Využití strojového učení pro tvorbu optimálních útočných strategií – Bc. Michal Savčinský
Bc. Michal Savčinský
Master's thesis
Využití strojového učení pro tvorbu optimálních útočných strategií
Using machine learning to optimize attack strategies
Abstract:
V súčasnosti dosahuje strojové učenie významné úspechy v mnohých oblastiach, ako autonómne riadenie áut, virtuálni asitenti alebo hranie hier. Z toho dôvodu veríme, že schopnosti strojového učenia by mohli byť použité aj v oblasti kyberbezpečnosti. Na vyvinutie robustného a odolného systému voči sofistikovanému správaniu útočníka potrebujeme náš obranný systém natrénovať proti širokému spektru útočných …moreAbstract:
Recently, reinforcement learning methods have accomplished significant breakthroughs in many areas, such as autonomous driving, virtual assistants, or games. Therefore we believe that the capabilities of reinforcement learning could be exploited for cybersecurity as well. To develop a robust system, proof against sophisticated adversary behavior, we need to train our defensive system against the broad …more
Language used: English
Date on which the thesis was submitted / produced: 20. 5. 2019
Identifier:
https://is.muni.cz/th/zkmth/
Thesis defence
- Date of defence: 21. 6. 2019
- Supervisor: RNDr. Martin Drašar, Ph.D.
- Reader: RNDr. Tomáš Jirsík
Citation record
Full text of thesis
Contents of on-line thesis archive
Published in Theses:- světu
Other ways of accessing the text
Institution archiving the thesis and making it accessible: Masarykova univerzita, Fakulta informatikyMasaryk University
Faculty of InformaticsMaster programme / field:
Applied Informatics / Applied Informatics
Theses on a related topic
-
NSE Stock market prediction using Deep Recurrent Neural Network and comparison with ARIMA
Adithyan C Pankajakshan -
Artificial Neural Network for Precipitation Nowcasting
Vladimíra Hežeľová -
Predictive Modelling Electricity Prices for Short-Term and Long-Term Horizons, the case of the Czech Republic
Christian Svend Roy Billinton -
Building NLP model for classifying short-tail conversational student’s query data
Kural Arasu Venkatesh -
Deep Risk-Constrained Reinforcement Learning with Safety Critics
Martin Gendiar -
Risk-Sensitive Reinforcement Learning
Marek Kadlčík -
Tool for data pre-processing and iterative learning of neural networks
Kristián Malák -
Automated neural network learning for higher accuracy human skeleton detection under realistic conditions
Damián Sova