,A-Z] 



 
 

 

 

 67 

 

Figure.33 Result Collage_3 String[a-z,A-Z] 



 
 

 

 

 68 

 

Figure.34 Result_4 String[0-9] 

 

 

Figure.35 Result_5 String [0-9] 



 
 

 

 

 69 

4.5 Profiling Comparison 

  Profiling technique in python discussed in a sections 3.5 as PyCharm community 

edition does not integrate inbuilt version for profiling in python this feature is exclusively 

for commercial version, so overcome this hurdle Atom text editor and cmd is used to 

perform profiling.  

 

 

import cProfile, pstats, io 
import requests 
import re 
from pstats import SortKey 
 
 
# Search() function from google.py 
def search(r1=''): … 
    

  
# google() function from browser.py 
def google(): … 
     
 
# cProfile module's function defined below 
pr = cProfile.Profile() 
pr.enable() 

 
google()        # Function_name 
 

pr.disable() 
s = io.StringIO() 
sortby = SortKey.CUMULATIVE 
ps = pstats.Stats(pr, stream=s).sort_stats(sortby) 
print("\n") 
ps.print_stats(10)     # only prints the 10 most significant lines 
print(s.getvalue()) 

 

 
 

Figure.36 Profiling in Python 

 



 
 

 

 

 70 

 

 

Figure.37 Profiling Result in CMD 

 



 
 

 

 

 71 

 

 

Figure.38 pstats.Stats Module(SortKey) 

  

Meanwhile in JAVA, Intellij IDEA community version also does not integrate 

profiler, to mitigate this Intellij IDEA has large number of plugins. Jprofiler is used to 

profile the code execution in JAVA and results are mentioned below. 

 

 

Figure.39 Jprofiler IDE integration 



 
 

 

 

 72 

 

 

Figure.40 Jprofiler-Methods Cumulative time 

 

 

 

 



 
 

 

 

 73 

 

 

Figure.41 Jprofiler-package impact on memory  

 

 

 

Figure.42 Jprofiler-Cumulated methods outgoing Graph  

 



 
 

 

 

 74 

5 Results and Discussion 

In the third chapter of this research document a literature review was conducted. The  

history of python,  python data structure, operators, new features and function in python 

3.8.1, python modules such as Socket with urllib package and Regular Expression, and 

profiling python code discussed in a depth.   

 

In the fourth part of this research document tools and technologies were mentioned 

which used to achieve the objective of this study was discussed in detail. Hardware 

configuration of a host system and perquisites configuration for IDEs by JetBrains were 

mentioned. Atom text editor was used for small implementation of new features like 

walrus operator, socket module and urllib package, etc.  

 

In the practical part, deploying a logic with Regular Expression(RE) that can use 

google as a search engine and trying to grab a possible URL link connection with a alpha-

numeric input string provided in a console. Python used only two modules; requests and re 

to deploy a logic. While in JAVA to achieve the same result it requires JSOUP and 

multiple JAVA packages such as; java.io.IOException, java.net.URL, java.util.HashMap, 

java.util.regex.Matcher, java.util.rejex.Pattern. Both code produce the same results in IDE, 

by clicking on a each URL it directed to browser and open a particular URL in a web 

browser mentioned in section 4.4.3.   

 

Performance profiling navigate to identify bottlenecks of code, when bottlenecks 

identified particular portion of the code can be easily change which are creating a 

bottleneck. CProfile and Jprofiler were used to profile the code in Python and JAVA 

respectively. Terminology used in CProfile result was explained in section 3.5. Jprofiler 

produced graphical results as mentioned in section 4.5. 

 

CProfile result described 14172 function calls (14093 primitive calls) in 5.261 

seconds and the table showed in cmd ordered by cumulative time. List reduced from 664 

to 10 due to restriction set for ps.print_stats(10), in case to achieve full list required to 

eliminate 10 from the arguments can represent all 664 rows in cmd. Jprofiler produced 

GUI based result as mentioned in section 4.5 and it takes 10.265 seconds to execute 



 
 

 

 

 75 

pkg.Browser.google. Jprofiler produces amazing graphical statistics which can lead to 

investigate memory leaks and resource utilization.   

 

5.1  Discussion 

5.1.1 TIOBE Index 

The TIOBE Community Software index is a measure of the programming languages 

popularity. The index shall be updated once a month. The scores are based on the number 

of professional engineers, courses, and third-party vendors worldwide. Popular search 

engines, including Google, Bing and Yahoo! Calculating scores, using Wikipedia, 

Amazon, Twitter and Baidu. It is important to remember that the TIOBE index is not about 

the best language for programming, or the language in which most lines of code is written.  

 

The index can be used to test if the programming skills are still up-to-date or to make 

a strategic decision about what programming language should be implemented when a new 

software system starts to develop. The TIOBE index description can be found (TIOBE-

index)  

 

 

 

Figure.43 TIOBE Programming Community Index 



 
 

 

 

 76 

6 Conclusion 

 

The aim of this Thesis includes to understand the python as a general-purpose 

language which supports multiple programming paradigm such as Procedural 

programming, Imperative Programming, and  object-oriented programming. This thesis 

represent the python programming language as a modern and exponentially increasing 

medium for application development, which in the coming future promises to be a clear 

rival to the Java/Javascript/PHP community. The second chapter of this study discusses in 

depth with the goal of this study and the methodologies used to achieve the desired results 

from this process. 

 

TIOBE community announced python as the language of the year in 2007, 2010, 

2018. Highest position since 2001 observed in April 2020 and ranked third as per TIOBE 

community. In the third chapter of this study literature review was conducted to intense 

analysis on Python 3.8.1. The fourth chapter of this study demonstrate the methodologies 

which used achieve this study’s objective. Result was carried out from practical part 

discussed in fifth part of this study. 

 

Python has the largest community which can contribute to the development code and 

it has an open source Python Package Index (PyPI) repository that provide free software 

developed by python community. Finally, I concluded my thesis and affirm that I have 

accomplished all the objectives which were assigned to me.     



 
 

 

 

 77 

7 References 

 

BEAZLEY, David M. a Brian K. JONES. 2013. Python cookbook. 3rd. Sebastopol: : 

O'Reilly, 2013. ISBN 9781449340377. 

 

Built-in-lib. read-write-files-python. realpython.com. [Online] 

https://realpython.com/read-write-files-python/. 

 

Charles Russell Severance, Sue Blumenberg, Elliott Hauser. September 9, 2013. 

Python for Everybody. MI, USA : CreateSpace Independent Publishing Platform7290 

Investment Drive # BNorth CharlestonSCUnited States, September 9, 2013. 978-1-5300-

5112-0. 

 

class-collection-deque. docs.python.org. python.org. [Online] 

https://docs.python.org/3/library/collections.html#deque-objects. 

 

DANJOU, Julien. 2019. Serious Python: black-belt advice on deployment, scalability, 

testing, and more. San Francisco : CA: No Starch Press, Inc., 2019. ISBN 

1593278780;9781593278786.. 

 

David Beazley, Brian K. Jones. 2013. Python Cookbook 3rd edition. místo neznámé : 

O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472, 2013. 

978-1-449-34037-7. 

 

dict-mapping-type. docs.python.org. python.org. [Online] 

https://docs.python.org/3/library/stdtypes.html#dict. 

 

frozenset-methods. docs.python.org. python.org. [Online] 

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset. 

 

Indexing-lists. realpython.org/python-lists-tuples/. RealPython. [Online] 

https://files.realpython.com/media/t.c11ea56e8ca2.png. 

 

Keywords. lexical_analysis. docs.python.org. [Online] 

https://docs.python.org/3.8/reference/lexical_analysis.html?highlight=keyword. 

 

list-methods. docs.python.org/3/tutorial/datastructures. python.org. [Online] 

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists. 

 

nestedlist-comp. docs.python.org. python.org. [Online] 

https://docs.python.org/3/tutorial/datastructures.html#nested-list-comprehensions. 

 

OSINT. Open-source intelligence. https://en.wikipedia.org/. [Online]  

 

profiling. library/profile.html. https://docs.python.org/. [Online] 

https://docs.python.org/3/library/profile.html#instant-user-s-manual. 

 



 
 

 

 

 78 

PythonDOC. operator. Python official. [Online] 

https://docs.python.org/3/library/operator.html. 

 

Read&write-I/O. docs.python.org. www.python.org. [Online] 

https://docs.python.org/3.8/tutorial/inputoutput.html#reading-and-writing-files. 

 

Reconnaissance. Open-Source Intelligence. https://medium.com/. [Online] 

https://medium.com/@z3roTrust/open-source-intelligence-osint-reconnaissance-

75edd7f7dada. 

 

re-module-content. docs.python.org. www.python.org. [Online]  

https://docs.python.org/3/library/re.html#module-contents. 

 

sequence-types. docs.python.org. python.org. [Online] 

https://docs.python.org/3/library/stdtypes.html#immutable-sequence-types. 

 

set-methods. docs.python.org. python.org. [Online] 

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset. 

 

SLATKIN, Brett. 2015. Effective Python: 59 specific ways to write better Python. 

Beaverton : Ringgold Inc., 2015. ISBN 2372-3424.. 

 

Socket-methods. socket.html. docs.python.org. [Online] 

https://docs.python.org/3/library/socket.html#module-contents. 

 

standard-type. en.wikipedia.org/Python_(programming_language). en.wikipedia.org. 

[Online] 

https://en.wikipedia.org/wiki/Python_(programming_language)#/media/File:Python_3._Th

e_standard_type_hierarchy.png. 

 

String-Methods. Python docs. Python.org. [Online] 

https://docs.python.org/3/library/stdtypes.html#string-methods. 

 

TCP-portNum. List of TCP and UDP port numbers. Wikipedia. [Online] 

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers. 

 

TIOBE-index. tiobe-index. www.tiobe.com. [Online] https://www.tiobe.com/tiobe-

index/programming-languages-definition/. 

 

 

 

 

 

  

 

 


