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Abstract 
This thesis deals with synthesis and optimization methods of polymorphic circuits. Or­
dinary and multi-functional synthesis and optimization methods are discussed. The main 
objective of this thesis is to introduce novel methodologies for scalable synthesis of multi­
functional digital circuits. Despite the fact that several approaches have been proposed 
during recent years, those are applicable for small-scale circuits only or are based on vari­
ous evolution-inspired techniques. Obviously, scalable synthesis methodology for complex 
multi-functional circuits does not exist yet. The proposed methodology is based on And-
Inverter Graphs (AIGs) with built-in extension for multi-functional circuits where the em­
ployment of rewriting techniques reduces the area by sharing common resources of two 
different input circuits. Experiments performed on publicly available benchmark circuits 
demonstrate significant optimization achievements. 

Abstrakt 
Tato práce se zabývá metodami logické syntézy a optimalizací pro polymorfní obvody. V 
práci jsou jak diskutovány existující metody pro konvenční obvody, tak i představeny nové 
metody, aplikovatelné na polymorfní elektroniku. Hlavním přínosem práce je představení 
nových metod optimalizace a logické syntézy pro polymorfní obvody. Přesto, že v min­
ulých letech byly představeny metody pro návrh polymorfních obvodů, jsou tyto metody 
založené na evolučních technikách nebo nejsou dobře škálovatelné. Z toho vyplývá, že 
stále neexistuje stabilní metodika pro návrh složitějších polymorfních obvodů. Tato práce 
představuje zejména reprezentaci polymorgních obvodů a metodiku pro jejich návrh za­
loženou na And-Inverter grafech. Na polymorfní obvody reprezentované pomocí A I G je 
možné aplikovat známé techniky jako například přepisování [rewriting]. Nasazením tech­
niky přepisování na polymorfní A I G získáme obvod, obsahující polymorfní prvky uvnitř 
obvodu, a je možné dosáhnout značných úspor prostředků, které mohou být sdíleny mezi 
dvěma funkcemi současně. Ověření návrhové metodiky pro polymorfní obvody bylo prove­
deno nad sadou veřejně dostupných obvodů, čímž je demonstrována efektivita metodiky. 
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Rozšířený abstrakt 
Rozvoj číslicové techniky v šedesátých letech minulého století otevíral vědě nový, nepro­
zkoumaný prostor. Nová technologie nabízela nové otázky, na které nebyly známé odpovědi 
a bylo nutné poznávat a pozorovat chování nových materiálů, ze kterých byla vyrobena 
logická hradla. S rostoucí integrací byly také kladeny požadavky na vhodné nástroje, po­
mocí kterých se z hradel navrhovaly složitější číslicové obvody. Nyní, po více než 60 letech 
existence číslicových obvodů, lze předpokládat existenci efektivních návrhových nástrojů, 
jejichž vývoj se stabilizoval a dnes už nedochází k tak bouřlivému rozvoji, jako v počátcích 
číslicové techniky. 
Ano, toto tvrzení je zcela pravdivé, hovoříme-li o běžných číslicových obvodech. Avšak v 
roce 2001 představil A . Stoica moderní pojem "polymorfní elektronika", čímž otevřel další 
nepříliš prozkoumanou vědeckou oblast [51]. Jde o vícefunkční číslicové obvody, u kterých 
změna funkce není vyvolána přepínačem nebo re konfigurací, jak je tomu známo u konvenční 
elektroniky. Namísto toho je změna funkce vyvolána uvnitř číslicového obvodu v závislosti 
na externím prostředí (teplota, světlo, ...) [50]. Objev polymorfní elektroniky s sebou při­
nesl nové technologie a otázky týkající se efektivního návrhu polymorfních obvodů. 
Materiály, které dříve byly považovány za nestabilní a tudíž nepoužitelné, nacházejí uplat­
nění právě v polymorfní elektronice. Je možné sledovat značný pokrok ve vývoji grafenu, 
křemíkových nanotrubiček a organických materiálů [44] [40]. Jedná se tak o velmi mladou 
vědeckou disciplínu nabízející mnoho disertabilních témat. 
Bohužel, konvenční návrhové metody a algoritmy nejsou dobře použitelné pro návrh poly­
morfních obvodů. Metody syntézy pro návrh polymorfních obvodů jsou mnohem složitější 
než metody syntézy konvenční elektroniky. Touto problematikou se již zabývalo několik 
výzkumníku, avšak dosud objevené syntézní metody nejsou natolik efektivní jako metody 
pro návrh konvenční elektroniky. Tato situace vyžaduje výzkum a vývoj nových, lepších a 
efektivnějších návrhových metod pro polymorfní obvody. Největší přínos polymorfní elek­
troniky je spatřován ve sdílení prostředků realizovaných funkcí v co největší možné míře. 
Je snahou objevovat metody, které budou generovat polymorfní obvody splňující tento 
předpoklad. Syntézní algoritmy pracují s obvody, nejčastěji reprezentovanými pravdivostní 
tabulkou, logickým výrazem, či binárním rozhodovacím diagramem. Výstupem by měla být 
co nejjednodušší reprezentace obvodu. 
Cílem této práce je obecně představit polymorfní elektroniku a její otevřené problémy, 
návrhové techniky konvenčních obvodů a současné návrhové techniky polymorfních obvodů. 
Práce představuje tři techniky sloužící k návrhu polymorfních obvodů. 
Jedním z hlavních přínosů práce je představení nové reprezentace polymorfních obvodů 
PAIG, díky které je možné reprezentovat polymorfní obvody v And-Inverter grafu. Na 
tuto novou reprezentaci je možné aplikovat již existující optimalizační metody, známé jako 
strukturální hashování či přepisování [rewriting], ale i další. Právě rewriting byl přizpůsoben 
tak, aby jej bylo možné spustit na reprezentaci P A I G za účelem optimalizace výsledného 
polymorfního obvodu a propagace polymorfních prvků do nitra obvodu. Práce prezentuje 
výsledky vykazující efektivitu metodiky a navrhuje další rozšíření. 
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Chapter 1 

Introduction 

Reconfigurability as a phenomenon in the world of digital circuits brings more efficient 
ways to implement certain applications, opens new possibilities and also allows new appli­
cations of electronics. As a matter of fact, it makes hardware more flexible. Flexibility is 
one of the features that make software so popular as a way to implement various systems. 
But a wide range of applications still needs to be implemented in hardware. So the hard­
ware reconfiguration is (and will be henceforward) very important for significant number 
of applications. 

Typical implementation of the hardware reconfiguration consists of a field of reconfig-
urable elements, a controller, and memory that serves as a storage for different configura­
tions [6]. The field of reconfigurable elements usually assumes various granularity levels -
from coarse-grained elements like functional units or data processing units on RT level to 
transistor-level fine-grained field of elements. This allows not only the classic reconfiguration 
scheme (the hardware changes its structure and behavior according to the configurations 
prepared beforehand), but also effective implementation of so-called evolvable hardware 
(new configurations are being created as a direct response to actual circumstances) [34]. 

Another (and quite different) concept of hardware reconfiguration was proposed by 
Stoica et al. under the term polymorphic Electronics" [51]. In this concept polymor­
phic circuits have a permanent structure (interconnections are fixed) and each element (or 
selected group of elements) of the circuit is sensitive to certain environmental factors (tem­
perature, variation of supply voltage, etc.). Then, the function of a polymorphic circuit 
changes instantaneously in accordance with those specific factors. If these elements are 
efficiently implemented and the synthesis of the circuit is properly done, the resulting cir­
cuit will be highly efficient. Let me also note that due to the multi-functional nature of 
individual elements, synthesis of polymorphic circuits is much more complex than synthesis 
of an ordinary digital circuit. 

1.1 Research motivation 

It is possible to identify two main issues, which still significantly hinder more extensive 
adoption of polymorphic electronics as a technique for reconfigurable circuits. The first 
one results from a lack of suitable polymorphic components on all levels of synthesis. As 
the majority of polymorphic circuits have been designed on a gate level, the most-wanted 
polymorphic components are naturally polymorphic gates. Several useful polymorphic gates 
were proposed during the last decade [45] and some prospective sets of multi-functional 
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gates are emerging even today [42]. The second issue is dealing with multi-functional 
circuit synthesis using those polymorphic components. As the problem of polymorphic 
circuit synthesis is relatively hard to address in a conventional way, many of the previously 
devised polymorphic circuits have been synthesized using evolutionary principles (EA, C G P 
etc.). Time needed to evolve a result grows dramatically with complexity of a circuit and 
probability of obtaining reasonable and efficient implementation drops at the same time. 

1.2 Thesis organization 

Brief introduction to digital circuit design is reviewed in the following section 1.3. The 
section explains integrated circuits design flow from system specification to physical device. 
The design flow is demonstrated on a well known Y-chart, where logic synthesis phase takes 
place. Consequently, the logic synthesis phase is discussed. 

Chapter 2 describes state of the art of currently known synthesis methods for polymor­
phic circuits. 

The main contribution of this thesis is presented in chapter 3. In the beginning, a 
novel, multi-level representation for polymorphic circuits is introduced. The innovative 
representation is an extension of A I G , in order to add capability to handle polymorphic 
circuits. The chapter continues with a proposal of polymorphic-AIG (PAIG) rewriting of 
polymorphic circuits. Its aim is to optimize a P A I G network. 

Major experiments related to P A I G rewriting are described in chapter 4 in detail. The 
chapter consists of four sections, where the first (section 4.1) optimizes one desired circuit 
with polymorphic behavior. The second section (section 4.2) focuses on optimization of two 
independent circuits in polymorphic mode. The second experiment The third experiment 
(section 4.3) compares P A I G rewriting that allows KL-cuts to P A I G rewriting which permits 
K-cuts only. The last one (section 4.4) compares the P A I G rewriting with the most famous 
synthesis method PolyBDD. 

Conclusion, thesis contributions and suggestions for future research are discussed in 
chapter 5. 

1.3 Digital circuits design background 

In general, an electronic device is a composition of basic electronic components such as 
resistors, capacitors, inductors, diodes, and transistors interconnected with wires. Inter­
connection of mentioned components with wires creates an electronic circuit with an ability 
to perform simple or complex operations such as computation, signal amplifying, data trans­
fer, etc. Electronics can be divided into these groups: digital electronics, analog electronics 
and mixed electronics, which is mix of both previously mentioned [3]. 

Digital electronics is a subset of electronics, that operates on digital signals. A high­
light of digital electronics in comparison to analog electronics is that digital signals can be 
transmitted without degradation caused by noise. For example, it is possible to reconstruct 
an audio signal transmitted as a sequence of ones and zeros without any damage, assuming 
that noise is not strong enough to prevent recognition of the zeros and ones in the sequence 
[26] 

Electrical signals appearing in digital circuits are discrete and represent logic values. 
These values represent information that is usually further processed. In most of cases, 
binary logic is applied: One voltage level (typically positive value) represents logical '1', 

4 



another voltage level (usually zero voltage) represents logical '0'. Digital circuits are built 
from logic gates (gates are built from transistors usually) and these gates offer functions 
of boolean algebra, such as A N D , N A N D , OR, NOR, X O R , X N O R etc. Combination and 
interconnection of these elementary gates can represent combinatorial digital circuit. [25] 

Digital circuits can be divided in two groups: combinatorial and sequential circuits. 
Outputs of combinatorial digital circuits depend on and only on values attached to circuit 
inputs. Sequential digital circuits compute an output value based on values attached to 
circuit inputs and also on internal state of the sequential circuit. It suggests, the sequential 
circuits are enriched with memory, which can keep an internal state of a sequential circuit. 
For the purposes of this thesis, only combinatorial circuits will be discussed in the further 
text. 

Nowadays, nearly all the computing machines are internally based on some variant 
of a digital circuit. From a formal point of view, its composition can be described in a 
straightforward way through the following definition [46] below, where its depicted as a 
variant of acyclic graph: 

Definition 1. Digital circuit 
Let K be a set of functional blocks (e.g. logic gates), and let G is an acyclic graph G = 

(V,E). Then, a digital circuit is C = (V,E,(p), where 

• V is set of nodes (I/O ports of logic gates), 

• E = {(a, 6)|a, b £ V} is a set of edges (interconnections), 

• (p denotes a projection that assigns to each vertex from V a component from the set 

K, if : V ^ K. 

The definition 1 describes a structural description of a digital circuit on logical level in 
Y-chart. The term Y-chart is explained a few paragraphs below. The structural description 
is used for the purposes of this thesis. 

In its most simple valid composition, a digital circuit may consist of a single logic gate 
or similar fundamental element. It's necessary to point out that in a real situation a circuit 
would be comprised of potentially high number of mutually interconnected logic blocks (or 
other substantial parts for its flawless operation). 

It involves a term V L S I - Very Large Scale Integration, which means a process of cre­
ating an integrated circuit by combining millions of logic gates onto a single integrated 
circuit. V L S I began in the 1970s when integrated circuits were widely expanded, enabling 
the development of complex semiconductor technologies. It is good to mention that mi­
croprocessors and memory chips are created by V L S I process. Before the introduction of 
V L S I technology, most integrated circuits had a limited set of functions they could perform. 
A n electronic circuit might consist of a C P U , R O M , R A M and other glue logic. VLSI lets 
integrated circuits designers add all of these into one chip. 

For development of integrated circuits, a Y-chart (also known as Gajski-Kuhn chart) 
is mostly used. Y-chart was developed in 1983 by Daniel Gajski and Robert Kuhn. The 
chart, visible in figure 1.1, represents the hardware development view as three domains that 
are depicted as three axises (behavioral, structural and physical) and looks like an Y . Along 
these axises, the abstraction levels describe the degree of abstraction. The outer shells are 
generalizations, the inner ones refinements of the same subject. The system level describes 
the most abstract layer, such as processors or SoC's (System-On-Chip). Register Transfer 
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Level describes digital circuits using registers (e.g. adder), logic level works with gates and 
circuit level operates with transistors. 

Physical axis binds the structure to silicon. It specifies a Printed Circuit Board (PCB) 
layout or integrated circuit layout [41]. 

Behavioral axis reflects how a desired circuit should respond to a given input vector. 
Behavior may be specified by truth tables, Boolean equations, algorithms or any hardware 
description languages (HDLs) [41]. 

Structural axis describes how components are interconnected to perform a desired 
function. This representation uses a list of components and their interconnections [41]. 

The thesis content can be put to logic level, where gates are representatives of structural 
axis and Boolean expressions of behavioral axis. 

Structural Behavioural 

Processors, memories 

Registers, flip-flops, M U X 

Gates 

Transistors 

Algorithms, flow charts 

Register transfer 

Boolean expression 

Transfer function 

Transistor layout 

Cell layout 

Modules 

Boards 

Physical 

Figure 1.1: Y-chart [41]. 

1.3.1 Logic synthesis and optimization 

On the basis given by Y-chart, a design of digital circuits is following the flow from outer 
shell inwards of Y-chart. To reach a systematic design of VLSI circuits, IC (Integrated 
circuit) design flow comes out from the Y-chart. IC design flow uses a limited set of 
digital logic gates (a cell library), and the process can be divided into five parts: System 
specification, High-Level synthesis, Logic synthesis, Physical synthesis and Tape out. 

• System specification simply describes the functional and non-functional requirements 
posed on a system element. 

• High-Level synthesis makes a transformation at an architectural level, transforming 
an algorithmic description into an R T L . 

• Logic synthesis performs a transformation from a behavioral circuit description into 
a netlist of logic gates of target technology [33]. 

• Physical synthesis (also known as Low-Level Synthesis) is responsible for transforma­
tion of a netlist, obtained from logic synthesis, into a set of geometric shapes and 
layers to be manufactured. 

Ü 



System specification 

Behavioral description 
V 

High-level 
synthesis 

RTL architecture specification 

Logic synthesis 

Netlist (gate or transistor level) 

Physical synthesis 

Manufacture data 

Tape out 

- i 

Translate 

Optimizations 

Technology mapping 

Figure 1.2: Design flow. 

• Tape out is the final result of the design process for integrated circuits or printed 
circuit boards before they are sent for manufacturing. 

A design flow is clearly illustrated in figure 1.2. The figure covers all mentioned ab­
straction layers with processes, that are applied in digital circuit design. The logic synthesis 
block is highlighted and expanded, because the block is essential for this thesis. Logic syn­
thesis flow can be also divided into at least three parts: Translation, optimization and 
technology mapping: 

• Translation 

A Register Transfer circuit description is transferred to input format of synthesis tool 
like P L A (Programmable Logic Array), B L I F (Berkeley Logic Interchange Format), 
Aiger, etc. 

• Optimization 

A n input is optimized by a synthesis tool. Synthesis tool produces an optimized 
result/circuit description. 

• Technology mapping 

A n optimized description is mapped onto target technology, where target technology 
elements are specified by a mapping library. The result is a Netlist on the gate level 
of target technology. 

The term logic synthesis is a very important topic in E D A (Electronic Design Au­
tomation) area [27]. The logic synthesis is a transformation process of a circuit behavioral 
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description into an optimized gate-level representation, i.e. a netlist of gates for a target 
technology. Main goals of logic synthesis are optimizations, typically area, delay and power 
optimizations, where these steps are common for two-level and multi-level representations 
and also for ordinary and multi-functional circuits. The logic synthesis methods attempt 
to minimize the number of required components, power consumption and delay of signal 
delivery. 
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Chapter 2 

Polymorphic circuit synthesis and 
optimization 

Synthesis methods of ordinary digital circuits have to solve a problem an interconnection 
and nodes placement of graph G, searching just for one particular function F. If a suit­
able canonical form 1 of F is found, a structure of G can be easily inferred from it. For 
polymorphic circuits, this approach tends to exhibit higher complexity. The reason is that 
just one graph has to cover several functions from an existing set 4> = {F\,..., Fn}, that 
are requested from a given circuit, and the demand of multi-functional operation has to be 
fulfilled in the same time. The task to find the same form for all the functions F\ to Fn 

(with different elementary functions on the same position) is, therefore, not trivial at all. 
Contemporary the polymorphic circuit design takes place mostly at a gate level. During 

the course of numerous experiments carried out within the field of polymorphic circuits it 
became obvious that circuits designed solely with polymorphic gates are less useful than in 
situation, which involves both polymorphic and conventional elements. It should be noted 
that the number of conventional gates typically exceeds the number of polymorphic gates 
of a target circuit currently. In many cases it is also sufficient to use a single polymorphic 
gate type, if such gate executes logically complete functions (e.g. N A N D / N O R ) . If a 
wider selection of polymorphic gates is available, it could ultimately lead to better solu­
tion. However, the overall complexity of the problem could increase (in state space) [46] 
significantly. 

2.1 Exist ing polymorphic design and optimization methods 

Recent advances in the domain of multi-functional circuits have brought into being several 
approaches how to handle the synthesis process of polymorphic circuits performed at a gate 
level. However, all of the methods presented up to now fail to comply in some measure 
with the general requirements shared by common applications (e.g., resulting size, propa­
gation delay, operating frequency, runtime duration, etc.), which is particularly apparent 
for demanding synthesis tasks. 

1 Canonical representation: Representation is unique for a particular function and variable order. 
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Figure 2.1: Self-checking polymorphic adder in R E P O M 0 3 2 designed by C G P [48]. 

2.1.1 A d - hoc: common sense design 

A d hoc approach is regarded as a circuit design method without using any explicit formal 
design techniques or supplementary tools. Only fundamental knowledge and an experienced 
designer is expected. This method allows to construct only relatively small circuits. The 
method is therefore not the right choice for bigger circuits [46]. 

2.1.2 Evolutionary design 

Regardless of the existing drawbacks visited in parent section, utilization of evolutionary 
algorithms and techniques still plays an important role in connection with the optimization 
of multi-functional circuits. In fact, such methods have been a natural choice ever since 
the invention of polymorphic electronics. Especially in situations when certain awareness 
of the expected result exist, it becomes less clear how a particular objective was achieved. 
However, it is not an exception to obtain decent solutions. 

C G P (Cartesian Genetic Programming) [35, 34] is considered to be one of several field-
proven methods generating satisfactory results. The design of polymorphic circuits using 
C G P is almost the same compared to the conventional C G P design of circuits except the 
fact that it involves extended fitness function. The difference lies only in the fitness function. 
It is necessary to ensure that correctness of a circuit is evaluated for all functions / modes 
that the circuit has to perform. However, scalability becomes the major issue for really 
complex circuits due to possible explosion of state space, which needs to be searched [46]. 
Number of evolutionary-based techniques is capable of providing very efficient polymorphic 
circuit solutions even from scratch [47, 30]. Nevertheless, it has been found that usage of 
such methods makes sense for small problems only (up to 15 inputs [21]). Figure 2.1 shows 
an polymorphic adder designed by CGP. 

Unfortunately, a process and result of various evolutionary techniques and optimization 
schemes derived from them is hard to predict in advance and get firmly under control. 
Another important problem is scalability aspect. Despite that, the evolutionary design 
is the most effective approach today. The proposed algorithms are capable to find many 
solutions, which may not be satisfying at the beginning, but the algorithm can generate 
successively better solutions. New solutions are derived as long as the previous ones do 
not achieve a perfect match with the requested functionality specified by, for example, the 
truth table. This approach may be conceived in a such way the fulfillment of even several 
parameters may be demanded. 
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Figure 2.2: Multiplexing of conventional circuits by means of using polymorphic multiplex­
ers: a) independent modules, and b) sharing gates between modules [20]. 

2.1.3 Polymorphic multiplexing 

A simple and straightforward design method of multi-functional circuits is called polymor­
phic multiplexing - switching functions with respect to an environment state [20]. This 
technique was designed by Gajda and Sekanina [21]. This is a rather simple method that 
strives to adhere to the principles of conventional circuit design. In short, the principle is 
this: Every function that the polymorphic circuit will perform is designed in a conventional 
way using standard CMOS-based blocks. The output of each proposed circuit is connected 
to a so-called polymorphic multiplexer, that finally performs selection of a given input, 
depending on environmental conditions. 

Polymorphic multiplexing can be explained formally as follows: Let's have two con­
ventional digital circuits M\ and M<i implementing two different logic functions fa and fa 
(see a) on figure 2.2). Both circuits may be optimized using A B C tool [1] and have the 
same number of inputs PI and outputs PO. Outputs are connected using polymorphic 
multiplexers. In the first mode, primary output 0 of circuit M\ is propagated to a com­
mon output oo, primary output 0 of circuit M 2 is propagated to a common output oq in 
the second mode. In fact, the intended sharing of common parts is not achieved without 
additional steps of the synthesis process. 

This initial approach is not very efficient in terms of occupied area (no sharing of 
similar circuit parts), which is in a direct contrast to expected benefits of using polymorphic 
electronics [46] [20]. A closer analysis of conventional circuits, which are supposed to be 
merged together using polymorphic principles, reveals the fact that it is possible to share 
common parts of the participating circuits. In fact, the original version of polymorphic 
multiplexing method can be slightly optimized with this assumption in mind. Figure 2.2 
shows closer view at the principals of polymorphic multiplexing method. 

2.1.4 P o l y B D D 

Gajda [20] suggested a method for synthesis of polymorphic circuits using binary decision 
diagrams (BDD). This method is called PolyBDD. It uses a concept of so-called multi-
terminal B D D , which is an extension of binary decision diagrams with the terminal nodes 
of the diagram containing integer values. The PolyBDD method is using these values 
to represent a possible relation between input variables and a relevant output. In case of 
polymorphic circuit expected to implement two different functions working in two allowable 
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Figure 2.3: Conversion table for the transformation procedure of Po lyBDD into a polymor­
phic circuit [20]. 

modes while using polymorphic gates, it yields 16 possible combinations. Values in terminal 
nodes of M T B D D tree will be therefore integers from an interval <0-15> (figure 2.3). 
Detailed explanation of internal principles of Po lyBDD method can be found in [20] and 
[21]. Principal drawbacks of this method lie in relatively sparse exploitation of polymorphic 
gates, i.e. these are practically used only in a role of input/output switches. Further 
optimizations relies on evolutionary optimization of polymorphic circuit. 

2.1.5 Recent work on logic synthesis of polymorphic circuits 

Some further work on polymorphic circuit logic synthesis has been done in recent years. 
This section summaries interesting published papers related to polymorphic logic synthesis 
topic. 

Evolutionary design of polymorphic circuits with the improved evolutionary 
repair [58] 

In 2013, a Chinese research team tried to improve evolutionary synthesis of polymorphic 
circuits by including Repair algorithm into evolutionary synthesis process [58]. Evolutionary 
synthesis algorithms are the most usable techniques for design of polymorphic circuits, 
but they still face scalability problems. The most complex polymorphic circuit designed 
evolutionary is a sorter/multiplier with 6 primary inputs and 6 primary outputs. Thus, 
designing more complex polymorphic circuits is still the biggest obstacle in the case of use 
of evolutionary algorithms. 

The team published the Repair algorithm for evolutionary synthesis algorithms in order 
to accelerate the evolution process and overcome Stall effect in 2012 [57]. Stall effect is 
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a state when the best fitness of the evolutionary population is not increasing or increases 
slowly. It may take several generations to find a population that will have progressive 
fitness again. The repair algorithm is deployed when stalling state is detected. It repairs 
incomplete, best individual to a target circuit directly. This repair technique removes time 
wasted in stall effect. 

Authors applied the repair algorithm onto evolutionary design of polymorphic circuits 
in order to make evolutionary techniques more scalable. 

Evolutionary Design of Polymorphic Circuits with Weighted Sum [30] 

Sekanina et. al. experimentally applied a C G P design of logic circuits. The fitness is 
computed for the whole polymorphic circuit without respect to complexity of each desired 
function [47]. A Chinese research team extended C G P evolutionary approach applying 
weighted sum, that helps to increase the success ratio and decrease the evolutionary gen­
erations in 2007 [30]. Without loss of generality, authors expect that a polymorphic circuit 
can perform two independent logic functions in two independent modes. Both circuit (per­
forming function 1 or function 2) can be regarded as a traditional digital circuit. Circuits 
in mode 1 or mode 2 may have different complexity. Thus, a characteristics of polymorphic 
circuits (to be evolved) should be taken into account for generating the expected polymor­
phic circuit. Authors involve weighted sums W\ and W2 in computation of fitness function 
of desired polymorphic circuit in the following form: F = W\ * F\ + W2 * F2, where W\ 
W2 are weight coefficients, and F\ F2 are common fitness for circuits in desired modes. 
For detailed description, see experiments presented in [30]. Unfortunately, experiments are 
presented on quite small circuits only. 

In 2015, the team extended the weighted sum approach with periodical weight adjust­
ment, changing weight factor are changed periodically according to the sinusoid function, 
expressed as: Wi = sin(27rti) + 1, where 1 < i < n. Authors present improvement in com­
parison to initial weighted sums work, thus, experiments are presented on small circuits 
only. For more details, visit [31]. 

Design Methods for Polymorphic Combinational Logic Circuits based on the 
Bi-Decomposition Approach [29] 

The newest paper related to design and optimization of polymorphic circuits is dealing with 
Bi-Decomposition approach [29]. Authors apply Bi-Decomposition, known from traditional 
design of logic circuits [49, 39]. The work promises an algorithm for design of relatively large 
circuits with gate-efficient implementation and utilization of polymorphic gates in contrast 
to PolyBDD, where the lesser utilization of polymorphic gates is criticized. Experiments 
report number of used gates and utilization of polymorphic gates. This paper looks very 
promising, however, it is currently available on a rXiv 2 only without admitting reviews. 

2 arXiv is a free distribution service and an open archive for scholarly articles. 
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Chapter 3 

Proposed multi-level design and 
optimization method 

In fact, a specification of logic function itself can appear in several, mutually different forms. 
A n elaborate discussion on five of the most common description using two-level arrangement 
can be found in [55]. These cases are mostly focused on various representations of truth 
table forms together with disjunctive/conjunctive notation. For the sake of completeness 
it is important to point out that synthesis and minimization techniques in digital circuit 
domain are based extensively on multi-level representations as well [17, 23, 24], especially 
due to reasonable compromise between compact representation and efficient manipulation. 
Probably one of the most illustrative examples here is tied with A I G as a widely adopted 
scheme in logic optimizations. 

Those minimization and synthesis techniques could be, as a matter of fact, roughly 
classified as two-level or multi-level oriented. In case of two-level methods the final circuit 
composition is delivered as a logic expressions in conjunctive or disjunctive notation. This 
approach then leads to the situation when input signals will only pass through two logic 
gates at most. On the other hand, multi-level techniques are generating so called nested ex­
pressions with the resulting data path (or interconnection of the individual gates) spanning 
even far more than two circuit elements within the final circuit arrangement. 

The previous chapter discussed two-level optimizations of polymorphic circuits. Pre­
sented optimization techniques are applicable to two-level circuit representations. Literals 
are inputs and it is assumed that a final circuit is represented in the same way as a repre­
sented function. It leads to significant number of multi-input A N D gates and one big OR 
gate. This fact may be a motivation to focus multi-level optimization methods. Multi-level 
representations are more realistic in the most cases. 

In order to develop a method for multi-level logic optimization, a valid multi-level 
representation of logic circuit for an optimization algorithm is necessary. Multi-level circuit 
representations for ordinary logic circuit already exist, such as BDDs, AIGs or factored 
forms. It is assumed that a node can perform an arbitrary function and a number of 
literals can be significantly reduced. Unfortunately, similar descriptions for polymorphic 
circuits are missing. 

It is a motivation to propose a multi-level representation of polymorphic circuits. This 
representation shall prepare a basis for optimization processes. Last years, AIG's are very 
popular representation useful for optimizations of ordinary circuits. Popularity of AIG's has 
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led to a focus the A I G representation and hence P A I G (Polymorphic And-Inverter Graph), 
which is described in following section, was introduced. 

3.1 P A I G - A n extension of A I G for polymorphic circuits 

The problem outlined above, which is being pursued by this thesis, represents a challenge 
that stands out particularly in a situation when the circuit complexity is reaching beyond 
the boundary of more than just a few tens of gates. A key obstacle here is given by the 
fact that standard methods for representation of a typical digital circuit fail to adequately 
capture the specifics within the polymorphic electronics domain, which in turn renders their 
performance quite unsatisfactory. However, a solution leading ultimately to an inception 
of a novel format for representation of polymorphic circuits. The novel format could be 
identified in integration of corresponding extension into the foundation of conventional 
schemes like e.g. And-Inverter Graphs [37] or Binary Decision Diagrams [2]. 

Hence, the need to design a novel format for transparent representation of polymorphic 
circuits, which satisfies the requirements of easy manipulation in terms of synthesis and 
optimization tasks, clearly emanates from those aspects. 

3.1.1 Elements of And-Inverter Graph scheme 

One of the most ubiquitous schemes used for representation of a conventional digital circuit 
is known as And-Inverter graph (AIG). In fact, its core principle is based on an acyclic 
network of nodes and edges, where a node is two-input A N D gate and an edge behaves like 
a negation of the logic signal passing through it between nodes. A significant advantage 
of using A I G concept for representation of a digital circuits is undoubtedly given by the 
fact that its foundation is relying on well-established graph theory. Hence this observation 
suggests a possibility to apply various operations that are generally known from graph 
theory also in case of AIGs. The continuous exploration and refinement of A I G with regard 
to its origins of theoretical background, which has been done already for more than a decade, 
brought a couple of advanced operations, which turn out to be very useful for digital circuits 
optimization. 

Most of these operations have originated from research activities of Alan Mischenko [37]. 
For the sake of clarity, let's mention just some of them: 

• Balancing: reduction of the depth. 

• Structural hashing: detection of an isomorphic subgraphs. 

• Functional reduction: detection of an isomorphic subfunctions in a graph. 

• Rewriting: identification of ineffective parts and their replacement. 

• and a rich set of additional operations. 

And-Inverter graph offers modern, effective and transparent representation for necessary 
minimization operations requested by logic synthesis. For this reason, I decided to use A I G 
's as a base for a new unique representation format of polymorphic circuits. 
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3.1.2 Toolset for operations with A I G s 

The term A I G E R denotes a format and, in the same time, also set of utilities for And-
Inverter Graphs processing, which was developed at Johannes Kepler University in Linz. 
A I G E R has been presented to the general audience at the Alpine Verification Meeting 2006 
in Ascona [4]. The main idea was to provide a simple, compact file format for a model 
checking purposes. In fact, a specification of A I G E R format [5] is available in two, slightly 
different versions: an ASCII and a binary. Each version is conceived with the aim to 
accommodate somewhat different purpose. 

The ASCII version is the format of choice when it comes to A I G circuit representation, 
which needs to be saved for further reading and editing by a human circuit designer. It is 
simple to generate and it less constrained in comparison to the binary format. The binary 
version is, in fact, a compressed version of ASCII variant. Binary format saves data and is 
unreadable without corresponding A I G E R reader. ASCII format requires more disk space, 
but it is readable by human. 

Further within the context of this contribution the ASCII format will be considered only, 
especially because it gives better means for explaining the fundamentals of novel approach 
to the representation of polymorphic circuits. 

Every circuit description file compliant with A I G E R format should begin with one-line 
header, where the exact version of A I G E R is given: 

• „aig" - binary identifier 

• „aag" - ascii identifier 

This identifier is followed by 5 unsigned integers M I L O A which denote the following 
items respectively: 

• M - maximum variable index 

• I - number of inputs 

• L - number of latches 

• O - number of outputs 

• A - number of ands 

After this sequence of integer identifiers, the file format simply continues with an A I G 
description of a circuit structure. Now, each object (input, output, and, latch) has a unique 
numeric identifier. In order to keep a tidy arrangement, inputs are described first - each 
input (unique numeric identifier) is specified on a dedicated line: 

<input identifier> 

After the specification of all relevant input, latches can be placed. However, latches 
are not supported at the moment for polymorphic circuits, because this work focuses to 
combinatorial circuits only: 

<latch input> <latch output> 

Outputs must be specified in the same way as inputs: 

<output identifier> 
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Finally, there still remains the need to specify the inner portion of A I G circuit repre­
sentation consisting of AND-based nodes and their mutual links based on inverters: 

<node identifier> <left leaf> <right leaf> 

The following box contains an example of A I G E R format in ASCII encoding [5]. The 
example is based on the previous instructions: 

aag 6 2 0 2 2 

2 #input 0 

4 #input 1 

8 #output 0 

7 #output 1 

6 2 4 #and node 

8 3 5 #and node 

Figure 3.1: Representation of circuitry that contains two combinatorial functions, N A N D -
output 01 and N O R - output 02, using A I G paradigm. 

It is possible to notice on figure 3.1 and example of A I G description given above, all 
object identifiers are even. It is required by internal implementation of A I G E R intercon­
nections, where even number is a wire. A n inverting edge (dotted) is specified by odd 
object identifier (+1). For example an inverting edge from node 8 to node 2 will be noted 
as follows1: 

8 3 

3.1.3 Newly proposed A I G format for polymorphic circuits: P A I G 

As it was concisely demonstrated in the previous section, A I G E R and other widespread 
conventional tools and techniques do not offer, if any at all, an immediate support for 
the representation of polymorphic circuits. Hence, the need to design a novel format for 

1 Graphical representation of edges differs from commonly used notation. Arrows lead from leafs to roots. 

17 



transparent representation of polymorphic circuits, which satisfies the requirements of easy 
manipulation in terms of synthesis and optimization tasks. 

Technical details of P A I G 

The intention to develop new format for representation of polymorphic circuits was pri­
marily motivated by the constraints and severe limitations of the available conventional 
methods. In addition, there was also an objective to get a compact format which may fa­
cilitate the tasks of synthesis and further optimization of circuit structure. A key decision 
was to preserve backward compatibility to A I G E R format due to its widespread acceptance 
and relative simplicity. 

Wi th the aim to keep the complex nature of polymorphic circuit synthesis at a reasonable 
level, a number of permissible modes for each node within A I G representation was limited 
to the number of two. It means that the final polymorphic circuit can ultimately work 
in just two different operating modes, where an actual mode is switched by a state of the 
environment. In general, a resulting behaviour of the circuit built in A I G can be affected 
only by two aspects: 

1. Interconnection. 

2. Edges (wire or inverter). 

One of the possible ways how to enhance the capabilities of AIGs involves definition of 
new edge types. Thanks to the polymorphism it is possible to change behaviour of gates 
and also inverters. A I G contains only A N D gates, however, any other function can be built 
from A N D gates and their appropriate interconnection. This idea has resulted into the 
extended variety of edge types - from the initial two types to total of four types now: 

1. Normal edge - wire. 

2. Inverted edge - inverter. 

3. Polymorphic edge 1: 

• In mode 1 - wire, 

• in mode 2 - inverter. 

4. Polymorphic edge 2: 

• In mode 1 - inverter, 
• in mode 2 - wire. 

Black solid line represents a normal wire. Black dotted line represents an inverter. New 
polymorphic edges are denoted as a double solid line in the case of polymorphic edge 1 
and as dotted double line in the case of polymorphic edge 2. See figure 3.2 for examples 
illustrating those types of edges. Finally, those four types of edges enable design arbitrary 
polymorphic circuit with two operating modes. 
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Figure 3.2: Graphical representation of edge types. Edge types from the left: wire, inverter, 
polymorphic wire, polymorphic inverter. Polymorphic wire is working as a normal wire in 
mode 1, while in mode 2 it assumes the function of inverter. Polymorphic inverter of is 
shown on the right side. In mode 1 it provides the functionality of inverter. Then, in mode 
2, its behavior resembles wire. 

At the beginning it is necessary to inform an A I G E R parser about an intention to use 
the extended format. Format identifier in header must contain string „paag". Then, the 
extension for polymorphic circuits will be correctly recognized: 

• „paig" - binary identifier for polymorphic A I G E R (not supported yet), 

• „paag" - ascii identifier for polymorphic A I G E R . 

The ordinary A I G E R format works with unsigned integers only. Even reference indexes 
are treated as „wires" and odd are being seen as „inverters". Extending A I G E R to work 
with signed integers is necessary for the support of new edge types - polymorphic edges. 
Ordinary edges are staying unchanged, while the polymorphic edges have negative prefix 
before their object index. Following example highlights the proposed extension: 

• Polymorphic edge 1 (mode 1 = wire, mode 2 = inverter) will be noted as negative 
even integer. 

• Polymorphic edge 2 (mode 1 = inverter, mode 2 = wire) will be noted as negative 
odd integer. 

paag 4 4 0 4 0 

2 #input 0 

4 #input 1 

6 #input 2 

8 #input 3 

2 #output 0 

5 #output 1 

-6 #output 2 

-9 #output 3 

3.1.4 New constructions offered by P A I G extension 

A I G extension of polymorphic edges has brought new constructions that may appear in a 
network. These constructions may bring new, more effective interconnections, but in other 
hand they require an attention during A I G manipulation. 
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One of the new construction that does not make sense in A I G , but in P A I G has signifi­
cant importance, is connection of both edges from node a A to a node B. This construction 
has no meaning in A I G , because it propagates constant value, but in P A I G , it may change 
output dependently on polymorphic state. It is possible to insert a polymorphism into a 
circuit easily and this construction is also applicable inside a network. See figures 3.3 for 
better understanding. 

Figure 3.3: The left network shows an interconnection useless in A I G . However, the right 
network shows the same interconnection with polymorphic edge, that has significant us­
ability in proposed P A I G networks. 

This construction is further used for transformation of random primary input to vir­
tual polymorphic input in performed experiments and evaluation. These constructions can 
appear inside a P A I G network also. 

3.1.5 Experiments and demonstration 

no. Description 

# Description Circuit 1 Circuit 2 
1 2-bit A L U Logic A L U Arithmetic A L U 
2 2-bit Adder S U M Carry 
3 Cellular tr.function Rule 30 Rule 100 
4 G R A Y / B C D Coder Gray B C D 
5 Self-checking adder Carry Carry 

Table 3.1: Description of experimental circuits for P A I G extensions. 

For the purpose of demonstrating properties of the newly proposed format for polymor­
phic circuits representation five different experiments were prepared in total (table 3.1). 
These experiments clearly show the efficiency of polymorphic circuits handling using new 
P A I G / P A A G format in comparison to the conventional solution based on standard A I G E R 
format without additional modifications. Selection of benchmark circuits was random in 
order to clearly demonstrate the concept of P A I G representation. 
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no. Conventional solution Polymorphic solution Improvement 
# Circuit 1 Circuit 2 SUM AIG PAIG Conv. vs PAIG. AIG vs PAIG 

[ANDs] [ANDs] [ANDs] [ANDs] [ANDs] [%] [%] 

1 9 7 16 18 10 44.44 37.50 
2 4 6 10 13 7 46.15 30.00 
3 4 4 8 13 6 53.85 25.00 
4 16 7 23 26 16 38.46 30.43 
5 4 4 8 8 4 50.00 50.00 

Table 3.2: Comparison results of conventional A I G representations and P A I G representa­
tions. 

Experiment no.l: Logic/Arithmetic A L U 

The first experiment is dealing with a combination of two different A L U structures. The 
first A L U should be working in a logic mode and the second A L U should be working in 
an arithmetic mode. Conventional A I G implementation of these two A L U s is shown in 
figure 3.4. In this case, the logic operation mode of the A L U requires 9 A N D gates and the 
arithmetic A L U consumes only 7 A N D gates. See table 3.2 stating the overall number of 
used gates. 

If an addition of polymorphism feature (switching of operating modes) is conceived us­
ing conventional A I G , then a mode switching is achieved thanks to an additional, dedicated 
virtual input labelled Mode. Let's call this solution „virtual polymorphism". Virtual poly­
morphism of A L U requires 18 A N D gates. It is possible to see a graphical representation 
of this circuit variant in figure 3.5 on the left. 

If the P A I G / P A A G format is used, it is possible to reach significant savings of re­
sources. See figure 3.5 on the right. It shows a polymorphic A L U working in both logic and 
arithmetic mode, in which an operating mode is depends on a state of a target operating 
environment. This implementation is built upon the exploitation of new polymorphic edge 
types. 

Experiment no.2: 2-bit adder 

The second experiment is comprising a polymorphic adder, where Carry and Sum bits 
are switched in polymorphic way. In the first mode, adder calculates S U M , in the second 
mode, adder calculates carry. A n adder circuit representation using conventional A I G 
scheme requires 10 A N D gates. If the P A I G novel format is used, common resources are 
shared and whole the adder implementation requires only 7 A N D gates. See table 3.2 for 
details. 

Experiment no.3: Cellular transition functions 

Another application of polymorphic circuits is demonstrated as a transition function of 
cellular automaton. This experiment executes two transition functions: Rule 30 and Rule 
110. Rules are switched with regard to the operating conditions. Two conventional functions 
build from AIGs require 8 gates in total. Polymorphic A I G solution saves 2 gates while 
still preserving the original functionality. See table 3.2 for details. 
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Figure 3.4: There is a conventional A I G of logic A L U on the left. There is a conventional 
A I G of arithmetic A L U on the right. 

Experiment no.4: G r a y / B C D decoder 

This experiment combines two 4-input and 4-output circuits - Gray coder and B C D coder. 
Polymorphism switches between gray coding and B C D coding. A conventional solution of 
both circuits requires 23 A N D gates in total. Virtual polymorphism needs 26 A N D gates 
and a P A I G solution consumes only 16 A N D gates. A n improvement of the polymorphic 
solution reaches 38.46% in comparison to the conventional solution. 

Experiment no.5: 2-Bit self-checking adder 

The last experiment takes aim on a special kind of 2-bit adder with self-checking ability. 
This idea originated at Faculty of Information Technology, Brno University of Technol­
ogy [45] as an illustrative example of polymorphic circuits application. Adder works equally 
in both polymorphic modes. A n additional feature is hidden in fault detection mechanism. 
The adder calculates carry in the first mode. In the second mode, the adder performs the 
same - carry. If the carry is equal in both modes, no fault is present. But, if the carry is 
different in operational modes with respect the same inputs, an fault is signalized. 

22 



Figure 3.5: There is a conventional A I G of virtual polymorphic logic/arithmetic A L U on 
the left, in which the mode is controlled by virtual input labeled as M O D E . There is a 
polymorphic A I G (PAIG) version of logic/arithmetic A L U on the right. Is possible to note 
significant savings of A N D gates. 

Comparison of convetional and polymorphic solution 
25 

Comparison of AIG vs PAIG format 

30 

# Experiment 

I convetional • polymorphic 

# Experiment 

• aig • paig 

Figure 3.6: Left graph shows a comparison between two circuits synthesized as two separate 
circuits and polymorphic solution using P A I G . Right graph shows a comparison between 
A I G and P A I G , where both are representing a polymorphic circuit. 
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P A I G extension evaluation 

The table 3.2 summarizes results of all conducted experiments outlined in the previous sec­
tion. The table is separated into two main columns: Conventional solution and polymorphic 
solution. The conventional solution contains number of A N D gates used with conventional 
technology and A I G representation. The polymorphic solution contains number of ANDs 
required by polymorphic technology. A n A I G column contains number of ANDs required 
in case of using virtual polymorphism (basic A I G representation). A column P A I G con­
tains number of used ANDs in P A I G / P A A G representation. The third column shows an 
improvement between conventional solution vs polymorphic solution in a percentage ratio 
and also the comparison of virtualized polymorphism to P A I G / P A A G representation. The 
results demonstrate, that the proposed P A I G / P A A G representation scheme can provide 
average saving of 34.59% A N D gates (see figure 3.6 for details). 

This evaluation presents the novel P A I G / P A A G representation on relatively small cir­
cuits. A main intention of the evaluation is clear explanation of P A I G / P A A G representation 
principles. More complex circuits are evaluated later, in chapter 4. 

3.1.6 P A I G extension summary 

A novel format for representation of polymorphic circuits using A I G was proposed. It is 
an extension of A I G E R format, which is fully supported in well known tools like A B C and 
others. A few experiments show that the novel format seems to be very effective approach 
how to represent polymorphic circuits, including very complex variants (complex variants 
discussed in chapter 4). 

3.2 Polymorphic A I G Rewriting 

In comparison to conventional circuit design, designing of polymorphic circuit is much 
more complex. It is mainly caused by an ability to change behavior of building elements, 
while interconnection remains the same. Many designing methods have been proposed (see 
section 2.1), but most of them are two-level, or they have a scalability problem. Two-level 
polymorphic design methods were already published [12, 11], but a scalable, multi-level and 
straight methodology is still missing. Considering the A I G as a very popular concept for 
conventional circuit design, I decided to create a polymorphic circuit design methodology 
based on A I G . 

In order to synthesize and optimize multi-functional circuits by means of using a scalable 
methodology based upon a formal foundation, a polymorphic-AIG (PAIG) rewriting is 
proposed as a modification of original A I G Rewriting [37] and P A I G extension. Original 
A I G Rewriting is described in [37] in detail. However, it is not applicable for synthesis and 
optimization of polymorphic circuits without further modifications of the former algorithm. 

Basic idea of the original rewriting technique is based on replacement of A I G sub­
graphs by optimal, smaller sub-graphs in order to reduce total number of gates. The 
algorithm proceeds iteratively from leaves to roots of an A I G and if a better solution is 
found, replacement is applied. Sub-graphs which are investigated have typically 4-inputs 
(K-feasibility K=4) and L outputs (L=l ) . 

PAIG-based rewriting approach uses rewriting technique with a slightly different idea 
in mind. As it was mentioned in previous subsections, main intention of multi-functional 
circuits is to take an advantage of sharing common logic of two completely different func-
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tions. At first, it is necessary to insert polymorphism (multi-functionality) into a circuit 
that is going to be synthesized. Two options open up here. The first option, an usual pro­
cedure implements two different functions in a conventional manner, so the polymorphic 
multiplexing is used as a seed of polymorphism. Polymorphic multiplexers are connected 
to primary outputs with respect to functions that are being switched. In P A I G , I designed 
two variants of polymorphic multiplexer, which are depicted in figure 3.7. Let's note that 
both variants consist of 3 A N D gates. Adding polymorphic multiplexers creates full-fledged 

Figure 3.7: Two variants of polymorphic multiplexer represented in P A I G network. 

polymorphic circuit with two functions. The second option is conversion of conventional 
circuit into polymorphic circuit by removing one primary input and making the primary 
input polymorphically driven. 

However, sharing of common resources is not reached in either options, in contrary to 
the main objective here. So here comes the right moment for unleashing P A I G rewriting 
algorithm for optimization of polymorphic circuit in order to share common logic resources. 
In comparison to the original A I G rewriting, a few modification have been applied, such 
as support of P A I G representation, modified cut enumeration and generating optimal sub-
circuits. A l l these modifications are described in detail in the following sections. 

3.2.1 P A I G rewriting algorithm 

For optimization and synthesis of polymorphic circuits, a rewriting algorithm has been 
chosen for his popularity, quality and efficiency in conventional synthesis. Rewriting algo­
rithm is well described in [37], where it was introduced. In the recap, rewriting technique 
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goes through all nodes in a network and all cuts of each node. Then, each cut is analyzed 
and replaced by its optimal implementation (note that all optimum 222 NPN-classes are 
pre-computed). The cut having the best gain of nodes is replaced. 

Algorithm 1 P A I G rewriting algorithm 
1: procedure REWRITE(AZ"G, use_zero_gain) 
2: for each node N in A I G in the reverse topological order do 
3: Cbest = N U L L ; 
4: gain_max = 0: 
5: for each 4-input poly cut C of node N do 
6: F = simulate_cut(C): 
7: C'optimal = Generate_optimal_subgraph(F): 
8: A I G s a n d = copy(AIG); 
9: rep lace_cut (AIG s a n d , C o p < i m a Z ) ; 

10: AIG sand = structural_hashing(AIG s a n r f ): 
11: gain = AIG_num_gates - AIG s a „d_num_ga te s : 
12: if ((gain > ga inmax) || 
13: ( (gain_max == 0) &&: (use_zero_gain) ) 
14: ) then 
15: Chest — Coptimal] 
16: g a i n m a x = gain: 
17: polyedges_max = polyedges(C): 
18: if (C b e s < ! = NULL) then 
19: replace cut (AIG, Chest)] 
20: return A I G : 

Pseudo-algorithm of P A I G rewriting procedure is denoted in Algorithm 1. The Algo­
rithm 1 describes a single rewrite iteration through a circuit C. For maximum efficiency 
of a synthesis process, it is recommended to run more than one iteration, until zero gain is 
achieved - this principle is valid for original rewriting also. 

In comparison to the original A I G rewriting is iteration through A N D nodes in the 
reverse topological order. The reverse iteration from roots to leaves will ensure propagation 
of polymorphism deeper into a network. To achieve maximum expansion of polymorphism 
into a network, in contrast to ordinary rewriting, P A I G rewriting is processing each node 
unless the gain of cut or whole network is negative. 

PAIG rewriting algorithm is a key element behind the first synthesis and optimization 
method targeting multi-functional circuits which does not involve usage of any heuristic 
aspects at its core. A l l steps in the algorithm are strictly defined and the optimization 
process is fully controlled in comparison to evolutionary optimizations. The algorithm 
ensures polymorphism propagation deeper into the circuit structure and enables sharing of 
common sources of both desired functions. 

3.2.2 Cut enumeration in P A I G 

Cut enumeration completely follows the known process of construction and recursive cut 
enumeration. D A G cuts and tree cuts are considered with respect to DAG-aware rewriting. 

It is quite typical for a conventional rewriting procedure that 4-input (k = 4) cuts are 
commonly used. If k = 3, the chance to find a replacement with reasonable potential to 
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improve the circuit representation is reduced significantly. If k = 5, a number of subgraphs 
grows rapidly instead. A 4-input polymorphic cut capable to switch between two functions 
require an additional 5th input. The additional input ensures the function switching and 
for purposes of this thesis the input is named virtual polymorphic input. The virtual poly­
morphic input in conjunction with 4-input cuts for the purpose of optimizing polymorphic 
circuits makes up altogether 5-input cuts. It is possible to observe a direct influence on the 
expansion of state-space comprising all permissible cuts. 

Cut enumeration produces a set of all k-feasible cuts assigned to each node. Cut enu­
meration starts at leaves and continues in topological order to the root of A I G . Each node 
contains at least trivial cut. Each set of cuts of node n is computed as Cartesian product 
of two previous cut sets of nodes a and b. Formal notation of cut sets computation of node 
n is following [38]: 

0(n) = {{n}} U{MU V\U € <f)(a),u € 0(6), \u(Jv\ < k} 

Cartesian product of two sets creates a new cut set of node n, while keeping only K -
feasible cuts. 

3.2.3 Optimal circuit generator - M i n C i r c 

Based on A I G rewriting principles, the rewriting replaces non-optimal subgraphs by opti­
mal. These optimal subgraphs must be somehow available. There are two options here: 
to have a precomputed library of optimal subgraphs or compute optimal subgraphs during 
runtime. For 4-input subgraphs and usage of NPN-class, we must have available 222 opti­
mal structures, that are used for the ordinary rewriting algorithm (4-input cuts are used). 
Unfortunately, polymorphism adds additional virtual input - a polymorphic control wire, 
hence the polymorphic cut enumeration searches for 5-input cuts instead. Due to very high 
number of 5-input cuts (4-real input, 1-virtual input), a number of possible solutions is 
growing up at an extremely fast pace and, thus, it is rendering the option to keep all the 
pre-computed optimal cuts structures unrealistic. It simply becomes necessary to compute 
optimum cuts on-line. 

Nan L i and Elena Dubrova proposed a technique for A I G rewriting using 5 input cuts. 
5-input N P N equivalence classes circuits counts 616126, this number of graphs is too big 
to precompute and store. Authors experimentally discovered that only 2749 classes appear 
in all IWLS 2005 benchmarks [7]. Further they picked 1185 classes of 2749 with more than 
20 occurrences and they generated best circuits for representative functions [28]. 

To generate an optimum circuit is —complete problem [53] and this problem worries 
researchers since 1970's. Some methods have been introduced, for example methods based 
on ILP (Integer Linear Programming) or SAT based approaches (listed in [18]). 

Although the generation process of optimum circuit implementation is well-mastered 
process in case of conventional circuits, no such approach hadn't existed for polymorphic 
circuits until introduction a MinCirc tool [18]. The MinCirc tool is a tool for generation of 
optimum circuits including polymorphic circuits using proposed P A I G format. MinCirc is 
mainly used for an on-line computation of optimum sub-graphs in P A I G rewriting. Once 
the MinCirc produces optimum subgraphs (structures) for particular function, the optimum 
structure is chosen and deployed on the basis of achieved gain of overall network. 

Because the generation process of optimum functions is essential for the rewriting al­
gorithm, let us look under-hood the MinCirc. The initial version of MinCirc was mainly 
designed for generating optimum circuits with X O R gates [19], while later was extended 
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for polymorphic circuits. MinCirc extension for polymorphic circuits exploits a property 
that polymorphism can be viewed as an additional primary input. Thus, a polymorphic 
stimulus P is introduced and enables (switches) between polymorphic modes. Basically, 
polymorphic stimulus P is a virtual polymorphic input mentioned in previous section 3.2.2. 

A n example of formula describing a polymorphic gate implementing a function A N D / O R , 
is following: 

F = P(a*b) + P(a + b) 

where P is the polymorphic stimulus (virtual polymorphic input) and a, b are primary 
inputs of gate. 

Algorithm 

To understand problematics of generation of optimum circuits, this short section briefs 
MinCirc algorithm, based on [18]. 

The problem of optimum circuit generation is solved by its reduction to a decision 
CNF-SAT problem [22]. These and similar problems belong to disparate complexity classes 
of polynomial hierarchy, the reduction is not polynomial. The optimization problem is 
elegantly limited by a simple trick applied to a decision problem : „Does there exists an 
n-node implementation of a given k-input function?". Initial value of n = 1. If the answer is 
„no", procedure is repeated with incremented n. The algorithm repeats until answer „yes" 
is obtained. Then, it is a solution of the original problem. 

The algorithm outlined by a pseudo-code in the Algorithm 2. The algorithm input is 
a truth table of the intended function and the output is an optimal structure. The key 
procedure in algorithm is Generate_CNF(). Detailed description of C N F generation can 
be found in [18] as well as experimental results. 

Algorithm 2 MinCirc algorithm [18] 
l : procedure G E N E R A T E O P T I M U M S T R U C T U R E (trat/i table f, int k) 
2: n = 1; 
3: do 
4: C N F = Generate_CNF(f, k, n): 
5: Sol = SAT_Solve(CNF); 
6: if (Sol.unsat) n++; 
7: while (Sol.unsat): 

The MinCirc tool also offer to configure some parameters, such as required delay (depth), 
gate cost, etc. The MinCirc is deployed in P A I G rewriting for generating optimum sub-
circuits and completely covers Genereate_optimal_subgraph(F) in P A I G rewriting Algo­
rithm 1. 

3.2.4 Cut replacing 

The original A I G algorithm performs dereferencing and referencing nodes during replace­
ment and structural hashing is immediately applied per each node change. P A I G rewriting, 
implemented in the P A I G tool, removes nodes matching an inspected cut from a network 
and adds new nodes into a network corresponding to optimal sub-graph (generated by Min­
Circ). So modified network is structurally re-hashed at once. It may affect the performance 
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of P A I G algorithm. Nevertheless, the complexity of original A I G rewriting algorithm is 
well-known. Cut replacement implementation can be improved later by referring the origi­
nal A I G rewriting. 
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Chapter 4 

Evaluation of multi-level 
polymorphic design and 
optimization method 

In order to prove and evaluate the proposed P A I G rewriting algorithm, a set of experiments 
has been prepared for thorough evaluation. Experiments are divided into two groups, where 
deployment of polymorphic circuits make a sense. The first group of experiments rests in 
conversion of conventional circuits to polymorphic, and so converting one primary input 
to a virtual polymorphic input. The experiments may prove that circuits composed of 
polymorphic components may be solved more effective. 

The second group of experiments consist in a joining of two different circuits and switch­
ing their output function using polymorphism. The main idea is to share common resources 
of two completely different circuit using polymorphism and demonstrate that polymorphic 
circuits saves resources. 

Both kinds of experiments are working with the same batch of 21 combinatorial cir­
cuits from a publicly available benchmark set LGSynth91 [56]. Table 4.1 summaries the 
properties of combinatorial circuits used for experiments. Circuits in a set are chosen with 
a various number of A N D nodes, high number of primary inputs and outputs in order to 
thoroughly evaluate proposed algorithm. 

A l l the experiments presented in this section are successively performed in accordance 
to the synthesis flow previously discussed in Section 3.2. 

In order to put the proposed solution and obtained results presented in this contribu­
tion into a proper context, an important aspect behind the experimental work takes aim at 
providing an illustrative comparison in terms of synthesis efficiency between polymorphic-
based rewriting approaches against other convenient optimization methods exhibiting scal­
able properties. However, it is necessary to take into account an important fact that no 
easily scalable methodology for synthesis and optimization of polymorphic circuits has been 
reported up to the date. 

4.1 Conversion of primary input to virtual polymorphic in­
put 

Experiment that demonstrates applicability of P A I G rewriting on conventional circuits is 
presented in this section. Conventional circuit is modified into a polymorphic circuit in the 

30 



Table 4.1: List of combinatorial circuits used for both kinds of experiments. 
Index Circuit name Primary Inputs Primary Outputs A N D nodes 

1 cht.aig 47 36 185 
2 apexl.aig 45 45 2604 
3 apex6.aig 135 99 659 
4 apex7.aig 49 37 221 
5 lal.aig 26 19 109 
6 c8.aig 28 18 169 
7 misex2.aig 25 18 119 
8 misex3.aig 14 14 1549 
9 misex3c.aig 14 14 721 

10 pcler8.aig 27 17 71 
11 my_adder.aig 33 17 176 
12 ttt2.aig 24 21 218 
13 C499.aig 41 32 400 
14 C1355.aig 41 32 504 
15 seq.aig 41 35 2411 
16 count .aig 35 16 127 
17 unreq.aig 36 16 112 
18 pdc.aig 16 40 1621 
19 vda.aig 17 39 924 
20 k2.aig 45 45 1998 
21 rot. aig 135 107 550 

following way: a random primary input is converted to a polymorphic driven one on the 
basis of environmental state. 

The main objective of the proposed experiment is to produce an optimized structures 
of polymorphic circuits. 

4.1.1 Specification of benchmark set 

For demonstration purposes, all 21 polymorphic circuits has been selected from the table 4.1 
for thorough evaluation, where circuit properties are also summarized. Each test case C 
consists of one combinatorial circuit from a publicly available benchmark set LGSynth91 
(listed in table 4.1). The set has been selected with various number of inputs PI and outputs 
PO. Selection of the individual test circuits used during the consecutive experimental 
evaluation did not reflect any further consideration or properties (e.g. signal propagation 
delay or interconnection complexity of a given circuit structure) than the aspect explicitly 
mentioned above. However, it could be interesting to assess the proposed approach behavior 
also from this standpoint during some of the future research activities. 

Each test circuit C has number of primary inputs PIC and number of primary outputs 
POc. One of PIC is removed and substituted by virtual polymorphic input P in initial 
circuit, that cause the PIC is controlled by the basis of environmental state. See figure 4.1 
for more details of the conversion. 
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Figure 4.1: Example of primary input 10 conversion to virtual polymorphic input. 

4.1.2 Results analysis 

Details on results obtained thanks to the polymorphic-oriented modification of conventional 
rewriting process are shown in table 4.2. The table itself is further divided into four sections, 
where the first one identifies the individual circuits from a given benchmark set. Then, 
the second one outlines the average results after optimization by P A I G rewriting that led 
to an observable circuit improvement. The third section reports an optimization results 
obtained with A B C tool and finally, the fourth one depicts the improvement P A I G rewriting 
comparison against A B C tool results. A l l results in the table 4.2 are averaged values of 
permutation over all primary inputs. 

A column num of rewrites in second section reports average number of applied sub-
circuit replacements per one iteration (one iteration = one rewrite command). A column 
AND nodes before represents a number of A N D nodes of initial circuit. A column AND 
nodes after denotes the resulting number of A N D gates required by a given target circuit 
once the synthesis process is finished. Analogically, a column gain reports a number of 
saved A N D nodes and it is computed as subtraction of number ands after from number 
ands before. Both columns Pedges denotes the overall number of polymorphic edges used 
in that circuit. A column avg cuts per it reports average number of all found cuts per 
one iteration (one rewrite command). Next column rewrite iterations denotes a number of 
called „rewrite" command to reach the best optimization. Improvement PAIG shows the 
details on a percentage improvement against the initial circuit. Time column contains an 
assessment of the elapsed time of the whole synthesis process including time for generation 
of optimal sub-circuit. 
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For the purpose of drawing a relevant comparison a contribution of standard A B C tool 
was used for an optimization of combinatorial circuits from every circuit under optimization 
given in table 4.1. Wi th the aim to make optimization results more relevant, the optimiza­
tion is performed especially for each primary input PIC of each initial circuit and results 
are averaged. Thus, results report average values of optimization for all primary inputs. 

The third section reports briefly maximal optimization reached by A B C tool, whereas 
several iterations has been applied too. The best optimization using A B C tool was achieved 
no later than in the in fourth iteration of the A B C „rewrite" command. In summary, 
the optimization flow exploiting the conventional ABC-based rewriting methodology has 
resulted into the average reported improvement of 17.50% against the initial benchmark 
circuits arrangement. The last section contains only one column, reporting the difference 
of improvement of P A I G optimization against to A B C tool optimization. 

A n improvement or gain expressed in terms of A N D nodes saving achieved by P A I G 
throughout all the experiments is reaching 21.02% in average. Further details mentioned 
here within the second section of table 1.2 give an overview of the proposed approach 
characteristics in situation when the objective was to achieve the best possible refinement 
of polymorphic circuits structure from the specified benchmark set. Efficiency of the PAIG-
based rewriting algorithm is enumerated in column Improvement PAIG. The best derived 
solution (averaged per all primary inputs) has 34.76% improvement, which confirms the 
ability to design competitive multi-functional circuits. 

The table 4.2 provides also a closer insight into the performance and runtime behavior 
(which is indeed a significant aspect when it comes to optimization of complex circuits) of 
the proposed approach in case of the chosen benchmark set, when the on-line computation 
of optimum sub-circuits (replacement cuts) is taken into account. 

On-line optimum cut computation is a difficult task, which is managed by MinCirc tool 
within the proposed synthesis flow. In order to minimize the impact of that particular 
property exhibited by MinCirc, already generated P A I G graphs are reused without even 
launching the tool. The MinCirc produces optimum sub-graphs in a quite fast manner 
for the majority of functions (combinatorial circuits handed in to the synthesis process), 
however, some of functions are too difficult to be resolved in an acceptable time. 

Therefore, a 5 seconds timeout period for MinCirc tool has been chosen. It is necessary 
to specify the timeout period in a cautious manner because its overly constrained value 
prevents the generation of good sub-graphs having an importance for circuit improvement. 
Tens of optimal subgraphs are usually generated in this period. On the contrary, too 
generous timeout significantly extends the overall duration of synthesis process. If the 
MinCirc runtime period expires for a particular function, the function is noted as difficult 
and MinCirc skips the function in the future with the aim to reduce the necessary synthesis 
time. Unfortunately, such timeout could potentially lead to non-deterministic behavior on 
a different computing platforms than the one actually used in that case. To get rid of 
this drawback, the future research activities could explore the possibility of creating the 
database of precomputed optimum circuits. The algorithm is expected to run just a few 
seconds with precomputed optimum cuts and effective P A I G code implementation. The 
experiments were performed using a workstation equipped with Intel(R) Core(TM) i7 C P U 
920 processor. 
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Table 4.2: Optimization results for polymorphic rewriting. 

average n u m of A N D nodes A N D nodes A N D nodes hedges hedges avg cuts rewrite improvement time improvement P A I G against 
per inputs rewrites before after gain before after per it iterations P A I G [%] [s] A B C [%] to A B C [%] 
cht 115,33 185 143,50 41,50 4,35 109,81 11 094,63 2,06 22,43 14,45 20,00 2,43 
a p e x l 3 558,91 2604 2 105,56 498,44 41,53 394,02 1 308 036,86 5,40 19,14 6 861,38 19,12 0,02 
apex6 392,48 659 621,80 37,20 3,71 55,20 61 165,19 4,98 5,64 306,56 2,88 2,76 
apex7 168,54 221 192,33 28,67 3,50 37,00 11 582,29 3,42 12,97 305,05 9,50 3,47 
la l 93,11 109 72,11 36,89 3,81 16,48 2 391,04 4,30 33,84 251,93 31,19 2,65 
c8 327,31 169 110,21 58,79 6,52 59,62 7 904,00 6,28 34,79 221,14 28,99 5,79 
misex2 86,58 119 99,08 19,92 4,81 22,31 2 946,73 3,54 16,74 187,57 19,33 -2,59 
misex3 4 387,07 1549 1 240,40 308,60 81,80 440,13 677 783,33 8,13 19,92 12 319,53 18,40 1,52 
misex3c 1 409,27 721 597,80 123,20 42,20 225,20 155 692,93 5,47 17,09 3 584,50 15,26 1,83 
pcler8 325,89 169 110,25 58,75 6,14 59,57 7 910,18 6,25 34,76 3,65 9,86 24,90 
my adder 127,50 176 123,00 53,00 3,53 62,29 8 190,06 2,62 30,11 32,42 25,57 4,55 
t t t2 207,32 218 164,60 53,40 7,56 45,76 9 597,48 4,12 24,50 633,52 23,85 0,64 
C499 1 319,93 100 381,69 18,31 5,14 296,17 135 858,07 4,14 4,58 1 330,76 2,00 2,58 
C1355 1 397,21 501 381,50 122,50 5,14 290,64 138 408,69 4,40 24,31 2 399,39 15,08 9,23 
seq 3 145,46 2411 1 912,44 498,56 43,76 297,61 917 020,68 6,00 20,68 7 056,94 20,32 0,36 
count 131,92 127 108,67 18,33 3,22 51,03 7 882,17 2,44 14,44 61,37 11,81 2,62 
unreg 120,76 112 108,00 4,00 3,51 78,59 8 772,11 2,00 3,57 9,99 0,00 3,57 
pdc 4 158,53 1621 1 076,18 544,82 75,82 365,59 549 684,82 8,71 33,61 13 569,84 29,61 4,00 
vda 2 694,53 921 694,47 229,53 29,00 220,76 222 492,59 7,65 24,84 10 845,27 25,97 -1,13 
k2 1 337,81 1998 1 384,84 613,16 6,19 67,62 284 169,27 7,32 30,69 3 128,60 29,93 0,76 
rot 332,07 550 480,32 69,68 3,21 66,61 63 168,34 3,30 12,67 327,31 8,91 3,76 
Average 1 230,36 740,2857143 576,61 163,68 18,31 155,34 218 654,83 4,88 21,02 3 021,48 17,50 3,51 



4.2 Switching between two different functions 

This section describes experimental results that demonstrate usability of P A I G rewriting 
for joining two different circuits into one polymorphic circuit, where their outputs are 
multiplexed on the basis of environmental state. 

A main objective of the proposed approach is to produce an optimized structure of poly­
morphic circuits while mutual, non-conflict sharing of common resources between two initial 
circuits (input of the synthesis toolkit based on the proposed P A I G rewriting technique) is 
naturally ensured. 

4.2.1 Specification of benchmark set 

For experimental purposes, 15 polymorphic circuits has been selected from the the table 4.1 
for thorough evaluation. Circuit properties are summarized in the table 4.3. Each test case 
C consists of two circuits A and B (listed in the table 4.1), where both of them have a 
similar number of inputs PI and outputs PO. Choice of individual test circuits or their 
mutual combination into a target circuit pair C used during the consecutive experimental 
evaluation did not reflect any further consideration or properties (e.g. signal propagation 
delay or interconnection complexity of a given circuit structure) than the aspect explicitly 
mentioned above. 

Each test circuit C has a number of primary inputs PIC = max(PIA, PIB) and 
a number of primary outputs POc = max(POA, POB). Since the primary inputs of 
circuit C are shared, the primary outputs min(POA, POB) are connected using poly­
morphic multiplexers. See figure 3.7 for more details on implementation of polymor­
phic multiplexers. Remaining outputs are assumed to have permanent/constant func­
tion. Column ANDA,B,C denotes the number of two-input A N D nodes used in a given 
circuit. In case of circuit C, the initial number of A N D nodes is following: ANDC = 
ANDA + ANDB + ANDpmux * min(POA, POB), where ANDpmux = 3. 

4.2.2 Results analysis 

This subsection is divided into two parts: Results collected during the benchmark circuits 
processing by A B C tool and results collected during the benchmark circuits processing by 
P A I G tool. 

A B C results 

Similarly as previous experiment, for the purpose of drawing a relevant comparison, was 
the contribution of standard A B C tool used for optimizing A and B combinatorial circuits 
from every test case C given in table 4.3. Then, the optimized variants of both A and B 
combinatorial circuits are switched accordingly through the polymorphic multiplexer. 

Results collected during the benchmark circuits processing by A B C tool are shown in a 
table 4.4). The table itself is further divided into three large sections, where the first one 
identifies the individual circuits from a given benchmark set. Then, the second one outlines 
the results after the first iteration that led to an observable circuit improvement and finally, 
the third one depicts the results when the synthesis process reached the best optimization 
level. 

Each section of the table also provides the details on total number of A N D nodes required 
by a given benchmark circuit C in three different situations (no optimization took place, 
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Table 4.3: Combination of combinatorial circuits used for evaluation P A I G rewriting by 
joining two different circuits. Polymorphic multiplexers are connected to primary outputs 
of both circuits. Thus Pedges represents number of polymorphic edges in polymorphic circuit 
to be optimized. 

polymorphic circuit C circuit A circuit B A N D nodes hedges 
C I cht.aig apex7.aig 514 144 
C2 lal.aig c8.aig 332 72 
C3 misex2.aig c8.aig 342 72 
C4 pcler8.aig c8.aig 291 68 
C5 my_adder.aig count, aig 351 64 
C6 misex2.aig lal.aig 282 72 
C7 ttt2.aig lal.aig 384 76 
C8 ttt2.aig misex2.aig 391 72 
C9 lal.aig pcler8.aig 231 68 
CIO C499.aig C1355.aig 1000 128 
C l l count, aig unreq.aig 287 64 
C12 my_adder.aig unreg.aig 336 64 
C13 pdc.aig vda.aig 2662 156 
C14 apexl.aig k2.aig 4737 180 
C15 misex3.aig misex3c.aig 2312 56 

after the first iteration of A B C processing with some improvement, the best optimization 
result accomplished). Results shown in table 4.4 were obtained in the following way: 

• optimized circuits were joined by polymorphic multiplexers connected to primary 
outputs in order to create polymorphic circuit, 

• a rewrite command was issued on the input circuits A and B until any improvement 

• a final number of A N D nodes has been counted (column A+B+pmux) and compared 
to the situation with initial circuits (column Impr.). 

In summary, the optimization flow exploiting the conventional ABC-based rewriting 
methodology has resulted into the average reported improvement of 17.83% against the 
initial benchmark circuits arrangement. 

P A I G results 

Results achieved by the polymorphic rewriting are shown in table 4.5. The table itself 
is further divided into three large sections. The first one identifies the individual circuits 
from a given benchmark set. Then, the second one outlines the results after the first 
iteration that led to an observable circuit improvement and finally, the third one depicts 
the results when the synthesis process reached the best optimization level. A column ANDq 
in second and third section simply denotes the resulting number of A N D gates required by 
a given target circuit once the synthesis process is finished. Pedges denotes the overall 
number of polymorphic edges used in that circuit. Rwrts shows the number of sub-circuit 
replacements. Gain reports number of saved A N D gates and Impr. shows the details on a 
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percentage improvement against the initial circuit. Runtime column contains an assessment 
of the elapsed time in case of the first iteration that brought an observable improvement 
(second section of the table) and also of the whole synthesis process (third section of the 
table). 

It is important to explicitly mention the fact that so called KL-cuts were enabled during 
the first iteration in order to get rid of the polymorphic multiplexers occurrence at the 
primary outputs. In general, KL-cuts offer an easier way how to find a proper cut (a 
sub-circuit eligible to be replaced by its optimized version) with polymorphic edges. 

The table 4.5 provides a closer insight into the performance of the P A I G rewriting in 
case of the chosen benchmark set, when precomputed optimum cuts are taken into account. 
A n improvement or gain expressed in terms of A N D nodes saving achieved throughout all 
the experiments is reaching 23.00% in average after the first iteration with multi-output cuts 
option enabled. Further details mentioned here within the third section of table 4.5 give 
an overview of the proposed approach characteristics in situation when the objective was 
to achieve the best possible refinement of polymorphic circuits structure from the specified 
benchmark set. Efficiency of the PAIG-based rewriting algorithm is enumerated in column 
Impr. The best derived solution has 48.11% improvement, which confirms the ability of the 
proposed synthesis method to design multi-functional circuits while simultaneously trying 
to employ the principle of common resources sharing. Finally, it is possible to notice an 
average improvement of 25.95% across the whole benchmark set in comparison to the initial 
circuit Cn. 
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Table 4.4: Optimization results for conventional A B C rewriting. 
Ini t ia l circuit F i rs t rewrite i teration [ A N D nodes] Rewri te i terating to the best [ A N D nodes] 

circuit C A + B A + B + p m u x A B A + B A + B + m u x Impr [%] A B A + B A + B + p m u x Impr [%] 
C I 406 514 148 201 349 457 11.09 148 200 348 456 11.28 
C 2 278 332 86 128 211 268 19.28 75 120 195 249 25.00 
C 3 288 342 100 128 228 282 17.54 96 120 216 270 21.05 
C 4 240 291 64 128 192 213 16.49 64 120 181 235 19.24 
C 5 303 351 131 112 243 291 17.09 131 112 213 291 17.09 
C 6 228 282 100 86 186 210 14.89 96 75 171 225 20.21 
C 7 327 384 179 86 265 322 16.15 166 75 211 298 22.40 
C 8 337 391 179 100 279 333 14.83 166 96 262 316 19.18 
C 9 180 231 86 61 150 201 12.99 75 61 139 190 17.75 
CIO 904 1000 394 111 838 931 6.60 392 128 820 916 8.40 
C l l 239 287 112 112 221 272 5.23 112 112 221 272 5.23 
C12 288 336 131 112 243 291 13.39 131 112 213 291 13.39 
C13 2545 2662 1172 712 1884 2001 24.83 1141 681 1825 1942 27.05 
C14 4602 4737 2123 1474 3597 3732 21.22 2106 1400 3506 3641 23.14 
C15 2270 2312 1278 616 1894 1936 16.26 1264 611 1875 1917 17.08 
A v g : 15.19 17.83 

CO 

00 
Table 4.5: Optimization results for polymorphic rewriting. 

Ini t ia l circuits 
circuit C ANDC ^edqes 

Fi rs t rewrite i teration 
Rwrts G a i n Runt ime [h:m:s] Impr [%] ANDC e dqes 

Rewri te iterating 
Iters G a i n 

to the best 
Runt ime [h:m:s] Impr [%] 

C I 399 310 240 115 00:05:53 22.37 395 318 4 119 00:06:45 23.15 
C2 239 166 145 93 00:02:14 28.01 235 178 1 97 00:03:10 29.22 
C3 260 193 150 82 00:02:10 23.98 256 198 3 86 00:03:15 25.15 
C 4 223 158 128 68 00:02:02 23.37 151 151 3 110 00:02:42 48.11 
C5 274 112 141 77 00:00:06 21.94 257 146 1 94 00:00:07 26.78 
C6 228 137 130 51 00:02:30 19.15 221 111 1 58 00:03:35 20.57 
C 7 314 158 160 70 00:06:14 18.23 301 177 1 80 00:08:10 20.83 
C8 308 123 156 83 00:06:34 21.23 300 133 1 91 00:08:19 23.27 
C9 193 101 101 38 00:00:36 16.45 188 110 3 43 00:00:47 18.61 
C10 711 580 759 289 00:02:04 28.90 709 507 3 291 00:05:35 29.10 
C l l 225 147 158 62 00:01:15 21.60 225 147 2 62 00:01:31 21.60 
C12 241 160 207 95 00:01:21 28.27 211 160 2 95 00:01:27 28.27 
C13 1979 258 773 683 01:49:11 25.66 1938 288 5 721 01:54:46 27.20 
C14 3573 399 1329 1164 02:47:13 24.57 3536 123 6 1201 03:03:47 25.35 
C15 1819 170 410 493 00:33:10 21.32 1803 163 5 509 00:36:29 22.02 
Avg: 23.00 25.95 



Experimental measurements have revealed that the largest chunk of computational time 
is consumed by P A I G code execution caused by ineffective implementation. But, from logic 
point of view, rewriting technique is very fast, while the code is written well. For example, 
A B C code is pretty well optimized and optimum cuts are stored in effective way. The 
experiments were performed using a workstation equipped with Intel(R) Core(TM) i7 C P U 
920 processor. 

For evaluation and comparison of P A I G rewriting algorithm efficiency with A B C con­
ventional rewriting, it is possible to analyse in detail tables 4.4 and 4.5 respectively. In this 
way it is possible to recognize a significant advantage behind P A I G rewriting algorithm 
when it comes to the optimization of polymorphic circuits. A closer look will reveal the 
fact that the algorithm is able to achieve about 8.12% better optimization of polymorphic 
circuits than the conventional approach based on the utilization of A B C rewriting. 

4.3 KL-cuts influence on P A I G rewriting 

K-cuts are an efficient representatives of a region of an A I G , where the region has one 
output. Lets imagine a multiple output region. Such region would have to be covered 
by count of K-cuts. KL-cuts are novelty introduced in [32], that covers a multiple output 
region. It is supposed, that KL-cuts may help to find a more cuts in an A I G and thus offer 
to P A I G rewriting more paths for optimization of polymorphic circuits. 

For this kind of experiment, a hypothesis was set: Forced deployment of cuts with zero 
contribution to the optimization of a circuit structure during replacement stage allows to 
propagate polymorphism deeper into the circuit. Then, the utilization of KL-cuts can help 
to generate more comprehensive pool of cuts with the possibility to achieve improvement > 0 
and, thus, perform synthesis of polymorphic circuits in terms of better area results. 

In this approach, KL-cuts are generated in the same way as K-cuts. However, KL-cuts 
are not dropped during the generation process. Generation process of KL-cuts does not 
conceal any other difficulty instead of expansive growth of generated solutions. 

Despite the fact that the generation process of KL-cuts is quite straightforward, some 
complications still do emerge during the consecutive replacement process. 

For the purpose of examining the influence of KL-cuts on the optimization efficiency 
of polymorphic circuits, the implementation of P A I G optimization tool was used. This 
section provides detailed overview of the experimental results obtained with this tool on 
set of benchmark circuits. 

4.3.1 Specification of benchmark set 

Benchmark set (LGSynth91 [56]) has been chosen as the starting point for subsequent eval­
uation of the proposed PAIG-based rewriting scheme using KL-cuts at its core. The exper­
iments were performed using 15 pairs of similar conventional circuits from that benchmark 
set. Detailed overview of selected circuits properties is provided in table 4.3. See section 4.2 
for more details, because this experiment use the same benchmark set and initial circuit 
setup as experiments called „Switching between two different functions". 

The experimental part of my contribution presented in this chapter is closely related to 
the objective to confirm or deny the hypothesis formulated in section 4.3 that the utilization 
of PAIG-based rewriting with KL-cuts for the purpose of polymorphic circuit synthesis tasks 
is expected to deliver better results in terms of resulting area optimization. Thus all the 
experiments are first conceived as a comparison of polymorphic rewriting algorithm with 
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K-cuts to the variant which, on the contrary, involves KL-cuts. Second, the comparison is 
shown ctS c t l l ctr6cl improvement for both variants expressed in percentage value, where the 
attention is also given to the possible state space expansion in case of KL-cuts. 

The main objective of polymorphic-aware rewriting is to produce an optimized structure 
of polymorphic circuits while mutual, non-conflict sharing of common logic resources be­
tween two initial circuits (the desired functions to be performed by the resulting circuitry) 
is accomplished. 

Experiments are performed in two stages, with the assistance of P A I G tool implemented 
in C language. First of all, synthesis of circuits from the benchmark set is performed with 
the K-cuts. During the second round of experiments, the utilization of KL-cuts is allowed. 
Details of the initial circuits configuration are given in table 4.3. 

4.3.2 Results analysis 

Obtained results are depicted in table 4.6. The organization of the table summarizing the 
results is conceived with two main sections. Each of them is dedicated to a separate round 
of experiments in case of K-cuts and KL-cuts. 

Each section in table 4.6 has the following sub-columns: Column Iters denotes how many 
iterations of polymorphic rewrite were used for a particular circuit Cn until it becomes 
resilient to further attempts of its optimization. Column Tot.rewrites counts the number 
of performed rewrites (replacements) as a sum of all iterations. Column Ands denotes a 
number of all gates (nodes) within the optimized circuit. Gain column contains information 
about number of saved gates in comparison to the initial circuit pair. Impr. column denotes 
how much area has been saved (number of nodes) using polymorphic rewrite algorithm in 
percentage value. This description is applicable for both experimental stages (first one with 
K-cuts and second one with KL-cuts enabled). 

In addition, it is possible to notice also a third main section entitled Influence within 
table 4.6. Its sole purpose is to provide a comparison between using K-cuts and KL-cuts. 
A column Impr. in this section gives an account of the area improvement while KL-cuts 
usage is enabled in contrast to the situation with KL-cuts considered as prohibited. In 
other words, Impr. column illustrates the effect of KL-cuts onto the quality of resulting 
solution produced by the polymorphic rewriting optimization algorithm. At last, column 
Growth shows space explosion of investigated cuts in the case of enabled KL-cuts. 

As it becomes apparent from a closer inspection of table 4.6, KL-cuts are undoubtedly 
helping to get more optimized polymorphic circuit structure in most of the situations, 
when the average improvement is reaching the level of 4.39%. The maximum value of the 
obtained area improvement of polymorphic circuit optimization using KL-cuts is 31.10 % 
against K-cuts rewriting for the circuit variant identified as CIO. Whereas in the case of 
circuits Gil and CI2 the utilization of KL-cuts did not have any impact on optimization 
at all. Please, refer figure 4.2, where both variants are graphically compared. 

However, although the exploitation of KL-cuts brings only positive area optimization 
result, another important aspect deserves a further attention - explosion of cut set range 
(set of cuts to be investigated). State space explosion comprising different variants of cuts 
can be observed in the last column of table 4.6 and it is also depicted in figure 4.3. As it 
can be clearly seen, number of investigated cuts grows to 172.07% in average, where the 
maximum observed value of the state space growth is 459.64%. 

40 



Single-output cuts Multi-output cuts 
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CI C2 C3 C4 C5 C6 C7 C8 C9 CIO C l l C12 C13 C14 C15 

Circuit # 

Figure 4.2: Graph shows the improvement in case of optimized polymorphic circuits: blue 
bars denote percentage improvement of circuits with K-cuts only and red bars denote per­
centage improvement of circuits with KL-cuts allowed. 
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Figure 4.3: Graph reflects percentage growth of the number of investigated cuts for all 
chosen test circuit pairs when KL-cuts were allowed. 
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Table 4.6: Results of polymorphic circuit synthesis. 
K-cuts K L - c u t s Influence 

circuit C Iters Tot .cuts Tot.rewrites Ands G a i n Impr. [%] Iters Tot.cuts Tot.re writes A n d s G a i n Impr. [%] Impr. [%] Growth [%] 
C I 5 368410 180 395 119 23.15 5 503860 216 394 120 23.35 0.19 36.77 
C2 8 193296 151 210 92 27.71 13 386958 280 218 114 34.34 6.63 100.19 
C3 7 205296 162 252 90 26.32 9 315270 219 216 96 28.07 1.75 53.57 
C 4 5 127190 100 213 78 26.80 11 308011 236 208 83 28.52 1.72 142.17 
C5 4 227904 128 271 80 22.79 8 806760 398 269 82 23.36 0.57 253.99 
C6 11 161073 168 211 71 25.18 19 728137 622 190 92 32.62 7.45 352.05 
C 7 13 423280 312 296 88 22.92 16 941728 550 273 111 28.91 5.99 122.48 
C8 10 293330 215 305 86 21.99 19 1139221 651 291 97 24.81 2.81 288.38 
C9 4 67604 70 193 38 16.45 14 378336 331 181 50 21.65 5.19 459.64 
CIO 5 2438025 212 700 300 30.00 16 11207584 1489 389 611 61.10 31.10 359.70 
C l l 4 158692 130 225 62 21.60 4 180348 132 225 62 21.60 0.00 13.65 
C12 4 211668 128 256 80 23.81 4 367064 191 256 80 23.81 0.00 73.41 
C13 18 14216436 1359 1923 739 27.76 24 33897768 2389 1889 773 29.04 1.28 138.44 
C14 19 41769448 2249 3516 1221 25.78 20 78111460 3209 3481 1256 26.51 0.74 87.01 
C15 8 4593200 480 1803 509 22.02 14 9168838 838 1794 518 22.40 0.39 99.62 
Average: 24.29 28.67 4.39 172.07 



4.3.3 Related summary 

This subsection was dealing with the investigation of a hypothesis that the usage of KL-cuts 
may lead to an improvement of polymorphic circuit optimization. The proposed approach 
is employed in a close conjunction with the PAIG-based rewriting algorithm. Especially 
due to the number of modifications that were introduced in case of polymorphic rewriting 
itself (e.g. forced replacement due to propagation of polymorphic edges deeper into the 
circuits structure) in comparison to the conventional rewriting variant, the hypothesis has 
been successfully confirmed. The obtained results clearly demonstrate a positive impact of 
the KL-cuts scheme, yet the improvement reach beyond the level of just a few percent. 

4.4 Comparison of P A I G rewriting to P o l y B D D 

In order to compare P A I G rewriting results to the most famous methodology for polymor­
phic circuit design PolyBDD [20], the P A I G rewriting was applied to the same circuits that 
Gajda reports in his thesis. 

Mr. Gajda has selected a number of test circuits for evaluation of Po lyBDD method. 
Each polymorphic circuit is composed of two circuits performing independent functions. 
Gajda has used only polymorphic gates of type N A N D / N O R and A N D , OR, X O R , N A N D , 
NOR, inverter and multiplexer gates. Unfortunately, his results report just overall numbers 
of required gates after synthesis by PolyBDD method, regardless of the price of used gates 
(especially X O R and multiplexer). A n optimum implementation of X O R gate and 2-way 
multiplexer is consisting of 3 two-input A N D gates. In table 4.7 in a column PolyBDD, 
numbers of required gates are reported, includes expensive X O R and M U X gates after 
PolyBDD synthesis. Figure 4.4 shows a PolyBDD structure (a) and corresponding poly­
morphic circuit (b) (note that circuit is composed of multiplexers mainly). The number of 
multiplexers in non-reduced B D D grows with power of 2 of primary inputs. 

0 / i d 

a) b) 

Figure 4.4: Po lyBDD circuit (a) and corresponding polymorphic circuit (b) [20]. 

The proposed P A I G rewriting approach can handle only A N D gates, stemming from the 
nature of A I G . Thus A I G cannot represent complex gates such as XOR gate and multiplexer 
natively. Despite that, one node type is not a disadvantage. It allows effective simple 
optimizations. Simple A I G structures are mappable to complex target technology during 
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technology mapping process. However, different metrics are appearing and comparison of 
P A I G to PolyBDD may be inaccurate. 

Table 4.7 reports a comparison of P A I G to PolyBDD method. As it is outlined above, 
metrics of methods are different. The column Circuit denotes a name of a desired polymor­
phic circuit. M / S is Majority/Sorter, M / P is Majority/Parity and x A / x B is multiplier by A 
and B. The column Inputs contains number of primary inputs, analogically the column Out­
puts contain number of primary outputs. The column PolyBDD contains numbers of used 
gates after Po lyBDD synthesis considering these types of gates: {NAND/NOR polymorphic 
gate, AND, OR, XOR, NAND, NOR, 2-way multiplexer, inverter}. 

The next column PolyBDD Evo. contains a number of gates required after evolutionary 
optimization of Po lyBDD synthesized circuits. Evolutionary optimization of Po lyBDD cir­
cuit is performed by C G P , where are two-input elements only. Thus evolutionary results do 
not reflect complex multiplexers, that are often placed in PolyBDD circuits (see figure 4.4). 
Unfortunately, complex X O R gates are included, which may be a disadvantage for P A I G 
comparison. It is especially visible in the case of Majority/Parity circuits, that are mainly 
composed of X O R gates. However, the P A I G is still competitive, although X O R gate costs 
three 2-input A N D gates. 

The fifth column reports results of P A I G rewriting synthesis and values denotes a num­
ber of used 2-input A N D gates. Analogically, the sixth column reports a number of required 
2-input gates using conventional A I G (results from A B C tool). 

A reader can compare efficiency of P A I G with PolyBDD by focusing columns PolyBDD 
Evo. and PAIG. PolyBDD Evo. includes complex X O R gates, that are not possible to 
express in P A I G structure natively. 

Circuit Inputs Outputs PolyBDD PolyBDD Evo. P A I G A I G (abc) 
M/S4 4 4 31 45 19 27 
M/S5 5 5 50 71 43 49 
M/S6 6 6 94 131 88 97 
M / S 7 7 7 150 212 162 170 
M/S8 8 8 269 375 311 321 
M / S 9 9 9 428 697 602 614 
M / P 7 7 1 31 41 42 43 
M / P 9 9 1 41 60 60 61 
M / P l l 11 1 59 81 86 91 
M / P 1 3 13 1 73 114 114 115 
x67/xl27 7 14 228 274 187 215 
xl31/x251 8 16 430 547 441 468 
x257/x509 9 18 348 410 279 310 
x521/xl021 10 20 905 1028 865 894 

Table 4.7: Comparison of PolyBDD and P A I G rewriting method. 
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Chapter 5 

Conclusion 

Logic synthesis and optimizations techniques are still popular topics despite the fact that 
they've been researched for at least 50 years. The need for further investigation of these 
topics is mainly related to growing complexity of digital circuits. Therefore, more effective 
and scalable synthesis methods are required. New research areas may be opened by emerg­
ing technologies or applications, such as multi-functional or polymorphic electronics. The 
concept of polymorphic electronics was introduced in 2001 [52], almost 20 years ago, and a 
non-evolutionary, scalable optimization technique still does not exist. Mentioned situation 
gave me an opportunity to start research of scalable synthesis and optimization methods 
for polymorphic circuits. 

The main goal of this thesis was to propose an effective, scalable method for synthesis 
and optimization of multi-functional circuits. Initial research started with two-level design 
methods. The first proposed method, using only N A N D / N O R gates, is well applicable 
to small circuits deployable to R E P O M 0 3 2 . The second method is based on boolean 
division and kerneling, which is suitable for detection of common parts of two desired 
circuits. Ongoing research has followed up on multi-level methods and brought new „PAIG" 
representation for polymorphic circuits in And-Inverter Graphs, which was very useful for 
further optimization. Since the polymorphic representation was designed, the A I G rewriting 
technique was adapted to work with the new P A I G representation. The whole synthesis 
and optimization process of polymorphic circuits clearly gives promising results. 

5.1 Thesis contribution 

The thesis contribution was partially mentioned in the previous paragraph. The thesis 
presents a proposal of synthesis and optimization methods for polymorphic circuits. 

The first approach, using N A N D / N O R gates and dealing with the issues of multi­
functional logic circuits synthesis, was introduced in the thesis. The proposed synthesis 
method was based on a formal Boolean representation of corresponding input functions. 
Its main advantage can be recognized in its simplicity and an employment of boolean min­
imization techniques, which is in a direct contrast to existing solutions, predominantly 
based on heuristic approaches. Despite some constraints of the proposed approach, that 
were identified during the theoretical analysis and subsequent experiments, the method 
was successfully applied to real functions specified by the truth table. The obtained results 
clearly suggest benefits of the proposed approach in comparison the the conventional tech­
niques. It is safe to say that further improvements can be achieved, especially when new 
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types of polymorphic circuit components based on the emerging materials will be prepared 
[9, 8, 43]. 

The second milestone was an introduction of kerneling based synthesis method. The 
method searches common parts of two desired circuits that were randomly generated. The 
obtained results indicate that it's possible to achieve around 27% improvement, especially in 
comparison to the synthesis tool called Espresso. Next experiment was performed on real-
life complex circuits. Especially, in one case it was possible to achieve almost 40% gates 
saving. A n average improvement on benchmark M C N C circuits is about 20% [54, 13]. 
Results were also published in Journal of Electrical Engineering [10] 

In order to increase the synthesis efficiency of polymorphic circuits, a research was 
focused to an applicability of A I G and structural hashing for better identification of circuit 
parts that can be shared between two functions subjected to the synthesis process. 

As a result, the novel polymorphic A I G representation format for polymorphic circuits 
was introduced (section 3.1). It is an extension of A I G E R format, which is fully supported 
in well known tools like A B C . A few experiments showed that the novel format can be very 
effective representation of polymorphic circuits for future, more complex synthesis processes 
[14]. 

A n innovative scalable methodology (section 3.2), called P A I G rewriting scheme, capa­
ble of synthesis of multi-functional circuits was introduced. The methodology is inspired 
by an existing rewriting algorithm [36, 37] that was used mainly for optimization tasks of 
conventional digital logic circuits. The P A I G rewriting offers strictly rigid, algorithm-based 
and scalable methodology, which is capable of producing valid results in a finite, predictable 
amount of time. More precisely, a defined background of the proposed approach to predict 
accurately the amount of time needed to obtain an acceptable solution. The P A I G rewrit­
ing method also contrasts to the state-space exploration (searching for the valid solution) 
involving, for example, various evolution-inspired techniques [15, 16]. 

The obtained experimental results indicate significant contribution in the field of syn­
thesis of multi-functional circuits, that could potentially help to increase adoption of the 
polymorphic circuits for various application scenarios within the domain of multi-functional 
digital circuits. Research activities behind this contribution, including A I G extension for 
polymorphic circuits, open a new path for the synthesis of polymorphic circuits and create 
a stable basis for further research. This contribution may move the areas of synthesis and 
optimization polymorphic circuits forward significantly. 

5.2 Future work 

This thesis presents innovative design methods for multi-functional circuits. The thesis 
prepares a basis for a new direction in logic synthesis of multi-functional circuits in research 
area. Possible ways to continue this research are outlined in the following paragraphs: 

A focus was given to verification of proposed principles mainly instead of development 
of optimized tools. Thus, a C code implementation of P A I G tool in order to speed up 
handling a graph may be the first task on the agenda. 

Then, future work should be focused on exploration of the most frequent cuts, and prepa­
ration of an on-line available cut library in order to reduce the burden of time-consuming 
need to generate all the sub-graphs in an on-line manner, as proposed in [28]. 

Further focus on development of the proposed scheme should be aimed to technology 
mapping issues, i.e. translation from P A I G network structure to building components of a 
target technology. P A I G network can represent conventional A N D gates, wires, inverters 
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and polymorphic wires only, but real circuits are not expressed entirely in this way Real 
circuits are composed of more complex gates, such as X O R or even polymorphic complex 
gates and thus it is supposed that a mapping to a target polymorphic technology may 
further shrink an area of desired polymorphic circuits. 
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