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Abstract  

Microsatellite markers are a valuable tool for genetic analysis in plants and animals. The 

objective of this study is to test if the microsatellite markers which were designed for 

Ranunculus bungei from China also work on European Ranunculus sect. Batrachium species. 

Therefore, 13 different primers were tested for amplification on 32 Ranunculus plants. Sanger 

sequencing and fragment analyses were used to gain information whether the primer annealed 

successfully or not and whether these methods yield enough variation. The results indicate that 

most of the primers annealed and the regions can be amplified using PCR. However, the 

method worked for most primers improperly which means that the R. bungei primers cannot 

be used for European species in order to perform population genetical studies. Still, the 

microsatellite patterns are occasionally species specific and therefore might be used for species 

identification.  
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1. Introduction 

 

1.1 Ranunculus sect. Batrachium  

Ranunculus sect. Batrachium, hereafter Batrachium, water-crowfoots, is a taxonomically 

complicated group of aquatic plants. There are about 30 species worldwide, of which 14 – 18 

can be found in Europe (Cook, 1966; Wiegleb et al., 2017). Batrachium easily form hybrids 

which enriches the taxonomic diversity. Some Batrachium species such as Ranunculus 

trichophyllus and Ranunculus aquatilis can be found all over the world, while others (e.g. 

Ranunculus lobbi, Ranunculus pekinensis) have a limited distribution (Cook, 1963; Lumbreras 

et al., 2011). The diversity of Batrachium is only weakly recognized, especially concerning 

regions outside Europe (Bobrov et al., 2015). 

 

Batrachium species occupy different kinds of wetland habitats including lentic and lotic 

ecosystems (Spink, 1992). This means that they can grow in still waters such as lakes and 

ponds as well as in flowing waters. The occurrence of Batrachium strongly depends on the 

water quality (Spink et al., 1997; Lumbreras et al., 2009). Due to that, the different species 

may be used as bioindicators (e.g. Kopec et al., 2008; O’Hare et al., 2010; Lumbreras et al., 

2013). 

 

The morphological variability and the incomplete succession of leaf shape as well as the 

tendency towards hybridization often leads to identification problems of various species of 

Batrachium (Englmaier, 2016). The hybridogeneous species are often much better adapted to 

changing environments than their parent species (Englmaier, 2016). They are mostly sterile or 

poorly fertile and sometimes show allopolyploidy (Englmaier, 2016). Interspecific 

hybridization frequently occurs and it is presumed that all taxa are capable of crossing (Prančl 

et al., 2018). Hybrids are often overseen and are ascribed to the parent species which they 

resemble morphologically the most (Englmaier, 2016). Phenotypic plasticity, which means 

that the same genotype may have a different phenotype depending on the environmental 

conditions, and the frequent occurrence of polyploidy make investigations of this species 

complicated (Kaplan, 2002; Prančl et al., 2018). The basic chromosome number within 

Batrachium species is x=8 (Baltisberger & Hörandl 2016). Di- (2n=16), tetra- (2n=32) and 

hexaploids (2n=48) are the three most common ploidy levels of Ranunculus sect. Batrachium 

(Englmaier, 2016; Prančl et al., 2018). Other ploidy levels including 3x and 5x are rather rare, 
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where 5x can only be found in some hybrids.  

Additional identification problems are often due to incomplete material such as damaged 

leaves or the presence of an incomplete set of leaves (Englmaier, 2016). 

 

Batrachium taxa are known for the presence of two different kinds of leaves. They have 

capillary leaves which have a lamina that consists of branched capillary segments which are 

mostly submerged and some species have also laminar leaves which are floating on the water 

surface. The latter are laminar leaves with a flat, more or less lobate and dentate lamina (Prančl 

et al., 2018). The flower of Batrachium species usually has five white petals with a yellow 

spot at the base. The size of the flower is associated with the mode of reproduction. Taxa that 

are small flowered are regarded mostly autogamous or even cleistogamous. Species which 

have big flowers show various adaptions for outbreeding. Some taxa might even be self-

incompatible (Turala-Szybowska, 1978; Hong, 1991).  

 

In order to get a better understanding about the plant material used for this study, the 

characteristics of the species are briefly described. All pictures used below for describing the 

different species were obtained from Petr Koutecký, the supervisor of this thesis. 

 

Ranunculus aquatilis (Fig. 1): This aquatic plant which is 

also called common water crowfoot can be found all over 

Europe including North Africa (Lansdown, 2014a; Wiegleb 

et al., 2017). Additionally, it is known from West Asia 

(Wiegleb et al., 2017). The plant is mainly growing in mats 

on the surface of water (Blamey, 1989). The amphibious 

species has branching thread-like underwater leaves and 

toothed floating leaves (Cook, 1968; Blamey, 1989; Prančl et al., 2018). However, if growing 

in fast flowing water the floating may not develop (Blamey, 1989). The flowers are held above 

the water and are white petaled with a yellow centre (Blamey, 1989). There are two varieties 

of common water crowfoot namely var. aquatilis which possesses the floating leaves and var. 

diffusus which is lacking the laminate leaves (Lumbreras et al., 2014). 

 

Figure 1: Ranunculus aquatilis 
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Ranunculus peltatus (Fig. 2): This species, also known 

as pond water-crowfoot is closely related to the above 

mentioned R. aquatilis and is native to Europe, North 

Africa and West Asia (Lansdown, 2014b; Wiegleb et al., 

2017). The plant is mostly associated with soft-water 

conditions in ditches, small streams and ponds (Wiegleb 

et al., 2017). It does not occur in large streams. There it 

is usually replaced by R. penicillatus (Wiegleb et al., 2017). R. peltatus has white flowers with 

a yellow centre (Blamey, 1989). The species has two different kinds of leaves. Broad, round 

floater leaves and finely divided thread-like submergent leaves which are mostly flaccid, 

densely branched and 3 – 8cm long (Blamey, 1989; Prančl et al., 2018).  

 

Ranunculus confervoides (Fig. 3): This perennial or annual herb 

is weakly rooting or freely floating and mainly found in high 

alpine lakes in clear, well-buffered, carbonate rich waters 

(Englmaier, 2016). They are strictly homophyllous, only 

possess capillary leaves with filamentous segments. Laminar 

leaves are absent (Englmaier, 2016; Wiegleb et al, 2017). The 

flowers are very small and mostly found under water (Wiegleb et al, 2017).  Since these 

characters of R. confervoides are also found in some forms of R. trichophyllus, this taxon is 

sometimes also included in the R. trichophyllus group (Wiegleb et al., 2017). The correct name 

is then R. trichophyllus subsp. eradicatus (Wiegleb et al., 2017).  

 

Ranunculus circinatus (Fig. 4): This perennial or rarely annual 

herb grows in a variety of water bodies, mainly in eutrophic still 

waters, from ditches to deep lakes (Wiegleb et al., 2017, 

Englmaier, 2016). It can grow up to 0.5 – 2.5m long, dependent 

on the habitat (Englmaier, 2016). The plant is strictly 

homophyllous, only capillary leaves are present. Due to this 

capillary, rigid leave shape as well as their medium-sized petals with lunate nectar pit, the 

species is easily recognizable (Wiegleb et al., 2017). Ranunculus circinatus is distributed in 

most parts of meridional and boreal Europe eastwards to the Ural Mountains and Kazakhstan 

(Wiegleb et al., 2017). Additionally, the plant occurs in the meridional regions of North Africa 

and West Asia. R. circinatus do not occur in North America (Wiegleb et al., 2017).  

Figure 2: Ranunculus peltatus 

Figure 3: Ranunculus confervoides 

Figure 4: Ranunculus circinatus 
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Ranunculus fluitans (Fig. 5): This Ranunculus species is 

commonly named river water-crowfoot (Lansdown, 

2011b). It is a perennial water plant that can grow up to 

6 m in case of favourable conditions. Floating leaves are 

absent, instead it has long and narrow, tassel-like 

segments. The white flowers are held above the water 

(Rodwell, 1990; Wiegleb et al., 2017). River water-

crowfoots are restricted to temperate and meridional regions in Europe (Wiegleb et al., 2017). 

 

Ranunculus trichophyllus (Fig. 6 &7): R. trichophyllus, 

also named thread-leaf crowfoot or thread-leaved water-

crowfoot is similar in form to R. fluitans and is native to 

Europe, Asia and North America (Lansdown, 2013). 

Usually this species is found in rivers, ponds or lakes, 

particularly in alkaline waters (Wiegleb et al., 2017). R. 

trichophyllus is strictly homophyllous. It has only 

underwater leaves with filamentous segments 

(Englmaier, 2016). Flowers are submergent or emergent 

(Englmaier, 2016).   

There are two different cytotypes of R. trichophyllus, 

namely R. trichophyllus A and R. trichophyllus B. They 

are both tetraploid but differ in genome size and have 

different habitat requirements, R. trichophyllus B is more thermophilous. The two cytotypes 

also slightly differ morphologically, R. trichophyllus B is more robust (Prančl et al., 2018).  

 

Ranunculus penicillatus (Fig. 8): This plant is also called stream water-crowfoot and it is a 

species which is entirely restricted to floating waters (Lansdown, 2011c). The large perennial 

plant can reach a length up to 5m and is characterized by laminar and intermediate leaves in 

addition to capillary leaves (Wiegleb et al., 2017). 

Typically, this crowfoot occurs in small to medium-sized 

rivers and streams. However, it can occur in larger rivers 

too where it might form very extensive strands 

(Lansdown, 2011c). The plant appears to have a broad 

ecological tolerance since it can be found in calcareous as 

Figure 5: Ranunculus fluitans 

Figure 7: Ranunculus trichophyllus A 

Figure 8: Ranunculus penicillatus 

Figure 6: Ranunculs trichophyllus B 
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well as acidic waters and in oligotrophic to mesotrophic or even in eutrophic waters. Stream 

water-crowfoots are endemic to Western and Central Europe (Lansdown, 2011c).  

 

Ranunculus baudotii (Fig. 9):  The common name for this 

Ranunculus species is brackish water-crowfoot. The plant 

is endemic to Europe and can be mainly found in ditches, 

ponds and lagoons, either along the sea coast or more 

rarely in inland sites with high salt or calcium 

concentrations (Prančl et al., 2018; Englmaier, 2016; 

Wiegleb et al., 2017; Lansdown, 2011a). Other crowfoots 

growing in both sweet and brackish water are R.confervoides and R. circinatus. 

 

Ranunculus rionii (Fig. 10): This species can be found in 

Europe, North Africa and West to Central Asia (Wiegleb 

et al., 2017). Typically, the plant grows in seasonal pools 

(Cook, 1966). R. rionii has small flowers, laminar leaves 

are absent, capillary leaves are mostly flaccid and densely 

branched (Englmaier, 2016, Prančl et al., 2018). In some 

literature e.g. Englmaier, 2016, R. rionii is regarded as 

part of the R. trichophyllus group, where it is named R. trichophyllus subsp. rionii. 

Differentiation between R. trichophyllus and R. rionii is difficult and mainly done by 

comparison of the fruit size, since the fruits of the latter one are smaller. 

 

When it comes to identification of species several methods are commonly used nowadays, 

including morphological taxonomy and molecular systematics (Friedheim, 2016).  

 

While the first one is based on morphology and phenotypic characteristics, the latter one relies 

on molecular information to distinguish between one species and another (Friedheim, 2016). 

There are not a lot of studies which have dealt with the Batrachium group. Since the worldwide 

monograph of Batrachium (Cook, 1966) some supplemental studies appeared (Holmes, 1979; 

Wiegleb and Herr, 1983; Wiegleb, 1988; Hong, 1991; Webster, 1991; Pizarro, 1995, Dahlgren, 

1995; Dahlgren and Cronberg, 1996; Tzvelev, 1998; Dahlgren and Jonsell, 2001; Lansdown, 

2009). However, there are only few studies which use molecular markers to analyze genetic 

variation (Telford et al., 2011, Zalewska-Gałosz et al., 2014, Bobrov et al., 2015). 

Figure 9: Ranunculus baudotii 

Figure 10: Ranunculus rionii 
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In this thesis, microsatellite analysis is tested in Ranunculus sect. Batrachium, which is one of 

the molecular methods and often used e.g. in taxonomy of plants or population genetics. For 

this reason the method is described below.  

 

1.2 Microsatellites 

Microsatellites or Simple Sequence Repeats (SSRs) are stretches of DNA which consist of 

short tandem repeats (STRs) of 1 – 6 base pairs in length (Weber & May, 1989; Weber, 1990; 

Katti et al., 2001, Dakin & Avise, 2004; Ellegren, 2004). They can be found in the genome of 

eukaryotes and prokaryotes and are even present in the smallest bacterial genomes (Field & 

Willis, 1996; Hancock, 1996). There was an exponential increase in the use of the markers 

during the 1990s and 2000s and nowadays they are the most popular choice for studies of 

kinship analysis, individual identification and population structure (Selkoe & Toonen, 2006). 

 

Classification is done by the number of repeated copies of DNA segments (Abdul-Muneer, 

2014). Satellites are made of units of several thousand base pairs which are repeated thousands 

or millions of times (Abdul-Muneer, 2014). Minisatellites have a length of 9 – 100 bp that are 

repeated from 2 to several 100 times at a locus (Abdul-Muneer, 2014). The shortest sequence 

repeats are microsatellites. Those consist of 1 – 6 bp and are repeated up to 100 times at each 

locus (Litt & Luty, 1989). Only microsatellites became common in population genetics studies 

(Abdul-Muneer, 2014).  

There are several ways how microsatellites can be classified. Classification can be based on 

size, nature of the repeated unit or their position within the genome (Miah et al., 2013). Weber 

(1990) used the terms perfect (CA)n, imperfect (CCA)n TT (CGA)n and compound (CA)n (GA)n 

to classify microsatellites depending upon arrangement of nucleotides within the repeat motifs. 

Wang et al., (2009) on the contrary chose the terms simple perfect (CA)n, simple imperfect 

(AAC)n ACT (AAC)n, compound perfect and compound imperfect (CCA)n TT (CGA)n. 

Tandem arrays of a single repeat motif are perfect repeats. Repeats which are sometimes 

interrupted by non-repeat bases are imperfect repeats and if two basic repeat motifs are present 

together in various configurations, the term compound microsatellite is used (Miah et al., 

2013). If microsatellites are classified with respect to the number of nucleotides per repeat unit 

these are called mono-, di-, tri-, tetra-, penta-, or hexanucleotide repeats (Miah et al., 2013). 

 

Microsatellites occur in high numbers in the euchromatin of eukaryotes as well as in the coding 

and non-coding nuclear and organellar DNA (Pérez-Jiménez et al., 2013; Phumichai et al., 
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2015). However, coding and non-coding regions differ significantly in their microsatellite 

distribution. The number of SSRs is lower in the former (Vieira et al., 2016; Hancock, 1995). 

This is because microsatellites show high mutation rates (Vieira et al., 2016; Goldstein & 

Schlötterer, 1999). They mutate at rates between 10-3 and 10-6 per cell generation, which is up 

to ten orders of magnitude greater than point mutations in normal coding sequences (Gemayel 

et al., 2012). Mutations in coding regions can lead to phenotypic changes and diseases, notably 

in triplet expansion diseases, in humans such as fragile X syndrome, Huntington’s disease 

which is caused mainly by (CAG)n expansions (Warren & Nelson, 1993; Bates & Lehrach, 

1994; Reddy & Housman, 1997), and cancer (Wooster et al, 1994; Arzimanoglou et al., 1998). 

Therefore, these repeats are generally located in non-coding regions where mutations possibly 

do not interfere with the individual’s fitness (Ellegren, 2004).  

 

The SSRs are non-randomly distributed across UTRs (untranslated regions), introns and 

protein-coding regions (Garza et al. 1995). Additionally, the distribution patterns of various 

repeat types for different motifs in those regions were found to be highly taxon-specific (Tóth 

et al., 2000). Studies also revealed that the occurrence of microsatellites is relatively rare in 

butterflies, birds, bats and prokaryotes while most mammals as well as fishes tend to have a 

high frequency of repeat motifs (Shamjana et al., 2015). Also plant genomes are filled with 

SSRs, where a high density has been detected in the 5’ UTR regions (Qin et al., 2015; Fujimori 

et al., 2003; Tranbarger et al., 2012; Zhao et al., 2014). 

 

Historically, microsatellites were regarded as part of the non-functional DNA because they are 

very unstable (Gemayel et al., 2012). The repeat variation was believed to be neutral with no 

phenotypic consequences (Gemayel et al., 2012). However, with the detection of regulatory 

regions and transcripts, scientific interest in their possible biological function increased and 

more and more publications have presented evidence that microsatellites play a role in 

important processes including regulation of transcription and translation, organization of 

chromatin, genome size and the cell cycle (Nevo, 2001; Li et al., 2004; Gao et al., 2013).  

Generally, the consensus is that the biological function of microsatellites is related to its 

position in the genome (Vieira et al., 2016). They may be important in genome organization, 

function and are associated with disease conditions (Shamjana et al., 2015).  

 

There are several major advantages of microsatellites markers including codominant 

transmission and hypervariability as well we as high information content (Abdul-Muneer, 
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2014). Additionally, microsatellites are relatively abundant with uniform genome coverage 

and show a higher mutation rate than standard sequences (Abdul-Muneer, 2014). Those 

advantageous properties have led to modern developments such as digital storage and 

automated detection and scoring systems like automated DNA sequences and fluorescent-

imaging devices (Abdul-Muneer, 2014). However, there are also various disadvantages 

regarding the usage of microsatellite-based methods, including technical challenges during the 

construction of enriched libraries, relatively high development costs and genus or species-

specific primers (Miah et al., 2013). Due to their very specific nature, primers have to be newly 

developed or at least transferred from a related species when a new species is studied. Still, 

even if some primers are already available those mostly do not work in a reasonable way.  

 

Versatile characteristics of microsatellites such as their existence in genomes of all living 

organisms, high level of allelic variation, co-dominant way of inheritance have given rise to 

the rapid growth of molecular markers to tackle a range of purposes like ecological questions, 

disease diagnosis, personal identification, population genetic analysis and the construction of 

human evolutionary trees (Shamjana et al., 2015). More applications are summarized in Figure 

11 below.   

 
Figure 11:Application of microsatellite markers in different areas (Abdul-Muneer, 2014) 
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Another characteristic which makes microsatellites a powerful molecular marker is their PCR 

typeability (Shamjana et al., 2015). Microsatellite loci are amplified using specific primers, 

then the different alleles are separated along an electrophoretic gradient (Goldstein et al. 

1999). Additionally, they can be genotyped on a sequencer (Schuelke, 2000). 

During the last decade, microsatellites have become the marker of choice when it comes to 

plant genetics (Varshney et al., 2002). This is due to their genomic abundance and their ability 

to associate with many phenotypes (Filipe et al., 2011). Because of their importance 

microsatellites are used in a large number of plant species including major cereal species such 

as maize (Yu et al., 2001), oat (Li et al., 2000), rice (Temnykh et al., 2000 and 2001) and wheat 

(Roder et al., 1998; Varshney et al., 2000). SSRs are useful for wild species as well as for 

cultivated species. For wild species they are used in studies of diversity measured on the basis 

of genetic distance, to estimate gene flow and crossing over rates as well as in evolutionary 

studies to get information about intraspecific genetic relations. For cultivated plants the 

molecular markers are used for the construction of linkage maps, for mapping loci which are 

involved in quantitative traits and for the estimation of the degree of kinship between 

genotypes (Vieira et al., 2016).  

To get special knowledge of aquatic plants, microsatellites are widely used, including studies 

of taxonomy, hybridization as well as population genetics. Regarding hybridization, Snow et 

al. (2010) used species-specific microsatellites for identification between early-and later 

generation hybrids of cattails (Typha spp.). Shiga et al. (2017) focused on population genetics, 

where microsatellites were used to find differences in genetic variation between four 

populations of Nuphar submersa (Nymphaeaceae), a critically endangered freshwater 

macrophyte indigenous to central Japan. Fér and Hroudová (2008) used microsatellites as 

markers for population genetics. Here, these molecular markers were used to gain information 

about the dispersal of Nuphar lutea genotypes in rivers of Czech Republic. Interpretation of 

patterns in genetic variation lead to several conclusions about dispersal mechanisms, e.g that 

vegetative, long – distance dispersal is probably very limited in this species.  
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2. Aim of the thesis 
 

As mentioned above, microsatellite primers are often species-specific. Recently, some were 

developed for R. bungei, a species of the Batrachium group occurring in China (Wu et al., 

2017) but not any for European species. The aim of this thesis was to find out if the primers 

developed for R. bungei also work on various, less related European Ranunculus sect.  

Batrachium species. 
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3. Materials and Methods 

 

3.1  Plant material used for molecular analysis  

Plant material from 32 different individuals representing nine Ranunculus species and several 

hybrids, which had been collected in various regions in Austria (8 localities), the Czech 

Republic (19 localities), Germany (1 locality), and Slovenia (1 locality) was studied (Table 1). 

The material was determined by the supervisor of this thesis based on morphology and genome 

sizes measured using flow cytometry (Prančl et al., 2018) Amplification of 13 different 

microsatellite loci which had been designed for R. bungei from China (Wu et al., 2017) was 

tested (Table 2). The loci were selected to show multiple alleles and high number of repeats in 

the original dataset of Wu et al. (2017), while invariable or little variable loci were omitted 

from testing. 

 

3.2 DNA extractions 

The total genomic DNA was extracted from leaves which had been airdried, then dried with 

silica gel and finally stored in a freezer.  

The DNA of the samples 1 – 16 was isolated using the NucleoSpin Plant II Kit (Macherey-

Nagel, Germany) following the manufacturer’s protocol. 

For samples 17 – 32 CTAB-method (Doyle and Doyle 1987; with minor modifications) was 

used. First, the dry leaf material (5 – 15  mg) was transferred into a 1.5 mL Eppendorf tube, 

two steel beads were added and the tubes were placed into a Retsch 400MM mill. The samples 

were ground for 1 min at maximum speed. Afterwards, 700 µL of the CTAB buffer [2% (w/v) 

cetyl trimethyl ammonium bromide (Sigma-Aldrich), 0.1M Tris-base (Serva), 0.02M Na2-

EDTA (Sigma-Aldrich), 1.4M NaCl, 2% (w/v) PVP-40 (Sigma-Aldrich)] and 20 µL of 2-

mercaptoethanol (Sigma-Aldrich) were added. The tubes were mixed and incubated on a 

shaking incubator for 30 min at 50°C, then they were spun for 2 – 3s and the supernatant was 

transferred into a new 1.5 mL Eppendorf tube. The steel beads were removed and afterwards 

500 µL chloroform-isoamyl alcohol mixture (24:1) was added. The tubes were inverted several 

times and incubated for 5 min at room temperature. Then they were centrifuged for 10 min at 

10 000 rpm. Afterwards the aqueous (uppermost) phase was transferred into new 1.5 mL 

Eppendorf tubes. Next, 500 µL of ice-cold isopropanol (stored at -20°C) was added. After 

inverting the tubes several times, they were incubated for at least 30 min at -20°C. Then they 

were centrifuged for 5 min at 13 000 rpm. In the next step, the supernatant was discarded and 

400 µL of ice-cold 96% ethanol (stored at -20°C) was added. In order to detach the DNA pellet 
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from the bottom of the tube, the tubes were flicked several times. Then the samples were 

incubated for 15 min at 37°C on a heat block, afterwards the samples were centrifuged for 5 

min at 13 000 rpm. The supernatant was discarded and 200 µL of ice-cold 70% ethanol (stored 

at -20°C) was added. Again, the tubes were flicked several times to detach the DNA pellet 

from the bottom of the tubes. Then the samples were incubated for 5 min at room temperature. 

After that, they were centrifuged for 5 min at 13 000 rpm and the supernatant was discarded. 

Then the DNA pellets were dried by leaving the tubes open for ca 15 min at room temperature. 

When there were no drops of ethanol visible, 30 µL of sterile water were added. In order to 

dissolve the DNA pellets, the tubes were put in the fridge overnight. After this procedure, the 

DNA isolates were put in a freezer at -20°C for long-term storage.  

 

Before preparing the samples for PCR amplification, the samples containing the genomic DNA 

were diluted with sterile water (1:10). 

 

3.3 PCR amplification 

The whole procedure was performed on ice. At first, all chemicals were defrozen slowly, then 

they were mixed gently and afterwards centrifuged briefly. The PCR mixture for each sample 

contained 1.85 µL sterile water, 0.45 µL of the forward primer (5 µM), 0.45 µL of the reverse 

primer (5 µM) and 3.75 µL of 2x Plain PP Master Mix (Top-Bio, Czech Republic). 1 µL of 

the diluted template DNA was added into each 0.2 mL tube except for the negative control. 

The tubes were gently mixed and quickly centrifuged.  

 

PCR was run in a Biometra T3000 thermocycler. The cycling program was: 

5 min initial denaturation step at 95°C, 35 cycles which included the cycle denaturation at 

95°C for 30 s, primer annealing at temperature specific for each primer pair (Table 2) for 30 s 

and the cycle elongation at 72°C for 1 min, and final elongation for 10 min at 72°C as the last 

step. To enhance specificity, the program was started in advance and samples were put into the 

device after the temperature of the heating block reached 80°C. 

 

3.4  Verification of amplification using gel electrophoresis 

The amplification was verified by electrophoresis on 1.5% agarose gel in TBE buffer [89mM 

Tris-base, 89mM boric acid, 2.5mM Na2-EDTA]. 0.7 µL of the staining solution [0.25% (w/v) 

Bromphenol blue (Sigma-Aldrich), 30% glycerol, 2 μL/mL of 10000x GelRed (Biotium)] was 

pipetted on a microtiter plate. Afterwards, 1.5 µL of the PCR products was added. The samples 
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were mixed with the staining solution by pipetting up and down three times and loaded onto 

the gel. To the first well (and optionally also last well, depending on the number of samples) 

3 µL of the 100 bp ladder (New England Biolabs) was pipetted. Then the lid of the 

electrophoresis chamber was closed and voltage was set to 120V. After about 25 min, the run 

was completed and power supply was turned off. Afterwards the bands were visualized under 

UV light. 

 

3.5 Sanger sequencing  

Gel electrophoresis showed that the PCR amplification was successful for most loci (except 

B1) which meant that the primers were binding to the DNA. However, there could still be 

mutations in the amplified region. Therefore, it was necessary to check if the repeat 

(microsatellite) is still present and also if other length mutations including insertions or 

deletions in the flanking regions are absent. These mutations would have been unwanted since 

they can cause either low variation or variation that is not related to the number of repeats in 

the microsatellite. In order to ensure none of the above mentioned occurred, observation of the 

sequence was necessary, since neither gel electrophoresis nor fragment analysis gives 

sufficient information. Therefore, 2 – 4 samples for each locus were selected and sequenced. 

Before sequencing, the PCR products were purified by enzymatic purification (Exo-AP). In 

this purification method, two enzymes are combined: (1) Exonuclease I cleaves single stranded 

DNAs from unincorporated primers, and (2) Fast Alkaline Phosphatase cleaves 

unincorporated dNTPs. The purification process was performed on ice and the enzyme mixture 

[Exonuclease I (Fermentas; 20 U/µL) and FastAP (Fermentas; 1U/µL) in a ratio 1:2] was 

stored at -20°C. 0.7 µL of the Exo-AP mixture was aliquoted in new 0.2 mL PCR strips and 2 

µL of the PCR products were added. Afterwards the mixture was mixed gently and centrifuged 

briefly. The samples were then put on a thermocycler and kept 15 min at 37°C (activity of the 

enzymes) and 15 min at 85°C (deactivation of the enzymes). Then 2.3 µL sterile water and 5 

µL of the forward primer (5 µM) were added to the PCR products and the samples were sent 

to SEQme company (Dobříš, Czech Republic) for sequencing. 

 

The sequence data were visualised with FinchTV 1.4 software (Geospiza, USA).  
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3.6 PCR amplification for fragment analysis 

After Sanger sequencing, the sequences were checked and problematic loci were discarded. 

Fluorescent colours were chosen in a way that pooling all loci into one fragment analysis 

was possible. 

To add a fluorescent label into PCR products, modified PCR with 3 primers employing 

universal M13 fluorescent primers was used, following the protocol of Schuelke (2000). 

Again, the whole procedure was performed on ice. The PCR mixture for each sample 

contained 1.025 µL PCR water, 0.6 µL M13 forward primer (2.5 µM, fluorescently labelled), 

0.075 µL ‘tailed’ specific forward primer (5 µM), 0.3 µL specific reverse primer (5 µM) and 

2.5 µL of 2x Plain PP Master Mix (Top-Bio). 0.5 µL of sample DNA was added. Strips were 

mixed and spun briefly.  

 

Again, PCR was run in a Biometra T3000 thermocycler. The following cycling program was 

used: 2 min initiation step at 94°C, 33 cycles, each 30 s at 94°C, 30 s at primer specific 

annealing temperature (Table 2) and  60 s at 72°C, followed by 11 cycles, each 30 s at 94°C, 

30 s at 46°C and 60 s at 72°C, and finally, one step cycle at 72° for 10 minutes and cooling 

down to 15°C. 

When the PCR amplifications were finished, the strips were spun briefly and the PCR products 

were checked by agarose gel electrophoresis (see chapter 3.4).  

 

3.7 Fragment analysis and evaluation using Gene Marker 1.80 

After PCR amplifications (see chapter 3.6), PCR products from different loci of the same 

sample were pooled (0.5 µL each) and 4 µL of the mixture was sent to SEQme company for 

fragment analysis. Size standard GeneScan™-600 LIZ® was used (added by the company). 

 

The data was evaluated using Gene Marker 1.80 software (SoftGenetics). Length (in bp) of 

each major peak was recorded for each primer and locus manually. 
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Table 1: Detailed information about the Ranunculus species included in this study. Ploidy level was obtained from Prančl 

et.al 2017 

Sample 

no. 

Country Locality; habitat Taxon Ploidy 

01 CZ Lanžhot; Dĕdova pískovna; sand pit R.aquatilis 6x 

02 CZ Chorynĕ; artificial pool in a wetland R.aquatilis 6x 

03 SI Julian Alps, Kriško jezero; alpine lake R.confervoides 4x 

04 CZ Senožaty; Želivka River R.fluitans 2x 2x 

05 CZ Senožaty; Želivka River R.fluitans 3x 3x 

06 CZ Chorynĕ; artificial pool in a wetland R.peltatus 4x 

07 CZ Třísov; Vltava River R.peltatus 4x 

08 CZ Vlkov; sand pit R.peltatus 4x 

09 DE Erdmannsdorf; Zschopau River R.penicillatus A 4x 

10 CZ Libočany; Ohře River R.penicillatus A 4x 

11 AT Schloßhof; alluvial pool R.rionii 2x 

12 CZ Andĕlská Hora; fishpond R.trichophyllus A 4x 

13 CZ Vlkov; sand pit R.trichophyllus A 4x 

14 AT Mattighofen; Kühbach brook R.trichophyllus B 4x 

15 CZ Novosedly; periodic pool R.trichophyllus B 4x 

16 CZ Přerov; gravel pit R.circinatus 2x 

17 CZ Lišov; Čekal fishpond R.peltatus x 

R.trichophyllus A 

4x 

18 CZ Bukovsko; fishpond R.peltatus x ?  4x 

19 CZ Bukovsko; fishpond R.peltatus 4x 

20 CZ Rychnov nad Malší; Malše River R.peltatus x R. 

trichophyllus s.l. 

4x 

21 AT Aigen-Schlägl; Große Mühl River R.fluitans x R. 

peltatus 

4x 

22 AT Sankt Georgen a. d. Gusen; Gusen River R.fluitans x R. 

trichophyllus. B 

3x 

23 CZ Karviná; gravel pit R.circinatus 2x 

24 AT Totes Gebirge, Wildensee; alpine lake R.confervoides 4x 

25 CZ Senorady; Jihlava River R.fluitans 2x 2x 

26 CZ Harvraníky; Dyje River R.fluitans 3x 3x 

27 AT Tadten; groundwater channel R.rionii 2x 

28 CZ Jevišovice; artificial pond R.baudotii 4x 

29 AT Angern an der March; sand pit R.baudotii 4x 
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30 CZ Lanžhot; Dĕdova pískovna; sand pit R.aquatilis 6x 

31 AT Marchegg; Mühlbach brook R.aquatilis 6x 

32 CZ Odrava; Odrava River R.penicillatus 4x 

 
 

Table 2: Detailed information about the microsatellite loci and primers included in this study. F and R – forward and 
reverse primer, respectively; Ta – annealing temperature. Information on repeat motif, primers, allele sizes and annealing 

temperatures are taken from Wu et al., 2017. The fluorescent dye used in this thesis is indicated in the last column. 

Locus  Repeat  

Motif  

Primer sequences (5’-3’)  

(F – forward, R – reverse) 

Allele 

size 

range 

(bp) 

Ta(°C) Fluorescent dye for 

Fragment analysis 

B1 (TC)7 F: GCAGTTGCCATAGATACC 

R: CAGGGAATGGAAATAGG 

418-

450 

54 Not used 

B2 (GT)7 F: GCAAAGGGTAAGACTGCTAT 

R: ATCAAGTTCCGATTCTGGTT 

408-

410  

52 Red (PET®) 

B5 (GA)9 F: AATTCTGCTGCCCCTAT 

R: TACTTCTTCTGCCTTGCTT 

465-

472 

58 Not used  

B6 (CAG)6 F: CAGGGACTGGACAGATACAC 

R: CTCATAGGAGAGACGGTTGGT 

345-

366 

56 Blue (6 FAM™) 

B9 (GA)9 F: ACCTGGTGATCTTGAAGTAAA 

R: CTAATCCGAAACAGTGTATCTAA 

322-

349 

51 Green (VIC®) 

B10 (AG)10 F: GCCAAGCTCTTCTGCTCT 

R: GTGTCTTTGATTGATTTTACCG 

297-

313 

54 Blue (6 FAM™) 

B11 (GA)7 F: TAGATGAAGAACTAGGGCAAA 

R: GCAAGCGAAGAAACCA 

143-

171 

50 Yellow (NED™) 

B12 (TAT)11 F: GCAGCGGAGTAAAACCT 

R: CATTACAAAACATACCAGCAT 

172-

193 

54 Green (VIC®) 

B13 (AG)7 F: GCTTCTATTCTACCCTTGTTC 

R: GCAGCACCTCCTACTTCG 

107-

109 

56 Blue (6 FAM™) 

B16 (CTG)13 F: GGAAATGGCTGGCTGATA 

R: GATTCGGGAAGAGGTGGT 

453-

459 

54 Blue (6 FAM™) 

B17 (TGG)6 F: CCAAGGCACCAGTTTCAG 

R: TTGTTGTGGAGAATGGACGA 

430-

445 

54 Yellow (NED™) 

B20 (CAC)6 F: CCCTTCCCTTGTGCTTG 

R: GAATGCCCAGTTAGCCC 

163-

172 

54 Blue (6 FAM™) 

B21 (TC)13 F: CAAAAGGACTTGGAGACG 

R: GTGGTGTTCAGAGCCATT 

466-

471 

52 Green (VIC®) 
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4. Results 
 

4.1 Gel electrophoresis 

Gel electrophoresis, that was performed after the first PCR reactions, showed that most of the 

primer pairs annealed and loci amplified successfully (Figure 12). Locus B1 did not amplify 

and therefore was excluded for further studies (Figure 13). In locus B11 double bands were 

observed, i.e., non-specific PCR products occurred. However, this locus was retained in the 

dataset as the specific locus can be recognized based on the product size.  

 

  

Figure 13: Gel electrophoresis sample 1-8, loci B1 and B20 alternating. Amplification of locus B1 was unsuccessful 

in most of samples (no bands visible). 

B1/1 

B20/1 

ladder 

Figure 12: Gel electrophoresis samples 1-8, loci B10 and B17 alternating, middle: B5. 

B17/1    B17/2 
B5/1 

B10/1   B10/2     etc. 

ladder 

control 10 

control 17 

control 5 
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4.2 Sanger sequencing 

For each locus, name and type and number of repeats according to Wu et al. (2017) is given, 

and then own Sanger sequences of the respective locus are evaluated. 

 

B2, (GT)7 

In sample 5 the repeat motif is repeated five times. 

Regarding sample 7, GT is repeated eight times at the initial part of the sequence. 

 

B5, (GA)7 

Only some (GA)2 repeats and one (GA)3 repeat are present in the sequence of sample 3. The 

sequence shows many overlaps and is quite ambiguous from the beginning, this might indicate 

length mutations (insertion or deletion) in the flanking region.  

Similarly, sequence of sample 6 lacks any longer (GA) repeats and only a few (GA)2 as well 

as one (GA)3 repeat can be seen. 

In summary, the repeat region was not resolved in this locus and the locus was therefore 

discarded from the subsequent fragment analysis.  

 

B6, (CAG)6 

Sequences of samples 5 and 7 gave same results. In both one (CAG)3 repeat and one (CAG)4 

repeat are present, separated by 9 bp of other nucleotides.  

 

B9, (GA)9 

The sequence of sample 8 appears rather disordered, probably due to some indel occurring 

before the microsatellite region. One (GA)4 repeat is present, afterwards another (GA)5 repeat 

can be found.  

Regarding sample 16, the sequence appears to be rather clear with low noise signals. However, 

towards the end, it gets more disordered which is also due to some indel occurring after the 

microsatellite in the flanking region. Similar to sample 8, the repeat of (GA)6 can be found 

which is interrupted by a single adenine, after which the sequence continues with (GA)2. 

Additionally, some (GA)2 repeats are present.  
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B10, (AG)10 

Regarding sample 1, the repetition is present but significantly shorter, including only four 

repeats.  

In the sequence of sample 3, several (AG)2 repeats as well as multiple single AGs can be found. 

Concerning sample 8, one (AG)4 repeat which is interrupted by two guanine bases and then 

followed by an (AG)3 repeat is present. Furthermore, one single (AG)2 repeat can be found in 

the sequence.  

All the sequences from B10 are chaotic which might be due to technical problems or due to 

some indel in the flanking region. Another reason could be that the primer does not anneal 

completely specifically.  

 

B11, (GA)7 

This primer was not used for Sanger sequencing due to the occurrence of unspecific PCR 

products (double bands visible in previously performed gel electrophoresis). 

 

B12, (TAT)11 

In sequence 8 one (TAT)5 repeat can be found. The repeat is then interrupted by a single 

adenine. Another microsatellite that is present in this sample as well as in sample 15 is a poly-

T region in the flanking region. Moreover (TAT)2 occurs in the latter sequence.  

 

B13, (AG)7 

In sample 1 the AG repeat is present, however there are just three repeats. Regarding sample 

5, (AG)5 can be detected at the beginning.  

 

B16, (CTG)13 

Results of the Sanger sequencing for sample 8 show a very chaotic sequence possibly due to 

either indel occurring early in the flanking region or imperfect annealing of the forward primer. 

Therefore, the sequence is hard to read. However, it is assumed that the microsatellite is 

present.  

In the sequence of sample 16, one (CTG)6 repeat and one (CTG)5 repeat are present, separated 

by ca 80 bp.   
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B17, (TGG)6 

While at the beginning the signals of sample 1 are clear, the sequence gets more disordered 

towards the end which is due to indel in the flanking region. One (TGG)4 repeat occurs at the 

beginning.  

For sample 5 one (TGG)5 repeat is present, the sequence is clear. 

 

B20, (CAC)6 

In sample 5 the repeat motif is repeated five times. 

Concerning sample 8, one (CAC)3 repeat can be found at the beginning. 

 

B21, (TC)13 

Sample 12 shows a sequence with very clear peaks (Figure 12). They are very well separated 

and resolved and the level of background noise is low. Starting around position 200, there is a 

long sequence of TC that is interrupted by several other bases. Problems might have occurred 

due to another repeat region (TCC) at around position 160 – 190. This TCC repeat could have 

caused problems because the repeat has different lengths than the requested TC repeat (3 vs. 

2 bases). Also the TCC repeat is interrupted by several bases. 

Sample 16 shows similar pattern as sample 12, a long sequence of the requested repeat is 

present which is interrupted by other bases. The repeat also starts at around 200 bp. Also in 

this sample the TCC repeat is present, similarly to sample 12. 

 

Figure 14: Sanger sequencing Primer 21/ sample 12, the repeat region is framed, the interruptions are indicated by arrows 
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Figure 15: Sanger sequencing Primer B12/ sample 8 

 

4.3 Fragment analysis  

Results of fragment analysis are summarized in table 3 below. Since the primers B1 and B5 

did not amplify sufficiently or lacked the microsatellite on Sanger sequences, those two were 

excluded from fragment analysis.  

 

B2: Varying from 409 to 465 bps, locus B6 had a rather broad range of allele sizes. It did not 

work sufficiently on sample 10, 32 (both R. penicillatus) and 11 (R. rionii) as well as on one 

of two examined R. baudotii samples. In contrast, R. aquatilis (sample 1) and R. aquatilis 

(sample 2) showed high amount of similarity, whereas R. aquatilis (samples 30 and 31) seemed 

to be quite deviating from the previous ones but were also quite similar.  

 

B6: This locus was ranging between 342 and 399 bp. Both R. baudotii samples, both R. rionii 

species and the two R. trichophyllus A showed the same pattern. Locus B6 did not work on 

two out of four R. aquatilis samples. The two R. aquatilis that worked revealed similar peaks. 

 

B9: For this locus a lot of small peaks were detected which were not all included. Locus B9 

was ranging between 344 and 375 base pairs. It worked successfully on almost all samples. 

Exceptions are sample 2 (R. aquatilis), sample 13 (R. trichophyllus A) and sample 21 (R. 

fluitans x R. peltatus). Under exclusion of R. aquatilis mentioned above, all other R. aquatilis 

samples showed very similar peaks. Both R. baudotii, and all R. fluitans 2x and 3x had 

identical peaks. 
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B10: Locus 10 was ranging from 286 to 313 bp. The primers did not work for five samples 

including two R. aquatilis samples, one R. baudotii, one hybrid between R. fluitans and R. 

trichophyllus B and one R. fluitans 3x. Apart from that, the two R. aquatilis samples that 

worked showed identical peaks. Patterns of both R. circinatus, both R. trichophyllus A, both 

R. trichophyllus B and both R. rionii samples are completely identical. Additionally, samples 

6 and 7 (both R. peltatus) had identical peaks, the other two R. peltatus showed quite different 

pattern.  

 

B11: For locus B11 there were a lot of small peaks which were not counted. The locus had a 

lenght range from 166 – 204. The primers didn’t anneal on one out of two R. fluitans 2x and 

not on one of two R. fluitans 3x. It also failed on sample 20 which is a hybrid between R. 

peltatus and R. trichophyllus s.l. and on sample 22 which is a hybrid between R.fluitans and 

R. trichophyllus B. Additionally, it failed on sample 10 (R. penicillatus A). Concerning R. 

aquatilis the primer annealed successfully on three out of four species. Two out of those three 

have the same peaks. Peak patterns of all R. baudotii, all R. circinatus and all R. confervoides 

were the same. The same counts for both R. rionii, R. trichophyllus A and all 

R. trichophyllus B.  

 

B12: The locus was ranging from 190 to 217 bp. There were a lot of small peaks, which were 

not all counted. Sample 1 and 2 (both R. aquatilis) had almost the same peaks. Sample 3 and 

4 (both R. aquatilis) had identical peaks. A perfect match could be observed concerning the 

two R. baudotii samples which had the same peaks. The same counts for the two R. fluitans 

2x as, for both R. rionii as well as for both R. trichophyllus A. 

 

B13: Locus B13 had a range 124 – 131 bp. The primer annealed successfully at 30 out of 32 

samples. It is remarkable that this primer showed almost identical peaks for all R. aquatilis 

species. Additionally, both R.fluitans 3x showed exactly the same peaks.  

 

B16: In two out of four R. aquatilis samples the annealing did not work properly or failed 

completely. Furthermore, this locus did not work for sample 5 which has been a R. fluitans 3x 

sample and for sample 27 which is a R. rionii. Peaks of both examined R. trichophyllus A those 

of both R. circinatus and those of R. baudotii are identical. Locus 16 ranged between 462 – 

495 bp. 
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B17: This locus had a range of 439 – 466 bp. It amplified on almost all samples. There was 

just one exception, namely one R. trichophyllus B sample. What is notable about this primer 

is that in a huge number of samples of the same species pattern was the same. So R. aquatilis 

samples 1 and 2 and R. aquatilis 3 and 4 were completely identical. The same is true for both 

R. baudotii samples and both R. circinatus samples. In addition to that, the peaks for both R. 

fluitans 2x and those of both R. fluitans 3x were completely identical. The R. rionii samples 

as well as the R. trichophyllus A samples had also exactly the same pattern. 

 

B20: This locus amplified well at all samples except sample 11 which was taken from R. 

rionii. However, the other R. rionii sample analyzed did work. All four R. aquatilis samples 

and both R. trichophyllus B samples had almost identical peaks. Peaks of R. fluitans 2x were 

exactly the same. 

 

B21: Considering all the loci used in fragment analysis, locus B21 (444 – 499 bp) was by far 

the least successful one. It did not work on 19 out of the 32 samples. A species on which the 

locus was amplified at all samples is e.g. R. confervoides.  

 

 

 
Figure 16: Locus B13/ sample 3 (blue dye). One allele can be found at 126 bp 

 

 
Figure 17: Locus B9/ sample 8 (green dye). Peaks at 348 bp, 356 bp, 358 bp and 367 bp were counted, the rest was regarded 

as stutter peaks, which are typical for microsatellites 
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Figure 18: Locus B17/ sample 1 (yellow dye) Peaks at 439 bp, 440 bp and 442bp were counted 

 

 

 
Figure 19: Locus B2/ sample 10 (red dye, as an example for a sample on which the locus did not work) 

 
Table 3: Summary of the fragment analysis 

Locus 
Mean length 

[bp] 

Min length 

[bp] 

Max length 

[bp] 

Mean allele 

count [-] 

Max allele 

count [-] 

No. of 

homozygotes 

No. of failed 

samples 

B2 444 409 465 2.32 5 9 4 

B6 371 342 399 2.84 6 5  5 

B9 356 344 375 2.21 5 8 5 

B10 302 286 316 2.11 5 13 6 

B11 182 166 204 1.81 4 12 6 

B12 205 190 223 2.60 5 3 2 

B13 128 124 131 1.80 3 12 2 

B16 476 462 495 2.14 4 8 4 

B17 447 438 466 1.94 3 8 1 

B20 183 177 194 2.26 5 8 1 

B21 482 444 499 1.43 4 11 18  
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Table 4: Detailed results of the fragment analysis. For each sample 

and locus, lengths of all alleles are listed [bp]. After locus names, 

the repeat motifs are indicated. 
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5. Discussion 
 

In this study, primers for microsatellite loci designed for the species Ranunculus bungei (Wu 

et al., 2017) were tested on central European Ranunculus species. The aim was to figure out 

which primers anneal and which loci show sufficient variation in order to use them for further 

analysis of various European Ranunculus taxa. Therefore, a combination of Sanger sequencing 

and fragment analysis was performed. With Sanger sequencing information about presence of 

the microsatellite repeat was obtained. Fragment analysis gave additional knowledge about 

relative allele sizes and its variation in larger set of samples. 

 

Most primers seemed to anneal and PCR reaction was usually successful. However, although 

the requested repeat motif was mostly found in Sanger sequences, numbers of repetitions were 

lower than reported by Wu et al. (2017) in nearly all cases. Generally, shorter repeats with low 

purity have a low mutation frequency (Vieria et al., 2016). An extreme example for this 

circumstance is locus B5, in which the repeat motif was not resolved (absent or very short) in 

both samples (Wu et al., 2017). Due to that result, this primer was excluded from further work 

(fragment analysis). 

 

Another frequently occurring phenomenon was that the repeat was found using Sanger 

sequencing (and showed the required length) but was interrupted by a single or by multiple 

base pairs. This fact was observed for instance with locus B21. Furthermore, fragment analysis 

also revealed that locus B21 did not work properly on European Ranunculus species. 

 

When it comes to fragment analysis, most of the loci were resolved in most of the samples. 

The obtained pattern for most taxa were comparable or even completely identical between 

different samples of the same species and therefore species-specific.  

 

However, due to low within-species variation and several problematic features, the tested 

microsatellite loci cannot be used for usual purposes in central European Batrachium taxa 

(such as clone identification, population genetics, etc.). Those main problems include for 

example that the numbers of alleles are not corresponding to the ploidy levels. This means that 

in some cases more alleles had been found than is the number of chromosome sets (i.e., number 

of physical copies of a locus), which might have been caused by duplication of the locus or 

length variation in the flanking region or presence of another type of repeat. Additionally, the 
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difference between the alleles did sometimes not correspond to the length of the repeat which 

again shows that there is some other source of length variation in the flanking region.  

 

Problems occurring in this study are quite common when one tries to cross-amplify 

microsatellites from less-related species. They are probably due to the large phylogenetic 

distance, which means that there was enough time for mutations to occur in various regions of 

the DNA including priming sites, the flanking regions or even within the microsatellite itself.  

Problems like that are well known in the literature, e. g. when testing primers designed for a 

moss Scorpidium cossini on the relatively closely related Hamatocaulis vernicosus 

(Manukjanová et al., 2018). In this study, most samples of H. vernicosus were amplified 

successfully but there were various problems such as absent microsatellite motifs or the fact 

that the sequence contained another microsatellite which then interfered with the interpretation 

of the fragment analysis. Therefore, new species-specific SSR primers had to be designed for 

H. vernicosus. Since the same is true concerning the study about Ranunculus sect. Batrachium,  

new primers have to be designed for these plants in order to use them for population genetical 

studies in a reliable way.  

 

Apart from that, this work revealed that sample 18, of which the species was previously not 

determined exactly, most probably is a hybrid between R. peltatus and R. trichophyllus A. This 

interesting aspect was found out by analyzing the data (fragment analysis) which showed that 

the pattern of sample 17 (R. peltatus x R. trichophyllus A) and sample 18 showed a high level 

of similarity.  

 

  



31 

 

6. Conclusion 

 

In this study microsatellite markers which were obtained from Ranunculus bungei from China 

(Wu et al., 2017) were tested on various European Ranunculus sect. Batrachium species. The 

aim was to get information whether they amplify and are variable enough to use them for 

further population genetic studies. Results showed that most primers seem to anneal on most 

of the analyzed Ranunculus species and PCR reaction is successful. However, the variation is 

not sufficient and interpretation of the patterns in fragment analysis is not always clear-cut. 

Therefore, the deployed primers cannot be used for studies on population genetics but some 

might be useful for species identification. For additional information and a deeper 

understanding further studies should be done. 
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