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A B S T R A K T 

Tato práce se zaobírá tématikou polysacharidů rostlinné buněčné stěny potenciálně 
zahrnutých do tvorby pektin-hemicelulózového komplexu a vybraných enzymů degradující 
homogalakturonanovou část pektinu tohoto konjugátu. 

V první části práce byl izolován a částečně purifikován pektin-hemicelulózový komplex 
z buněčných kultur petržele. S pomocí analytických metod jako FT- IR spektroskopie a N M R 
bylo naznačeno, že izolovaný vzorek obsahuje jednu z hemicelulóz (arabinoxylan) a jednu ze 
součástí pektinu, pravděpodobně homogalakturonan. N a základě získaných výsledků byl 
prokázán hetero-transfer mezi těmito polysacharidy s užitím hrubého proteinového extraktu 
z kořene petržele, sulforhodaminem značenými oligosacharidy galakturonové kyseliny 
(fluorescenčně značený akceptorový substrát) a arabinoxylanem hrající roli substrát donoru. 
Výsledky naznačují, že extrahovaný precipitát rostlinných proteinů obsahuje neznámé 
enzymy, s velkou pravděpodobností některou z transglykosyláz, umožňující katalýzu tohoto 
přenosu mezi oligosacharidy galakturonové kyseliny a arabinoxylanem. Tento druh hetero-
transferu nebyl u rostlinných druhů dosud popsán. 

Cílem druhé části práce byla izolace, purifikace a charakterizace pektát hydroláz štěpících 
polygalakturonovou kyselinu (homogalakturonan). Je popsáno celkem pět forem exo-pektát 
hydroláz izolovaných z kořene petržele. Hlavním rozdílem mezi těmito enzymy je substrátová 
preference související s délkou řetězce. Pouze jeden z enzymů preferující dekamer jako 
substrát byl striktně vázán na buněčnou stěnu. V dalších buněčných strukturách byly nalezeny 
další tři formy preferující hexamer. Dále byla identifikována pouze jedna z forem enzymu 
s preferencí k polymernímu substrátu (typická exopolygakturonáza), která se nacházela 
částečně vázána na buněčnou stěnu a částečně volně v cytosolu. Oligogalacturonát hydroláza 
s jedinečnou preferencí k dekámeru (tato preference nebyla dosud u rostlin popsána), může 
hrát důležitou roli při stanovení poločasu rozpadu oligogalakturonové kyseliny 
u infikovaných rostlin. 

K L Í Č O V Á S L O V A 

Pektin-hemicelulózový komplex, Petroselinum crispum, exo-pektát hydrolázy 

A B S T R A C T 

This work is focused on the plant cell wall polysaccharides potentially involved in forming 
of the proposed hemicellulose-pectin complex and chosen enzymes involved in degradation of 
the pectic part (homogalacturonan) of this conjugate. 
In the first part of the work, the hemicellulose-pectin complex was isolated from parsley 
suspension cells and partially purified. Further analyses (using FT- IR and N M R ) indicated 
that sample contained the hemicellulose (arabinoxylan) as well as pectin part (probably 
homogalacturonan). In terms of obtained results, the hetero-transfer between these 
polysaccharides was checked-out using the crude proteins extract from parsley roots, 
fluorescently, with Sulforhodamine labelled oligosaccharides derived from galacturonic acids 
( O G A - S R ) used as an acceptor substrate and arabinoxylan ( A X ) used as a donor substrate. 

2 



Obtained positive results indicate that plant protein precipitates contain unknown type of 
enzymes, probably some kind of transglycosylase, enabling the catalysis of this hetero-
transfer between O G A s and A X . This type of hetero-transfer has not been described in plant 
yet. 

A i m of the second part was to isolate, purify and characterise pectate hydrolases operating 
on homogalacturonan. Five forms of exopectate hydrolases obtained from parsley roots are 
described in this work. The main difference between these enzymes is the substrate preference 
in relation to the chain length. One enzyme only with preference to decameric substrate 
(OGH10) was strictly bound to the cell wall . Other three forms, with preference to 
hexagalacturonate (OGHs6), were found in other cell structures. Only one typical form of 
exopolygalacturonase (exoPG) with preference to polymeric substrate was identified. The 
OGH10 enzyme with unique substrate preference to decamer (not described in plant yet) 
could be important in determining the half-life of oligogalacturonic acids in the infected plant 
tissue. 

K E Y W O R D S 

Hemicellulose-pectin komplex, Petroselinum crispum, exopectate hydrolases 
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1. I N T R O D U C T I O N 

The plant cell wall can play a key role in cell expansion control, differentiation, size and 
structure. Among others, plant cell wall performs structural and mechanical support for 
intracellular components, can also act as a medium regulating the circulation and distribution 
of water, minerals and nutrients. In addition, the wall constitutes the source of biological 
active signal molecules, which could influence intracellular processes, interaction and 
regulation of external factors.7"'3 

The cell wall structure is formed by a complex of various components, including 
polysaccharides, lignin and proteins, whereas its composition and representation can vary 
during the cell growth and evolution. There are many studies focused on plant cell wall 
changes, which occur within the cell division, growth and differentiation or during reaction to 
stress conditions/ 

The cell wall of higher plants has been in question for many studies involving methods of 
glycochemistry, biochemistry or cell biology. Results represent the plant cell wall as a 
dynamic complex structure of polysaccharides and structural proteins.5 Currently, plant 
research targets the proteins participating in wall loosening and degradation as well as the 
explanation of the polysaccharides biosynthesis and their integration into the fibril network. 
The understanding of plant cell growth process requires the clarification of the cell wall 
structure and metabolism. 6 ' 7 

This work is focused in part on the presence of complex hemicellulose-pectin, which has 
been in the hub of interest for many plant cell wall investigations in recent years* Although 
the existence of this complex has been confirmed, the origin, localization or the type of 
linkage require a further research. In 2003, Vincken et al. performed a new pectin model, 
where the homogalacturonan, xylogalacturonan and arabinan occur as a side chains to the 
rhamnogalacturonan type I. These results invoke numbers of "old-new "questions about the 
structure of pectin complex and as well as provide for the comeback of enzymes operating on 
the pectin structure, degrading the homogalacturonan as a pectin side chain, respectively. 

Accordingly, the second part of this work targets the characterization, identification and 
purification of chosen exopectate hydrolases, including exopolygalacturonases (exoPGs) and 
oligogalacturonate hydrolases (OGHs) that cleave homogalacturonan chains and thus loosen 
the pectic network. These pectin-acting enzymes have not yet been fully characterized in 
terms of developmental roles but could clearly have significant involvement in cell expansion 
processes. 

Another important role of the pectate hydrolases in plant cell wall is the release of 
oligogalacturonides. These oligogalacturonides (OGAs) are known as the biologically active 
oligosaccharide fragments and could have a signalling role in a receptor-based mechanism or 
they may bind to other homogalacturonan domains and directly modify the properties of the 
pectin structure. 7 0 , 7 7 
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2. L I T E R A T U R E R E V I E W 

2.1 Plant cell wall 

The plant cell wall includes the complex of polysaccharides that constitutes the raw 
material used to manufacture textiles, paper, lumber, films, thickeners and other products. The 
plant cell wall is also the primary source of cellulose the most abundant and useful 
biopolymer in the nature. The cell wall represents not only the mechanical support of the cell, 
but has also a key role in plant growth, cell differentiation, intercellular communication, water 
movement and defence.4 

Plant cell wall consists of three layers; middle lamella, primary cell wall and secondary cell 
wall (Fig. 1). The middle lamella is formed during the cell division and can serve as a binding 
site for adjacent cells connecting each other together. Middle lamella is essentially composed 
of pectic mater ial . 2 ' 1 2 During cell expansion the flexible primary cell wall is deposited. The 
primary cell wall represents a glycoproteinaceus layer composed of pectin, cellulose, 
hemicellulose and proteins. 7 2 When cell expansion ceases, a secondary wall is sometimes laid 
down inside the primary wall . Secondary wall is composed of cellulose, hemicellulose as well 
as lignin making this matrix stronger and relative hydrophobic. 1 3 

In plants, as much as 35 different cell types were found, each of this differs in its shape, 
size and location within the plant body and wall characteristics. In the growing plant cell wall 
dominate complex polysaccharides whereas the amount of structural proteins is rather low. 4 

Fig. 1: Primary cell wall structure 

(http://micro.masnetfsu.edu/cells/plants/cellwalLhtml) 
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2.2 Primary cell wall structure 

Primary cell wall is the flexible extracellular matrix deposited during the cell expansion. 
Primary walls isolated from higher plant tissues and cells are composed predominantly of 
polysaccharides (cellulose, hemicellulose, pectin) 1 4 ' 1 5 together with lesser amounts of 
structural glycoproteins (hydroxyproline-rich expansins), phenolic esters (ferulic and 
coumaric acids), ionically and covalently bound minerals (e.g. calcium and boron) and 
enzymes. In addition, wall proteins (expansins) are believed to play key role in regulation of 
wall expans ion/ ' 7 6 , 7 7 

Cytoplasm 

Golgi apparatus 

o o o O 

Cellulose synthi 
complex 

ID Cellulose 

Main hemicelkiloses 
i w " - * " Xyloglucan 
_ — - Arabinoxylan 

Main pectin domains 
* w w w w * Rharnnogalacturonan I 

• * w w w w w w w » Honnogalajcturunan 

j y i j p A ^ j y i * * - Xylogalacturonan 

Arabinan 

Rharnnogalacturonan II 

Fig. 2: Structure of the primary cell wall4 

Cellulose microfibrils are synthesized by large hexameric complexes in the plasma 
membrane, whereas hemicelluloses and pectins, which compose the matrix polysaccharides, 
are synthesized in the Golgi apparatus and are deposited to the wall surface by vesicles 
(Fig. 2). In the most plant species the main hemicellulose is xyloglucan, while hemicelluloses 
such as arabinoxylans and mannans are found in lesser amounts.4 The main pectin 
polysaccharides include rharnnogalacturonan I and homogalacturonan, with smaller amounts 
of xylogalacturonan, arabinan, arabinogalactan I and rharnnogalacturonan II. Pectin domains 
are believed to be covalently linked together and to bind to xyloglucan by covalent and non-
covalent bonds/ ' 7 8 
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2.2.1 Cellulose 

Cellulose, one of the most abundant polymers in nature, consists of flat chains of poly-1,4-
P-glucose. Most of the cellulose in nature is found in the plant cell walls, usually as the major 
component. Cellulose occurs as a composite of many chains, termed microfibrils. These 
microfibrils size can vary from 5-15 nm wide and are spaced 20-40 nm from each other. 7 9 The 
long synthesized polymeric glucose chains are attached via a network of hydrogen and Van 
der Waals bonds. The highly organized crystalline domains are spaced by amorphous regions. 
The crystalline areas form tight arrays, which shield many of the glycosidic bonds from 
enzymatic attack. 1 9 ' 2 0 

In addition, the presence of other components, such as hemicelluloses, pectin and 
xyloglucans together with cellulose make the cell wall a very compact and inaccessible 
substrate. The complete degradation of cellulose to glucose units requires the action of at least 
three different types of enzymes, such as endo-l,4-(3-glucanase, exo-l,4-(3-glucanase and |3-
glycosidase. 4 

2.2.2 Hemicelluloses 

Hemicelluloses are another important group of plant cell wall polysaccharides. 
Hemicelluloses bind to cellulose, but branches and other modifications in their structure 
prevent them from forming microfibrils by themselves. 2 ' 2 7 Xyloglucan and arabinoxylan are 
two of the most abundant hemicelluloses. Details of their structure vary slightly among plant 
species. Xyloglucan has a backbone that is similar to cellulose, but it is decorated with xylose 
branches on 3 out of 4 glucose residues. The xylose can also be serially appended with 
galactose (Gal) and fucose (Fuc) residues. Arabinoxylan consists of a (l,4)-linked [3-D-xylan 
backbone substituted with arabinose branches. 4 ' 9 

Other residues, such as glucuronic acid and ferulic acid esters (FAE) , are also attached in 
arabinoxylans that are particularly abundant in cereal grasses. Mannans are also found in 
primary cell walls and probably function in the same way as xyloglucan and 
arabinoxylan. ' ' 

2.2.3 Pectins 

Pectins are defined as a group of complex acidic polysaccharides that consist of 1,4-linked 
a-D-galacturonic acid (GalA) residues. Currently, it is supposed that there are three major 
groups of pectic polysaccharides - homogalacturonan (HG), rhamnogalacturonan I ( R G I) and 
rhamnogalacturonan II ( R G II). This complex and heterogeneous group of polysaccharides 
consists of distinctive domains, which are believed to be covalently linked together. 2 4 ' 2 5 ' 2 6 

Homogalacturonan (HGA) - "polygalacturonic acid" 
Homogalacturonan performs the most abundant pectic domain. The backbone is composed 

of a linear polysaccharide of repeating (1—>4)-linked a -D -Ga lA residues and it is supposed 
that contains about 100 - 200 Gal A units. The homogalacturonan chain seems to consist of 
blocks of methyl-esterified (neutral) G a l A residues alternating with blocks of non-esterified 
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(negatively charged) G a l A residues. The charged blocks can be cross-linked by Ca ions. 
Some G a l A residues could be also O-acetylated or substituted with xylose units forming 
xylogalacturonan ( X G A ) . 2 7 , 2 8 

Rhamnogalacturonan I 
Rhamnogalacturonan I (RGI) is highly variable complex of pectic polymers that can be 

isolated during the polygalacturonases treatment of cell wall . This fact could indicate an 
attachment by glycosidic bonds to H G A polysaccharides. 2 7 

The backbone of R G I is composed of repeating unit: a-D-GalA-(l—>2)-a-L-Rha-(l—>4). 
A s well as in homogalacturonan, some of the G a l A residues in R G - I are O-acetylated. There 
are many different side-chains rich in (1—>4) linked [3-D-galactan and (1—>5)-linked a - L -
arabinan. The term rhamnogalacturonan I is typically used to refer to this pectic 
polysaccharide as shown in Fig . 3: 2 ' 2 2 , 2 5 

Anblnngd.tl.n 

Fig. 3: Structure of RG-I 

<://www, cere, uga. edu/~mao/rgl/rgl. htm) 

Rhamnogalacturonan II 
Rhamnogalacturonan-II is a highly complex structure (Fig. 4). It has not been reported to 

occur in free form in plants, but has been found in red wine 7 5 , suggesting that it can be 
released by the action of yeast enzyme. RG-I I has a backbone rich in Ga lA, to which several 
different side-chains with unusual structure are attached. The backbone of RG-I I contains at 
least 8 residues of 1,4-linked a-D-GalA. Two structurally distinct disaccharides (C and D) are 
attached to C-3 of the backbone and two structurally distinct oligosaccharides (A and B ) are 
attached to C-2 of the backbone. The side chains could contain 11 different sugar residues 
such as apiose (Api), aceric acid (AceA) or 2-keto-3-deoxy-D-wa««o-octulosonic acid 
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Fig. 4: Structure ofRG-II 
fhttp://www. cere, uga. edu/~mao/rg2/intro. htm) 

For many years RG-I I remained an enigmatic polysaccharide with unknown function. 
However, in 1996 Matoh and colleagues demonstrated conclusively that RG-II exists in the 
primary wall as a dimer that is cross linked by a 1:2 borate-diol diester (Fig. 5). 2 9 ' 3 0 

Subsequently, research at the C C R C showed that the dimer contains a single borate diester 
cross link and that the ester is formed between the apiosyl residue in side chain A of each 
monomer subunit. The borate atom is chiral and thus two diesteroisomers can form. It is not 
known which of the two isomers is present in naturally occurring R G - I I 3 " 
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2.2.4 Expansins 

Expansins are plant cell wall proteins first discovered in studies of plant cell enlargement. 
They have unique "loosening" effects on plant cell wall and are believed to function in plant 
cell growth, cell wall disassembly or cell separation. ' 

Sequence analyses indicate that expansins consist of two domains, an N-terminal domain 
(-15 kDa) with distant sequence similarity to the catalytic domain of the G H family 45 
endoglucanases, and C-terminal domain (-10 kDa) that is related to a family of grass pollen 
allergens of unknown function. Expansins are thought to disrupt non-covalent bonds of wall 
polysaccharides, e.g. by inducing of cellulase activity. 3 1 

2.3 Synthesis of matrix polysaccharides 

Cellulose (|3-l,4-glucan) and callose (|3-l,3-glucan) are synthesized in plasmatic membrane 
by cellulose-synthase and callose-synthase (Fig. 6). These enzymes are known as integral 
membrane glycosyltransferases (GTs) that possess several membrane spanning regions and 
both the N H 2 and C O O H termini are predicted to be oriented toward the cytosol. 3 2 

The non-cellulosic polymers, hemicelluloses and pectins, are synthesized by GTs 
presumably located in the different compartments of the Golgi apparatus. These GTs are 
believed to be type II membrane-bound proteins with the catalytic domain (C-terminal) facing 
the lumen of the Golgi apparatus. 3 3 ' 3 4 

Matrix polysaccharides possess a more diverse set of glycosidic linkages and sugar residues 
than cellulose. Specific genes that encode the relevant glycosyltransferases belong to the C S L 
(Cellulose synthase-like) superfamily. This superfamily includes eight other families called 
C S L A , C S L B and so on up to C S L H , as well as the C E S A family . 3 5 C S L proteins are 
proposed to synthesize the P-D-glycan backbone of hemicelluloses and are localized in the 
Golgi apparatus; The C S L A proteins synthesize the mannans and glucomannans of the 
growing cell wall . 3 6 ' 3 7 Other glycosyltransferases are needed to add the branches to the P-D-
glycan backbone. 4 

Enzymes involved in plant cell wall synthesis could be splitted into two groups: 
• glycosyltransferases localized either in the plasmatic membrane (involved in 

synthesizing of cellulose and callose) or in the Golgi apparatus (participating in 
synthesis of hemicelluloses, pectins, mannans and other glycoproteins) 5 5 

• transglycosylases, in C A Z y database classified as glycoside hydrolases (GHs), 
localized in the cell wall , partake in modification of wall-matrix polysaccharides and 
in their embedding into the cell wall structure.3 5 
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Fig. 6: Synthesis of cell wall polysaccharides 38 

Glycosyltransferases (GTs) utilize nucleotide sugars as donor substrates to generate 
polysaccharides. 

a) Cellulose and callose are synthesised at the plasma membrane. Different C E S A 
isoforms aggregate into higher-order rosettes (box in top left corner) to produce (1,4)-
P-glucan chains that coalesce into cellulose microfibrils. Proteins that are known or 
suspected to interact with the C S C , and mechanisms that are known to be important 
for cellulose synthesis and C S C activity, are shown in the central text box in Fig . 6. 
The proposed pathway of primer synthesis for cellulose synthesis, which starts with 
sitosterol and requires K O R endoglucanase activity, is also depicted. C S L A and 
proteins reported to interact with it are schematized on the left in Fig . 6. 5 5 , 5 8 

b) Matrix polysaccharides are synthesized within the Golgi apparatus. Depending on the 
topology of the catalytic sites, nucleotide sugars can be employed from the cytosol or 
from the inside of the cisternae. 

c) Type-II GTs, which consist of a transmembrane, stem and a catalytic domain, play a 
major role in decorating polysaccharides with side-chains. 

d) The synthesised matrix polysaccharides are secreted by exocytosis into the apoplast, 
where they form highly ordered networks with cellulose microfibrils. 3 8 
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2.4 Forming networks of polysaccharides 

After secreting of the matrix polysaccharides into the wall , they become associated with 
newly synthesized cellulose microfibrils, as well as with the pre-existing wall polymers 
forming a network (Fig. 7). This network formation involves spontaneous physical-chemical 
interactions between the wall polysaccharides and their enzymatic cross linking. From the 
polymer-polymer interaction point of view, the precise structure of the cell wall has not yet 
been explained in detail and still represents the key task for true understanding of the cell wall 

4, 39 

expansion. 
Primary cell wall includes three structurally independent domains. Firs domain, cellulose-

xyloglucan complex is embedded into the second domain of pectic polysaccharides. The third 
independent domain is represented by structural glycoproteins. 4 
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Fig. 7: Polysaccharides complex - primary cell wall 40 

2.4.1 Pectin network 

The pectin domains are thought to be covalently cross-linked to each other but the origin of 
this linking has not been determined yet. In addition, within the pectin structure forming there 
are two other types of linkage mechanisms involving boron and calcium i o n s / 

The pectin domain can be covalently linked together forming a large macromolecular 
pectin network. Recent pectin model by Vincken at al. supposes that rhamnogalaeturonan I 
serves as the backbone and the other pectin domains are attached as a side chains (Fig. %d)4'9 

Homogalacturonan is ionically cross-linked by calcium ions whereas boron is bound to 
rhamnogal aeturonan II v ia diester linkages. Rhamnogal aeturonan II forms dimmers through a 
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borate ester bond (Fig. 8b). This cross-linking plays an important role for normal wall 
formation as well as for control of wall porosity. 4 

Fig. 8: Pectin domain structure 4 

Homogalacturonan ("polygalacturonic acid") is able to form a gel-like structure through 
calcium ions involving the cross-linking of its carboxyl groups (Fig. 8c). The growing cells 
synthesize homogalacturonan in which 75 % of the carboxyl groups are methyl esterified. 
This modification removes the negative charge of carboxyl ions and locks its ability to 
undergo C a 2 + cross-linking. High esterified homogalacturonans do not form gels and their 
secretion can maintain the cell flexible and elastic. After the cell growth is terminated, the 
action of pectin methylesterases is activated. Methylesterases are secreted by cells into plasma 
membrane space where they hydrolyse methylesters. Free carboxyl groups are available for 
forming of gel structures through C a 2 + ions. 4 

2.4.2 Cellulose-hemicellulose network 

The binding of xyloglucan to cellulose microfibrils may be of considerable significance in 
the modelling of primary cell walls of plants as well as in the process of cell wall assembly. 
Xyloglucan, like cellulose, has |3-(l,4)-linked glycosyl residues backbone, although this 
backbone is substituted with mono-, di- and trisaccharide side-chains that modify the physical 
properties of the polymer/ 7 Early observation suggested that xyloglucan polymers and 
cellulose associate non-covalently by hydrogen bonding between their backbones. However, 
further analyses indicate that the oligosaccharide side-chains of xyloglucan can moderate its 
binding to the microfibrils. 4 2 

There are at least five ideas how hemicelluloses can form a network with cellulose 
microfibrils (Fig. 9). 4 The ideas involve the direct or indirect linkages between cellulose 
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microfibrils and hemicelluloses. Hemicelluloses may form a primary network with cellulose 
and may also be linked to acidic pectins. Additionally, neutral pectin polysaccharides, such as 
arabinans, are also able to bind to the cellulose surface: 3 9 

• Hemicelluloses might spontaneously bind to the surfaces of cellulose microfibrils and 
tether adjacent microfibrils together (part a in Fig. 9). 4 3 ' 4 4 

• Xyloglucan might become entrapped during formation of the ordered microfibrils 
(part b in Fig. 9). The entrapped remainder of the xyloglucan would be free to bind to 
other cellulose surfaces or to other matrix polymers, thereby anchoring the microfibril 
firmly to its neighbors. 4 7 ' 4 5 

• Cellulose microfibrils might be simply coated with xyloglucans, which adhere to other 
matrix polysaccharides without direct linkage between microfibrils (part c in Fig . 9). 4 6 

• Xyloglucans can be also covalently attached to pectin polysaccharides, forming a 
macromolecule that anchors the microfibrils by sticking xyloglucan to cellulose 
surfaces (part d in Fig. 9). Probably, xyloglucan is attached to homogalacturonan. 4 7 ' 4 8 

The nature of the hypothetical xyloglucan-pectin linkage has not been established yet. 

• Arabinoxylans might adhere to cellulose and be cross-linked by ferulic acid esters 
( A - F - F - A ) (part e in Fig. 9). This type of phenolic crosslink might also crosslink other 
hemicelluloses and pectins, particularly in gross/rough cell walls . 4 

2.4.3 Hemicellulose-pectin network 

A covalent linkage between xyloglucan and pectin is thought to make a major contribution 
to cell wall structure and metabolism, although the mechanism has not been established yet. 
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The occurrence of covalent xyloglucan-pectin binding within the dicot primary cell wall was 
first proposed in the Albersheim model. 4 9 This model proposed glycosidic linkage between 
the reducing end of xyloglucan and pectin side-chain. It was based on assumption that uronic 
acid and xylose residues were uniquely characteristic for pectins and xyloglucans, 
respectively. The enzymatic dissection of wall polysaccharides to yield oligomeric products 
containing both uronic acid residues and xylose residues was taken as evidence of covalent 
xyloglucan-pectin complex. Later, it has become recognised that some hemicelluloses 
(glucuronoarabinoxylans) in dicot cell wall contain uronic acid residues 5 " and some pectins 
contain xylose and 2-O-methylxylose residues 5 7 , 5 2 and therefore the earlier model was 
insufficient. 

The other favour model proposes two polymer networks - a cellulose-xyloglucan network 
held together by hydrogen-bonds and a network of pectic polysaccharides held together partly 
by C a 2 + bridges 5 3 , 2 This model lacks any interactions between both networks by hydrogen-
bonds, ionic interactions or covalent bonds. 

However, Femenia (1999) 5 4 and Thomson and Fry (20 00) 4 7 provided strong evidence that 
covalently-linked pectin-xyloglucan complexes are present in cell walls of cauliflower stems 
and rose suspension-cultured cells, respectively. Results presents evidence that up to 12% of 
the xyloglucan in the walls of suspension-cultured rose cells is attached covalently (probably 
via an arabinan/galactan domain) to homogalacturonan. In all, about 30% of the xyloglucan in 
these walls is linked to acidic polymers. 

Accordingly, for a long time there was the compromise between two prevalent wall models: 
about 1/3 of xyloglucan is covalently attached to acidic pectins - Albersheim model 4 9 and 
about 2/3 of xyloglucan is bound to the cellulose microfibrils possibly connecting them 4 4 but 
without linkage to pectic network. 2 

Further evidence for xyloglucan-pectin complexes was provided by Abdel-Masih et al. 
(2003) 1 3 , when particular enzyme preparations from etiolated pea shoots were able to 
incorporate 1 4 C from U D P - [ 1 4 C ] G a l into pectic oligo-[ 1 4C]galactan chains. The 
polysaccharides containing these oligogalactans showed a strong affinity for paper (cellulose). 
The paper affinity of the 1 4 C-labelled product was greatly reduced by treatment with endo-
(1—>4)-|3-D-glucanase, which digests xyloglucan. 5 5 In addition, newly synthesised, 
intraprotoplasmic [ 3H] xyloglucans were found in [ 3H] arabinose-fed cultured maize cells, 
increasing greatly the M r after the start (about 15-20 min) of radio-labelling. Part of this 
increase was supposed to be the result of post-synthetic bonding between [ 3H] xyloglucans 
and additional polysaccharide chains. 

Xyloglucan-pectin covalent complexes, accounting for 30-70 % of the total xyloglucan, 
were found in a broad variety of angiosperm cell suspension cultures (Arabidopsis, sycamore, 
rose, tomato, spinach, maize and barley) despite wide variation in their xyloglucan structure 
and in their overall plant cell wall compositions. 5 7 This suggests that the xyloglucan-pectin 
linkage is evolutionarily conserved among angiosperms and could be required for effective 
plant cell wall structure and function. 

Currently, there is little known about the sub-cellular site of the formation of the 
xyloglucan-pectin linkage in vivo. Nothing is known about its enzymatic mechanism. In 2008, 
Popper and Fry presented two quite distinct hypotheses explaining the mechanism of the 
formation of xyloglucan-pectin complexes (Fig. 10a,b). 5 * 
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Hypothesis I 

Hypothesis I proposes that xyloglucan-pectin linkages are formed by transglycosylation, 
with xyloglucan as a donor substrate and an R G - I (arabinan or galactan) side chain as an 
acceptor substrate. Heterotransglycosylation of xyloglucan has recently been reported with 
closely related P-glucans but not with pectic components. 5 9 In principle, xyloglucan-to-pectin 
transglycosylation could occur within the endomembrane system or after secretion into the 
plant cell wall (Fig. 10a). 

D o n o r : o o o o o o o o o o o o o o c o o o o o o o o o o o o o o o o o 

(xytagkican) 

Acceptor: 

{3H-lab3tled mods!) 

novel 
sndcurans-

Hybrid 
product: OOaXODOODODOCJDOa>"--***»« 

Le-T.'iiKj cin:iup: QCODOGOOCOOQCG 

Fig. 10a: Hypothetical xyloglucan-to-pectin transglycosylation reaction: a non-radiolabelled donor 
substrate (xyloglucan) is proposed to react with a radioactive model of a RG-I side chain. This 
hypothetical reaction would result in forming of a xyloglucan- 3H-labelled RG-I covalent complexes 
detected in vivo. This reaction could theoretically occur either intra-protoplasmically or within the 
cell wall. 58 

Hypothesis II 

In contrast, hypothesis II, proposes that some xyloglucan molecules are synthesised de 
novo on a primer that consists of an R G - I side chain. According to this hypothesis, part of the 
R G - I would be synthesised first and then NDP-sugars would be used for building a 
xyloglucan chain on to a side chain of the RG-I . (Fig. 10b) 
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Fig. 706: 77*e favoured in vivo mechanism of formation of [3H] xyloglucan-RG-I covalent bonds: 
in this scheme part of the xyloglucan chains are built up de novo, using NDP-sugars as a donor 
substrates, on a RG-I side chain. 58 

2.5 Enzymes involved in the degradation of cell wall polysaccharides 

Cell wall polysaccharides can undergo to the action of numerous enzymes. Fry classified 
these enzymes into three groups: exopolysaccharidases, endopolysaccharidases and other 
hydrolases that do not belong under these two groups 6 " Exopolysaccharidases attack 
polymeric and oligomeric substrates from the non-reducing end, or substituted side chains, 
releasing monosaccharides and rarely disaccharides. Endopolysaccharidases attack the 
polymer backbone with random action pattern. This type of enzymes has a large impact on the 
molecular weight of polysaccharides. Hydrolases from the third class can cleave the 
substituted non-carbohydrate groups linked to wall polysaccharides such as O-acetyl, 
0-methyl, O-feruloyl and others.6"'6 7 Wal l enzymes can be also divided into groups according 
to their substrate specificity, i.e. cellulases, hemicellulase, pectinases, ligninases etc. 

Polysaccharidases are located in the cell wall or in the plasma membrane. These enzymes 
participate in regulation of cell wall expansion and alteration. After biosynthesis and 
deposition of polysaccharides they participate in their degradation. Modifications induce then 
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changes in the structure and composition of these polysaccharides. Plant cell wall 
polysaccharides present very heterogenous and complex polymers, and consequently the 
spectra of activities of polysaccharidases are very diverse. 4 ' 6 7 

Hydrolases of plant cell wall represent the most stable enzymes due to the content of 
cystine (S-S) bridges. On the other hand, some of them could be inactivated by reducing 
agents, e.g. ascorbate and glutathione - compounds that are often added to preparations of 
intracellular enzymes to stabilize them. Many wall enzymes have p H optimum in the range of 
4-5, whereas intracellular enzymes tend to have optima around p H 8 . 1 7 ' 6 0 

2.5.1 Pectinases 

Due to the complex structure of pectin many types of enzymes are involved in its 
modification. Thus, the pectin degrading enzymes are actually a diverse group of enzymes. 
They can be classified according to the site of cleavage (exo or endo), preferred substrate 
(pectin or pectate) and the mode of cleavage (hydrolases or lyases). 7 7 , 6 7 According to the 
cleavage site, pectinases can be further divided into two groups, those acting on the main 
chain (as polygalacturonases, pectin and pectate lyases, rhamnogalacturonases, 
rhamnogalacturonan acetyl esterases and methyl/acetyl esterases) and those acting on the side 
chains of the pectin hairy regions (arabinofuranosidases, endoarabinases, P-galactosidases, 
endogalactanases and feruloyl esterases). 6 2 Another division is found according to part of 
pectin which can be attacked - rhamnogalacturonases, rhamnogalacturonan lyases and 
rhamnogalacturonan acetyl esterases for the rhamnogalacturonic segment or 
polygalacturonases, methyl and acetyl esterases as well as pectin and pectate acetyl lyases for 
the smooth r eg ion . 7 7 , 6 2 

2.5.1.1 Degradation of homogalacturonan 

Degradation of homogalacturonan (HG) is schematically shown in Fig . 11. 
Polygalacturonases (PGs) are enzymes catalyzing the hydrolytic cleavage of glycosidic 

linkages of deesterified H G 6 2 ' 6 3 ' 6 4 and can be of the exo- or endo-acting types. The exoPG 
(EC 3.2.1.67) removes single galacturonic acid units from the non-reducing end of polymers, 
whereas the endoPG (EC 3.2.1.15) cleaves such polygalacturonic acid at random. 

Pectin (methyl) esterases ( P M E , E C 3.2.2.11) catalyze the hydrolysis of methyl ester 
groups of H G . This is accomplished by removing of methyl groups from C6 position of 
galacturonic acid residue. Demethylation of pectin results in changes of charges and the p H in 
the cell wall what allows the formation of a calcium-linked gel structure as well as makes the 
substrate susceptible to degradation by P G s . 6 7 

Pectate lyases and pectin lyases (EC 4.2.2.2, E C 4.2.2.10) are enzymes attacking glycosidic 
bonds of pectate or pectin by trans-elimination from C-4 into C-5 site of aglycon part of 
substrate. Both types of lyases differ in substrate specificity. Pectate lyases cleave pectate and 
pectin lyases prefer pectin as a substrate, whereas these enzymes can operate by endo- as well 
as by exo- mechanism. 6 7 , 6 3 
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Fig. 11: Scheme of the HG degradation 
fhttp://www. cere, usa. edu/~mao/rs2/intro. htm) 

2.5.1.2 Biological activities of oligogalacturonides 

The plant cell wall presents a source of regulatory molecules involved in control of defense 
and developmental processes. Currently, the best characterized class of plant cell wal l -
derived signals is the group of oligogalacturonides (OGAs) , homopolymers of a-l,4-linked 
D-galacturonic acid. O G A s are degradation products of de-esterified homogalacturonan. 
Enzymes responsible for H G fragmentation and releasing of O G A s are mainly pectin methyl 
esterases and polygalacturonases. 1 0 ' 6 5 ' 6 6 

A number of different biological responses to O G A s have been reported, and the particular 
response observed depends on the plant species, the bioassay and the chemical structure of the 
O G A s used. A spectrum of modified and unmodified O G A s of various degree of 
polymerization is active in different systems. The biological responses of plants to O G A s can 
be divided into two categories: plant defense, and plant growth and development. 6 5 

In particular, oligogalacturonic acids derived from pectins show hormone-like effects, such 
as the inhibitor of auxin-induced stem elongation, stimulation of flowering and the inhibition 
of root formation. 6 5 In addition; O G A s can also induce defense-related changes, including the 
induction of protein inhibitor gene expression, expression of pathogenesis-related genes and 
phytoalexin product ion. 6 5 , 6 6 

2.5.1.3 Degradation of rhamnogalacturonan I 

The changes of R G - I backbone are catalyzed by rhamnogalacturonan lyases (A,B) , and 
rhamnogalacturonan acetyl esterases (Fig. 12). 

Currently, only two enzyme activities are known to participate in hydrolysis of R G - I side 
chains: bifunctional a-A^-arabinofuranosidases/xylan-l,4-(3-xylosidases and P-galactosidases 
that can be involved in degradation of arabinan and galactan, respectively (Fig. 12). 6 7 , 6 8 ' 6 9 

a-N-arabinofuranosidases/xylan-l,4-P-xylosidases (EC 3.2.1.55/3.2.1.37) are able to 
release L-arabinose from arabinan and are associated with ripening processes, pectin 
solubility, cell wall porosity and other processes required for cell wall growth and 
development. 6 7 

P-galactosidases (EC 3.2.1.23) are believed to participate in the removal of galactose from 
galactans and other cell wall components. 6 7 ' 6 7 
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2.5.2 Hemicellulases 

Hemicelluloses are generally less complex than pectin and consist of hetero or 
homopolysaccharide main chains, often with short side chains. 7 7 On the other hand, there are 
very diverse types of hemicelluloses as xylans, glucomannans, xyloglucans etc. Therefore, 
hemicellulases consist of endo-acting enzymes attacking the main chain, debranching 
enzymes removing side chains, as well as enzymes involved in modifications such as 
deacetylation. Generally, hemicellulases present group of hydrolytic enzymes . 1 7 ' 6 1 ' 7 0 

2.5.2.1 Degradation of xyloglucan 

Enzymes involved in the modification of xyloglucan structure are various xyloglucan 
specific hydrolases including xyloglucan specific endo-glucanases, xyloglucan endo-
transglycosylases, 7 7 , 7 0 xyloglucan ß-galactosidases, 7 1 xyloglucan a-fucosidases, specific 
cellobiohydrolases and xyloglucan oligosaccharide a-D-xylosidases (Fig. 13). 7 2 

Xyloglucan endo-transglycosylase ( X E T , E C 2.4.1.207) and xyloglucan specific endo-(5-
1,4-glucanase (EC 2.4.1.151) are postulated that play various functions, including wall 
loosening, wall strengthening, integrating new xyloglucans into the wall , trimming xyloglucan 
strands that are not tightly stuck to the cellulose surface and hydrolysing xyloglucans. X E T 
carries out two reactions, first a scission of a glycosidic bond in the xyloglucan backbone, 
followed by the re-formation of the bond with other xyloglucan chain. 4 ' 1 7 ' 7 0 

fi-galactosidases (EC 3.2.1.23) catalyze removal of the terminal non-reducing (3-D-
galactopyranosyl residues from xyloglucans. 7 7 
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a-L-fucosidases (EC 3.2.1.51/3.2.1.63) hydrolyze the terminal a-(l—>2)-fucosidig linkage 
of oligosaccharides. 72 

Xylan-l,4-a- xylosidases (EC 3.2.1.37) cleave specifically the a-xylosyl residue attached to 
the glucose residue of the xyloglucan-oligosaccharide. 72 
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Fig. 13: Degradation of xyloglucan 
fhttp://www. cere, uga. edu/~mao/rg2/intro. htm) 

2.5.2.2Degradation of xylan and arabinoxylan 

Three classes of plant enzymes degrading xylan were identified: endo-l,4-P~xylanases 
(EC 3.2.1.8), /3-xylosidases (EC 3.2.1.37) and a-N-arabinofuranosidases (EC 3.2.1.55). 
Endoxylanases and 3-xylosidases are enzymes responsible for cleavage of xylan backbone 
while a-N-arabinofuranosidases remove side chain arabinose substituents from xylan or 
oligoxylan. In addition, (3-xylosidases are a key enzyme for the complete degradation of 
xylan. 6 7 , 7 3 

2.5.2.3 Degradation of galactomannan 

Enzymes responsible for galactomannans degradation are generally endo-3-mannanases, |3-
D-mannosidases and a-D-galactosidases. 

Mannan endo-1,4-/3-mannosidases (EC 3.2.1.78) hydrolyse the mannan backbone releasing 
manno-oligosaccharides that are hydrolyzed further by /3-mannosidases (EC 3.2.1.25) and 
a-galactosidases (EC 3.2.122) to remove the galactose unit on side chains. Enzymes 
a-galactosidases play the key role in complete degradation of galactomannan. 6 7 

2.5.3 Cellulases 

Cellulases refer to a family of enzymes that hydrolyse 3-1,4 glycosidic bonds in cellulose. 
These enzymes belong to the 0- and S-glycosyl hydrolases. Traditionally, cellulases can be 
divided into exoglucanases, cellulose-1,4-P-cellobiosidase (EC 3.2.1.91) and endoglucanases, 
cellulose (EC 3.2.1.4). 6 7 , 6 2 
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2.6 Plant tissue culture 

Plant tissue culture presents the growth of plant cells outside an intact plant (in vitro 
cultivation). This technique is used in many areas of the plant sciences. Method is based on 
maintaining of plant cells in aseptic conditions on a suitable nutrient medium. The culture can 
be sustained as a mass of undifferentiated cells for an extended period of time or can be 
regenerated into whole plant (Fig. 14). This process is based on totipotency of cells - the 
basic characteristic of somatic cells. 7 4 ' 7 5 

Plant tissue culture has direct commercial applications as well as value in basic research in 
cell biology, genetics and biochemistry. These techniques include callus and suspension cells 
cultures, anthers, ovules and embryos on experimental to industrial scales, protoplast isolation 
and fusion, cell selection and meristem and bud culture. 7 5 ' 7 6 

Applications include: 

• micropropagation using meristem and shoot culture to produce large numbers of 
identical individuals 

• screening programmes of cells 
• large-scale growth of plant cells in liquid culture as a source of secondary products 
• crossing distantly related species by protoplast fusion and regeneration of the novel 

hybrid 
• as a tissue for transformation, followed by either short-term testing of genetic 

constructs or regeneration of transgenic plants 

Culture is generally initiated from sterile pieces of a whole plant. These pieces are termed 
„explants" and may consists of pieces of organs, such as leaves or roots, or may be specific 
cell types, such as pollen or endosperm. Many features of the explants are known to affect the 
efficiency of culture initiation. Generally, younger, more rapidly growing tissue or tissue at an 
early stage of development is most effective. 7 5 , 7 7 

Fig. 14: Induction of cultures in vitro from plant explants 

2.6.1 Callus culture 

Explants, when are cultured on the appropriate medium, can give rise to an unorganised, 
growing and dividing mass of cells. It is thought that any plant tissue can be used as explants, 
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i f the correct conditions are found. In culture, this proliferation can be maintained more or less 
indefinitely, provided that the callus is subcultured on to fresh medium periodically. During 
callus formation there is some degree of differentiation, both in morphology and metabolism. 

Callus cultures are extremely important in plant biotechnology. Manipulation of the auxin 
to cytokine ratio in the medium can lead to the development of shoots, roots or somatic 
embryos from which whole plants can be subsequently produced. 7 5 , 7 7 

Three developmental stages are used to describe the growth of callus cultures: induction, 
division and differentiation. 

Induction 
Cells are placed in conditions that induce them to begin dividing. The actual time spent in 

this phase depends on the type of cells in the explants and the culture conditions. Induction 
often starts with wounding and is enhanced by the adding of hormones to the medium. 7 7 , 7 8 

Division 
Cellular metabolism is activated and cells begin to divide. Explants cells dedifferentiate, 

they are becoming unorganized in relationship to each other. The increase in numbers of cells 
produced during this phase can be very rapid (>1000% per week). 

Cel l divisions occur first in the outer layers of the explant. The callus can grow as a mass of 
tightly connected cells or it may be friable, where the cells are more loosely connected and 
fall apart easily. 7 8 

Differentiation 
Under the proper conditions, cells in the culture begin to differentiate. They form 

meristematic centres that w i l l form shoots, roots or embryos, depending on genotype and 
conditions. 7 8 

2.6.2 Cell - suspension cultures 

Callus cultures can also be used to initiate cell suspensions, which are used in a variety of 
ways in plant transformation studies. Callus can be converted to a cell-suspension culture by 
aseptic transfer into conical flask containing autoclaved liquid medium (usually the same as 
for callus without agar). Cell suspensions are continually cultured by repeated subculturing 
into fresh medium. 7 7 , 7 8 

Suspension cultures have a characteristic growth curve (Fig. 15). The culture passes first 
through a lag phase with a small growth, next through the exponential phase, until the 
stationary phase when some nutrients in the medium become limiting and growth starts to 
slow down. Therefore, cells should be transferred in the exponential or linear phase. Both 
callus and suspension cultures can be induced to undergo cell differentiation, organogenesis 
or embryogenesis. This can be achieved by empirical manipulation of the composition of the 
medium and can provide a useful system for study of cell wall changes associated with these 
developmental processes. 7 8 

26 



Fig. 15: Induction of cultures from plant explants in vitro 
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3. E X P E R I M E N T A L 

3.1 Plant material 

The parsley roots (Petroselinum crispum cv. Olomoucká dlouhá) in an amount of 20 kg 
from October crop were collected from the same field. Roots were treated immediately after 
sampling and were used for study of enzymes as well as for plant tissue cultivation in vitro. 

For enzyme extraction, the plant material was mechanically disturbed using juice extractor. 
For cell cultivation in vitro, thin transverse slices of roots were used. 

3.2 Plant tissue culture 

3.2.1 The initiation and maintenance of callus cultures 

The plant material surface was sterilized using 10 % S A V O and washed 3 times in 500 ml 
sterile tap water for 30 minutes. Roots were cut into 1 mm thick transverse slices and 
transferred to a sterile Erienmeyer flask (100 ml) containing Murashige and Skoog (MS) agar 
medium. 7 9 The composition of cultivation medium is shown in Table 1. 

Table 1: Composition of cultivation medium of parsley roots 

Component Concentration 
MS medium 4,9 g.r1 

Sucrose sog.r1 

2,4-D -auxin 1 mg. l 1 

Explants were incubated at room temperature in the dark and the cultivation process was 
controlled until first callus formation (Fig. 16). After 21 days the best callusing explants were 
selected and, after cutting the callusing regions, transferred into fresh medium. Callus cultures 
were still maintained under the same conditions and sub-cultured at 5 weeks interval. 

Callus cultures were used as an initial material for initiation of cell suspension cultures as 
well as material for continuous sub-cultures. 

Fig. 16: Callus culture obtained from parley root after 14 days of cultivation 

28 



3.2.2 The initiation and maintenance of plant cell suspension cultures 

The friable, light-grown callus cultures were aseptically transferred from agar medium into 
Erlenmeyer flasks (250 ml) containing the liquid M S medium (without agar). Cultures were 
incubated under shaking to obtain sufficient aeration. Interval of sub-cultivation was cut short 
to 14 days and the growth of cells was controlled. The P C V method (Packed Cel l Volume) 
was used for monitoring of biomass growth. 7 8 This method is based on volume of cells 
(sediment of biomass). Suspension culture was observed microscopically (Fig. 17) and the 
samples for next processing were collected during the exponential phase of cells growing. 

Fig. 17: Suspension cultures of parsley in liquid MS medium after 14 days of cultivation: The 
presence of cells of different size and shape in culture is shown.. In the suspension the occurrence of 
isodiametric divisive cells as well as elongated and tracheary elements can be seen. The appearance 
of elongated cells could be due to utilization of auxin. 

3.3 Extraction methods 

3.3.1 Extraction of polysaccharides 

Extraction of cell wall polysaccharides can be evaluated using two different ways; 
sequential extraction with minimal degree of degradation and extraction based on partial 
degradation of polymer. 6 0 In this work the sequential extraction was used. Polysaccharides 
were extracted from suspension cell cultures. 

Cells in exponential phase were collected, centrifuged (15, 000 x g, 20 min, 4 °C), washed 
with sterile water and centrifuged again. Sucrose free cell walls were filtrated using the very 
fine nylon cloth and processed according extraction pathway described below (Fig. 18): 
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Fig. 18: Sequential extraction of cell wall polysaccharides 

3.3.2 Extraction of proteins 

3.3.2.1 Protein extraction and isolation from parsley roots 

The first step of protein extraction was performed using a juice extractor. The obtained 
juice was filtered, precipitated with ammonium sulphate until 90% of saturation as determined 
by refraction method. After 24 h at 4 °C the sample was filtered again, dissolved in a small 
amount of water, dialyzed against distilled water and freeze-dried (Fig. 19). 

The proteins retained in pulp were extracted for 12 h with 0.1 M imidazole solution, p H 6.0 
containing 1 M N a C l . After centrifugation (24, 000 x g, 20 min, 4 °C), the obtained juice was 
handled as described for juice previously (Fig. 19). 
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3.3.2.2 Protein extraction and isolation from cell cultures 

The release of proteins from disrupted cells (callus or suspension cell cultures) was 
provided in 0.1 M acetate buffer, p H 5.0, with 1 M N a C l . After centrifugation (24, 000 x g, 
20 min, 4 °C), the obtained material was handled as described for extraction from intact 
parsley roots (Fig. 19). 

Parslev roots 

4 
Extraction 

Juice extractor 
pulp 
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0,1 M imidazole: I M NaCl 
pH6,0 

Plant tissue 
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Grinding mortar 

juice 
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4 

Precipitation 90% 

4 
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I 
Dialv&s 

4 
Freeze-drying 

Centrifugation 

24 000 xg,20 min, 4° C 

Crude: extract 

Extraction 

0,1 M acetate buffer. I M NaCl, 
pH 5,0 

Fig. 19: Pathway ofprotein isolation from parsley roots and plant tissue 

3.3.2.3 Differential ultracentrifugation 

For localization of exopolygalacturonase forms in individual cell structures the method of 
differential ultracentrifugation was used. 8 0 The sample (parsley root) was first homogenized 
and suspended in 0.1 M acetate buffer, p H 5.0 containing 0.03 M mannitol. Suspension of 
broken cells was then centrifuged (800 x g, 10 min, Optima L - 9 0 K preparative 
ultracentrifuge, Beckman Coulter, Fullerton, California) and further processed according the 
scheme below (Fig. 20). The individual fractions were collected and the proteins of interest 
were isolated and in-between compared. Individual forms of enzyme were identified on the 
basis of different p H optima and substrate preferences. 
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Fig. 20: Differential ultracentrifugation - fractionation ofparsley cells 

3.4 Separation methods 

Isolated polymers (polysaccharides and proteins, respectively) were separated in analytical 
scale for identification as well as using preparative methods for their purification and further 
study. Extracted material required first the removal of low molecular substances by dialysis. 
Dialysis processes were performed using dialysis tubing cellulose 10 kDa cut off membrane 
(Sigma Aldrich) against distilled water. Desalted samples were concentrated by lyophilization 
and further separated on the basis of molecular weights, charges, isoelectric points or affinity 
to suitable matrixes. 

The Pharmacia (Sweden) Fast Protein Liquid Chromatography (FPLC) system was used for 
methods development as well as for the purification of pre-purified proteins. The system 
includes: 
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• Liquid Chromatography Controller L C C - 5 0 0 
• 2 x High precision Pump P-500 capable of continuous flow of buffer to the 

purification column 
• pre-filter for additional buffer purification 
• mixer to produce elution gradients 
• channel switch Motor Valve M V - 7 
• sample loop 200 ul 
• suitable column 
• Single Path Monitor U V - 1 , a dual beam flow-through UV-absorptiometer for 

monitoring the UV-absorption of a flowing liquid at 280 nm 
• Two-channel Recorder REC-482 
• fraction collector F R A C - 1 0 0 

3.4.1 Gel permeation chromatography 

G P C (gel permeation chromatography) separates on the basis of molecular weight and can 
be successfully used preparatively to remove low molecular compounds from a polymer. For 
gel filtration two different types of medium (gel) were used; Biogel (Biorad) and Sephadex 
(Pharmacia), according to the types of polymer (www.biorad.com, www.amersham. com). 

Biogel P (Biorad) gels are porous polyacrylamide beads prepared by copolymerization of 
acrylamide and N,N'-methylene-bis-acrylamide. The gels are extremely hydrophilic and 
essentially free of charge and provide efficient, gentle gel filtration. 

Sephadex (Pharmacia) is a cross-linked dextran which swells considerably in water. The 
degree of cross-linkage determines the porosity and hence the fraction range. 

Hemicelluloses in polysaccharide samples could directly adsorb to cellulose. Therefore the 
non-cellulosic matrix of Biogel P was chosen for their separation. Proteins were separated 
using the Biogel as well as Sephadex columns. 

Separation of polysaccharide 
• Biogel P-2 column (1.0 x 90 cm): the sample was dissolved and eluted with water at a 

flow rate of 0.1 ml/min, 3 ml/fraction. Fractions were evaluated for polysaccharide 
content by phenol-sulphuric acid method and fractions with polysaccharide content 
were collected. 

Separation of proteins 
• Biogel P-30 column (3.0 x 130 cm): protein sample was dissolved in 0.05 M Mcllvane 

buffer p H 5.4 with 0.15 M N a C l and eluted in the same solution at flow rate of 
0.2ml/min, 4 ml/fraction. The polygalacturonase (PG) activity was measured and 
fractions with P G activity were collected. 

• Sephadex G-25 Medium column (1.5 x 90 cm): protein mixture was dissolved and 
eluted with water at flow rate of 0.3 ml/min, 10 ml/fraction. In eluted fraction, the 
protein content, P G activity and salts content were determined. Fractions with enzyme 
activity were collected. 
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• Sephadex G-25 Fine (DP 10, Pharmacia) column (1.5 x 6.5 cm): this column was 
used for desalting of small amount of sample. Proteins (2.5 ml) were eluted through 
the column by water (3.5 ml). 

Size exclusion chromatography coupled with F P L C was used for further purification of 
partial refined proteins. 

In this work two different types of columns for analytical gel filtration were chosen: 
Superose 12 (agarose matrix) and Superdex 75 (dextran matrix). 

• Superose 12™ H R column (1.0 x 30 cm) (Pharmacia, Sweden) is a cross-linked, 
agarose based medium optimized for high performance gel filtration of biomolecules. 
The narrow particle size distribution of Superose enables high flow rates at low back
pressure. Proteins in the M r range of 10-10, 000 D a are separated. 

• Superdex 75 column (1.0 x 30 cm) (Pharmacia, Sweden) is produced by covalent 
binding of dextran to highly cross-linked porous agarose beads. The separation 
properties of the composite medium are predominantly determined by the dextran 
component. The steep selectivity curve gives excellent resolution of proteins and 
peptides in the molecular weight range 3 000 - 70, 000 Da. 

Separating process 
Separating process was identical for both chosen columns; Superose 12 and Superdex 75. 

The column was equilibrated for 1 hour with the eluent buffer at flow rate 0.5 ml/min. The 
protein sample was then dissolved in eluent and applied to the column and eluted by 0.05 M 
phosphate buffer, p H 7.0 containing 0.15 M N a C l . Fractions were evaluated for the protein 
content and enzyme activity was identified on the basis of its p H optimum and substrate 
preference. Fractions of interest were collected. 

Analytical connecting of F P L C and column for gel filtration is suitable for monitoring of 
protein purification process as well as for molecular weight determination. This 
characterisation requires the calibration of the column with the well-characterised standards. 

Calibration curve of protein standards 
Calibration curve and determination of molecular weight of proteins was determined using 

MW-GF-1000 Molecular Weight Marker kit for gel filtration (Sigma). For Superose 12 and 
Superdex 75 column the same marker kit was used: 

Standard Molecular weight 
Cytochrome 12 400 
Carbonic anhydrase 29 000 
Albumin, bovine 66 000 
Alcohol dehydrogenase 150 000 
P-amylase 200 000 
Apoferritin 443 000 
Thyroglobulin 669 000 

3.4.2 Affinity chromatography 

Affinity chromatography is based on a specific interaction of the sample with suitable 
effectors possessing reactive group. This interaction results in forming of stable complexes 
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and their disintegration (destruction under changes of microenvironmental conditions). This 
method can be used for proteins as well as for polysaccharides separation. 

In this work, two different types of "specific adsorption" were used: polysaccharides 
separation process was based on a strong hemicellulose-cellulose affinity and for protein 
purification the specific interaction between lectin (concanavalin A ) and glycosyl part of 
protein (potentially mannnosylated protein) was used. 

3.4.2.1 Separation of polysaccharides 

• Adsorption of xyloglucan to Whatman 3 M M paper: 

Xyloglucan-cellulose binding assay: 
Polysaccharide sample was dissolved in 5 ml of 25 m M acetate buffer, p H 5.6 to 

concentration of lmg/ml, applied on the Whatman paper 3 M (2.5 x 2.5 cm) and incubated at 
37° C for 6 hours under gentle rotation. 

Desorption of bound xyloglucan: 
The Whatman paper was washed with water to remove unbound polysaccharides. Bound 

xyloglucan was released after incubation overnight with 4 M N a O H at room temperature 
under constant stirring. Alka l i solution was neutralized with concentrated acetic acid until 
neutral pH. After lyophilization the saccharide content was determined by sulphuric acid-
phenol method and the sample was desalted on Biogel P-2 column. 

• Adsorption of xyloglucan to Avicel P H -101: 

Preparation of avicel cellulose: 
Avice l cellulose P H - 101 (Sigma, Germany) was first washed with 4 M N a O H with 

constant stirring overnight at room temperature. The cellulose suspension was centrifuged 
(15,000 x g, 10 min), sediment was filtrated through the nylon cloth and washed with water 
until neutral pH. The prepared avicel was lyophilized. 

Xyloglucan-avicel binding assay: 
Pre-washed cellulose and polysaccharide sample were dissolved in 25 m M acetate buffer, 

p H 5.6, mixed (100:1 in weight) and incubated at 37° C under rotation for 6 hours. The 
mixture was centrifuged (15, 000 x g, 10 min). In supernatant the unbound polysaccharides 
were determined using the sulphuric acid-phenol method. 8 7 Bound fraction was collected and 
lyophilized. 

Release of bound xyloglucan: 
The bound xyloglucan was released after incubation in 6 M N a O H at room temperature for 

6 hours under rotation. Suspension was centrifuged (15, 000 x g, 10 min), the alkali 
supernatant was neutralized with concentrated acetic acid and lyophilized. The saccharide 
content in sample was determined (by sulphuric acid-phenol method). Sample was desalted on 
Biogel P-2 column. 
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3.4.2.2Separation of proteins 

Purification of glycoproteins on concanavalin A - matrix (ConA) is generally shown in 
Fig.21: 

• Con A - H E M A 1000 E column (1.5 cm x 2.5 cm): C o n A A - H E M A 1000 E was 
prepared by the reaction of concanavalin A (Fluka, Germany) with the epoxy groups 
of H E M A 1000 (Tessek, Czech Republic) in 0.1 M acetate buffer, p H 3.8 for 11 days 
at 4°C. Mixture of parsley root proteins was applied on column in 0.1 M acetate 
buffer, p H 4.7, with addition of 0.1 M N a C l , 0.001 M M n C l 2 and 0.001 M C a C l 2 at 
flow rate lml/fraction. A s the eluting agent was used 0.1 M methyl-a-D-
mannopyranoside (Sigma, Germany) in 0.1 M acetate buffer, p H 4.7 with 0.1 M N a C l . 
Protein content and enzyme activity were measured and fractions with P G activity 
were collected. 

• Con A-Sepharose column (1.5 cm x 2.5 cm) (Pharmacia, Sweden): Con A-Sepharose 
is concanavalin A covalently bound to Sepharose. Purification was performed in 0.1 M 
acetate buffer p H 6.0 with 1 M N a C l , 0.001 M C a C l 2 , M g C l 2 and M n C l 2 at flow rate 
of lml/fraction. For elution of bound proteins 0.1 M methyl-a-D-mannopyranoside 
(Sigma, Germany) in 0.1 M acetate buffer, p H 6.0 with 0.1 M N a C l was used. In all 
fractions the protein content and polygalacturonase activity were determined. 
Fractions with P G activity were collected. 

Tirg#! GlyCCC<Olain 

L e c t i n % S 

I A-jc L-1 p I: o." 

Fig. 21: Mixture of proteins is applied to the lectin (Concanavalin A) matrix. The target 
glycoprotein specifically binds to the lectin. Unbound compounds and contaminants are washed out 

and the target glycoprotein is desorbed with a special elution buffer. 
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3.4.3 Anion-exchange chromatography 

Neutral and acidic polysaccharides were separated by the anion-exchange chromatography 
using Spheron D E A E (Lachema, Czech Republic) column. D E A E Spheron is a medium-basic 
anion-exchanger (ethyleneglycol methoxylate with diethylaminoethyl groups in side chains) 
and represents the non-cellulosic material suitable for separation of xyloglucan-like 
molecules. 

Separating process 

• D E A E Spheron column (1.0 cm x 3.0 cm): a polysaccharide sample dissolved in 
0.02 M Tr is /HCl buffer, p H 7 was applied to the column equilibrated in the same 
buffer and eluted at the flow rate of 1 ml/min (fraction) until no carbohydrate was 
detected in the elute by the anthrone assay. Material bound to the column (acidic 
polysaccharides) was then eluted by the 0.02 M Tr is /HCl buffer with a linear gradient 
of N a C l (0-1 M ) at the same flow rate. Fractions were assayed for total polysaccharide 

81 82 83 

content. ' ' Individual fractions were collected, desalted and freeze-dried. 

3.4.4 Chromatofocusing 

The chromatofocusing method coupled with F P L C device was used as the final step of 
protein purification, when the separation of individual enzyme forms was required. 

Chromatofocusing offers the high resolution obtained by separations based on differences 
in isoelectric points, together with high capacity of ion exchange techniques. The p H is 
chosen so that the isoelectric points of the proteins of interest fall roughly in the middle of the 
p H gradient. The appropriate Polybuffer exchanger is then equilibrated with start buffer. The 
p H of start buffer is set slightly above the upper limit of the p H gradient, while the p H of 
eluent, Polybuffer, is adjusted to the value chosen for the lower limit of the p H gradient. 
The sample is equilibrated with eluent and applied to the column. The column is then eluted 
with Polybuffer and p H gradient is forming automatically. Proteins in the sample are eluted in 
order of their isoelectric points (from basic to acidic). 

• Mono P H R 5/20 column (0.5 x 20 cm) (Pharmacia, Sweden) is Polybuffer exchanger 
94 used as a weak anion exchange medium for separating of proteins with p i 4-9. 

Separating process 
After equilibration of column with start buffer (for 2 hours), the sample was dissolved in 

the same solution to the saturated concentration and centrifuged. Then the sample (200 ul) 
was applied to the column. Proteins were eluted with Polybuffer at flow rate of 0.5 ml/min, 
0.5 ml/fraction. Fractions were evaluated for the protein content and enzyme activity and 
accordingly collected. 

Buffer system for pH 6-4 interval 

• Starting buffer 
• Eluent 

0.025 M bis-Tris, p H 6.3, HC1 
Polybuffer 74, p H 4.0, HC1 
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The approximate value of protein p i can be determined from p H of elute which released it 
from medium. 

3.4.5 Preparative isoelectric focusing 

The process was performed at the same conditions as that used in analytical isoelectric 
focusing (described in chapter 3.5.1.). After IEF, the zones corresponding to the protein forms 
were cut out from the gel (segments with a diameter smaller than 2 mm) and washed out from 
these segments by water. The individual forms of pectate hydrolases were then detected on 
the basis of activities utilizing their p H optima and the substrate of preference. 

3.5 Analytical methods 

3.5.1 Isoelectric focusing 

Electrofocusing technique was used for the separation of proteins according to their 
isoelectric points. For zone electrophoresis two different gels were prepared; separating 
Polyacrylamide gel and detecting agarose gel. 

Separating Polyacrylamide gel 
Flat-bed isoelectric focusing of proteins was performed in 1 mm thick Polyacrylamide gels 

(13.5 x 17 cm) of the following composition: 

3.6 ml 30 % acrylamide A A 
3.0 ml Bis-acrylamide B i s - A A (2 %) 
1.0 ml glycerol 
1.5 ml ampholytes p H 3-10 or p H 4.5 - 7 ( S E R V A ) 
7.0 ml distilled water 

Degassing 
5.0 ul T E M E D 
0.8 ml ammonium persulphate (APS) 

Detecting agarose gel 
Detecting gel was prepared from two solutions: 

• 250 mg of decagalacturonic acid (DP 10) was dissolved in 5 ml of water 
• 0.3 g of agarose was dissolved by boiling in 7.5 ml of water 

Both solutions were mixed, briefly boiled and 2.5 ml of acetate buffer p H 5.0 was added 
(to avoid changes of pH). The casting was performed in gel casting cassette (18.0 x 16.0 cm) 
using 0.75 mm spacers. The solution mixture was quickly poured into a prewarmed (75 °C) 
casting assembly. The assembly was then cooled and the solidified gel was stored at 4 °C 
until use for detection. 
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The isoelectric focusing was performed under the following conditions: 

• Prefocusation Start 120 V 
30 min 220 V 

• Focusation 30 min 400 V 
30 min 700 V 
30 min 900 V 
45 min 1100 V 
45 min 1250 V 

Detection by zymogram technique 
The detection of pectate hydrolases was performed by zymogram ("sandwich") technique. 

The separating polyacrylamide gel after isoelectric focusing (signed as S in Fig . 22) was 
incubated with detecting agarose gel (signed as D in Fig . 22) and processed according the 
following scheme (Fig. 22): 

Fig. 22: Zymogram technique for detection ofpectate hydrolases 

3.5.2 SDS-PAGE 

The control of purification processes and molecular mass determination (Mr) of proteins 
were performed by SDS-polyacrylamide gel electrophoresis in 12% gel under reducing 
conditions (with (3-mercaptoethanol) according to Laemli (1970). * 5 A molecular weight 
calibration kit protein standard (Serva) was used for M r determination of proteins. Proteins 
were detected by silver staining method 8 6 or by Coomassie blue staining.*7 
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3.5.3 Thin Layer Chromatography (TLC) 

Thin layer chromatography method was used for fast and easy evaluation of substrates 
purity, determination of degradation products of enzyme reactions (products of the hydrolysis 
of natural and unsaturated oligogalacturonates) as well as for the monitoring of 
polysaccharide content during the column separations. 

Polysaccharides - TLC 
Fractions eluted from Biogel P2 column were assayed for polysaccharide content by T L C 

using the commercial Silicagel 60 plates (Merck). Samples were spotted ( lu l ) onto plate and 
dried. Detection was performed according to the colorimetric orcinol method 8 1 with 5 % 
solution of orcinol. 

Substrates purity - TLC 
Substrates used for enzyme reactions were tested for purity using T L C . Oligogalacturonide 

samples ( l u l ) of different degree of polymerization (DP 2-10) were spotted onto the silica gel 
plate (Merck) and dried. Plate was developed in butanol-formic acid-water (2:3:1, v/v/v) 
mixture and detected by spraying with 20 % solution of ammonium sulphate. ** Detected 
plates were visualized by gently heating. As a reference standard, D-galacturonic acid 
( lumol/ml) was used. 

3.5.4 High Performance Liquid Chromatography (HPLC) 

High performance liquid chromatography was used for the purity control of prepared 
substrates used for enzyme reactions, too. 

Oligogalacturonate samples (DP 2-10) after purification pathways were dissolved in 0.3 M 
sodium phosphate buffer, p H 4.4 to the concentration of 10 m M / m l and applied to the H P L C 
column. 

Separating conditions 

H P L C 
Column 
Eluent 
F low rate 
Detector 
Column temperature 

Shimadzu (Japan) 
Shodex AsahipakNH 2 P-50 4E (0.46 cm x 25.0 cm) 
0.3 M sodium phosphate buffer, p H 4.4 
1.0 ml/min 
Shodex U V (210 nm)/RI 
40 °C 

3.5.5 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier transformed infrared (FTIR) spectroscopy 
Spectra were measured by N I C O L E T Magna - IR 750 with D T G S detector and O M N I C 3.2 

software. The isolated hemicellulose-pectin complex from the freeze dried and rehydrated 
polysaccharide sample was pressed into K B r pellets with sample/KBr ration 2/200 mg. The 
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single beam traversing each sample was ratioed with the single beam of the corresponding 
background. 128 scans at a resolution of 4 cm"1 were averaged. 

Attenuated total reflectance (ATR) spectroscopy 
Spectra were measured in solid state by A T R accessory MIRacle. This is single reflection 

Horizontal Attenuated Reflectance Accessory ( H A T R ) with ZnSe crystal. 

3.5.6 Nuclear Magnetic Resonance (NMR) 

Spectra were measured in D 2 0 at 25 °C and 40 °C on Bruker 300 M H z Avance D P X and 
Varian 600 M H z U N I T Y I N O V A 600 N B spectrometers, equipped with 5 mm multinuclear 
probe with inverse detection and 5 mm 1H{13C, 15N}PFG Triple Res IDTG600-5, 
respectively, (both with z-gradients). *H N M R spectra chemical shifts are referenced to 
internal acetone (2.217 ppm). 

3.5.7 Edman degradation 

N-terminal sequencing of apparently SDS-homogeneous protein was provided in Procise -
Protein Sequencing System (Applied Biosystems, U S A ) by Ing. Zdenek Voburka at the 
Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, 
Prague. The principle of Edman degradation is shown in Fig . 23. 

K-Tenrinal Sequencing 

Edman Reaetion-^-

^ Cleauedand 
converted A As 

HPLC Analysis S 

PTH-alan ine 

Fig. 23: Principle of Edman degradation and N-terminal sequencing 89 
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3.5.8 M A L D I - T O F / T O F mass spectrometric sequencing of proteins 

Coomassie Blue stained proteins from isoelectric focusing were enzymatically digested and 
the resulting peptides were analyzed and sequenced by matrix assisted laser desorption mass 
spectrometry according Jensen method 9 " ' 9 1 

3.5.8.1 In-gel digestion of proteins 

Coomassie Blue visualized protein bands of interest were excised from the gel whereas the 
bands were cut as close to the protein as possible to reduce the amount of background gel. 
Excised gel pieces ( l x l mm) were transferred into a 1.5 ml microcentrifuge tubes. 

Washing of gel pieces 
The gel particles were washed with water and water/acetonitrile (1:1), with two changes, 

for 15 minutes per change. A l l remaining liquid was removed and acetonitrile ( A C N ) was 
added to cover the gel particles. After the gel pieces have shrunk and discoloured, the 
acetonitrile was removed and the gel pieces were rehydrated in 0.1 M NH4HCO3. After 
approximately 5 min, an equal volume of acetonitrile was added (to get 0.1 M 
NH4HCO3/ACN, 1:1). After 15 min of incubation, all liquid was removed and gel particles 
were dried in a vacuum centrifuge. 

Reduction and alkylation 
The gel particles were swollen in solution containing 10 m M dithiotheitol in 0.1 M 

NH4HCO3 and incubated for 45 min at 56 °C to reduce the proteins. After incubation the 
excess liquid was removed and quickly replaced with the same volume of 55 m M 
iodoacetamide in 0.1 M NH4HCO3. The mixture was incubated for 30 min at room 
temperature in the dark. The iodoacetamide solution was removed and the gel particles were 
washed with 0.1 M NH4HCO3 for 5 min and then with acetonitrile for next 15 min. The 
washing cycle was repeated until all the Coomassie has removed. 

In-gel digestion with trypsin/chymotrypsin 
After removing of all the Coomassie Blue, the gel particles were completely dried in a 

vacuum centrifuge and then rehydrated with the digestion buffer containing 50 m M 
NH4HCO3, 5 m M C a C b and 12.5 ng/ul of trypsin (Promega, modified sequencing grade). 
After 45 min of incubation, the remaining supernatant was removed and replaced with 20 ul 
of the same buffer (without enzyme) to keep the gel pieces in the solution during enzymatic 
cleavage. Enzyme reaction was running at 37 °C overnight. 

Extraction of peptides 
The peptides were extracted from the gel pieces by addition of a sufficient volume of 

25 m M NH4HCO3 to cover the gel and the sample was incubated for 15 min. Then the same 
volume of A C N was added and incubated for next 15 min. Extraction was repeated two times 
with 5% formic acid and A C N (1:1), extracts were pooled and dried in a vacuum centrifuge. 
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3.5.8.2 Purification andpre-concentration of peptide samples 

For desalting and pre-concentration of peptide extracts, the small chromatography column, 
"ZipTip pipette tips" with C18 reversed phase were used (Millipore, U S A ) . 9 2 The dried 
peptide samples were dissolved in 20 ul of 0.5% T F A and purified according to the ZipTip 
protocol (www.millipore.com). 

ZipTip Cih purification protocol 

• Wetting: 
• Equilibrating: 
• Sample binding: 
• Washing: 
• Elution: 
• Recycling of the tip: 

2 x 10 ul of 100% A C N 
2 x 10 ul of A C N : 0,1% T F A =5:95 
10 x 10 ul of sample dissolved in 0,5% T F A 
2 x 10 ul of 0.1% T F A 
5 x 10 ul of A C N : 0.1% T F A = 60:40 
2 x 10 ul of A C N : 0.1% T F A = 60:40 

3.5.8.3 MALDI-TOF/TOF mass spectrometry analysis 

M A L D I - T O F / T O F measurements in the positive reflectron mode were performed with 
Applied Biosystems 4700 Proteomics Analyzer (Fig. 24) (Applied Biosystems, Framingham, 
M A ) . This T O F / T O F instrument is equipped with a N d : Y A G laser (355 nm) of 3-7 ns pulse 
and 200 H z firing rate. Both M S and M S / M S spectra were acquired using dual-stage 
reflectron mirror. Accelerating voltages applied for M S and M S / M S measurements were 20 
k V and 8 k V , respectively. In M S / M S mode, collision energy of 1 k V was applied and 
nitrogen was used as a collision gas. Raw spectral data were further processed using Data 
Explorer 4.5 software (Applied Biosystems, Framingham, M A , U S A ) . For measurement of 
protein digests, a solution of a-cyano-4-hydroxycinnamic acid (5 mg/ml) in A C N / 0 . 1 % T F A 
(3:2, v/v) was used. Digests desalted previously by ZipTip C i 8 were deposited on the 
previously deposited matrix layer and dried. 

Data processing 
M S data were further processed using GPS Explorer 3.6 software (Applied Biosystems, 

Framingham, M A , U S A ) connected to the Mascot program package (local installation, ver. 
1.9.05) where the database searching was performed. The following parameters were used for 
the database searching: database - N C B I n r (ver. 24.10.2006); taxonomy - all entries; enzyme 
- trypsin; allowed missed cleavages - 1; fixed modifications - carbamidomethyl (C); variable 
modifications - none; peptide tolerance - 30 ppm; M S / M S tolerance - 100 mmu; peptide 
charge - (+1); monoisotopic masses; instrument - M A L D I - T O F / T O F . 
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XY sampls Timed ion Retarding Collision Sonrce#2 MS beam Reflector 
stage selector lens Cell 

Fig. 24: The TOT/TOF optics acquires data in linear and reflector MS and true precursor-
selected MS/MS modes (www, appliedbiosystems. com) 

Spectra interpretation 
De-novo interpretation was done manually as well as by using DeNovo Explorer (ver. 3.6, 

Applied Biosystems, Framingham, M A , U S A ) . Similarity based searches were done using Pro 
B L A S T program (ver. 3.6, Applied Biosystems, Framingham, M A , U S A ) . 

3.6 Biochemical assays 

3.6.1 Determination of polysaccharide content 

3.6.1.1 Determination of total neutral sugars 

Total neutral sugars were assayed by phenol-sulphuric acid method.*7'*2 To the 
polysaccharide sample (200 ul) 0.5 % solution of phenol (200 ul) and concentrated sulphuric 
acid (1 ml) were added, and within 20 min the absorbance measurements at 490 nm was 
provided. 

3.6.1.2 Determination of uronic acids 

Uronic acids content was determined according to the Blumenkratz method with 0.15% 
solution of meta-hydroxydiphenyl reagent in 0.5% N a O H . 8 3 Sample mixture was incubated 
with 0.0125 M solution of tetraborate in concentrated sulphuric acid and after heating in a 
water bath at 100 °C for 5 min the meta-hydroxydiphenyl reagent was added and absorbance 
at 520 nm was measured. For quantitative determination the calibration curve of 
D-galacturonic acid (0.01 - 0.12 umol/ml) was made. 

3.6.2 Determination of protein content 

The occurrence of proteins in the sample was evaluated either upon monitoring the U V -
absorption at 280 nm (Jennway 6305 Spectrophotometer) of effluent during chromatography 
or using the quantitative method according to Bradford. 9 3 For quantitative proteins 
determination the calibration curve of albumin was done. 
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3.6.3 Measurement of enzyme activities 

3.6.3.1 Substrates 

Activity assay was performed using a different substrates: pectate (polymer), 
oligogalacturonic acids of different degree of polymerization (DP 2-15), unsaturated 
oligogalacturonic acids (DP 2,3) as well as xyloglucan (tamarind seeds, Glyloid), xyloglucan 
oligosaccharides ( [ 3 H ] X X X G ) 9 4 ' 9 5 and arabinoxylan (Megazyme). 

Preparation of pectate 
Commercial citrus pectin (Genu Pectin, Copenhagen, Denmark) was purified by washing 

with acidified 60% ethanol (5 ml cone. HC1/100 ml of 60% ethanol), followed by 60% and 
96% neutral ethanol according to Kohn and Furda. 9 6 Pectate (DP 152) was prepared from this 
pectin by repeated deesterification with 0.1 M N a O H at p H 10, 22 °C. Deesterified product 
was precipitated by HC1 added until the p H of solutions was adjusted to 2.5 and then 
neutralized by means of K O H . 

Preparation of oligogalacturonic acids 
1% sodium pectate solution was carried out in 0.5 M acetate buffer at p H 4.6. 0.26 mg of 

polygalacturonase (Leozym, L i k o Leopoldov, Slovakia) was added to 100 ml substrate and 
incubated at 30 °C for 10 min. The enzyme was deactivated after 10 minutes by boiling. The 
reaction mixture was filtrated and freeze-dried. Products of hydrolysis were separated by 
chromatography on two subsequently connected Sephadex G-25 Fine (Pharmacia) columns 
(5.6 x 120 cm) equilibrated and eluted with 0.05 M phosphate buffer at p H 7.0. Purified oligo-
(D-galacturonic) acids (OGAs) with D P 2-8 were desalted using a Sephadex G-10 (2.0 x 100 
cm) column (Pharmacia, Sweden) and lyophilized. 9 7 

Unsaturated oligogalacturonic acids preparation 
Unsaturated oligogalacturonic acids (DP 2,3) were obtained after enzymatic degradation of 

potassium pectate by bacterial pectate lyase (1% pectate treated by lyase of Erwinia sp., 
pH8 .0 , sustained by addition of 0.1 M K O H , 30 °C, 20 h) and freeze-dried. Products of 
hydrolysis were separated by gel permeation chromatography as described for preparation of 
O G A s . 9 7 

Preparation offluorescentlv labelled oligogalacturonic acids 
The preparation of fluorescently labelled oligosaccharides was done according to Kos ik and 

Farkas (2008). 9 5 The starting oligosaccharides (mixture of O G A s of D P 2-8 ) were in the first 
step converted to corresponding 1-amino-1-deoxy-alditols (glycamines) by incubation with 
ammonium acetate and N a C N B H 3 at 80 °C for 2-4 h and in the second step, the glycamines 
were reacted with Lissamine™ rhodamine B sulfonylchloride to obtain fluorescent 
sulforhodamine conjugates of the glycamines. A l l operations were carried out in a single 
centrifuge test-tube and the products from the individual reaction steps were isolated on the 
basis of their differential solubility in organic solvents. The purity of the product was checked 
by T L C on silicagel plates using the solvent system n-buthanol-ethanol-water (5:3:2). 
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3.6.3.2 Activity assay 

Pectate hydrolase activity 
Pectate hydrolase activity was assayed in 0.1 M acetate buffer at a p H value corresponding 

to the p H optimum of the individual form (pH optimum was evaluated in the range of p H 3.6-
5.6) at 30 °C by measuring the increase of colour intensity at 530 nm in the reaction mixture 
containing solutions of substrates (1 m M solution of oligogalacturonates or 0.5% solution of 
sodium pectate). 9 8 ' 9 9 

The enzyme activity was then expressed in umol reducing groups liberated within 1 min by 
1 mg protein and determined by means of standard graph for D-galacturonic acid. 

Xyloglucan endotransglycosylase activity 
The transglycosylating activity of X E T (enzyme separated from pectate hydrolases during 

purification process) was determined as described by Fry, 1 9 9 2 . 1 0 0 Reaction mixtures 
consisted of 10 ul of an assay mix containing 0.3% xyloglucan (donor substrate), 2.10 4 cpm 
of [ 3 H ] X X X G (acceptor substrate) in 0.1 M succinate buffer, p H 5.5 and 10 ul of enzyme 
preparation. Time course assays were done at 25 °C over 1 hour with reactions stopped by the 
addition of 40 ul of 40% formic acid. Reaction mixture was spotted onto a 3 x 4 cm of 
Whatman 3 M M paper, which was dried and then washed for 1 hour in running tap water to 
remove the unreacted [ 3 H ] X X X G o l . The paper was dried and polymeric material was assayed 
for 3 H by scintillation count ing . 1 0 1 

Hetero-transglycosylation activity of crude extract from parsley roots 
The mixture of fluorescently labelled oligogalacturonic acids ( O G A - S R ) as an acceptor 

substrate (10 ul) and 0.3% arabinoxylan as a donor substrate (50 ul) were incubated in 
succinate buffer p H 5.5 with 10 ul of centrifuged concentrated crude extract of proteins from 
parsley roots or nasturtium seeds 5 9 Operations were carried out in a single centrifuge test-
tube at laboratory temperature for 24 hours. After incubation the samples were repeatedly 
washed with water and precipitated with ethanol (to get 60% ethanol) and centrifuged (10,000 
x g, 5 min). Supernatants after each washing and precipitation step were spotted onto the 
Whatman 3 M M paper and air dried. The content of unreacted O G A - S R in supernatant after 
individual washing steps and the effect of hetero-transglycosylating reaction (washed 
precipitate dissolved in 50 ul of distilled water) were detected under U V light. 

3.6.4 Determination of action pattern 

The action pattern of enzymes was demonstrated by the correlation of viscosity decrease of 
polymeric substrate with the decrease of its degradation. 1 0 2 

The reaction mixture of enzyme (1 mg/ml) and pectate substrate (0.5%) was incubated in 
Ubbelohde viscometer at 30 °C for 0 - 360 min and after each 3 min the decrease of viscosity 
of solution was monitored. A t the same time intervals the measurements of liberated reducing 
groups was performed. Together with the molecular mass of pectate it was used for counting 
of the degree of pectate degradation. 

Calculations 
The decrease of viscosity P (%) was calculated according to equation (1): 
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p= - tHi° -100 (1) 

where / is the flow time of reaction mixture in given time, to is the flow time of reaction in the 
initial point and tR20 is the flow time of distilled water. The decrease of viscosity was then 
correlated by the degradation degree of polymeric substrate. Degradation degree represents 
the percentual amount of splitted bounds within the polymer molecule. 

3.6.5 Determination of K M values 

Michaelis parameters of purified enzymes from parsley juice and pulp were determined 
utilizing the initial velocities at five concentrations of substrates, ranging from 0.1 - 0.5 m M 
for substrates with D P 2 - 10 or 0.05 - 0.25% for pectate. Reactions were performed at 30 °C, 
in acetate buffer of appropriate p H value. Michaelis parameters were calculated by nonlinear 
regression. 

3.6.6 Determination of activation energy 

Two parameters are needed to characterize the thermal stability of a given enzyme. One is 
the rate of inactivation at a specified temperature, expressed either as a rate constant or as a D 
value (equation 4), and the other is a measure of how the rate of inactivation varies with 
temperature, given either by an activation energy (Ea) or as z v a l u e . 1 0 3 With these two 
parameters the rate of enzyme inactivation at any temperature, and accordingly the expected 
level of residual activity remaining after a given heat treatment, can be calculated. 

The determination of the rate of inactivation (thermal stability) was evaluated after 2 hour 
incubation of the enzyme solution at temperature from 20 °C - 70 °C and the following 
activity assay at 30 °C. The energy of activation (Ea) was then determined as the temperature 
profile of enzyme activity depending on t i m e . 1 0 3 

Calculations 
The rate constants k for first-order inactivation was determined from the slopes of the 

inactivation time courses according to equation ( 1 ) : 1 0 3 

\og(A/A0) = -(k/2303)t (1) 

where A0 is the initial enzyme activity and A is the activity after heating for time /. Slopes of 
these lines were determined by linear regression and the calculated rate constants replotted in 
Arrhenius plots. 

Activation energies (Ea) were calculated from the slopes of these Arrhenius plots according 
to equation (2): 

\n(k) = -EJ RT + c (2) 

where R is the gas constant (8.314 J.mol^.K" 1) and T is the temperature in K. Slopes were 
calculated by linear regression. 

For each enzyme a reference temperature was chosen near the middle of the temperature 
range used for inactivation determinations. The rate constant for inactivation at this reference 
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temperature (kref) was determined from the value of ln(&ref) at this temperature given by the 
regression line in the Arrhenius plot. 

With these two parameters, Ea and kKf, the inactivation rate constant (k) at any temperature 
(7) can be calculated from equation (3): 

ln(*) = ln(* r e / )-(EJRpT-U Tref ) (3) 

In some cases inactivation is given as a D value, the time required to reduce the enzyme 
activity to 10 % of its original value. The D value is directly related to the inactivation rate 
constant k by equation (4): 

D = 2.303 Ik (4) 

3.6.7 Deglycosylation with N-glycosidase F 

Proteins obtained from single S D S - P A G E band were tested for potential glycosylation 
using the N-glycosidase F deglycosylation kit (Table 2) for asparagine-linked glycan chains 
of glycoproteins (Roche, Germany). The principle of deglycosylation with N-glycosidase F is 
shown in Fig . 25. 

Table 2: Deglycosylation kit composition 

Bottle Contents 
1 N-glycosidase F, recombinant from E.coli 

2 
Denaturation buffer, pH 8.6 

(Contains sodium phosphate and ionic detergent) 

3 

Control glycoproteins: 
• human transferring 
• ribonuclease B 
• human al-acid glycoprotein 

4 
Reaction buffer, pH 7.2 

(Contains sodium phosphate and non-ionic detergent) 

5 

Premixed protein molecular weight markers: 
• Phosphorylase B, 97.4 kDa 
• Bovine serum albumin, 66.2 kDa 
• Aldolase, 39.2 kDa 
• Triose phosphate isomerase, 26.6 kDa 
• Trypsin inhibitor, 21.5 kDa 
• Lyozyme, 14.4 kDa 

For deglycosylation four microtubes were prepared. Two vials for control glycoproteins 
(standards) and two for the analyzed glycoproteins. To each sample (5 pi) reduced 
denaturation buffer was added (5 pi) and reactions were incubated for 3 min at 95 °C. After 
the heating step the contents were centrifuged. To each vial 10 pi of reaction buffer was 
added and mixed. One control sample (standard) and one analyzed glycoprotein were digested 
with 10 pi of reconstituted iV-glycosidase F for 1 hour at 37 °C. Second standard and analyzed 
glycoprotein (blanks) were prepared by incubation with 10 pi of reaction buffer under the 
same conditions. After reaction time, the appropriate aliquot of the sample with an equal 
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amount of SDS-sample buffer were mixed and heated for 3 min to 95 °C. Then the analysis 
on S D S - P A G E was performed. 

i f 
A s r i T G I c N A c - G l c N A c - R 2 

I I 

:: 
* • 

Fig. 25: Principle of deglycosylation 
www.roche-applied-science.com 
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4. R E S U L T S A N D D I S C U S S I O N 

4.1 Hemicellulose-pectin cross-linking 

4.1.1 Purification of polysaccharides 

Purification of polysaccharides from cell suspension cultures obtained by cultivation of 
parsley roots was performed according to Fry (2001) 4 7 (Fig. 26). Cells were incubated in the 
solution of 6 M N a O H with 1% N a B H 4 at 37 °C for 24 hours under gently shaking. Cell 
suspension was then filtrated through the very fine nylon cloth and alkali extract was 
neutralized using the ice acetic acid. Neutral sample solution was then dialyzed and fireeze-
dried. Obtained crude polysaccharide extract was used for further purification procedure 
(Fig. 26). 

Adsorption of herniceHulose to cellulose 

Adsorption to WbatmaQj'AvkeL cellulose PH 101 

I 
Desorption Q — — ^ 

4M NaOH, overu igh t, shaldn g 

1 
neutralization 

Acetic acid, ice, stirring 

1 
Gel permeation chlomatogtaphy 

BiogelP? column 

1 
Anion^exchange chromatography 

DEAE Spherou,pH7 

/ \ 
neutral substances Charged substances 

free xvlogluca n complex hemlceliu lose-pecll n 

1 
l M X a C l a 

characterisation * Co-eluted hemicellulose-pectin complex 

Hem iceilulose-ce llulose complex 

Fig. 26: Purification process developed for charged polysaccharide complexes 
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Adsorption of hemicelluloses to cellulose 
For this type of affinity chromatography two types of cellulose were used pre-washed 

Avice l cellulose and Whatman 3 M M paper. Polysaccharide sample was incubated with both 
types of cellulose under the same condition and the amount of adsorbed hemicelluloses was 
determined by phenol-sulphuric acid method (Fig. 27). 

1 0 0 -

90 -

80 . . 

70 

60 \ 

50 \ 

40 \ 

30 -

20 

10 

o 4— I 1 I 
Avicel Watman 

Fig. 27: Affinity chromatography: Adsorption of hemicelluloses to cellulose 

A s can be seen the amount of hemicellulose bound to Avice l cellulose was about 60 % and 
to Whatman paper was more than 80 % (Fig. 27). A s a result the Whatman paper was used for 
the next adsorption process. 

Hemicellulose sample was desorbed in 4 M N a O H , overnight at room temperature. After 
neutralisation, released polysaccharides were washed with water and dialyzed using the 
Amicon device through the polyethersulfone ultrafiltration membrane (10 kDa, Mill ipore) at 
nitrogen atmosphere. After first washing the amount of desorbed hemicellulose was 
monitored according phenol-sulphuric acid method. More than 90 % of polysaccharides were 
obtained. 

Gel permeation chromatography on Biogel P2 column 
The concentrated sample was freeze-dried and then applied to Biogel P2 column. Gel 

permeation chromatography was used for removing of the salt residues and separation of 
hemicellulose complex from other residual sugars. A l l fractions eluted from column were 
evaluated for the sugar content according the phenol-sulphuric acid (Fig. 28). 
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Fig.28: Gel permeation chromatography on BiogelP2 column: separation of released 
polysaccharides from Whatman paper 

From the separation process results that the obtained polysaccharides fraction is composed 
mainly from the hemicellulose complex. For the determination of approximate molecular 
mass of this complex, dextran fractions were used as molecular weight standards (Fig. 28). 
Supposed molecular weight of hemicellulose complex is in the range of 300-500 kDa. 

The main peak of polysaccharides was collected, freeze-dried and applied to D E A E 
Spheron column. 

Anion-exchange chromatography on DEAE Syheron column 
Partially refined polysaccharides sample was obtained using anion-exchange 

chromatography on DEAE-Spheron, which separated neutral and acidic polysaccharides. 
Xyloglucan, as a main hemicellulose occurring in the sample, represented the neutral 
component and passed through the column without retention (free xyloglucan). On the other 
hand, all acidic components interacted with charged column medium. 

Providing that sample adsorbed/desorbed from Whatman paper and separated from gel 
permeation chromatography contain hemicellulose (neutral) as well as pectin part (acidic), it 
can be supposed that the obtained acidic fraction includes a co-eluted hemicellulose-pectin 
complex. 

Neutral fractions as well as acidic fractions after elution with 1 M N a C l were monitored for 
the neutral sugars (hexose, pentose) 8 1 and uronic acids 8 2 content (Fig. 29). Acid ic fractions 
of interest were collected, desalted and freeze-dried. 
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Fig. 29: Anion-exchange chromatography: DEAE Spheron column: separation of neutral and 
acidic polysaccharides 

For the confirmation of the existence of hemicellulose-pectin complex further analysis of 
acidic fractions obtained from DEAE-Spheron column was required. Sample was used for 
F T I R (Fourier transformed infrared) and N M R (Nuclear magnetic resonance) analysis. 

4.1.2 Analysis of isolated polysaccharides 

Fourier transformed infrared (FTIR) spectroscopy 

Infrared spectroscopy can be extensively applied in plant cell wall polysaccharide analysis 
whereas cellulose and pectic components are the most widely studied polysaccharides by this 
technique. According to Kacurakova (2000) report, the IR data of model components can be 
used for identification of polysaccharides. 7" 4 These model data were used also for the 
interpretation in this work. 

Polysaccharide sample was analyzed using Fourier transformed infrared (FTIR) and 
Attenuated total reflectance (ATR) spectroscopy. Measured spectra were interpreted on the 
bases of model data for individual polysaccharides and their characteristic band maxima in 
the near 1200-800 cm"1 F T I R region (Table 3). These specific band maxima are due to the 
influence of the constituent monosaccharides of the studied pectic and hemicellulosic 
polysaccharides. 

Excepting model data taken from literature, 1 0 4 ~ 1 0 7 also data of standard polysaccharides 
measured in this work were used for interpretation of obtained F T I R spectra (Table 3). 
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Table 3: FTIR frequencies of the studied plant cell wall polysaccharides: Model data used for 
spectra interpretation: No. 1-18 data taken from literature, No. I-IV- measured data of 

polysaccharides used as a standard compounds (vs- very strong, s-strong IR band intensity) 

No. Compound (C-OH), (C-O-C), (C-C), ring (Cl-H), ring 
1 Pectin 1144s, llOOvs, 1047, 1017vs 953,896,857,835 

2 Rhamnogalacturonan 1150, 1122, 1070vs, 1043vs, 989s 951,916,902, 846, 
823 

Galactan 1155, 1134,1072vs, 1038vs 893,883 
4 Arabinan 1141, 1097, 1070, 1039vs 918,895, 807 
5 Arabinogalactan 1074vs, 1045vs 897, 868, 808 
6 Arabinogalactan 1139, 1078vs, 1043, 985 880,842 
7 Arabinogalactan(type 11) 1156, 1078vs, 1040 916, 892, 879 

8 Arabinogalactan(type 11) and 
Glucomannan (mix.) 

1146, 1066vs, 1034 896, 872, 809 

9 Arabinogalactorhamnoglycan 1049vs 914, 837, 810 
10 Xyloglucan 1153, 1118, 1078vs, 1041vs 945,897 
11 Glucan 1151, 1104, 1076, 1041vs, 1026vs 916,840 
12 Glucomannan 1150, 1092vs, 1064vs, 1034vs 941,898, 872, 814 
13 Galactoglucomannan 1149, 1064, 1034vs, 960 934, 897, 872, 813 

14 Arabinoglucuronoxylan and 
Galactoglucomannan (mix.) 1161, 1151, 1109, 1070, 1038vs 898, 881, 809 

15 Pectin 1152, 1004vs, 1082, 1051,1022vs, 
972 

891, 834 

16 G X 1147, 1084, 1047vs, 985 897 
17 Starch 1155,1110, 1082, 1026vs 931, 850 
18 Cellulose 
I Rhamnogalacturonan I 1146,1077s,1040s, 1020vs 959, 896 
11 Arabinoxylan 1087s, 1044vs 898, 861, 809 
III Galactomannan 1153, 1071, 1029, 871, 812 
IV Xyloglucan 1153, 1079vs, 1041vs 943,897 

2000 15DD 
Wavenumbers (cm-1; 

Fig. 30: FTIR spectrum of hemicellulose-pectin complex 
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Attenuated total reflectance (ATR) spectroscopy 

A T R spectra measured in solid state were interpreted according to data obtained from 
polysaccharide standards (Table 4) and compared with results form F T I R spectroscopy. 

Table 4: ATR frequencies ofpolysaccharides used as a standard compounds 
(vs- very strong, s-strong IR band intensity) 

No. Compound (C-OH), (C-O-C), (C-C), ring (Cl-H), ring 
I Rhamnogalacturonan I 1020 831 
II Arabinoxylan 1039 896 
III Galactomannan 1057, 1018 812 
IV Xyloglucan 1028 897 

3500 3000 2500 2000 1500 1000 
Wavenumbers (cm-1) 

Fig. 31: ATR spectrum of hemicellulose-pectin complex 

55 



2000 1500 
Waven umbers (cm-1) 

(-) - A T R , (-) - F T I R 

Fig. 32: FTIR/ATR spectra of hemicellulose-pectin complex 

Table 5: Summary of FTIR/ATR frequencies of hemicellulose-pectin sample 

Compound (C-OH), (C-O-C), (C-C), ring (Cl-H), ring 

Hemicellulose-pectin 
sample 

1155, 1151, 1045vs, 1036vs, 
1013, 923 896,897 

The F T I R data showed that each polysaccharide has a specific band maximum in the 1200-
1000 cm"1 region (Table 3,4). This region is influenced by ring vibrations overlapped with 
stretching vibrations of C - O H side groups and the C - O - C glycosidic bond vibrations. 7" 4 

Hemicelluloses 
Hemicellulose standards used in this work included xyloglucan (Tamarind seeds, 

Dainippon Pharmaceutical), galactomannan (Sigma), and arabinoxylan (Wheat arabinoxylan, 
Megazyme). 

It was found the band maximum at 1041 cm"1 for xyloglucan, a band position which 
corresponds to P-glucan (Table 3). Also further obtained bands at 1153 cm" 1, 1079 cm" and 
bands from anomeric region with maximum at 897 cm"1 confirmed previous published 
resul ts . 1 0 4 In addition, data from A T R analysis showed band maxima at 1028 cm"1 and 897 
cm"1 (Table 5), which correspond to a-glucan. 

According to Kacurakova (2000) , 1 0 4 the IR bands of p-(l->6) or p-(l->3)- linked galactan 
occur at about 1078-1072 cm"1 and the P-(l —>4)-mannan can be found at 1066-1064 cm"1. 
In addition, the main chain forming arabinans was found at 1039 cm"1 while the side chain 
arabinans occur at about 1044 cm"1. In this work, band maximum for galactomannan at 1071 
cm"1 and for arabinoxylan at 1044 cm"1 was found (Table 3), what corresponded to previous 
results. m m 
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Pectins 
For interpretation of measured spectra standards of homogalacturonan (in the form of 

pectate) and rhamnogalacturonan I (Megazyme) were used. 
In the pectin and rhamnogalacturonan the bands at 1100 cm"1 and about 1017 cm"1 are 

usually strongest.7"5 , 7"6 The unique spectral shape of pectin is due to the high 
homogalacturonan content. In rhamnogalacturonan the band shape is different with the main 
maxima at about 1070 and 1043 cm" 1. In the case of a-linked arabinogalactan, the side chain 
of rhamnogalacturonan I, the IR maximum occurs at 1039 cm" 1. The [3-arabinogalactans have 
two bands at about 1078 cm"1 and 1045 cm"1 (Table 3). These two bands may belong to their 
particular components; the former to galactopyranose in the backbone and the latter to 
arabinofuranose units in side chain. 

F T I R data of this work corresponds to previous results. 1 0 4 ~ 1 0 7 Spectra of 
rhamnogalacturonan I confirmed the main band about 1020 cm" 1. In addition results indicate 
the presence of arabinogalactans with band maximum at 1078 cm" . 

Glycoside linkage 
The IR regions of bands at about 1160-30 cm"1 are influenced by the glycosidic linkages 

(C-O-C). Galactose units with any link type and position were found at about 1155 cm"1, 
xyloglucan at 1153 cm"1 and at lower frequencies 1051-1039 cm"1 were polysaccharides with 
mannose, arabinose and rhamnose constituents. 7 0 4 

Anomeric region 
The anomeric region is complicated by band overlap. On the other hand, the bands can be 

unique for each sugar constituent and can give additional information to region at 1200-
1000 cm" 1. This characteristic absorption bands in anomeric region for a-linkage (834 cm"1) 
and |3-linkage (898 cm"1) can distinguish well aldopyranoses and the furanoid compounds at 
879 and 858 cm"1 in carbohydrates. 1 0 8 The most important bands are at about 898 cm"1 for (3-
anomer and about 845 cm"1 for a-anomer form of the pyranoid ring. Galactose and mannose 
show bands at 875 and 810 cm" 1. Our results for galactomannan with band in anomeric region 
at 812 cm" confirmed these previous results . 7 ^ 7 "* This band maximum arises from mannose 
monomer units of galactomannan. 

NMR- }H analysis 
The H N M R spectrum of a polysaccharide can generally be divided into three major 

regions: the anomeric region (4.5 - 5.5 ppm), the ring proton region (3.1 - 4.5 ppm) and the 
alkyl region (1.2 - 2.3 ppm). For identification of compounds in sample the anomeric region is 
the most suitable. 7" 9 , 7 7" 

Spectra of measured polysaccharide sample were compared with H chemical shifts 
reported in the literature 1 0 9 ' 1 1 0 and accordingly interpreted (Fig. 33). On the basis of previous 
results from F T I R analysis, the main compounds of interest were arabinoxylan (Megazyme) 
and homogalacturonan (pectate) that were used as well as reference substances. 
Unfortunately, high heterogeneity and deficient amount of polysaccharide sample caused the 
spectra interpretation more difficult. Therefore, obtained preliminary results require further 
analysis. 
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Fig. 33: NMR - 1H spectrum ofpolysaccharide sample isolated from parsley suspension cells 

4.1.3 Identification of analysed polysaccharides 

FTIR 
On the basis of F T I R model data and results obtained from analysis of polysaccharide 

sample and reference compounds (see chapter 4.1.2) it can be supposed that isolated complex 
includes hemicellulose as well as pectin part. 

The very strong band with maximum at 1045 cm"1 and band found in anomeric region at 
896 cm"1 corresponded to arabinoxylan. This band at 1045 cm" 1 (from region influenced by 
glycosidic bonds) represented the side chains of arabinans. In addition, bands at frequencies 
of about 1151-1155 cm" corresponded to polysaccharides with arabinose constituents. From 
these results yields that hemicellulose compound found in the complex sample is an 
arabinoxylan. 

In the case of pectin and pectic components there are specific band maxima at around 1605-
1630 cm"1 and 1420 cm"1 influenced by carbonyl groups of pectin. Accordingly, these 
carboxylate regions were found also in complex sample. There were found band maxima at 
1612 and 1412 cm" 1 (symmetric stretch of carboxylate) what corresponded to model and 
standard data of pectic c o m p o u n d s . 7 " 4 , 1 0 6 ' 1 0 7 In addition, the band maximum at 1262 cm" 
responds to C O C ester region. In anomeric region the band at 896 cm"1 typical for pectin was 
found. From these results it can be supposed that measured sample contains pectic 
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compounds. The signal at 1731 cm"1 can be attributed to the carbonyl group stretching of 
uronic acid carboxyls. 

Unfortunately, due to the heterogeneous and complex macromolecule structure of pectin, it 
is impossible to determine accurately the structure of pectin compound included in measured 
polysaccharide sample. On the other hand, there was not found band maximum at about 
1070 cm"1 typical for rhamnogalacturonan.7"4 The absence of R G - I band can indicate that the 
linkage between hemicellulose (arabinoxylan) and pectin is formed by other type of pectic 
compound, probably via its side chains, e.g. homogalacturonan or xylogalacturonan. 

NMR 
On the basis of previous results from F T I R there was supposed that polysaccharide sample 

includes hemicellulose as well as pectin components. This presumption indicated also results 
obtained from N M R analysis (Fig. 33). 

N M R analysis indicated signals at 5.34 (not shown), 5.28 and 5.26 ppm (Fig. 33) 
corresponding to anomeric protons of a-L-arabinofuranoses substituted at 0-3 (mono 
substituted) and at both 0-3 and C-2 (disubstituted) of xylose residues, respectively. Signals 
obtained at 4.58, 4.54 and 4.47 ppm were due to the anomeric protons of P-D-xyloses residues 
which can be substituted at C-2 and C-3 (disubstituted), C-3 (monosubstituted) or 
unsubstituted. A signal obtained at 5.14 ppm could be influenced by the a-anomer of 
unsubstituted xylopyranosyl residues at the reducing end (Fig. 33). The signals for other 
protons of arabinose and xylose were observed in the region of 3.20-4.30 ppm. These 
obtained results corresponded with structure described for arabinoxylan (Fig. 34) . 1 0 9 They are 
in agreement with previously published resu l t s . 7 7 0 , 7 7 7 

l \ O H H / l l \ O H h A 

H OH H OH 

Fig. 34: Structure of arabinoxylans 

A H N M R spectrum of the sample indicated signals of chemical shifts at 5.09, 3.91, 3.76 
and 4.37 ppm (Fig. 33) what can correspond to 1,4-linked-a-D-galacturonic acid residues 
(GalA), the main backbone of homogalacturonan. In addition, the low signals at about 1.80 
and 2.0 ppm indicated presence of methyl ( -CH 3 ) groups (Fig. 33). 

Results obtained from H N M R confirmed previous F T I R results. On that account it can be 
supposed that polysaccharide sample isolated from parsley root suspension cells consists of 
arabinoxylan bound with homogalacturonan. 
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On the other hand, due to the high heterogeneity of plant sample, the spectrum 
interpretation was too difficult. Therefore, to prevent misinterpretation of results obtained 
form N M R analysis, further analyses as well as structure studies are required. 

4.1.4 Hetero-transglycosylating reaction between OGA-SR and A X 

The first reference of hetero-transglycosylating activity was described in crude protein 
extract from nasturtium seeds (Tropaeolum majus) by Ait-Mohand and Farkas in 2006. 5 9 

They used different combinations of donor: acceptor pairs, where as the glycosyl acceptors 
served the oligosaccharides fluorescently labelled with sulforhodamine while the different, 
unstained, high M r-polysaccharides served as glycosyl donors. They detected hetero-
transglycosylating activities with the following donor: acceptor pairs: X G : X G O s - S R , 
X G : C E O s - S R , X G : L A O s - S R , H E C : X G O s - S R and C M C : X G O s - S R . 5 9 

On the basis of results obtained from F T I R and N M R where the linkage between 
homogalacturonan and arabinoxylan were indicated, the crude extracts of proteins from 
parsley roots and nasturtium seeds were used for evaluation of potential enzymes capable to 
catalyze hetero-transglycosylating reaction of appropriate type. O G A s - S R were used as an 
acceptor substrate and arabinoxylan as a donor substrate. 

Obtained results show that both protein precipitates contain unknown type of enzymes 
(probably transglycosylases, because no nucleotide sugars were added) enabling the hetero-
transfer between O G A s and A X (Fig. 35). 

Fig. 35: Hetero-transglycosylating reaction between OGA-SR and AX: 
A -crude extract ofproteins from parsley roots, B - crude extract ofproteins from nasturtium seeds, 

1-10 - individual washing steps, unreacted OGA-SR, 
11 - resulting precipitated sample dissolved in 50 [il of water, incorporated OGA-SR into AX 

4.2 Exopectate hydrolases from Petroselinum crispum 

Plant pectate hydrolases are in general supposed to be bound on primary cell wall where 
they cause the homogalacturonan degradation. Polygalacturonases can be classified into two 
groups depending on action pattern; enzymes randomly cleaving substrate 
(polygalacturonases, E C 3.2.1.15) and enzymes terminally cleaving substrate 
(exopolygalacturonases, E C 3.2.1.67). 7 7 2 The biological function, structure as well as gene-
expression of polygalacturonases have been studied in detail, while the research of 
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exopolygalacturonases (exoPGs) is still on its beginning. ExoPGs have not been fully 
characterized yet in terms of developmental roles but could clearly have significant 
involvement in cell expansion processes. These enzymes are supposed to play a key role in 
the turnover of biologically active oligogalacturonates as signalling molecules affecting plant 
growth and development. 1 0 ' n 

The aim of this work was to purify and characterize the pectate hydrolases from parsley 
roots as a new plant source. Enzymes obtained from roots were compared with proteins found 
in callus and cell suspension cultures. 

4.2.1 Purification of pectate hydrolases 

Pectate hydrolases were at first isolated from precipitate of parsley juice. Purification 
process included different separation methods involving gel-permeation and affinity 
chromatographies as well as preparative isoelectric focusing (Fig. 36). 

Pars lev roots 

1 
juice 

1 

precipitation with. (NH^SO,, 

desalting on Sephadex G-2 5 Medium column 

1 
Sephadex G 100 column 

1 
Couca.uaTa.Liu A - H E M A 10 00 £ 

1 
SDS-PAGE „ Superose U 

homogeneity ' 
preparative IEF 

I • Protein identification 

^ *" Protein characterisation 

Fig. 36: Scheme ofpurification pathway used for parsley juice proteins with polygalacturonase 
activity 

The process of proteins isolation after their precipitation was started by removing of low 
molecular substances on a Sephadex G-25 Medium (Pharmacia, Sweden) column (Fig. 37). 
The desalted protein mixture was applied on a Sephadex G-100 (Pharmacia, Sweden) column 
(Fig. 38). Fractions with polygalacturonase activity were collected, desalted by dialysis and 
freeze dried. The next step was provided on a concanavalin A - H E M A 1000 E column 
(Fig. 39). This chromatography is based on interaction between Concanavalin A and glycosyl 
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group of enzyme, and so it can be used only for proteins with appropriate glycosylation. 
Enzyme fractions released from Concanavalin A (after desalting on D P 10 column) were 
further separated on F P L C with Superose 12 column (Fig. 40 a,b). 

Sephadex G-25 Medium column 

10 20 30 

fraction No. 
40 50 

* A 5 3 0 - pectate hydrolase activity, • A 2 8Q - protein content, fiS- salts content 

Fig. 37: Sephadex G-25 Medium column: Desalting of crude protein extract and removing of low 
molecular substances after precipitation with ammonium sulphate, dialysis and lyophilization 

Sephadex G-100 column 

0,5 - . 

0 15 30 45 60 

fraction No. 

» A 5 3 0 - pectate hydrolase activity, • A 2 8Q- proteins content 

Fig. 38: Sephadex G-100 column: further separation of desalted proteins after Sephadex G -25 
Medium step 
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CoDcaDavalin A 

0 20 40 60 
fraction N o . 

• A 5 3 0 -pectate hydrolase activity, • A28o-protein content 

Fig.39: Concanavalin A HEMA 1000 E: A- the protein fraction unbound to concanavalin A, 
B- the bound enzyme fraction eluted with a- MMP 

Both fractions unbound to C o n A (Fig. 39, peak A ) as well as eluted by a - M M P (Fig. 39, 
peakB) were collected and used for next purification step on Superose 12 column connected 
to F P L C device (Fig. 40a,b). Fractions eluted by a - M M P were used for the confirmation of 
potential glycosylation in reaction with iV-glycosidase F. 

Superose 12 - A 

fraction No. 

• A 5 3 0 - pectate hydrolase activity, • A28o-protein content 

Fig. 40 a: Superose 12: Separation profile of proteins no interacting with Con A (Fig. 39, peak A) 
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Sup erase 12 - B 

3:f 

fraction No. 

• A530-pectate hydrolase activity, • A28o-protein content 

Fig. 40 b: Superose 12: Separation profile of proteins eluted with a-MMP (Fig 39, peak B) 

Protein sample after last purification step on Superose 12 column (fraction after interaction 
with a - M M P ) was used for further characterization. 

Control of purification process and mass determination 
The purification procedure of pectate hydrolase from the protein precipitate of juice from 

parsley roots was monitored after each chromatography step by S D S - P A G E . A s can be seen 
in Fig. 41, single protein band was obtained after Superose 12 step. 

94 

67 
43 

p 

30 

20.1 

14.4 : 
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ClOO 

ConA 

— • 55.3 kDa 

Fig. 41: SDS-PAGE ofpurified pectate hydrolase from parsley roots juice after individual 
purification step: G-100, Sephadex G-100, ConA, concanavalin A-HEMA, S12, Superose 12. 

4.2.2 Characterization of pectate hydrolase 
The molecular weight of protein was determined. Standard calibration proteins in the range 

14.4-94 kDa (Serva) were used for molecular weight evaluation. Results indicate that the SDS 
homogeneous band responds to molecular weight of 55.3 kDa (Fig. 41). 
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The affinity of parsley pectate hydrolase to concanavalin A indicated that this enzyme is 
glycosylated. This presumption was confirmed by JV-glycosidase F cleavage what resulted in 
slight molecular weight decrease (1-2 kDa) of protein (Fig. 42). 
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Fig. 42: SDS-PAGE after N-glycosidase F cleavage: decrease of Mr, confirmation ofprotein 
glycosylation 

Determination of action pattern 
The action pattern of isolated enzyme was determined using the correlation of viscosity of 

pectate decrease with its degree of degradation measured during enzyme react ion. 1 0 2 A very 
slow decrease of viscosity P (%) with simultaneous fast increase of reducing groups ( ^ 5 3 0 ) 

representing the ratio of substrate cleavage was monitored (Fig. 43). Accordingly, the 
degradation degree of substrate was determined and the typical exo mechanism of enzyme 
action was evaluated (Fig. 44). 

0 100 200 300 400 500 

t(s) 

A530, (-° -)-reducing groups, P, (-x-)- viscosity 
Fig. 43: Viscosity and reducing groups ofpectate during its reaction with pectate hydrolase from 

parsley roots 

65 



100 i 

90 • 

SO • 

J . 70 • 

60 • 

50 • 

40 • 

> 30 • 

20 • 

10 • 

; • 

Endo 
mechanism 

1 2 J 4 

degradation degree (%) 

Fig. 44: Action pattern determination ofpectate hydrolase from parsley roots 

A s a typical exopolygalacturonase, the enzyme from parsley roots was able to cleave di-D-
galacturonic acid as a specific substrate of difference between endo- and exo-PGs and the 
only product detectable by T L C was D-galacturonic acid ( M G A ) . 7 7 2 The orientation of 
substrate splitting was evaluated using substrates modified by endopectate lyase. Reaction of 
these unsaturated oligogalacturonates (DP 2,3 marked on the nonreducing end by the double 
bond) with pectate hydrolase from parsley did not lead to any splitting of these modified 
substrates, e.g. these enzymes utilized the cleavage of substrates from nonreducing end as was 
described for enzymes from carrot roots 113-116 

Edman degradation 
N-terminal sequencing of SDS-homogeneous protein sample was provided in Procise-

protein sequencing system (Applied Biosystems, U S A ) . 

B l a n k 1 Rsiidua 1 

4 . 0 6 .0 8 . 0 1 0 . 0 12,0 14 ,0 1 ( . 0 

S t a n d a r d 1 

4 .0 4 . 0 1.0 10 .0 1 2 . 0 1 4 . 0 1 6 . 0 

R a i i d u a ; 

4 . 0 6 .0 8 .0 1 0 . 0 12.0 14 .0 16 .0 4 , 0 * , 0 1 .0 1 0 . 0 1 2 . 0 1 1 . 0 l t . O 
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Rendu. 3 

4.0 6 .0 B . f l 1 0 . 0 12 .0 U . O 1 ( , 0 

A v a l duo 4 

1.0 6 .0 8.0 10 .0 11 .0 U . O 16.0 4 .D ( .Q 1.0 10 .4 I I . 0 14 .0 16 .0 

Fig. 45: Edman degradation: amino acids N-terminal analysis 

Unfortunately, the protein with the molecular weight of 55.3 kDa and apparently 
homogeneous by S D S - P A G E included still a mixture of proteins as was confirmed by 
N-terminal analysis. Alanin (A), threonin (T) and serin (S) seemed to be the N-terminal amino 
acids of the major forms of present proteins (Fig. 45). 

Determination of pH optima 
The protein mixture from parsley juice was examined for the presence of pectate hydrolases 

on basis of activity on pectate and pentagalacturonate at various p H values (Fig. 46) as 
described for enzymes from carrot roots. U 4 ' n $ 

One form of typical exopolygalacturonase preferring polymeric substrate and having p H 
optimum at 5.2 and three forms of oligogalacturonate hydrolases (with preference for O G A s 
with p H optima 3.6, 4.2 and 4.6) were found in parsley juice showing a wide variety of exo-
enzymes able to completely degrade parts of pectate in wall pectin. 

Pectate hydrolases with terminal action pattern preferring oligomeric substrates were 
described as typical enzymes produced by various microorganisms. 7 7 2 To prevent 
misinterpretation of results obtained with roots (both juice and pulp) cropped from the field 
(possibility of contamination) sterile cell cultures from these roots were prepared and used for 
p H optima determination. The comparison of the occurrence of pectate hydrolases in roots, 
callus and cell suspension showed the presence of the same enzyme forms (Fig. 46). Ratio of 
individual forms varied considerably, probably due to various stages of plant growth and 
different conditions. 
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Fig. 46: pH optima of pectate hydrolases in parsley; pectate hydrolase activity dependence on 
substrate: 

(A) - 0.5% sodium pectate (PGA), (B) -1 mMpentagalacturonate (GA5) 

Substrates 
Oligogalacturonic acids (DP 2-10) were prepared by enzymatic hydrolysis of pectate, gel 

filtration on Sephadex G-25 Fine column in 0.05 M phosphate buffer, p H 7.0 and desalting on 
a Sephadex G-15 column. 

These oligogalacturonates were used for characterization of substrate specificity of enzyme 
forms as well as for identification of individual enzyme in their mixture. Accordingly, the 
control of substrates purity was required. This was performed by T L C (Thin layer 
chromatography) and FLPLC (High performance liquid chromatography). 

Thin Layer Chromatography 
Oligogalacturonic acids of D P 2-10 were analyzed on Silica gel sheets (Merck) using 

butanol/formic acid/ water (2:3:1) as the eluent (Fig. 47). The spots were detected by 20% 
solution of ammonium sulphate in water, D-galacturonic acid ( M G A ) was used as a reference 
substance. 
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GA2 GA3 GA4GA5 GA8 GA10 

Fig. 47: TLC chromatogram of oligogalacturonic acid standards: Control of purity 

HPLC 
The purity of oligogalacturonic acids of D P 2-5 was confirmed by H P L C using the Shodex 

Asahipak N H 2 P - 5 0 4E column. The solution of 0.3 M phosphate buffer, p H 4.4 was used. 
Separated O G A s were detected using Shodex U V detector (Fig. 48). 

0.06 -

0.03 -

0.00 -

0 4 0 0 8 0 0 

1 (-)-MGA, 2 (-) GA2,3 ( ) GA3,4 (-) GA4,5 (-) GA5 

Fig. 48: HPLC chromatogram: Separation and purity control of oligogalacturonate standards used 
for enzymes characterization 

Determination of initial rates 
A t least four pectate hydrolases with p H optima 3.6, 4.2, 4.6 and 5.2 were detected in 

parsley juice. The comparison of these forms according to their substrate preference is shown 
in Fig. 49. Enzymes with more acidic p H optima 3.6, 4.2 and 4.6 can be supposed to be 
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oligogalacturonate hydrolases (OGHs). The enzyme with p H optimum 5.2 is a typical 
exopolygalacturonase. The enzymes detected in the parsley juice were further characterized. 

u 

< 

(GA)2 (GA)3 (GA)4 (GA)5 (GA)7-B (GA)10 PGA 

S u b s t r a t e 

3.6 - • , 4.2 - D,4.6 - • and 5.2 

Fig.49: The initial rates of pectate hydrolases 
from parsley roots juice on substrates with various DP 

First the partial separation of individual forms was performed using preparative isoelectric 
focusing (IEF) in the region of p H 3-10. After IEF the gel was divided into segments with a 
diameter smaller than 2 mm. Proteins were washed out from these segments by water and 
forms of pectate hydrolase were detected on the basis of p H optima and preferred substrates 
(Fig. 50, part A ) . The isoelectric points of enzymes were then evaluated by IEF utilizing IEF 
standards and the zymogram technique for the localization of enzymes in the gel. The p i 
values were very close together, in the range of 5.3-5.6 (Fig. 50, part B) . 
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-GA5, pH 3.6; -GA5, pH 4.2; B-GA5, pH 4.6; • - 0.5% PGA, pH 5.2 
B 

Fig. 50: IEF ofpectate hydrolases from parsley juice: A- The representation of individual enzyme 
forms in segments after preparative IEF detected on the basis of differences in pH optima and 

preferred substrates, B-Determination of pi for individual pectate hydrolases using the zymogram 
technique and IEF standards 
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Determination of temperature optima and thermal stabilities 

The temperature optimum of all forms was between 60 and 70 °C. Enzymes were still 
stable by 55 °C (100 % recovery of activity after 2 hours.)Eor instance the temperature 
optimum of the exopolygalacturonase and O G H with p H optimum at 4.2 was very similar 
(Fig. 51). Both enzymes showed very high temperature stability, too (Fig. 52). 

38 48 58 68 78 

t e m p e a r t u t e (°C) 

(-A-) - OGH, enzyme with pH optimum at 4.2, (-•-) -exoPG, enzyme with pH optimum at 5.2 

Fig. 51: Temperature optimum of chosen pectate hydrolases from parsley juice 

t e m p e r a t u r e (°C) 

(-A-) - OGH, enzyme with pH optimum at 4.2, (-•-) -exoPG, enzyme with pH optimum at 5.2 

Fig. 52: Thermal stability of chosen pectate hydrolases from parsley juice 

In comparison to enzymes (exoPGs as well as OGHs) found in carrot roots, 7 7 3 - 7 7 6 the 
temperature optima and thermal stabilities of enzymes from parsley juice were in the same 
region. 
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Kinetic parameters determination 

Michaelis parameters of enzymes purified from parsley juice were determined utilizing the 
initial velocities at five concentrations of individual substrates, ranging from 0.05 to 0.5 m M 
(substrates with D P 2 and 5) or 0.05 to 0.25% pectate. Reactions were incubated at 30 °C and 
KM values were calculated by nonlinear regression (Table 6). 

Table 6: Summary of Michaelis parameters obtained for individual enzyme forms 

Substrate 
p H 

(G 

Km 
(mol.r1) 

A) 2 

((xmol/min) 

(G 

Km 
(mol.r1) 

A) 5 

((xmol/min) 

P 

Km 
(mol.r1) 

G A 

((xmol/min) 
3.6 
4.2 
4.6 
5.2 

1.02xl0-4 

1.13xl0-4 

1.25xl0-4 

Nd 

0.044 
0.033 
0.025 

Nd 

6.36xl0 - 5 

7.01xl0 - 5 

6.26xl0 - 5 

6.78xl0"5 

0.184 
0.065 
0.201 
0.110 

Nd 
Nd 
Nd 

5.08xl0"5 

Nd 
Nd 
Nd 

0.187 

A s expected from results for carrot enzymes, the affinity of both types of enzyme, O G H 
and exopolygalacturonase, increased with increasing D P of substrate (decrease of K M value 
with D P increase). On the other hand, the increase of the maximal rate was stopped by O G H 
when polymeric substrate was used (Fig. 53a,b). The initial rates on substrates with various 
D P (Fig. 53a,b) indicated that these maximal rates were reached for D P 5 or 6 as it was 
determined for carrot O G H . 7 7 6 
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Fig. 53a: Initial rates comparison of OGH with pH optimum at 4.2 and exoPG, activities for 
substrates with various DP 
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OGH with pH optimum at 3.6, • O G H with pH optimum at 4.6 

Fig. 53 b: Initial rates comparison of chosen OGHs, activities for substrates with various DP 

Conclusion 

Two types of pectate hydrolases with terminal action pattern on substrate were found in 
parsley juice. Exopolygalacturonase (exoPG) and three forms of oligogalacturonate 
hydrolases (OGHs) were isolated, purified, further characterized and in-between compared. 
The comparison of their molecular masses, isoelectric points, temperature optima, thermal 
stability and also action pattern showed very similar results. On the other hand there were 
observed differences in their p H optima and substrate specificity in respect to degree of 
substrate polymerization. 

ExoPG, which prefers the polymeric substrate, has p H optimum at 5.2. B y contrast, the 
other types of pectate hydrolases, OGHs, favour oligomeric substrate, hexagalacturonic acid. 
O G H with preference for hexamer includes three isoforms, with p H optima 3.6, 4.2 and 4.7. 

In general, exopolygalacturonase from carrot roots with p H optimum 5.0 1 1 3 is very similar 
to exopolygalacturonase found in parsley with p H optimum 5.2, and O G H from carrot with 
p H optimum 3.8 7 7 6 corresponds to three O G H isoforms from parsley (pH optima 3.6, 4.2 and 
4 . 6 ) . 7 7 7 This similarity indicating the same function in roots of both plant sources was 
supported by results obtained from kinetic analyses provided on di-D-galacturonic acid, penta-
D-galacturonic acid and pectate. 7 7 6 

The production of individual enzyme forms in roots was compared to enzymes produced by 
root cells cultivated on solid and liquid medium. 

These results wi l l serve in future as a basis for structural evaluation of individual pectate 
hydrolases as well as for structure-function studies. 
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4.3 Oligogalacturonate hydrolase from the pulp of parsley roots 

Plant exoPGs were supposed to prefer only polymeric substrate and the ability to cleave 
substrate with lower degree of polymerization (DP) was strictly attributed to enzymes 
produced by mic roo rgan i sms . U 2 ' 1 1 3 First description of plant enzyme preferring 
oligogalacturonates (oligogalacturonate hydrolase, O G H ) appeared in 2005 when an enzyme 
from carrot roots was descr ibed. 7 7 6 In addition, more forms of O G H were found in parsley 
roots juice (Chapter 4.2). A l l three forms of this enzyme were similar to protein from carrot 
roots with preference for hexagalacturonate (OGH6). The p H optima determination of 
proteins extracted from parsley roots pulp (Fig. 46) indicated the presence of enzyme with 
preference for substrates with higher D P and occurring exclusively in pulp. In contrast to 
carrot, the enzyme system in parsley seemed to be even more enriched in connection to 
degradation of substrates with different DP. 

The further aim of this study was to purify and characterize O G H from parsley roots pulp 
indicating a unique substrate preference. 

4.3.1 Purification of oligogalacturonate hydrolase 

The pulp protein mixture presented a very heterogeneous material what required more 
complicated purification procedure (Fig. 54) as that for juice mixture (Fig. 36). 

Pars lev roots 

i 
pulp 

extraction with 1 M >~aCl 

I 
precipitation with (NH^SOj 

I 
desalting an Sephadex G-2 5 Medium column 

I 
Biogel F 30 column 

i 
Coucauaraliu A - Sepharose 

I 
Superdex 75 

i 
Mono P 

i 
SDS-PAGE „ Siiperdex 7s 

homogeneity 
Protein identification 

Protein characterisation 

Fig. 54: Scheme ofpurification pathway used for parsley pulp protein mixture 
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The first step of purification was provided on Sephadex G-25 Medium column (Fig. 55). 
The desalted sample was then applied on Biogel P 30 column (Biorad) where exoPGs 
(approx. M r about 55 kDa) and X E T enzymes (approx. M r about 32 kDa) were separated 
(Fig. 56). Fractions with exopolygalacturonase activity were collected and separated on a 
Concanavalin A-Sepharose (Pharmacia, Sweden) column (Fig. 57). The next purification step 
was provided on Superdex 75 column connected to F P L C device (Fig. 58). 

The improvement of purification was achieved with chromatofocusing on Mono P 
column (Fig. 59) followed by rechromatography on Superdex 75, where a huge amount of 
contaminants was removed. 

G-25 Medium 

J 

20 30 

fraction No. 

A530-pectate hydrolase activity, • A28o-protein content 

Fig. 55: Sephadex G-25 Medium: Separation ofprotein mixture from parsley pulp after previous 
extraction with 1 MNaCl and precipitation with ammonium sulphate 

Biogel P 30 

1 0 0 0 

5 0 0 

0 U 

* A530-pectate hydrolase activity, • A28o-proteins content, XET activity 

Fig. 56: Biogel P 30 column: Separation of exoPGs (approx 55 kDa) andXETs (approx 32 kDa) 
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Concanavalin A 

1,4-1 

0 20 40 60 
fraction No. 

» A530-pectate hydrolase activity, • A280-protein content 

Fig. 57: Concanavalin A - Sepharose: A- the proteins unbound on concanavalin A, 
B enzyme fraction eluted from column with a- MMP 

The affinity of enzyme to Concanavalin A indicated an glycosylation of the same type as 
glycosylation confirmed in enzymes (exoPGs) from parsley juice. 

Fractions eluted with a - M M P were collected, desalted on D P 10 column and separated by 
gel permeation chromatography on Superdex 75 column (Fig. 58). 

Superdex 75 

0,2 0,9 

0 1 0 20 30 40 

fraction No. 

• A530-pectate hydrolase activity, • A28o-protein content 

Fig. 58: Superdex 75: Separation profile of enzyme eluted from ConA by a-MMP 

The attempt to separate individual enzyme forms was provided on Mono P column 
connected to F P L C (Fig. 59), where desalted fractions 22-23 from Superdex 75 column were 
applied. 
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MONO P- chromatofocusing 

23 33 43 

fraction No. 

Proteins ( ), activity peak I (-•-), activity peak II, (-•-), activity peak III ( ) 

Fig. 59: Chromatofocusing on Mono P column: Determination of isoelectric point of OGH found 
in parsley pulp 

Rechromatography on Superdex 75 (not shown) was used for removal of P B 74 from 
proteins collected in fractions of peaks I-III (Fig. 59). 

The activity curve on P G A indicated the possible separation of individual forms (three 
separated peaks I, II and III) on Mono P column. Enzymes were identified according to their p H 
optima and the preference for individual substrate. Decamer and p H value of 4.6 were used 
for identification of wanted O G H (Fig. 60). 

100.0 

> 50.0 

0.0 

Sample 

GA5, pH 3.6 - , GA5, pH 4.2 - • , GA10, pH 4.6 - • , PGA, pH 5.2 - • 

Fig. 60: Identification of individual pectate hydrolases separated on Mono P column (Peaks I-III). 
Identification provided on different substrates. 

The first peak (I) corresponded to the mixture of exopolygalacturonase and O G H s with p H 
optima 3.6 and 4.2. The second peak (II) contained mainly O G H with p H optimum 4.2. The 
third peak (III) corresponded clearly to O G H which was the subject of this part of study. 
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Control of protein purification process 
The control of purification process of O G H was evaluated after each chromatography step, 

including Biogel P 30 column, Concanavalin A-Sepharose as well as Mono P and 
Superdex 75 steps (Fig. 61). A s can be seen, protein of O G H was still not completely 
homogeneous (Fig. 61). 

9-) 

41 

30 

20.1 

14.4 

kin m I iv 

etoPG/OGHsff 
OGH10 

Fig: 61: SDS-PAGE ofpurification path of OGH from parsley roots pulp: 
I - the protein extract after Biogel P-30 column, II - enzymes from the pulp of roots purified with 

the same purification process as the apparently SDS-PAGE homogeneous proteins from juice, III -
OGH after Mono P and Superdex 75 step and IV-purified pectate hydrolases from juice. 

4.3.2 Characterization of oligogalacturonate hydrolase 

The preferred substrate of purified O G H (OGH10) produced in parsley roots pulp was 
decagalacturonate (Fig. 62), what means the main difference between this enzyme and the 
others. In addition, this enzyme does not correspond to any enzyme form described generally 
in plants. 

n n 

1—1 

GA2 GA3 GA4 GAS GA GA10 GA10 - GA21 GA30 PGA 
7+8 15 

DP of ol igogalacturonate 

Fig. 62: The initial rates of OGH with unique substrate preference from parsley pulp for substrates 
with various DP. 
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Found O G H with unique preference for G A 1 0 substrate was released from the Mono P 
chromatofocusing column at p H about 5.3 (Fig.59) what means that this enzyme has the most 
acidic isoelectric point from all pectate hydrolases obtained from parsley roots. 

Mass determination of O G H was performed using molecular weight standards (Serva). 
Molecular weight was determined to be about 53.5 kDa what was in good agreement with the 
result obtained with gel filtration on Superdex 75 column. Gel permeation chromatography on 
Superdex 75, calibrated with the reference proteins, indicated the molecular weight of this 
enzyme about 53 kDa. 

Determination of action pattern 

The orientation of substrate splitting was evaluated using substrate modified by endopectate 
lyase (mixture of dimers and trimers marked on nonreducing end by double bond). 
Degradation of an unsaturated oligogalacturonates with OGH10 did not lead to any splitting 
of this modified substrate. Therefore, it was concluded that OGH10 prefers the cleavage of 
substrate from nonreducing end as an exopolygalacturonase or O G H from carrot roots as well 
as other O G H s found in parsley j u i c e . 7 7 6 , 7 7 7 

Determination of pH optimum of OGH10 

For further characterization of this enzyme the decagalacturonate ( lumol/ml) was used as a 
substrate. Sharp p H optimum at 4.7 was found with half activity at p H 4.6 and 4.9, 
respectively (Fig. 63 A) . 

Determination of temperature optimum and thermal stability 

The temperature optimum of OGH10 (Fig. 63 B) was determined near by 60 °C, what is 
comparable with other O G H s from this source (juice). This value responds to the energy of 
activation of 37 kJ/mol. 

In comparison to other O G H s the thermal stability (Fig. 63 C) was slightly lower, near to 
50 °C. In case of thermal stability determination, the activities were measured after 2h of 
incubation. 

100 

cr-
>* 
;> so 
o 
< 

0 

4,2 4,6 5 

p H 

^ A 
A - pH optimum determination 

Fig. 63: Characterization of OGH from parsley roots 
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24 48 

T e m p e r a t u r e (°C) 

72 

B 
B - temperature optimum determination 

100 

22 47 

T e m p e r a t u r e ( °C) 

72 

C - thermal stability determination 
C 

Fig. 63: Characterization of OGHfrom parsley roots 

Kinetic parameters determination 

Michaelis parameters were determined utilizing the initial velocities at five concentrations 
of substrate, ranging from 0.1 - 0.5 m M decagalacturonate in 0.1 M acetate buffer, p H 4.7, at 
30 ° C and the K M value was calculated by nonlinear as well as by linear regression (Fig. 64). 

-30 -26 - 2 2 - 1 8 -14 -10 -6 -2 2 6 10 

-2 

Km=3,8.10̂ M/l 1 / s 

Fig. 64: Determination of Michaelis parameters for OGH10 
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The kinetic analysis of degradation of the preferential substrate showed that the affinity of 
this enzyme to decagalacturonate was slightly higher (KM equal 3.8 x 10"5 mol/1) than the 
affinities of O G H s 6 or exoPG on pentagalacturonate (Table 6). On the other hand value of 
maximal initial rates described for this enzyme was comparable (0.124 umol/min.mg) with 
the others (Table 6). The expected inhibition by the sole product of the enzymatic reaction, 
D-galacturonic acid, was not observed in this case. 

Conclusion 

The main form of pectate hydrolase, O G H 10, found in parsley pulp showed an unique 
substrate preference within all plant exopolygalacturonases. This enzyme clearly preferred 
substrates with degree of polymerization about 10 in contrast to other plant oligogalacturonate 
hydrolases preferring hexagalacturonic acid or typical exopolygalacturonases with preference 
for pectate. 1 1 2 - 1 1 6 

Enzyme had a sharp p H optimum corresponding to p H 4.7, but the temperature optimum, 
the presence of glycosylation as well as the cleavage of pectate from nonreducing end were 
similar to other pectate hydrolases found in this source. 

This form of pectate hydrolase with preference for decagalacturonate as a substrate was not 
found yet in plants and results w i l l serve as a basis for its structural evaluation as well as for 
structure-function studies. 

4.4 Localization of exopectate hydrolases in the cell structures of parsley 

A s generally supposed, exoPGs should be bound on the plant cell w a l l . 7 7 2 , 7 7 3 The 
occurrence of enzyme forms in the juice of parsley roots 7 7 7 or carrot 1 1 4 ~ 1 1 6 is in the 
contradiction with this assumption. From this reason the localization of these enzymes in cell 
structures was provided. 

The localization of individual enzymes within the cell structures was provided using the 
method of differential ultracentrifugation. Individual fractions (cell walls, plasts, organelles, 
endoplasmic reticulum and cytosol) were analyzed for pectate hydrolase activity making use 
of their different p H optima and substrate of preference. 

100.0 • 

I 50.0 -

p H 3 . 6 p H 4 . 2 p H 4 . 7 p H 5 . 2 

G A S G A S G A 1 0 P G A 

Fig. 65: The abundance of individual exopectate hydrolases activities in cell wall fraction 
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The main pectate hydrolase activity was connected with the plant cell wall as was reported 
p r e v i o u s l y . 7 7 2 , 7 7 3 but this activity is especially represented by the oligogalacturonate 
hydrolase with unique substrate preference for decagalacturonate (GA10) while the activity of 
typical exoPG was just half time lower (Fig. 65). The main form detected in cytosol was 
O G H 6 with p H optimum at 4.6 (Fig. 66). 

100 

50 

p H 3.6 

G A 5 

p H 4 2 

G A 5 

p H 4.6 

G A 5 

p H 5.2 

P G A 

Fig. 66: The abundance of individual exopectate hydrolase activities in cytosol 

4.5. Comparison of pectate hydrolases from parsley root cells 

Three types of pectate hydrolases with terminal action pattern on substrate were found in 
parsley roots. Exopolygalacturonase (exoPG) and two types of oligogalacturonate hydrolases 
(OGHs) were isolated, partially purified, further characterized and in-between compared. 
The comparison of their molecular masses, isoelectric points, temperature optima, thermal 
stability and also action pattern showed very similar results. On the other hand there were 
observed differences in their p H optima and substrate specificity in respect to degree of 
substrate polymerization. 

ExoPG, which prefers the polymeric substrate, has its p H optimum at 5.2. B y contrast, the 
other types of pectate hydrolases, OGHs, favour oligomeric substrates, hexagalacturonate and 
decagalacturonate, respectively. First type of O G H with preference for decamer has its p H 
optimum at 4.7. The second type of O G H favours hexamer as a substrate and includes three 
isoforms, with p H optima 3.6, 4.2 and 4.6. (Table 7): 

Table 7: Characterization of individual exopectate hydrolases isolated form parsley roots 

pH 
optimum 

Occurrence DP of 
preference 
substrate 

Enzyme pi 
pH 

optimum 
Parsley 
roots 

Plant 
tissue 

Cell 
components 

DP of 
preference 
substrate 

Enzyme pi 

3.6 juice, pulp callus,cells organelles 5-7 OGH6 5.45 
4.2 juice, pulp — plasts, wall 5-7 OGH6 5.35 
4.6 juice callus,cells cytosol 5-7 OGH6 5.60 
4.7 pulp — wall 10 O G H 10 5.30 
5.2 juice, pulp cells wall, ER PGA exoPG 5.55 
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The main difference between pectate hydrolases isolated from parsley roots is mainly the 
substrate preference accompanied by the sharp p H optimum decreasing with the D P decrease 
of substrate. 

4.6 Primary structure studies of exopolygalacturonase from parsley roots 

Partially purified proteins (without chromatofocusing step) from the pulp of parsley roots 
were separated by IEF (pH 4.5-7.0) utilizing Coomasie blue detection (Fig.67 B) Bands in gel 
were handled as described in chapter 3.5.8 and studied with M A L D I - T O F / T O F mass 
spectrometric analysis. 

The best results were achieved with the sample obtained from IEF band No.2 (Fig. 67, 
part B) . Enzyme was identified as exoPG (Fig. 67, part A ) . 

100 i 

&0 • 

so • 

70-

60-

50-
"5 
< i C -

30-

20-

10 

; • 

s—71 
5.90 

5.20 

4.60 

pH pH 4.2 
GAE 

pH 4.5 
GAE 

pH 4.7 
GA10 

pH 5.2 
PGA 

B a n d No .1 

Si. Sample 

B 

Fig. 67: IEF ofpartially purified pectate hydrolases from parsley roots pulp: A - identification of 
enzyme of IEF band No.2 (on the basis ofpH optima and substrate preferences), B - Coomassie 

blue detection of proteins separated by IEF (St. - standard) 

MALDI-TOF/TOF mass spectrometric sequencing of exoPG 

The amino acids sequencing of exoPG was evaluated using M A L D I - T O F / T O F mass 
spectrometric analysis. 

fc. 100 
'</) 
2 50 
c 

a? 

1472.7487 
1130.5384 

1094.5466 1 3 7 t 3 6 7 7 4 | 
1230.6172 £416.1667 

880.523JI 1197.5865, 1 0'^-'^V 1913.1093 2208.0225 2639 1855 2995.5027 

3769.9 

00 1400 2000 2600 
Mass {m/z) 

3200 3800 

Fig. 68: MALDI-TOF/TOF MS spectrum from tryptic digest ofexoPG 
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Peptide 1094.5466 

a) M S / M S spectrum 
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Fig. 69: MALDI-TOF/TOF MS/MS spectrum of peptide at 1094.5466 

b) Sequences proposed by DeNovo program 

Sequence 
- R I E T A D P H R -
- R I T E A D P H R -
- R I E T G E P H R -
- R I E T A D V P H G -
- R N K T A D P H R -
- R I E T A D R P H -
- R I E T A D S S D T -
- D H R D P W L R -
- H D R D P W L R -
- R L P N N L V L R -

c) Manual interpretation of M S / M S spectrum 

- R [ I L ] K T A D P H R -
- R [ I L ] K T A D V P H G -

Positive hit (%) 
79.0 
77.8 
77.3 
67.3 
67.0 
66.6 
64.2 
64.0 
64.0 
63.0 

468.2 

333.0 

500.34 139.6 

607.0 

443.4 

1183.4 

1155.0 
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Peptide 1130.5884 

a) M S / M S spectrum 
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Fig. 70: MALDI-TOF/TOF MS/MS spectrum of peptide at 1130.5884 

b) Sequences proposed by DeNovo program 

Sequence 
- K A G G L F V P E G R -
- K A N L F V P E G R -
- A K G G L F V P E G R -
- N A K L F V P E G R -
- N A A G L F V P E G R -
- K G A G L F V P E G R -
- A G A G G L F V P E G R -
- K A G G L V F P E G R -

Positive hit (%) 
88.9 
86.6 
84.9 
84.5 
84.3 
83.9 
83.8 
82.9 

c) Manual interpretation of M S / M S spectrum 

(NA)[KQ] [ L I J F V P E G R 
( G [ K Q ] ) Q [ L I ] F V P E G R 
G G A Q [LI]F V P E G R 
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Peptide 2160.1050 

a) M S / M S spectrum 
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Fig. 71: MALDI-TOF/TOF MS/MS spectrum of peptide at 2160.1050 

b) Sequences proposed by DeNovo program 

Sequence 

- (1061 .515)WLHYKVPR-
- (1061 .515)WLYHKVPR-
- (1061 .515)LWYHKVPR-
- (1061 .515)LWHYKVPR-
- (1061 .515)WLWNKVPR-
- (1061 .515)LWWNKVPR-
- (1061 .515)WLNWKVPR-
-(1061.515)LWNWK V P R -
- S SP V K Y H L W ( 1043.5 04)-
-SSPVKHYWL(1043 .504) -

Positive hit (%) 

66.0 
66.0 
66.0 
66.0 
64.8 
64.8 
64.8 
64.8 
59.5 
59.5 

c) Manual interpretation of M S / M S spectrum 

-[IL]WWNKVPR-



Peptide 2416.1697 

a) M S / M S spectrum 
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Fig. 72: MALDI-TOF/TOF MS/MS spectrum of peptide at 2416.1204 

b) Sequences proposed by DeNovo program 

Sequence Positive hit (%) 
-RS S D E Y G I S Y A H S P T N I I I H R - 83.4 
- R S S D E Y G E A Y A H S P T N I I I H R - 82.9 
-RS S D E Y L G S Y A H S P T N I I I H R - 82.5 
-RS S D E Y G I S Y A H S P T N I P E H R - 82.3 
-RS S D E Y G I S Y A H S T P N I I I H R - 82.1 
-RIINTP S H A Y S I G Y E D R R - 80.9 
-RS S D E Y G I S P H H S P T N I I I H R - 79.7 
-RS S D E Y G I S Y A H S P T R A I I H R - 78.2 
- R S S D E Y G I S Y A H S S K P I I I H R - 75.7 

c) Manual interpretation of M S / M S spectrum 

( S N E ) D E Y G [ L I ] S Y A H P S T N [ L I ] [LI] [LI]HR 
( S G W ) D E Y G [ L I ] S Y A H P S T N [ L I ] [LI] [LI]HR 
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Comparison of found sequences with sequences of PGs and exoPGs 

The obtained sequence fragments of Petroselinum crispum exoPG (exoPG-PC) were 
compared with known sequences of plant PGs and exoPGs. The highest similarity was found 
with enzymes from Vitis vinifera, Eucalyptus globulus, Orysa sativa and Arabidopsis thaliana 
(Fig.73). (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

exoPG-PC 
Vitis M R R F F T L V D V L L V L L L F S E A P W A V W G S P H C D Q T S S G V I R P H S V A I T E F G A V G D G V T L N T K 60 
Eucalyptus 
Orysa M G Q W V A A P P V Y D L R E F G G V G D G R T L N T E 2 8 
Arath M K R S F L L L Y V L L V Q A F Y G A W C S V G E S L H C E Y S N L A S L H R P H S V S I T E F G A V G D G V T L N T K 59 

exoPG-PC L F V P E wi 10 
vitis AFONAIFYLNSFADKB SV L F V P A W | T G S F D L I S H L T L W L D K D A V I L G S M N S N D W P V I 120 
Eucalyptus 
Orysa A F V A A V A S I A E R ^ G R l y ^ ^ H M T A P F N L T S R M T L F L A A G A E I L G V Q D E R Y W P L M 85 
Arath A F Q N A L F Y L N S F S D K A L F V P A QWLTGSFDLISHLTLWLDKGATILGSTAKN—W P W 118 

exoPG-PC ^ ^ • K V P R 10 
Vitis D P L P S Y G R G R E L P G R R H R S L I Y G C N L T D V I V T — G D N G T I D G Q G S I W W V^FQKKTLNYTRP 179 
Eucalyptus GSMMERFRNKTLDYTRP 18 
Orysa S P L P S Y G Y G R E H R G P R Y G S L I H G Q D L K D V T I T G G Q N G T I N G Q G Q s M s K F R K K V L N H T R G 145 
Arath DPLPSYGRGRELPGRRHRSLIYGQNLTDWIT-GENGTIDGQGTVHD|FRNGELNYTRP 177 

exoPG-PC 
Vitis H L V E F I N S T G W I S N V T F L N S P F W T I H P V Y C S Q V I I Q N V T I L A P L D — S P N T D G I D P D S S N 238 
E U C G G H L V E L M N S T G V V I S N L T F L N S P F W T I H P I Y C S H V I V Q N V T I R A P L D — S P N T D G I D P D S S D 7 7 
Orysa P L V Q L M R S S N I T I S N I T L R D S P F W T L H I Y D C K D V T I S D T T I L A P I V G A P N T D G I D P D S C E 205 
Arath H L V E L M N S T G L I I S N L T F L N S P F W N I H P V Y C R D V W K N L T I L A P L E — S P N T D G V D P D S S T 23 6 

exoPG-PC I A P I I l | R 2 9 
Vitis D V C I E D C Y I S T G D D L I A I K S W I A P I I I L V G K T N S S A G I A I G S E M S G G 2 98 
Eucalyptus D V C I E D C Y I S T G D D V I A I K S WDE I P I I I L I G E T H S S G - I A I G S E M S G G 136 
Orysa N V V I K N C Y I S V G D D G I A I K ^ W Q ^ S AK G R & IIIJHNVTIRSMVSAGVSIGSEMSGG 265 
Arath N V C I E D C Y I V T G D D L V S I K ^ ^ J ^ J ^ R B S K | K | N R L T G Q T T S S S G I A I G S E M S G G 2 96 

exoPG-PC ^ ^ • D V P H l 5 
v i t i s V S E V H A E S L Q F F N S K T G I ^ ^E P G R GH Y V R N I Y I S D M N L V D V K I A I R F T G Q Y G E H P D E F 358 
Eucalyptus V S D V H A E D I V F F N S T T G I ^ ^ f e p G R G g Y V R N I F I S N V S L A N V K V A I R F T G R Y G E H P D E S 196 
O R Y S J V S N V L V E N V H I W D S R R G V I K T A P G R G A Y V S N I T Y R N I T L E H I R V G I V I K T D Y N E H P D E G 325 
Arath V S E I Y I K D L H L F N S N T G I ^ ^ ( S A G R G @ Y V R N V H I L N V K L D N V K K A I R F T G K Y G E H P D E K 356 

exoPG-PC 
Vitis Y D P T A L P I I E N I T V K D V M G E N I K F A G L L E G I E G D N F V N I C L S N I T L N V T S E S — P W N C S Y 416 
Eucalyptus Y D P K A M P K I E R I T F K D I H G E N I T V A G L M E G I E G D N F I N I C L Y N I T L S V N S I S — P W N C S N 2 54 
Orysa F D P K A V P I I E N I S Y S S I H G H G V R V P V R I Q G S A E I P V K N V T F H D M S V G L V D R K N H V F Q C S F 385 
Arath Y D P K A L P A I E K I T F E N V N G D G I G V A G L L E G I E G D V F K N I C F L N V T L R V K K N S K K P W E C S N 4 1 6 

Fig. 73: Amino acid sequence alignment of peptides at 1094.5466, 1130.5884, 2160.1050 and 
2416.1204 m/z with sequences of enzymes with PG activity from NCBInr database (shown below): 

Oryza (ORYSJ) 
Oryza Sativa susbsp.japonica (Rice) 
EAZ44872.1, putative uncharacterized protein 
Glycosyl hydrolase 28, polygalacturonase activity, catalysis of the hydrolysis of 1,4-a-D-
galacturonic linkages in pectate and other galacturonans. 
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Vitis (VITVI) 
Vitis Vinifera (Grape) 
CAO40225.1, unnamed protein product with unclear function 
Glycosyl hydrolase 28, polygalacturonase activity, catalysis of the hydrolysis of 1,4-a-D-
galacturonic linkages in pectate and other galacturonans. 

Eucalyptus (EUCGG) 
Eucalyptus globulus subsy. globulus (Tasmanian blue sum) 
ABG34278.1 , polygalacturonase fragment 
Glycosyl hydrolase 28, polygalacturonase activity, catalysis of the hydrolysis of 1,4-a-D-
galacturonic linkages in pectate and other galacturonans. 

Arath (ARATH) 
Arabidoysis thaliana 
CAB71871.1 , putative protein 
Glycosyl hydrolase 28, polygalacturonase activity, catalysis of the hydrolysis of 1,4-a-D-
galacturonic linkages in pectate and other galacturonans. 

Classification of ylant PGs and exoPGs 

In agreement with the proposed classification system, plant PGs and exoPGs were divided 
into five clades A - E . " This division was based on the evolutionary tree of all known P G 
structures. The similarity of found sequence fragments with some parts of known P G 
structures indicates that this enzyme belongs to the clade C (Fig. 74) covering all pollen and 
flower PGs as well as plant e x o P G s . 7 7 8 

PI9D63|ARA"TH 
M H i l 
P<l4Ui52|AftATH 

ftflHIU 
VITVI 

ARATH 
EUCC6 

rpjuPE 
CUCIg 
BFLANA 

Plant clade C 

Plant clade A 

Plant cladeB 

Fig. 74: Cladogram of exoPG (sample) from parsley roots, enzymes with PG activity with the most 
similar primary structure and chosen PGs and exoPGs from previous report (shown below):118 

Plant exoyolygalacturonases 
P49063. A R A T H Arathl.epg 
P 4 9 0 6 2 . A R A T H Arath4.epg 
0 4 8 7 2 9 . A R A T H Arath5.epg 

E C 3.2.1.67 
E C 3.2.1.67 
E C 3.2.1.67 

Arabidopsis thaliana 
Arabidopsis thaliana 
Arabidopsis thaliana 
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Plant pollen polygalacturonases 
Q 9 M B C O . S A L G I Salgil.pp E C 3.2.1.15 Salix gilgiana 

Plant endopolygalacturonases 
P48979.PRUPE Prupel.pg 
Q 4 2 3 9 9 . B R A N A Branal.pg 
Q 8 1 2 4 4 . C U C M E Cucmel.pg 

E C 3.2.1.15 
E C 3.2.1.15 
E C 3.2.1.15 

Prunus persica 
Brassica napus 
Cucumis melo 

Plant PGs and exoPGs sequences were used to prove the correctness of obtained 
cladogram (Fig. 74) and phylogam (Fig. 75) 

-P49063|ARATH 
— SALGI 

P49062I ARATH 
-0487291ARATH 

-VTTV1 
-sample 

-ARATH 
EUCGG 

-0RY5J 
-PRUPE 
—CUCME 

BRANA 

Fig. 75: Phylogam of exoPG (sample) from parsley roots, enzymes with PG activity with the most 
similar primary structure and chosen PGs and exoPGs from previous report118 
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5. CONCLUSION 

This work can be divided into two parts and generally represents the contribution to the 
complex study about the plant cell wall . Thesis includes the problem of polysaccharide 
networks formed within the cell wall as well as enzymes involving in degradation or 
modification of individual polysaccharide components. Parsley roots (Petroselinum crispum) 
pulp, juice and suspension cultures were used as a source of plant material. 

First part, named "Hemicellulose-pectin cross linking" was focused on the presence of 
hetero-polysaccharide complex in plant cell wall . A i m of this study was to confirm the 
existence of such complex and identify its individual hemicellulose and pectin components. 

The second part, "Exopectate hydrolases", was target on the pectate hydrolases attacking 
the backbone of homogalacturonan, one of the main domains of pectic molecule. Chosen 
enzymes were isolated, purified and characterised. 

Within the polysaccharide part of work, the hemicellulose-pectin conjugate was isolated 
from suspension cultures of parsley roots and partially purified. First, hemicelluloses were 
separated using the affinity and gel permeation chromatographies (adsorption to cellulose, L C 
on Biogel P2) and then hemicellulose-pectin complex was refined as co-elute by anion 
exchange chromatography ( D E A E Spheron). From the gel permeation chromatography the 
molecular weight in the range of 300-500 kDa was determined. 

Isolated heteropolysaccharide complex was then analysed using F T I R spectroscopy. From 
obtained results the hemicellulose compound was identified as arabinoxylan. On the other 
hand, homogalacturonan (1,4-linked-a-D-galacturonic acid) was supposed to represent the 
pectic component in the sample. On the basis of F T I R results, the polysaccharide sample was 
further analysed by N M R . Acquired spectra indicated that analysed sample is composed from 
hemicellulose (arabinoxylan) and pectin part (probably homogalacturonan). These results 
confirmed previous FTIR data. Unfortunately, polysaccharide sample represented the 
heterogeneous plant matrix what caused the spectra interpretation more difficult. Therefore, 
for determination of individual polysaccharide structures as well as for conclusive 
confirmation of obtained results, the further analyses are required. 

The next step was to check out the potential hetero-transglycosylating reaction between 
arabinoxylan and homogalacturonan in plant tissues. Crude extracts of proteins isolated from 
parsley roots and nasturtium seeds were used for proof of this hetero-transglycosylating 
activity. Fluorescently labelled oligogalacturonic acids ( O G A - S R ) was used as an acceptor 
substrate and arabinoxylan ( A X ) as a donor substrate. Obtained positive results show that 
plant protein precipitates contain unknown type of enzymes (probably transglycosylases) 
enabling the catalysis of this hetero-transfer between O G A s and A X . This type of hetero-
transfer was not described yet. 

In the enzymology part of dissertation, five forms of exopolygalacturonase (EC 3.2.1.67) 
were identified in parsley roots as well as in their callus and suspension cells. Enzymes in the 
protein extracts of plant tissue were easily distinguished from each other according to 
different p H optima and substrate preferences. Presence of these enzyme forms in individual 
cell structures was determined using the differential centrifugation method. Although exoPGs 
were generally supposed to be bound to the cell wall , this assumption was absolutely valid 
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only for one enzyme form. This can indicate further functions of these enzymes in the plant 
tissue. 

A t first, exopolygalacturonases not bound to the cell structures were isolated and purified to 
apparent homogeneity according to S D S - P A G E using combination of affinity (ConA-
Sepharose) and gel permeation (Sephadex G-100, Sephadex G-25 and Superose 12) 
chromatographies. Molecular weight obtained for all enzymes was about 55.3 kDa and 
deglycosylation with N-glycosidase F resulted in slight weight decrease (about 1 kDa). 
Edman degradation showed that N-terminal amino acids of two exopolygalacturonases were 
probably threonin and alanin. Unfortunately, the presence of other two enzyme forms made 
further research more complicated. The individual forms were separated by preparative IEF in 
close p H range (4.5 - 7.0), characterized and in between compared. The temperature optima 
and thermal stabilities were very similar. On the other hand, the most important difference 
between individual forms was observed in respect to their preference for substrate with 
concrete degree of polymerization. From this point of view, only one form (with p H optimum 
5.2) was a typical exopolygalacturonase with preference for polymeric substrate. Other three 
forms (with p H optima 3.8, 4.2 and 4.6) showed preference for penta- or hexagalacturonate. 
Accordingly, the term "oligogalacturonate hydrolases" seemed to be more suitable. 

Later, there was found the fifth exopolygalacturonase form bound to the wall of parsley 
roots cells. This form represented the major pectate hydrolase bound to this structure. It 
showed a unique substrate preference of a plant pectate hydrolases because it clearly preferred 
substrates with higher degree of polymerization (about D P 10) in contrast to other 
"oligogalacturonate hydrolases" with substrate preference for hexagalacturonate or typical 
exopolygalacturonase preferring pectate. The p H optimum 4.7 was found with half activities 
at pHs 4.6 and 4.9, respectively. 

The isolation and purification of this enzyme required more steps as those described for 
other exopolygalacturonases from this plant source. The separation of individual form 
occurred utilizing chromatofocusing at p H of elution about 5.3. 

The characterization of this form showed similarities with other pectate hydrolases from 
parsley roots. The thermal stability was slightly lower (stable until 50 °C), the temperature 
optimum was 60 °C (energy of activation being 37.0 kJ/mol), molecular weight 53.5 kDa, 
enzyme was glycosylated (interaction with ConA), K M (decamer as a substrate) was equal 
3.8.10"5 mol/1, Vmax 0.124 umol/min.mg and enzyme utilized cleavage of substrate from 
nonreducing end. 

Pressey and Avants (1975) discussed the impossibility of natural complete hydrolysis of 
pectin in plants or plant tissues without endopolygalacturonase production due to the decrease 
of reaction rate of plant exopolygalacturonases acting on oligomeric substrates.7 2 7 Garcia-
Romera and Fry (1995) presented hypothesis describing the oligogalacturonides with lower 
D P as a biologically inactive and therefore no more degradable. 7 2 2 Oligogalacturonate 
hydrolase (OGH6) preferring hexagalacturonate with still high reaction rate on dimer in 
cooperation with typical exoPG found in carrot roots showed that the complete hydrolysis of 
pectin from the point of view of present work is thinkable in this plant t i ssue . 7 7 6 

On the other hand, the present knowledge gives no explanation (except the microbial attack 
and following cleavage of pectin with endoPG) for the "preparation" of oligogalacturonates 
suitable as a substrates for referenced O G H . 7 7 6 

The pectate hydrolase system in parsley 7 7 7 was even more enriched in connection to 
substrates with different D P and p H optima in comparison to carrot. 1 1 4 ~ 1 1 6 OGH10 with 
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unique substrate preference for higher oligogalacturonates is described in this work and 
represents the main pectate hydrolase of the cell wall . In addition, this form of pectate 
hydrolase with preference for decagalacturonate as a substrate was not found yet in plants. 

Generally, it seems that the D P decrease of preferred substrate of individual form is 
functionally bound with the decrease of extremely sharp p H optima of enzymes. The 
relationship between the decreasing p H of primary cell wall during auxin activation of proton 
pump bound on plasmatic membrane 1 2 3 and D P decrease of linear parts of pectin molecule 
side chains 9 regulated by pectate hydrolases with terminal action pattern may be indicated. 

The O G H enzyme with unique substrate preference for decamer could also be important in 
determining the half-lives of O G A s that may be endogenous signals regulating aspects of 
programmed developmental events or responses to "invanders." 1 0 Therefore, this enzyme and 
other O G H s may be of importance to the plant from several perspectives. 
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7. ABREVIATIONS 

A A Acry l Amide 
Ace A Aceric A c i d 
A - F - F - A Ferulic A c i d Esters 
A p i Carbohydrate-Active Enzymes (database) 
A P S Ammonium Persulphate 
Ara Arabinose 
A X Arabinoxylan 
C C R C Complex Carbohydrate Research Centre 
C E O s - S R cellulose oligosaccharides labelled with sulforodamine 
C E S A Cellulose Synthase Superfamily 
C M C Carboxymethyl cellulose 
C S C Cellulose Synthase Complex 
C S L Cellulose Synthase-Like (genes) - superfamily 
C S L ( A , B , H ) Cellulose Synthase-Like (genes) - subfamily 
D E A E Diethylaminoethyl Cellulose 
D P Degree of Polymerization 
E R Endoplasmic Reticulum 
F A E Ferulic A c i d Esters 
F P L C Fast Protein Liquid Chromatography 
F T I R Fourier Transform Infrared Spectroscopy 
Fuc Fucose 
Gal Galactose 
G a l A a-D-galacturonic acid 
G H Glycosyl Hydrolase 
G P C Gel Permeation Chromatography 
GTs Glycosyl Transferases 
H G ( A ) Homogalacturonan (polygalacturonic acid) 
H E C Hydroxyethyl cellulose 
H P L C High Performance Liquid Chromatography 
[ 3 H ] X X X G tritium labelled xyloglucan-heptasaccharide 
IEF Isoelectric Focusing 
K D O 2-keto-3-deoxy-D-wa««o-octulosonic acid 
K O R K-opioid receptor 
L A O s - S R Laminarin oligosaccharides labelled with sulforodamine 
L C Liquid chromatography 
M A L D I Matrix-assisted laser desorption/ionization 
M S Mass Spectrometry 
N D P Nucleotide Diphosphate 
N M R Nuclear Magnetic Resonance 
O G A s Oligogalacturonides 
O G H Oligogalacturonate Hydrolase 
O G H 6 O G H with preference for hexagalacturonate 
OGH10 O G H with preference for decagalacturonate 

102 



PGs Poly gal acturonase s 
P M E Pectin Methyl Esterase 
R G I, II Rhamnogalacturonan I, II 
Rh a Rhamnose 
S D S - P A G E Sodium Dodecyl Sulphate - Polyacrylamide Gel Electroph 
SR Sulforodamine 
T E M E D Tetramethyl ethyl endi amin 
T L C Thin Layer Chromatography 
U D P Uridine Diphosphate 
X G X y 1 ogal acturonan 
X E T Xyloglucan endotransglycosylase 
X G O s - S R Xyloglucan oligosaccharides labelled with sulforodamine 
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